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Abstract

In evolutionary biology, phylogenetic networks are constructed to represent the evolution of species in which

reticulate events are thought to have occurred, such as recombination and hybridization. It is therefore

useful to have efficiently computable metrics with which to systematically compare such networks. Through

developing an optimal algorithm to enumerate all trinets displayed by a level-1 network (a type of network

that is slightly more general than an evolutionary tree), here we propose a cubic-time algorithm to compute

the trinet distance between two level-1 networks. Employing simulations, we also present a comparison

between the trinet metric and the so-called Robinson-Foulds phylogenetic network metric restricted to level-

1 networks. The algorithms described in this paper have been implemented in JAVA and are freely available

at (https://www.uea.ac.uk/computing/TriLoNet).
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1. Introduction

Various types of phylogenetic networks have been

introduced to explicitly represent the reticulate evo-

lutionary history of organisms such as viruses and

bacteria in which processes such as recombination

and lateral gene transfer occur [1]. Essentially, such

networks are binary, directed acyclic graphs with a

single root, whose leaves correspond to the organ-

isms or species in question. Here we focus on level-

1 networks, a type of phylogenetic network that is
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slightly more general than an evolutionary tree, and

closely related to so-called galled-trees (see, e.g. [2]).

Level-1 networks are characterized by the property

that any two cycles within them are disjoint (see the

next section for a formal definition and Fig. 1 for an

example). Due to the availability of practical algo-

rithms for their construction [3, 4], level-1 networks

have attracted much attention in recent years (see,

e.g. [2, 5, 6, 7]) and they have been used to, for ex-

ample, represent the evolution of the fungus Fusar-

ium graminearum [1], and that of HBV [4].

A key challenge for phylogenetic networks is to

quantify the incongruence between two networks

which represent competing evolutionary histories
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for a given dataset. Such pairs can arise, for ex-

ample, when different networks are inferred using

different methods or construction (see e.g. [8] for

an overview of network building methods). In con-

sequence, various metrics have been developed for

comparing phylogenetic networks (cf. Chapter 6

in [1] for an overview). Ideally, such a metric should

be efficient to compute since it may need to be

repeatedly computed (for example, in simulations

such as the ones that we present later in this pa-

per). Moreover, it is useful if the diameter can be

derived for the metric (i.e. the maximum value for

the metric taken over all pairs of all possible net-

works) so that distances can be normalized.

Here we develop an efficient cubic-time algorithm

to compute the trinet distance between two level-1

networks, that is, the number of trinets (i.e., net-

works on three taxa) displayed by one but not both

networks. We also give the diameter of this metric.

The trinet metric was introduced in [9] and used

in [4] to compare the performance of network in-

ference algorithms. Note that the trinet distance is

closely related to the triplet distance, which is the

number of 3-leaved trees exhibited by one but not

both networks (see, e.g. [10]). However, in contrast

to the trinet metric, the triplet metric is not proper

in that there exist pairs of distinct level-1 networks

whose triplet distance is zero. In addition to the

trinet metric, other proper metrics that can be used

for comparing level-1 networks include the tripar-

tition metric [11], the path-multiplicity metric [12],

the NNI metric [13], and the Robinson-Foulds met-

ric [2]. Among these metrics, only the NNI metric

was specifically defined for level-1 networks, while

the others were introduced for more general classes

of networks and can be restricted to level-1 net-

works to give proper level-1 metrics. However, es-

tablishing the diameters for these other metrics on

level-1 metrics appears to be a challenging problem,

although in this paper we shall derive the diameter

for the restricted Robinson-Foulds metric.

In the next section we introduce some basic no-

tation and state the main result: an optimal al-

gorithm to enumerate the trinets displayed by a

level-1 network and a cubic-time algorithm to com-

pute the trinet distance between two level-1 net-

works (Theorem 1). In Section 3 we present some

structural results concerning level-1 networks which

we then use to prove the main result in Section 4.

In Section 5 we present a comparative study be-

tween the trinet and the Robinson-Foulds metrics,

in which we compute some empirical distributions

for randomly generated level-1 networks. We con-

clude in Section 6 with a discussion of some future

directions.

