The role of calcium signalling in plant-aphid interactions

Thomas Robert Vincent

John Innes Centre

University of East Anglia
A thesis submitted for the degree of Doctor of Philosophy
September 2016

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright law. In addition, any quotation or extract must include full attribution.
This page is intentionally left blank
Blank pages are used throughout to allow legends to appear opposite display items in
the paper copy of this document
Abstract

Myzus persicae is one of the most successful insects on the planet. It is the world’s most pesticide-resistant insect, feeds on hundreds of plant species and acts as a vector for over 100 viruses. Upon perception of *M. persicae* feeding, plants activate pattern-triggered immunity (PTI), a pivotal part of which is believed to be calcium signalling. The aim of this thesis is to uncover the role that calcium signalling might be playing in the interaction between *M. persicae* and one of its hosts: the model plant Arabidopsis.

Using a fluorescent calcium sensor (GCAMP3), *in vivo* imaging of calcium dynamics was performed on leaves infested with *M. persicae*. There is a rapid and highly localised calcium burst around the feeding site in the epidermal and mesophyll cells, making it as one of the first plant responses to aphid attack. This calcium burst is triggered after perception of the aphid by the defence co-receptor BRASSINOSTEROID INSENSITIVE-ASSOCIATED KINASE 1 (BAK1), establishing it as part of PTI. Calcium is released from the extracellular space into the cell by GLUTAMATE-LIKE RECEPTORS 3.3 and 3.6 (GLR3.3 and GLR3.6), in combination with the release of intracellular calcium from the vacuole by TWO-PORE CHANNEL 1 (TPC1). Loss of *BAK1*, *GLR3.3/GLR3.6* or *TPC1* significantly attenuates the aphid-induced calcium burst and has an effect on the induction of anti-aphid defence responses.

Downstream of the burst, CBL-INTERACTING PROTEIN KINASES 3, 9, 23 and 26 are activated by calcium and together mediate plant resistance to aphid attack. Furthermore, the *M. persicae* effector Mp10 partially suppresses the feeding site calcium burst, suggesting that the aphid is manipulating this pathway as part of its successful colonisation of the plant. Together, the data presented in this thesis provide evidence for the significant involvement of calcium signalling in the plant response to aphid attack.
“No amount of experimentation can ever prove me right; a single experiment can prove me wrong.” - Albert Einstein

Translated by Alice Calaprice (ISBN 0-691-12074-9)
Table of Contents

Abstract .. iii

Table of Contents .. v

Acknowledgements ... xiii

List of figures .. xiv

List of tables .. xix

List of videos ... xx

List of common abbreviations ... xxiii

Chapter 1: Introduction .. 1

1.1 Calcium Signalling .. 2
 1.1.1 Calcium signalling: an overview ... 2
 1.1.2 The Ca\(^{2+}\) signature ... 2
 1.1.3 Energised Ca\(^{2+}\) transporters ... 3
 1.1.4 Ca\(^{2+}\)-permeable channels ... 6
 1.1.5 Decoding the Ca\(^{2+}\) signal .. 11
 1.1.6 Ca\(^{2+}\) signalling during abiotic stress .. 15
 1.1.7 Genetically-encoded Ca\(^{2+}\) sensors ... 16

1.2 Aphids ... 21
 1.2.1 Aphids: an overview ... 21
 1.2.2 Aphid feeding behaviour ... 23

1.3 Plant defence .. 28
 1.3.1 Plant defence: an overview ... 28
 1.3.2 Perception of pathogens and insects .. 30
 1.3.3 Early events in PAMP-triggered immunity 34
 1.3.4 Late events in PAMP-triggered immunity 38
 1.3.5 Effector-triggered immunity ... 41
 1.3.6 Systemic signalling during stress .. 43

1.4 This project ... 46
1.4.1 Aims of the project .. 46
1.4.2 Overview of thesis contents .. 47
1.4.3 Contributions to thesis ... 49

Chapter 2: Materials & Methods ... 50

2.1 Plant maintenance ... 51
 2.1.1 Arabidopsis growth conditions ... 51
 2.1.2 Arabidopsis lines .. 51
 2.1.3 *Vicia faba* growth conditions .. 51

2.2 Insect maintenance .. 54
 2.2.1 *M. persicae* stock colony ... 54
 2.2.2 Aged *M. persicae* ... 54
 2.2.3 *A. pisum* stock colony .. 54
 2.2.4 Aged *A. pisum* ..

2.3 DNA methods ... 55
 2.3.1 DNA extraction .. 55
 2.3.2 Genotyping PCR ... 55
 2.3.3 DNA sequencing .. 57

2.4 RNA methods ... 58
 2.4.1 RNA extraction .. 58
 2.4.2 cDNA synthesis ... 58
 2.4.3 RNAi silencing ... 58

2.5 Real Time PCR ... 59
 2.5.1 RT-PCR .. 59
 2.5.2 qRT-PCR ... 60

2.6 Gene Synthesis and cloning .. 62
 2.6.1 Gene synthesis .. 62
 2.6.2 Site-directed mutagenesis ... 62
 2.6.3 DNA sequencing ... 63
 2.6.4 GoldenGate cloning ... 63
 2.6.5 Cloning into *E. coli* ... 63
 2.6.6 Electroporation of *Agrobacterium tumefaciens* 64
 2.6.7 Colony PCR ... 64
2.6.8 Restriction Digestion .. 65

2.7 Plant Transformation & Crossing ... 65
2.7.1 Floral dipping of Arabidopsis .. 65
2.7.2 Crossing Arabidopsis .. 66

2.8 Microscopy .. 67
2.8.1 Plant sample preparation ... 67
2.8.2 Insect preparation ... 67
2.8.3 Fluorescence microscopy .. 67
2.8.4 Aphid behaviour analysis ... 68
2.8.5 Fluorescent signal analysis .. 68

2.9 Aphid performance assays ... 70
2.9.1 M. persicae fecundity assay .. 70
2.9.2 M. persicae trans-generational fecundity assay 71
2.9.3 M. persicae choice assay ... 71
2.9.4 M. persicae induced resistance assay ... 71
2.9.5 A. pisum survival assay ... 72
2.9.6 Whole plant EPG ... 73
2.9.7 Single leaf EPG ... 73

2.10 Arabidopsis assays ... 74
2.10.1 Aphid extract collection ... 74
2.10.2 ROS assay .. 74
2.10.3 Defence gene induction assay ... 75
2.10.4 Germination assay .. 75

2.11 RNA-seq ... 76
2.11.1 Sample preparation ... 76
2.11.2 Sample analysis .. 76

Chapter 3: M. persicae elicits rapid BAK1-dependent Ca^{2+} bursts in
Arabidopsis ... 77

3.1 Introduction .. 78
3.1.1 YCNano-65 and GCAMP3 are highly-optimised tools for measuring Ca^{2+} 78
3.1.2 Ca^{2+} signalling is important during plant-aphid interactions 79
3.1.3 Phloem occlusion is Ca^{2+}-dependent .. 80
3.1.4 Prevention of occlusion during aphid feeding may involve Ca^{2+} 81
3.1.5 SAR in plant-aphid interactions ... 83
3.1.6 *M. persicae* induces plant defence through a BAK1-mediated pathway 84
3.1.7 *M. persicae* uses the effector Mp10 to suppress BAK1-mediated plant defence 85
3.1.8 Aims of this chapter .. 85
3.1.9 Materials and methods .. 86

3.2 Results ... 87

3.2.1 GCAMP3 can be used to measure Ca^{2+} dynamics during aphid feeding 87
3.2.2 Aphids induce rapid localised Ca^{2+} bursts in isolated Arabidopsis leaves 87
3.2.3 YCNano-65 could not detect an aphid-induced Ca^{2+} burst 92
3.2.4 *M. persicae* does not induce systemic Ca^{2+} signals or SAR in Arabidopsis 94
3.2.5 Aphid feeding begins rapidly upon settling and the phloem is not reached for several minutes ... 96
3.2.6 Aphid-induced Ca^{2+} signals could not be detected in the phloem 96
3.2.7 Aphid-induced Ca^{2+} signals are significantly reduced in the *bak1-5* mutant 100
3.2.8 Phloem feeding is reduced on the *bak1-5* mutant 103
3.2.9 Reduced expression of *Mp10* alters the aphid-induced Ca^{2+} signal .. 107

3.3 Discussion ... 110

3.3.1 GCAMP3 allows whole-tissue imaging of Ca^{2+} dynamics during aphid attack 110
3.3.2 Aphids induce a rapid and highly localised burst around the feeding site 111
3.3.3 YCNano-65 could not be used to detect aphid-induced Ca^{2+} signals. 112
3.3.4 No evidence for systemic signalling or defence against *M. persicae* could be identified .. 113
3.3.5 The aphid-induced Ca^{2+} burst most likely occurs during pathway phase and cannot be detected in the phloem 114
3.3.6 BAK1 mediates the pathway phase Ca^{2+} burst as well as feeding from the phloem 116
3.3.7 The aphid effector Mp10 modulates the plant Ca^{2+} burst 118

Chapter 4: Aphid-induced Ca^{2+} bursts are mediated by *TPC1, GLR3.3* and *GLR3.6* .. 120
4.1 Introduction ... 121

4.1.1 The vacuole is a major store of intracellular Ca$^{2+}$ 121
4.1.2 TPC1 is regulated by a combination of Ca$^{2+}$, ROS, kinases and electrical signals ... 121
4.1.3 TPC1 mediates Ca$^{2+}$ signalling during biotic and abiotic stress 122
4.1.4 Over-activation of TPC1 enhances jasmonic acid production 123
4.1.5 JA is a key component of plant defence 126
4.1.6 GLR3.3 and GLR3.6 mediate wound signalling in plants 126
4.1.7 ROS and MAPKs are involved in defence against insects and are dependent on Ca$^{2+}$ signalling ... 127
4.1.8 Plant defence against insects culminates with the production of toxic secondary metabolites ... 128
4.1.9 Aims of this chapter .. 130
4.1.10 Materials and methods .. 130

4.2 Results ... 131

4.2.1 $TPC1$ expression affects the amplitude and speed of the aphid-induced Ca$^{2+}$ burst 131
4.2.2 Plant ROS production and IR is altered in 35S::TPC1 plants 136
4.2.3 $TPC1$ expression has an effect on aphid feeding behaviour 139
4.2.4 $TPC1$ expression has no effect on aphid fecundity, host choice or survival 144
4.2.5 TPC1 over-activation ($fou2$) results in systemic aphid-induced Ca$^{2+}$ bursts 144
4.2.6 TPC1 over-activation ($fou2$) significantly reduces aphid fecundity .. 144
4.2.7 Aphid-induced Ca$^{2+}$ bursts are abolished in the glr3.3/3.6 double mutant 152
4.2.8 Aphid fecundity and plant ROS production are not altered in the glr3.3/3.6 double mutant .. 152
4.2.9 Induction of FRK1, CYP81F2 and PAD3 is altered in the bak1-5, tpc1-2 and fou2/aos mutants .. 156

4.3 Discussion .. 159

4.3.1 Aphid feeding results in vacuolar Ca$^{2+}$ release mediated by TPC1 ... 159
4.3.2 $TPC1$ expression alters ROS production, MAPK activity and camalexin biosynthesis during plant-aphid interactions .. 160
4.3.3 $TPC1$ promotes phloem feeding but has no effect on most aphid feeding behaviours ... 162
4.3.4 $TPC1$ expression affects IR but not basal resistance to aphids 163
4.3.5 Over-activating TPC1 significantly alters the plant Ca$^{2+}$ signal 165
4.3.6 Over-activating TPC1 enhances plant resistance to *M. persicae* through a JA-dependent mechanism................................. 165
4.3.7 Induction of MAPKs, camalexin and glucosinolates by *M. persicae* is independent of JA... 166
4.3.8 TPC1 over-activation reduces *A. pisum* survival independently of JA 167
4.3.9 GLR3.3 and GLR3.6 mediate extracellular Ca\(^{2+}\) release during aphid feeding 168
4.3.10 GLR3.3/3.6 expression has no effect on plant defence responses or aphid fecundity ... 169
4.3.11 *BAK1* is involved in phytoalexin production in response to aphids ... 171

Chapter 5: Investigating the role of CIPKs in plant-aphid interactions…. 174

5.1 Introduction ... 175
5.1.1 CIPKs act downstream of Ca\(^{2+}\) release 175
5.1.2 CIPK3 functions in the ABA-mediated plant response to stress...... 175
5.1.3 ABA is implicated in the plant response to aphid attack 178
5.1.4 CIPK3 may act independently of ABA................................. 178
5.1.5 CIPK3 is part of a four-member family of CIPKs.................... 179
5.1.6 Aims of this chapter ... 180
5.1.7 Materials and methods .. 180

5.2 Results.. 181
5.2.1 *CIPK3.2* is differentially expressed in response to feeding by different aphid species... 181
5.2.2 Aphid performance and plant ROS production is not altered on *cipk3-1* 186
5.2.3 Constitutive activation of *CIPK3* had no effect on *M. persicae* fecundity 190
5.2.4 Aphid performance is not altered on an alternative *CIPK3* mutant, *cipk3-103* 192
5.2.5 Abolishing transcription of a combination of clade I CIPKs negatively affects aphid fecundity ... 195
5.2.6 Abolishing transcription of all four clade I CIPKs significantly increases ROS production in response to *M. persicae*................................. 197

5.3 Discussion .. 200
5.3.1 *A. pisum* infestation alters the expression of several Ca^{2+}-related genes in Arabidopsis ... 200

5.3.2 *CIPK3* is one of the few Arabidopsis Ca^{2+} signalling genes responsive to *M. persicae* 201

5.3.3 *CIPK3* expression alone is not sufficient to alter the plant defence response to aphids .. 201

5.3.4 A truncated version of *CIPK3*, *CIPK3.2*, had no effect on aphid performance 203

5.3.5 Constitutive activation of *CIPK3* had no effect on aphid performance 203

5.3.6 Altered *CIPK3* expression might be irrelevant to plant-aphid interactions 204

5.3.7 *CIPK9* and *CIPK23* have a significant effect on aphid performance that might be mediated by plant nutrient homeostasis ... 205

5.3.8 The clade I CIPKs act as a hub to negatively regulate plant defence 206

Chapter 6: General Discussion ... 209

6.1 Summary of research findings .. 210

6.1.1 *M. persicae* elicits a rapid, localised Ca^{2+} burst in the upper cell layers of Arabidopsis .. 212

6.1.2 BAK1, GLR3.3, GLR3.6 and TPC1 mediate Ca^{2+} release in response to *M. persicae* 213

6.1.3 Activation of plant defence is modulated by BAK1 and Ca^{2+} signalling 214

6.1.4 *M. persicae* suppresses BAK1-mediated PTI and Ca^{2+} signalling...... 216

6.2 Open questions ... 217

6.2.1 The role of Ca^{2+} signalling in non-host resistance 217

6.2.2 The role of other Ca^{2+} stores and Ca^{2+}-related genes in plant-aphid interactions 218

6.2.3 The role of other ions in plant-aphid interactions 219

6.2.4 The role of plant hormones in plant-aphid interactions 220

6.3 Implications of the research findings... 221

Appendix A: Synthesised genetic units ... 223

Appendix B: Golden Gate modules and vectors ... 229

Appendix C: Chapter 3 supplemental figures .. 233

Appendix D: Chapter 4 supplemental figures ... 245
Appendix E: Chapter 5 supplemental figures 264

Bibliography ... 266
Acknowledgements

First and foremost I must thank my incredible supervisory team for their support, suggestions and encouragement over the past four years. I am grateful to Dale Sanders and Tony Miller for allowing me to conduct a PhD with them and for giving me the freedom to pursue a project that I have enjoyed enormously. I am also grateful to Saskia Hogenhout for the expertise and opportunities she has shared with me over the course of this project and Sam Mugford for tolerating my “lurking” when I needed advice. Likewise, the guidance and experimental work of Simon Gilroy and colleagues has been instrumental to this PhD. I must also thank Nick Brewin, George Lomonossoff and Michael McArthur for the experience and training I received during my rotation year at the JIC.

In addition to my supervisory committee, I have to acknowledge the huge support I have received from every member of Dale, Tony and Saskia’s groups, both professionally and personally, during this PhD. I am especially indebted to Paloma Menguer and Claire Drurey for their time and patience whilst training me in the lab, as well as Chrissy Wilson and Nicola Capstaff for their friendship and humour during my time here. I have also been lucky enough to supervise several excellent students, with the work of Marieta Avramova, James Canham, Magda Steele, Peter Higgins and Natasha Bilkey contributing significantly to this thesis.

Outside of the lab, life in Norwich has been immensely enjoyable. My sanity has been maintained by an incredible cohort of peers, including my fellow brunch, lunch and wine enthusiasts, especially Leonie, Jan, Daniel, Ben, Jon, Alex, Lizzie, Emily, Sibyl, and Dash, as well as many others I don’t have space to list here.

Finally, I have to acknowledge my parents for their unwavering support over the last 25 years, and my sister for hers over the last 23. Nothing would have been possible without it.
List of figures

Figure 1.1: Ca\(^{2+}\) signatures in the different compartments of a plant cell. 4

Figure 1.2: Structural comparison of Ca\(^{2+}\)-permeable channels in plants. 7

Figure 1.3: Ca\(^{2+}\) decoding mechanisms in plants. .. 12

Figure 1.4: CIPKs mediate ABA and ion uptake, export and sequestration. 14

Figure 1.5: Genetically-encoded Ca\(^{2+}\) sensors. ... 17

Figure 1.6: The model aphids. ... 22

Figure 1.7: Aphids feed from plants using specialised mouthparts called stylets. 25

Figure 1.8: Phloem feeding involves salivation (E1) followed by ingestion (E2). 27

Figure 1.9: The three stages of molecular plant-aphid interactions. 29

Figure 1.10: Early and late events in PTI against pathogens and insects. 33

Figure 1.11: Ca\(^{2+}\), ROS and electrical signals all participate in systemic signalling during stress. .. 45

Figure 2.1: The ROIs used in the Ca\(^{2+}\) signal analysis. .. 69

Figure 2.2: A clip cage. .. 72

Figure 2.3: Single leaf EPG. .. 74

Figure 3.1: Aphids avoid phloem occlusion, possibly through inhibition of plant Ca\(^{2+}\). .. 82

Figure 3.2: GCAMP3 can be used to detect M. persicae-induced Ca\(^{2+}\) signals around the feeding site in whole Arabidopsis plants. ... 88

Figure 3.3: Cold water treatment induces a large biphasic Ca\(^{2+}\) burst in isolated 35S::GCAMP3 leaves. .. 89
Figure 3.4: GCAMP3 can be used to detect *M. persicae*-induced \(\text{Ca}^{2+} \) signals at the feeding site in isolated leaves.

Figure 3.5: YCNano-65 can be used to detect wound-induced \(\text{Ca}^{2+} \) signals in whole Arabidopsis plants.

Figure 3.6: 35S::YCNano-65 isolated leaves treated with ice-cold water did not show large changes in FRET ratio.

Figure 3.7: 35S::YCNano-65 isolated leaves treated with *M. persicae* did not exhibit changes in FRET ratio around the feeding site.

Figure 3.8: \(\text{Ca}^{2+} \) bursts in response to *M. persicae* cannot be detected systemically.

Figure 3.9: IR against *M. persicae* cannot be detected systemically.

Figure 3.10: Representative EPG traces from *M. persicae* feeding on Arabidopsis.

Figure 3.11: Normalised GFP fluorescence (\(\Delta F/F \)) around the feeding site in 35S::GCAMP3 and SUC2::GCAMP3 Arabidopsis upon *M. persicae* settling.

Figure 3.12: Wounding to Arabidopsis expressing GCAMP3 results in systemic \(\text{Ca}^{2+} \) signals.

Figure 3.13: Normalised GFP fluorescence (\(\Delta F/F \)) around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x bak1-5 Arabidopsis upon *M. persicae* settling.

Figure 3.14: Properties of the *M. persicae*-induced \(\text{Ca}^{2+} \) burst around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x bak1-5 leaves.

Figure 3.15: Normalised florescence (\(\Delta F/F \)) around the *M. persicae* feeding site at 7 min post-settling 35S::GCAMP3 and 35S::GCAMP3 x bak1-5 leaves.

Figure 3.16: Settling behaviour of *M. persicae* on 35S::GCAMP3 and 35S::GCAMP3 x bak1-5 leaves.

Figure 3.17: Average length of pathway and phloem ingestion (E2 phase) behaviours of *M. persicae* feeding on Col-0 and bak1-5.

Figure 3.18: Relative expression of *Mp10* in dsGFP and dsMp10 *M. persicae*.
Figure 3.19: Normalised GFP fluorescence (ΔF/F) around the feeding site in 35S::GCAMP3 Arabidopsis upon M. persicae settling. .. 109

Figure 3.20: Properties of the M. persicae-induced Ca^{2+} burst around the feeding site in 35S::GCAMP3 plants treated with dsGFP and dsMp10 aphids. 109

Figure 4.1: The jasmonate biosynthesis pathway. .. 125

Figure 4.2: Tryptophan-derived secondary metabolites represent key anti-insect molecules. .. 129

Figure 4.3: Normalised GFP fluorescence (ΔF/F) around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x tpc1-2 Arabidopsis upon M. persicae settling. 133

Figure 4.4: Properties of the M. persicae-induced Ca^{2+} burst around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x tpc1-2 leaves. .. 133

Figure 4.5: Normalised GFP fluorescence (ΔF/F) around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x 35S::TPC1 5.6 Arabidopsis upon M. persicae settling. .. 135

Figure 4.6: Properties of the M. persicae-induced Ca^{2+} burst around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x 35S::TPC1 5.6 leaves. .. 135

Figure 4.7: ROS production in Arabidopsis leaf disks upon application of M. persicae extract. .. 138

Figure 4.8: IR to M. persicae is lost on 35S::TPC1 5.6 Arabidopsis 138

Figure 4.9: Altered M. persicae phloem phase behaviours in TPC1 expression mutants. ... 143

Figure 4.10: TPC1 expression does not affect aphid performance or host choice... 145

Figure 4.11: Normalised GFP fluorescence (ΔF/F) around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x fou2 Arabidopsis upon M. persicae settling. 147

Figure 4.12: Properties of the M. persicae-induced Ca^{2+} burst around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x fou2 leaves. .. 147
Figure 4.13: Normalised GFP fluorescence (ΔF/F) in the lateral tissue, systemic to the feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x fou2 Arabidopsis upon M. persicae settling. ... 149

Figure 4.14: Normalised GFP fluorescence (ΔF/F) in the midrib, systemic to the feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x fou2 Arabidopsis upon M. persicae settling. ... 151

Figure 4.15: The fou2 mutation significantly decreases aphid performance. 151

Figure 4.16: Normalised GFP fluorescence (ΔF/F) around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x glr3.3/glr3.6 Arabidopsis upon M. persicae settling. ... 154

Figure 4.17: Properties of the M. pericae-induced Ca^{2+} burst around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x glr3.3/glr3.6 leaves. ... 154

Figure 4.18: ROS production and susceptibility to M. persicae is not altered on the glr3.3/glr3.6 double mutant. ... 155

Figure 4.19: Defence gene induction in Col-0, bak1-5, tpc1-2 and glr3.3/3.6 leaf disks incubated with M. persicae extract (aphid extract) for 1 h. 157

Figure 4.20: Defence gene induction in Col-0, aos and fou2/aos Arabidopsis leaf disks incubated with M. persicae extract (aphid extract) for 1 h. 158

Figure 5.1: CIPK3 domains and gene models. ... 177

Figure 5.2: The Arabidopsis ABA pathway has Ca^{2+}-independent and Ca^{2+}-dependent components. ... 177

Figure 5.3: Phylogenetic grouping of the 26 CIPKs in Arabidopsis based on amino acid sequence. ... 179

Figure 5.4: Total genes differentially regulated upon infestation with two species of aphid (M. persicae or A. pisum) for 48 h. ... 184

Figure 5.5: Absolute gene expression of CIPK3 splice variants in response to treatment with M. persicae, A. pisum or an empty clip cage (control). 185
Figure 5.6: *M. persicae* fecundity is not altered on *cipk3-1* and *cipk3-1* complementation lines. ... 187

Figure 5.7: *M. persicae* fecundity is not altered on *CIPK3.2* complementation lines. .. 188

Figure 5.8: Aphid performance, host choice and plant ROS production are not altered on the *cipk3-1* mutant. ... 189

Figure 5.9: Constitutive activation of *CIPK3* (*CIPK3T183D*) did not have a consistent effect on *M. persicae* fecundity... 191

Figure 5.10: Identifying *CIPK3* T-DNA insertion mutants in the Col-0 ecotype 193

Figure 5.11: Germination success of 3-day old *Arabidopsis CIPK3* candidate mutants on salt-stressed media... 194

Figure 5.12: Aphid performance is not altered on *cipk3-103*. 195

Figure 5.13: *M. persicae* fecundity on *CIPK3*-related mutants. 196

Figure 5.14: ROS production in response to *M. persicae* extract in clade I *CIPK3* mutants... 199

Figure 6.1: Proposed role of Ca^{2+} signalling during the *M. persicae*-Arabidopsis interaction ... 211
List of tables

Table 2.1: Arabidopsis lines used in this study..52
Table 2.2: Primers used for DNA genotyping..56
Table 2.3: Primers used for DNA sequencing..57
Table 2.4: Primers used for RT-PCR ...59
Table 2.5: Primers used for qRT-PCR...61
Table 2.6: Primers used for site-directed mutagenesis.......................................62
Table 3.1 Properties of some popular genetically-encoded Ca^{2+} sensors.79
Table 3.2: Ca^{2+} signalling and aphid behaviour parameters during the GCAMP3 imaging. ...91
Table 3.3: EPG parameters for M. persicae feeding from Col-0 and bak1-5 Arabidopsis. ...105
Table 4.1: EPG data for Col-0 vs tpc1-2. ..139
Table 4.2: EPG data for tpc1-2 vs 35S:TPC1 5.6..141
Table 5.1: Differential expression of Ca^{2+} signalling-related transcripts in response to infestation with two species of aphid (M. persicae and A. pisum) for 48 h. 182
List of videos

The data presented in this thesis is supported by videos from the calcium microscopy assay. These files are included with the electronic copy of this document.

Video 3.1: GCAMP3 can be used to detect aphid-induced calcium signals around the feeding site in whole Arabidopsis plants. GFP fluorescence (represented by a heat map) in a 35S::GCAMP3 plant during *Myzus persicae* treatment. Inset: Abaxial leaf surface showing location of aphid settling. Video recorded over a 20 min period.

Video 3.2: GCAMP3 can be used to detect aphid-induced calcium signals around the feeding site in whole Arabidopsis plants. GFP fluorescence (represented by a heat map) in a 35S::GCAMP3 plant during *Myzus persicae* treatment. Video recorded over a 10 min period.

Video 3.3: Cold water induces rapid biphasic calcium bursts in isolated Arabidopsis 35S::GCAMP3 leaves. GFP fluorescence represented by a heat map. Point of treatment indicated on video.

Video 3.4: GCAMP3 can be used to detect aphid-induced calcium signals in isolated leaves. GFP fluorescence represented by a heat map. Left: 35S::GCAMP leaf treated with *Myzus persicae*. Right: non-treated control 35S::GCAMP3 leaf.

Video 3.5: Wounding of Arabidopsis expressing 35S::YCNano-65. FRET ratio represented by a heat map. Point of wounding indicated on video. Recorded over a 7 min period.

Video 3.6: Cold water treatment of Arabidopsis expressing 35S::YCNano-65. FRET ratio represented by a heat map. Point of treatment indicated on video. Recorded over a 5 min period.

Video 3.7: The FRET reporter 35S::YCNano-65 is unable to detect aphid-induced calcium signals in isolated leaves. FRET ratio represented as a heat map. Recorded over a 20 min period from a representative sample (n=10).
Video 3.8: The FRET reporter 35S::YCNano-65 is unable to detect aphid-induced calcium signals in isolated leaves. FRET ratio represented as a heat map. Recorded over a 20 min period from a representative sample (n=10).

Video 3.9: GCAMP3 localised to the phloem using the SUC2 promoter does not detect aphid-induced calcium signals in isolated leaves. GFP fluorescence represented by a heat map. Top left: 35S::GCAMP leaf treated with *Myzus persicae*. Top right: non-treated control 35S::GCAMP leaf. Bottom left: SUC2::GCAMP leaf treated with *Myzus persicae*. Bottom right: non-treated SUC2::GCAMP leaf.

Video 3.10: GCAMP3 can be used to visualise systemic wound-induced calcium signals in the phloem. GFP fluorescence represented by a heat map. Left: 35S::GCAMP3 plant wounded with forceps. Right: SUC2::GCAMP3 plant wounded with forceps.

Video 3.11: GFP fluorescence in 35::GCAMP3 and 35S::GCAMP3 x bak1-5 isolated leaves treated with *Myzus persicae*. GFP fluorescence represented by a heat map. Top left: 35S::GCAMP leaf treated with *Myzus persicae*. Top right: non-treated control 35S::GCAMP3 leaf. Bottom left: 35S::GCAMP3 x bak1-5 leaf treated with *Myzus persicae*. Bottom right: non-treated 35S::GCAMP3 bak1-5 leaf.

Video 3.12: GFP fluorescence in 35::GCAMP3 leaves treated with dsGFP and dsMP10 aphids. GFP fluorescence represented by a heat map. Top left: 35S::GCAMP leaf treated with dsGFP *Myzus persicae*. Top right: non-treated control 35S::GCAMP3 leaf. Bottom left: 35S::GCAMP3 leaf treated with dsMp10 *Myzus persicae*. Bottom right: non-treated 35S::GCAMP3 leaf.

Video 4.1: GFP fluorescence in 35::GCAMP3 and 35S::GCAMP3 x tpc1-2 isolated leaves treated with *Myzus persicae*. GFP fluorescence represented by a heat map. Top left: 35S::GCAMP leaf treated with *Myzus persicae*. Top right: non-treated control 35S::GCAMP3 leaf. Bottom left: 35S::GCAMP3 x tpc1-2 leaf treated with *Myzus persicae*. Bottom right: non-treated 35S::GCAMP3 x tpc1-2 leaf.

Video 4.2: GFP fluorescence in 35::GCAMP3 and 35S::GCAMP3 x 35S::TPC1 5.6 isolated leaves treated with *Myzus persicae*. GFP fluorescence represented by a
heat map. Top left: 35S::GCAMP leaf treated with *Myzus persicae*. Top right: non-treated control 35S::GCAMP3 leaf. Bottom left: 35S::GCAMP3 x 35S::TPC1 5.6 leaf treated with *Myzus persicae*. Bottom right: non-treated 35S::GCAMP3 x 35S::TPC1 5.6 leaf.

Video 4.3: GFP fluorescence in 35::GCAMP3 and 35S::GCAMP3 x *fou2* isolated leaves treated with *Myzus persicae*. GFP fluorescence represented by a heat map. Top left: 35S::GCAMP leaf treated with *Myzus persicae*. Top right: non-treated control 35S::GCAMP3 leaf. Bottom left: 35S::GCAMP3 x *fou2* leaf treated with *Myzus persicae*. Bottom right: non-treated 35S::GCAMP3 x *fou2* leaf.

Video 4.4: GFP fluorescence in 35::GCAMP3 and 35S::GCAMP3 x *glr3.3/3.6* isolated leaves treated with *Myzus persicae*. GFP fluorescence represented by a heat map. Top left: 35S::GCAMP leaf treated with *Myzus persicae*. Top right: non-treated control 35S::GCAMP3 leaf. Bottom left: 35S::GCAMP3 x *glr3.3/3.6* leaf treated with *Myzus persicae*. Bottom right: non-treated 35S::GCAMP3 x *glr3.3/3.6* leaf.
List of common abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca<sup>2+</sup></td>
<td>calcium ion</td>
</tr>
<tr>
<td>[Ca<sup>2+</sup>]</td>
<td>free calcium ion concentration</td>
</tr>
<tr>
<td>[Ca<sup>2+</sup>]<sub>cyt</sub></td>
<td>cytosolic free calcium ion concentration</td>
</tr>
<tr>
<td>4MI3M</td>
<td>4-methoxyindol-3-yl-methylglucosinolate</td>
</tr>
<tr>
<td>ABA</td>
<td>abscisic acid</td>
</tr>
<tr>
<td>AEQ</td>
<td>aequorin</td>
</tr>
<tr>
<td>CaM</td>
<td>calmodulin</td>
</tr>
<tr>
<td>CBL</td>
<td>calcineurin B-like protein</td>
</tr>
<tr>
<td>CC</td>
<td>companion cell</td>
</tr>
<tr>
<td>CDPK/CPK</td>
<td>calcium-dependent protein kinase</td>
</tr>
<tr>
<td>CFP</td>
<td>cyan fluorescent protein</td>
</tr>
<tr>
<td>CICR</td>
<td>calcium-induced calcium release</td>
</tr>
<tr>
<td>CIPK</td>
<td>CBL-interacting protein kinases</td>
</tr>
<tr>
<td>CNGC</td>
<td>cyclic nucleotide gated channel</td>
</tr>
<tr>
<td>DAMP</td>
<td>damage-associated molecular pattern</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetate</td>
</tr>
<tr>
<td>EPG</td>
<td>electrical penetration graph</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>ET</td>
<td>ethylene</td>
</tr>
<tr>
<td>ETI</td>
<td>effector-triggered immunity</td>
</tr>
<tr>
<td>FAC</td>
<td>fatty acid conjugate</td>
</tr>
<tr>
<td>FRET</td>
<td>fluorescence resonance energy transfer</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GLM</td>
<td>generalised linear model</td>
</tr>
<tr>
<td>GLR</td>
<td>glutamate receptor-like channel</td>
</tr>
<tr>
<td>H<sub>2</sub>O<sub>2</sub></td>
<td>hydrogen peroxide</td>
</tr>
<tr>
<td>HAMP</td>
<td>herbivore-associated molecular pattern</td>
</tr>
<tr>
<td>HR</td>
<td>hypersensitive response</td>
</tr>
<tr>
<td>IR</td>
<td>induced resistance</td>
</tr>
<tr>
<td>JA</td>
<td>jasmonic acid</td>
</tr>
<tr>
<td>K<sub>d</sub></td>
<td>dissociation constant</td>
</tr>
<tr>
<td>RLK</td>
<td>receptor-like kinase</td>
</tr>
<tr>
<td>ROI</td>
<td>region of interest</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MeJA</td>
<td>methyl jasmonate</td>
</tr>
<tr>
<td>OS</td>
<td>oral secretions</td>
</tr>
<tr>
<td>PAMP</td>
<td>pathogen-associated molecular pattern</td>
</tr>
<tr>
<td>PM</td>
<td>plasma membrane</td>
</tr>
<tr>
<td>PPI domain</td>
<td>protein phosphatase interacting domain</td>
</tr>
<tr>
<td>P-protein</td>
<td>phloem protein</td>
</tr>
<tr>
<td>PRR</td>
<td>pattern-recognition receptor</td>
</tr>
<tr>
<td>PTI</td>
<td>PAMP-triggered immunity</td>
</tr>
<tr>
<td>R-gene</td>
<td>resistance-gene</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>SA</td>
<td>salicylic acid</td>
</tr>
<tr>
<td>SAA</td>
<td>systemic acquired acclimation</td>
</tr>
<tr>
<td>SAR</td>
<td>systemic acquired resistance</td>
</tr>
<tr>
<td>SE</td>
<td>sieve element</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>Single-FP</td>
<td>single fluorophore</td>
</tr>
<tr>
<td>V_m</td>
<td>membrane potential</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>YFP</td>
<td>yellow fluorescent protein</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction
1.1 Calcium Signalling

1.1.1 Calcium signalling: an overview

There are few signalling components as ubiquitous as calcium ions (Ca$^{2+}$). In plants, Ca$^{2+}$ signals are generated by the release of Ca$^{2+}$ into the cytosol, altering the Ca$^{2+}$ concentration ([Ca$^{2+}$]) and resulting in transient increases in cytosolic free Ca$^{2+}$ ([Ca$^{2+}$]$_{cyt}$). This release is coordinated by Ca$^{2+}$-permeable membrane channels and the resulting change in [Ca$^{2+}$]$_{cyt}$ is decoded by a complex network of proteins. However, despite its ubiquity, we are still relatively naïve about the molecular components that underlie Ca$^{2+}$ signalling.

High levels of Ca$^{2+}$ are toxic to cells. As such, throughout evolution there has been selective pressure to keep [Ca$^{2+}$]$_{cyt}$ low by active removal into the extracellular space and, in the case of eukaryotes, intracellular organelles. This has provided the context for a simple and effective signalling mechanism whereby there is a steep electrochemical gradient between the cytosol and its surroundings, allowing efficient and rapid rises in [Ca$^{2+}$]$_{cyt}$ to be achieved [1]. These increases act in a wide range of plant processes, including responses to abiotic stress, pathogens and insects, as well as participating in the regulation of carbon dioxide sensing, symbiosis, tip growth and the circadian clock [1, 2].

1.1.2 The Ca$^{2+}$ signature

[Ca$^{2+}$] increases have defined amplitudes, durations and patterns that are determined by the stimulus and are termed the ‘Ca$^{2+}$ signature’ [3]. [Ca$^{2+}$] elevations are often asymmetric; the rise is faster than the decline. They also show a degree of attenuation upon repeated application of a stimulus [4, 5]. Specificity in Ca$^{2+}$ signalling is achieved through a combination of the Ca$^{2+}$ signature and the Ca$^{2+}$-binding proteins that decode the signature.

Part of the signature-encoded specificity is spatial. This includes localising [Ca$^{2+}$] elevations to specific cells or tissues. For example Arabidopsis thaliana (thale cress - henceforth referred to as Arabidopsis) roots exposed to salt stress exhibit [Ca$^{2+}$]$_{cyt}$ elevations specifically in the endodermis and cortex [6, 7]. Spatial specificity can also be achieved within a single cell. Rises in [Ca$^{2+}$] can be observed within various organelles, including the nucleus ([Ca$^{2+}$]$_{nuc}$), endoplasmic reticulum (ER -
Ca\(^{2+}\), mitochondria ([Ca\(^{2+}\)]\(\text{mit}\)) and chloroplast ([Ca\(^{2+}\)]\(\text{chl}\)) (Figure 1.2). For instance, rises in [Ca\(^{2+}\)]\(\text{nuc}\) can be observed in *Medicago truncatula* (barrelclover) in response to symbionts, with different microorganisms generating different [Ca\(^{2+}\)]\(\text{nuc}\) oscillatory patterns [8]. Fluxes in [Ca\(^{2+}\)]\(\text{mit}\) have a resting baseline concentration twice that of [Ca\(^{2+}\)]\(\text{cyt}\) and transient increases can be stimulated by touch, mannitol, cold and hydrogen peroxide. Interestingly, these signals do not reach the same amplitude as those seen in the cytosol [9] (Figure 1.2). [Ca\(^{2+}\)]\(\text{chl}\) oscillations have been linked to circadian rhythms [10, 11]. Moreover, spatial specificity may also be introduced by heterogeneity in [Ca\(^{2+}\)]\(\text{cyt}\) within a cell [4, 12, 13]. Different stimuli can induce Ca\(^{2+}\) release into the cytosol from specific locations: for example the apoplast in response to blue light [14], the vacuole in response to abscisic acid (ABA) [15] or the ER upon stimulation with inositol trisphosphate (InsP\(_3\)) [16].

The duration of the Ca\(^{2+}\) signature can also introduce specificity. Differences in the length of [Ca\(^{2+}\)] elevation have been found between different cell types in response to the same stress, as seen with osmotic stress in Arabidopsis [6]. Moreover, durations can vary within the same cell in response to the same stimulus. For example the pathogen elicitor harpin can induce long Ca\(^{2+}\) transients in the nucleus (~120 min) whilst generating shorter transients in the cytosol (~5 min) [17].

Frequency and amplitude are also critical to encoding specificity. [Ca\(^{2+}\)]\(\text{nuc}\) oscillates with a characteristic frequency during symbiosis [8], whilst artificially increasing the number of [Ca\(^{2+}\)]\(\text{cyt}\) transients in guard cells can significantly alter stomatal aperture [3]. Furthermore, the concentration of sodium chloride (NaCl) is correlated with amplitude of the [Ca\(^{2+}\)]\(\text{cyt}\) elevation in the root [18].

1.1.3 Energised Ca\(^{2+}\) transporters

Energised Ca\(^{2+}\) transporters are required to maintain the strong electrochemical gradient between [Ca\(^{2+}\)]\(\text{cyt}\) and its surroundings. In plants this is achieved through hydrolysis of adenosine triphosphate (ATP) by ATP-powered Ca\(^{2+}\) pumps or by a proton motive force generated through Ca\(^{2+}\)/proton (H\(^+\)) antiporters. These two forms of active transport are directed by P\(_2\)-type ATPases and the Cation eXchange (CAX) families respectively [1, 2]. These transporters are not merely the background machinery required to maintain resting [Ca\(^{2+}\)]\(\text{cyt}\); many also have specific physiological functions in the plant [19].
Figure 1.1: Ca$^{2+}$ signatures in the different compartments of a plant cell. Signatures are mediated by the influx of Ca$^{2+}$ through channels (red cylinders) and efflux by active transporters (yellow circles). The amplitude and duration of these signatures varies between the cytosol, nucleus, mitochondria and chloroplast. In this example, cytosolic Ca$^{2+}$ oscillations were stimulated by external Ca$^{2+}$ application, nuclear oscillations by Nod factor application, chloroplast elevations by dark treatment and mitochondrial elevations by touch. Adapted from McAinsh et al. [19] and references within.
Ca$^{2+}$-specific ATPases

Ca$^{2+}$-specific P$_2$-type ATPases can be divided into two groups based on amino acid sequence; the P$_{2A}$/ER-TYPE Ca$^{2+}$-ATPases (ECAs) and the P$_{2B}$/AUTO-INHIBITED Ca$^{2+}$-ATPases (ACAs). There are important structural differences between ATPase classes. First, there are differences in their Ca$^{2+}$-binding membrane-localised residues [20, 21]. Second, the ACAs contain a calmodulin (CaM)-regulated auto-inhibitory domain [22]. In Arabidopsis, there are four known ECAs and ten known ACAs [23].

As their name suggests, ECAs are localised to the ER [24], whilst ACAs can be found in the plasma membrane (PM) [25] and the membranes of the ER [26] and the tonoplast [27]. Abolishing transcription of ECAs leads to Ca$^{2+}$ and Mg$^{2+}$ toxicity phenotypes due to disrupted sequestration of these ions [28-30]. Conversely, ACAs are implicated directly in signalling, during both abiotic [31-33] and biotic [21, 34] stress. Furthermore, the N-terminal auto-inhibitory domain allows for easy regulation of ACAs by other proteins during Ca$^{2+}$ signalling [35].

CAX antiporters

CAX antiporters are localised to the tonoplast and act primarily as cytosolic Ca$^{2+}$ export systems to the vacuole. These antiporters use the energy flux from the flow of H$^+$ ions down their thermodynamic potential into the cytosol to drive the active transport of Ca$^{2+}$ against it’s potential in the opposite direction [36, 37]. There are six members in Arabidopsis, but their functions are largely unknown [38].

CAXs have a low affinity for Ca$^{2+}$ compared to the ACAs [35, 36], leading some to speculate that ACAs act to fine-tune Ca$^{2+}$ around the vacuole, whilst CAXs play a role in reducing the high [Ca$^{2+}$]$_{cyt}$ at the end of a Ca$^{2+}$ signalling event [38]. Like ACAs, CAXs have an N-terminal auto-inhibitory domain [39, 40] resulting in a requirement for additional components to activate them, such as CAX-INTERACTING PROTEIN 1 (CXIP1) [41].

As with the Ca$^{2+}$-ATPases, the role of CAX transporters in specific processes remains unclear. CAX1 transcripts are increased during cold stress, and cax1 mutants show increase freezing tolerance [42]. Furthermore, CAX1, CAX2, CAX3 and CAX4 are all induced during salt stress [43, 44]. This implies a potential role in abiotic stress tolerance. However, cax mutants display growth and development phenotypes typical of plants disrupted in Ca$^{2+}$ homeostasis [45], making it difficult to differentiate between this and a direct role in signalling [1].
1.1.4 \(\text{Ca}^{2+} \)-permeable channels

The two major regions of high \([\text{Ca}^{2+}]\) in plants are the apoplast and the vacuole [2], and release of \(\text{Ca}^{2+}\) from these locations dominates most cytosolic \(\text{Ca}^{2+}\) signatures. Extracellular \(\text{Ca}^{2+}\) is released into the cell through PM-localised channels, whilst vacuolar \(\text{Ca}^{2+}\) is released via tonoplast-localised channels. Electrophysiological and molecular characterisation has been used to identify \(\text{Ca}^{2+}\)-permeable channels in both membranes and these channels can be voltage-dependent or independent.

Electrophysiological characterisation identified the Hyperpolarisation-Activated \(\text{Ca}^{2+}\) Channels (HACCs) which are activated at negative membrane potentials above \(-120\text{mV}\) [46], and one of their best characterised roles is during stomatal closure, where a hydrogen peroxide (\(\text{H}_2\text{O}_2\))-dependent hyperpolarisation and the resultant HACC-mediated \(\text{Ca}^{2+}\) influx is required for the response [47, 48]. Conversely, Depolarisation-Activated \(\text{Ca}^{2+}\) Channels (DACCs) are activated at less negative membrane voltages, peaking in activity at around \(-80\text{mV}\) [49]. However, their identity and function in plants is controversial due to their inherent instability and potentially non-specific ion conductance [50, 51]. Nevertheless, various examples of DACCs have been reported [52]. In addition, there are also Voltage-Independent \(\text{Ca}^{2+}\) Channels (VICCs), that are only minimally affected by membrane voltage, and have been implicated in various responses from sodium uptake [53] to pathogen defence [54].