2. Preliminaries

Let X be a finite set of taxa with cardinality n. A

rooted phylogenetic network (or simply a network)

N on a finite set X is a simple, acyclic digraph with

a unique root, no degenerate vertices (i.e., vertices

with indegree one and outdegree one), whose leaves

are bijectively labelled by the taxa in X. A net-

work is binary if all non-leaf vertices have indegree

and outdegree at most two, and all vertices with

indegree two have outdegree one. A vertex is a tree

vertex if it has outdegree two, and a reticulation

if it has indegree two. A network is level-k if the

maximum number of reticulations contained in any
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Figure 1: A level-1 phylogenetic network with leaf set X =

{a, b, . . . , j} containing a cycle of length five, highlighted in

bold. Here we use the convention that all arcs are directed

away from the root vertex which is at the top of the network.

of its biconnected components is at most k. Note

that a network is level-1 if it is binary and all of its

cycles (in its underlying graph) are disjoint [1] (see

Fig. 1 for an example). All networks mentioned in

this paper, unless stated otherwise, are level-1.

Given a network, an arc whose removal discon-

nects the network is a cut arc. If a vertex v is on

a dipath from the root to a vertex u, then we say

u is below v and v is above u, and write this as

u � v (or u ≺ v when u 6= v holds). The set C(v)

of all taxa below a vertex v is called the cluster of

v. A common ancestor of a taxon subset Y is a

vertex v with Y ⊆ C(v). A lowest common ances-

tor (LCA) of Y is a common ancestor of Y that

is not above any other common ancestors of Y . A

stable ancestor of Y is a vertex contained in ev-

ery dipath from the root to some taxon in Y . The

lowest stable ancestor (LSA) of Y is the unique ver-

tex lsa(Y ) such that lsa(Y ) is below every stable

ancestor of Y . Note that a LCA of Y is necessary

below lsa(Y ) (c.f. [14]). Finally, the lsa table θ of

N is the data structure that maps each pair of dis-

trict taxa x, y to lsa(x, y) = lsa({x, y}) (see Fig. 2

for an illustration).

(i)

zy

x

ρ

v1

v3
v2

v4

v5

LSA(x, y) = v2

LSA(x, z) = ρ

LSA(y, z) = ρ

(ii)

Figure 2: An Example of an lsa table: (i): A level-1 phylo-

genetic network N ; (ii) The lsa table of N . Note that v4 is

the LCA of {x, y} while we have lsa(x, y) = v2.

A binet is a network on two taxa and a trinet is a

network on three taxa. Up to relabelling, there exist

two types of binets and eight types of trinets [9],

all presented in Fig. 3. In the following, we will use

the notation in that figure to refer to specific trinets

and binets. Binets T0(x, y) and S0(x; y) are referred

to as a cherry and a reticulate cherry, respectively.

Note that a reticulate cherry is not symmetric, that

is, S0(x; y) is distinct from S0(y;x).

Given a network N and a taxon sub-

set Y = {y1, . . . , yk} of X, the network N [Y ] =

N [y1, . . . , yk] is the network obtained from N by

deleting all vertices and arcs that are not on a di-

path from lsa(Y ) to some leaf in Y , and repeatedly

suppressing degree 2 vertices and replacing parallel

arcs by single arcs until neither operation is appli-

cable. Let B(N) and T (N) be the set of all bi-

nets and trinets displayed by N , respectively. It is

known that a level-1 network N is determined by

its set T (N) of trinets [9].

The trinet distance dt(N,N
′) between two net-

works N and N ′ on the set X is the number

of trinets contained in the symmetric difference

T (N)4T (N ′) of the sets T (N) and T (N ′). The

distance dt is a metric on the set of level-1 net-
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Figure 3: The two types of binets and the eight types of trinets.

works [9]. Moreover,

dt(N,N
′) ≤ 2

(
n

3

)
, (1)

holds for any pair of networks N,N ′ with equal-

ity holding if, for example, N is a tree and N ′ is

a saturated level-1 network (that is, each non-leaf

vertex is contained in a cycle of size three; see [13]).