Molecular characterisation has mainly focused on three families of channels, all of which homologous to \(\text{Ca}^{2+}\) channels found in animals and are thought to be the most likely source of the genes that encode HACCs, DACCs and VICCs; the CYCLIC NUCLEOTIDE GATED CHANNELS (CNGCs) and the GLUTAMATE RECEPTOR-LIKE channels (GLRs) in the PM, and TWO-PORE CHANNEL 1 (TPC1) in the tonoplast [1, 51] (Figure 1.2).
Figure 1.2: Structural comparison of Ca2+-permeable channels in plants.
A) CNGCs contain 6 transmembrane domains (S1-S6), an extracellular pore helix (P) and C-terminal overlapping intracellular binding domains for cyclic nucleotides (CNBD, red) and calmodulin (CaMBD, yellow). B) GLRs contain three transmembrane domains (M1-3), an intracellular pore helix (P) and two extracellular glutamate (Glu) binding sites (S1 & S2). C) TPC1 is composed of twelve transmembrane domains (IS1-6, IIS1-6) in two groups (6-TM I & 6-TM II) each containing two pore domains (P1 & P2) and separated by cytosolic EF hands (EF1 & EF2). Adapted from Dietrich et al. [75], Chiu et al. [55] and Guo et al. [114].
CNGCs

First identified in *Hordeum vulgare* (barley) [56], genome sequencing has revealed 20 CNGCs in Arabidopsis [57]. CNGCs mostly localise to the PM [58-61] although recent evidence has suggested that CNGC7, CNGC8, CNGC19 and CNGC20 localise to the tonoplast, and CNGC18 to post-golgi vesicles [62, 63]. Furthermore, CNGC15 from *M. truncatula* was recently localised to the nucleus [64]. CNGCs have six transmembrane domains and assemble in tetramers to form the ion pore [1] (Figure 1.2a). This pore is permeable to Ca\(^{2+}\) [60, 65], but can also be permeable to potassium (K\(^{+}\)), sodium (Na\(^{+}\)) and other monovalent ions [66, 67].

In animals, binding of cyclic nucleotides to Cyclic Nucleotide Gated (CNG) channels is required for channel activation [68, 69]. However, such binding was not confirmed unequivocally in plants until recently [70]. The existence of cyclic nucleotide-based signalling is supported by the presence of cyclic nucleotides [71, 72] and nucleotide cyclases [73, 74] in plant cells. Furthermore, CNGCs are capable of binding calmodulin (CaM) [56] (Figure 1.2a) and this acts as part of a negative feedback system, in which Ca\(^{2+}\)-dependent CaM binding to CNGCs inhibits cyclic nucleotide binding [75, 76].

CNGCs have been heavily implicated in pathogen defence and the hypersensitive response, outlined in more detail in Section 1.3.3. In addition, CNGCs are suggested to play roles in heavy metal uptake [77], cation uptake [59, 78], pollen tube development [61, 79, 80], salt stress [59, 81], light signal transduction [82, 83], temperature sensing [70] and jasmonic acid (JA) signalling [84].

GLRs

The other family of Ca\(^{2+}\)-permeable channels at the PM that have been characterised at the molecular level are the GLRs. These are homologues of non-selective ionotropic glutamate receptors (iGluRs) in animals which are involved in neuronal signalling [85]. There are 20 GLR homologues in Arabidopsis [86] and functional channels are composed of multimeric units, as discovered through the use of C-terminal antibodies [87]. Subunits can form homo- and hetero-multimers that can be composed of various GLR family members [88-90], and different GLRs are co-expressed in the same cell to achieve this [91]. GLRs share some domains with high homology to iGluRs; two extracellular domains (S1 and S2) and three transmembrane domains (M1-3) (Figure 1.2b). S1 and S2 are hypothesised to act in ligand binding,
whilst domains M1-3 are involved in ion conductance [92]. As with CNGCs, the GLRs are not specific for Ca$$^{2+}$$.

The GLR pore region (P - Figure 1.2b) shows the least similarity to iGluRs [93, 94], making it difficult to infer GLR ion selectivity from iGluRs [92]. The study of GLR (and CNGC) selectivity has been limited by the difficulty in expressing them in heterologous systems [76]. This problem is starting to be addressed, with GLRs shown to be capable of conducting Ca$$^{2+}$$, barium ions (Ba$$^{2+}$$), Na$$^+$$ and K$$^+$$ [88, 91, 95, 96].

Very little is known about the physiological role of GLRs in plants. They have been suggested to act in glutamate sensing [93, 97-99], as well as during cold and mechanical signalling [100] and ABA signalling [101, 102]. A recent breakthrough by Farmer and colleagues demonstrated that GLR3.2, GLR3.3 and GLR3.6 are required for systemic electrical signalling in Arabidopsis upon wounding [103]. GLR3.5 also acts in this pathway as negative regulator [104]. Unlike the CNGCs, that have an intracellular ligand binding site (Figure 1.2a), the putative ligand binding site in GLRs is believed to be extracellular (Figure 1.2b) [105]. This potentially allows GLRs to act in the transduction of signals from the extracellular space, which is essential during systemic signalling. As a result, the function of GLRs in plants is now starting to be unravelled.

TPC1

The vacuole is the main intracellular store of Ca$$^{2+}$$ in mature plant cells. Some Ca$$^{2+}$$ is bound to chelating agents, whilst the remaining free Ca$$^{2+}$$ is available for Ca$$^{2+}$$ signalling [106]. As with the PM, little is known about the molecular identity of vacuolar Ca$$^{2+}$$ channels. Although many have been characterised electrophysiologically [2], the only one with an established molecular identity is TPC1 [15], a DACC originally designated the slow-voltage (SV) channel [107].

Ubiquitous across plants and animals, in plants TPC1 is localised to the tonoplast membrane [15]. TPC1 conducts Ca$$^{2+}$$ [15, 108-111], as well as K$$^+$$ and Na$$^+$$ [112, 113]. It is a homodimer in which each monomer consists of two sets of 6 transmembrane domains, two EF hand domains and a total of 4 pore domains (Figure 1.2c) [114, 115]. Interestingly, these EF hand domains allow TPC1 to be activated by Ca$$^{2+}$$ [112, 116], allowing for a positive feedback mechanism termed Ca$$^{2+}$$-induced Ca$$^{2+}$$-release (CICR) [108]. Indeed, recent structural analysis of TPC1 revealed that the
conformational change required for full channel opening is dependent on Ca\(^{2+}\) binding to the EF-hand domains [114, 115].

Historically, CICR has been the subject of controversy, with some authors suggesting that the [Ca\(^{2+}\)] required for CICR is greater than that found \textit{in vivo} [113, 117, 118]. Refinement of the CICR theory has led to reactive oxygen species (ROS) being added as an additional component, in which ROS act to potentiate the CICR systemically between cells via the apoplast [119-121]. As such, TPC1 might be acting to produce local hot spots of Ca\(^{2+}\) around the vacuole that then activate nearby TPC1 channels and the ROS producing enzyme RESPIRATORY BURST OXIDASE HOMOLOGUE D (RBOHD) to potentiate systemic signals (more details in Section 1.3.6) [121].

A physiological role for TPC1 has been hard to identify [122], although it was originally characterised as playing a role in stomatal closure and germination [15]. However, recent evidence clearly shows a vital role for TPC1 in systemic signalling during stress (see Section 1.3.6) [7, 123], with the significance of TPC1 in plants is becoming apparent.

\textbf{Other channels}

There is electrophysiological evidence pointing to the existence of several more Ca\(^{2+}\)-permeable channels in plants. In the PM, mechanosensitive channels exist that are thought to be permeable to Ca\(^{2+}\) or at least related to Ca\(^{2+}\) signalling [124]. Furthermore, it has been suggested that annexin membrane proteins might act in Ca\(^{2+}\) transport, with a \textit{Zea mays} (maize) annexin preparation capable of increasing Ca\(^{2+}\) import into Arabidopsis protoplasts [125].

The vacuole is also thought to house additional channels [126]. These include a HACC named the fast vacuolar channel [112], a Ca\(^{2+}\)-insensitive channel [122] and ligand-gated channels that are activated by cyclic ADP Ribose (cADPR) or inositol phosphates [127, 128]. In addition, Ca\(^{2+}\) release can be triggered from the ER by InsP\(_3\) [16], cADPR [129] and nicotinic acid adenine dinucleotide phosphate (NAADP) [130], suggesting the presence of ligand-gated channels on this membrane as well.
1.1.5 Decoding the Ca2+ signal

In order to translate the rise in \([\text{Ca}2+]\) into a molecular or biochemical response, decoding mechanisms that directly bind \(\text{Ca}2+\) are required. Conceptually, these decoders can be classified into sensor relays and sensor responders [2] (Figure 1.3). Some of these decoders are found across eukaryotes, whilst others are plant- or protist-specific [131].

Sensor relays are proteins that bind \(\text{Ca}2+\), often causing a conformational change, but that lack other functional domains or enzymatic activity. Examples include CaM, CaM-Like proteins (CMLs) and Calcineurin B-Like proteins (CBLs). Sensor responders incorporate both \(\text{Ca}2+\) binding and functional activity, and include the \(\text{Ca}2+\)-Dependent Protein Kinases (CDPK/CPKs), the \(\text{Ca}2+\) and CaM-dependent protein Kinases (CCaMKs) and the CBL-interacting protein kinases (CIPKs) (Figure 1.3) [2, 132].

CaMs & CMLs

CaMs in plants share 89% identity with those found in animals [133]. There are seven genes in Arabidopsis that encode CaMs, but these give rise to only four protein isoforms [134]. As in animals, plant CaMs bind \(\text{Ca}2+\) through a 12-amino acid loop in the EF hand motif, with each CaM composed of two globular domains each with a pair of EF hands (Figure 1.3) [135, 136]. \(\text{Ca}2+\) binding results in a conformational change that allows CaMs to bind a diverse range of downstream targets. These include enzymes and ion channels [137, 138], as well as a specific set of CaM-binding transcription factors (CAMTAs) that are thought to act as one of the main intermediaries in signal transduction during stress [139, 140].

CMLs are a group of 50 genes that have diverged from CaMs both genetically and functionally, but which share at least 16% amino acid identity with them [133]. CMLs have a variable number of EF hand motifs, although the majority (31/50) are predicted to have four in total (Figure 1.3) [133, 134]. Substitutions in the \(\text{Ca}2+\) binding loop account for some of the divergence between CaMs and CMLs and this might have an effect on ion selectivity, affinity or the ability of CMLs to undergo conformational changes [134]. A meta-analysis by McCormack et al. [134] found a striking difference between CaM and CML expression profiles. Whilst the CMLs were
differentially regulated in responses to a many stimuli (including biotic, chemicals, hormones and light), the CaMs were remarkably unresponsive in comparison.

CDPKs

CDPKs, also known as CPKs, are a 34-member family in Arabidopsis capable of both binding Ca²⁺ and phosphorylating downstream proteins. CDPKs contain a serine/threonine kinase domain, a CaM-like domain harbouring four EF hands and an auto-inhibitory domain (Figure 1.3) [141]. The auto-inhibitory domain suppresses CDPK activity and upon Ca²⁺ binding a conformational change occurs in the protein that removes this inhibition [142]. Activation is further enhanced by autophosphorylation [141].

![Figure 1.3: Ca²⁺ decoding mechanisms in plants.](image)

Sensor responders (left) can bind Ca²⁺ and possess inherent kinase activity, whilst sensor relays (right) can bind Ca²⁺ but have no functional domains. Sensor responders convey signals through phosphorylation of downstream targets, whilst sensor relays mediate signalling by directly interacting with targets. Taken from Hashimoto & Kudla [132].
In Arabidopsis, CDPKs exhibit a diverse range of subcellular locations, from those that are anchored in the PM (e.g. CPK 7, CPK8), ER (e.g CPK2) or the peroxisome (e.g. CPK1), to those that are found soluble in the cytosol and nucleus (e.g. CPK3, CPK4) [143, 144]. A wide range of CDPK targets have been found in these locations too. Membrane-bound targets include ion channels [145], Ca^{2+}-dependant ATPases [146], and ROS-producing enzymes [147]. This implies that CDPKs can act as part of feedback loops within signalling cascades. In the cytosol and nucleus, CDPKs have been shown to target transcription factors vital in ABA and gibberellin signalling [148-150].

Furthermore, the CDPK pathway has been linked to another major class of plant kinases, the Mitogen-Activated Protein Kinases (MAPKs). MAPK cascades are an essential component of stress signalling, including during plant defence (Section 1.3.3) [151]. There appears to be crosstalk between the CDPK and MAPK networks, with CDPK signalling inhibiting MAPK activity [152]. Thus, CDPKs mark the entry point of Ca^{2+} into vast protein phosphorylation networks that we are only just beginning to unravel.

CCAMKs

Similar to CDPKs, CCaMKs have an auto-inhibitory domain, a kinase domain responsible for protein function and EF hand domains responsible for Ca^{2+} binding [141]. CCaMK activity is also regulated by auto-phosphorylation sites in the protein [153]. CCaMKs are plant-specific, but absent from green algae and the Brassicaceae. As such, the model plant Arabidopsis does not have CCaMK and this might explain why CCaMKs are less-well characterised than other sensor responders. Despite this, CCaMKs have been extensively implicated in legume symbiosis, where they act as convergence point for signalling between plants and both mycorrhizal fungi and nitrogen-fixing rhizobia [8, 154].

CBLs and CIPKs

CBLs and CIPKs function in pairs to transduce Ca^{2+} signals [155]. The CBL acts as sensor relay, binding Ca^{2+} [156], whilst the CIPK acts as a sensor responder, phosphorylating downstream targets [157, 158] (Figure 1.3). CBLs directly target CIPKs through a conserved NAF domain in the CIPK C-terminal region [159]. This releases the CIPK from auto-inhibition caused by an interaction between the NAF and
kinase domains [160], as well as releasing CIPKs from external inhibition by protein phosphatases that also target the C-terminus of CIPKs [161].

There are 26 CIPKs and 10 CBLs in Arabidopsis [162]. For both CBLs and CIPKs, redundancy between closely related proteins is found in planta [163-166]. In addition, CBLs and CIPKs show overlapping interactions with each other in vitro, allowing for a possible “mix and match” of different components that might underlie the specificity in Ca\(^{2+}\) decoding [136, 167]. CBL/CIPK combinations have been implicated in a diverse range of responses to abiotic stress through mediation of ion transport (Figure 1.4). This network consists of many interconnected nodes, some of which act as highly connected hubs. Loss of hubs will generate measurable effects, whilst the loss of individual nodes might not [1]. This is supported by experimental data from the clade 1 CIPKs that act as a hub required for magnesium ion (Mg\(^{2+}\)) sequestration (Figure 1.4) [165, 166].

Figure 1.4: CIPKs mediate ABA and ion uptake, export and sequestration.
CIPKs and CBLs regulate a range of ion channels and transporters in the PM and the tonoplast that govern ABA (salmon), Na\(^{2+}\) (green), Mg\(^{2+}\) (yellow) and NO\(_3\) (grey) homeostasis. Regulation is mediated by phosphorylation of the target channels and transporters by the CIPK. ??? indicates components that have not yet been identified. NRT1.1 = NITRATE TRANSPORTER 1.1. Taken from Manik et al. [168].
1.1.6 \(\text{Ca}^{2+} \) signalling during abiotic stress

It is essential during times of stress that the plant is able to perceive the threat and react quickly, and \(\text{Ca}^{2+} \) signalling plays a role in both biotic (Section 1.3.3) and abiotic stress responses. One of the best studied models for \(\text{Ca}^{2+} \) signalling is the stomatal guard cell [13]. Guard cells exhibit stimulus-specific \(\text{Ca}^{2+} \) oscillations in response to many stimuli, including drought, cold and carbon dioxide [4, 5, 169]. Stomata are a useful model as their aperture is sensitive to a wide range of abiotic stimuli and can be readily studied in a wide range of plant species and mutant lines.

The plant hormone ABA plays a central role in the plant response to abiotic stresses, including during osmotic stress [170], thermotolerance [171] and mechanical wounding [172, 173]. Moreover, ABA is intricately linked to \(\text{Ca}^{2+} \). ABA application can stimulate \([\text{Ca}^{2+}]_{\text{cyt}}\) oscillations in guard cells [3, 174], and many of the same physiological responses to stress that ABA regulates are also modulated by \(\text{Ca}^{2+} \). Furthermore, many of the genes in the \(\text{Ca}^{2+} \) “toolkit” play a central role in ABA-dependent responses to abiotic stress, including \(\text{Ca}^{2+} \) transporters [32] and \(\text{Ca}^{2+} \) decoders [175, 176].

In the root, cold, salt, touch and \(\text{H}_2\text{O}_2 \) can all induce \([\text{Ca}^{2+}]_{\text{cyt}}\) increases [7]. Sodium chloride (\(\text{NaCl} \)) application results in large \(\text{Ca}^{2+} \) transients in roots [18] that can travel systemically to the shoots [7]. \(\text{ACA10} \) and \(\text{CAX1} \) are differentially regulated upon cold and play a role in freezing tolerance [31, 42]. Interestingly, cold-stimulated root \(\text{Ca}^{2+} \) oscillations are dependent on the rate of cooling rather than the absolute temperature. Indeed, when the rate of cooling is sufficiently slow, no change in \([\text{Ca}^{2+}]_{\text{cyt}}\) can be measured [177]. Touch also elicits \([\text{Ca}^{2+}]_{\text{cyt}}\) increases in plants [178], as does wounding [123].

Several \(\text{Ca}^{2+} \)-permeable channels are implicated in abiotic stress responses. \(\text{CNCCs} \) are involved in the response to various abiotic stimuli, including lead and boron stress [77, 179], heat shock [70] and salt tolerance [59, 78, 81]. \(\text{GLR3.4} \) plays a role in touch signalling [100], whilst \(\text{GLR3.3}, \text{GLR3.4} \) and \(\text{GLR3.6} \) have a clear role during wounding [103, 104]. \(\text{TPC1} \) has roles in ABA-mediated germination [15], salt stress [7] and wounding [123].

There is considerable evidence linking \(\text{Ca}^{2+} \) decoding proteins to abiotic stress. \(\text{CaMs} \) and \(\text{CMLs} \) are responsive to heat, cold, salt, ABA, drought and heavy metals [140] whilst \(\text{CDPKs} \) have been linked to cold, salt, ABA and drought [180]. Whilst \(\text{CDPKs} \) appear to positively regulate ABA-dependent signalling during stress, \(\text{CIPKs} \)
and CBLs have been implicated in the negative regulation of such responses [181]. For example CBL9, CIPK3 and CIPK23 null mutants show enhanced ABA accumulation and ABA hypersensitivity [175, 176, 182, 183]. Furthermore, CIPK and CBLs have roles in the sequestration of Mg\(^{2+}\) [165, 166], salt tolerance [157, 184, 185], K\(^+\) homeostasis [163, 183, 186-188], nitrate deficiency [189] as well as during wounding, drought and the cold [175].

1.1.7 Genetically-encoded Ca\(^{2+}\) sensors

Properties of Ca\(^{2+}\) sensors

The only way to investigate Ca\(^{2+}\) signals directly is to measure them *in vivo*. Traditionally, Ca\(^{2+}\)-selective microelectrodes have been used to achieve this [190, 191]. More recently, bioluminescent and fluorescent sensors have become increasingly popular. These sensors bind Ca\(^{2+}\) and produce light, and have allowed unparalleled opportunities to study Ca\(^{2+}\) dynamics in both cells and whole tissues (Figure 1.5).

First developed in the animal field [192], many Ca\(^{2+}\) sensors are now being used in plant biology. Such sensors can either be injected into plant tissue as dyes, or genetically encoded. Genetically-encoded sensors have the major advantage of being easy to express in live tissue and localise to subcellular compartments, whilst dyes offer a good option for plants that cannot be transformed [193].

The ideal Ca\(^{2+}\) sensor will exhibit four key qualities: high fluorescent yield (brightness), sensitivity, selectivity and responsiveness [193]. The fluorescent yield of the fluorophores used in a Ca\(^{2+}\) sensor greatly affects the [Ca\(^{2+}\)] changes they can report and is dependent on two factors. The first is the extinction coefficient, a measure of how well the fluorophore absorbs light. The second is the quantum yield, the amount of the absorbed energy that emitted as light [194].

Sensitivity can be measured in terms of two properties, the dynamic range and affinity of the sensor [195]. Dynamic range is a ratio that expresses how many times brighter the Ca\(^{2+}\)-bound sensor is relative to the Ca\(^{2+}\)-free sensor. The affinity of the sensor describes the concentration range over which the sensor produces a measurable output and depends on the dissociation constant (K\(_d\)) of the sensor. The K\(_d\) represents the strength of binding between the sensor and Ca\(^{2+}\). Consequently, the
Dynamic range and the affinity determine resolution of the $[\text{Ca}^{2+}]$ measurements that can be achieved.

Selectivity is a measure of the reliability of the sensor at accurately reporting changes in $[\text{Ca}^{2+}]$. Selectivity can be assessed by comparing the fluorescent response of the sensor to non-target ions. In order to bind Ca^{2+}, CaM is often used as part of the sensor. However, Mg^{2+} can compete with Ca^{2+} for this site [196]. In addition, selectivity is liable to alterations caused by the pH, ionic strength and ionic composition of the system [195].

Figure 1.5: Genetically-encoded Ca$^{2+}$ sensors.

Ca$^{2+}$ is represented as purple circles and sensors are coloured according to their most common emission wavelength. A) Aequorin is a bioluminescent sensor that produces light in the presence of Ca$^{2+}$ and coelenterazine. B) FRET cameleons are fluorescent sensors, typically composed of CFP and YFP. FRET sensors require CFP excitation and upon binding of Ca$^{2+}$ the two fluorophores are brought into close contact and FRET occurs, exciting YFP. C) GCAMPs are fluorescent sensors composed of a circularly-permutated GFP molecule. Upon binding of Ca$^{2+}$ GFP becomes protonated, resulting in an increase in fluorescence. D) GECOs are genetically-encoded fluorophore sensors based on GCAMP that have an expanded colour range. Adapted from Koldenkova & Nagai [195].

Selectivity is a measure of the reliability of the sensor at accurately reporting changes in $[\text{Ca}^{2+}]$. Selectivity can be assessed by comparing the fluorescent response of the sensor to non-target ions. In order to bind Ca^{2+}, CaM is often used as part of the sensor. However, Mg^{2+} can compete with Ca^{2+} for this site [196]. In addition, selectivity is liable to alterations caused by the pH, ionic strength and ionic composition of the system [195].
The responsiveness of a sensor describes the speed at which it reports changes in \([\text{Ca}^{2+}]\). This will be based on the sensor’s kinetic properties and is based on the \([\text{Ca}^{2+}]\) in the environment of the sensor, the \(K_d\) and the Hill coefficient of the sensor, where the Hill coefficient indicates the degree of cooperativity of binding of each subsequent \(\text{Ca}^{2+}\) ion. In addition, the association kinetics, the time it takes \(\text{Ca}^{2+}\) to bind the sensor at different concentrations, are also important [195]. Thus, responsiveness is a description of the temporal resolution one can achieve with a \(\text{Ca}^{2+}\) sensor.

The relationship between the Hill coefficient and \(K_d\) of the sensor, and the \([\text{Ca}^{2+}]\) in the environment, is described by the Hill Equation (Equation 1.1). The Hill equation (0) describes the fraction of the sensor that is bound to \(\text{Ca}^{2+}\) at a given \([\text{Ca}^{2+}]\), where \(n\) = the Hill coefficient. It therefore allows one to assess the suitability of a given sensor at reporting \([\text{Ca}^{2+}]\) under different physiological conditions, for example by helping to predict how the brightness of a sensor will respond when the \([\text{Ca}^{2+}]\) changes, and identifying when saturation of the sensor will occur.

\[
\theta = \frac{[\text{Ca}^{2+}]^n}{([\text{Ca}^{2+}]^n + K_d)}
\]

(1.1)

Various genetically-encoded \(\text{Ca}^{2+}\) sensors are now being used in plants and each has different biochemical and biophysical properties based on the attributes above that determines their utility in different systems.

Aequorin

The aequorin (AEQ) protein, isolated from *Aequorea victoria* (crystal jelly) was the first genetically-encoded \(\text{Ca}^{2+}\) sensor to be used in plants [192]. It is an EF hand-containing photoprotein that in the presence of \(\text{Ca}^{2+}\) acts as an oxygenase to excite the chemical substrate coelenterazine. As the excited coelenterazine returns to its ground state, it emits blue light (\(\lambda = 469\) nm) (Figure 1.5a) [197]. This has been exploited by expressing this sensor in model organisms, including Arabidopsis, to allow visualisation \(\text{Ca}^{2+}\) dynamics [178].

The major advantage of AEQ over traditional dyes is the comparative ease of use and the ability to target AEQ to specific tissue or cellular locations. Furthermore, since AEQ is bioluminescent, it does not require external stimulation by light (as is required for fluorescent sensors). This can be a major advantage as it avoids
chromophore bleaching and autofluorescence [198]. However, a major disadvantage is the requirement of coelenterazine treatment for the sensor to function, as well as the relatively poor signal generated by individual AEQ-expressing cells [193]. Additionally, there are some limitations to the quantification of [Ca^{2+}] associated with the use of non-ratiometric signals. Despite this, AEQ has been successfully deployed to measure plant [Ca^{2+}] changes in a range of processes, including temperature regulation [199], pathogen defence [200-202] salt stress [6, 203] and wounding [123].

FRET cameleons

The first ratiometric fluorescent Ca^{2+} sensor to be developed was the cameleon, which is based on the principle of fluorescence resonance energy transfer (FRET) between two fluorophores. FRET occurs when fluorophores come into close contact, with the donor fluorophore (typically cyan fluorescent protein - CFP) exciting the acceptor fluorophore (typically yellow fluorescent protein - YFP). In addition to the fluorophores, FRET sensors contain a CaM domain, a glycyglycine linker and a CaM-binding M13 protein. Ca^{2+} binding to CaM leads to an altered interaction between CaM and M13 that results in a conformational change of the whole sensor. This conformational change brings CFP and YFP in close contact and allows FRET to occur (Figure 1.5b). One can then use the ratio between CFP and YFP fluorescence to determine the change in [Ca^{2+}] in a cell or cellular compartment [204]. As the FRET ratio is directly related to Ca^{2+} binding, this system allows accurate quantification of [Ca^{2+}]. FRET sensors offer superiority over AEQ and non-ratiometric fluorescent dyes as they are not affected by the expression level of the protein [195] and they have a much greater dynamic range, allowing analysis of (sub-)cellular Ca^{2+} signalling [195].

Having been used in Arabidopsis for 17 years [174], FRET sensors are constantly undergoing improvements to their dynamic range, affinity, and stability in vivo [195]. One major breakthrough has been the use of a circularly-permutated form of YFP to develop yellow cameleon 3.6 (YC3.6) [205]. YC3.6 and derivatives (e.g YCNano-65 [206]) have been used to advance studying of cellular Ca^{2+} signalling, from the identification of new components to the discovery of long-distance signalling between the root and shoot [7, 121, 207].
Single-fluorophore sensors

Genetically-encoded single fluorophore (single-FP) sensors were developed relatively recently, and consist of circularly-permutated GFP linked to a CaM and M13 [208, 209]. The permutated GFP is more accessible to protons outside of the protein and protonation is known to modulate GFP fluorescent emission [210]. Upon Ca$^{2+}$ binding to CaM, CaM and M13 interact and this results in a water-mediated reaction between CaM and GFP. This reaction alters the protonation state of GFP by blocking solvent access and thus increases GFP fluorescence intensity [211].

Single-FP sensors have several advantages over cameleons. Firstly, they are easier to use as data is collected from only one fluorophore. The recording of a single set of measurements also allows an increase in the temporal resolution of the experiment [212]. Another major advantage of single-FP sensors is that they have a much greater dynamic range, in some cases 5-fold greater than FRET cameleons [195]. Moreover, single-FP sensors have in a range of emission spectra and therefore can be combined in cells to allow simultaneous imaging of several organelles [205, 213]. Taken together, these advantages make single-FP sensors well suited to studying a dynamic system like Ca$^{2+}$ signalling.

A major disadvantage of single-FP sensors is that they cannot measure the precise [Ca$^{2+}$] as reliably as FRET sensors. This is because it is difficult to distinguish changes in fluorescence that are due to the experimental variables (e.g. changes in pH, motion or expression level), from changes mediated by Ca$^{2+}$. During FRET, the transfer of energy from CFP to YFP only occurs upon Ca$^{2+}$ binding; other conditions that alter the fluorescent properties of the individual sensors are unlikely to mimic the opposing changes in intensity of CFP and YFP [195, 212].

One of the most established single-FP sensor varieties are the GCaMPs, based on GFP and first developed by Nakai et al. [209] (Figure 1.5c). GCaMPs have undergone major revisions over the last few years, including GCaMP 1.6 [214] GCAMP2 [215], GCAMP3 [216] and GCAMP5 [217]. Each iteration resulted in more stable sensors with greater dynamic ranges, higher affinities for Ca$^{2+}$ and better signal-to-noise ratios. The GCaMPs have been used in a variety of animal systems, from *Danio rerio* (zebrafish) motor neurones [218] to *Drosophila melanogaster* (common fruit fly) neuromuscular junctions [217]. Furthermore, a new type of single-FP sensors, the GECOs, have been developed from GCAMP3 by random mutagenesis.
GECOs can fluoresce in various colours to allow multi-sensor imaging within the same cell (Figure 1.5d) [213].

In plants, single-FP sensors are not yet extensively used. However, R-GECO was recently expressed in Arabidopsis. Comparison between R-GECO and YC3.6 found that in response to various stimuli, including ATP, fungal chitin and bacterial Flg22, R-GECO out-performed YC3.6 in terms of maximal signal change and signal-to-noise ratio [219]. Consequently, R-GECO can measure $[Ca^{2+}]$ changes not detectable with FRET cameleons. Thus, it is clear that single-FP sensors offer a golden opportunity to identify plant Ca^{2+} dynamics that have remained elusive until now.

1.2 Aphids

1.2.1 Aphids: an overview

Aphid biology

Aphids (Hemiptera: Aphididae) are one of the most successful insects on the planet, having colonised every continent except mainland Antarctica. Composed of over 4000 species, aphids feed exclusively on plant phloem sap [220]. Most aphid species, including biotypes of the model aphid Acyrthosiphon pisum (the pea aphid - Figure 1.6a), are specialists that feed on a subset of related plant species (monophagous or oligophagous). In the case of A. pisum, these are the legumes. Other species such as Myzus persicae (green peach aphid - Figure 1.6b), are highly successful generalists that can colonise hundreds of plant species (polyphagous). For example, M. persicae is capable of feeding on over 400 species from 40 different families [221], thought to be achieved partly through transcriptional plasticity [222].

The success of aphids is partly due to their asexual production of live young during the summer months (Figure 1.6c). During the winter, aphids undergo sexual reproduction, allowing for the introduction of genetic diversity (Figure 1.6c). In the case of M. persicae, sexual reproduction occurs on its primary hosts, trees of the Prunus genera, whilst the aphid becomes highly polyphagous during the asexual stage [221]. Despite this asexuality, large behavioural variation is observed between clones [223]. Indeed, in the absence of a primary host, some aphid species can survive exclusively asexually [224].
All Hemiptera harbour symbiotic microorganisms and essential to the survival of aphids is the obligate bacterial symbiont *Buchnera aphidicola* [225]. Phloem sap is an unbalanced source of amino acids [226] and symbionts such as *B. aphidicola* synthesise essential amino acids for the host [227-230]. Genomic analysis of *A. pisum* and *B. aphidicola* revealed that the machinery required for the synthesis of certain amino acids is shared between the two [231]. Furthermore, several amino acid transporters are expressed at the aphid-bacteria interface [232].

Aphids are predated on by a wide range of other insects, including ladybirds (Coleoptera: Coccinellidae) and lacewings (Neuroptera: Chrysopidae). They are also parasitized by various entomopathogenic fungi and several insects, including parasitic wasps (Hymenoptera: Braconidae) [233].

![Figure 1.6: The model aphids.](http://ipm.ucanr.edu/PMG/PESTNOTES/pni7404-2.html)

A) *A. pisum* feeding on a legume. Photo: Andrew Davis (JIC). B) *M. persicae* feeding on *Arabidopsis*. Photo: Andrew Davis (JIC). C) The life cycle of *M. persicae* generally consists of an asexual summer cycle on multiple hosts, followed by a sexual winter cycle on its primary host; trees of the genus *Prunus*. Illustration adapted from Davidson & Lyon [234] and taken from http://ipm.ucanr.edu/PMG/PESTNOTES/pni7404-2.html.
M. persicae is a major plant pest

The huge number of aphid species and the extraordinary host range of some of these species results in aphids presenting a serious threat to world agriculture. *M. persicae* can feed on hundreds of species, including vegetables (including potato, sugar beet, pea and carrots), fruits (including apple, citrus, peach and tomato) grains (including barley, wheat and maize) and ornamental plants (including rose and lily) [221, 233, 235]. Although aphid infestation reduces plant growth [236], the main agricultural damage resulting from aphid feeding is the transmission of plant viruses. *M. persicae* is capable of transmitting over 100 different types of viruses, including *Potato leafroll virus* and *Cauliflower mosaic virus* [237]. Through a combination of feeding and virus transmission, aphid infestation results in significant decreases in crop yield and quality [238-240].

Managing aphid populations is one of the great challenges of modern agriculture. One of the main forms of control is the use of chemical insecticides [241]. However, insecticide resistance is now a major issue [242-244]. *M. persicae* has developed resistance to 77 active ingredients [245] and at one point this was more than any other insect, leading to a Guinness World Record [246]. Additional control strategies include biological control using natural enemies [247, 248] and adjusting fertiliser application [249]. Genetic engineering may also offer a novel control strategy. For example, plants were recently created that synthesised the aphid alarm pheromone (E)-B-farnesene (Eβf). Whilst Eβf expressed in Arabidopsis successfully repelled *M. persicae* in the lab [250], this effect was not seen with wheat (*Triticum* spp, henceforth referred to as wheat) in the field [251], which highlights the difficulty of translating research in the lab into successful crop protection strategies.

1.2.2 Aphid feeding behaviour

Before settling

Before an aphid can settle, it has to choose a plant. For this to occur, a winged fundatrix (Figure 1.6c) must find and select a host. If a chosen host is not of sufficient quality the aphid might reject it [252]. Differentiating between host-finding a host-selecting is difficult and is most likely based on a similar set of cues
Such cues include the visual properties of the target. For example, yellow traps are widely used for aphid control as aphids find this colour attractive [254]. In addition, odours are used in host selection. This includes both those emitted from plants as volatile compounds and those emitted by other aphids as pheromones [255, 256]. Abiotic factors such as wind and temperature also affect aphid dispersal, as do biotic factors including predators and parasitoids [253].

Once a plant has been chosen, there are several barriers to establishing successful feeding with the aphid needing to decide where on a leaf to feed. *A. pisum* fecundity is not affected by feeding location, however there is an increased risk of predation when feeding near the petiole, but this does not appear to deter feeding from this area [257]. Stimuli such as gravity can help some species, including *Euceraphis betulae* (silver birch aphid), to orientate themselves on the underside of leaves [258]. Various chemical and physical features of the plant will also influence feeding site selection, including allelochemicals and trichomes [259]. Indeed, physical barriers are one of the first layers of plant defence that an insect must overcome to establish successful feeding [260].

Pathway phase

Once settled, feeding can commence. Aphids feed from plants using needle-like mouth parts called stylets that penetrate the plant tissue. This begins with probing of the upper cell layers of the leaf (epidermis and mesophyll) before long-term feeding is established from the phloem sieve elements (SEs) (Figure 1.7) [261]. The cues that govern aphid behaviour as it probes the plant are largely unknown.

The electrical penetration graph (EPG) technique pioneered by Freddy Tjallingii and others [262-265] has allowed detailed analyses of aphid feeding behaviours on plants. This technique makes the aphid part of an electrical circuit by attaching electrodes to the aphid and the plant host. Upon cellular penetration by the stylets, a voltage change can be recorded and the pattern of this change is dependent on the cell type. The stylets will travel through the apoplast of the plant, occasionally penetrating surrounding cells (Figure 1.7). EPG has revealed that cell punctures can occur within 10 s of the aphid beginning a probe and many punctures will occur in the epidermal and mesophyll cells as the aphid attempts to find the phloem. This behaviour is called the pathway phase [266, 267].
During the pathway phase, the aphid both salivates and ingests, as demonstrated by elegant experiments analysing virus acquisition and inoculation by aphids as they feed on plants [268, 269]. The aphid secretes two types of saliva into the plant; sheath saliva and watery saliva [270]. Sheath saliva protects the stylets as they move through the plant tissue [267], whilst watery saliva is secreted into plant tissue in order to suppress host defence responses (Figure 1.7) [271].

Watery saliva is injected into the cells probed by the aphid during the pathway phase [268] and proteomic studies on the watery saliva have identified that it contains various proteins that are hypothesised to suppress plant defence [272-274]. Such molecules are referred to as effectors [275]. Various putative aphid effectors have been discovered, often identified through aphid genes expressed in the salivary glands [276-278], and some can be found in the cytoplasm of cells adjacent to the stylet track [279].

![Figure 1.7: Aphids feed from plants using specialised mouthparts called stylets.](image)

Figure 1.7: Aphids feed from plants using specialised mouthparts called stylets. The stylets probe epidermal, mesophyll and companion cells until establishing long-term feeding from the SEs. The stylets are covered in sheath saliva and secrete watery saliva, containing effector molecules that modulate host physiology, into the cells. Phloem occlusion is inhibited during aphid feeding, and this is hypothesised to be achieved through the chelation of Ca$^{2+}$. Taken from Hogenhout & Bos [275].
During incompatible interactions (non-host resistance), where an aphid is not capable of successfully feeding from a specific plant species, probing still occurs. Evidence for this includes the observation that incompatible aphids are still capable of transmitting viruses [280], as well as direct demonstration of feeding on non-host plant species by EPG [281, 282] and histochemical staining [283]. Furthermore, when M. persicae feeds on a susceptible genotype of peach, less probing of upper cell layers is observed than on a resistance variety [282]. Thus, during the pathway phase host suitability (such as susceptibility or resistance) is determined and this information is being relayed to the aphid.

Phloem phase

Once the aphid reaches the phloem, two distinct behaviours have been identified by EPG (Figure 1.8a). Upon reaching the SE, the aphid will inject watery saliva into the cell (E1 phase - Figure 1.8b). Subsequently, the aphid will begin ingesting the phloem sap (E2 phase - Figure 1.8c). These two phases are characteristic of phloem feeding by aphids [270, 284].

The phloem allows continuous flow of photo-assimilates in the form of sap [285, 286], thus when a wound or puncture occurs in the sieve tubes the plant acts to seal the breach. In most angiosperms this is achieved by occlusion via phloem (P)-proteins [287, 288] and callose production [289] that plug these gaps. In legumes this manifests itself as the formation of crystalline protein bodies called forisomes [290, 291]. Forisome-dependent occlusion is activated by the presence of Ca$^{2+}$ and inhibited by Ca$^{2+}$ chelators such as ethylenediaminetetraacetate (EDTA) [287, 291]. Synthesis of callose might also be Ca$^{2+}$-dependent [292-295], although in vivo evidence has been lacking thus far. In order for aphids to feed continuously from the phloem, occlusion must be inhibited [296] and it has been suggested that this is achieved by Ca$^{2+}$-binding proteins present in the saliva [297] (Figure 1.7).

An aphid might not accept the first SE it finds [267] and the degree of phloem feeding depends on the aphid’s compatibility with the host [298, 299]. During incompatible interactions, the aphid can complete the pathway phase normally but can exhibit difficulties in establishing ingestion (E2) once reaching the SE. This is can manifest itself as long E1 salivations coupled with shorter E2 ingestions or periods of isolated E1 behaviours [300-303]. Resistance appears to be correlated with the
amount of salivary excretion into the phloem [282], and therefore aphid-derived effectors are also likely to play a role during phloem phase feeding.

Figure 1.8: Phloem feeding involves salivation (E1) followed by ingestion (E2).
A) EPG trace showing the waveform patterns typical of E1 and E2 feeding.
B) E1 involves salivation of watery saliva into the sieve element, thought to help modulate plant defence responses.
C) E2 involves ingestion of the phloem sap. Although salivation continues during E2 no saliva reaches the SE due to the bulk transport of sap into the aphid stylets. Taken from Tjallingii [270].
1.3 Plant defence

1.3.1 Plant defence: an overview

Despite our relatively well informed knowledge of the ecology of aphids, the molecular details that underpin their huge success remain largely unknown. As with the continuing elucidation of Ca$^{2+}$ “toolkit” in plants (Section 1.1), we are only now beginning to identify the mechanisms involved in the aphid colonisation of hosts and the plant responses required to prevent this.

Arabidopsis has a wide selection of anti-aphid defences at its disposal. These include callose production [304], toxic substances such as glucosinolates [305] and camalexins [306], defence hormones such as JA and salicylic acid (SA) [307, 308], as well as the production of natural enemy-attracting volatiles [309]. Many insects feed on plants by herbivory that results in large tissue damage, such as chewing insects like lepidopteran larvae. Consequently, there are many parallels between the plant response to chewing insects and wounding stress [310]. However, hemipterans are subtle feeders, piercing phloem cells and sucking the sap. They also establish long-term feeding and reproduction on the same leaf, unlike chewing insects where feeding and reproduction are temporally separated. Thus, the hemipteran feeding style is more akin to plant-pathogen interactions, in which far fewer cells are damaged [275]. This difference in feeding style between chewing and piercing insects can result in the activation of different plant defence responses [311].

Interactions between plants and pathogens or insects can be thought of as a multi-stage process [312]. The plant recognises the pathogen or insect through conserved pathogen-associated molecular patterns (PAMPs) or herbivore-associated molecular patterns (HAMPs) which activate PAMP-triggered immunity (PTI) (Figure 1.9a). Successful activation of PTI results in an incompatible interaction between the insect and the plant. However, in certain cases the pathogen or insect suppresses PTI using effector molecules, leading to a compatible interaction (Figure 1.9b). To counter this, it is possible for the plant to develop the capacity to recognise these effectors through resistance (R)-genes and activate a second wave of defences known as effector-triggered immunity (ETI) (Figure 1.9c).

It is worth noting that the PTI/ETI model has some limitations. The distinction between PAMPs and effectors is not always clear and it can be difficult to apply the PTI/ETI model to mutualists and necrotrophs that use similar mechanisms of invasion.
[313]. This led Cook et al. [313] to propose a simplified model in which the plant recognises general invasion patterns (IPs) by IP receptors, and invaders use effectors that suppress (compatible biotrophs), fail to suppress (incompatible biotrophs) or utilise (necrotrophs/mutualists) IP-triggered defence responses. However, the PTI/ETI model still remains the favoured representation of plant defence and will form the conceptual framework within which the present work is discussed.

Figure 1.9: The three stages of molecular plant-aphid interactions. A) PTI is activated in a plant cell after perception of conserved PAMPs or HAMPs by pattern recognition receptors (PRRs). B) Compatible pathogens and insects secrete effector molecules into the cell to suppress PTI, often by modulating intracellular signalling pathways. C) ETI is activated when the plant detects effectors through R-genes, re-establishing immunity. Examples of aphid R-genes include Mi-1 from tomato and Vat from melon. Figure taken from Hogenhout & Bos [275].
1.3.2 Perception of pathogens and insects

Pathogen and insect elicitors

Attackers are recognised by plants through pathogen- or insect-derived elicitors. These are slowly-evolving conserved molecular fingerprints termed PAMPs [312, 314], or in the case of insects HAMPs [315] (Figure 1.9). Evolution and diversification of PAMPs/HAMPs might contribute to developing increased virulence although this is not directly accounted for in the PTI/ETI model [313, 316]. Various PAMPs have been identified, with the two best characterised from bacteria being flg22 from flagellin [317] and elf18 from elongation factor EF-Tu [318]. Flg22 perception results in many of the hallmarks of plant defence, outlined in detail in sections 1.3.3 and 1.3.4 [317, 319, 320]. Fungi also contain PAMPs [321], the best studied of which is chitin [322, 323].

Conversely, very few HAMPs have been identified. This is partly because chewing insects cause large amounts of internal damage that can itself elicit plant defence responses [324]. Thus, wound-induced damage represents an effective way for a plant to identify such insects. Plant-derived molecules produced during wounding that result in defence activation are termed damage-associated molecular patterns (DAMPs). DAMPs can include cell wall fragments [325-327], cutin monomers [328], and specific peptides such as the JA-responsive systemin and the Arabidopsis wound peptide ARABIDOPSIS THALIANA PEPTIDE 1 (PEP1) [329-331]. Despite the elicitation of defence by DAMPs, application of insect oral secretions (OS) to wounds can elicit plant responses distinct from wounding alone, which suggests there are additional methods of insect-specific detection. For example, applying OS to wounds can increase JA [332] and plant volatile [333] production.

At the interface of DAMPs and HAMPs is inceptin. Inceptin is composed of fragments of the chloroplast ATP synthase, broken down in the insect gut and is present in the OS from Spodoptera frugiperda (fall armyworm). Inceptin activates defence responses in Vigna unguiculata (cowpea) including ethylene (ET) and JA production, as well as volatile organic compounds (VOCs) [334, 335]. However, the best studied class of insect HAMPs are fatty acid conjugates (FACs) [336-342]. These include volicitin, a lepidopteran FAC that can elicit plant defence [337, 343]. FAC-based elicitors have also been identified in members of the order Orthoptera, such as Schistocerca americana (American bird grasshopper) [344]. Whilst inceptins only
function like PAMPs in the Fabaceae, volicitin can elicit responses across angiosperms [345]. In addition to FACs, other HAMPs of lepidopterans include oviposition elicitors [346, 347] and β-glucosidase [348].

Application of whole-body aphid extract to plants can initiate defence responses [349]. However, the specific aphid HAMP(s) involved has remained elusive until recently. Chaudhary et al. [350] discovered that the GroEL chaperonin protein from the symbiont B. aphidicola was capable of stimulating plant defence and that heterologous expression of GroEL in Arabidopsis and Solanum lycopersicum (tomato) significantly reduced M. persicae fecundity. To date this is the only known aphid HAMP.