Hence, the diameter of dt is 2
(
n
3

)
. We now present

our main result, whose proof will be presented in

Section 4.

Theorem 1. The set T (N) of trinets displayed

by a level-1 network N on X can be constructed

in O(n3) time. In addition, the trinet-distance

dt(N,N
′) between two level-1 networks N and N ′

on X can be computed in time O(n3).

3. Theoretical Results

In this section, we present some structural results

concerning level-1 networks. First, note that given

a level-1 network N on X, we have

|V (N)| ≤ 4n− 3 and |E(N)| ≤ 5n− 5, (2)

with equality holding if and only if N is saturated.

The proof of this fact is similar to that for Lemma 1

in [13], and so we omit it.

Next, we show that in a level-1 network N , each

taxon subset Y of X has a unique lowest common

ancestor, denoted by lca(Y ). Note that this is

not true for level-2 networks (see, for example, [1,

p140]).

Proposition 2. Each taxon subset Y of X has a

unique lowest common ancestor in a level-1 net-

work N on X. Moreover, either lsa(Y ) = lca(Y )

holds or there exists a unique dipath from lsa(Y )

to lca(Y ), which does not contain any cut arc.

Proof. We may assume that |Y | ≥ 2 since otherwise

the proposition clearly holds. Fix a LCA u of Y and

let w = lsa(Y ). Without loss of generality, we may

also assume that u ≺ w as otherwise u = w and the

proposition follows.

We first show that there exists a cycle in N con-

taining both u and w. To this end, fix a dipath P

from w to u. It suffices to show that P contains

no cut arc. If this is not the case, let (v1, v2) be a

4



cut arc in P . Then v2 ≺ w and every dipath from

the root of N to a taxon below v2 must contain

v2. Together with u � v2 and C(u) = Y , this im-

plies v2 is a stable ancestor of Y , a contradiction to

w = lsa(Y ).

It remains to show that u is the unique LCA of

Y . If not, let v be a LCA of Y with v 6= u. Then

neither u � v nor v � u holds. Now an argument

similar to that in the last paragraph shows that w, u

and v belong to the same cycle C. In addition, w is

the highest vertex in C. Let P1 and P2 be the two

interior disjoint dipaths in C so that P1 contains

u and P2 contains v. Let u1 be the child of u con-

tained in P1 and u2 be the other child. Then (u, u2)

is a cut arc. Since u1 is not a common ancestor of

Y , there exists a taxon y ∈ Y with y � u2. Since

v is not above u2 and (u, u2) is a cut arc, v is not

above y, a contradiction.

By the last proposition, a pair of distinct taxa

x, y ∈ X in a level-1 network N on X have a unique

LCA, denoted by lca(x, y) = lcaN (x, y). More-

over, lca(x, y) is precisely the interior vertex v for

which one child of v is above x but not y while the

other child of v is above y but not x.

A splitting ancestor of x and y is an interior ver-

tex of N such that precisely one taxon from {x, y}

is below both of its children (while the other taxon

is below only one of its two children). For instance,

in S0(x; y) the root is the unique splitting ancestor

of x and y while T0(x; y) contains none.

Theorem 3. Suppose x, y ∈ X are distinct taxa in

a level-1 network N on X. Then the following three

assertions are equivalent:

(1a) N [x, y] is a cherry;

(1b) lca(x, y) = lsa(x, y);

(1c) x and y do not have a splitting ancestor.

Moreover, the following three assertions are also

equivalent:

(2a) N [x, y] is a reticulate cherry;

(2b) lca(x, y) ≺ lsa(x, y);

(2c) lsa(x, y) is the unique splitting ancestor of x

and y.

Proof. Let w = lsa(x, y). It is easy to show

“(1a)⇔(1b)”, from which “(2a)⇔(2b)” follows.

“(1b)⇒(1c)”: Assume w = lca(x, y) and that v

is a splitting ancestor of x and y. Let v1 be the child

of v with w � v1. Swapping x and y if necessary,

we assume the other child v2 is above x but not

y. Consider a dipath P1 from the root ρ of N to v

and a dipath P2 from v2 to x such that neither of

them contains w. Let P be the dipath constructed

by combining P1, P2, and the arc (v, v2). Then P

is a dipath from ρ to x that does not contain w, in

contradiction to w being a stable ancestor.