Plant receptors

Several plant cell-surface pattern recognition receptors (PRRs) for PAMPs and DAMPs have been identified. During bacterial infection, FLAGELLIN-SENSITIVE 2 (FLS2) directly binds flg22 [351] and activates plant defence responses [352]. Consequently, loss of FLS2 results in flg22-insensitivity [353]. The receptor for elf18 has been identified as EF-Tu RECEPTOR (EFR) and loss of EFR in Arabidopsis results in higher susceptibility to Agrobacterium tumefaciens [354]. For DAMPs, the PEP1 receptor has been identified in Arabidopsis and characterised as PEP1 RECEPTOR 1 (PEPR1) [355]. Furthermore, it has been suggested that GLRs could act as DAMP receptors by sensing changes in amino acids levels during wounding and herbivory [356], although no evidence of this has been presented yet. FLS2, EFR and PEPR1 all belong to the receptor-like kinases (RLKs) and are capable of transducing a phosphorylation signal to downstream components. In plant-fungal interactions, PAMP receptors include CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) which mediates fungal chitin perception [357, 358], but not perception of aphid chitin [349].

The receptors for HAMPs are not yet known. The Lepidopteran HAMP volicitin has been demonstrated to bind the PM in Z. mays [343], suggesting that like PAMPs, HAMPs bind cell-surface receptors. Indeed, many of the downstream responses to HAMP perception are similar to those elicited by PAMPs, implying a common signalling mechanism.
Despite containing kinase domains capable of transducing intracellular signalling, many RLKs appear to require other RLKs for full function [314]. In plant immunity, BRI1-ASSOCIATED RECEPTOR KINASE (BAK1), a gene originally identified by its role in brassinosteroid signalling [359], is required for the full activation of FLS2- and EFR-dependant pathways [360, 361]. Within minutes of flg22 treatment in vivo, FLS2 and BAK1 form a complex, making this a very early event in plant defence. Plants lacking BAK1 still exhibit normal flg22 binding and BAK1 is not a direct PAMP receptor, rather a co-receptor required for full signal propagation. Furthermore BAK1 null mutants are still capable of some defence signalling, suggesting that PAMP receptors are capable of some inherent signalling or that additional co-receptors might be present [314, 360, 361]. BAK1 is also involved HAMP-perception during PTI against Manduca sexta (goliath worm) [362]. and M. persicae [349]. However, the role of BAK1 in plant-aphid interactions is independent of known PRRs including FLS2, EFR or PEPR1 [349].

Activation of PTI

Once a plant perceives PAMPs, HAMPs or DAMPs, PTI will be activated. PTI involves a multitude of processes, characterised from both the pathogen and insect literature. These can be divided into early and late PTI responses. The early responses include ion fluxes, kinase activation, and ROS production, whilst the late responses include hormone biosynthesis, gene transcription and secondary metabolite production. PTI is rapidly activated upon perception of a biotic threat, with the early events occurring within seconds of perception (Figure 1.10).
Figure 1.10: Early and late events in PTI against pathogens and insects. Approximate timing of events indicated on the left. Arrows indicate direct molecular connections between responses. Examples of proteins and chemicals involved in the response are given on the right. Based on information in Maffei et al. [406], Boller et al. [331], Zipfel & Robatzek [363] and Wu & Baldwin [310].
1.3.3 Early events in PAMP-triggered immunity

Ion fluxes and electrical signalling

Plant stress often results in ion fluxes, ultimately causing changes in the PM electrical potential (V_m) [364]. V_m changes caused by biotic stresses result in changes in gene transcription, including those involved in defence [365]. These electrical signals are one of the first plant responses to pathogen and insect attack (Figure 1.10), with Ca$^{2+}$, K$^+$, H$^+$ and nitrate (NO$_3^-$) all potentially playing a role [366, 367]. In *Phaseolus lunatus* (lima bean), *Spodoptera littoralis* (African cotton leafworm) attack causes membrane depolarisation around the bite zone and throughout the attacked leaf. Wounding alone is not sufficient to generate a V_m change, application of OS to wounds is required [368] and the strongest elicitation occurring in response to live biting [369]. Interestingly, volicitin cannot induce V_m changes [369]. In *Glycine max* (soybean) membranes, OS from eight different lepidopteran species resulted in ion fluxes, with the activated channels responsible demonstrating a preference for cations over anions [370].

In Arabidopsis, wounding alone induces V_m changes that can be detected with surface electrodes [103]. *S. littoralis*, *M. persicae* and *Pseudomonas syringae* can all induced V_m changes, as recorded by Bricchi et al. [365]. All three induce V_m depolarisations with a similar magnitude, but the timing of the peak depolarisation was variable between the attackers. *S. littoralis* induced a 35 mV depolarisation within 30 min, whilst *M. persicae* took 4 h to reach this level and *P. syringae* 16 h. This appears to reflect the amounts of cellular damage caused by each organism, and suggests that mechanical wounding is the primary cause of V_m changes during such interactions with Arabidopsis. Furthermore, Ca$^{2+}$ channel blockers significantly reduce the V_m changes seen upon insect attack [369] and this implies that Ca$^{2+}$ might be acting as one of the ions directly involved in V_m changes, and/or there is crosstalk between Ca$^{2+}$ and other ions during this signalling.
Ca^{2+} elevations

Interactions with microorganisms often involve [Ca^{2+}] oscillations in the plant. However, unlike symbioses in which [Ca^{2+}]_{nucl} oscillatory patterns lead to a response [8, 64], PAMP-triggered signals generally result in transient [Ca^{2+}]_{cyt} elevations, the amplitude and duration of which are pathogen-specific. For example flg22 induces higher amplitude, shorter duration Ca^{2+} bursts relative to bacterial harpin [17]. Various elicitors induce [Ca^{2+}]_{cyt} elevations, including those from bacteria [17, 122, 219, 371], oomycetes [17, 372] and fungi [122, 219, 373]. The role of Ca^{2+} in pathogen defence is not entirely clear, with Ca^{2+} elevations capable of both activating [374] and suppressing [375] defence. [Ca^{2+}] changes have also been measured in response to chewing insects. OS can induce a transmembrane ion flux in cell cultures [370] and feeding by lepidopteran larvae also induces [Ca^{2+}]_{cyt} elevations in Arabidopsis that are distinct from mechanical damage or OS alone [376].

The Ca^{2+}-permeable channels that mediate PTI-induced [Ca^{2+}]_{cyt} elevations have not yet been identified; however there are several promising candidates. The CNGC2 null-mutant defence no death 1 (dnd1) displays a strong defence phenotype, showing clear upregulation of the hormone SA and increased resistance to a range of pathogens [79, 377]. This mutant also exhibits reduced [Ca^{2+}]_{cyt} elevation in response to Pep3, but not flg22, implying it mediates Ca^{2+} release upon DAMP perception [378]. Furthermore, CNGC4 is expressed in response to pathogens and leaves of the CNGC4 mutant hml1 develop spontaneous lesions [66]. Interestingly, both dnd1 and hml1 have a reduced hypersensitive response (HR), a hallmark of ETI (section 1.3.5) [66, 377]. As such, CNGC2 and CNGC4 could be forming heterotetramers to mediate the same defence pathway [379] and this might be ETI-specific. CNGC11 and CNGC12 have also been implicated defence, as when combined as a chimeric protein they confer enhanced resistance to pathogens [374]. Evidence for GLR involvement in PTI is lacking, however overexpression in Arabidopsis of a putative Raphanus sativus (radish) GLR resulted in defence gene upregulation and increased resistance to the fungal pathogen Botrytis cinerea [380]. Downstream of [Ca^{2+}] elevations, many of the decoders have been implicated in defence against insects and pathogens, including CAMTAs [381, 382], CDPKs (see below) [383, 384] and CIPKs [385].
Kinase activation

MAPKs and CDPKs play a central role in early signal transduction during PTI and there is considerable crosstalk between the two kinase classes. MAPKs can regulate CDPK transcript abundance [386], whilst CDPKs can inhibit MAPK activation through ET-mediated crosstalk [152].

In Arabidopsis, MAPK activation begins minutes after flg22 application [387] (Figure 1.10) in a BAK1-dependant manner [360] and modulates SA production [388], PTI marker gene expression [389] and the HR [390]. MAPK activation is also part of the defence response to fungi [354] and nematodes [391]. Moreover, MAPKs including the wound-induced protein kinases (WIPKs) and SA-induced protein kinases (SIPKs) are activated upon wounding and are required for JA production and defence gene induction [392-396]. Consequently, herbivory by M. sexta results in a rapid upregulation of the WIPKs and SIPKs that mediate JA and ROS production during this interaction [386], whilst silencing of MPK1 and MPK2 in S. lycopersicum results in a much higher susceptibility to herbivory [397]. The role of MAPKs in aphid-induced PTI has not been clearly elucidated, however the MAPK marker gene FLG22-INDUCED RECEPTOR-LIKE KINASE 1 (FRK1) is induced by whole-body extract from several aphid species [349] and silencing MAPKs in S. lycopersicum significantly reduces ET-mediated resistance to Macrosiphum euphorbiae (potato aphid) [398].

CDPKs have also been shown to play an essential role in PTI directly downstream of [Ca^{2+}] elevations. Flg22 can stimulate CDPK activity, whilst loss of CPK4, CPK5, CPK6 and CPK11 results in reduced defence responses and increased susceptibility to P. syringae [399]. In agreement with this, over-activating CDPK2 by removing the auto-inhibitory domain induces strong defence responses in Nicotiana benthamiana [152] and transcript levels of CDPKs peak significantly earlier in response to wounding if M. sexta OS are added [386]. Upregulation of CDPKs in defence is not restricted to dicots; in maize CPK11 is up-regulated upon wounding [400, 401]. Ten different G. max CDPKs were recently shown to be upregulated by infestation with the Aphis glycines (soybean aphid) [402], suggesting CDPKs might also play a role in plant-aphid interactions.

CDPKs can also negatively regulate PTI. For example, CPK28 mediates turnover of BIK1, a plasma-membrane enzyme that mediates signalling by multiple RLKs [403] and the PAMP-induced Ca^{2+} burst in Arabidopsis [384]. Furthermore, CDPKs regulate other defence signals, including H_{2}O_{2} production [119], SA accumulation
and increased expression of the JA marker gene *PLANT DEFENSIN 1.2 (PDF1.2)* [405].

ROS production

A detectable increase in ROS can be measured within minutes of exposure to PAMPs/HAMPs, with ROS acting directly as an anti-microbial substance and as a signalling molecule (Figure 1.10). Bacteria [316, 317, 353, 360, 371, 406], fungi [318, 354, 360], caterpillars [407] and aphids [304, 349, 408] all elicit the production of ROS in plants.

FLS2 is required for this burst in response to flg22, whilst ROS produced in response to elf18 is EFR-dependent [354]. Furthermore, in the case of flg22, elf26 and aphid extract, this burst is also mediated by BAK1 [349, 360]. It is worth noting the ROS burst in response to aphid extract peaks 180 min post-exposure, a much slower response than that observed with flg22. This aphid extract-induced burst is also ten times lower in magnitude [349]. However, the two are not comparable as aphid extract contains all the proteins from the insect’s body, not just the isolated HAMP. Indeed, when GroEL was incubated alone with Arabidopsis leaves, the ROS burst was much more rapid, peaking within 14 minutes [350].

For both pathogens and aphids, the PM-localised enzyme RBOHD appears to be the source of the ROS [349, 409-411]. Furthermore, the closely related enzyme RBOHF is also required for pathogen-induced ROS accumulation [409, 412], and rbhoD and rbhoF mutants show reduced resistance to *M. persicae* [283, 413]. Moreover, ROS production mediates host-compatibility, with incompatible aphids inducing greater ROS production than compatible species [283].

There is a clear link between ROS production and Ca$^{2+}$ signalling (Figure 1.10). RBOHD is Ca$^{2+}$-regulated [414] and required for long-distance Ca$^{2+}$ signalling [121]. Furthermore, RBOHC regulates Ca$^{2+}$ influx during root hair expansion [415] and damaged-induced Ca$^{2+}$ elevations are enhanced by H$_2$O$_2$ application [407].
1.3.4 Late events in PAMP-triggered immunity

Hormone biosynthesis

After the initial defence signalling responses, biosynthesis of plant hormones occurs. The four main hormones implicated in defence are JA, SA, ABA and ET. The antagonism and crosstalk between them is not fully understood, and therefore a comprehensive understanding of their individual roles is not yet possible.

JA is a chloroplast- and peroxisome-synthesised hormone that accumulates in response to wounding [392, 395, 416] and in response to herbivory by chewing insects, where it is detrimental to insect fitness [308, 332, 334, 335, 417-420]. It also accumulates in response to some microbial pathogens [421]. JA accumulation peaks about an hour after elicitation (Figure 1.10) [345] and inhibition of the JA pathway results in increased insect performance [422]. JA regulates defence-related genes [421, 423] and its accumulation is regulated by CDPKs [424], MAPKs [392, 393, 395, 425] and BAK1 [362]. Despite the lack of strong differential regulation of JA-related genes upon aphid feeding [426, 427], high levels of JA are detrimental to aphids [307, 426, 428-430]. Furthermore, compatible aphids induce and repress different subsets of JA-related genes [304] further suggesting that regulation of JA is important.

SA accumulates in response to microbial pathogens [431] and phloem-feeding insects [417, 426], and is vital for effective defence [79, 432]. SA-related genes are upregulated in response various aphid species, including *Brevicoryne brassicae* (cabbage aphid) [304], *M. euphorbiae* [433] and *M. persicae* [308]. It has been proposed that aphids upregulate SA and this antagonises JA-mediated defence signalling in order to allow successful colonisation of the plant [426, 427, 434-436]. However, the role of SA in anti-aphid defence remains unclear; for example *M. persicae* displays a range of contradictory fitness phenotypes on different Arabidopsis SA mutants [434].

ABA is now also emerging as a biotic stress hormone, in addition to its role in abiotic signalling (Section 1.1.6). ABA is produced in response to wounding [172, 173] and aphid feeding [437] and plays a role in defence against pathogens [438]. In these responses it is hypothesised that ABA is also acting to antagonise JA [432, 439-441]. As with SA, the extract role of ABA in plant-insect interactions is still unclear, with
both chewing insects and aphids displaying contradictory phenotypes on different ABA mutants [418, 437, 442].

ET signalling is involved in defence against bacteria [443], fungi [318, 444], and chewing insects [334]. This is one of the fastest responses to PAMPs, occurring within 10 min and regulated by l-aminocyclopropane-1-carboxylate (ACC) synthase [445]. Very few ET-related genes are differentially regulated by aphid attack in Arabidopsis [304, 427], however Kerchev et al. [442] found that several ET response factors are upregulated by M. persicae infestation. It is unclear if this forms part of a plant defence response or aphid manipulation of the host. Likewise, the biological role of ET in aphid defence is unclear and has been related to both resistance [446, 447] and susceptibility to aphids [448-450] in various plant species.

Gene transcription

Ions, ROS, MAPKs, CDPKs, and plant hormones all regulate gene expression during defence. PTI-regulated genes can be identified from those differentially regulated by direct PAMP/HAMP application. Flg22 application results in rapid differential regulation of 966 genes within 30 min (Figure 1.10) and this is reduced to just 6 genes if FLS2 is mutated [320]. Elf18 elicits a similar response [354] and in both cases the majority of genes are upregulated. In addition there is the potential for significant feedback, with over 40 RLKs changing in expression, as well as genes regulating Ca²⁺ (e.g. CNGC1, GLR1.1), ROS (e.g. RBOHD), hormones (e.g. LOX, ACC6) and MAPKs (e.g. MPK17) [320].

Wounding and the production of DAMPs also upregulates a wide array of genes, especially those related to JA signalling and water stress [451, 452], as well as those found during PTI such as the WRKY DNA-BINDING PROTEIN3 (WRKY3) [453]. Indeed, many PAMPS and DAMPs regulate a similar set of genes, implying that the responses to these diverse stimuli converge at the point of gene transcription [331].

The lack of characterised HAMPs makes it difficult to identify genes directly involved in PTI against insects and studies performed with whole insects or their derivatives do not easily allow us to distinguish between PTI- and ETI-mediated resistance. However, GroEL upregulates several genes known to be involved in PTI against pathogens, including FRK1, and WRKY29 3 h post-treatment, and PATHOGENESIS-RELATED GENE 1 (PR1) 24 h post-treatment [350]. FRK1 and WRK29 form part of the early signalling response to pathogens and are also upregulated
within 30 min of flg22 application [151], whilst PR1 is a well-characterised late-responding PTI gene [454]. Prince et al [349] showed that M. persicae extract can induce further pathogen-identified PTI marker genes including CYTOCHROME P450, FAMILY 81 (CYP81F2), involved in glucosinolate production [305] and PHYTOALEXIN DEFICIENT 3 (PAD3), involved in camalexin production [455].

Secondary metabolites

The successful activation of defence against insects and pathogens concludes in secondary metabolite biosynthesis and callose production. Callose production was described previously in section 1.2.2 and is a common response that prevents phloem nutrients from reaching pathogens [319, 456] and insects [296, 297, 457]. Secondary metabolites produced in defence include lignin to impede entry, toxic substances (e.g. flavonoids, tannins and lectins) and protease inhibitors that act against insect gut [458].

Camalexin and glucosinolates are two tryptophan derivatives believed to play a key role in defence against insects. Camalexin biosynthesis is mediated by the enzyme PAD3 [455, 459] and plays role in defence against fungi [460, 461], bacteria [462, 463] and aphids [304, 306, 349, 464]. Glucosinolates are also part of PTI against pathogens [465]. Despite constitutive production of glucosinolates in many plants [466], a wide variety of insects from various orders stimulate increased glucosinolates production within a few days, and this has negative effects on insect fitness [467]. Furthermore, at least 120 glucosinolates have been identified across plant species [467], and different classes are detrimental to different insects [468]. In Arabidopsis, 4-methoxyindol-3-yl-methylglucosinolate (4MI3M) is induced by M. persicae feeding, enhancing plant resistance and its loss correlates with improved aphid performance [305, 437, 464, 469, 470].

In addition to metabolite production within tissues, plants also release VOCs into the surroundings. The composition of VOCs is altered by herbivory and these act as cues to attract the natural enemies of the attacker [348, 471, 472], as well as for priming defence in systemic tissue and other plants [473, 474]. Some herbivores, including M. persicae, can perceive VOCs and this deters them from settling on a host [309]. VOCs include plant hormone derivatives and in turn are regulated by hormones, primarily JA [475-479]. Thus, the plant uses secondary metabolites in a combination of direct toxicity and indirect defence to protect itself from harm.
1.3.5 Effector-triggered immunity

Effectors

In order to survive successfully on a host, microbes and insects need to overcome PTI. This is achieved through the use of effectors (also known as avirulence proteins), molecules that are secreted into plant tissue that attenuate plant defence. Bacteria use needle-like type III secretion systems to deliver up to 30 effectors at once into host cells, targeting a range of cellular processes including vesicle transport, protein degradation and kinase cascades [312, 480]. For example, *P. syringae* secretes AvrPto and AvrPtoB to target BAK1 [481], AvrE to target SA signalling [482] and HopX1 to target JA [483].

Eukaryotic pathogens such as fungi and oomycetes use specialised infection structures (haustoria) to enter plants through openings (e.g. stomata, wounds) or by direct penetration. Consequently, they deliver both extracellular and cytoplasmic effectors to suppress defence [484, 485]. The mode of action for fungal effectors is often through direct binding of chitin to prevent chitin perception by the plant [486-489]. In the case of oomycetes, multiple effectors have been characterised that target host proteases involved in defence [490-493].

For chewing insects, the application of OS to wounds alters wound-induced defence responses and this is believed to be achieved by effectors in the salvia [451, 472, 494, 495]. However, relatively few of these effectors have been identified. Glucose oxidase (GOX), one of the most abundant proteins in lepidopteran saliva [420] has effector properties. GOX is secreted in response to sugars [496] and acts as the active ingredient in OS that suppresses wound-induced defence [497]. Furthermore, GOX activity is higher in generalist species relative to specialists, implying it might have a role in adjusting to different hosts [498].

Aphid infestation results in the differential expression of many genes [283, 308, 442, 499]. In the case of compatible interactions, it is likely that the expression of some of these genes is manipulated by the insect through effectors. The first aphid effector identified was C002, an *A. pisum* salivary protein. C002 is secreted into plants and is required for *A. pisum* survival on its host *Vicia faba* (fava bean). Furthermore, knock-down of the transcript prevents phloem feeding from being established [276, 500]. The *M. persicae* C002 homologue *MpC002* can also increase aphid fecundity when heterologously expressed in *N. benthamiana* [277] or
Arabidopsis [501], and knock-down by RNA interference (RNAi) reduces aphid fecundity [502]. This is a species-specific effect, with C002 from A. pisum having no effect on M. persicae performance on Arabidopsis [501]. In addition, MIGRATION INHIBITORY FACTOR 1 (MIF1) from A. pisum saliva was recently shown to induce plant defences and was crucial for aphid survival and fecundity [278].

Several M. persicae effectors have been identified through an aphid genomic screen selecting for salivary-gland expression and signal sequence similarity to known effectors [277]. This screen identified Mp1 (PlntO1) and Mp2 (PlntO2), that can increase M. persicae fecundity on Arabidopsis [501] as well as Mp10, that induces chlorosis in N. benthamiana and suppresses flg22-elicited ROS production [277]. Further evidence in support of Mp10's effector function comes from recent experiments showing that it can suppress aphid-extract induced ROS bursts, whilst reducing expression of the gene via RNAi reduces M. persicae fecundity [502]. Furthermore, Mp55 has been identified as an effector, with heterologous expression in Arabidopsis suppressing production of ROS, 4MI3M and callose, and abolishing expression of the effector reduces aphid fecundity [503]. Two effector candidates from M. euphorbiae, Me10 and Me23 were recently identified and shown to promote aphid fecundity; although no evidence for plant defence suppression was provided [504]. The plant target of aphid effectors has remained elusive. They might share similarity with the targets of pathogen effectors, or have a completely novel function.

R-genes and ETI

The second layer of plant defence, ETI, is activated by the plant perception of effectors during incompatible interactions. This perception is mediated by plant R-genes that recognise effectors in a gene-for-gene manner [505]. Many R-gene-effector combinations are now known [312, 506]. Detection of effectors by R-genes activates a second wave of defence that includes many of the same responses as PTI, including ion fluxes, kinase activation, ROS production, hormone biosynthesis and secondary metabolite production [420, 486, 507-512]. Indeed, R-genes appear to mediate a biphasic Ca\(^{2+}\) signature during ETI to incompatible pathogens [379, 509, 513]. ETI against pathogens often results in programmed cell death (HR) that is designed to limit the spread of the pathogen [312].
The best characterised insect R-gene is Mi-1 from *S. lycopersicum*. Mi-1 was first used in the 1940s to create more resistant varieties of cultivated tomatoes [514] and confers resistance to nematodes [515], potato aphids [516], whiteflies [517] and psyllids [518]. Mi-1-mediated aphid resistance appears to be based on altered SA production, as the SA-responsive gene *PR1* is more highly upregulated in Mi-1 lines [519] and knocking out SA production from Mi-1 lines abolishes resistance [398]. This signalling also requires *SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1 (SERK1)* [520].

Another well-established R-gene effective against aphids is *Vat*, a gene from *Cucumis melo* (melon) that confers resistance to *Aphis gossypii* (cotton aphid) [521, 522]. Vat prevents virus transmission by both *A. gossypii* and *M. persicae*, implying that it inhibits successful salivation [523].

Other potential aphid R-genes include *RESISTANCE TO ACYRTHOSIPHON PISUM 1 (RAP1)* from *M. truncatula* that confers resistance to *A. pismum* and induces an HR-like effect around stylet penetration sites [524]. Various genes and quantitative trait loci that enhance aphid resistance have been identified across crop species [525], and isolation of the R-genes underlying these phenotypes has the potential to significantly enhance resistance to aphids in the field.

1.3.6 Systemic signalling during stress

When a stress is perceived, signals can travel from tissue of perception systemically throughout the plant. In response to abiotic stimuli this is termed systemic acquired acclimation (SAA), whilst in response to biotic threats it is termed systemic acquired resistance (SAR). SAR benefits the fitness of a plant [526] by priming defences in systemic tissue [527]. Various signals involved in SAA and SAR have been identified. These include hydraulic signals [528], hormones [529, 530], RNA [531] and peptides [532]. Furthermore, SAR responses are SA-dependent [529, 533, 534]. An ion that has been well-demonstrated to perform this role in the context of abiotic signalling is Ca$^{2+}$. It is hypothesised that a wave-like propagation of CICR-mediated [Ca$^{2+}$]$_{syst}$ elevations, in co-ordination with ROS and electrical signals, might account for the rapid systemic responses observed during SAA and SAR [535-537] (Figure 1.11).

Choi et al. [7] used a YCNano-65 cameleon sensor to visualise a bi-directional root-to-shoot Ca$^{2+}$ signal in Arabidopsis upon application of salt stress. This signal
travelled through the root at a speed of 400 µm/s. In a separate study, the speed of the signal between the root and the shoot showed high variability, from 50 to 500 µm/s [538]. Using AEQ, Kiep et al. [123] demonstrated that wounding and herbivory of leaves results in a long-distance leaf-to-leaf Ca²⁺ signal, but only if the midrib is wounded. The signal travelled to neighbouring leaves with direct vascular connections within a few min.

However, the systemic Ca²⁺ signals are not driven by changes in [Ca²⁺] alone. In order to explain their speed, a ROS component must be added [121]. ROS allows propagation of the signal cell-to-cell through the apoplast, with localised [Ca²⁺]ₖₑₚ fluxes propagating the signal within cells [119, 121, 539]. This hypothesis is outlined in Figure 1.11, whereby an unknown ROS-activated PM Ca²⁺-permeable channel and TPC1 mediate the [Ca²⁺]ₖₑₚ flux, and RBOHD, which is Ca²⁺-activated via CPK5 [119], mediates ROS production in the apoplast [121]. Indeed loss of either TPC1 [7, 123] or RBOHD [121] significantly attenuates the systemic Ca²⁺ signal, and a RBOHD-dependent systemic ROS signal has been observed in response to wounding [413]. Interestingly, CPK5 activity increases in response to H₂O₂ [119], suggesting there might also be positive feedback within ROS signalling, much like with CICR. Furthermore, the spread of Ca²⁺ and ROS signals within leaves are mediated by plasmodesmata, as the PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1) mutant pdko3 shows significantly less Ca²⁺ release in response to Lepidopteran OS [540].

The spread of the Ca²⁺ signal to neighbouring leaves during wounding mirrors that which is seen with long-distance electrical signals. Using surface electrodes, Mousavi et al. [103] recorded electrical signals travelling at around 400 µm/s within the wounded leaf, and with speeds of up to 1500 µm/s between leaves [103]. A similar trend is seen with Ca²⁺, with midrib signals travelling up to 10 times faster than those in the surrounding tissue [538]. Pieris brassicae (cabbage butterfly) larvae were shown to induce similar systemic electrical signals. As with Ca²⁺, feeding from the midvein of the leaf was required for systemic spread [541]. Thus, the vasculature appears to be the primary conduit of this signal. The discrepancy between the speeds measured by Choi et al. [7] and Kiep et al. [123] could be due to the different stresses used, the different tissues examined, or because Ca²⁺ might not be the primary ion responsible for the wound-induced electrical signal. Again, systemic electrical signalling is dependent on plasmodesmata, as membrane depolarisation and K⁺ channel activity is almost completely abolished in the pdko3 mutant [540]
It is interesting that whilst long-distance Ca2+ signalling is TPC1-dependent \cite{7, 123}, TPC1 expression has no effect on systemic electrical signalling (Edward Farmer, University of Lausanne, personal communication). Instead systemic electrical signalling is dependent on GLR3.3 and GLR3.6 \cite{103}. However, the two signals are clearly linked and various Ca2+-permeable channels, including TPC1, are voltage-gated \cite{112, 114, 115, 542}.

Figure 1.11: Ca2+, ROS and electrical signals all participate in systemic signalling during stress.

1. Upon stimulation by abiotic or biotic stress, Ca2+ is released into the cytosol from the apoplast through an unknown PM channel, possibly the GLRs.
2. This rise in [Ca2+]\textsubscript{cyt} activates TPC1, which in turn releases further Ca2+ from the vacuole, amplifying the signal.
3. The rise in [Ca2+]\textsubscript{cyt} activates Ca2+ decoders, including CDPKs and CIPKs, such as CPK5.
4. CPK5 phosphorylates RBOHD, a ROS-producing enzyme in the PM.
5. ROS is released into the apoplast, where it diffuses to activate PM Ca2+-permeable channels in adjacent cells, propagating the Ca2+ signal systemically.
6. During wounding, wound-activated surface potentials (WASPs) also travel between cells as an electrical signal. This signal is dependent on GLR3.3 and GLR3.6. Figure adapted from Steinhorst & Kudla \cite{535} based on data from Choi et al., \cite{7}, Dubiella et al. \cite{119}, Evans et al. \cite{121} and Mousavi et al. \cite{103}.
The output of wounding and herbivory is accumulation of JA in the systemic tissues [543, 544] and this can occur within 30 s of wounding [545]. Indeed, JA is one of the best characterised systemic signals in biotic interactions. Local JA accumulation is dependent on LIPoxyGENASE 2 (LOX2) [544], whilst systemic accumulation is dependent on 12-OXO-PHYTODIENOIC ACID REDUCTASE 3 (OPR3) [546] and LOX6 [545]. Thus, it might be that JA or its derivatives are acting directly as a systemic signal in the phloem [530]. However, as the JA accumulation pattern overlays almost exactly the pattern of systemic electrical signals, and expression of the JA marker genes JASMONEATE-ZIM-DOMAIN PROTEIN 10 (JAZ10) is lost when these electrical signals are abolished [103]. It is therefore possible that JA accumulation is regulated by systemic ion fluxes. It is worth noting *M. persicae* feeding does not appear to result in systemic JA production [308] and that SAR might not be occurring during the Arabidopsis-*M. persicae* interaction [431, 464].

1.4 This project

1.4.1 Aims of the project

Aphids, including *M. persicae*, trigger defences in plants comparable to PTI. One of the first events in PTI is a Ca\(^{2+}\) influx into the cytosol; however the mechanisms underlying this are unknown. The Sanders and Miller labs (John Innes Centre - JIC) have uncovered several of the channels and transporters that underlie ion homeostasis and signalling in plants, including TPC1. The Hogenhout lab (JIC) has identified several components of aphid-induced PTI, including a Ca\(^{2+}\)-dependent ROS burst elevation upon application of aphid extract [349]. However, an aphid-induced plant Ca\(^{2+}\) signal has yet to be demonstrated in vivo.

Recently, rapid improvement and optimisation of genetically-encoded Ca\(^{2+}\) sensors has revolutionised our understanding of plant Ca\(^{2+}\) signalling. Single-FP sensors have not been fully exploited in plants and present a novel tool with which to study this phenomenon in more detail than was previously possible. The Gilroy lab (University of Wisconsin-Madison) has stably expressed GCAMP3 in Arabidopsis. This has provided a unique opportunity to measure Ca\(^{2+}\) signals with tissue-level resolution in vivo in response to aphid attack. As such, the main goal of the current work was to
investigate aphid-induced Ca\(^{2+}\) signals and characterise the molecular mechanisms involved if present.

1.4.2 Overview of thesis contents

Chapter 3: *M. persicae* elicits rapid BAK1-dependent Ca\(^{2+}\) bursts in Arabidopsis

To establish if GCAMP3 is a viable tool for use in plant-aphid interactions, Arabidopsis plants expressing 35S::GCAMP3 were exposed to *M. persicae*. A repeatable and robust single-leaf assay for Ca\(^{2+}\) measurements during aphid feeding resulted in the identification of rapid [Ca\(^{2+}\)]\(_{cys}\) elevations around the feeding site that occurred within minutes of the aphid settling. Interestingly, no systemic signals could be identified. This tissue-level imaging was not possible with the FRET cameleon YCNano-65. To correlate the Ca\(^{2+}\) burst with the aphid feeding behaviour, EPG was used on single leaves and this showed that the Ca\(^{2+}\) burst most likely occurs during the pathway phase. In agreement with these findings, a Ca\(^{2+}\) burst in the phloem could not be detected with a phloem-localised version of GCAMP3. This suggests that Ca\(^{2+}\) plays a role in the early stages of the plant-aphid interaction whilst the aphid probes the epidermal and mesophyll cells.

To determine if the [Ca\(^{2+}\)]\(_{cys}\) elevations were elicited by damage (DAMPs) or directly by aphid HAMPs, 35S::GCAMP3 was crossed with the BAK1 null mutant bak1-5. The [Ca\(^{2+}\)]\(_{cys}\) elevations were not detectable in these plants, showing that they are elicited as a part of HAMP-triggered PTI. Furthermore, to investigate if the aphid is directly modulating this pathway, the assay was repeated with aphids with reduced expression of the effector *Mp10*. Such aphids elicited a slightly larger Ca\(^{2+}\) burst than the control group, indicating that the aphid is actively suppressing Ca\(^{2+}\) and supporting the hypothesis this signal is relevant to defence.

Chapter 4: Aphid-induced Ca\(^{2+}\) bursts are mediated by TPC1 and GLRs 3.3 and 3.6

To identify the plant proteins responsible for generating the aphid-induced [Ca\(^{2+}\)]\(_{cys}\) elevations, Arabidopsis ion channel mutants were investigated. Plants lacking *TPC1* transcription (*tpc1-2*) exhibited a significantly reduced Ca\(^{2+}\) burst, suggesting that vacuolar Ca\(^{2+}\) is released during the plant-aphid interaction. Induction of MAPK
and camalexin marker genes was also compromised in the *tpc1-2* mutant, suggesting this channel may be involved in downstream defence activation against aphids.

EPG revealed that aphids feeding on such plants have problems with phloem acceptance, but that there are no significant differences in pathway behaviours. As such, the *TPC1* phenotype is based on plant physiology and not aphid behaviour. Conversely, overexpression of *TPC1* did not affect the [Ca2+]\textsubscript{cyt} elevations, but did result in an amplified ROS burst to aphid extract. Furthermore, over-activation of *TPC1* (*fou2*) resulted in aberrant Ca2+ signalling and a strong defence phenotype that reduced *M. persicae* and *A. pisum* performance. Thus, *TPC1* plays a role both in generating the Ca2+ burst and in plant defence.

Small [Ca2+]\textsubscript{cyt} elevations were still observed in plants lacking *TPC1*. As such, it was hypothesised that other Ca2+ channels were also involved. Therefore [Ca2+]\textsubscript{cyt} elevations in the GLR double mutant *glr3.3/gl3.6* were measured and demonstrated to be undetectable relative to untreated control leaves. This suggests that the initial Ca2+ release is from the extracellular environment, and this is required for aphid-induced [Ca2+]\textsubscript{cyt} elevations. It is proposed that this then activates *TPC1* to release further Ca2+ from the vacuole.

Chapter 5: Investigating the role of CIPKs in plant-aphid interactions

Finally, the role of downstream Ca2+ decoders in plant-aphid interactions was investigated. RNA-seq identified several Ca2+ decoders that were induced by infestation with the incompatible aphid *A. pisum*. However, in response to the compatible species *M. persicae*, many fewer genes were differentially regulated. As such, it appears that *M. persicae* is avoiding detection by the plant, including components of Ca2+ signalling. However, *CIPK3* was differentially regulated by both aphid species. Therefore it is proposed that *CIPK3* might play a role in host compatibility. However, abolishing *CIPK3* transcription or constructively activating the protein had no effect on aphid performance.

This finding lead to a study of redundancy between the Clade I CIPKs, revealing that *M. persicae* performance was significantly reduced on the *cikp9/23* double mutant, suggesting that *CIPK9* and *CIPK23* might play a role in defence against aphids downstream of the Ca2+ burst. Aphid performance was further reduced on the cipk3/9/23/26 quadruple mutant, which also exhibited greater ROS production in
response to aphid extract. This suggests that all four CIPKs might have a role in negatively regulating defence against aphids.

1.4.3 Contributions to thesis

All experiments in this thesis were conducted by me (T.V.) unless otherwise acknowledged. Several undergraduate students contributed to this work under my supervision. Marieta Avramova (M.A.) was a year-in-industry student from the University of York (UK), James Canham (J.C.) and Magda Steele (M.S.) were students at the University of East Anglia (UK), Peter Higgins (P.H.) was a predoctoral scientist at the JIC and Natasha Bilkey (N.B.) was a student at the University of Wisconsin-Madison (USA) who undertook a summer project at the JIC. All experimental work performed by others and incorporated into this thesis is appropriately and fully acknowledged in the legends pertaining to display items (figures and tables). Further contributions of collaborators, including plant material and primers, are acknowledged in Chapter 2.
Chapter 2: Materials & Methods
2.1 Plant maintenance

2.1.1 Arabidopsis growth conditions

Arabidopsis plants for use in aphid performance assays (section 2.9), ROS burst assays (section 2.10) and RNA-seq (section 2.11) were germinated and maintained on Scotts Levington F2 compost (Scotts, Ipswich, UK). Seeds were vernalised for one week at 4-6°C before being transferred to a controlled environment room (CER) maintained at 22°C and with a photoperiod of 10 h light (90 \(\mu \)mol m\(^{-2}\) s\(^{-1}\)) and 14 h dark. Plants were grown in cell trays (each cell: base 3.5 x 3.5 cm, top 5.5 x 5.5 cm, height 5.5 cm). Plants for the majority of assays were used at 4 weeks post-germination (ages specified in experimental methods).

Plants for use in microscopy (section 2.8) and single leaf EPG (section 2.9.7) were grown on 100 mm\(^2\) square plastic plates (R & L Slaughter Ltd, Upminster, UK) on ¼ strength Murashige and Skoog (MS) medium (recipe: 1.1 g Murashige and Skoog medium, 7.5 g sucrose, 10 g Formedium agar, 1 L de-ionised water) [547] and vernalised for three days in the dark (8°C). They were then grown in a CER with a 16 h day and 8 h night, at a constant temperature of 23°C. Plants were then used at 16-18 days old.

2.1.2 Arabidopsis lines

Many of the Arabidopsis lines used in this study were kind gifts from other researchers. Table 2.1 provides details on those used in this study. Corresponding wildtype controls, Columbia-0 (Col-0) or Wassilewskija-0 (Ws-0), were also provided with each mutant line.

2.1.3 Vicia faba growth conditions

V. faba (broad bean) plants were grown in Scotts Levington F2 (Scotts) compost in a glasshouse with a 14 h day (90 mol m\(^{-2}\) s\(^{-1}\) at 18°C) and a 10 h night (15°C) photoperiod. Plants were grown in circular plastic pots (10 cm diameter, 8 cm depth) and covered in aluminium foil until germination had taken place. The plants were attached to stakes for support as they grew.
Table 2.1: Arabidopsis lines used in this study.

Arabidopsis gene identification number.
Arabidopsis background ecotype.

<table>
<thead>
<tr>
<th>Line</th>
<th>Gene ID</th>
<th>Source</th>
<th>B/G</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>35S::GCAMP3</td>
<td></td>
<td>Masatsugu Toyota (University of Wisconsin, USA)</td>
<td>Col-0</td>
<td>Unpublished as of Sept 2016</td>
</tr>
<tr>
<td>35S::YCNano-65</td>
<td>AT4G33430</td>
<td>Won-Gyu Choi (University of Wisconsin, USA)</td>
<td>Col-0</td>
<td>Choi et al. [7]</td>
</tr>
<tr>
<td>SUC2::GCAMP3</td>
<td></td>
<td>Masatsugu Toyota (University of Wisconsin, USA)</td>
<td>Col-0</td>
<td>Unpublished as of Sept 2016</td>
</tr>
<tr>
<td>bak1-5</td>
<td>AT4G03560</td>
<td>Ben Schwessinger (The Sainsbury Lab, Norwich)</td>
<td>Col-0</td>
<td>Schwessinger et al. [548]</td>
</tr>
<tr>
<td>35S::dsGFP</td>
<td></td>
<td>David Prince (JIC, Norwich)</td>
<td>Col-0</td>
<td>Pitino et al. [549]</td>
</tr>
<tr>
<td>35S::dsMp10-2-5</td>
<td></td>
<td>David Prince (JIC, Norwich)</td>
<td>Col-0</td>
<td>Unpublished as of Sept 2016</td>
</tr>
<tr>
<td>35S::dsMp10-2-2</td>
<td></td>
<td>David Prince (JIC, Norwich)</td>
<td>Col-0</td>
<td>Unpublished as of Sept 2016</td>
</tr>
<tr>
<td>tpc1-2</td>
<td>AT4G03560</td>
<td>Dale Sanders (JIC, Norwich)</td>
<td>Col-0</td>
<td>Peiter et al. [15]</td>
</tr>
<tr>
<td>35S::GCAMP3 x tpc1-2</td>
<td>AT4G03560</td>
<td>Masatsugu Toyota (University of Wisconsin, USA)</td>
<td>Col-0</td>
<td>Unpublished as of Sept 2016</td>
</tr>
<tr>
<td>35S::TPC1 5.6</td>
<td>AT4G03560</td>
<td>Dale Sanders (JIC, Norwich)</td>
<td>Col-0</td>
<td>Peiter et al. [15]</td>
</tr>
<tr>
<td>35S::GCAMP3 x 35S::TPC1 5.6</td>
<td>AT4G03560</td>
<td>Masatsugu Toyota (University of Wisconsin, USA)</td>
<td>Col-0</td>
<td>Unpublished as of Sept 2016</td>
</tr>
<tr>
<td>35S::TPC1 10.21</td>
<td>AT4G03560</td>
<td>Dale Sanders (JIC, Norwich)</td>
<td>Col-0</td>
<td>Peiter et al. [15]</td>
</tr>
<tr>
<td>fou2</td>
<td>AT4G03560</td>
<td>Aurore Lenglet (University of Lausanne, CHE)</td>
<td>Col-0</td>
<td>Bonadventure et al. [550]</td>
</tr>
<tr>
<td>35S::GCAMP3 x fou2</td>
<td>AT4G03560</td>
<td>Masatsugu Toyota (University of Wisconsin, USA)</td>
<td>Col-0</td>
<td>Unpublished as of Sept 2016</td>
</tr>
<tr>
<td>Line</td>
<td>Gene ID</td>
<td>Source</td>
<td>B/G</td>
<td>Reference</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>aos</td>
<td>AT5G42650</td>
<td>Aurore Lenglet (University of Lausanne, CHE)</td>
<td>Col-0</td>
<td>Park et al. [551]</td>
</tr>
<tr>
<td>fou2/aos</td>
<td>AT4G03560, AT5G42650</td>
<td>Aurore Lenglet (University of Lausanne, CHE)</td>
<td>Col-0</td>
<td>Bonadventure et al. [552]</td>
</tr>
<tr>
<td>glr3.3/ glr3.6</td>
<td>AT1G42540, AT3G51480</td>
<td>Edward Farmer (University of Lausanne, CHE)</td>
<td>Col-0</td>
<td>Mousavi et al. [103]</td>
</tr>
<tr>
<td>35S:: GCAMP3 x glr3.3/ glr3.6</td>
<td>AT1G42540, AT3G51480</td>
<td>Masatsugu Toyota (University of Wisconsin, USA)</td>
<td>Col-0</td>
<td>Unpublished as of Sept 2016</td>
</tr>
<tr>
<td>cipk3-1</td>
<td>AT2G26980</td>
<td>Girdhar Pandey (University of Delhi, IND)</td>
<td>Ws-0</td>
<td>Kim et al., [175]</td>
</tr>
<tr>
<td>cipk3-101</td>
<td>AT2G26980</td>
<td>SAIL Arabidopsis Library</td>
<td>Col-0</td>
<td>SAIL_449_B12</td>
</tr>
<tr>
<td>cipk3-102</td>
<td>AT2G26980</td>
<td>SALK Arabidopsis Library</td>
<td>Col-0</td>
<td>SALK_064491</td>
</tr>
<tr>
<td>cipk3-103</td>
<td>AT2G26980</td>
<td>SAIL Arabidopsis Library</td>
<td>Col-0</td>
<td>SAIL_409_A04, Tang et al. [165]</td>
</tr>
<tr>
<td>cipk3-104</td>
<td>AT2G26980</td>
<td>SALK Arabidopsis Library</td>
<td>Col-0</td>
<td>SALK_137779.25.20.X</td>
</tr>
<tr>
<td>abf2 (AK218)</td>
<td>AT1G45249</td>
<td>Soo Young Kim (Chonnam National University, KOR)</td>
<td>Col-0</td>
<td>Kim et al. [553]</td>
</tr>
<tr>
<td>pp2ca-1</td>
<td>AT3G11410</td>
<td>Julian Schroeder (University of California, San Diego, USA)</td>
<td>Col-0</td>
<td>Kuhn et al. [554]</td>
</tr>
<tr>
<td>cipk3/26</td>
<td>AT2G26980, AT5G21326</td>
<td>Renjie Tang (University of California, Berkeley, USA)</td>
<td>Col-0</td>
<td>Tang et al., [165]</td>
</tr>
<tr>
<td>cipk9/23</td>
<td>AT1G01140, AT1G30270</td>
<td>Renjie Tang (University of California, Berkeley, USA)</td>
<td>Col-0</td>
<td>Tang et al. [165]</td>
</tr>
<tr>
<td>cipk3/9/23/26</td>
<td>AT2G26980, AT1G01140, AT1G30270, AT5G21326</td>
<td>Renjie Tang (University of California, Berkeley, USA)</td>
<td>Col-0</td>
<td>Tang et al. [165]</td>
</tr>
</tbody>
</table>
2.2 Insect maintenance

2.2.1 *M. persicae* stock colony

A stock colony of *M. persicae* (clone US1L, Mark Stevens, Brooms Barn) [277], was reared continuously on Chinese cabbage (*Brasica rapa*, subspecies *chinensis*) in cages (52 cm x 52 cm x 50 cm) with a 16 h day (90 µmol m\(^{-2}\) s\(^{-1}\) at 22°C) and 8 h night (20°C) photoperiod.