“(2b)⇒(2c)”: By Proposition 2 there exists a

unique path P from w to lca(x, y). Fix an ar-

bitrary vertex u in N . Then |{x, y} ∩ C(u)| is 2

if w ≺ u, less than 2 if u ≺ lca(x, y), and equal

to 0 if u is neither above nor below w. Therefore,

P contains all splitting ancestors of x and y, from

which it follows that lsa(x, y) is the unique split-

ting ancestor of x and y.

Finally, we have “(1c)⇒(1b)” as its contraposi-

tive follows directly from “(2b)⇒(2c)”. Similarly,

“(2c)⇒(2b)” holds as its contrapositive follows di-

rectly from “(1b)⇒(1c)”.
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Algorithm 1: Constructing B(N) and the lsa

table θ for a level-1 network N

1 θ(x, y) := ⊥ for all x 6= y in X and B := ∅;

2 Find a topological sort {v1, . . . , vm} of all tree

vertices so that vj ≺ vi implies i < j and

construct C(v) for every vertex v;

3 for i = 1 to m do

4 Let A and B the clusters displayed by the

two children of vi;

5 for x ∈ A ∩B and y ∈ A4B do

6 B ← S0(x; y) and θ(x, y) = vi;

7 for x ∈ A \B and y ∈ B \A do

8 if θ(x, y) = ⊥ then

9 B ← T0(x, y) and θ(x, y) = vi;

10 return the set B and the table θ.

4. Algorithms

In this section we present an algorithm for ex-

tracting trinets from a network N on X, from which

we can also immediately compute the trinet dis-

tance between pairs of networks.

4.1. Extracting Binets

Our first step (see Algorithm 1) is to construct

B(N) and the lsa table for a level-1 network N on

X in time O(n2).

Fix a taxon subset Y = {x1, x2} in X. We shall

show that N [Y ] is the only binet on Y that is con-

tained in the set B constructed in the algorithm,

and that θ(x1, x2) = lsa(Y ). The first case is

that N [Y ] is a cherry. Then by Theorem 3(1),

N does not contain a splitting common ancestor

of x1 and x2, and hence the pair does not occur

in the for loop starting with line 4. In addition,

by the comment below Proposition 2 the pair x1

and x2 occurs once in the for loop starting with

line 7 (when vi = lca(Y )), from which it follows

N [Y ] is the only binet on Y contained in B, and

θ(x1, x2) = lsa(Y ).

Now consider the second case in which N [Y ] is a

reticulate cherry. Swapping the subscripts if neces-

sary, we may assume that N [Y ] = S0(x1;x2). By

Theorem 3, lsa(Y ) is the unique splitting ances-

tor of x1 and x2 in N and hence the pair x1 and

x2 will occur in the for loop starting with line 5

(when vi = lsa(Y )), referred to here as the first

event. Since x1 is below both children of vi, it fol-

lows that in line 6 the binet S0(x1;x2) is added to

B and θ(x1, y2) = vi = lsa(Y ).

Next, since lca(Y ) is the unique LCA of x1

and x2, the pair x1 and x2 will also occur once

in the for loop starting with line 7 (when vj =

lca(Y )), referred to as the second event. Since

lca(Y ) ≺ lsa(Y ) and the vertices of N are topo-

logically sorted, the first event always occurs before

the second one. So when the second event occurs,

θ(x1, x2) has already been assigned to a vertex in

N , and hence line 9 will be skipped. Therefore,

N [Y ] is the only binet on Y in the set B, and

θ(x1, x2) = lsa(Y ).

Finally, Eq. (2) implies that N contains O(n)

vertices and O(n) arcs, and hence line 2 can be

computed in O(n2). Moreover, the analysis in the

above three paragraphs implies that a pair of taxa is

checked precisely once in line 7 and at most once in

line 5. Therefore, the running time of Algorithm 1

is O(n2).
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4.2. Extracting Trinets

Our next step is to extract trinets from a network

N on X. A key insight that we shall use is that each

of the eight trinet types has a unique signature in

terms of the binets it contains and the lsa table.

For a network N on X and a triple Y :=

{x1, x2, x3} in
(
X
3

)
, swapping the indices if

necessary, we can assume that lsa(x1, x2) �

lsa(x2, x3) = lsa(x1, x3), and N [x1, x2] is either

T0(x1, x2) or S0(x1;x2). Let t be the number of

cherries among the three binets on Y . Then N [Y ]

can be inferred as follows.

Case [t ≥ 2]: Let N [Y ] be T1(x1, x2;x3) if t = 3,

and N3(x1;x2;x3) otherwise.

Case [t = 1]: If θ(x1, x2) = θ(x1, x3), let N [Y ]

be S1(x1, x2;x3). Otherwise if x3 � lsa(x1, x2),

then N [Y ] = S2(x1;x2;x3). Finally, let N [Y ]

be N2(x1, x2;x3) if B contains S0(x1;x3), and

N1(x1, x2;x3) otherwise.

Case [t = 0]: Let N [Y ] be N5(x1;x2;x3) if

S0(x1;x3) ∈ B, and N4(x1;x2;x3) otherwise.

Clearly, the above process can be completed in

constant time, and hence the trinet set displayed

by a network on X, as well as the trinet distance

between two networks on X can be computed in

O(n3), from which Theorem 1 follows.

5. Experiments

To obtain some intuition concerning the empiri-

cal behaviour of the trinet metric, and how its be-

haviour compares to that of the Robinson-Foulds

distance, we implemented both metrics and per-

formed experiments in which we computed distri-

butions of the metrics for pairs of randomly gener-

u

v

x

u

v

x

u

v

x

(i) (ii) (iii)

N N N

Figure 4: Operations to attach a leaf to an arc (u, v): (i):

via a vertex, (ii) and (iii): via a triangle. Here operation (ii)

and (iii) are applicable only if (u, v) is not in a cycle.

ated networks. Note that similar experiments have

been performed to understand properties of tree

metrics [15] and RNA metrics [16].

We begin by recalling the Robinson-Foulds phylo-

genetic network metric dRF , which can be restricted

to give a metric on level-1 networks, and can be re-

garded as a generalization of a commonly used met-

ric on evolutionary trees with the same name [17].

For a pair N,N ′ of level-1 networks on X the dis-

tance dRF (N,N ′) is defined to be the size of the

multiset that is the symmetric difference of the two

multisets of the clusters induced by N and N ′ [2].

Since the root and leaf vertices of N and N ′ both

induce identical clusters, it follows that

dRF (N,N ′) ≤ |V (N)|+ |V (N ′)| − 2− 2n.

Using Eq. (2), it is straight-forward to check that

the last inequality implies that

dRF (N,N ′) ≤ 6n− 10 (3)

holds for arbitrary pairs N,N ′, with equality hold-

ing in case, for example, N and N ′ are both satu-

rated networks that are obtained by replacing each

interior vertex in two distinct trees whose only com-

mon clusters are X and the singletons with a cycle

of size three. It follows that the diameter of dRF is
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6n− 10. Using Eq. (1) and Eq. (3), for comparison

purposes in our experiments we normalized both

the trinet and Robinson-Foulds metrics to take on

values between 0 and 1.

To perform our experiments, we generated three

sets of random level-1 networks on 50 leaves in two

ways as follows. The first two datasets, Lev(1) and

Lev(10), were generated under the model detailed

in [3], using one and ten seeds, respectively, which

can be found on the website mentioned in the ab-

stract. The third dataset, Ran, was generated using

the following procedure: starting with a random bi-

net on two taxa, in each step the current network

is grown by adding a taxon to a randomly chosen

arc employing one of the three operations depicted

in Fig. 4 until a level-1 network with the specified

leaf-set is obtained.