2.2.2 Aged *M. persicae*

For use in experiments *M. persicae* individuals of a set age were used. These were produced by placing 5-15 mixed instar adults from the stock colony onto four-week old Arabidopsis (Col-0) grown in a CER with a 16 h day (90 µmol m\(^{-2}\) s\(^{-1}\) at 22°C) and 9 h night (20°C) photoperiod, in pots (13.5 cm diameter, 9 cm depth) and caged inside clear plastic tubing (10 cm x 15 cm) with a plastic lid. These adults were removed after 24-48 h, leaving nymphs of the same age. Once adult, these individuals were used in experiments (ages specified in experimental methods).

2.2.3 *A. pisum* stock colony

A stock colony of *A. pisum* (Rothamsted Research), was reared continuously on *V. faba* plants in cages (52 cm x 52 cm x 50 cm) with a photoperiod of 16 h day (90 µmol m\(^{-2}\) s\(^{-1}\) at 23°C) and 8 h night (20°C).

2.2.4 Aged *A. pisum*

Aged *A. pisum* were used in experiments as detailed in Prince et al. [555]. Briefly, 50 adults from the stock colonies were transferred to new four-week old *V. faba* plants, grown at 22°C with a 16 h day (90 µmol m\(^{-2}\) s\(^{-1}\)) and 8 h night photoperiod, contained in plastic pots (10 cm diameter, 8 cm depth). After 24 h, these adults were removed leaving a population of aged nymphs. This population was returned to the CER and adults were used once they were 10 days old.
2.3 DNA methods

2.3.1 DNA extraction

For genotyping, leaf DNA was extracted from plants grown in either soil or on MS plates (as specified in section 2.1.1). Leaves were frozen in liquid nitrogen and ground using disposable pellet pestles (Sigma-Aldrich, St. Louis, MO, USA) in a 1.5 ml Eppendorf tube. DNA extraction was performed using the QIAGEN DNAeasy plant mini kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions.

2.3.2 Genotyping PCR

Diagnostic genotyping polymerase chain reaction (PCR) was carried out in one of two ways:

i) GoTaq Green polymerase (Promega, Madison, WI, USA) was used in 25 µL reactions. Each reaction contained 0.2 µL GoTaq enzyme, 4 µL of GoTaq Green 4X buffer, 0.5 µL 10 mM dNTPs, 0.5 µL of each primer (10 µM), 2 µL MgCl₂, 12.3 µL distilled water and 5 µL of DNA (100 ng/µL). The primers used for genotyping are listed in Table 2.2. PCR was carried out in GS1 thermocycler (G-Storm, Somerton, UK) and the conditions used were as follows: 30 s at 96°C, followed by 35 cycles of 30 s at 96°C, 40 s at 54°C, 90 s at 72°C, and a final cycle of 5 min at 72°C. This genotyping was performed to validate the TPC1, dsMp10, bak1-5 and CIPK3 lines.

ii) Copy number analysis of the CIPK3 transgenic lines created in this study was performed by iDNA Genetics (Norwich, UK) allowing identification of single copy T1 and homozygous T2 plants. This procedure used quantitative real-time PCR (qRT-PCR) to estimate the numbers of transgene copies in individual Arabidopsis plants, similar to the approach taken in H. vulgare by Bartlett et al. [556]. An amplicon from the hygromycin resistance gene (with a FAM reporter) and an amplicon from an Arabidopsis internal positive control (IPC, with a VIC reporter) were amplified together in a multiplex reaction (15 min denaturation, then 40 cycles of 15 s 95°C and 60 s 60°C) in an ABI7900 real-time thermocycler (Thermofisher Scientific, Loughborough, UK). Fluorescence from the FAM and VIC fluorochromes was measured during each 60°C step and the cycle threshold (Ct) values obtained. The difference between the Ct values for the hygromycin gene and the IPC (ΔCt) was used to allocate the assayed samples into groups with the same gene copy number.
<table>
<thead>
<tr>
<th>Gene name</th>
<th>Primer name</th>
<th>Sequence (5’ - 3’)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAK1</td>
<td>BAK1_dCAPS_F</td>
<td>AAGAGGGCTTGCGTATTTTACATGATCAGT</td>
<td>Schwessinger et al. [548]</td>
</tr>
<tr>
<td></td>
<td>BAK1_dCAPS_R</td>
<td>GAGGCCGAGCAAGATCAAAAG</td>
<td></td>
</tr>
<tr>
<td>Mp10</td>
<td>Mp10-GW-F</td>
<td>AAAAGACAGGCTCCATGGCGCCGCA AAAAGATGCTGG</td>
<td>Jorunn Bos (Hogenhout lab, JIC, UK)</td>
</tr>
<tr>
<td></td>
<td>Mp10-GW-R</td>
<td>AGAAAGCTGGGTCTTTAAAATTTGAC AACACCTTTTTTC</td>
<td></td>
</tr>
<tr>
<td>TPC1</td>
<td>AtTPCfwd</td>
<td>ATGGAAGACCCTGATGGGTAG</td>
<td>Furuichi et al. [111]</td>
</tr>
<tr>
<td></td>
<td>AtTPC1rev</td>
<td>TTATGTGTCAAGAATGGAACACTC</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>LBb1.3</td>
<td>ATTTTGCCGATTTCCGAAC</td>
<td>Sam Mugford</td>
</tr>
<tr>
<td>-</td>
<td>SAIL LB2</td>
<td>GCTTCTATTATATCTTTCCAAATA CCAATACA</td>
<td>Sam Mugford</td>
</tr>
<tr>
<td>CIPK3</td>
<td>cipk3-101sail F</td>
<td>CAGATTAGAAGAGAGATAGC</td>
<td>Sam Mugford</td>
</tr>
<tr>
<td></td>
<td>cipk3-101sail R</td>
<td>AGGCAGACCTCAGGAGCAACG</td>
<td></td>
</tr>
<tr>
<td>CIPK3</td>
<td>cipk3-102salk F</td>
<td>GGAGGACAGGATTCACCAG</td>
<td>Sam Mugford</td>
</tr>
<tr>
<td></td>
<td>cipk3-102salk R</td>
<td>AACAGCTTATACATGCTGGAC</td>
<td></td>
</tr>
<tr>
<td>CIPK3</td>
<td>cipk3-103sail F</td>
<td>CAAGGACTCTTGAGGTGGATAG</td>
<td>Sam Mugford</td>
</tr>
<tr>
<td></td>
<td>cipk3-103sail R</td>
<td>CAAACCATCATCTCTGCTTAGCTC</td>
<td></td>
</tr>
<tr>
<td>CIPK3</td>
<td>cipk3-104salk F</td>
<td>AGCGTGTAACCCGGAAGAGG</td>
<td>Sam Mugford</td>
</tr>
<tr>
<td></td>
<td>cipk3-104salk R</td>
<td>CTTTTCACTTCTGATTTGGACC</td>
<td></td>
</tr>
<tr>
<td>GFP</td>
<td>eGFP F</td>
<td>TCTCGTGGGCTTCTTTGCTC</td>
<td>Giles Oldroyd Lab, JIC, UK</td>
</tr>
<tr>
<td></td>
<td>eGFP R</td>
<td>GGCAAGCTGACCTGAAGTT</td>
<td></td>
</tr>
</tbody>
</table>
2.3.3 DNA sequencing

DNA sequencing was performed by Eurofins Genomics (Ebersberg, Germany) value read service. Primers used for sequencing are listed in Table 2.3.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Primer name</th>
<th>Sequence (5’ - 3’)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>LBB1.3</td>
<td>ATTTTGGCCGATTTCGGAAC</td>
<td>Sam Mugford</td>
</tr>
<tr>
<td>-</td>
<td>SAIL LB2</td>
<td>GGTCCTATATATCTTCCAAATTACCAATACA</td>
<td>Sam Mugford</td>
</tr>
<tr>
<td>-</td>
<td>GoldenG seqF2</td>
<td>ACCAGAGTGCTGCTCCACCAT</td>
<td>Giles Oldroyd Lab, JIC, UK</td>
</tr>
<tr>
<td>-</td>
<td>GoldenG seqR2</td>
<td>GGCGGAGGCTATGGAAGAAGGC</td>
<td>Giles Oldroyd Lab, JIC, UK</td>
</tr>
<tr>
<td>-</td>
<td>GoldenG seqF3</td>
<td>CGCAAGGAATTCAGGCTTACG</td>
<td>Giles Oldroyd Lab, JIC, UK</td>
</tr>
<tr>
<td>CIPK3</td>
<td>CIPK3 qPCR F1</td>
<td>GCGAATGAGATCGTAGTGAG</td>
<td>Thomas Vincent</td>
</tr>
<tr>
<td>CIPK3</td>
<td>CIPK3 LV1 CDSseq</td>
<td>CGAGAAGATAGAAGAAGCG</td>
<td>Thomas Vincent</td>
</tr>
<tr>
<td>CIPK3</td>
<td>CIPK3 101/2 RT F</td>
<td>GAGAACAATGGAGAAGGAAAC</td>
<td>Thomas Vincent</td>
</tr>
<tr>
<td>CIPK3</td>
<td>CIPK3 F5</td>
<td>TGGCTGACAGATGAGAGATG</td>
<td>Thomas Vincent</td>
</tr>
<tr>
<td>CIPK3</td>
<td>CIPK3 Seq Pro F</td>
<td>CGACCTCTGTCTCTTCCACTTC</td>
<td>Thomas Vincent</td>
</tr>
<tr>
<td>CIPK3</td>
<td>CIPK3 Seq Term R</td>
<td>CACACAAAAAGTATGCAGGTAAAGC</td>
<td>Thomas Vincent</td>
</tr>
<tr>
<td>CIPK3</td>
<td>CIPK3 seq gen F1</td>
<td>GCAGGTGATGGCAAGTAGACG</td>
<td>Thomas Vincent</td>
</tr>
<tr>
<td>CIPK3</td>
<td>CIPK3 seq gen F2</td>
<td>GGTCCATATGAGAGGCTATG</td>
<td>Thomas Vincent</td>
</tr>
<tr>
<td>CIPK3</td>
<td>CIPK3 seq gen F3</td>
<td>GCGTGTAACCGGAAGG</td>
<td>Thomas Vincent</td>
</tr>
</tbody>
</table>
2.4 RNA methods

2.4.1 RNA extraction

Leaf and aphid samples were frozen in liquid nitrogen and ground using disposable pellet pestles (Sigma-Aldrich) in a 1.5 ml Eppendorf tube. RNA was extracted using 1 ml Tri Reagent (Sigma-Aldrich) per 100 mg of tissue. 1-bromo 3-chloropropane (Sigma-Aldrich) and isopropanol (Sigma-Aldrich) were used to precipitate the RNA. RNA was then treated with the RQ1 DNase (Promega). RNA quality was assessed by agarose gel electrophoresis and concentration was measured on a NanoDrop 2000 spectrophotometer (ThermoFisher Scientific).

2.4.2 cDNA synthesis

cDNA was synthesised in 20 µL reactions with 100-500 ng mRNA using the M-MLV-RT Kit (Invitrogen, Carlsbad, CA, USA) with oligo-dT primers, performed according to the manufacturer’s instructions.

2.4.3 RNAi silencing

For silencing of the aphid effector Mp10, aged nymphs (section 2.2.2) were cultured on dsMp10 and dsGFP plants [557] for 9-11 days. Silencing of Mp10 was verified by qPCR with primers listed in Table 2.5 (Section 2.5.2).
2.5 Real Time PCR

2.5.1 RT-PCR

cDNA was diluted 1:10 for use in RT-PCR with GoTaq Green polymerase (Promega) in 25 µL reactions. Each reaction contained 4 µL of GoTaq Green 4X buffer, 0.5 µL 10mM dNTPs, 0.5 µL of each primer (10 µM), 2 µL MgCl$_2$, 0.2 µL GoTaq enzyme, 12.3 µL distilled water, and 5 µL of cDNA. The primers used for RT-PCR are listed in Table 2.4. The reactions were performed in GS thermocycler (G-Storm) using the following programme: 30 s at 96°C, followed by 35 cycles of 30 s at 96°C, 40 s at 54°C, 90 s at 72°C, and a final cycle of 5 min at 72°C.

Table 2.4: Primers used for RT-PCR

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Primer name</th>
<th>Sequence (5' - 3')</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>$TPC1$</td>
<td>AtTPC1-F2</td>
<td>CTACCTTCATAACTCCAGACGAGAAT</td>
<td>Bonadventure et al. [550]</td>
</tr>
<tr>
<td></td>
<td>AtTPC1-R2</td>
<td>AGCCAAATCGGTTTCAAAGAGCTTT</td>
<td></td>
</tr>
<tr>
<td>$CIPK3$</td>
<td>CIPK3-101/2-RT F</td>
<td>GGAGAACCTGTTGCTCTCAAG</td>
<td>Thomas Vincent</td>
</tr>
<tr>
<td></td>
<td>CIPK3-101/2-RT R</td>
<td>CCACACGATGTATGCAAGAGACTCC</td>
<td></td>
</tr>
<tr>
<td>$CIPK3$</td>
<td>CIPK3-103/4-RT F</td>
<td>AACATGGACGATATTGATGCTG</td>
<td>Thomas Vincent</td>
</tr>
<tr>
<td></td>
<td>CIPK3-103/4-RT R</td>
<td>CTGGAACCATATGAAGACTTGGCGC</td>
<td></td>
</tr>
<tr>
<td>$CIPK3$</td>
<td>103/104-DS F</td>
<td>GAGGCTTGAAGATGTGAAGGCTGG</td>
<td>Thomas Vincent</td>
</tr>
<tr>
<td></td>
<td>103/104-DS R</td>
<td>CGTCCAGACTACTTGCTCC</td>
<td></td>
</tr>
<tr>
<td>$CIPK3$</td>
<td>101/102-US F</td>
<td>GAAGAACAATTGGAGAAGGAAC</td>
<td>Thomas Vincent</td>
</tr>
<tr>
<td></td>
<td>101/102-US R</td>
<td>CTCTCTTGAACATACTCTCC</td>
<td></td>
</tr>
<tr>
<td>$CIPK3$</td>
<td>gCIPK3_Pand F</td>
<td>GGAGAACCTGTTGCTCTCAAGATCTT</td>
<td>Pandey et al. [176]</td>
</tr>
<tr>
<td></td>
<td>gCIPK3_Pand R</td>
<td>TTGAGGTTTCCCATAGGAGTCCAATAG</td>
<td></td>
</tr>
<tr>
<td>$ACTIN2$</td>
<td>ACTIN2-RTF</td>
<td>GGAAGATCTGTACGGTAAC</td>
<td>Tang et al. [165]</td>
</tr>
<tr>
<td></td>
<td>ACTIN2-RTR</td>
<td>GGACCTGCCTCATCAC</td>
<td></td>
</tr>
</tbody>
</table>
2.5.2 qRT-PCR

cDNA was diluted 1:10 for qRT-PCR for use with SYBR Green JumpStart Taq ReadyMix (Sigma-Aldrich) in 20 µL reactions on 96-well plates (white ABgene PCR plate - ThermoFisher Scientific). Each reaction consisted of the following: 10 µL SYBR Green master mix, 5 µL cDNA, 1 µL of each primer (10 µM) and 3 µL of distilled water. Primers used in qRT-PCR analysis are listed in Table 2.5. All reference gene primers used had been previously validated by others in the Hogenhout lab (JIC, specific sources in Table 2.5). Reactions were combined in one or more plates, with each biological sample and primer combination represented in every plate. Reactions were carried out in a C1000™ Touch thermocycler (Biorad, Hercules, CA, USA). The following PCR programme was used: 3 min at 95°C, followed by 40 cycles of 30 s at 94°C, 30 s at 60°C, 30 s at 72°C, followed by one cycle of 30 s at 50°C, followed by melt curve analysis (65°C to 95°C, increments of 0.5°C) with a plate read throughout.

In order to calculate the expression of the genes of interest relative to the reference genes, the mean C_t value from 3-4 technical replicates of primer-sample pairs was converted into relative expression values according to the equation (efficiency of primer pair)ΔCt [558]. Two reference genes were used per experiment, and within each biological sample the geometric mean of the reference gene C_t values was used to normalize between them [559]. The reference genes used in this study were as follows: Actin and L-27 for M. persicae and Actin and PEX4 for Arabidopsis (Table 2.5). Data was analysed using classical linear regression within a generalised linear model (GLM), assuming independent data points with a normal distribution and a linear relationship between the dependent and independent variables. Pairwise comparisons between treatments were conducted within this model using a t-test. Statistical analysis was conducted with Genstat v.18 (VSN International, Hemel Hempstead, UK). To display the data, mean expression values were rescaled such that the relative expression of the control group was equal to one.
Table 2.5: Primers used for qRT-PCR.

Mp = *M. persicae*, At = Arabidopsis.

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Primer name</th>
<th>Sequence (5’ - 3’)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mp10 (Mp)</td>
<td>Mp10 F</td>
<td>GGTCGGAGCGCCGCAAAAG</td>
<td>David Prince (Hogenhout Lab)</td>
</tr>
<tr>
<td></td>
<td>Mp10 R</td>
<td>TTGGAACCCAAACTTTGGTGATGT</td>
<td></td>
</tr>
<tr>
<td>Actin (Mp)</td>
<td>ACT2 F</td>
<td>GGTGTCTCACACACAGTGCC</td>
<td>Pitino et al. [549]</td>
</tr>
<tr>
<td></td>
<td>ACT2 R</td>
<td>CCGCGGTGTTGGAAGCTG</td>
<td></td>
</tr>
<tr>
<td>L-27 (Mp)</td>
<td>L-27 F</td>
<td>CCGAAAGCTGTCAAAACATGAAGAC</td>
<td>Pitino et al. [549] and Coleman [560]</td>
</tr>
<tr>
<td></td>
<td>L-27 R</td>
<td>CCGAAAGCTGTCAAAACATGAAGAC</td>
<td></td>
</tr>
<tr>
<td>FRK1 (At)</td>
<td>FRK1 F</td>
<td>ATCTTCGCTTTGGAGCTTCTC</td>
<td>Segonzac et al. [561]</td>
</tr>
<tr>
<td></td>
<td>FRK1 R</td>
<td>TGCAGCGCAAGAAGATAGAG</td>
<td></td>
</tr>
<tr>
<td>CYP81F2 (At)</td>
<td>CP81F2 F</td>
<td>AATGGAGAGAGCAACACAATG</td>
<td>Kettles et al. [306]</td>
</tr>
<tr>
<td></td>
<td>CP81F2 R</td>
<td>ATACTGAGCATGAGCCCTTTG</td>
<td></td>
</tr>
<tr>
<td>PAD3 (At)</td>
<td>PAD3 F</td>
<td>TGCTCCCAAGACAGACAATG</td>
<td>Chassot et al. [562]</td>
</tr>
<tr>
<td></td>
<td>PAD3 R</td>
<td>GTTTTGGATCACGACAGACCCATC</td>
<td></td>
</tr>
<tr>
<td>Actin (At)</td>
<td>ACT2 F</td>
<td>GATGAGCCAGGTCCAGGAATC</td>
<td>Czechowski et al. [563]</td>
</tr>
<tr>
<td></td>
<td>ACT2 R</td>
<td>GTTTGTCACACACAAGTGATC</td>
<td></td>
</tr>
<tr>
<td>PEX4 (At)</td>
<td>PEX4 F</td>
<td>TGCAACCTCCTCAAGTTTC</td>
<td>Czechowski et al. [563]</td>
</tr>
<tr>
<td></td>
<td>PEX4 R</td>
<td>CACAGACTGAAAGCGTCCAAG</td>
<td></td>
</tr>
</tbody>
</table>
2.6 Gene Synthesis and cloning

2.6.1 Gene synthesis

In order to generate the CIPK3 transgenic lines used in Chapter 5, the coding regions, promoters and 3’ UTRs were synthesised by the GeneART™ service from ThermoFisher Scientific. All synthesised modules were sequence-verified by the company. The sequence details for each of the modules can be found in Appendix A.

2.6.2 Site-directed mutagenesis

For the creation of the CIPK3 constitutive-activation lines (CIPK3T183D), site-directed mutagenesis was performed on the genomic copy of CIPK3, previously synthesised by ThermoFisher Scientific (section 2.6.1). This was performed using the QuikChange Lightning site-directed mutagenesis kit (Agilent Technologies, Santa Clara, CA, USA) according to the manufacturer’s instructions. The primers used for this reaction can be found in Table 2.6. Successful mutagenesis was confirmed by extraction of DNA from positive Escherichia coli clones and sequencing using the CIPK3 F5 primer (Table 2.3)

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Primer name</th>
<th>Sequence (5’-3’)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIPK3</td>
<td>CIPK3T183D F2</td>
<td>CTTGCATACATCGTGTGGTGACCCAAACTACGTTGCTCCTG</td>
<td>Thomas Vincent</td>
</tr>
<tr>
<td>CIPK3T183D R2</td>
<td>CAGGAGCAACGTAGTTTGGGTACCCACCACTACGTTGCTCCTG</td>
<td>TATGCAAG</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.6: Primers used for site-directed mutagenesis
2.6.3 DNA sequencing

DNA sequencing was performed by Eurofins Genomics value read service. Primers used for sequencing are listed in Table 2.3.

2.6.4 GoldenGate cloning

The components synthesised in Section 2.6.1 (level 0 components) were combined into full genetic units (level 1 components - promoter, CDS, terminator) according to the Golden Gate DNA assembly protocol. This protocol uses single tube 15 µL reactions produce the level 1 units. Each reaction contained 100 ng of the level 1 vector backbone, 100 ng of each level 0 assembly piece, 100X Bovine Serum Albumin (New England Biolabs, Ipswich, MA, USA), Bsa1 (New England Biolabs) and NEB T4 Ligase and buffer (New England Biolabs). The assembly reaction was carried out in a GS1 thermocycler (G-Storm) using the following conditions: 3 min at 37°C and 4 min at 16°C (25 cycles), 5 min at 50°C, 5 min at 80°C [564]. These plasmids were cloned into Escherichia coli (section 2.6.5) and verified by sequencing (Section 2.3.3) with the following primers: CIPK3 LV1 CDseq and eGFP (Table 2.3).

The level 1 components were then cloned into the final level 2 constructs containing the plant selection marker HYG (hygromycin resistance gene) according to the same procedure as above, except BpiI (ThermoFisher Scientific) was also added to the reaction mixture. Again, these plasmids were cloned into E. coli (section 2.6.5) verified by sequencing (Section 2.3.3) using the following primers: GoldenG seqF2, GoldenG seqR2, GoldenG seq F3 (Table 2.3). Details on the golden gate modules and vectors used in this study can be found in Appendix B.

2.6.5 Cloning into E. coli

For cloning of constructs into E. coli, 2 µL of the assembly reaction from Section 2.6.4 was transformed into 20 µL of competent bacteria (strain DH5α, maintained in the Sanders/Miller lab) in a single tube using the following procedure: 20 min on ice, 30 s at 42°C and 2 min on ice. 0.5 ml of liquid Super Optimal Broth with Catabolite repression (SOC) medium [565] was then added and the reactions and left at 37°C for 1 h. They were then plated on Lysogeny broth (LB) [566, 567] agar
with the appropriate antibiotic. DNA from positive colonies was extracted using the PureYield™ plasmid miniprep system (Promega) used according to manufacturer’s instructions, and verified by sequencing using combinations of the primers detailed in Section 2.3.3. The mutation required to generate the CIPK3T183D lines was verified with CIPK3 F5 (Table 2.3).

2.6.6 Electroporation of Agrobacterium tumefaciens

Electro-competent Agrobacterium tumefaciens (strain GV3101::pMP90, maintained in the Giles Oldroyd Lab, JIC, Norwich, UK) in 50 µL aliquots were thawed on ice, to which 1-5 µg of plasmid DNA was added. The mixture was transferred to a pre-chilled electroporation cuvette (Biorad) and incubated on ice for at least 5 min. Electroporation was then carried out using a Gene Pulser™ (Biorad) under the following conditions: capacitance: 25 µF, voltage: 2.4 kV, resistance: 200 Ohm, pulse length: 5 msec. Immediately after electroporation, 1 ml of SOC media was added to the cuvette and the mixture was transferred to a 15 ml falcon tube (StarLab, Hamburg, Germany) and incubated for 2 h at 28°C with vigorous agitation (250 rpm). The mixture was then plated on LB agar containing the appropriate antibiotic and incubated for 2-3 days at 28°C.

2.6.7 Colony PCR

Agrobacterium positive clones were verified by colony PCR through amplification of the gene of interest. This was performed in a thermocycler using GoTaq Green polymerase (Promega) in 20 µL reactions using under following conditions: 30 s at 96°C, followed by 35 cycles of 30 s at 96°C, 40 s at 54°C, 90 s at 72°C, and a final cycle of 5 min at 72°C. Each reaction contained 0.2 µL GoTaq enzyme, 4 µL of GoTaq Green 4X buffer, 0.5 µL 10 mM dNTPs, 0.5 µL of each primer, 2 µL MgCl2, and 12.3 µL distilled water. The primers used for colony PCR were CIPK3 qPCR F1 / GG seqR2 (Table 2.3) and eGFP F / eGFP R (Table 2.2). DNA from positive colonies was then extracted with the PureYield™ plasmid miniprep system (Promega) according to the manufacturer’s instructions, and verified by sequencing using combinations of the primers detailed in Table 2.3 in Section 2.3.3.
2.6.8 Restriction Digestion

In addition to colony PCR and sequencing, DNA from the positive Agrobacterium colonies was verified by restriction digestion followed and visualisation by agarose gel electrophoresis containing 1% ethidium bromide. This was performed by incubating the constructs with EcoR1 and Xba1 or Pvu1 (Roche, Basel, Switzerland) at 37°C for 2-3 h.

2.7 Plant Transformation & Crossing

2.7.1 Floral dipping of Arabidopsis

Arabidopsis were grown in a long day CER at a constant temperature of 22°C with a 16 h day (Hydrargyrum quartz iodide (HQI) lighting), 8 h night photoperiod. The first bolt was clipped using sharp scissors to encourage a greater amount of flower production. Six days after clipping, Agrobacterium containing the construct of interest was grown in LB medium along with kanamycin (gene of interest plasmid marker), Rifampicin (agrobacterium marker) and gentamycin (Ti plasmid marker). 100 µM acetosyringone (Sigma Aldrich) was added and the culture was pelleted by centrifugation at 3700 g for 15 min. The pellet was then re-suspended in 250 ml of 5% (w/v) sucrose (ThermoFisher Scientific) and Silwett-L77 surfactant (De Sangosse, Cambridge, UK) was added at final concentration of 0.04% (v/v).

Before dipping, the flowering Arabidopsis were transferred to a containment glasshouse with 16 h daylight (supplemental lighting provided by 600 w sodium lamps). The aboveground parts of the plants, including all inflorescences, were submerged in the Agrobacterium solution for 10 s with gentle agitation. Plants were then placed in autoclave bags and covered by black plastic sheeting for 24 h. After this period, the plants were uncovered and grown in the glasshouse, with seeds from the transformed plants harvested two months later. Successful T1 transformants were identified by resistance to hygromycin (plant selection marker) when plated on ¼ strength MS (ingredients specified in section 2.1.1) and then transferred to soil in a glasshouse (16 h daylight, supplemental lighting provided by 600 w sodium lamps) over subsequent generations. T1 plants were assessed for single copies of the gene of interest and T2 plants were screened for homozygosity, using the iDNA genetics genotyping service (section 2.3.2).
2.7.2 Crossing Arabidopsis

Crossing was conducted with 4-week old Arabidopsis plants, grown in a CER at a constant temperature of 22°C with a 16 h day (HQI lighting), 8 h night photoperiod. Two unopened buds per stalk were selected and the remaining buds were removed. The sepals, petals and stamens were removed from the selected buds, leaving a single carpel. Stamens from the other crossing partner were dissected and pollen transfer between the two was achieved by brushing the stamen against the carpel of the selected mutant. Dissections were carried out with a pair of sharp tweezers. Pollinated carpels were covered in 74 mm x 41 mm paper bags (Global Polythene, Preston, UK), sealed with tape and allowed to mature.

After four weeks, seeds from these crosses were collected and plated on ¼ strength MS (ingredients specified in section 2.1.1) containing 50 µg/ml kanamycin on 100 mm² square plates (R & L Slaughter) in order to identify T1 mutants heterozygous for 35S::GCAMP3. These plants were then transferred to Scotts Levington F2 compost (Scotts), grown in a glasshouse (16 h daylight, supplemental lighting provided by 600 w sodium lamps) and left to self-fertilise.

T2 plants were grown in the same conditions as the T1 generation. Single leaves were dissected and DNA was extracted as outlined in section 2.3.1. Plants were genotyped for the presence of the mutation of interest (bak1-5) using the BAK1_dCAPS-F and BAK1_dCAPS_R primers (Table 2.2). The subsequent amplicon was then cut with the restriction enzyme Rsa1 (Roche) and the restriction pattern used to identify plants homozygous for bak1-5 [548]. T3 plants homozygous for bak1-5 were then plated on ¼ strength MS (ingredients specified in section 2.1.1) on 100 mm² square plates (R & L Slaughter) with 50 µg/ml kanamycin to assess the 35S::GCAMP3 copy number. Plants homozygous for 35S::GCAMP3 were screened under a Leica M205FA stereo microscope (Leica Microsystems, Milton Keynes, UK) to identify seedlings with strong GFP fluorescence. GFP was excited using a 450 nm - 490 nm metal halide lamp, and fluorescent emission was captured between 500 nm and 550 nm. From this screen, the 35S::GCAMP3 x bak1-5 line with the greatest fluorescent yield, homozygous for both genes, was selected for use in experiments.
2.8 Microscopy

2.8.1 Plant sample preparation

Arabidopsis expressing the Ca$^{2+}$ sensor of choice were grown on MS plates as detailed in section 2.1.1. Leaves from these plants were then dissected using sharp scissors, and placed in wells of a clear 96-well Microtitre$^\text{TM}$ plate (ThermoFisher Scientific) with 300 µL of distilled water, abaxial surface facing up. These plates were then covered in clear plastic wrap (SC Johnson & Son, Racine, WI, USA) and aluminium foil (Wrap Film Systems, Telford, UK) and left at room temperature overnight to allow the stress of the wounding to subside. Microscopy was carried out using these leaves the following day.

2.8.2 Insect preparation

Aged *M. persicae* colonies were created as outlined in section 2.2.2 and were left to mature to adulthood for 8-10 days in an 8 h day (90 µmol m$^{-2}$ s$^{-1}$ at 18°C) and 16 h night (16°C) photoperiod.

2.8.3 Fluorescence microscopy

Analysis of the FRET from the YCNano-65 construct [7] was conducted on a Zeiss Lumar V12 stereo microscope (Zeiss, Oberkochen, Germany). CFP was excited using a 426 nm - 446 nm metal halide lamp, and YFP was excited using a 490 nm - 510 nm metal halide lamp. Fluorescent emission was captured between 460 nm and 500 nm (CFP) and 520 nm and 550 nm (YFP). The exposure was kept at 8 s for all experiments, with images taken every 30 s. Leaves were imaged in pairs, under a magnification of 6.4 X. Cold water treatment was performed by adding 40 µL ice-cold water to the leaf, whilst aphid treatment involved the transfer of one adult aphid to the leaf. The second leaf of the pair was left untreated as a control. The wounding treatment was performed by crushing the leaf with a pair of forceps.

To visualise fluorescence from the 35S::GCAMP3 construct, a Leica M205FA stereo microscope (Leica Microsystems) was used. GFP was excited using a 450 nm - 490 nm metal halide lamp, and fluorescent emission was captured between 500 nm and 550 nm. The exposure was kept constant within experiments (between 1 and 2.5
s depending on the fluorescent yield of the mutant line) and images were captured every 5 s with a gain of 3.5 using Leica Application Suite v3.2.0 (Leica Microsystems). Leaves were imaged in groups of four, two leaves per genotype, at a 7.8 X magnification and a focus of -127.833 mm. One adult aphid was added to a leaf of each genotype, with the other leaf left un-infested as a control. Images were captured for 50-60 min after aphid application, with the 96-well plate covered in cling film to prevent aphid escape. Images were exported as Tagged Image File Format (TIFF) files for analysis. For cold water treatments, 40 µL ice-cold water was added to the leaf using a pipette (Gilson, Middleton, WI, USA) and wounding treatments were carried out using forceps.

2.8.4 Aphid behaviour analysis

Aphid settling behaviour was recorded for each sample by analysing the microscopy images, and this was used to assess if samples were to be included in the fluorescent signal analysis. Ca²⁺ signal analysis was performed for aphids during their first period of settling greater than 5 min in length. Settling was defined as the aphid remaining stationary in one place on the leaf. Samples in which the aphid never settled, or settled in a location that could not be imaged, were discarded. The length and timing of every aphid settle was recoded for all samples. Aphid settling behaviour was compared using a two-way Student’s t-test between the treatments within Genstat v18 (VSN International).

2.8.5 Fluorescent signal analysis

For both 35S::YCNano-65 and 35S::GCAMP3, TIFF files were imported into Fiji (Image J) v1.48a (National Institutes of Health, USA) and converted into 32-bit images for fluorescent signal analysis. Fluorescence was analysed over time for various regions of interest (ROIs) using the Fiji plugin Time Series Analyser v2 (University of California, Los Angeles, CA, USA). For aphid treatments, circular ROIs with a 50 pixel (0.65 mm) diameter were selected in three locations; at the feeding site, on the midrib systemic to the aphid feeding site, and in the tissue besides the midrib (‘lateral tissue’). These ROIs are demonstrated in Figure 2.1. For whole plant analysis, the ROIs are displayed in Figure 3.2 (Chapter 3). For cold water treatments, a ROI was drawn around the entire leaf.
To analyse the images, the raw fluorescence values (F) were exported into Microsoft Office Excel (Microsoft, Redmond, WA, USA) for further analysis. For 35S::YC Nano-65, the FRET ratio (R) was calculated according as $R = F_{CFP}/F_{YFP}$ [568]. For 35S::GCAMP3, normalised fluorescence values ($\Delta F/F$) were calculated according to the equation $\Delta F/F = (F - F_0)/F_0$, where F_0 is the average baseline fluorescence calculated from the average of F over the first 60 frames of the recording before the aphid settled [219]. Samples in which the controls showed large Ca^{2+} bursts ($\Delta F/F > 0.2$) were discarded. Ca^{2+} signals were analysed using classical linear regression within a generalised linear model (GLM), assuming independent data points with a normal distribution and a linear relationship between the dependent and independent variables. Pairwise comparisons between treatments were conducted within this model using a t-test in Genstat v18 (VSN International).

![Figure 2.1: The ROIs used in the Ca^{2+} signal analysis.](image)

Each ROI was 0.65 mm in diameter and placed relative to the head of the aphid.
The area of the aphid-induced Ca\(^{2+}\) burst was estimated using the Fiji freehand selection tool to draw around the maximum visible ('recordable' - R) burst and the area of this shape was calculated within Fiji. For analysis of the speed of the wave front, the Fiji plugin MTrackJ v 1.5.1 [569] was used. Representative videos of the aphid-induced Ca\(^{2+}\) bursts were created by converting the raw F values to heat maps using the NucMed_Imagel LUTs plugin for Fiji (J.A. Parker, IEEE.org). Time information was added using the Time Stamper plugin (W. Rasband, National Institutes of Health, USA). Area and seed data were analysed using a two-way t-test in Genstat v18 (VSN International), assuming a normal distribution, independent data points, homogeneity of variance and a linear relationship between the dependent and independent variables.

2.9 Aphid performance assays

2.9.1 *M. persicae* fecundity assay

M. persicae fecundity was assessed as previously described by Pitino et al. [549]. The experiment was conducted with four-week old Arabidopsis grown in plastic pots (13 cm diameter, 10.5 cm depth) containing Scotts Levington F2 compost (Scotts, Ipswich, UK) in a CER with a 8 h day (90 µmol m\(^{-2}\)s\(^{-1}\) at 18°C) and 16 h night (16°C) photoperiod. Five adult aphids from the stock colony (section 2.2.1) were added to each plant at the beginning of the experiment, and the plant was covered by Jetran Tubing (13 cm diameter, 10 cm tall - Bell Packaging, Luton, UK) capped with a white gauze-covered lid. After 48 h all adults were removed from these plants (day 0). After a further 72 h (day 3), any excess nymphs were removed, to leave five nymphs per plant. The number of offspring produced by these aphids was counted on day 11 and day 14 of the experiment, as was the final number of adult aphids. In order to assess fecundity, the number of offspring produced on day 11 and day 14 was summed per plant, and divided by the number of adults per plant. Six plants were used per treatment per experiment, and all experiments were repeated at least three times. Statistical analysis was performed in Genstat v18 (VSN International) using a classical linear regression within a GLM. The model took into account the experimental replicates as an additional factor, assuming independent data points with a Poisson distribution.

70
2.9.2 *M. persicae trans-generational fecundity assay*

The experiment was conducted with four four-week old Arabidopsis, potted together in black plastic trays (30cm x 45cm x 5cm) containing Scotts Levington F2 compost (Scotts, Ipswich, UK) in a CER with an 8 h day (90 μmol m\(^{-2}\)s\(^{-1}\) at 18°C) and 16 h night (16°C) photoperiod. A single 24 h-old nymph was added to each plant. The total number of offspring was then counted after four weeks. Four plants were used per treatment per experiment, and all experiments were repeated at least three times. Statistical analysis was performed in Genstat v18 (VSN International) using a classical linear regression within a GLM. The model took into account the experimental replicates as an additional factor, assuming independent data points with a Poisson distribution. Pairwise comparisons between treatments were conducted with a t-test within this model. This protocol was modified from Coleman et al. [560].

2.9.3 *M. persicae choice assay*

Two four-week old Arabidopsis plants were placed in Scotts Levington F2 soil (Scotts, Ipswich, UK) together in a plastic pot (13.5 cm diameter, 9 cm depth). A 50 mm diameter petri dish (R & L Slaughter) was placed between the two plants, and 30 randomly-selected adults from the stock colony (section 2.2.1) were added to this dish. The plants were then covered in plastic tubing (section 2.9.1) and placed in a CER with an 8 h day (90 μmol m\(^{-2}\)s\(^{-1}\) at 18°C) and 16 h night (16°C) photoperiod. After 24 h, the number of adult aphids settled on each plant was assessed. Statistical analysis was performed in Genstat v18 (VSN International) using a pairwise Student’s t-test assuming a normal distribution of variances and independent data points.

2.9.4 *M. persicae* induced resistance assay

Arabidopsis induced resistance (IR) to *M. persicae* was assessed by an assay modified from De Vos and Jander [464] using live aphids. The experiment was conducted with four-week old Arabidopsis plants in plastic pots (base 3.5 x 3.5 cm, top 5.5 x 5.5 cm, height 5.5 cm) grown in a CER with an 8 h day (90 μmol m\(^{-2}\)s\(^{-1}\) at 18°C) and 16 h night (16°C) photoperiod. From the stock colony 50 mixed instar aphids (section 2.2.1) were then added to the first fully-expanded leaf of the plant.
and confined within a clip cage (Figure 2.2). These aphids acted as a pre-treatment to induce Arabidopsis defence. As a control treatment an empty clip cage was used. Aphids were then removed 24 h later. An 11-day old aphid (section 2.2.2) was then added to the leaf inside a clip cage. After 10 days, the number of nymphs produced by this aphid was counted. For systemic induced resistance experiments, leaves were numbered from oldest to youngest, and the adult aphid was added to leaf n+5, where n = the leaf used for pre-treatment [103]. All experiments were repeated at least three times. Statistical analysis was performed in Genstat v18 (VSN International) using a classical linear regression within a GLM. The model took into account the experimental replicates as an additional factor, assuming independent data points with a Poisson distribution. Pairwise comparisons between treatments were conducted with a t-test within this model.

![Figure 2.2: A clip cage.](image)

Composed of a metal double prong hair clip (50 mm long), two pieces of plastic tube (10 and 5 mm high, 2 mm thick, 25 mm diameter), two circles of felt (25 mm diameter, 4 mm across, 1 mm thick), and two pieces of fine gauze (25 mm diameter). Scale bar = 5 mm. Figure taken from Prince et al [555].

2.9.5 A. pisum survival assay

Survival assays with A. pisum were carried out as described in Prince et al. [555]. The experiment was performed with 7-week old Arabidopsis in plastic pots (base 3.5 x 3.5 cm, top 5.5 x 5.5 cm, height 5.5 cm) in a CER with an 8 h day (90 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) at 18°C) and 16 h night (16°C) photoperiod. Five 10-day old aphids (section 2.2.4) were added to the youngest fully expanded leaf, contained within a clip cage. The number alive adults (visible movement) was counted on two to seven days post-treatment. When aphid survival on the wildtype plants reached 50 %, the
percentage survival on all genotypes was averaged over the two days either side of this cut-off. Statistical analysis was performed in Genstat v18 (VSN International) using a classical linear regression within a GLM. The model took into account the experimental replicates as an additional factor, assuming independent data points with a Poisson distribution. Pairwise comparisons between treatments were conducted with a t-test within this model.

2.9.6 Whole plant EPG

EPG experiments were conducted as described by Tjallingi [263]. Adult 13-15 day old *M. persicae* (section 2.2.2) were starved in a sealed petri dish for one h prior to the start of the experiment. These aphids were then attached to the Giga-8 EPG system (EPG Systems, Wageningen, Netherlands) using 12.5 µm gold wire (EPG Systems) and silver glue (EPG Systems) and then placed on 4-week old Arabidopsis. The plants were kept in plastic pots (base 3.5 x 3.5 cm, top 5.5 x 5.5 cm, height 5.5 cm) for the entire experiment. The experiment was contained inside a Faraday cage to minimise electrical interference. Feeding behaviour was recorded for 8 h using Stylet+d (EPG Systems). Each EPG track was then analysed blind in Stylet+a (EPG Systems) to annotate different feeding behaviour types and durations. The timing of aphid settling relative to the beginning of probing was also documented. Relevant EPG parameters were calculated using the Microsoft Excel spreadsheet developed by Dr Edgar Schliephake (Julius Kuhn Institute, Germany) [570]. Comparisons of behaviours between treatments were performed using a Mann-Whitney U test in R v3.0 (Free Software Foundation, Boston, MA, USA) assuming equal distributions of independent data points.

2.9.7 Single leaf EPG

Single-leaf EPG was performed using a modified version of the set-up described in section 2.9.6. Leaves were taken from plate-grown plants, grown as detailed in section 2.1.1 and floated in 300 µL of water in 96-well plates as described in section 2.8.1. A small piece of copper wire was attached to the EPG ground electrode, and this was inserted into the well (Figure 2.3). Nine to eleven-day old *M. persicae* were then added to these leaves and the experiment was conducted and analysed as outlined in section 2.9.6 above.
2.10 Arabidopsis assays

2.10.1 Aphid extract collection

Aphid extract was prepared from mixed instar stock colony aphids (Section 2.2.1). Aphids were snap frozen in liquid nitrogen and ground to a fine powder using a mortar and pestle. This powder was then re-suspended in distilled water at a concentration of 5 mg/ml.

2.10.2 ROS assay

Leaf disks were taken from the two youngest fully-expanded leaves of 4-week old Arabidopsis using a cork borer (diameter: 4 mm), and floated in 200 µL of distilled water overnight in white 96-well plates (Grenier Bio-One, Kremsmünster, Austria). Eight leaf disks were used per treatment per experiment. Before beginning the experiment, the water was removed from the wells and replaced with 100 µL of the assay solution. This solution was composed of the following: 100 µg/ml horseradish peroxidase (HRP) (Sigma-Aldrich) and 21 nM of the luminol probe L-012 (8-amino-5-chloro-7-phenylpyrido [3,4-d] pyridazine-1,4(2H,3H) dione) (Wako, Osaka, Japan) [571], alongside 5 mg/ml aphid extract. Control assay solutions

Figure 2.3: Single leaf EPG.
Arabidopsis leaves were floated in 300 µL of water with a single aphid connected to the circuit by gold wire and silver glue (aphid electrode). The Copper wire functioned as a ground electrode, submerged in the water. Photo credit: P.H.
contained distilled water instead of aphid extract. After addition of the assay solution, the 96-well plate was placed under a Photek camera (Photek, St Leonards on Sea, UK) to record the luminescence generated by the reaction between \(H_2O_2 \) and L-012 [406] catalysed by HRP [349]. Luminescence data were extracted using the Photek built-in software and analysed in Microsoft Excel (Microsoft). Statistical analysis was performed in Genstat v18 (VSN International) using a classical linear regression within a GLM taking into account the experimental replicates as an additional factor, assuming independent data points with a normal distribution and a linear relationship between the dependent and independent variables. Pairwise comparisons between treatments were conducted within this model using a t-test in Genstat v18 (VSN International).

2.10.3 Defence gene induction assay

Leaf disks were taken from the two youngest fully-expended leaves of 4-week old plants using a cork borer (diameter: 4 mm), and floated in 200 µL of distilled water overnight in white 96-well plates (Grenier Bio-One). Before beginning the experiment, the water was removed from the wells and replaced with 100 µL of aphid extract (5 mg/ml) or water as a control for 1 h. Eight leaf disks were pooled for each biological replicate. RNA extraction (Section 2.4.1), cDNA synthesis (Section 2.4.2) and qRT-PCR (Section 2.5.2) were then carried out on these samples. Statistical analysis was performed in Genstat v18 (VSN International) using a classical linear regression within a GLM taking into account the experimental replicates as an additional factor, assuming independent data points with a normal distribution and a linear relationship between the dependent and independent variables. Pairwise comparisons between treatments were conducted within this model using a t-test in Genstat v18 (VSN International).

2.10.4 Germination assay

To assess seedling germination, Arabidopsis seeds were grown on ¼ strength MS media (ingredients specified in section 2.1.1) in 100 mm² square plates (R & L Slaughter), 100 seeds per plate. For treatment plates, 150 mM NaCl was added to the media. The plates were then vernalised for four days in the dark (8°C), before being moved to a CER with a constant temperature of 23°C with a 16 h day and 8 h night
photoperiod. Three days after transfer to 23°C, the number of germinated seedlings, defined by emergence of the radical, was assessed using a light microscope (Leica Microsystems). Statistical analysis was performed in Genstat v18 (VSN International) using a classical linear regression within a GLM taking into account the experimental replicates as an additional factor, assuming independent data points with a normal distribution and a linear relationship between the dependent and independent variables. Pairwise comparisons between treatments were conducted within this model using a t-test in Genstat v18 (VSN International).

2.11 RNA-seq

2.11.1 Sample preparation

Four-week old Col-0 Arabidopsis were grown in pots as detailed in section 2.1.1 and then transferred to a new CER for the experiment with an 8 h day (90 µmol m⁻² s⁻¹), 16 h night photoperiod at a constant temperature of 22°C. Two leaves from each plant were then placed in a clip cage (Figure 2.2) containing either 10 mixed instar adult *M. persicae* individuals (section 2.2.1), or 10 mixed instar adult *A. pisum* individuals (section 2.2.3). Insects were left on the plants for 48 h before being removed and the leaves frozen in liquid nitrogen. Five plants were treated with each insect, with 2 clip cages per plant.

RNA was extracted from the leaves contained within each clip cage using Trizol (section 2.4.1), and purified using Qiagen RNeasy with on column DNase digestion (Qiagen). Illumina Truseq libraries were prepared from 1 ug RNA according to the manufacturer’s protocol (Illumina, San Diego, CA, USA), and sequenced on a HiSeq 2000 (Illumina), with 4 barcoded libraries pooled per lane.

2.11.2 Sample analysis

Samples were mapped to the TAIR10 transcriptome (TAIR10_cdna_20101214_updated.fa) using the bowtie software [572]. Counts for each transcript were then calculated using RSEM [573]. Differential expression was computed using DEseq [574]. DEseq was used to determine significant differences in expression between treatments, with a cut-off of a 2-fold expression change together with a 5% false discovery rate (adjusted p-value, padj <0.05).
Chapter 3: *M. persicae* elicits rapid BAK1-dependent Ca\(^{2+}\) bursts in Arabidopsis
3.1 Introduction

3.1.1 YCNano-65 and GCAMP3 are highly-optimised tools for measuring Ca2+

Ca2+ sensors such as FRET cameleons and single-FP sensors revolutionised the analysis of Ca2+ dynamics. Cameleons are dual fluorophore molecules where the binding of Ca2+ results in FRET between the fluorophores (Section 1.1.7, Chapter 1). Blue fluorescent protein (BFP) was originally used as the donor fluorophore; however, this was soon replaced by CFP as a result of issues with low light production and instability in living cells [204]. Further optimisation of cameleons resulted in sensors less affected by cellular pH [575, 576] and a 5-fold increase in signal strength through the use of circularly permutated YFP [205, 577, 578]. In addition, redesigning the CaM-M13 binding interface to make it more specific for Ca2+, as well as to reduce interference by endogenous CaM has also significantly improved cameleons. [579, 580].

Single-FP sensors are based on the discovery that specific insertions of Ca2+-binding cassettes into GFP does not abolish fluorescence [578]. This allowed a CaM/M13 insertion in GFP to create the GCAMP range of sensors [209]. Upon Ca2+ binding, the CaM-M13 interaction results in ionisation of GFP and a change in fluorescence [211] (Section 1.1.7, Chapter 1). Such sensors typically display much greater signal strengths than cameleons and collecting data from a single fluorophore offers several technical advantages, including increased temporal resolution and simpler experimental design [212]. These attributes make single-FP sensors well-suited for recording dynamic measurements.

One important attribute of Ca2+ sensors is their dynamic range; the ratio between the minimum and maximum fluorescence. Whilst single-FP sensors have a dramatically increased dynamic range relative to traditional cameleons such as YC3.6, more recent cameleons such as YCNano-65 are comparable to GCAMPs (Table 3.1). Furthermore, YCNano-65 has a lower K_d, meaning that it can produce a measurable fluorescent output at a lower $[\text{Ca}^{2+}]$ [195, 206, 216]. As such, YCNano-65 is more sensitive to $[\text{Ca}^{2+}]$ (Table 3.1). Conversely, GCAMP3 offers superior responsiveness to changes in $[\text{Ca}^{2+}]$. This is because GCAMP3 boasts a higher Hill
coefficient, a measure of the cooperativity of binding each subsequent Ca\(^{2+}\), and dissociation of Ca\(^{2+}\) from the sensor is much more rapid [195, 206, 216] (Table 3.1).

Table 3.1 Properties of some popular genetically-encoded Ca\(^{2+}\) sensors.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>(D^a)</th>
<th>(K_d) (µM)</th>
<th>(n^b)</th>
<th>(T) (ms)</th>
<th>([Ca^{2+}]^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEQ</td>
<td>-</td>
<td>2.6-13</td>
<td>-</td>
<td>700</td>
<td>µM</td>
</tr>
<tr>
<td>YC3.6</td>
<td>6.6</td>
<td>0.22-0.78</td>
<td>1.7-3.6</td>
<td>2940</td>
<td>>100 nM</td>
</tr>
<tr>
<td>YCNano-65</td>
<td>14</td>
<td>0.06 - 1.4</td>
<td>1.6-1.8</td>
<td>3030</td>
<td>>10 nM</td>
</tr>
<tr>
<td>GCAMP3</td>
<td>12.3</td>
<td>0.41-0.5</td>
<td>2.1-2.7</td>
<td>700</td>
<td>>100 nM</td>
</tr>
</tbody>
</table>

3.1.2 \(Ca^{2+}\) signalling is important during plant-aphid interactions

\([Ca^{2+}]_{cyt}\) elevations are one of the first PTI-mediated responses to pathogen attack [200, 201, 219, 371, 509, 581, 582] (Section 1.3.3, Chapter 1) and several lines of evidence suggest that \(Ca^{2+}\) signalling is also relevant in plant-aphid interactions. Firstly, aphid extract and GroEL from the aphid symbiont *B. aphidicola* can induce ROS production [277, 349, 350]. \(Ca^{2+}\) lies upstream of this ROS, since the \(Ca^{2+}\) chelator EDTA significantly attenuates aphid extract-induced ROS production [502]. Furthermore, the aphid extract-induced ROS burst is dependent on *RBOHD* [349], a crosstalk node between ROS and \(Ca^{2+}\) signalling [119, 121].

Secondly, the vast majority of transcriptomic studies performed with aphids reveal a significant over-representation of \(Ca^{2+}\) signalling-related transcripts, most of which display upregulation (reviewed in [583]). In response to *M. persicae*, several of these genes are differentially regulated in Arabidopsis around 6 to 24 h post-infestation. These gene products include five ACAs, five CDPKs and several EF-hand containing proteins [442]. Furthermore, Jaouannet et al. [283] found that *M. persicae* induces differential regulation of several uncharacterised EF-hand containing proteins at 24 h post-infestation. Examples from other plant-aphid interactions include *M. euphorbiae* that induces several \(Ca^{2+}\)-related genes in *S. lycopersicum* [433 293], *A. glycines* that induces a 1.5-fold increase in several
Glycine max (soybean) CDPKs [402] and **B. brassicae** that upregulates several Arabidopsis Ca\(^{2+}\) channels, transporters and decoders within 6 h of feeding [304].

The third line of evidence comes from direct measurements of \([\text{Ca}^{2+}]\) using Ca\(^{2+}\) sensors. Feeding by lepidopteran larvae results in \([\text{Ca}^{2+}]_\text{cyt}\) increases measurable by Ca\(^{2+}\) dyes [369, 540], AEQ [123, 369, 370, 407], and YC3.6 [376]. It should be noted that chewing insects cause much larger amounts of cellular damage than **M. persicae**, and therefore the aphid-induced \([\text{Ca}^{2+}]_\text{cyt}\) elevation is likely to exhibit distinct characteristics. Ren et al. [584] used Ca\(^{2+}\)-selective microelectrodes to measure a significant Ca\(^{2+}\) flux out of the extracellular space into **Nicotiana tabacum** (tobacco) mesophyll cells after 2 h, 15 h and 5 d of incubation with **M. persicae**. In addition, both **M. persicae** and **S. littoralis** induce PM depolarisations when feeding [365, 369, 407], although these depolarisations appear to be independent of \([\text{Ca}^{2+}]\) elevations and based on K\(^+\) channel activity [540]. Nevertheless, \([\text{Ca}^{2+}]_\text{cyt}\) elevations may be associated with changes in \(V_m\), as seen in guard cells [48] and in response to lepidopteran herbivory [104, 369].

3.1.3 Phloem occlusion is Ca\(^{2+}\)-dependent

The phloem, specifically the SEs, acts as the main conduit for metabolite transport in the plant [285-287]. The SEs are also the location from which aphids establish long-term feeding [220, 284, 585]. Upon wounding, the flow of photo-assimilates in the phloem is blocked to prevent the loss of phloem sap and the invasion of pathogens, a process termed occlusion [287, 456, 586, 587]. In order for this feeding to be successful, aphids must overcome SE occlusion.

Occlusion is mediated by two mechanisms, including the formation of proteinaceous plugs by P-proteins [288, 291, 588, 589] and callose production [289, 295, 590, 591], both of which are suggested to be Ca\(^{2+}\)-regulated. Callose synthesis is regulated by Ca\(^{2+}\) in Arabidopsis, **N. tabacum** and **G. max** cells [293, 592, 593]. However, this was not observed in **Daucus carota** (carrot), where Ca\(^{2+}\) chelators have no effect on callose synthesis [294]. The Fabaceae have a unique set of P-proteins called forisomes, the dispersal of which plugs the sieve plates [290, 291]. Forisomes disperse upon Ca\(^{2+}\) application, the threshold for which is around 50 µM Ca\(^{2+}\), and this leads to occlusion [291, 594, 595]. However, the average \([\text{Ca}^{2+}]\) in **V. faba** SEs during a Ca\(^{2+}\) burst is less than 1 µM, which means forisome dispersal is probably only
activated in Ca\(^{2+}\) hotspots [596] such as around clusters of Ca\(^{2+}\)-permeable channels [595].

Occlusion can also be triggered by electrical signals within the plant, and these signals are associated with the influx of Ca\(^{2+}\) [596]. It has been suggested that Ca\(^{2+}\) mediates occlusion during the propagation of electrical waves, however this conclusion was inferred using forisome dispersal as a proxy for [Ca\(^{2+}\)] changes [597]. In addition, Ca\(^{2+}\) regulation of P-proteins outside the Fabaceae is lacking [296]. Nevertheless, there is a clear link between Ca\(^{2+}\) and the mechanisms that underlie occlusion.

3.1.4 Prevention of occlusion during aphid feeding may involve Ca\(^{2+}\)

A thin glass capillary comparable in size to an aphid stylet can induce occlusion [287]. This suggests that in order to feed successfully, aphids may inhibit occlusion. Indeed, in the A. *pisum*-*V. faba* model system aphid feeding does not induce forisome dispersal [598]. Moreover, leaf burning induces occlusion and alters aphid feeding behaviour [599, 600]. However, a direct link between occlusion and feeding was not established, with the change in aphid behaviour potentially a result of the activation of other plant defences.

It has been proposed that aphids alter [Ca\(^{2+}\)] in SEs in order to prevent occlusion (Figure 3.1). Application of aphid watery saliva to forisomes results in a contraction comparable to that seen with the Ca\(^{2+}\) chelator EDTA, indicating that aphid saliva may be chelating Ca\(^{2+}\) in order to prevent occlusion [599]. Indeed, watery saliva contains Ca\(^{2+}\)-binding proteins [273, 599, 601] and is thought to be secreted into plant cells during the E1 phase of phloem feeding [270, 284] (Figure 3.1). Furthermore, free Ca\(^{2+}\) is depleted in artificial diets whilst aphids feed (Freddy Tjallingii, EPG Systems, personal communication). However, no demonstration of Ca\(^{2+}\) binding or depletion in planta has yet been provided. It has also been suggested that aphid sheath saliva contributes to blocking Ca\(^{2+}\) entry by preventing Ca\(^{2+}\) leakage into cells during stylet punctures (Figure 3.1) [296], although again in vivo evidence of this has not been forthcoming.

Adding further doubt to the role of aphid saliva in suppressing occlusion is the recent finding that aphid treatment does not reverse phloem plugging in vivo, despite a close proximity between the aphid stylets and forisomes [598, 602].
Furthermore, the loss of key proteins required for p-protein plugging in Arabidopsis did not significantly alter *M. persicae* fecundity [588]. Indeed, the role of occlusion itself may be more complex than previously thought, with confocal microscopy revealing that aggregations of P-proteins do not necessarily alter phloem translocation [603].

Figure 3.1: Aphids avoid phloem occlusion, possibly through inhibition of plant Ca$^{2+}$.

A) Successful occlusion is a result of P-protein plugging (P - red) and dispersal of forisomes (DF, grey) near the sieve pore (SP) of SEs. Occlusion also involves callose deposition (purple, inset) by the enzyme callose synthase (CalS). Occlusion should be induced by penetration of the SE by the aphid stylet (white), which is hypothesised to result in Ca$^{2+}$ influx from the apoplast through Ca$^{2+}$ channels (green).

B) The secretion of sheath saliva (Ss - grey) and watery saliva (Ws - blue) through the salivary canal (Sc) is hypothesised to block Ca$^{2+}$-mediated occlusion, inhibiting P-proteins, condensing forisomes (CF) and preventing callose deposition. Aphid effectors (red squares) also suppress plant defence that is activated by perception of HAMPs (red triangles) and DAMPs (red circles). CC = companion cell. CW = cell wall, Nc = nutrition channel. Adapted from Will et al. [604].
3.1.5 SAR in plant-aphid interactions

The induction of systemic defence during pathogen attack, SAR, is well documented (Section 1.3.6, Chapter 1) [534, 605]. \(\text{Ca}^{2+} \) is implicated in SAR, with \(\text{Ca}^{2+} \) acting as a systemic signal between leaves during wounding and lepidopteran feeding [123]. Moreover, systemic signalling in response to flg22 is mediated by CPK5 [119]. The phloem acts as the primary conduit of systemic electrical and \(\text{Ca}^{2+} \) signals [103, 123, 606, 607], and thus it is reasonable to suggest aphids may trigger SAR.

Infestation of \textit{Apium graveolens} (celery) with \textit{M. persicae} results in the differential regulation of various phloem transcripts [608] and \textit{M. persicae} infestation of Arabidopsis results in the differential regulation of transcripts in systemic leaves from 6 to 24 h post-infestation, including \(\text{Ca}^{2+} \) transporters and \(\text{Ca}^{2+} \) binding proteins [442]. Feeding by \textit{M. persicae} also induces the local and systemic production of SA [609], a key mediator of SAR.

Supporting a role for SAR in plant-aphid interactions, \textit{B. brassicae} feeding on \textit{Brassica oleracea} (broccoli) exhibited less probing and phloem feeding after pre-treatment with aphids on systemic leaves [610]. \textit{M. persicae} feeding was also negatively affected by systemic aphid pre-treatment of \textit{Solanum tuberosum} (potato) [611], although this study also found enhancement of feeding locally, contrary to the negative impacts of local infestation seen with other studies [349, 464, 502]. Furthermore, SAR induced by \textit{P. fluorescens} negatively affects \textit{M. persicae} fecundity [612].

However, evidence supporting a significant role for SAR in defence against aphids is still lacking. Pre-treatment of leaves with \textit{M. persicae} leads to a significant reduction in performance of aphids that subsequently feed from these leaves, a phenomenon known as induced resistance (IR) [464]. However, \textit{M. persicae} pre-treatment does not appear to result in IR in systemic leaves of Arabidopsis [464] and the potential role of SAR in plant-aphid interactions is still unclear.
3.1.6 *M. persicae* induces plant defence through a BAK1-mediated pathway

BAK1 is a defence co-receptor that is required for full FLS2- and EFR-mediated PTI against bacterial pathogens [360, 361] (Section 1.3.2). In Arabidopsis, BAK1 positively regulates both ROS production and MAPK activity during this response [351]. Upon perception of flg22, BAK1 forms a complex with the PAMP-binding receptor FLS2 [360], and this results in the phosphorylation of BOTRYTIS-INDUCED KINASE1 (BIK1), a protein essential for the transduction of the PTI signal [613] and PAMP-induced \([Ca^{2+}]_{cyt}\) elevations [614].

BAK1 also mediates the defence response to chewing insects. Loss of BAK1 significantly decreases JA accumulation in response to *M. sexta* chewing, however this is independent of MAPK or SA involvement [424]. This suggests that although BAK1 functions as a common defence signalling component, there is a degree of specificity in the response to different threats. In addition, the *S. lycopersicum* homologue of BIK1 acts as a positive regulator of defence against *M. sexta*, with RNAi knock-down of the gene significantly increasing plant susceptibility [615]. However these results may be confounded by pleiotropic growth phenotypes associated with silencing BAK1 [616] and to a lesser extent BIK1 [617].

Multiple lines of evidence now suggest aphid-induced PTI is BAK1-dependent. *M. persicae*-induced ROS production, callose deposition and IR are all compromised in *bak1*-5 mutants [349, 502]. The putative HAMP GroEL also stimulates these responses in a BAK1-dependent manner [350]. Interestingly, *FLS2* is not required for aphid-induced PTI [349], and as such the PRR that pairs with BAK1 in plant-aphid interactions remains elusive. Furthermore, loss of *BIK1* negatively affects *M. persicae* performance, implying it is a negative regulator of defence during this interaction [618], the opposite of that observed in plant-pathogen systems. Consequently, *M. persicae* induces many of the same PTI components as bacterial pathogens, however there are clear differences between the two, with many of the components involved in the aphid response yet to be identified.
3.1.7 *M. persicae* uses the effectorMp10 to suppress BAK1-mediated plant defence

Pathogens use effector molecules to suppress PTI, as do aphids (Section 1.3.5, Chapter 1). These effectors are secreted into the plant in the aphid watery saliva [272, 273] and thus they are introduced into plant tissues during the early stages of feeding [619]. The first identified aphid effector was C002 from *A. pisum*, which is secreted into the plant and is required for aphid survival and successful feeding [276, 500]. This effector is also present in *M. persicae* (MpC002), with overexpression of MpC002 enhancing fecundity [277, 501] and reducing expression having the opposite effect [549, 560].

In addition to MpC002, Mp10 has also been identified as a putative *M. persicae* effector. *Mp10* is expressed in the salivary gland of *M. persicae* and heterologous overexpression of *Mp10* in *N. benthamiana* blocks flg22-induced ROS production, implying a role in suppressing plant defence [277]. Interestingly, this overexpression also reduces aphid fecundity, possibly as a result of ETI activation [277]. Further confirmation of Mp10’s role as an effector comes from evidence showing that it can suppress aphid extract-induced ROS production in *N. benthamiana* and that it promotes aphid colonisation of Arabidopsis [502]. In addition, reducing *Mp10* expression through plant-mediated RNAi significantly reduces aphid fecundity. This phenotype is not observed on *bak1-5* mutants, suggesting Mp10 acts through the suppression of BAK1-mediated signalling [502]. Furthermore, Mp10 appears to have a role in the suppression of Ca$^{2+}$, as heterologous expression in *N. benthamiana* results in the suppression of flg22-induced Ca$^{2+}$ bursts, as measured with AEQ [502]. Finally, immunogold labelling studies detected Mp10 inside the cytoplasm of mesophyll cells adjacent to the aphid stylets, but not systemically from the feeding site [279]. Thus, Mp10 may have a role in the suppression of plant defence responses early in the aphid feeding process during the pathway phase.

3.1.8 Aims of this chapter

This chapter describes work investigating the role of Ca$^{2+}$ in plant-aphid interactions using the fluorescent sensor GCAMP3. A fluorescence microscopy approach was developed to measure [Ca$^{2+}$]$_{cyt}$ *in vivo* in real time during aphid feeding. The location and timing of these Ca$^{2+}$ bursts were investigated using a
combination of phloem-localised GCAMP3 and comparisons to aphid feeding behaviour, measured through EPG. In addition, because Arabidopsis BAK1 and the M. persicae effector Mp10 are known modulators of plant PTI to aphids, the role of the aphid-induced rises in \([\text{Ca}^{2+}]_{\text{cyt}}\) during PTI was assessed through the use of Arabidopsis mutant bak1-5 and dsMp10 M. persicae, which have reduced Mp10 expression levels. The aim was to identify and characterise an aphid-induced plant \(\text{Ca}^{2+}\) burst and place it the context of plant defence.

3.1.9 Materials and methods

The methods used in this chapter are detailed in Chapter 2. Information on the the microscopy assay can be found in Section 2.8, induced resistance in Section 2.9.4, EPG in Section 2.9.6 and Section 2.9.7 and RNAi knockdown in Section 2.4.3.
3.2 Results

3.2.1 GCAMP3 can be used to measure Ca\(^{2+}\) dynamics during aphid feeding

In order to assess whether GCAMP3 could be used to visualise whole-tissue Ca\(^{2+}\) signals in vivo, 35S::GCAMP3 plants were grown on MS plates and imaged under a stereo microscope. Upon treatment with *M. persicae*, a burst of GFP fluorescence was detectable around the feeding site (Figure 3.2, Video 3.1, Video 3.2). Fluorescent bursts comparable to those seen at the feeding site were not obvious in the midrib, nor if fluorescence was averaged across the entire leaf (Figure 3.2b). However, there was a gradual increase in fluorescence over time in all locations (Figure 3.2b) and additional areas of high fluorescence were observable in areas systemic to the feeding site (Video 3.1 & Video 3.2).

3.2.2 Aphids induce rapid localised Ca\(^{2+}\) bursts in isolated Arabidopsis leaves

Due to the high variability in Ca\(^{2+}\) dynamics with plate-grown plants, as well as infrequent aphid settling, a single-leaf microscopy assay was developed. 35S::GCAMP3 leaves were excised 24 h before the experiment and floated in water in a 96-well plate (Section 2.8.1, Chapter 2). Untreated leaves showed more stable Ca\(^{2+}\) dynamics across the course of the experiment than was previously observed with whole plants, and a large biphasic [Ca\(^{2+}\)]\(_{\text{cyt}}\) elevation could be observed when they were treated with cold water (Figure 3.3, Video 3.3).

Treatment of these isolated leaves with a single *M. persicae* individual resulted in a rapid increase in GFP fluorescence around the feeding site within 2 min of the aphid settling (Figure 3.4a and 3.4b, Video 3.4) that decreased to the level of the no-aphid controls after 7 min (Figure 3.4b and 3.4c). The average area of the Ca\(^{2+}\) burst was 111 µm\(^2\) and the leading wave front of this burst travelled at 5.92 µm/s from its centre (Table 3.2). Several settling behavioural characteristics of the aphids were also measured (Table 3.2).
Figure 3.2: GCAMP3 can be used to detect *M. persicae*-induced Ca^{2+} signals around the feeding site in whole Arabidopsis plants. Normalised GFP fluorescence (ΔF/F) of a representative sample shown. A) GFP fluorescence snapshot of the adaxial surface of 35S::GCAMP3 plants being fed on by *M. persicae*. Inset: Abaxial leaf surface under bright field showing location of aphid settling. Image brightness represents GFP fluorescence intensity. B) Normalised GFP expression measured over time for various regions of interest (ROIs - displayed on figure).
Figure 3.3: Cold water treatment induces a large biphasic Ca^{2+} burst in isolated 35S::GCAMP3 leaves.
A) GFP fluorescence represented as a heat map across a 2.5 min period. Representative sample shown. B) Normalised GFP fluorescence (ΔF/F) was averaged across the entire leaf. Error bars represent standard error of the mean (SEM, n=34). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V and performed by M.A. under supervision of T.V.
A) Time post-settling (min)

Control (no aphid)

Aphid

Low $[Ca^{2+}]$ | High $[Ca^{2+}]$

B) 35S::GCAMP3 control 35S::GCAMP3 aphid

\[\Delta F/F \]

Time post-settling (min)

C) 35S::GCAMP3 control 35S::GCAMP3 aphid

\[\Delta F/F \]

Time post-settling (min)

\[p<0.05 \]
Figure 3.4: GCAMP3 can be used to detect *M. persicae*-induced Ca$^{2+}$ signals at the feeding site in isolated leaves.

A) GFP fluorescence represented as a heat map during aphid settling. Point of settling = 0. Aphid location represented by a star. Representative sample shown **B**) Quantification of normalised fluorescence (ΔF/F) around the feeding site from 5 min before settling to 10 min post-settling, displaying measurements every five seconds. **C**) Quantification of normalised fluorescence around the feeding site from 5 min before settling to 30 min post-settling, displaying measurements every one minute. Error bars represent SEM (n=34). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05).

Table 3.2: Ca$^{2+}$ signalling and aphid behaviour parameters during the GCAMP3 imaging.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Average (± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca$^{2+}$ signal</td>
<td></td>
</tr>
<tr>
<td>Speed of wave front (µm/s)a</td>
<td>5.9 (± 0.6)</td>
</tr>
<tr>
<td>Maximum area of visible burst (µm2)</td>
<td>111 (± 18)</td>
</tr>
<tr>
<td>Aphid Behaviour</td>
<td></td>
</tr>
<tr>
<td>Number of settles (>5 min)</td>
<td>2.0 (±0.1)</td>
</tr>
<tr>
<td>Total number of settles</td>
<td>3.8 (± 0.4)</td>
</tr>
<tr>
<td>Time settled for imaging (min)b</td>
<td>20 (± 2)</td>
</tr>
<tr>
<td>Time until first settle (min)c</td>
<td>11 (± 1)</td>
</tr>
<tr>
<td>Percentage of total time spent settled (%)</td>
<td>62 (±3)</td>
</tr>
</tbody>
</table>

a Speed of the visible signal from the point of initiation to the furthest point of spread. b Length of settling period used for Ca$^{2+}$ signal analysis. c Length of time between the beginning of imaging and the first aphid settle.
3.2.3 YCNano-65 could not detect an aphid-induced Ca2+ burst

To determine if the FRET sensor YCNano-65 [206] could be used to detect an aphid-induced Ca2+ signal in Arabidopsis, plants expressing this sensor were also analysed under a stereo microscope. Whilst wounding of the plants appeared to generate a FRET ratio change (Figure 3.5, Video 3.5), a detectable FRET ratio change was not produced in response to cold water (Figure 3.6, Video 3.6), contrary to the response seen with GCAMP3 (Figure 3.3, Video 3.3). Furthermore, upon aphid treatment no visible fluorescent bursts could be observed around the 35S::YCNano-65 feeding site (Figure 3.7, Videos 3.7 and 3.8).

![Figure 3.5: YCNano-65 can be used to detect wound-induced Ca2+ signals in whole Arabidopsis plants. FRET ratio in 35S::YCNano-65 plants represented as a heat map across a 7 min period. Top-left leaf wounded with forceps at time 0, with the location of the wound represented by a star.](image-url)
Figure 3.6: 35S::YCNano-65 isolated leaves treated with ice-cold water did not show large changes in FRET ratio.
FRET ratio represented as a heat map across a 5 min period. T = treatment, C= no treatment control. Representative sample shown (n=9).

Figure 3.7: 35S::YCNano-65 isolated leaves treated with M. persicae did not exhibit changes in FRET ratio around the feeding site
FRET ratio represented as a heat map across a 6 min period. C= no aphid control, A = aphid treatment. Aphid location represented by a star. Experiment conceived and designed by T.V and conducted by T.V and Michael Giolai (Earlham Institute, Norwich). Representative sample shown (n=6).
3.2.4 *M. persicae* does not induce systemic Ca$^{2+}$ signals or SAR in Arabidopsis

In order to investigate whether there was a systemic element to the aphid-induced [Ca$^{2+}$]$_{cyt}$ elevation, GFP fluorescence was analysed in systemic regions of the leaf as aphids fed (Figure 2.1, Chapter 2) in the midrib (Figure 3.8a) and in the lateral tissue beside the midrib (Figure 3.8b). No detectable increase in fluorescence was seen in either location.

To explore the role of systemic signalling in plant-aphid interactions further, IR to *M. persicae* was assessed in local and systemic leaves. Pre-treatment of the local leaf with 50 live aphids successfully activated IR against subsequent *M. persicae* attack (Figure 3.9). However, this resistance did not travel systemically (Figure 3.9).
Figure 3.8: Ca$^{2+}$ bursts in response to *M. persicae* cannot be detected systemically.
Normalised GFP fluorescence ($\Delta F/F$) in 35S::GCAMP3 Arabidopsis upon *M. persicae* settling in two systemic locations. A) Midrib tissue. B) Lateral tissue (besides midrib). Error bars represent SEM (n=34).

![Graph showing Ca$^{2+}$ bursts in response to *M. persicae*.]

Figure 3.9: IR against *M. persicae* cannot be detected systemically
Local leaves (n) were pre-treated with 50 adult *M. persicae* individuals to activate IR. After removal of the initial infestation, the fecundity of a single adult feeding from the pre-treated leaves was measured. Pre-treatment with an empty clip cage was used as a control. Error bars represent SEM of 13-20 biological replicates from 5 independent experiments. * indicates significant difference between treatments (Student’s t-test within GLM at p<0.05).
3.2.5 Aphid feeding begins rapidly upon settling and the phloem is not reached for several minutes

The EPG technique was used to compare aphid feeding behaviour to the timing of the Ca2+ burst and aphid settling behaviour. On soil-grown whole plants, the first potential drop (cell puncture) in the pathway phase occurred within 31 s of probing and it took the aphids an average of 24 min to reach the phloem (Figure 3.10a). Furthermore, an adapted version of the EPG technique was developed to assess feeding behaviour on isolated 35S::GCAMP3 leaves floating in water, in a set-up comparable to the microscopy assay. This assay revealed that the timing of the pathway and phloem phases on isolated 35S::GCAMP3 leaves was comparable to soil-grown plants, with the pathway phase lasting for 15-25 min (Figure 3.10b). In both assays, the pathway phase began almost instantly upon settling (Figure 3.10).

3.2.6 Aphid-induced Ca2+ signals could not be detected in the phloem

In order to assess whether a [Ca2+]\textsubscript{cyt} elevation could be detected in the phloem, GCAMP3 was expressed under the companion cell (CC)-specific SUCROSE-PROTON SYMPORTER 2 (SUC2) promoter [620]. In contrast to the 35S::GCAMP3 aphid-induced Ca2+ burst (Figure 3.11a), the phloem-specific sensor could not detect an aphid-induced signal, although there was a gradual increase in fluorescence over time that was aphid-independent (Figure 3.11b, Video 3.9). Systemic signals in the phloem were also not detected (Figures C1 and C2 - Appendix C). To verify whether the SUC2-localised GCAMP3 could produce a visible GFP readout upon stress treatment, wounding of SUC2::GCAMP3 plants was performed with forceps. Both 35S:GCAMP3 and SUC2::GCAMP3 plants exhibited rapid and systemic Ca2+ signals upon such wounding (Figure 3.12, Video 3.10).
Figure 3.10: Representative EPG traces from *M. persicae* feeding on Arabidopsis.

A) Representative EPG trace from an aphid feeding on a whole Col-0 Arabidopsis plant. Average time until the first cell puncture and phloem phase once feeding begun are given below (n=22).

B) Representative EPG traces from aphids feeding on isolated 35S::GCAMP3 leaves (n=6). Feeding phases represented by coloured shading. Experiment conceived and designed by T.V and conducted by P.H. under supervision of T.V.
Figure 3.11: Normalised GFP fluorescence ($\Delta F/F$) around the feeding site in 35S::GCAMP3 and SUC2::GCAMP3 Arabidopsis upon *M. persicae* settling.

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) SUC2::GCAMP3 control (no aphid treatment) vs aphid treatment. Error bars represent SEM (35S::GCAMP3 n=31, SUC2::GCAMP3 n=34). Grey shading indicates significant difference between treatments (Student's t-test within GLM at $p<0.05$). Experiment conceived and designed by T.V and conducted by T.V. and M.A.
Figure 3.12: Wounding to Arabidopsis expressing GCAMP3 results in systemic Ca$^{2+}$ signals. GFP fluorescence represented as a heat map. Plants were wounded at time 0 using forceps, and the location of wound is represented by a star. A) 35S::GCAMP3. B) SUC2::GCAMP3. Representative samples shown (n=6 per genotype). Experiment conceived and designed by T.V and conducted by M.A. under the supervision of T.V.
3.2.7 Aphid-induced Ca^{2+} signals are significantly reduced in the bak1-5 mutant

To investigate whether the aphid-induced $[\text{Ca}^{2+}]_{\text{cyt}}$ elevation was linked to BAK1, GCAMP3 was crossed with the BAK1 null mutant bak1-5. The bak1-5 mutant was selected as it only displays defects in immune signalling, but not in brassinosteroid signalling as seen with other BAK1 mutants [548]. In 35S::GCAMP3 \times bak1-5 plants the aphids did not induce a significant Ca^{2+} burst around the feeding site compared to the no aphid control leaves (Figure 3.13b). As such, the amplitude of the feeding site Ca^{2+} burst was significantly reduced relative to 35S::GCAMP3 (Figure 3.13a, Figure 3.13c, Video 3.11). In samples that displayed visually recordable (R) GFP fluorescence changes around the feeding site, the maximal area of spread and the speed of the wave front were also assessed. The average area (Figure 3.14a) and speed (Figure 3.14b) of the signal were not significantly different between genotypes. Since fewer GCAMP3 \times bak1-5 samples displayed recordable (R) Ca^{2+} bursts (Figure 3.14), it is possible that the feeding site Ca^{2+} burst is a discrete ‘on’ or ‘off’ response, with the greater number of ‘off’ signals in the GCAMP3 \times bak1-5 line accounting for the significantly reduced amplitude of the Ca^{2+} burst (Figure 3.13). To address this, the amplitude of the burst at 7 min post-settling was analysed for each individual sample. This revealed a continuous spread of amplitudes across samples, rather than discrete populations of ‘on’ or ‘off’ responses (Figure 3.15).
35S:GCAMP3 control 35S:GCAMP3 aphid
35S::GCAMP3 x bak1-5 control 35S::GCAMP3 x bak1-5 aphid
35S::GCAMP3 aphid 35S::GCAMP3 x bak1-5 aphid

A)
B)
C)
Figure 3.13: Normalised GFP fluorescence (ΔF/F) around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x bak1-5 Arabidopsis upon M. persicae settling.
A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x bak1-5 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 35S::GCAMP3 x bak1-5 aphid treatment. Error bars represent SEM (35S::GCAMP3 n=30, 35S::GCAMP3 x bak1-5 n=30). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V and conducted by T.V. and M.A.

![Graph A]

R = 21/30
R = 14/30

Area of calcium burst (µm²)

A) 35S::GCAMP3
B) 35S::GCAMP3 x bak1-5

![Graph B]

R = 24/30
R = 9/30

Speed of wave front (µm/s)

A) 35S::GCAMP3
B) 35S::GCAMP3 x bak1-5

Figure 3.14: Properties of the M. persicae-induced Ca²⁺ burst around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x bak1-5 leaves.
Comparing properties of the Ca²⁺ burst in all recordable samples (R), i.e. samples in which a feeding site GFP burst was visible by eye. A) Area of the Ca²⁺ burst. B) Speed of the Ca²⁺ wave front. Letters indicate no significant difference between genotypes (Student’s t-test p<0.05) Error bars represent SEM. Experiment conceived and designed by T.V and conducted by T.V. and M.A.
3.2.8 Phloem feeding is reduced on the bak1-5 mutant

Under the microscope, there was no difference in the settling behaviour of M. persicae, either in terms of the number of settles, time until the first settle or length of settling on the bak1-5 mutant (Figure 3.16). In addition, EPG was conducted on the bak1-5 mutant. Whole plant EPG was used because EPG on leaf disks has been shown to be less sensitive at detecting behavioural changes due to plant-mediated resistance [621]. Pathway behaviours were first analysed across only the first h of recording to identify behavioural characteristics that might be occurring during the time period of the microscopy assay. No differences were found between Col-0 and bak1-5 (Table 3.3). Total pathway behaviours were also assessed across the full 8 h recording, with no significant differences in the bak1-5 mutant found (Figure 3.17, Table 3.3). However, analysis of phloem phase behaviours revealed that the duration of phloem ingestion (E2) is significantly reduced on the bak1-5 mutant (Figure 3.17, Table 3.3 behaviour 33), whilst the minimum time to the reach first phloem phase was longer (Table 3.3 behaviour 36).
Figure 3.16: Settling behaviour of *M. persicae* on 35S::GCAMP3 and 35S::GCAMP3 x bak1-5 leaves.

A) Number of settles greater than 5 min in length. B) Number of settles less than 5 min in length. C) Total number of settles. D) Time before first settle that lasted over 5 min. E) Time aphid spent settled during a settling event used to measure GCAMP3 fluorescence. Error bars represent SEM (35S::GCAMP3 n=34, 35S::GCAMP3 x bak1-5 n=34). Letters indicate no significant difference between genotypes (Student’s t-test *p*<0.05). Experiment conceived and designed by T.V and conducted by T.V. and M.A.
Table 3.3: EPG parameters for M. persicae feeding from Col-O and bak1-5 Arabidopsis.

Probe = feeding event, pd = potential drop (cell puncture), C = pathway phase, E1 = phloem salivation, E2 = phloem ingestion, sE2 = sustained E2 (>10 min), no = number. Duration recorded in s. P-values calculated using a Mann-Whitney U-test (Col-0 n = 24, bak1-5 n = 22). Experiment conceived and designed by T.V and conducted by P.H. under supervision of T.V.

<table>
<thead>
<tr>
<th>Pathway behaviours (1st h)</th>
<th>Col-0</th>
<th>SEM</th>
<th>bak1-5</th>
<th>SEM</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 number of probes</td>
<td>8.5</td>
<td>1.0</td>
<td>9.2</td>
<td>1.1</td>
<td>0.68</td>
</tr>
<tr>
<td>2 average probe</td>
<td>420</td>
<td>160</td>
<td>260</td>
<td>78</td>
<td>0.55</td>
</tr>
<tr>
<td>3 sum of probing</td>
<td>1700</td>
<td>210</td>
<td>1400</td>
<td>200</td>
<td>0.43</td>
</tr>
<tr>
<td>4 duration of 1st probe</td>
<td>260</td>
<td>150</td>
<td>73</td>
<td>30</td>
<td>0.34</td>
</tr>
<tr>
<td>5 number of pd</td>
<td>23</td>
<td>3</td>
<td>21</td>
<td>3</td>
<td>0.73</td>
</tr>
<tr>
<td>6 average duration of pd</td>
<td>5</td>
<td>0.1</td>
<td>5.1</td>
<td>0.1</td>
<td>0.45</td>
</tr>
<tr>
<td>7 sum of pd</td>
<td>110</td>
<td>15</td>
<td>110</td>
<td>15</td>
<td>0.90</td>
</tr>
<tr>
<td>8 time to 1st pd (from start of 1st probe)</td>
<td>38</td>
<td>12</td>
<td>110</td>
<td>59</td>
<td>0.78</td>
</tr>
<tr>
<td>9 time to 1st pd in 1st probe with a pd</td>
<td>12</td>
<td>2</td>
<td>12</td>
<td>3</td>
<td>0.42</td>
</tr>
<tr>
<td>10 no. pd per min C</td>
<td>1.1</td>
<td>0.1</td>
<td>1.2</td>
<td>0.1</td>
<td>0.32</td>
</tr>
<tr>
<td>11 no. pd in 1st probe</td>
<td>2.1</td>
<td>0.7</td>
<td>2.8</td>
<td>1.3</td>
<td>0.84</td>
</tr>
<tr>
<td>12 duration of the first pd</td>
<td>6.2</td>
<td>0.4</td>
<td>6.0</td>
<td>0.4</td>
<td>0.94</td>
</tr>
<tr>
<td>13 mean duration of the first 5 pd</td>
<td>5.4</td>
<td>0.1</td>
<td>5.5</td>
<td>0.2</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Pathway behaviours (8 h)

<table>
<thead>
<tr>
<th>Col-0</th>
<th>SEM</th>
<th>bak1-5</th>
<th>SEM</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 number of probes</td>
<td>29</td>
<td>4</td>
<td>31</td>
<td>4</td>
</tr>
<tr>
<td>15 average probe</td>
<td>1300</td>
<td>300</td>
<td>750</td>
<td>150</td>
</tr>
<tr>
<td>16 sum of probing</td>
<td>17000</td>
<td>1500</td>
<td>15000</td>
<td>1600</td>
</tr>
<tr>
<td>17 duration of 1st probe</td>
<td>800</td>
<td>680</td>
<td>73</td>
<td>29</td>
</tr>
<tr>
<td>18 number of pd</td>
<td>130</td>
<td>17</td>
<td>140</td>
<td>13</td>
</tr>
<tr>
<td>19 average duration of pd</td>
<td>4.9</td>
<td>0.1</td>
<td>4.8</td>
<td>0.0</td>
</tr>
<tr>
<td>20 sum of pd</td>
<td>640</td>
<td>83</td>
<td>680</td>
<td>64</td>
</tr>
<tr>
<td>21 time to 1st pd (from start of 1st probe)</td>
<td>31</td>
<td>11</td>
<td>110</td>
<td>59</td>
</tr>
<tr>
<td>22 time to 1st pd in 1st probe with a pd</td>
<td>12</td>
<td>1.8</td>
<td>12</td>
<td>3.3</td>
</tr>
<tr>
<td>23 no. pd per min C</td>
<td>0.9</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>24 no. pd in 1st probe</td>
<td>2.9</td>
<td>1.4</td>
<td>3.2</td>
<td>1.7</td>
</tr>
<tr>
<td>25 duration of the first pd</td>
<td>6.3</td>
<td>0.5</td>
<td>6.0</td>
<td>0.4</td>
</tr>
<tr>
<td>26 mean duration of the first 5 pd</td>
<td>5.4</td>
<td>0.1</td>
<td>5.4</td>
<td>0.2</td>
</tr>
<tr>
<td>27 time to 1st probe</td>
<td>300</td>
<td>120</td>
<td>650</td>
<td>190</td>
</tr>
</tbody>
</table>

Phloem behaviours (8 h)

<table>
<thead>
<tr>
<th>Col-0</th>
<th>SEM</th>
<th>bak1-5</th>
<th>SEM</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 number of single E1 (without E2) periods</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>29 sum of E1 (sgE1 and E1)</td>
<td>110</td>
<td>22</td>
<td>190</td>
<td>50</td>
</tr>
<tr>
<td>30 sum of E2</td>
<td>5600</td>
<td>1700</td>
<td>4200</td>
<td>1500</td>
</tr>
<tr>
<td>Phloem behaviours (8 h) (cont.)</td>
<td>Col-0</td>
<td>bak1-5</td>
<td>p-value</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>31 maximum E2 period</td>
<td>Mean</td>
<td>SEM</td>
<td>Mean</td>
<td>SEM</td>
</tr>
<tr>
<td></td>
<td>6400</td>
<td>2000</td>
<td>3500</td>
<td>1300</td>
</tr>
<tr>
<td>32 number of sustained E2 (> 10 min)</td>
<td>0.8</td>
<td>0.2</td>
<td>1.1</td>
<td>0.3</td>
</tr>
<tr>
<td>33 mean duration of sE2</td>
<td>8200</td>
<td>2600</td>
<td>3400</td>
<td>1500</td>
</tr>
<tr>
<td>34 sum of duration of sE2</td>
<td>5100</td>
<td>1600</td>
<td>3800</td>
<td>1500</td>
</tr>
<tr>
<td>35 average time to 1st E within probes</td>
<td>1400</td>
<td>190</td>
<td>1300</td>
<td>58</td>
</tr>
<tr>
<td>36 minimum time to 1st E within probes</td>
<td>920</td>
<td>200</td>
<td>1100</td>
<td>82</td>
</tr>
<tr>
<td>37 number of probes before the 1st E</td>
<td>12</td>
<td>2.8</td>
<td>17</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Figure 3.17: Average length of pathway and phloem ingestion (E2 phase) behaviours of *M. persicae* feeding on Col-0 and bak1-5.

Experiment run over 8 h. Error bars represent SEM (Col-0 n= 24, bak1-5 n= 22). * indicates a significant difference between treatments (Mann-Whitney U-test p<0.05). Experiment conceived and designed by T.V and conducted by P.H. under supervision of T.V.
3.2.9 Reduced expression of \textit{Mp10} alters the aphid-induced \(\text{Ca}^{2+} \) signal

In order to assess whether \textit{M. persicae} attempts to suppress the Arabidopsis \(\text{Ca}^{2+} \) burst \textit{in vivo}, aphids were reared on plants expressing RNAi targeted against the effector \textit{Mp10} (dsMp10) or \textit{GFP} as a control (dsGFP). Aphids reared on dsMp10 plants had a 80\% reduction in \textit{Mp10} expression (Figure 3.18). Feeding by both dsGFP (Figure 3.19a) and dsMp10 (Figure 3.19b) aphids resulted in \(\text{Ca}^{2+} \) bursts around the feeding site. When compared directly, the dsMp10 elicited a slightly higher amplitude \(\text{Ca}^{2+} \) burst (Figure 3.19c, Video 3.12). No differences in the \(\text{Ca}^{2+} \) signal area or speed were detected between dsGFP and dsMp10 aphids (Figure 3.20). Aphid settling behaviour was also not significantly altered between the two genotypes (Figure C7, Appendix C).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure3.18.png}
\caption{Relative expression of \textit{Mp10} in dsGFP and dsMp10 \textit{M. persicae}.}
\end{figure}

Error bars represent SEM (n=18). * indicates a significant difference between genotypes (Student’s t-test \(p<0.05 \)). Experiment conceived and designed by T.V and conducted by M.A. under supervision of T.V.
Figure 3.19: Normalised GFP fluorescence (ΔF/F) around the feeding site in 35S::GCAMP3 Arabidopsis upon M. persicae settling.
A) No aphid control vs dsGFP aphid treatment. B) No aphid control vs dsMp10 aphid treatment. C) dsGFP aphid treatment vs dsMp10 aphid treatment. Error bars represent SEM (dsGFP n=34, dsMpP10 n=34). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V and conducted by T.V. and M.A.