Distributions for the normalized trinet and

Robinson-Foulds metrics for the three datasets are

presented in Fig. 5. For our datasets, we see that

the trinet metric has a much larger range of values

and a larger variance as compared to the Robinson-

Foulds metric. This is quite similar to the be-

haviour of the Robinson-Foulds metric and quartet-

distance evolutionary tree metrics described in [15,

Fig.6]. Note that there is a gap between the values

presented in Fig. (5)-(ii)a, which could be caused

by the choices of seeds in the generators and by the

way that the metric is normalized.

We also performed similar studies on networks

with 15 and 25 leaves and found that as the num-

ber of leaves increases, the distribution of range of

values got tighter for both metrics. For example,

the standard deviations of the normalized dt and

dRF metrics on the Ran datasets with 15, 25 and

50 leaves were 0.034, 0.032, 0.032, and 0.046, 0.038,

0.026, respectively. We also recorded the timings

for computing the two metrics. On a MacBook Pro

computer with an i7 processor and 16 GB RAM,

the average time for computing the trinet metric

on Lev(1), Lev(10), and Ran were 140, 145, and

231 minutes for the trinet metric and 16, 21, and

58 minutes for the Robinson-Foulds metric. Thus,

as anticipated, the Robinson-Foulds metric appears

to be somewhat faster to compute in practice.

6. Discussion

We have presented an algorithm which allows us

to compute the dt metric for level-1 networks, and

demonstrated that this allows us to compute this

metric in reasonable time for networks of up to 50

leaves. We have seen that although the dRF met-

ric is faster to compute, it does not give the range

of values that might be necessary to properly dis-

tinguish between networks. However, for certain

applications dRF could still serve as a rough mea-

sure of distance suffices when timings are more crit-

ical. Thus, as suggested for tree and RNA metrics

in [15, 16], we do not advocate using dt or dRF over

any other metric; the choice of metric will depend

very much on the application.

Although our cubic-time algorithm for enumer-

ating the trinets displayed by a level-1 network is

optimal, it would be interesting to know if there

is a more efficient algorithm to compute the trinet

distance between two level-1 networks which does

not involve listing the trinets displayed by the net-

works. Note that the Robinson-Foulds distance be-

tween two trees can be computed in linear time us-
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Figure 5: Distributions of the normalized Robinson-Foulds metrics (top three panels) and the trinet metrics (bottom three

panels) using bin width 0.01 on the three datasets as detailed in the text. The x-axes represent the normalized distances and

the y-axes the proportion of network pairs with given distance. (i): Lev(1), (ii): Lev(10), and (iii): Ran. Here µ denotes the

mean and σ the standard deviation.

ing Day’s algorithm [18] without the need to list

all clusters displayed by the trees (see also [19] for

a sublinear approximation algorithm). It may be

worth exploring whether similar ideas could be ex-

ploited to more efficiently compute the trinet and

the Robinson-Foulds distance between two level-1

networks.

In future work, it could be of interest to deter-

mine analytical formulae for the expected values

and variances of dt and dRF as well as other met-

rics. Such formulae were given for different types

of tree metrics in [15]. However, as a first step it

would be probably be necessary to develop ways to

generate level-1 networks with a certain distribu-

tion (e.g. uniformly at random), which appears to

be a challenging problem.

In addition to the two metrics studied here,

as mentioned in the introduction there are other

proper metrics on level-1 networks (e.g. the tripar-

titions [2] and NNI [13] metrics). However, we do

not know how to normalize these metrics by finding

their diameters. This is important for comparison

purposes, for example, in the experiments that we

present above. Therefore it would be interesting to

find the diameter for other level-1 metrics and so

that they can be systematically compared with dt

9



and dRF .

Finally, in this paper we have only considered

level-1 networks, and it could be useful to develop

efficient algorithms to compute trinet metrics for

level-k networks with k ≥ 2, especially in the case

k = 2 where the trinets are known to determine

the network [20]. However, for networks with much

higher levels this is likely to be challenging since,

as opposed to level-1 networks, they are not neces-

sarily determined by their trinets [21]. Therefore it

might also be of interest to restrict to special classes

of networks (e.g. tree-child networks), where more

is known concerning their structure [20].
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