Figure 3.20: Properties of the M. persicae-induced Ca²⁺ burst around the feeding site in 35S::GCAMP3 plants treated with dsGFP and dsMp10 aphids.
Comparing properties of the Ca²⁺ burst in all recordable samples (R), i.e. samples in which a feeding site GFP burst was visible by eye. A) Area of the Ca²⁺ burst. B) Speed of the Ca²⁺ wave front. Error bars represent SEM. Letters indicate no significant difference between genotypes (Student’s t-test p<0.05). Experiment conceived and designed by T.V and conducted by T.V. and M.A.
3.3 Discussion

3.3.1 GCAMP3 allows whole-tissue imaging of Ca²⁺ dynamics during aphid attack

Under the stereo microscope 35S::GCAMP3 emitted a strong GFP signal that allowed whole-tissue imaging of plant [Ca²⁺]cyt (Videos B1 and B2). This strong signal, combined with the use of a single fluorophore, allowed measurements to be taken once every 5 s. As such, it was possible to image in vivo with exceptional temporal resolution. When aphids were added to the 35S:GCAMP3 plants, small bursts of fluorescence were observed around the site of settling (Figure 3.2, Video 3.1), specifically around the head of the aphid (Video 3.2) and were attributed to aphid feeding.

The [Ca²⁺]cyt was highly dynamic in systemic regions, with a general increase in fluorescence being seen over time in all tissues (Figure 3.2b). However, a clear aphid-induced signal was not easy to distinguish. It is possible that the [Ca²⁺]cyt changes in systemic regions were a result of plant stress caused by the microscopy assay. Indeed, blue light is known to induce Ca²⁺ signals [10, 11, 14, 622]. In addition, the high intensity light might have also resulted in temperature and osmotic stresses, both of which also induce Ca²⁺ signalling [6, 7, 177]. Furthermore, the difference in fluorescence between tissues could have been a result of variable expression of the GCAMP3 sensor.

Furthermore, M. persicae did not settle regularly on the 35S::GCAMP3 plants. Again this may have been due to the intense blue light used to excite the sensor. Vision in M. persicae is governed by three photoreceptors, including one with a peak sensitivity of 490 nm [623], within the range of the GFP excitation light (450-490 nm). When the aphids did settle, this was on the abaxial surface of the leaf (Video 3.1), a common preference seen for aphids [258, 624, 625]. Thus, the aphids were hidden from the view of the microscopy lens, making the position and timing of settling events difficult to determine.
3.3.2 Aphids induce a rapid and highly localised burst around the feeding site

In order to combat the aphid settling issues experienced on the whole plants, a single-leaf assay was developed. This involved the excision of 35S::GCAMP3 leaves the day prior to microscopy to allow wound-induced Ca\(^{2+}\) signals to dissipate. Single leaves or leaf disks have been successfully used previously for the study of both ROS [349] and Ca\(^{2+}\) [122, 538] signals. The leaves were floated in water to reduce osmotic stress and to prevent the escape of the aphids. To validate this assay, cold water treatments were used to elicit large cold-induced [Ca\(^{2+}\)]\(_{cyt}\) rises (Figure 3.3, Video 3.3). These rises were biphasic and extremely rapid, making them comparable to established literature [6, 50, 626]. Thus, the single-leaf assay was capable of reporting Ca\(^{2+}\) elevations in response to stress.

In response to aphids, a rapid Ca\(^{2+}\) burst was seen around the feeding site that was not observed in un-infested control leaves (Figure 3.4a, Video 3.4). This burst was extremely rapid, occurring within 95 s and remaining significantly above the control for 6 min (Figure 3.4b). The decrease in signal after 6 min was unlikely to be the result of fluorophore bleaching as signals were still seen in other locations on the leaf after this time point.

The Phytophthora sojae PAMP Pep13 induces a change in [Ca\(^{2+}\)]\(_{cyt}\) within 40 s in Petroselinum crispum (parsley) cell cultures [371], whilst 1 µM flg22 and elf18 can both induce rapid [Ca\(^{2+}\)]\(_{cyt}\) elevations that peak within 2-3 min in Arabidopsis leaves [122], and 100 nM flg22 can induce [Ca\(^{2+}\)]\(_{cyt}\) oscillations in epidermal and stomatal guard cells within 5 min [219]. Furthermore, the fungal PAMP cryptogein induces [Ca\(^{2+}\)]\(_{cyt}\) elevations in Nicotiana plumbaginifolia cells that peak at 5 min post-treatment [372], whilst chitin induces Ca\(^{2+}\) bursts in Arabidopsis roots within 2 min of application [219]. Consequently, the M. persicae-elicited Ca\(^{2+}\) burst represents one of the most rapidly induced PAMP-triggered [Ca\(^{2+}\)]\(_{cyt}\) elevations documented so far.

Unlike cold shock, the aphid feeding site burst was not biphasic and no further bursts were detected within 30 min of the aphid settling (Figure 3.4c). Biphasic signatures are common in response to PAMPs [371, 372] with the second sustained burst linked to successful defence induction in PTI [371] and ETI [509]. It is therefore possible that the single Ca\(^{2+}\) bursts observed in response to M. persicae may not fully activate defence (further discussion in Chapter 4).
Other parameters of the Ca$^{2+}$ burst were also measured. The burst was highly localised and restricted to an area of 111 µm2 (Table 3.2). This is significantly different to the large, systemic Ca$^{2+}$ signals observed in response to chewing insects [123]. In addition, the Ca$^{2+}$ wave front travelled radially from a central point of initiation (Video 3.4) at around 6 µm/s (Table 3.2). This speed is significantly slower than the systemically-propagating Ca$^{2+}$ signals seen in the roots during salt stress, or the electrical signals within leaves during wounding, both of which travel at around 400 µm/s [7, 103]. The comparatively restricted area and slow speed of the aphid-induced burst might be linked the low quantity of tissue damage caused during phloem feeding [296], as well as active suppression by the aphid through effectors. Indeed, caterpillar OS are capable of suppressing systemic Ca$^{2+}$ wound signals [123].

Furthermore, aphid settling behaviour on 35S::GCAMP3 leaves was recorded (Table 3.2). On average the aphids spent around 10 min exploring the leaf before a successful settling event (> 5 min) was established. The aphids spent around 60% of the experiment settled, and the aphids used for [Ca$^{2+}$]$_{cyt}$ measurements settled for an average length of 20 min. As such, the aphids were not deterred from settling on the isolated leaves and Ca$^{2+}$ bursts occurred whilst the aphids were settled in their original location.

3.3.3 YCNano-65 could not be used to detect aphid-induced Ca$^{2+}$ signals

The possibility of using a FRET cameleon to record aphid-induced Ca$^{2+}$ signals was also explored. Wounding with forceps of 35S::YCNano-65 plants resulted in changes in the FRET ratio (Figure 3.5, Video 3.5), indicative of Ca$^{2+}$ release. However, this fluorescence change was smaller than that observed with GCAMP3 upon wounding (Figure 3.12 Video 3.10). Cold water application did not result in large FRET changes in 35S::YCNano-65 leaves (Figure 3.6, Video 3.6), unlike the large fluorescence changes seen with 35S::GCAMP3 (Figure 3.3, Video 3.3). Upon aphid application, the feeding site burst was not visible with 35S::YCNano-65 in any of the leaves tested (Figure 3.7, Video 3.7 and Video 3.8). Also notable was the lack of background [Ca$^{2+}$]$_{cyt}$ dynamics visible with 35S::YCNano-65, indicating that these small background events were not detectable by YCNano-65 (Video 3.7 and Video 3.8). Furthermore, due to the low fluorescent yield of 35S::YCNano-65 under the microscope, the exposure had to be increased 8-fold relative to the GCAMP3
experiments. Thus in summary, under the stereo microscope 35S::YCNano-65 did not produce large fluorescence changes detectable at the tissue level and could not achieve the same \([\text{Ca}^{2+}]_{\text{cyt}}\) temporal resolution as GCAMP3.

GCAMP3 and YCNano-65 have similar dynamic ranges (Table 3.1) [195, 206, 213, 217] and YCNano-65 has been used successfully in plants to measure \(\text{Ca}^{2+}\) signals previously [7]. However, in the current study GCAMP3 clearly exhibited a greater fluorescent yield under the microscope. A probable reason for this was a technical limitation with the stereo microscope system used. The microscope excited and recorded CFP and YFP emission separately and therefore YFP was being excited by the microscope light source rather than by FRET from CFP. This meant that the YFP emission stayed constant and was independent of \([\text{Ca}^{2+}]_{\text{cyt}}\). As a result, only changes in CFP emission, which decreases upon \(\text{Ca}^{2+}\) binding due to FRET, could be used to measure \([\text{Ca}^{2+}]_{\text{cyt}}\). The fluorescent yield of CFP is half that of GFP [628], and decreases in this due to FRET are significantly harder to detect than the 12-fold increases in GFP fluorescence possible with GCAMP3 (Table 3.1) [195, 216]. This explains why in the present study YCNano-65 fluorescent yield was inferior to GCAMP3, reducing the resolution of the imaging and subsequently the measurement of aphid-induced \(\text{Ca}^{2+}\) signals.

3.3.4 No evidence for systemic signalling or defence against *M. persicae* could be identified

MeSA is a key signal in SAR to pathogens [529]. *M. persicae* induces SA-related genes [308] and SA accumulates in both local and systemic leaves within a few days post-treatment with numbers of *M. persicae* comparable to those used in the present study [609]. In addition, aphids prefer to settle on systemic leaves from plants naïve to aphids, as opposed to systemic leaves from plant pre-infested with aphids [610]. As such, it is reasonable to suggest that *M. persicae* may induce systemic defence. However, \(\text{Ca}^{2+}\) bursts were not observed distally from the feeding site, either in the midrib or lateral tissue (Figure 3.8). Xiong et al. [538] could still detect systemic \(\text{Ca}^{2+}\) signals within the vasculature of detached leaves in response to salt stress, and this suggests that systemic signals can be detected in single leaf assays if present. Therefore, *M. persicae* does not appear to elicit systemic \(\text{Ca}^{2+}\) signalling, unlike salt stress [538], lepidopteran feeding [123] and the wounding tests performed in this study (Figure 3.12, Video 3.10).
Furthermore, pre-treatment of leaves with a large number of aphids (50 adults) resulted in IR in the treated leaf, with the performance of subsequent infestations of aphids significantly reduced (Figure 3.9). De Vos et al. [464] previously found no systemic component to IR against M. persicae. In order to corroborate this result, in the present study the systemic leaf was strictly defined based on the plant vascular system. This was because systemic electrical [103] and Ca$^{2+}$ (Simon Gilroy, University of Wisconsin, personal communication) signals travel preferentially to leaves with direct vascular connections. However, even in these leaves systemic IR did not occur (Figure 3.9). This agrees with observations that glucosinolate production in response to M. persicae is also observed around feeding sites, and not systemically [469]. Therefore, it appears that systemic Ca$^{2+}$ signalling and induction of systemic defence does not occur in response to M. persicae.

The lack of a systemic Ca$^{2+}$ signal and SAR might be due to the low amount of tissue damage caused by aphid feeding relative to other stresses such as chewing insects and wounding. However, SAR has been extensively documented in response to pathogens that cause less damage than M. persicae [534, 605, 629]. It is also possible that systemic signals are being actively suppressed by aphid effectors. Indeed, aphid saliva is capable of moving systemically between cells [630]. If this is occurring, it might not involve Mp10 as knocking-down transcription of Mp10 does not restore systemic Ca$^{2+}$ signals (Figures C5 and C6 - Appendix C). Furthermore, SAR is primarily activated during ETI rather than during PTI, through the recognition of pathogen effectors [631-633]. The compatibility between M. persicae and Arabidopsis implies that successful ETI is not established in this interaction, and this may account for the lack of systemic signalling and SAR.

3.3.5 The aphid-induced Ca$^{2+}$ burst most likely occurs during pathway phase and cannot be detected in the phloem

EPG revealed that on soil-grown Col-0 Arabidopsis M. persicae punctures the first plant cell within 31 s of feeding (Figure 3.10a). Since the Ca$^{2+}$ burst was detectable from 95 s post-settling (Figure 3.14b), there is only 64 s between the first cell puncture and a signal detectable by GCAMP3. In addition, M. persicae does not enter phloem phase feeding until 24 min post-settling (Figure 3.10a). This is shorter than observed for the M. persicae-Arabidopsis interaction in other EPG studies (68 min [634], 86 min [627], 150 min [635]), although comparisons between separate
studies are difficult due to the high variability of EPG-recorded behaviours in different experimental conditions.

A similar feeding pattern was seen with isolated 35S::GCAMP3 leaves, with the earliest phloem phase occurring 13 min post-settling, and several traces showing no phloem feeding within the first hour (Figure 3.10b). Feeding began almost instantly upon settling (Figure 3.10b), demonstrating that settling is a suitable proxy for aphid feeding. These data, combined with the whole-plant EPG, suggest that the Ca$^{2+}$ burst observed in response to aphids occurs during the pathway phase.

To investigate this further, GCAMP3 was localised to the phloem, specifically to the CCs, using the SUC2 promoter. No feeding site Ca$^{2+}$ burst was seen in response to M. persicae with this reporter (Figure 3.11b, Video 3.9). In order to verify that SUC2::GCAMP3 was capable of producing a fluorescent output under the current experimental conditions, wounding treatments were used as a control. Clear wound-induced systemic Ca$^{2+}$ signals could be seen travelling through the phloem in both 35S::GCAMP3 and SUC2::GCAMP3 plants (Figure 3.12, Video 3.10), suggesting that SUC2::GCAMP3 was capable of reporting changes in phloem $[\text{Ca}^{2+}]_{\text{cyt}}$. However, the SUC2::GCAMP3 sensor suffered from drift over time independently of aphid treatment (Figure 3.11b). The increase CC $[\text{Ca}^{2+}]_{\text{cyt}}$ over time may have been related to abiotic stress caused by the microscopy, as both temperature and salt can induce systemic Ca$^{2+}$ signals [538, 636].

Together, the timing of the burst relative to aphid feeding behaviour and the lack of a detectable Ca$^{2+}$ burst in the phloem suggest that the feeding site $[\text{Ca}^{2+}]_{\text{cyt}}$ elevation occurs during the pathway phase. Therefore, the signal is generated in epidermal and mesophyll cells probed by the aphid as it feeds [266, 267]. M. persicae has been shown to induce voltage changes in mesophyll cells upon feeding [365], and such electrical signals may be related to Ca$^{2+}$. Consistent with this, pathway probing still occurs with incompatible aphids [281, 282], indicating that factors present in these cells mediate aphid acceptance of plants and thus plant defence. The relevance of epidermal and mesophyll cells during ETI to aphids is also being uncovered, with R-gene transcripts having been discovered in these cells [637].

It is also possible that phloem-based Ca$^{2+}$ signalling may be suppressed by the aphids, as suggested by the occlusion literature [273, 296, 599, 601] (Section 3.1.4). In order to test this further it would be interesting to compare if incompatible aphids, or compatible aphids deficient in effector molecules, can elicit phloem-based $[\text{Ca}^{2+}]_{\text{cyt}}$ elevations. Indeed, the lack of phloem-based Ca$^{2+}$ signal, together
with other data, supports the hypothesis that *M. persicae* does not induce systemic signalling or defence (section 3.3.4). It is worthy of note that the *SUC2* promoter localises GCAMP3 specifically to the CCs, whilst long term feeding by aphids occurs from the SEs [261], and this may partly account for the lack of a response. However, as there are high clusters of Ca\(^{2+}\) channels at the SE/CC interface [595], as well as a large amount of macromolecule trafficking between the two [607], it is likely that CC and SE Ca\(^{2+}\) dynamics are highly interconnected. For further investigation of SE [Ca\(^{2+}\)]\(_{cyt}\) dynamics, localisation of GCAMP3 specifically to these cells might be archived by expressing the sensor under a SE-specific promoter such as *SUC3* [638].

3.3.6 BAK1 mediates the pathway phase Ca\(^{2+}\) burst as well as feeding from the phloem

Wounding is sufficient to induce Ca\(^{2+}\) signalling [123, 369, 400, 401, 424] (Figure 3.5 and Figure 3.12) and as such it is possible that tissue damage from stylet probes causes the Ca\(^{2+}\) burst independently of PTI or ETI. However, the Ca\(^{2+}\) burst is not detectable in the *bak1*-5 mutant (Figure 3.13, Video 3.11), suggesting that the burst is generated as a part of BAK1-mediated PTI. Ca\(^{2+}\) acts upstream of ROS production mediated by RBOHD [119, 121, 639], and therefore the loss of Ca\(^{2+}\) in response to aphids in *bak1*-5 may explain why aphid-induced ROS is also decreased in this mutant [349]. Furthermore, IR to aphids is lost in *bak1*-5 mutants [349], suggesting Ca\(^{2+}\) may also act upstream of IR.

Interestingly, some *bak1*-5 mutant samples did show a visible Ca\(^{2+}\) burst around the feeding site, allowing measurement of the area and speed of this signal to be calculated. Neither area nor speed were significantly altered by BAK1 expression (Figure 3.14). However, only samples that could be recorded by eye (‘recordable’ samples - R) were used for these analyses, of which there were fewer in 35S::GCAMP x *bak1*-5 compared to 35S::GCAMP3 (Figure 3.14). Consequently, it could be argued the Ca\(^{2+}\) response may be binary, divided between samples that showed a response and those that did not, and thus the 35S::GCAMP3 x *bak1*-5 phenotype (Figure 3.13) is the result of a greater number of non-responding samples in this genotype. However, as the Ca\(^{2+}\) burst displayed a continuous range of amplitudes across samples (Figure 3.15), the binary response hypothesis does not hold true. These results also indicate that there may be some level of aphid-induced Ca\(^{2+}\) release that is independent of BAK1. In the case of *M. persicae*, a BAK1-independent pathway was
recently discovered that is mediated by ARABIDOPSIS G-PROTEIN BETa SUBUNIT (AGB1) that has a role in aphid-induced ROS and camalexin production [502], and has yet to be teased for a role in Ca2+ signalling.

Pathway phase feeding behaviour was not altered in the \textit{bak1-5} mutants (Figure 3.17, Table 3.3), implying that BAK1-mediated PTI has no or little effect on \textit{M. persicae} during the initial feeding phase. This is contrary to \textit{Mi-} and \textit{Vat-mediated ETI, in S. lycopersicum} and \textit{C. melo} respectively, both of which have an effect on pathway behaviours [281, 302, 640]. The lack of an effect on pathway behaviours during BAK1-mediated PTI might be a result of the latency between aphid perception and plant defence induction, which can be several hs [283, 349, 350, 442]. One might therefore expect it more likely that altered defence would affect phloem feeding, which, like plant defence, might not be initiated until hs after the first feeding event [627, 634, 635] (Figure 3.10). These data also suggest that the difference in the pathway phase Ca2+ burst is due to plant physiology and not altered aphid feeding behaviour.

Surprisingly, phloem ingestion (E2) was significantly reduced in the \textit{bak1-5} mutant. (Figure 3.17, Table 3.3 behaviour 33). Aphid fecundity is not altered in this mutant, despite \textit{BAK1}'s role in aphid recognition and defence [349]. Thus, BAK1-mediated immunity is most likely suppressed by \textit{M. persicae}. Moreover, reducing expression of the aphid effector \textit{Mp10} significantly reduces aphid fecundity, most likely due to inadequacy at suppressing plant defence responses [277, 502]. However, fecundity is not compromised if these \textit{Mp10} aphids are feeding on the \textit{bak1-5} mutant [29], implying \textit{Mp10-mediated suppression of defence is BAK1-dependent}. Consequently, one explanation for the resulted collected in the present study is that the BAK1 pathway acts as an entry point for aphid effectors into the plant defence network. This network is composed of several interconnected pathways (Section 1.3, Chapter 1) and in the \textit{bak1-5} mutant these other pathways are still active, but BAK1-mediated suppression of the network is not. Alternatively, the aphid may perceive the defence status of the plant, and alterations to this may perturb normal feeding behaviour. Aphids are sensitive to several chemical cues in the environment and in the plant [255, 256, 259]. These cues can have effects on behaviour [282, 298, 627, 641-643]. Therefore, removal of the BAK1 pathway may significantly alter such cues [349, 350, 362], and as result alter feeding behaviour.
3.3.7 The aphid effector Mp10 modulates the plant Ca2+ burst

RNAi is a commonly-used method to decrease expression of genes in insects [644], including aphids [500, 549, 560, 645]. This technique was utilised in the present study to investigate the role of the *M. persicae* effector Mp10 on the plant Ca2+ burst. Rearing of *M. persicae* on Arabidopsis expressing dsRNA can result in around a 50% reduction in expression of aphid genes [549], including *Mp10* [502]. Furthermore, this reduced expression can persist for up to 4 days [560]. Indeed, rearing aphids for Ca2+ imaging on dsMp10 plants reduced the average level of *Mp10* expression by 80% (Figure 3.18).

Feeding by dsMp10 aphids induced slightly larger amplitude Ca2+ burst than the control group (dsGFP) (Figure 3.19, Video 3.12). Therefore, reduced *Mp10* expression results in a larger [Ca2+]\textsubscript{cyt} elevation, suggesting that *Mp10* suppresses the aphid-induced Ca2+ burst in the epidermal and mesophyll cells. In accord with this interpretation, aphid watery saliva containing effector molecules [272-274, 276-278, 500] is injected into plant tissues almost immediately upon aphid feeding during the pathway phase [268, 619]. Indeed, *Mp10* was recently demonstrated to be delivered preferentially into the cytosol of mesophyll cells and was not detectable in the vasculature [279]. Furthermore, *Mp10* has been shown to inhibit the flg22-mediated Ca2+ burst [502], clearly demonstrating that *Mp10* does have Ca2+-suppressive functions.

However, the change in [Ca2+]\textsubscript{cyt} caused by reduced *Mp10* expression is relatively subtle. This could be because the remaining *Mp10* in the dsMp10 aphids was sufficient to suppress Ca2+. Alternatively, it suggests that *Mp10* has only marginal effects on Ca2+ in vivo. Indeed, multiple effectors often act redundantly [646, 647] and thus other putative *M. persicae* effectors, such as MpC002 [277], *Mp1* [501], *Mp2* [501] and *Mp55* [503], might play a role. Although not yet tested, these effectors could have Ca2+-suppressive qualities, with strong suppression of Ca2+ bursts in Arabidopsis requiring a combination of them delivered together in the saliva. Nevertheless, *Mp10* acts in the BAK1 pathway to suppress PTI (see section 3.3.6), and therefore it appears that *Mp10, BAK1* and [Ca2+]\textsubscript{cyt} elevations are all connected as part of the same PTI pathway that is activated during aphid probing of the epidermal and mesophyll cells.
This page is intentionally left blank
Chapter 4: Aphid-induced Ca$^{2+}$ bursts are mediated by $TPC1$, $GLR3.3$ and $GLR3.6$
4.1 Introduction

4.1.1 The vacuole is a major store of intracellular Ca2+

The vacuole is by far the largest store of Ca2+ inside mature plant cells, occupying up to 90% of the total cell volume [648] and containing mM concentrations of Ca2+ [649-651]. This organelle is therefore a candidate source of intracellular Ca2+-release during stress, including in response to aphids. Localisation of AEQ to the tonoplast indicates that cold and hyperosmotic stress can induce [Ca2+]_cyt elevations around this membrane [652, 653] and that the second phase of the biphasic Ca2+ response to hypo-osmotic stress is linked to internal stores of Ca2+ [654]. In addition, Ca2+ release in response to flg22 is suggested to be mediated by intracellular stores, as inhibition of the InsP\textsubscript{3} pathway attenuates this response [378]. In addition, there is evidence that the [Ca2+]_cyt elevation in response to elf18 and chitin can be perturbed by pharmacological inhibitors of intracellular Ca2+ release [201]. Signalling may also be occurring within the vacuole, for example the vacuolar-localised CaM15 regulates the tonoplast antiporter NA+/H+ EXCHANGER 1 (NHX1) [655].

However, conclusive evidence for the role of vacuolar Ca2+ in signalling can only be obtained once the molecular identities of the tonoplast Ca2+-permeable channels are uncovered. Although there is evidence of voltage- and ligand-gated vacuolar channels that may be permeable to Ca2+, TPC1 is the only characterised Arabidopsis vacuolar Ca2+-permeable channel to date [15, 648] (Section 1.1.4, Chapter 1).

4.1.2 TPC1 is regulated by a combination of Ca2+, ROS, kinases and electrical signals

TPC1 is a tonoplast-localised [15, 112, 122] Ca2+-permeable [15, 108-111] channel whose activity is regulated by voltage [112, 114, 115, 542] and Ca2+ [112, 114, 115]. In Arabidopsis TPC1 is a dimer, with each subunit housing 6 transmembrane domains and two pore domains responsible for ion conductance [114, 115] (Figure 1.2, Chapter 1). However, ion conductance is not restricted to Ca2+; TPC1 is also permeable to Na+ and K+ [112, 113]. This lack of specificity has led to scepticism over the role of TPC1 in Ca2+ signalling [117, 656, 657] and it has been
suggested that TPC1 does not significantly affect \([\text{Ca}^{2+}]_{\text{cyt}}\) [122, 658]. However, fluorescent \(\text{Ca}^{2+}\) sensors can clearly visualise a TPC1-dependent \([\text{Ca}^{2+}]_{\text{cyt}}\) elevation in Arabidopsis [7, 123]. Furthermore, TPC1 contains two \(\text{Ca}^{2+}\)-binding EF-hand domains, one of which is highly selective for \(\text{Ca}^{2+}\) [112, 116] and binding of \(\text{Ca}^{2+}\) to this domain is required for full channel activation [114, 115]. Thus, TPC1 is linked to \(\text{Ca}^{2+}\) signalling irrespective of the channel’s ion selectivity.

The \(\text{Ca}^{2+}\)-dependent activation of TPC1 means this channel, along with RBOHD and an unknown PM \(\text{Ca}^{2+}\)-permeable channel play a role in CICR (Figure 1.11, Chapter 1) [119, 121, 536, 537]. This model has been validated in vivo, with the demonstration of a TPC1- and RBOHD-dependent systemic \(\text{Ca}^{2+}\) signal in Arabidopsis roots [7, 121, 123]. Moreover, extracellular ROS production is compromised in the TPC1 knock-out mutant tpc1-2 [121].

TPC1 has two voltage-sensing domains (VSDs), although voltage-activation of the channel is mediated by VSD2 alone [114, 115]. This raises the possibility of electrical-regulation of TPC1. As with CICR, a positive feedback mechanism might be involved, as TPC1 ion release might alter the electrical potential of the cell [107, 122]. In addition, there are two phosphorylation sites close the EF-hand domains of TPC1, indicating there might be additional regulation by kinases [109, 115]. TPC1 also appears to mediate MAPK activity in Oryza sativa (rice) [659]. Thus, TPC1 has the capacity to regulate and be regulated by \(\text{Ca}^{2+}\), ROS, electrical signals and kinase activity and the channel may represent a crosstalk node between these signalling pathways.

4.1.3 TPC1 mediates \(\text{Ca}^{2+}\) signalling during biotic and abiotic stress

The physiological role of TPC1 has been the subject of much debate. The Arabidopsis tpc1-2 mutant is defective in \(\text{Ca}^{2+}\)-induced stomatal closure [15, 660] and ABA-induced inhibition of germination [15], although this ABA phenotype has been questioned [122]. Also in Arabidopsis, the endomembrane channel (and TPC1 [661]) inhibitor ruthenium red can significantly reduce the \([\text{Ca}^{2+}]_{\text{cyt}}\) increase in response to oxidative stress [662] touch [663] and cold shock [664]. However, the exact target and mechanism of this inhibitor is not known.

Ranf et al. [122] tested a range of possible elicitors on the tpc1-2 mutant, and found no involvement for the channel in ABA or \(\text{CO}_{2}\)-mediated stomatal closure, or in
[Ca2+]_{\text{cyt}} elevations in response to cold shock, NaCl, H\textsubscript{2}O\textsubscript{2}, CaCl\textsubscript{2}, flg22, elf18. Furthermore, expression of the SA defence marker PR1 was not altered in TPC1 mutants, nor was flg22- or elf18- ROS production. In addition, Bonaventure et al., [552] could find no role for TPC1 in defence against B. cinerea. However, these studies investigated local application of stress. Research focused on systemic signalling has begun to elucidate a biological role for TPC1.

Application of 100 mM NaCl results in a Ca2+ signal that propagates along the Arabidopsis root at 400 µm/s [7]. This signal is attenuated in the tpc1-2 mutant, where the speed is reduced to 16 µm/s [7]. Induction of various salt stress-related genes was also lost in the mutant, and overexpression of TPC1 resulted in more salt-tolerant plants [7]. Moreover, wounding can induce leaf-to-leaf Ca2+ signals that can be visualised by AEQ, and these are also lost in the tpc1-2 mutant [123]. Supporting a primarily systemic role for TPC1, these signals were comparable to wildtype within the local (wounded) leaf. Interestingly, TPC1 protein levels are significantly increased upon wounding [416] whilst the mRNA levels are not [416, 550], implying that post-translational mechanisms may be regulating TPC1 in response to stress.

TPC1 is ubiquitous across plant species [665], including Physcomitrella patens (moss) [666], N. tabacum [582], O. sativa [667] and wheat [667, 668]. Consequently, TPC1-mediated Ca2+ signalling is potentially relevant to many different systems. In N. tabacum, two TPC1 homologues have been identified, TPC1A and TPC1B, and these appear to mediate local Ca2+ release in response to the fungal elicitor cryptogein [582], SA [669] and H\textsubscript{2}O\textsubscript{2} [670], as well as in response to sucrose [582] and hypo-osmotic shock [670]. In O. sativa, TPC1 mediates Ca2+ influx in response to fungal xylanases [671].

4.1.4 Over-activation of TPC1 enhances jasmonic acid production

In addition to being regulated by [Ca2+]_{\text{cyt}}, TPC1 is also regulated by [Ca2+]_{\text{vac}}, which in contrast to [Ca2+]_{\text{cyt}} inhibits channel activation [114, 656]. This [Ca2+]_{\text{vac}} sensitivity is conferred by four negatively-charged residues on the luminal side of the protein [672], but can be abolished by a single substitution (aspartic acid to asparagine - D454N) between the IIS1-IIS2 loop (Figure 1.2, Chapter 1) [550]. Residue D454 forms part of a critical region for [Ca2+]_{\text{vac}} sensitivity [114], and thus D454N gives rise to a gain-of-function allele named fou2 that lacks this inhibition [550, 656]. Consequently, the fou2 mutation results in increased TPC1 channel opening [550].
The *fou2* mutation also results in two-fold increase in basal JA levels and in LOX activity [550], placing the effect of this mutation at the very start of JA synthesis (Figure 4.1). As a result, a variety of stress- and JA-induced transcripts are upregulated in the *fou2* mutant [552]. The exact link between TPC1 and JA is not known. Animal LOX proteins have a Ca\(^{2+}\) binding domain [673], and Arabidopsis LOXs contain similar domains [550]. Although evidence of Ca\(^{2+}\) binding to LOXs in plants is scarce (e.g. [674]), LOX activity is regulated by kinases that are themselves regulated by Ca\(^{2+}\), such as MPK3 and MPK6 [675]. Loss of JA perception by mutating *CORONATINE INSENSITIVE 1* (*COI1*) [676, 677] or JA synthesis by mutating *ALLENE OXIDE SYNTHASE* (*AOS*) [551] (Figure 4.1) abolishes the enhanced LOX activity and the growth inhibition exhibited in *fou2* mutants [550, 552]. Thus, the observed *fou2* phenotype is based solely on JA upregulation, and involves positive feedback between COI1 and AOS and LOX proteins [678, 679].

Loss of *TPC1* does not affect [Ca\(^{2+}\)]\(_{\text{cyt}}\) elevations [660] or defence gene induction [552] elicited by methyl jasmonate (MeJA). Furthermore, abolishing transcription of *TPC1* does not affect JA production [550], and overexpression of *TPC1* does not mimic the *fou2* phenotype [15]. Thus, *TPC1* expression does not regulate wildtype JA production. Higher levels of Ca\(^{2+}\) are accumulated in the vacuole of *fou2* mesophyll cells [656], which combined with the increased probability of channel opening [550] has the potential to result in a large Ca\(^{2+}\) efflux from the vacuole. Conversely, abolishing *TPC1* transcription significantly reduces [Ca\(^{2+}\)]\(_{\text{vac}}\) in epidermal cells, but has no effect on [Ca\(^{2+}\)]\(_{\text{vac}}\) in mesophyll cells [650].

There are several links between Ca\(^{2+}\) signalling and JA. MeJA elicits [Ca\(^{2+}\)]\(_{\text{cyt}}\) elevations in stomata [84, 680], as well as *COI1*-dependent cation currents [681]. Furthermore, MeJA-induced stomatal closure is blocked by CaM and Ca\(^{2+}\) channel inhibitors [84, 680, 682, 683] and loss of *CNGC2* [84] or *CPK6* [684] abolishes MeJA-elicted [Ca\(^{2+}\)]\(_{\text{cyt}}\) elevations. Moreover, in *N. tabacum* CDPK4 and CDPK5 are negative regulators of JA production [424]. These components are therefore candidates for crosstalk between Ca\(^{2+}\) and JA that may work independently of, or in combination with, TPC1-mediated Ca\(^{2+}\) signalling.
The JA precursor α-linolenic acid is converted to active jasmonate (JA-Ile) through a series of enzymatic steps in the chloroplast (green shading), peroxisome (orange shading) and cytosol (blue shading). In the presence of JA-Ile, nuclear JAZ (jasmonate-zim-domain) proteins are targeted for degradation by COI1. This relieves JAZ repression of JA-responsive genes, including those involved in plant defence. 13-HPOT = 13-hydroperoxy linolenic acid, LOX = 13-lipoxygenase, OPDA = (9S, 13S)-12-oxo-phytodienoic acid, OPR3 = OPDA reductase, OPC-8:0 = 3-oxo-2{2′-[Z]-pentenyl}cyclopentane-1-octanoic acid, OPCL1 = OPC-8:0 CoA ligase 1, JAR1 = jasmonate resistant 1. Proteins relevant to the present study are boxed. Figure adapted from Lu et al.[685] and Jimenez-Aleman et al. [686].
4.1.5 JA is a key component of plant defence

JA accumulation is a well characterised response to wounding [392, 395, 416], herbivory [308, 332, 334, 335, 417-420] and pathogens [421, 552] (Section 1.3.4, Chapter 1). It is also detrimental to aphid performance [307, 426, 428, 429], and in agreement with this B. brassicae fecundity is halved in the fou2 mutant [430]. Furthermore, the fou2 mutation results in the constitutive upregulation of several plant defence genes, including PDF1.2, PR1, PR4, CYP79B2, and VSP2 [430, 552] and shows enhanced resistance to B. cinerea [550]. Interestingly, aphid infestation rarely results in strong differential regulation of JA-related genes [426, 427], however it has been suggested that upregulation of the SA pathway by aphids [304, 308, 433] is used to antagonise JA signalling as a part of successful colonisation of the plant [426, 427, 434-436].

4.1.6 GLR3.3 and GLR3.6 mediate wound signalling in plants

GLRs are Ca²⁺-permeable channels [85, 91, 92] that are presumed to be localised to the PM [88, 95, 96, 105]. The Arabidopsis genome encodes 20 GLRs [83] and these can join in different combinations to form heteromers [84], the composition of which can effect biological function [99]. GLRs have an extracellular ligand-binding domain (Figure 1.2, Chapter 1) [104], and several amino acids including glutamate may act as GLR ligands [76, 92, 356], as seen with the animal GLR homologs, the iGluRs [82]. In accord with a physiological role for glutamate, glutamate application results in [Ca²⁺]cyt elevations [99, 100, 687] that are attenuated in the glr3.3 mutant [97]. Moreover, the extracellular ligand binding domain of GLRs suggests they are involved in the perception of stimuli from outside the cell. Concurring with this, GLR3.3 plays a role in [Ca²⁺]cyt elevations and ROS production in response to oligogalacturonide DAMPs and glr3.3 mutant lines exhibit compromised resistance to the oomycete Hyaloperonospora arabidopsidis [688]. Furthermore, antagonists of animal iGluRs can reduce the [Ca²⁺]cyt elevation induced by flg22, elf18 and chitin in Arabidopsis [201].

Specific roles for GLR3.6 in plants are not well characterised, although this gene has been linked to primary and lateral root growth [689]. However, recent work has identified that GLR3.3 and GLR3.6 act together to mediate wound signalling in Arabidopsis. Leaf-to-leaf electrical signals in response to wounding are significantly
attenuated in glr3.3 and glr3.6 mutants, and this signal is completely abolished if both are mutated (glr3.3/3.6) [103]. These GLR-dependent signals appear to travel systemically in the SE [541] and are composed of a brief action potential followed by a GLR3.6-mediated long potential [104]. Furthermore, such wounding induces JA signalling, detected through increased JASMONATE-ZIM-DOMAIN PROTEIN 10 (JAZ10) expression. Interestingly, loss of GLR3.3 or GLR3.6 significantly reduces systemic JAZ10 expression, but the induction in the local leaves remains the same [103]. This suggests that, as with TPC1, the primary role of the GLRs might be in systemic signalling, acting as crosstalk nodes between electrical signals, Ca²⁺ and JA. However, it is important to note that electrical signals in the local (wounded) leaf were also attenuated in both GLR mutants [103]. Thus, investigations to date position GLR3.3 and GLR3.6 as mediators of damage-induced signals in plants.

4.1.7 ROS and MAPKs are involved in defence against insects and are dependent on Ca²⁺ signalling

Plant defence against aphids involves several responses, including ROS production [316-318, 353, 354, 360, 371, 406, 407], MAPK activation [354, 387, 391-395] and secondary metabolite biosynthesis [296, 297, 319, 456, 457]. Incubating leaves with M. persicae extract results in the gradual production of H₂O₂ over several hours [349], and ROS is also produced in response to A. pisum [408] or Diuraphis noxia (Russian wheat aphid) [690] infestation, as well as to GroEL application [350]. Furthermore, infestation of Arabidopsis with R. padi, M. cerasi, or M. persicae results in the upregulation of genes related to ROS signalling [283], and disrupting this signalling by mutating RBOHD significantly increases M. persicae performance [413] whilst disrupting RBOHF expression benefits all three species [283]. Conversely, infestation with B. brassicae leads to a decrease in the expression of ROS-related transcripts including RBOHD [304]. Extracellular ROS production is dependent on TPC1 [121], RBOHD is activated by CPK5 [119] and RBOHF is regulated by CBL1, CBL9 and CIPK26 [691, 692], suggesting that ROS production lies downstream of Ca²⁺ signalling. However, there is feedback between the systems as ROS can also induce Ca²⁺ elevations [47, 120-122, 662].

MAPK activation is observed upon M. sexta herbivory [397], and is amplified by the presence of HAMPs in the saliva [386]. Wounding alone can also induce MAPK activation [390, 392, 393, 396] and this is linked to downstream JA signalling [392,
The role of MAPKs in plant-aphid interactions is less clear, although their involvement is likely given the role of PTI and ETI in these interactions. Indeed, silencing MAPKs in tomato significantly reduced resistance to *M. euphorbiae* [398], whilst extract from several other aphid species, including *M. persicae* and *A. pismum*, induces expression of the MAPK marker gene *FRK1* [349]. *FRK1* is a PTI-activated a receptor kinase whose activity is partially regulated by the MAPK pathway [151]. *FRK1* is also significantly upregulated in plants heterologously expressing GroEL, further suggesting a role for this gene in PTI against aphids [350]. Like ROS production, MAPK activation is also dependent on Ca$^{2+}$ signalling, as evidenced by inhibition of MAPKs by ion channel blockers [372, 693, 694]. MAPK activation is also linked to Ca$^{2+}$ signalling through interdependence on the CDPKs [152, 386, 695].

4.1.8 Plant defence against insects culminates with the production of toxic secondary metabolites

Indole glucosinolates and camalexin are two tryptophan-derived secondary metabolites that play a crucial role in plant defence against insects. The indole glucosinolates are synthesised from indole-3-acetaldoxime (IAOx) by CYTOCHROME P450, FAMILY 81, SUBFAMILY F, POLYPEPTIDE 2 (CYP81F2) (Figure 4.2), and loss of the CYP81F2 pathway reduces the production of the anti-aphid compound 4MI3M and increases susceptibility to *M. persicae* [305]. Interestingly, this is aphid-specific, with CYP81F2 expression appearing to have no effect on four lepidopteran species [305]. In addition, loss of enzymes upstream of IAOx synthesis, such as CYP79B2 and CYP79B3 (Figure 4.2) also results in plants more susceptible to aphid attack [470]. The plant glucosinolate response to aphids is rapid, with application of *M. persicae*, *A. pismum*, *B. brassicae* and *S. avenae* (English grain aphid) extract resulting in upregulation of CYP81F2 within an hour [349].

Ca$^{2+}$ signalling is implicated in glucosinolate production; with the CaM-binding protein IQ-DOMAIN 1 (IQD1) mediating the expression of several CYPs and overexpression of IQD resulting in reduced *M. persicae* fecundity [696]. ROS are also implicated in this pathway, with induction of CYP81F2 significantly reduced if ROS production is compromised [697]. Furthermore, the production of 4MI3M is also dependent on MAPK signalling via MPK3 and MPK6 [698].
Camalexin biosynthesis from IAOx is mediated by the enzyme PAD3 (Figure 4.2) [455, 459]. Like 4MI3M, camalexin production is detrimental to aphid performance, with abolition of the PAD3 transcript resulting in plants more susceptible to aphids [304, 306, 349]. Production of camalexin is upregulated by whole-body extracts from various aphids, including *M. persicae* [349], as well as by aphid saliva [464] and live feeding [304, 308]. A direct link between Ca$^{2+}$ signalling and camalexin production has not been established, however both are important in plant defence against pathogens and aphids. As with 4MI3M, camalexin production in response to fungi is dependent on *MPK3* and *MPK6* in Arabidopsis [699].

Figure 4.2: Tryptophan-derived secondary metabolites represent key anti-insect molecules. Glucosinolates and camalexin are produced in plants during herbivory and reduce insect fitness. Proteins key in the production of each metabolite are shown in green boxes. Adapted from Glawischnig et al. [700].
4.1.9 Aims of this chapter

This chapter outlines experiments designed to identify the mechanisms behind the aphid-induced Ca\(^{2+}\) burst in Arabidopsis. Ca\(^{2+}\) signalling in plants lacking the Ca\(^{2+}\)-permeable channels TPC1 and GLR3.3/3.6 was investigated using the GCAMP3 sensor, as was the signalling in TPC1 overexpression and fou2 over-activation lines. These mutants were also assessed for a role in plant defence induction, including ROS production, MAPK activation and secondary metabolite pathways, as well as for altered aphid feeding behaviour and fitness. Consequently, this chapter also links the Ca\(^{2+}\) burst identified in Chapter 3 to downstream defence responses in the plant, as well as exploring connections between Ca\(^{2+}\) and other plant signalling pathways.

4.1.10 Materials and methods

The methods used in his chapter are detailed in Chapter 2. Information on the microscopy assay can be found in Section 2.8, aphid performance assays (including fecundity, survival, choice tests, EPG and IR) in Section 2.9, and Arabidopsis ROS and defence gene induction assays in Section 2.10.
4.2 Results

4.2.1 *TPC1* expression affects the amplitude and speed of the aphid-induced Ca$^{2+}$ burst

In order to assess whether TPC1 plays a role in aphid-induced Ca$^{2+}$ bursts, GFP fluorescence in 35::GCAMP3 x *tpc1*-2 and 35S::GCAMP3 x 35S::TPC1 5.6 lines was assessed. In comparison to 35S::GCAMP3 (Figure 4.3a), the feeding site burst was significantly reduced (Figure 4.3c), although not abolished (Figure 4.3b), in 35S::GCAMP3 x *tpc1*-2 (Video 4.1). In 35S::GCAMP3 x *tpc1*-2 samples that produced a recordable measurement (R), the area of spread and the speed of the Ca$^{2+}$ burst were not significantly altered (Figure 4.4). As observed previously (Figure 3.15, Chapter 3), the Ca$^{2+}$ burst in 35S::GCAMP3 and 35S::GCAMP3 x *tpc1*-2 lines was not the result of a discreet ‘on’ or ‘off’ response (Figure D1, Appendix D). In 35S::GCAMP3 x 35S::TPC1 5.6 plants, the amplitude of the burst was not significantly different from the control plants (Figure 4.5, Video 4.2), nor was the area of spread (Figure 4.6a). However, the speed of propagation was significantly increased (Figure 4.6b).

Analysis of systemic Ca$^{2+}$ dynamics revealed that in the midrib of 35S::GCAMP3 x *tpc1*-2 leaves treated with aphids, a significant rise in GFP fluorescence was observed relative to the un-infested control leaves (Figure D2, Appendix D). This was not seen in the lateral tissue (Figure D3, Appendix D). No systemic signals were seen in the 35S::GCAMP3 x 35S::TPC1 5.6 line (Figure D5 and D6, Appendix D). In addition, no differences in aphid settling behaviour were seen on either *TPC1* expression mutant (Figure D4 and D7, Appendix D).
A) 35S::GCAMP3 control 35S::GCAMP3 aphid

B) 35S::GCAMP x tpc1-2 control 35S::GCAMP x tpc1-2 aphid

C) 35S::GCAMP3 aphid 35S::GCAMP3 x tpc1-2 aphid

p<0.05

∆F/F

Time post-settling (min)

-5 0 5 10 15 20 25 30
Figure 4.3: Normalised GFP fluorescence (ΔF/F) around the feeding site in 35S:GCAMP3 and 35S:GCAMP3 x tpc1-2 Arabidopsis upon M. persicae settling.
A) 35S:GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S:GCAMP3 x tpc1-2 control (no aphid treatment) vs aphid treatment. C) 35S:GCAMP3 aphid treatment vs 35S:GCAMP3 x tpc1-2 aphid treatment. Bars represent SEM (35S:GCAMP3 n=27, 35S:GCAMP3 x tpc1-2 n=29). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V and conducted by T.V. and J.C.

![Bar graph showing normalised GFP fluorescence (ΔF/F) around the feeding site in 35S:GCAMP3 and 35S:GCAMP3 x tpc1-2 Arabidopsis upon M. persicae settling.]

Figure 4.4: Properties of the M. persicae-induced Ca²⁺ burst around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x tpc1-2 leaves.
Comparing properties of the Ca²⁺ burst only in recordable samples (R), i.e. samples in which a feeding site GFP burst was visible by eye. A) Area of the Ca²⁺ burst. B) Speed of the Ca²⁺ wave front. Bars represent SEM. Letters indicate no significant difference between genotypes (Student’s t-test p<0.05). Experiment conceived and designed by T.V and conducted by T.V. and J.C.
Figure 4.5: Normalised GFP fluorescence (ΔF/F) around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x 35S::TPC1 5.6 Arabidopsis upon *M. persicae* settling.

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x 35S::TPC1 5.6 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 35S::GCAMP3 x 35S::TPC1 5.6 aphid treatment. Bars represent SEM (35S::GCAMP3 n=30, 35S::GCAMP3 x 35S::TPC1 5.6 n=29). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V and conducted by T.V. and M.A.

Figure 4.6: Properties of the *M. persicae*-induced Ca²⁺burst around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x 35S::TPC1 5.6 leaves.

Comparing properties of the Ca²⁺ burst in recordable samples (R), i.e. samples in which a feeding site GFP burst was visible by eye. A) Area of the Ca²⁺ burst. B) Speed of the Ca²⁺ wave front. Bars represent SEM. Letters indicate a significant difference between genotypes (Student’s t-test p<0.05). Experiment conceived and designed by T.V and conducted by T.V. and M.A.
4.2.2 Plant ROS production and IR is altered in 35S::TPC1 plants

To investigate if TPC1 expression has an effect on plant defence, plant ROS production and IR was assessed. Application of aphid extract to leaf disks resulted in a ROS burst that peaked at around 200 min post-application (Figure 4.7a). This aphid extract-induced burst was significantly larger in 35S::TPC1 5.6 and 35S::TPC1 10.12 lines (Figure 4.7b and C5c), but not altered in the tpc1-2 mutant (Figure 4.7d). Interestingly, the water controls also showed a ROS burst from 0-50 min (Figure 4.7a), as seen previously [349].

IR in response to local pre-treatment with aphids occurred on Col-0 as seen previously (Figure B5, Chapter 3). This also occurred with the tpc1-2 mutant, but was compromised in the 35S::TPC1 5.6 line (Figure 4.8).
Figure 4.7: ROS production in Arabidopsis leaf disks upon application of *M. persicae* extract.

A) ROS production measured as relative light units (RLU) over time in all treatments. W= water. AE= aphid extract. Shading represents a significant difference between aphid extract and water treated leaf disks (within a genotype), shared across all four genotypes (Student’s t-test within GLM at p<0.05).

B) ROS production in 35S::TPC1 5.6 upon application of aphid extract compared to Col-0.

C) ROS production over time upon application of aphid extract in 35S::TPC1 10.21 compared to Col-0. Shading represents a significant difference between genotypes (Student’s t-test within GLM at p<0.05).

D) ROS production over time upon application of aphid extract in tpc1-2 compared to Col-0. Bars represent SEM of 24 biological replicates from 3 independent experiments. Shading represents a significant difference between genotypes (Student’s t-test within GLM at p<0.05).

Figure 4.8: IR to *M. persicae* is lost on 35S::TPC1 5.6 Arabidopsis

Leaves were pre-treated with 50 adult *M. persicae* individuals to activate IR. After removal of the initial infestation, the fecundity of a single adult feeding from the pre-treated leaves was measured. Pre-treatment with an empty clip-cage was used as a control. Bars show SEM of 18 biological replicates from 6 independent experiments. Letters indicate significant difference between treatments (Student’s t-test within GLM at p<0.05).
4.2.3 **TPC1 expression has an effect on aphid feeding behaviour**

To test whether Ca$^{2+}$ signalling mediated by TPC1 has an effect on aphid feeding behaviour, EPG was conducted on the *TPC1* lines. Comparing Col-0 and *tpc1-2*, no differences in pathway or the majority of phloem behaviours were found (Table 4.1). However, on the *tpc1-2* mutant phloem rejection behaviour was observed. This constituted salivations into the SE (E1) that were not followed by ingestion (E2), termed single phloem salivations (Table 4.1 behaviour 29, Figure 4.9a). This behaviour was absent from the wildtype (Figure 4.9a), but also present on the *TPC1* overexpression line (Figure 4.9b).

A comparison was also made between feeding behaviour of aphids on the *tpc1-2* mutant versus the 35S::TPC1 5.6 line. Again, no differences in pathway behaviours or most phloem behaviours were observed (Table 4.2, Figure 4.9c). However, the number of phloem ingestion phases (E2) was significantly higher in 35S::TPC1 5.6 relative to *tpc1-2* (Table 4.2, behaviour 32, Figure 4.9d). Interestingly, the sum of E1 behaviours on 35S::TPC1 5.6 was double that of *tpc1-2* (p=0.08, Table 4.2 behaviour 29).

<table>
<thead>
<tr>
<th>Pathway behaviours (1st h)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 number of probes</td>
<td>6.2</td>
<td>0.7</td>
<td>6.8</td>
<td>0.8</td>
</tr>
<tr>
<td>2 average probe</td>
<td>300</td>
<td>94</td>
<td>230</td>
<td>74</td>
</tr>
<tr>
<td>3 sum of probing</td>
<td>1200</td>
<td>200</td>
<td>1100</td>
<td>170</td>
</tr>
<tr>
<td>4 duration of 1st probe</td>
<td>160</td>
<td>110</td>
<td>97</td>
<td>35</td>
</tr>
<tr>
<td>5 number of pd</td>
<td>12</td>
<td>2</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>6 average duration of pd</td>
<td>6.3</td>
<td>0.3</td>
<td>6.1</td>
<td>0.2</td>
</tr>
<tr>
<td>7 sum of pd</td>
<td>74</td>
<td>10</td>
<td>68</td>
<td>9</td>
</tr>
<tr>
<td>8 time to 1st pd (from start of 1st probe)</td>
<td>180</td>
<td>111</td>
<td>180</td>
<td>110</td>
</tr>
<tr>
<td>9 time to 1st pd in 1st probe with a pd</td>
<td>12</td>
<td>2</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>10 no. pd per min C</td>
<td>1.0</td>
<td>0.1</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>11 no. pd in 1st probe</td>
<td>2.7</td>
<td>1.2</td>
<td>1.6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

p-values calculated using a Mann-Whitney U-test (Col-0 n= 22, *tpc1-2* n= 23).
<table>
<thead>
<tr>
<th>Pathway behaviours (8 h)</th>
<th>Mean Col-0</th>
<th>SEM</th>
<th>Mean tpc1-2</th>
<th>SEM</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 duration of the first pd</td>
<td>26</td>
<td>2.2</td>
<td>25</td>
<td>2.7</td>
<td>0.73</td>
</tr>
<tr>
<td>13 mean duration of the first 5 pd</td>
<td>650</td>
<td>82</td>
<td>790</td>
<td>174</td>
<td>0.83</td>
</tr>
<tr>
<td>14 number of probes</td>
<td>14000</td>
<td>1100</td>
<td>13000</td>
<td>1000</td>
<td>0.55</td>
</tr>
<tr>
<td>15 average probe</td>
<td>160</td>
<td>110</td>
<td>97</td>
<td>35</td>
<td>0.76</td>
</tr>
<tr>
<td>16 sum of probing</td>
<td>130</td>
<td>13</td>
<td>120</td>
<td>11</td>
<td>1.00</td>
</tr>
<tr>
<td>17 duration of 1st probe</td>
<td>5.8</td>
<td>0.1</td>
<td>5.9</td>
<td>0.1</td>
<td>0.73</td>
</tr>
<tr>
<td>18 number of pd</td>
<td>750</td>
<td>70</td>
<td>720</td>
<td>66</td>
<td>1.00</td>
</tr>
<tr>
<td>19 average duration of pd</td>
<td>180</td>
<td>110</td>
<td>180</td>
<td>110</td>
<td>0.85</td>
</tr>
<tr>
<td>20 sum of pd</td>
<td>12</td>
<td>2.2</td>
<td>17</td>
<td>3</td>
<td>0.21</td>
</tr>
<tr>
<td>21 time to 1st pd (from start of 1st probe)</td>
<td>0.8</td>
<td>0.0</td>
<td>0.8</td>
<td>0.0</td>
<td>0.45</td>
</tr>
<tr>
<td>22 time to 1st pd in 1st probe with a pd</td>
<td>2.7</td>
<td>1.2</td>
<td>1.6</td>
<td>0.3</td>
<td>0.92</td>
</tr>
<tr>
<td>23 no. pd per min C</td>
<td>6.6</td>
<td>0.6</td>
<td>7.0</td>
<td>0.4</td>
<td>0.63</td>
</tr>
<tr>
<td>24 no. pd in 1st probe</td>
<td>6.5</td>
<td>0.3</td>
<td>6.3</td>
<td>0.2</td>
<td>0.36</td>
</tr>
<tr>
<td>25 duration of the first pd</td>
<td>1900</td>
<td>400</td>
<td>2800</td>
<td>810</td>
<td>0.60</td>
</tr>
<tr>
<td>26 mean duration of the first 5 pd</td>
<td>26</td>
<td>2.2</td>
<td>25</td>
<td>2.7</td>
<td>0.73</td>
</tr>
<tr>
<td>27 time to 1st probe</td>
<td>650</td>
<td>82</td>
<td>790</td>
<td>174</td>
<td>0.83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phloem behaviours (8 h)</th>
<th>Mean Col-0</th>
<th>SEM</th>
<th>Mean tpc1-2</th>
<th>SEM</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 number of single E1 (without E2) periods</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.05</td>
</tr>
<tr>
<td>30 sum of E1 (sgE1 and E1)</td>
<td>68</td>
<td>13</td>
<td>110</td>
<td>26</td>
<td>0.34</td>
</tr>
<tr>
<td>31 sum of E2</td>
<td>2000</td>
<td>780</td>
<td>2000</td>
<td>740</td>
<td>0.97</td>
</tr>
<tr>
<td>32 maximum E2 period</td>
<td>1500</td>
<td>590</td>
<td>1700</td>
<td>660</td>
<td>0.78</td>
</tr>
<tr>
<td>33 number of sustained E2 (>10 min)</td>
<td>0.6</td>
<td>0.2</td>
<td>0.8</td>
<td>0.3</td>
<td>0.68</td>
</tr>
<tr>
<td>34 mean duration of sE2</td>
<td>2300</td>
<td>600</td>
<td>1700</td>
<td>370</td>
<td>0.35</td>
</tr>
<tr>
<td>35 sum of duration of sE2</td>
<td>1600</td>
<td>770</td>
<td>1600</td>
<td>720</td>
<td>0.73</td>
</tr>
<tr>
<td>36 average time to 1st E within probes</td>
<td>1700</td>
<td>220</td>
<td>1700</td>
<td>200</td>
<td>0.90</td>
</tr>
<tr>
<td>37 minimum time to 1st E within probes</td>
<td>1400</td>
<td>220</td>
<td>1300</td>
<td>210</td>
<td>0.84</td>
</tr>
<tr>
<td>38 number of probes before the 1st E</td>
<td>13</td>
<td>2.6</td>
<td>15</td>
<td>2.4</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Table 4.2: EPG data for tpc1-2 vs 35S:TPC1 5.6.
Probe = feeding event, pd = potential drop (cell puncture), C = pathway phase, E1 = phloem salivation, E2 = phloem ingestion, sE2 = sustained E2 (>10 min), no = number. Duration recorded in s. p-values calculated using a Mann-Whitney U-test (tpc1-2 n= 25, 35S::TPC1 5.6 n= 30). Experiment conceived and designed by T.V and conducted by P.H. under supervision of T.V.

<table>
<thead>
<tr>
<th>Pathway behaviours (1st h)</th>
<th>Mean</th>
<th>SEM</th>
<th>Mean</th>
<th>SEM</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 number of probes</td>
<td>7.2</td>
<td>0.8</td>
<td>7.0</td>
<td>0.8</td>
<td>0.92</td>
</tr>
<tr>
<td>2 average probe</td>
<td>350</td>
<td>120</td>
<td>350</td>
<td>140</td>
<td>0.97</td>
</tr>
<tr>
<td>3 sum of probing</td>
<td>1500</td>
<td>200</td>
<td>1500</td>
<td>200</td>
<td>1.00</td>
</tr>
<tr>
<td>4 duration of 1st probe</td>
<td>160</td>
<td>120</td>
<td>240</td>
<td>150</td>
<td>0.68</td>
</tr>
<tr>
<td>5 number of pd</td>
<td>21</td>
<td>3</td>
<td>21</td>
<td>3</td>
<td>0.98</td>
</tr>
<tr>
<td>6 average duration of pd</td>
<td>5.3</td>
<td>0.1</td>
<td>5.5</td>
<td>0.3</td>
<td>0.90</td>
</tr>
<tr>
<td>7 sum of pd</td>
<td>100</td>
<td>12</td>
<td>100</td>
<td>15</td>
<td>0.97</td>
</tr>
<tr>
<td>8 time to 1st pd (from start of 1st probe)</td>
<td>33</td>
<td>15</td>
<td>110</td>
<td>46</td>
<td>0.91</td>
</tr>
<tr>
<td>9 time to 1st pd in 1st probe with a pd</td>
<td>13</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>0.34</td>
</tr>
<tr>
<td>10 no. pd per min C</td>
<td>1.4</td>
<td>0.2</td>
<td>1.1</td>
<td>0.1</td>
<td>0.39</td>
</tr>
<tr>
<td>11 no. pd in 1st probe</td>
<td>3.4</td>
<td>2.0</td>
<td>5.5</td>
<td>3.1</td>
<td>0.54</td>
</tr>
<tr>
<td>12 duration of the first pd</td>
<td>6.4</td>
<td>0.4</td>
<td>6.1</td>
<td>0.5</td>
<td>0.74</td>
</tr>
<tr>
<td>13 mean duration of the first 5 pd</td>
<td>5.8</td>
<td>0.2</td>
<td>5.9</td>
<td>0.3</td>
<td>0.84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pathway behaviours (8 h)</th>
<th>Mean</th>
<th>SEM</th>
<th>Mean</th>
<th>SEM</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 number of probes</td>
<td>27</td>
<td>3.4</td>
<td>26</td>
<td>2.5</td>
<td>0.86</td>
</tr>
<tr>
<td>15 average probe</td>
<td>2200</td>
<td>970</td>
<td>1000</td>
<td>170</td>
<td>0.68</td>
</tr>
<tr>
<td>16 sum of probing</td>
<td>17000</td>
<td>1200</td>
<td>19000</td>
<td>1100</td>
<td>0.34</td>
</tr>
<tr>
<td>17 duration of 1st probe</td>
<td>1000</td>
<td>950</td>
<td>290</td>
<td>200</td>
<td>0.59</td>
</tr>
<tr>
<td>18 number of pd</td>
<td>140</td>
<td>12</td>
<td>140</td>
<td>11</td>
<td>0.99</td>
</tr>
<tr>
<td>19 average duration of pd</td>
<td>4.8</td>
<td>0.0</td>
<td>4.9</td>
<td>0.1</td>
<td>0.80</td>
</tr>
<tr>
<td>20 sum of pd</td>
<td>690</td>
<td>57</td>
<td>700</td>
<td>52</td>
<td>0.82</td>
</tr>
<tr>
<td>21 time to 1st pd (from start of 1st probe)</td>
<td>33</td>
<td>15</td>
<td>270</td>
<td>170</td>
<td>0.90</td>
</tr>
<tr>
<td>22 time to 1st pd in 1st probe with a pd</td>
<td>13</td>
<td>2.3</td>
<td>9.8</td>
<td>1.3</td>
<td>0.29</td>
</tr>
<tr>
<td>23 no. pd per min C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>24 no. pd in 1st probe</td>
<td>4</td>
<td>2.6</td>
<td>5.6</td>
<td>3</td>
<td>0.24</td>
</tr>
<tr>
<td>25 duration of the first pd</td>
<td>6.4</td>
<td>0.4</td>
<td>6.3</td>
<td>0.4</td>
<td>0.78</td>
</tr>
<tr>
<td>26 mean duration of the first 5 pd</td>
<td>5.8</td>
<td>0.2</td>
<td>5.7</td>
<td>0.2</td>
<td>0.59</td>
</tr>
<tr>
<td>27 time to 1st probe</td>
<td>1100</td>
<td>420</td>
<td>720</td>
<td>250</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$tpc1$-2</td>
<td>35S::TPC1 5.6</td>
<td>p-value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phloem behaviours (8 h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>number of single E1 (without E2) periods</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>29</td>
<td>sum of E1 (sgE1 and E1)</td>
<td>110</td>
<td>18</td>
<td>270</td>
<td>97</td>
</tr>
<tr>
<td>30</td>
<td>sum of E2</td>
<td>6900</td>
<td>1500</td>
<td>8400</td>
<td>1400</td>
</tr>
<tr>
<td>31</td>
<td>maximum E2 period</td>
<td>6300</td>
<td>1500</td>
<td>6200</td>
<td>1300</td>
</tr>
<tr>
<td>32</td>
<td>number of sustained E2 (>10 min)</td>
<td>1</td>
<td>0.2</td>
<td>2.1</td>
<td>0.3</td>
</tr>
<tr>
<td>33</td>
<td>mean duration of sE2</td>
<td>6800</td>
<td>1500</td>
<td>5100</td>
<td>1300</td>
</tr>
<tr>
<td>34</td>
<td>sum of duration of sE2</td>
<td>6500</td>
<td>1500</td>
<td>7700</td>
<td>1400</td>
</tr>
<tr>
<td>35</td>
<td>average time to 1st E within probes</td>
<td>1400</td>
<td>130</td>
<td>1300</td>
<td>120</td>
</tr>
<tr>
<td>36</td>
<td>minimum time to 1st E within probes</td>
<td>1200</td>
<td>160</td>
<td>970</td>
<td>120</td>
</tr>
<tr>
<td>37</td>
<td>number of probes before the 1st E</td>
<td>13</td>
<td>2.1</td>
<td>11</td>
<td>2</td>
</tr>
</tbody>
</table>
Figure 4.9: Altered *M. persicae* phloem phase behaviours in TPC1 expression mutants.

A) Single phloem salivations (E1 without E2) in Col-0 vs *tpc1-2*. Error bars represent SEM (Col-0 n= 22, *tpc1-2* n= 23). B) Single phloem salivations (E1 without E2) in *tpc1-2* vs 35S::TPC1 5.6. Error bars represent SEM (*tpc1-2* n= 25, 35S::TPC1 5.6 n= 30). C) The number of sustained phloem ingestions (E2 > 10 min) in Col-0 vs *tpc1-2*. Error bars represent SEM (*tpc1-2* n= 25, 35S::TPC1 5.6 n= 30). D) The number of sustained phloem ingestions (E2 > 10 min) in *tpc1-2* vs 35S::TPC1 5.6. Error bars represent SEM (*tpc1-2* n= 25, 35S::TPC1 5.6 n= 30). * indicates a significant difference between treatments (p<0.05, Mann-Whitney U-test). Experiment conceived and designed by T.V and conducted by P.H. under supervision of T.V.
4.2.4 **TPC1 expression has no effect on aphid fecundity, host choice or survival**

To assess whether **TPC1** expression has an effect on aphid fitness, the fecundity of *M. persicae* was assessed on these lines. Fecundity was not altered on the tpc1-2 mutant (Figure 4.10a) or 35S::TPC1 5.6 (Figure 4.10b). Furthermore, when given a choice between the tpc1-2 mutant and 35S::TPC1 5.6, *M. persicae* showed no host preference in a choice test (Figure 4.10c). In addition, the survival of *A. pisum* was not significantly different on tpc1-2 or 35S::TPC1 5.6 (Figure 4.10d).

4.2.5 **TPC1 over-activation (fou2) results in systemic aphid-induced Ca\(^{2+}\) bursts**

In order to further assess the role of TPC1 in Ca\(^{2+}\) signalling during plant-aphid interactions, the *fou2* mutant was studied. The amplitude of the feeding site Ca\(^{2+}\) burst was not altered on 35S::GCAMP3 x *fou2* (Figure 4.11c), although it showed more variability relative to its no-aphid control (Figure 4.11b) than 35S::GCAMP3 (Figure 4.11a). The same large variability was seen in the area of the feeding site Ca\(^{2+}\) burst in 35S::GCAMP3 x *fou2* (Figure 4.12a), but not in the speed of its propagation (Figure 4.12b). In addition, a large systemic Ca\(^{2+}\) burst was seen in the 35S::GCAMP3 x *fou2* line (Video 4.3) that was detectable in the lateral tissue (Figure 4.13) but not the midrib (Figure 4.14). Aphid settling behaviour was not significantly altered on the 35S::GCAMP3 x *fou2* line (Figure D8, Appendix D).

4.2.6 **TPC1 over-activation (fou2) significantly reduces aphid fecundity**

In addition to the Ca\(^{2+}\) assays conducted on 35S::GCAMP3 x *fou2*, aphid performance was also assessed on the *fou2* mutant. *M. persicae* fecundity was significantly reduced on the *fou2* line. However, this was abolished on the JA-deficient double mutant *fou2/aos* (Figure 4.15a). Interestingly, *A. pisum* survival was also decreased on the *fou2* mutant and even further on the *fou2/aos* line (Figure 4.15b).
Figure 4.10: TPC1 expression does not affect aphid performance or host choice.
A) *M. persicae* fecundity on *tpc1*-2. Bars show SEM of 12 biological replicates from 3 independent experiments. Experiment conducted by Marco Pitino (Hogenhout lab). B) *M. persicae* fecundity on 35S::TPC1 5.6. Bars show SEM of 12 biological replicates from 3 independent experiments. Experiment conducted by Marco Pitino (Hogenhout lab). C) *M. persicae* host choice preference between *tpc1*-2 and 35S::TPC1 5.6. The percentage of the total aphid population settled on each plant after a 24-hour choice period is displayed. Bars show SEM of 20 biological replicates from 4 independent experiments. D) *A. pisum* survival on TPC1 mutants. Survival was averaged across the two days in which the control population (Col-0) decreased below 50% survival. Bars represent SEM of 18 biological replicates from 3 independent experiments. Letters indicate no significant difference between genotypes (Student’s t-test within GLM, p<0.05).

145
A) 35S::GCAMP3 control 35S::GCAMP3 aphid

B) 35S::GCAMP x fou2 control 35S::GCAMP x fou2 aphid

C) 35S::GCAMP3 aphid 35S::GCAMP x fou2 aphid

p<0.05
Figure 4.11: Normalised GFP fluorescence (ΔF/F) around the feeding site in 35S:GCAMP3 and 35S:GCAMP3 x fou2 Arabidopsis upon *M. persicae* settling.
A) 35S:GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S:GCAMP3 x fou2 control (no aphid treatment) vs aphid treatment. C) 35S:GCAMP3 aphid treatment vs 35S:GCAMP3 x fou2 aphid treatment. Bars represent SEM (35S:GCAMP3 n=28, 35S:GCAMP3 x fou2 n=25). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V and conducted by T.V. and M.A.

![Graph showing data]

Figure 4.12: Properties of the *M. persicae*-induced Ca²⁺ burst around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x fou2 leaves
Comparing properties of the Ca²⁺ burst in recordable samples (R), i.e. samples in which a feeding site GFP burst was visible by eye. A) Area of the Ca²⁺ burst. B) Speed of the Ca²⁺ wave front. Bars represent SEM. Letters indicate no significant difference between genotypes (Student’s t-test p<0.05). Experiment conceived and designed by T.V and conducted by T.V. and M.A.
A) 35S::GCAMP3 control
-35S::GCAMP3 aphid

B) 35S::GCAMP3 x fou2 control
-35S::GCAMP3 x fou2 aphid

C) 35S::GCAMP3 aphid
-35S::GCAMP3 x fou2 aphid

p<0.05
Figure 4.13: Normalised GFP fluorescence ($\Delta F/F$) in the lateral tissue, systemic to the feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x fou2 Arabidopsis upon M. persicae settling.

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x fou2 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 35S::GCAMP3 x fou2 aphid treatment. Bars represent SEM (35S::GCAMP3 n=28, 35S::GCAMP3 x fou2 n=25). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V and conducted by T.V. and M.A.
A)

35S::GCAMP3 control vs. 35S::GCAMP3 aphid

Time post-settling (min)

B)

35S::GCAMP x fou2 control vs. 35S::GCAMP x fou2 aphid

Time post-settling (min)

C)

35S::GCAMP3 aphid vs. 35S::GCAMP3 x fou2 aphid

Time post-settling (min)

p < 0.05

A) 35S::GCAMP3 control vs. 35S::GCAMP3 aphid

Time post-settling (min)

B) 35S::GCAMP x fou2 control vs. 35S::GCAMP x fou2 aphid

Time post-settling (min)

C) 35S::GCAMP3 aphid vs. 35S::GCAMP x fou2 aphid

Time post-settling (min)

p < 0.05
Figure 4.14: Normalised GFP fluorescence (ΔF/F) in the midrib, systemic to the feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x fou2 Arabidopsis upon M. persicae settling. A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x fou2 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 35S::GCAMP3 x fou2 aphid treatment. Bars represent SEM (35S::GCAMP3 n=28, 35S::GCAMP3 x fou2 n=25). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V and conducted by T.V. and M.A.

Figure 4.15: The fou2 mutation significantly decreases aphid performance. A) M. persicae fecundity on fou2. Bars show SEM of 16 biological replicates from 4 independent experiments. B) A. pisum survival. Survival was averaged across the two days in which the control population (Col-0) decreased below 50% survival. Bars represent SEM of 18 biological replicates from 3 independent experiments. Letters indicate significant differences between genotypes (Student’s t-test within GLM, p<0.05).
4.2.7 Aphid-induced Ca2+ bursts are abolished in the \textit{glr3.3/3.6} double mutant

Since the Ca2+ burst was not completely abolished on the \textit{tpc1-2} mutant (Figure 4.3b), further Ca2+-permeable channels were also investigated with respect to a possible role in producing the Ca2+ burst. This work focused on GLR3.3 and GLR3.6. Indeed, unlike the 35S::GCAMP3 line (Figure 4.16a), on the GLR double mutant 35S::GCAMP3 x \textit{glr3.3/3.6} no feeding site Ca2+ burst was detectable relative to the untreated controls (Figure 4.16b, Figure 4.16c Video 4.4). Furthermore, in the three 35S::GCAMP3 x \textit{glr3.3/3.6} samples that did display a recordable burst (R), there was a high variation in signal propagation speeds (Figure 4.17). As seen previously, these three samples did not represent a discrete group of responding samples (Figure D9, Appendix D). Interestingly, systemic aphid-induced signals could be detected in the 35S::GCAMP3 line in the midrib (Figure D10, Appendix D) and the lateral tissue (Figure D11, Appendix D) that were not observed in the 35S::GCAMP3 x \textit{glr3.3/3.6} line. Aphid settling behaviour was not altered by the \textit{glr3.3/3.6} mutation (Figure D12, Appendix D). Investigating the role of extracellular Ca2+ was also attempted through incubation of the leaves with EDTA or Lanthanide ions (La3+), however these inhibitors had strong negative effects on both the leaf viability and aphid performance, making the assay not feasible.

4.2.8 Aphid fecundity and plant ROS production are not altered in the \textit{glr3.3/3.6} double mutant

In order to assess if the GLR mutations also resulted in a plant defence or aphid performance phenotype, a plant ROS assay and \textit{M. persicae} fecundity assay were performed with the \textit{glr3.3/3.6} double mutant. In response to aphid extract, whilst ROS production was significantly reduced in the \textit{bak1-5} mutant, no significant effect on ROS production was seen for \textit{glr3.3/3.6} (Figure 4.18a). \textit{M. persicae} fecundity was also not altered (Figure 4.18b).
Figure 4.16: Normalised GFP fluorescence (ΔF/F) around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x glr3.3/glrl3.6 Arabidopsis upon M. persicae settling.

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x glr3.3/glrl3.6 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 35S::GCAMP3 x glrl3.3/glrl3.6 aphid treatment. Bars represent SEM (35S::GCAMP3 n=34, 35S::GCAMP3 x glrl3.3/glrl3.6 n=37). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V and conducted by T.V. and M.A.

Figure 4.17: Properties of the M. persicae-induced Ca²⁺ burst around the feeding site in 35S::GCAMP3 and 35S::GCAMP3 x glrl3.3/glrl3.6 leaves.

Comparing properties of the Ca²⁺ burst in recordable samples (R), i.e. samples in which a feeding site GFP burst was visible by eye. A) Area of the Ca²⁺ burst. B) Speed of the Ca²⁺ wave front. Letters indicate no significant difference between genotypes (Student’s t-test p<0.05). Experiment conceived and designed by T.V and conducted by T.V. and M.A.
Figure 4.18: ROS production and susceptibility to *M. persicae* is not altered on the *glr3.3*/*glr3.6* double mutant.

A) ROS production in Col-0, *bak1-5* and *glr3.3*/*glr3.6* leaf disks upon application of *M. persicae* extract. ROS measured as relative light units (RLU). Error bars represent SEM of 24 biological replicates from 3 independent experiments. Shading indicates significant difference between Col-0 and *bak1-5* (Student’s t-test within GLM at *p*<0.05). Experiment conceived and designed by T.V and conducted by T.V. and M.A.

B) *M. persicae* fecundity on *glr3.3*/*glr3.6* Bars show SEM of 24 biological replicates from 4 independent experiments. Letters indicate no significant difference between genotypes (Student’s t-test *p*<0.05). Experiment conceived and designed by T.V and conducted by T.V. and M.S.
4.2.9 Induction of FRK1, CYP81F2 and PAD3 is altered in the bak1-5, tpc1-2 and fou2/aos mutants

To assess whether Ca$^{2+}$ signalling has an effect on plant defence downstream of the initial perception by BAK1, the expression of three defence markers (FRK1, CYP81F2 and PAD3) in the bak1-5, tpc1-2 and glr3.3/3.6 lines in response to aphid extract was investigated. Incubation of leaf disks with aphid extract for 1 h strongly induced expression of FRK1, CYP81F2 and PAD3 relative to water-incubated controls (Figure 4.19). Induction of FRK1 was reduced in the tpc1-2 mutant but was not significantly altered in bak1-5 or glr3.3/3.6 mutants (Figure 4.19a). CYP81F2 induction was reduced in the bak1-5 mutant but not in the other lines (Figure 4.19b), whilst PAD3 expression was significantly attenuated in both bak1-5 and tpc1-2 mutants (Figure 4.19c).

The same assay was repeated with the aos and fou2/aos mutants to assess the effect of JA and JA-independent TPC1 over-activation on these pathways (Figure 4.20). Application of aphid extract induced FRK1 expression in all genotypes, with no significant difference detected between them (Figure 4.20a). CYP81F2 induction by aphid-extract was the same as wildtype in the aos mutant, but was compromised in the fou2/aos mutant (Figure 4.20b). PAD3 expression was induced by aphid extract to the same level in all three genotypes (Figure 4.20c).
Figure 4.19: Defence gene induction in Col-0, bak1-5, tpc1-2 and glr3.3/3.6 leaf disks incubated with *M. persicae* extract (aphid extract) for 1 h.

Expression relative to water-treated Col-0 leaf disks. A) Relative FRK1 expression. B) Relative CYP81F2 expression. C) Relative PAD3 expression. Bars show SEM of 9 biological replicates from from 3 independent experiments. Different letters indicate averages that are significantly different from one another (Student's t-probabilities calculated within GLM at P <0.05). Experiment conceived and designed by T.V and conducted by N.B. under supervision of T.V.
Figure 4.20: Defence gene induction in Col-0, aos and fou2/aos Arabidopsis leaf disks incubated with *M. persicae* extract (aphid extract) for 1 h. Expression relative to water-treated Col-0 leaf disks. A) Relative FRK1 expression. B) Relative CYP81F2 expression. C) Relative PAD3 expression. Bars show SEM of 9 biological replicates from 3 independent experiments. Different letters indicate averages that are significantly different from one another (Student's t-probabilities calculated within GLM at P <0.05). Experiment conceived and designed by T.V and conducted by N.B. under supervision of T.V.
4.3 Discussion

4.3.1 Aphid feeding results in vacuolar Ca²⁺ release mediated by TPC1

The Ca²⁺ burst around the feeding site was significantly reduced in the tpc1-2 mutant (Figure 4.3, Video 4.1), showing that vacuolar Ca²⁺ release via TPC1 is involved in this signal. Previously, the role of intracellular Ca²⁺ in plant defence has been inferred indirectly through the use of pharmacological inhibitors [201, 378] and wounding has been shown to stimulate systemic TPC1-mediated Ca²⁺ release [123]. Indeed, TPC1’s role appears to be mainly in systemic signalling [7, 121, 123], a phenomenon that appears to be less important in relation to M. persicae attack. Examples of systemic signalling in response to aphids were observed in the present chapter; however this was not a consistent response and occurred in the minority of cases (Figure D3, D10, D11, Appendix D).

Furthermore, local application of the bacterial PAMPs flg22 and elf18 can induce Ca²⁺ bursts detectable by AEQ that are not altered in the tpc1-2 mutant [122]. Therefore, the role of TPC1 might be aphid-specific. It is also possible that the enhanced sensitivity of GCAMP3 compared to AEQ may also have contributed to the detection of the aphid TPC1 phenotype, as single-FP sensors allow measurements of PAMP-induced Ca²⁺ signals that were not previously detectable [219].

Overexpression of TPC1 did not significantly alter the feeding site Ca²⁺ burst (Figure 4.5c, Video 4.2), suggesting that wildtype levels of TPC1 are sufficient to generate the maximal signal. There does appear to be an increase in [Ca²⁺]cyt after 25 min in 35S::GCAMP3 x 35S::TPC5.6 that was not observed in the wildtype (Figure 4.5c) that may represent a second burst as a result of overexpressing TPC1. However, this burst was not aphid-specific as only the initial Ca²⁺ burst in 35S::GCAMP3 x 35S::TPC1 5.6 was significantly higher than the no-aphid control (Figure 4.5b).

TPC1 expression had no effect on the spread of the Ca²⁺ burst within the leaf (Figure 4.4a). However, overexpression of TPC1 did increase the speed of the aphid-induced Ca²⁺ wave front by a third, from 4 µm/s to 6µm/s (Figure 4.4b). This is very similar to the proportional increase in Ca²⁺ signal speed in response to salt-stress when TPC1 is overexpressed, which increases from 400 µm/s in Col-0 to 680 µm/s in 35S::TPC1 [7]. Interestingly, in tpc1-2 plants that did exhibit a measurable Ca²⁺ signal
in response to aphids, the speed of the signal was unchanged (Figure 4.4b), suggesting that TPC1 is not required for the propagation of the signal, but is capable of enhancing it. Indeed, it is hypothesised that TPC1 acts in CICR to propagate Ca\(^{2+}\) signals cell to cell [7, 121, 537, 539], and a similar mechanism might be applicable in the plant-aphid context. As with bak1-5 (Figure B9, Chapter 3) production of visible Ca\(^{2+}\) bursts around the feeding site of some 35S::GCAMP3 x tpc1-2 plants (Figure 4.17) suggests that there is some TPC1-independent signalling occurring.

The role of TPC1 in the aphid-induced Ca\(^{2+}\) burst further supports the hypothesis that this burst occurs in the epidermal and mesophyll cell layers, as mature SEs do not contain vacuoles [701]. Arabidopsis spongy mesophyll cells represent a large pool of stored Ca\(^{2+}\) available for signalling, with higher [Ca]\(_{\text{vac}}\) than most other cell types [651, 702] and [Ca]\(_{\text{vac}}\) in tpc1-2 mesophyll cells is not significantly altered [650]. Consequently, the reduced Ca\(^{2+}\) burst in the tpc1-2 mutant is not related to reduced vacuolar storage of Ca\(^{2+}\).

4.3.2 **TPC1 expression alters ROS production, MAPK activity and camalexin biosynthesis during plant-aphid interactions**

ROS production is a hallmark of PTI, including against aphids. Incubating Arabidopsis leaf disks with *M. persicae* extract resulted in a burst of H\(_2\)O\(_2\) that peaked at around 200 min post-application and was significantly higher than disks incubated with water (Figure 4.7a). This fits well with the ROS response to aphid extract seen previously [349]. The water-incubated leaf disks did display a high level of initial ROS (Figure 4.7a), which has also been seen previously [349]. This is likely a result of the wounding required to harvest the leaf disks [413], but may also suggest that aphid extract is capable of suppressing this burst. Loss of the *TPC1* transcript had no effect on ROS production in response to aphid extract (Figure 4.7d). This agrees with previous work showing that ROS production in response to plant hormones (ABA and MeJA [660]) and bacteria (elf18 and *P. syringae* [122]) are also not altered in tpc1-2 mutant leaves. However, *TPC1* is required for ROS production in roots in response to salt stress [121], and heterologous expression of *AtTPC1* in *N. tabacum* BY-2 cells showed that H\(_2\)O\(_2\)-induced [Ca\(^{2+}\)\(_{\text{cyt}}\) elevations may also involve *TPC1* [670]. Furthermore, plant redox status might influence TPC1 activity [703]. Thus, although the function of TPC1 is interconnected with ROS production, the biological relevance of this might be limited to specific tissues and/or systemic signalling.
Interestingly, overexpression of TPC1 resulted in a larger ROS burst in both the 35S::TPC1 lines tested (Figure 4.7b and c), despite TPC1 not being required for aphid extract-induced ROS production (Figure 4.7d). It is also aphid-extract specific, as no difference in ROS production was observed in the 35S::TPC1 lines treated with water (Figure 4.7a). A similar increase in ROS production in response to a fungal elicitor can be achieved in O. sativa by overexpressing OsTPC1 [659], although a comparable result cannot be achieved by overexpressing TPC1 in Arabidopsis during bacterial infection [122]. TPC1 overexpression has no effect on the feeding site Ca\(^{2+}\) burst during aphid attack (Figure 4.5), although it is worth noting that Ca\(^{2+}\) was not analysed in response to aphid extract nor over several hours, as was conducted for ROS. Given the considerable positive feedback between Ca\(^{2+}\), TPC1 and ROS [119, 121, 691, 692] it is not surprising that overexpression of TPC1 could result in enhanced ROS accumulation in response to stress.

In addition to ROS production, defence marker gene induction after aphid extract application was also assessed. FRK1 is a marker gene for early defence signalling [151] and the MAPK pathway [201, 394]. Incubation of leaf disks with aphid extract for 1 h resulted in significant upregulation of this gene in Col-0 plants (Figure 4.19a) as seen previously [349]. However, this induction was compromised in the tpc1-2 mutant (Figure 4.19a), suggesting that TPC1 and intracellular Ca\(^{2+}\) signalling may be required for full MAPK activation during plant-aphid interactions. Indeed, MAPK activation in response to the fungal elicitor xylanase is significantly reduced in O. sativa if OsTPC1 transcription is abolished [659]. Furthermore, MAPK activation in P. crispum in response to Phytophthora sojae is promoted by ion fluxes [693] and pharmacological inhibition of Ca\(^{2+}\) flux decreases MAPK activation in response to oomycetes [694] and fungi [372].

Loss of the TPC1 transcript also significantly attenuated aphid-induced PAD3 induction (Figure 4.19c), suggesting that TPC1 might also play a role in camalexin biosynthesis. Conversely, TPC1 expression has no effect on CYP81F2 and therefore the glucosinolate pathway (Figure 4.19b). A connection between Ca\(^{2+}\) and camalexin production has not been established to the authors knowledge, however camalexin production in response to fungi is MAPK-dependent [704], and given the considerable involvement of MAPKs in PTI [354, 360, 387-391] it is possible the altered MAPK activation in tpc1-2 may result in altered PAD3 induction. Furthermore, in cultured O. sativa cells phytoalexin accumulation is suppressed if OsTPC1 transcription is abolished [671]. Given the anti-aphid role of camalexin [304, 306, 349], the data
collected in the present study suggest the TPC1 expression might have an effect on the final toxicity status of the plant.

4.3.3 **TPC1 promotes phloem feeding but has no effect on most aphid feeding behaviours**

The vast majority of aphid feeding behaviours were not altered in the TPC1 expression mutants (Table 4.1, Table 4.2). This included all pathway behaviours, again demonstrating that the aphid-induced Ca\(^{2+}\) burst is not related to altered feeding behaviour. Interestingly, aphids on the tpc1-2 mutant exhibited a behaviour not seen on the wildtype: instances of single phloem salivations (E1) not followed by phloem ingestion (E2). Such behaviour suggests that the aphid cannot successfully establish feeding, despite the potential release of effectors into the phloem [282, 297, 705], and is often observed during incompatible interactions [300-303]. Such problems with phloem acceptance are sometimes the result of R-gene recognition and ETI [281, 640, 706]. However, single phloem salivations were also observed in the 35S::TPC1 5.6 line (Figure 4.9b), suggesting that any perturbation in TPC1 expression alters this behaviour. Furthermore, this behaviour was also seen in the wildtype plants during the BAK1 EPG experiment (Table B2, behaviour 28, Chapter 3). Consequently, the significance of this behaviour is likely to be small.

The number of sustained (>10 min) phloem ingestions was significantly higher on 35S::TPC1 5.6. These data imply that despite the potential role of Ca\(^{2+}\) and TPC1 in activation of plant defence, TPC1 expression may be beneficial to the aphid. This unexpected result is similar to that observed with the bak1-5 mutant, where loss of BAK1 appeared to be beneficial to phloem feeding (Figure 3.17, Chapter 3). Both BAK1 and TPC1 are required for the aphid-induced Ca\(^{2+}\) burst, and might even act in the same pathway. As such, it is conceivable that the hypothesis outlined in Chapter 3 (Section 3.3.6), whereby the aphid is monitoring or suppressing the plant defence network via this pathway, might also involve TPC1. A result of this might be that disruption of this pathway (e.g. loss of BAK1 or TPC1) is detrimental to *M. persicae*, whilst enhancement (e.g. overexpression of TPC1) is beneficial. It remains to be tested whether TPC1 lies within the BAK1 pathway, or whether effectors such as Mp10 are acting in a TPC1-dependent manner.

Alternatively, Ca\(^{2+}\) signalling via TPC1 could be a negative regulator of plant defence against aphids. Indeed, loss of the PM Ca\(^{2+}\) channel CNGC2 leads to
constitutive defence activation [79, 377]. However, this is contrary to the tpc1-2 and 35S::TPC1 phenotypes outlined in Section 4.3.2, where TPC1 expression appears to promote defence activation. It could also be argued that the EPG data show that TPC1 expression has very little effect on aphid feeding, consistent with the lack of an effect on aphid fecundity (Figure 4.10a and b). The total and average time spent feeding from the phloem was the same in all lines despite the altered number of occurrences (Table 4.1 and Table 4.2 behaviours 30, 31, 33 and 34). This hypothesis is further strengthened by the lack of a difference in basal resistance to aphids seen on the TPC1 expression lines (Section 4.3.4- see below).

4.3.4 TPC1 expression affects IR but not basal resistance to aphids

Despite the role of TPC1 in aphid-induced Ca\(^{2+}\) bursts (Section 4.3.1) and defence induction in response to aphid extract (Section 4.3.2), TPC1 expression has little effect on aphid performance. M. persicae fecundity was not significantly altered on the tpc1-2 (Figure 4.10a) or 35S::TPC1 5.6 (Figure 4.10b) lines, and the aphids showed no host preference for plants based on TPC1 expression (Figure 4.10c). Therefore, the altered defence signalling mediated by TPC1 had no effect on basal resistance to aphids. M. persicae is compatible with Arabidopsis, feeding successfully from the plant, and this compatibility is most likely mediated by effectors [276, 277, 500-502, 549, 560]. Thus, during the M. persicae-Arabidopsis interaction plant defence is already suppressed, and therefore experiential disruption of defence signalling will most likely have little effect. Indeed, despite BAK1’s role in perception of aphids, abolishing BAK1 transcription has no effect on M. persicae fecundity [349]. This might also explain the lack of a strong feeding behaviour phenotype on the tpc1-2 mutant (Section 4.3.3).

To counter this issue, the performance of an incompatible aphid, A. pisum, was also assessed on the TPC1 expression lines. Use of incompatible aphids can help identify components of non-host resistance in Arabidopsis. For example, the incompatible species R. padi induces a larger plant ROS burst than M. persicae [283]. A. pisum extract application to Arabidopsis leaf disks results in induction of FRK1, CYP81F2 and PAD3 comparable to M. persicae extract [349], however A. pisum cannot survive on Arabidopsis [555]. This survival is increased significantly on the bak1-5 mutant, although the aphid still remains incompatible [349]. Thus non-host
resistance is partly regulated by BAK1. To test if the same was true for TPC1, the same survival assay was conducted on the tpc1-2 and 35S::TPC1 5.6 lines. However, no difference in A. pisum survival was observed (Figure 4.10d). This suggests that signalling mediated by TPC1 is not significantly regulating successful plant defence against non-host aphids. Alternatively, it is conceivable that like M. persicae, A. pisum is capable of suppressing Ca^{2+} signalling successfully and non-host resistance against this species might be Ca^{2+}-independent.

Since basal resistance to aphids was not altered on the TPC1 expression lines, IR to M. persicae was also investigated. Previous exposure to a pest can lead to priming of plant defence against future challenge [527, 534, 629, 632]. This is the case for both pathogens [438, 526, 533, 634] and insects [464, 473, 474, 707], with the IR capable of being very broad-spectrum [431]. IR to M. persicae extract is dependent on aphid-perception by BAK1 [349]. Furthermore, the camalexin biosynthesis pathway is also required for successful IR against M. persicae, as abolishing transcription of CYP79B2/CYP79B3 or PAD3 also abolishes IR [349]. Pre-treatment of leaves with 50 M. persicae adults resulted in IR in Col-0 local leaves (Figure 4.8) as seen previously (Figure 3.9, Chapter 3 [464]). The IR in tpc1-2 mutants was equal to wildtype (Figure 4.8), demonstrating that Ca^{2+} signalling via TPC1 is not required for IR to M. persicae. However, overexpression of TPC1 abolished IR (Figure 4.8). This agrees with the hypothesis outlined in Section 4.3.3; that TPC1 expression is beneficial to the aphid. This appears to be independent of the increased ROS production in the 35S::TPC1 lines (Figure 4.7b and Figure 4.7c). It might be that TPC1 overexpression has an effect on other signalling pathways important in IR, such as JA [473, 474, 529, 530, 708-710], however the lack detectable phenotypes in 35S::TPC1 plants, combined with the lack of knowledge surrounding the mechanism that regulates IR against aphids, mean that further experiments are required to investigate this phenomenon.
4.3.5 Over-activating TPC1 significantly alters the plant Ca\(^{2+}\) signal

Over-activation of TPC1 by the fou2 mutation did not significantly affect the amplitude of the feeding site Ca\(^{2+}\) burst (Figure 4.11c), however the burst exhibited greater variability (Figure 4.11b) than the wildtype (Figure 4.12a). Unlike overexpression of TPC1, over-activation did not affect the speed of the signal (Figure 4.12b). However, large systemic aphid-induced signals were detected in 35S::GCAMP3 x fou2 lateral tissue (Figure 4.13c, Video 4.3). Thus, whilst TPC1 abundance affects the speed of signal propagation (Figure 4.6b, [7]), alterations to ion channel activity result in systemic signalling in response M. persicae. This fits with the theory that TPC1 regulation during stress is mainly post-transcriptional [416].

Ions including Ca\(^{2+}\) are thought to underlie systemic stress signalling in plants [7, 103, 121, 123]. Thus, if M. persicae is suppressing systemic Ca\(^{2+}\) release as part of its successful colonisation of the plant, then over-activation of TPC1 might counteract this. To test this hypothesis, it would be interesting to investigate whether a non-adapted aphid such as A. pisum induces systemic Ca\(^{2+}\) bursts in Arabidopsis. In addition, it is worth noting that the JA-dependent phenotype of fou2 does not occur within the first 2 weeks of growth, with LOX activity and physical appearance comparable to wildtype plants during this period [550]. Therefore, despite JA’s role in systemic signalling, [530, 543-546] the Ca\(^{2+}\) phenotype observed in the 9-11 day old 35S::GCAMP3 seedlings used in the present study is likely to be independent of JA and might represent the first non-JA fou2 phenotype.

4.3.6 Over-activating TPC1 enhances plant resistance to M. persicae through a JA-dependent mechanism

Over-activation of TPC1 resulted in a significant negative effect on M. persicae fecundity (Figure 4.15a). This phenotype was due to the upregulated JA production in the fou2 mutant [550], as fecundity was rescued on the fou2/aos double mutant (Figure 4.15a). The fou2 mutation has been shown to reduce fecundity of the Brassicaceae specialist aphid B. brassicae [430], although the role of JA was not explicitly investigated through use of the fou2/aos line. This fou2 phenotype agrees with evidence in the literature suggesting that JA is detrimental to
aphids. LOX2 transcription is increased 2-fold by *M. persicae* infestation [499] and *M. persicae* fecundity is significantly reduced on the JA-overproduction mutant cev1. Furthermore, application of MeJA to wildtype plants also reduces aphid performance [307, 429]. The fou2 mutation induces several defence-related transcripts in a JA-dependent manner [552], and this results in constitutive defence activation [430, 550]. It is therefore not surprising that *M. persicae* performance is compromised on this mutant. Interestingly, despite the significant reduction in *B. brassicae* fecundity observed on the fou2 mutant, the feeding behaviour of this aphid is not altered [430], casting doubt on the use of feeding behaviour as a measure of aphid success.

Contrary to the fou2 phenotype, abolition of JA signalling in the coi1 mutant appears to increase *M. persicae* and *B. brassicae* fecundity [307]. However, abolishing AOS transcription had no effect on *M. persicae* fecundity in the current study (Figure 4.15a), nor on the fecundity of *B. brassicae* [430], despite the number of defence-related transcripts that are compromised in the aos mutant. The disparity between the coi1 and aos phenotypes may be due to an additional mutation in the coi1-6 mutant line used by Ellis et al., [307] that alters callose production [711], a key anti-aphid defence [430]. Indeed, rearing *M. persicae* a COI1 mutant free of this pleiotropic effect (coi1-35) or the jar1 mutant (Figure 4.1) [712] results in no effect on aphid fecundity [306]. These results suggest either that JA biosynthesis is not one of the main determinants of *M. persicae* success, or that *M. persicae* successfully downregulates JA in wildtype plants to a level comparable to the aos mutant.

4.3.7 Induction of MAPKs, camalexin and glucosinolates by *M. persicae* is independent of JA

FRK1 induction in response to *M. persicae* extract was not significantly altered on the aos or fou2/aos lines (Figure 4.20a), indicating that neither JA nor JA-independent TPC1 over-activation have an effect on MAPK activation in response to *M. persicae*. MAPK activation lies upstream of JA production in response to wounding [392] and herbivory [397], and the results of the present study indicate that during plant-aphid interactions there is not significant feedback on MAPKs by JA signalling. Again this could be because of the relatively low induction of JA signalling by aphids, or the suppression of this pathway by the insect. It is also worth noting that *FRK1* induction is only a marker for the MAPK pathway, MAPK activation itself in response to *M. persicae* was not tested.
Aphid extract-induced expression of \textit{PAD3} was also not altered in the \textit{aos} or \textit{fou2/aos} lines (Figure 4.20c), suggesting that camalexin production is JA-independent and not affected by JA-independent TPC1 over-activation. This is interesting given the role of TPC1 expression in \textit{PAD3} induction (Figure 4.19c), and implies that if camalexin production is partially TPC1-dependent, it might already be at its maximal level in wildtype plants. Camalexin production in response to the fungus \textit{B. cinerea} is dependent on JA and compromised in \textit{aos}, \textit{coi1} and \textit{aos/coi1} mutants, and \textit{PAD3} induction is also lower in \textit{coi1} [713]. However, whilst JA may play a role in the accumulation of camalexin in some defence contexts, this does not appear to be the case in the \textit{M. persicae}-Arabidopsis interaction.

\textit{CYP81F2} expression was also not compromised in the \textit{aos} mutant (Figure 4.20b), suggesting glucosinolate production in response to aphids is also JA-independent. This agrees with work by Mewis et al. [428], who observed that the levels of aliphatic and indolyl glucosinolates induced by \textit{M. persicae} are not altered in the \textit{coi1} mutant. However, \textit{CYP81F2} induction was significantly attenuated in the \textit{fou2/aos} line (Figure 4.20b). This implies that TPC1 over-activation, independently of JA, is capable of suppressing this response, despite TPC1 itself not being required for glucosinolate production (Figure 17b). Consequently, it could be hypothesised that increasing ion flux through TPC1 might have an effect on JA-independent pathways upstream of glucosinolate production, potentially involving those based on Ca$^{2+}$ [696], ROS [697] and MAPKs [698].

\subsection*{4.3.8 TPC1 over-activation reduces \textit{A. pisum} survival independently of JA}

To test the role of TPC1 activity and JA in non-host resistance, survival of the Arabidopsis-incompatible species \textit{A. pisum} was assessed on the \textit{fou2} and \textit{aos} lines. As with the compatible generalist \textit{M. persicae} (Section 4.3.6) and the compatible specialist \textit{B. brassicae} [430], over-activation of TPC1 by the \textit{fou2} mutation significantly reduced \textit{A. pisum} performance, whilst abolition of JA production (\textit{aos}) had no effect (Figure 4.15b). Thus, although JA plays a role in non-host resistance to microbial pathogens [714-717], the same may not be true for aphids. Further highlighting the independence of \textit{A. pisum} performance and JA, aphid survival was also compromised on \textit{fou2/aos} (Figure 4.15b), suggesting that the reduction in survival mediated by \textit{fou2} is JA-independent. Interestingly, this reduction in survival
is greater than the reduction observed on the fou2 single mutant. This implies that JA may be beneficial to the aphid when there is increased ion flux through TPC1.

In summary, over-activation of TPC1 increases Arabidopsis resistance against this aphid species - another gain-of-function role for the fou2 mutation. Altered ion flux through TPC1 could be affecting various pathways related to non-host resistance, including Ca2+ [718], ROS [719-721], MAPKs [722], and SA [721, 723, 724] and ET [725], all of which have an effect on defence. Dissection of the mechanism by which fou2 mediates non-host resistance will involve specific analysis of these pathways in response to A. pisum on the fou2 and fou2/aos lines.

4.3.9 GLR3.3 and GLR3.6 mediate extracellular Ca2+ release during aphid feeding

An aphid-induced Ca2+ burst is still detectable in the tpc1-2 mutant relative to untreated control leaves (Figure 4.3b), which implies that an additional mechanism of Ca2+ release is involved. Extracellular Ca2+ represents a large pool of Ca2+ in plants, with release into the cytosol mediated by CNGCs and GLRs [1, 2]. Since GLR3.3 and GLR3.6 have been implicated in the response to herbivory [103, 541], their role in plant-aphid interactions was addressed. Abolishing transcription of both GLRs in the 35S::GCAMP3 x glr3.3/glr3.6 line abolished the aphid-induced Ca2+ burst (Figure 4.16b). This suggests that TPC1-mediated Ca2+ release in response to aphids lies downstream of extracellular Ca2+ influx, and is dependent on GLR3.3 and GLR3.6. This agrees with work showing TPC1 is activated by increased [Ca2+]_cyt [112, 114, 115] and its suggested role in CICR [119, 121, 536, 537]. The data presented by the current study points to the GLRs as potential mediators of the extracellular Ca2+ influx during this process. Both GLR3.3 and GLR3.6 are good candidates for having a role in CICR, as like TPC1 they mediate systemic signalling in response to wounding [103, 104] and the PM channels involved in CICR still unknown.

An influx of Ca2+ from the extracellular space occurs during plant-pathogen interactions [371, 373] that can blocked by PM-channel inhibitors [17, 54, 372]. Ren et al. [584] measured net Ca2+ flux in the extracellular space of N. tabacum leaf disks after M. persicae feeding using Ca2+-selective microelectrodes. They found that there was a net Ca2+ influx into cells pre-treated with aphids verses non-treated leaf disks, agreeing with the finding of the present study that extracellular Ca2+ influx is involved in this interaction.
In addition to its role in wound-induced signalling, GLR3.3 also mediates DAMP perception [688], and it is therefore tempting to speculate that damage caused by aphid probing, including the release of glutamate, may activate a GLR-mediated Ca^{2+} burst. However, the loss of a feeding site Ca^{2+} burst distinguishable from untreated control leaves in the 35S::GCAMP3 x glr3.3/3.6 line mirrors the phenotype in the 35S::GCAMP3 x bak1-5 line (Figure 3.13, Chapter 3). This implies that aphid perception and PTI activation by BAK1 also lies upstream of TPC1-mediated Ca^{2+} release. The loss of the Ca^{2+} signal in both the glr3.3/3.6 and bak1-5 mutants suggests that they do not function in independent pathways and that BAK1 might lie upstream of [Ca^{2+}]_{cyt} elevations and GLR activation. Thus, aphid-induced Ca^{2+} release is most likely stimulated by aphid HAMP perception. GLRs have been previously implicated in PAMP perception, with iGluR inhibitors attenuating fgl22- elg18- and chitin-induced [Ca^{2+}]_{cyt} elevations [201]. Furthermore, it is possible that glutamate itself is released from cells in response to PAMPs or HAMPs. The fungal PAMP cryptogein induces an extracellular rise in glutamate that is driven by exocytosis, demonstrated through the use of the exocytosis inhibitors brefeldin A and cytochalasin [726]. Moreover, these inhibitors also block the [Ca^{2+}]_{cyt} elevation in response to the PAMP [726], suggesting that glutamate release from the cell is downstream of PAMP perception [92]. This might provide a mechanism by which BAK1-mediated aphid HAMP perception could stimulate GLR activation; however to the author’s knowledge no direct link between BAK1 and GLRs or glutamate has yet been established in the literature.

4.3.10 GLR3.3/3.6 expression has no effect on plant defence responses or aphid fecundity

ROS production (Figure 4.18a) and induction of FRK1 (Figure 4.19a), CYP81F2 (Figure 4.19b) and PAD3 (Figure 4.19c) in response to aphid extract was unaltered in the glr3.3/3.6 mutant. Therefore the GLR-mediated Ca^{2+} burst to aphid feeding might not have an effect on downstream defence induction. Nevertheless, ROS production in response to M. persicae extract can be blocked by PM Ca^{2+} channel inhibitors [502], implying extracellular Ca^{2+} entry does play a role. These unidentified channels may also generate the BAK1/GLR/TPC1 independent Ca^{2+} signals that can be observed in some samples upon aphid feeding (Figure 3.14, Chapter 3, Figure 4.4, Figure 4.17).
GLR3.3 is involved in DAMP-elicited ROS production and transcription of *RBOHD* and the defence marker *PR1* [688]. Whilst extracellular Ca\(^{2+}\) has been implicated in the plant response to fungal attack [372], cryptogein-elicited ROS production is not affected by iGluR antagonists that abolish cryptogein-elicited [Ca\(^{2+}\)]\(_{cyt}\) elevations [726]. Thus, GLR involvement in ROS production may be DAMP-specific. Conversely, aphid extract, which contains HAMPs, but will not elicit DAMP production, induces BAK1-mediated ROS production (Figure 4.18a, [349]) and is therefore HAMP-specific. This agrees with the hypothesis that plant defence against aphids is based on HAMP not DAMP perception. This can only be demonstrated unequivocally once ROS production in response to live aphid feeding has been assessed in GLR and DAMP perception mutants.

FRK1 induction in response to flg22, elf18 and chitin can be attenuated by iGluR antagonists [201], suggesting that GLRs might play a role in MAPK activation during anti-microbial defence. However, the specific GLRs involved were not identified, and the results of the present study indicate that GLR3.3 and GLR3.6 are not involved in aphid-induced MAPK activation. The successful induction of *PAD3* and *CYP81F2* in the *glr3.3*/*glr3.6* mutant suggests that secondary metabolite production is not altered by the aphid-induced Ca\(^{2+}\) burst. Indeed, a sustained Ca\(^{2+}\) burst is required for phytoalexin production in response to pathogens [371], whilst the aphid-induced Ca\(^{2+}\) burst appears to be more transient. The results of the present study also imply that intracellular Ca\(^{2+}\) release mediated by TPC1 plays a role in *FRK1* and *PAD3* induction (Figure 4.19a and 4.19c), but extracellular Ca\(^{2+}\) entry via through GLRs does not.

In addition, *M. persicae* fecundity was unaltered on *glr3.3*/*glr3.6* (Figure 4.18b). The *glr3.3* mutant is more susceptible to biotrophic pathogens than necrotrophic pathogens, and defence against biotrophs is believed to be mediated by SA [688]. Thus one might expect SA signalling and therefore *M. persicae* fecundity to be compromised in the *glr3.3* mutant. However, as this is not the case these results further emphasise that the *M. persicae*-elicited GLR/TPC1-mediated Ca\(^{2+}\) burst characterised in this study does not affect aphid fitness. Again, this is not surprising given that Arabidopsis is a compatible host and suggests that plant susceptibility to *M. persicae* cannot be further increased by loss of the Ca\(^{2+}\) signal.
4.3.11 BAK1 is involved in phytoalexin production in response to aphids

Analysis of the defence gene induction in the bak1-5 mutant also presented some interesting findings. Firstly, FRK1 induction after 1 h was not attenuated in this mutant, which suggests MAPK activation in response to M. persicae is independent of BAK1, whilst being modulated downstream in defence by TPC1 (Figure 4.19a). This is contrary to the observation that FRK1 induction is BAK1-dependent in response to a range of bacterial PAMPs [481]. However, it is in agreement with experiments showing that fungal and oomycete PAMPs induce FRK1 independently of BAK1 [481] and that caterpillar-induced MAPK activation in N. tabacum is also independent of BAK1 [362]. Interestingly, live M. persicae feeding induces a downregulation of FRK1 after 5 h [365], suggesting that over time the initial induction of FRK1 is suppressed by compatible aphid species. This difference might be the result of using of live feeding as opposed to aphid extract. Indeed, B. brassicae extract induces CYP81F2 expression [349], whilst infestation with live B. brassicae actually reduces glucosinolate levels in leaves [304].

PAD3 and CYP81F2 induction was attenuated on the bak1-5 mutant (Figure 4.19b and 4.19c). This is contrary to the previous observation that PAD3 induction in response to M. persicae extract is unaltered in the bak1-5 mutant [349, 502]. However, in the current study PAD3 expression in response to aphid extract in the bak1-5 mutant was still 30-fold higher relative to the mock-treated controls (Figure 4.19c), and therefore there is clearly still some level of PAD3 induction occurring. However, these findings do suggest a role for the BAK1 pathway in phytoalexin production in response to aphids. In agreement with this, glucosinolate production as a result of nematode feeding is BAK1-dependent [727], with use of the bak1-5 mutant in both that study and the current one demonstrating that this phenotype is not related to brassinosteroid regulation of glucosinolates [728]. Furthermore, the wildtype level of CYP81F2 induction in the tpc1-2 and glr3.3/glr3.6 mutants (Figure 4.19b) suggests that the BAK1-mediated regulation of glucosinolates is independent of Ca$^{2+}$ signalling.

The difference in the dependency of Ca$^{2+}$ release and defence gene induction on the GLRs, TPC1 and BAK1 could also be a result of the different systems used to study them. The Ca$^{2+}$ bursts were characterised in response to live aphid feeding, whilst ROS and defence gene induction was assessed in relation to aphid extract.
application. Thus, the two were addressing slightly different questions. It will be interesting to see how live aphid feeding modulates defence in the mutants characterised in this study.
This page is intentionally left blank
Chapter 5: Investigating the role of CIPKs in plant-aphid interactions
5.1 Introduction

5.1.1 CIPKs act downstream of Ca\(^{2+}\) release

Downstream of Ca\(^{2+}\) release, several different families of proteins are responsible for sensing the rise in \([\text{Ca}^{2+}]_{\text{cyt}}\) and translating it into a physiologically-relevant signal. Amongst these are the CIPKs (reviewed in [167]). In order to investigate whether Ca\(^{2+}\) acts as a signal in plant-aphid interactions, an RNA-seq screen conducted in the Hogenhout lab (JIC) to identify aphid-responsive genes implicated in Ca\(^{2+}\) signalling. Many differentially regulated transcripts were detected upon infestation with aphids, and this included CIPK3. There are five splice variants of CIPK3 (Figure 5.1) and CIPK3.2 was of particular interest because expression was regulated in opposite directions depending on the species of aphid feeding on the plant.

CIPKs are a group of serine/threonine protein kinases that specifically interact with the CBLs through the CIPK NAF domain [159] (Figure 5.1). An interaction between the NAF domain and the kinase activation domain render CIPKs auto-inhibitory, with phosphorylation and/or CBL binding required to relieve this [160]. CBLs have no inherent activity of their own [136, 155, 167]. As a result, CBLs and CIPKs work as partners, with CBLs acting as the Ca\(^{2+}\)-sensing half of the partnership [156] and the CIPK transducing this signal through phosphorylation of target proteins [157, 158]. CBLs and CIPKs are inherently promiscuous and can act together in a variety of partnerships, giving rise to a wide range of responses [729] and functional redundancy [164-166]. Currently, CIPK3 has been demonstrated to interact physically with CBL2, CBL3 and CBL9 [165, 166, 176].

5.1.2 CIPK3 functions in the ABA-mediated plant response to stress

The function of CIPK3 has only been studied by a handful of groups. The first reported role of CIPK3 was in response to abiotic stress (including cold, drought and salt) as well as wounding, which result in accumulation of the CIPK3 transcript [175]. Furthermore, seedlings of the Arabidopsis mutant cipk3-1, which has abolished CIPK3 expression, exhibit reduced germination under osmotic stress, and showed reduced
expression of the abiotic stress markers *KINASE 1 (KIN1)*, *KIN2* and *RESPONSIVE TO DESICCATION 29A (RD29A)* [175, 176].

There is considerable evidence that CIPK3 acts in the ABA pathway. Seedlings of *cipk3-1* mutants are hypersensitive to high levels of ABA, a plant hormone critical for many plant stress responses. The ABA synthesis inhibitor norflurazon can rescue the *cipk3-1* osmotic stress phenotype, demonstrating that this phenotype is ABA-dependent [175]. Furthermore, expression of *ABA REPRESSOR 1 (ABR1)* is significantly reduced in *cipk3-1* mutants [730] and there appears to be a direct interaction between CIPK3 and ABF2 [731], a protein involved in the activation of ABA-inducible genes [732]. The ABA pathway is not only common to abiotic stresses, but also may play a role during wounding [172, 173] and pathogen defence [432, 439, 440]. Thus, like Ca\(^{2+}\), ABA acts a common signalling molecule connecting a range of plant stress responses.

In ABA-induced stomatal closure, there are Ca\(^{2+}\)-independent components mediated by OPEN STOMATA 1 (OST1) and a Ca\(^{2+}\)-dependent pathway mediated by CDPKs including Ca\(^{2+}\)-DEPENDENT PROTEIN KINASE 6 (CPK6) (Figure 5.1) [733]. Furthermore, ABA stimulates [Ca\(^{2+}\)]\(_{cyt}\) elevations in guard cells [47, 48, 734-738], thought to be mediated through a priming of Ca\(^{2+}\) channel and decoders [169]. As a result, there is a close association between the ABA and Ca\(^{2+}\) signalling pathways. The *cipk3-1* phenotype implies that CIPK3 is a negative regulator of ABA accumulation (Figure 5.2), suggesting CIPK3 may act as another protein involved in crosstalk between ABA and Ca\(^{2+}\). However, the link between Ca\(^{2+}\) and ABA in non-stomatal cells during biotic interactions is still unclear.

CIPKs are characterised by several domains, including the NAF domain (see above) and a protein phosphatase interacting (PPI) domain, responsible for binding type 2c protein phosphatases (PP2Cs) [739] (Figure 5.1). PP2Cs have been suggested to act as inhibitors of CIPKs, with CBLs hypothesised to bind PP2Cs in order to inactivate them and rescue CIPK activity [161]. PP2Cs are both negative regulators of ABA [740, 741] and negatively regulated by ABA [742]. This places PP2Cs as additional components in the CIPK-CBL network, and provides another link between this network and ABA signalling (Figure 5.2).
Figure E2: The Arabidopsis abscisic acid (ABA) pathway has calcium-independent and calcium-dependent components. ABA is perceived by PYRABACTIN RESISTANCE 1/REGULATORY COMPONENTS OF ABA RECEPTORS (PYR/RCARs) that inhibit PP2Cs. This relieves PP2C repression of OST1 and promotes ABA-mediated responses, independently of Ca$^{2+}$. In addition, Ca$^{2+}$ activates CPK6 that in turn activates ABA-mediated responses. In both cases the responses are partially governed by SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1). CIPK3 acts as a negative regulator of ABA accumulation. PP2Cs are hypothesised to inhibit CPK6 and CIPK3, but there is no direct experimental evidence for this (represented by a ?). Adapted from Laanemets et al. [733].

Figure 5.1: CIPK3 domains and gene models. Exons (solid boxes) and introns (lines) of the full length gene (CIPK3.3) are indicated. AD = kinase activation domain. NAF = NAF domain, required for interaction with CBLs. PPI = protein phosphatase interaction domain, required for interaction with PP2Cs. An additional 18 nucleotides in CIPK3.2 (denoted by *) lead to a premature stop codon. Adapted from Kim et al. [175].
5.1.3 **ABA is implicated in the plant response to aphid attack**

ABA, along with several other phytohormones, is believed to act in the regulation of plant-aphid interactions. It is hypothesised that in a compatible interaction such as *M. persicae* and Arabidopsis, the aphid induces an increase in ABA and SA that antagonises JA, a hormone known to have a detrimental effect on aphids [307, 427, 428, 435, 743]. Supporting this, *M. persicae* infestation causes an accumulation of ABA [437], and *M. persicae* fecundity is lower on the ABA synthesis mutants *ABA DEFICIENT 1* (*aba1*) [437] and *aba2* [442]. Furthermore, *M. persicae* avoids *aba1* and *aba2* as hosts if given a choice [437].

Conversely, ABA has been suggested to promote JA production via the JA signalling transcription factor JASMONATE INSENSITIVE 1 (JIN1) [744]. In addition, abolishing transcription of the ABA signalling repressor and CIPK-interacting protein *ABA INSENSITIVE 1* (*ABI1*) results in lower *M. persicae* fecundity, and disrupting the ABA signalling network through mutation of *ABI4* increases *M. persicae* fecundity [442]. It is also worth noting that ABA is involved in production of ROS [745, 746] and the deposition of callose [747], both of which are part of the plant defence response to aphids [349].

Consequently, the role of ABA in plant-aphid interactions is far from clear. Indeed, ABA signalling-related genes are both activated and repressed by aphid infestation [442, 748]. Furthermore, it may be that ABA plays a different role in compatible vs incompatible plant-aphid interactions, with further exploration into what contributes to non-host resistance in plant-aphid interactions still required [749].

5.1.4 **CIPK3 may act independently of ABA**

CIPK3 might also play a role in the response to stress independently of ABA. Indeed, in Arabidopsis there is an ABA-independent salt stress response mediated through DRE-BINDING PROTEIN 2A (DREB2A) [750-752]. Furthermore, *RD29A*, a cold stress marker gene known to be ABA-independent [753] exhibits altered expression in *cipk3-1* [175]. It is therefore possible that CIPK3 acts as cross talk node between Ca²⁺, ABA-dependent, and ABA-independent pathways [175].
5.1.5 CIPK3 is part of a four-member family of CIPKs

Phylogenetically, CIPK3 lies within clade I of the CIPK family, along with CIPK9, CIPK23 and CIPK26 (Figure 5.3), which together act in the regulation of Mg^{2+} sequestration (Figure 1.4, Chapter 1) [165, 166]. These genes act redundantly in this response, as only in double, triple and quadruple mutants can a phenotype be observed [165, 166]. Additionally, all four proteins interact with CBL2 and CBL3, which recruits them to the tonoplast membrane [165]. As a result, the role of CIPK3 may be closely associated with that of CIPK9, CIPK23 and CIPK26.

Individually, these clade I CIPKs are involved in a multitude of plant processes. CIPK9 and CIPK23 have been implicated in potassium homeostasis and drought tolerance [183, 187, 754]. CIPK23 is also thought to act in nitrogen sensing [189]. CIPK26 has been implicated in ABA signalling through interactions with ABI1, ABI2 and ABI5 [166, 755] as well as in ROS production [691, 692]. The interplay and inter-dependence between CIPKs in these processes is still being unravelled.

![Figure 5.3: Phylogenetic grouping of the 26 CIPKs in Arabidopsis based on amino acid sequence.](image)

CIPK3, 9, 23 and 26 form a monophyletic CIPK group named clade I. Taken from Tang et al. [165].
5.1.6 Aims of this chapter

This chapter will outline work investigating the downstream components of Ca2+ signalling in plant-aphid interactions, specifically the role of CIPK3 and related genes CIPK9, CIPK23 and CIPK26. This investigation was conducted using a combination of aphid performance and plant physiological assays. The aim was to complement the work that characterised an aphid-induced Ca2+ burst in Arabidopsis (Chapters 3 and 4) by investigating the biological relevance of Ca2+ decoding mechanisms in defence against aphids.

5.1.7 Materials and methods

The methods used in this chapter are detailed in Chapter 2. Information on the RNAseq can be found in Section 2.11, gene synthesis and cloning in Section 2.6, aphid performance assays (including fecundity, survival, choice tests) in Section 2.9, and Arabidopsis ROS and germination assays in Section 2.10.
5.2 Results

5.2.1 CIPK3.2 is differentially expressed in response to feeding by different aphid species

RNA-seq was conducted on aphid-infested Arabidopsis leaves (accession: Col-0) in order to identify genes that were differentially regulated upon aphid attack. These leaves were not detached from the plant, as in Chapters 3 & 4, so as to avoid confounding factors associated with wounding. Two species of aphid were used, A. pisum and M. persicae. This screen identified several aphid-responsive genes that are involved in Ca\(^{2+}\) signalling. After treatment with A. pisum, expression of various putative cation-permeable channels was altered 48 h post-infestation. These included CNGCs and GLRs, the majority of which were significantly upregulated in response to A. pisum (Table 5.1). Several downstream components of the Ca\(^{2+}\) network were also revealed to be responsive to A. pisum infestation, including CIPKs, CDPKs and CaM-related proteins (Table 5.1). Conversely, M. persicae infestation results in differential expression of far fewer genes, however the proportion of those related to Ca\(^{2+}\) signalling was similar to A. pisum (Figure 5.4). Only one channel, CNGC12, and one downstream component of the Ca\(^{2+}\) signal, CIPK3, were differentially expressed in response to M. persicae (Table 5.1).

CIPK3 was of particular interest because out of the 33,603 genes analysed, CIPK3 splice variant 2 (CIPK3.2) was the only gene that showed an opposite expression pattern in response to the two aphid species. Upon application of A. pisum, CIPK3.2 was significantly downregulated, as was CIPK3.3. Conversely, treatment with M. persicae resulted in a significant upregulation of CIPK3.2 (Figure 5.5). CIPK3.2 differs from the full-length gene (CIPK3.3) as a result of an additional 18 nucleotides in exon 11, resulting in a frame shift that creates a premature stop codon. This results in CIPK3.2 having a truncated C-terminal region relative to CIPK3.3 (Figure 5.1).
Table 5.1: Differential expression of Ca\(^{2+}\) signalling-related transcripts in response to infestation with two species of aphid (*M. persicae* and *A. pism*) for 48 h.

<table>
<thead>
<tr>
<th>AGI(^{a})</th>
<th>Expression ratio relative to control plant(^{b})</th>
<th>TAIR annotation(^{c})</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT5G15410.1</td>
<td>0.42 ns</td>
<td>DND1, ATCNGC2, CNGC2</td>
</tr>
<tr>
<td>AT2G46430.2</td>
<td>1.71 ns</td>
<td>ATCNGC3, CNGC3, CNGC3.C</td>
</tr>
<tr>
<td>AT2G46450.2</td>
<td>2.71 ns</td>
<td>CNGC12</td>
</tr>
<tr>
<td>AT2G46450.3</td>
<td>ns 0.40</td>
<td>CNGC12</td>
</tr>
<tr>
<td>AT1G05200.2</td>
<td>2.03 ns</td>
<td>ATGLR3.4, GLR3.4, GLR3</td>
</tr>
<tr>
<td>AT2G32390.1</td>
<td>5.75 ns</td>
<td>ATGLR3.5, GLR3.5, GLR6</td>
</tr>
<tr>
<td>AT4G35290.2</td>
<td>2.73 ns</td>
<td>GLUR2, GLR3.2, ATGLR3.2, ATGLUR2</td>
</tr>
<tr>
<td>AT5G57110.1</td>
<td>0.23 ns</td>
<td>ACA8, AT-ACA8</td>
</tr>
<tr>
<td>AT2G26980.2</td>
<td>0.14 5.69</td>
<td>CIPK3</td>
</tr>
<tr>
<td>AT2G26980.3</td>
<td>0.14 ns</td>
<td>CIPK3</td>
</tr>
</tbody>
</table>

\(^{a}\) Arabidopsis gene identification number. \(^{b}\) Expression ratios were calculated in comparison to uninfested plants (empty cages). Numbers reported represent genes that were significantly differentially expressed (two-fold change, padj<0.05). ns = non-significant. \(^{c}\) Database annotation of the protein product as listed on The Arabidopsis Information Resource (TAIR). Experiment conceived and conducted by Sam Mugford (Hogenhout Lab, JIC). Table compiled by T.V.
<table>
<thead>
<tr>
<th>AGI</th>
<th>Expression ratio relative to control plant</th>
<th>TAIR annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. pisum</td>
<td>M. persicae</td>
</tr>
<tr>
<td>AT3G23000.1</td>
<td>2.40</td>
<td>ns</td>
</tr>
<tr>
<td>AT5G45820.1</td>
<td>3.21</td>
<td>ns</td>
</tr>
<tr>
<td>AT4G14580.1</td>
<td>0.25</td>
<td>ns</td>
</tr>
<tr>
<td>AT5G10930.1</td>
<td>14.0</td>
<td>ns</td>
</tr>
<tr>
<td>AT5G01810.1</td>
<td>0.14</td>
<td>ns</td>
</tr>
<tr>
<td>AT5G04870.1</td>
<td>0.38</td>
<td>ns</td>
</tr>
<tr>
<td>AT2G17290.1</td>
<td>0.41</td>
<td>ns</td>
</tr>
<tr>
<td>AT1G74740.1</td>
<td>0.47</td>
<td>ns</td>
</tr>
<tr>
<td>AT2G41110.1</td>
<td>0.27</td>
<td>ns</td>
</tr>
<tr>
<td>AT2G22300.2</td>
<td>0.49</td>
<td>ns</td>
</tr>
</tbody>
</table>
Figure 5.4: Total genes differentially regulated upon infestation with two species of aphid (M. persicae or A. pisum) for 48 h.

Number of Ca$^{2+}$ signalling-related genes differentially regulated is reported in square brackets as a proportion of the total genes differentially regulated by each species. DEseq was used to determine differential expression between controls and aphid-treated samples, with a 5% false discovery rate (padj<0.05) and >two-fold change (n=10). Experiment conceived and conducted by Sam Mugford (Hogenhout Lab, JIC). Figure compiled by T.V.
Figure 5.5: Absolute gene expression of CIPK3 splice variants in response to treatment with *M. persicae*, *A. pisum* or an empty clip cage (control). Expression is represented as the log to the base 10 of the reads per kilobase of transcript per million mapped reads (RPKM), as detected by RNA-seq. DEseq was used to determine differential expression between controls and aphid treatments (asterisks), with a 5% false discovery rate (padj<0.05) and >two-fold change (n=10). Error bars show SEM. Experiment conceived and conducted by Sam Mugford (Hogenhout Lab, JIC). Figure compiled by T.V.
5.2.2 Aphid performance and plant ROS production is not altered on cipk3-1

In order to determine the biological relevance of altered CIPK3 expression, CIPK3(.2) expression was assessed in relation to beneficial or detrimental effects on either aphid species. For this, the cipk3-1 null mutant [175, 176] was used in aphid performance assays. In addition, the cipk3-1 mutant was complemented with a full-length genomic version of CIPK3 (Figure 5.6a). However, M. persicae fecundity was not altered on these lines (Figure 5.6b). In addition, the cipk3-1 mutant was complemented with the coding sequence of CIPK3.2 (Figure 5.7a), in order to produce plants expressing only this splice variant. Again, M. persicae fecundity was not altered on these lines (Figure 5.7b).

To examine more subtle effects on fecundity, the trans-generational fecundity of M. persicae was analysed over a four-week period [560]. Again, no difference on the cipk3-1 mutant was observed (Figure 5.8a). In addition, no host preference was found for cipk3-1 over the wildtype (Figure 5.8b). To assess whether CIPK3 expression had an effect on downstream defences elicited by M. persicae, ROS production in response to aphid extract was assessed on the mutant. No difference in the aphid extract-elicited burst could be detected (Figure 5.8c).

As infestation with A. pisum resulted in significant decreases in CIPK3.2 and CIPK3.3 expression (Figure 5.5), the performance of this species on cipk3-1 was also investigated. No difference in A. pisum survival was found between cipk3-1 and wildtype (Figure 5.8d).
Figure 5.6: M. persicae fecundity is not altered on cipk3-1 and cipk3-1 complementation lines.

A) cipk3-1 complemented with a genomic copy of CIPK3 expressed under its native promoter. ACTIN2 expression was used as a control. Primers: ACTIN2-RT and gCIPK3_Pand (Table 2.4). B) M. persicae fecundity over 14 days on cipk3-1 and complemented lines. L= line. Letters indicate no significant different between genotypes (Student’s t-test within GLM at p<0.05). Error bars show SEM of 24 biological replicates from 4 independent experiments.
Figure 5.7: M. persicae fecundity is not altered on CIPK3.2 complementation lines.

A) *cipk3-1* complemented with the coding sequence of CIPK3.2. ACTIN2 expression was used as a control. Primers: ACTIN2-RT and gCIPK3_Pand (Table 2.4). B) M. persicae fecundity over 14 days on CIPK3.2 complemented lines. L = line. Letters indicate no significant different between genotypes (Student’s t-test within GLM at p<0.05). Error bars show SEM of 18 biological replicates from 3 independent experiments.
Figure 5.8: Aphid performance, host choice and plant ROS production are not altered on the cipk3-1 mutant.

A) Trans-generational fecundity of *M. persicae*. Total aphid population per plant after 4 weeks is displayed. Error bars show SEM of 24 biological replicates from 4 independent experiments.

B) *M. persicae* host choice. The percentage of the total aphid population settled on each plant after a 24-hour choice period is displayed. Error bars show SEM of 24 biological replicates from 4 independent experiments.

C) ROS production (RLU) over time in response to *M. persicae* extract. Error bars show SEM of 24 biological replicates from 3 independent experiments.

D) *A. pisum* survival. Survival was averaged across the two days in which the control population (Ws-0) decreased below 50% survival. Error bars show SEM of 18 biological replicates from 3 independent experiments. Letters indicate no significant difference between genotypes (Student’s t-test within GLM at p<0.05).
5.2.3 Constitutive activation of CIPK3 had no effect on *M.*
persicae fecundity

In order to test whether CIPK3 activity had an effect on aphid performance,
the *cipk3-1* mutant was complemented with a constitutively-active version of the
enzyme (*CIPK3T183D*). By mutating a Threonine residue (Thr183) to an Aspartate
(Asp183) a 9-fold increase in kinase activity can be achieved [756]. The mutated
version of CIPK3 was transformed into the *cipk3-1* mutant by agro-infiltration (Figure
5.9a). Out of the three independent *CIPK3T183D* lines generated, only *cipk3-1/CIPK3T183D*
line 3 showed a significant reduction in *M. persicae* fecundity (Figure
5.9b). However, the *cipk3-1/CIPK3* line 3 plants were severely stunted (Figure 5.9c)
and this was not seen in the other two lines.
Figure 5.9: Constitutive activation of CIPK3 (CIPK3T183D) did not have a consistent effect on *M. persicae* fecundity.

A) RT-PCR of CIPK3T183D lines. L = line. ACTIN 2 was used as a control. Primers: ACTIN2-RT and gCIPK3_Pand (Table 2.4). B) *M. persicae* fecundity over 14 days on CIPK3T183D lines. Error bars show SEM of 18 biological replicates from 3 independent experiments. Letters indicate a significant difference between genotypes (Student’s t-test within GLM at p<0.05). C) cipk3-1/ CIPK3T183D L3 displays a severe growth phenotype. L= line.
5.2.4 Aphid performance is not altered on an alternative CIPK3 mutant, cipk3-103

The established mutant cipk3-1 was identified in the Wassilewskija (Ws) Arabidopsis ecotype [175]. However, the transcriptomic screen presented in section 5.2.1 was conducted with the Columbia (Col-0) ecotype. Thus, for consistency aphid performance was tested on a cipk3 null mutant in the Col-0 background. Several candidates were identified from the SALK and SAIL libraries, based on T-DNA insertions within CIPK3. These were named cipk3-101 (SAIL_449_B12), cipk3-102 (SALK_064491), cipk3-103 (SAIL_409_A04) and cipk3-104 (SALK_137779.25.20.X) and the position of the insertion was identified through sequencing with Lbb1.3, SAIL LB2 and CIPK3-specific primers (Table 2.3) (Figure 5.10a).

In order to assess whether the candidate mutants lacked transcription of CIPK3, RT-PCR was conducted on plants homozygous for the insertions, using primers specific to different regions along the gene (Figure 5.10a). Of these, cipk3-103 and cipk3-104 lacked transcription around the insertion site but not at other locations, whilst cipk3-102 lacked all transcription downstream of the T-DNA insertion (Figure 5.10b). cipk3-101 had no detectible alteration in CIPK3 transcription (Figure 5.10b). From this it was concluded that the cipk3-102, cipk3-103 and cipk3-104 mutants cannot produce a full-length transcript.

These candidate mutants were assessed in a phenotypic assay, based on the reduced germination seen in cipk3-1 during osmotic stress [175, 176]. However, when grown on media containing 150 mM NaCl, none exhibited reduced germination as seen for cipk3-1 (Figure 5.11). Surprisingly, one candidate, cipk3-104, exhibited increased germination (Figure 5.11).

Nevertheless, from the identified CIPK3 mutants, cipk3-103 was selected for screening aphid performance as this was the only candidate with a T-DNA insertion in an exon (Figure 5.10a). This mutant has been subsequently published by Tang et al. [165]. However, as with the cipk3-1 mutant, neither M. persicae fecundity (Figure 5.12a) nor A. pisum survival (Figure 5.12b) was altered on cipk3-103.
Figure E10: Identifying CIPK3 T-DNA insertion mutants in the Col-0 ecotype.

A) Scheme of the Arabidopsis CIPK3 gene. Exons (solid boxes) and introns (lines) are indicated. The position of the original Ws-0 insertion is shown (cipk3-1), along with the position of the Col-0 insertions identified through DNA sequencing using CIPK3-specific primers (Table 2.3). Coloured boxes indicate the position of the amplicons generated by different primer pairs used to genotype the insertion mutants (red = 101/102-US, green = 101/102-RT, blue = 103/104-RT and purple = 101/102-DS, details in Table 2.4). Adapted from Kim et al [175].

B) RT-PCR of CIPK3 insertion mutants using the CIPK3-specific primers, and TPC1 as a control gene (AtTPC1-F2 & R2, Table 2.4). Full gel provided in Figure E1 (Appendix E).
Figure 5.11: Germination success of 3-day old Arabidopsis CIPK3 candidate mutants on salt-stressed media.
Number of germinated seedlings on ¼ strength MS medium (control) and ¼ strength MS medium supplemented with 150 mM NaCl. Error bars show SEM of 9 biological replicates from 3 independent experiments. Letters indicate significant differences (Student’s t-probabilities calculated within GLM at p<0.05). Experiment conceived and designed by T.V and conducted by J.C. under supervision of T.V.
5.2.5 Abolishing transcription of a combination of clade I CIPKs negatively affects aphid fecundity

The possible roles of other genes in the CIPK3 pathway on plant-aphid interactions was also investigated. *M. persicae* fecundity was assessed on null mutants of *ABF2* and *PP2CA*, and was not significantly different to wildtype in either case (Figure 5.13a). Furthermore, in order to determine whether *CIPK3* acts redundantly with other closely-related CIPKs, *M. persicae* fecundity on Arabidopsis mutants lacking a combination of *CIPK3*, *CIPK9*, *CIPK23* and *CIPK26* was assessed. Mutation of *CIPK26* in addition to *CIPK3* had no effect on aphid fecundity. However, on plants lacking both *CIPK9* and *CIPK23* transcription, *M. persicae* fecundity was significantly reduced. In the quadruple mutant *cipk3/9/23/26* this negative effect on fecundity was even stronger (Figure 5.13b).

Figure 5.12: Aphid performance is not altered on *cipk3-103*.
A) *M. persicae* fecundity over 14 days. Error bars show SEM of 18 biological replicates from 3 independent experiments.
B) *A. pisum* survival. Survival is averaged over the two days in which the control population (Ws-0) decreased below 50% survival. Letters indicate no significant differences between genotypes (Student’s t-test within GLM at *p*<0.05). Error bars show SEM of 18 biological replicates from 3 independent experiments.
Figure 5.13: *M. persicae* fecundity on CIPK3-related mutants.
Fecundity assessed after a 14-day period. A) Putative genes downstream of CIPK3. Error bars show SEM of 24 biological replicates from 4 independent experiments. Experiment conceived and designed by T.V conducted by T.V. and M.S. B) Other Clade I CIPKs. Letters indicate a significant difference between genotypes (Student’s t-test within GLM at p<0.05). Error bars show SEM of 19 biological replicates from 3 independent experiments.
5.2.6 Abolishing transcription of all four clade I CIPKs significantly increases ROS production in response to *M. persicae*

As a result of the altered aphid fecundity on the clade I CIPK mutants, the plant defence response to aphids was investigated. *M. persicae* extract-elicited ROS was significantly reduced on *bak1-5*, as previously demonstrated (Chapter 3, Figure C16b). However, it was not altered on *cipk3-103* (Figure 5.14c), agreeing with the results obtained with *cipk3-1* (Section 5.2.2). ROS was also unaltered on the *cipk3/26* (Figure 5.14d) or *cipk9/23* (Figure 5.14e) mutants. However, on the *cipk3/9/23/26* quadruple mutant, aphid extract elicited a significantly larger ROS burst relative to wildtype (Figure 5.14f).
A)

B)

C)

D)

E)

F)

p<0.05
Figure 5.14: ROS production in response to *M. persicae* extract in clade 1 CIPK3 mutants.

A) ROS production measured as relative light units (RLU) over time in all treatments. B) ROS production in *cipk3*-103 compared to Col-0. C) ROS production in *cipk3*/26 compared to Col-0. D) ROS production in *cipk9*/23 compared to Col-0. E) ROS production in *cipk3*/9*/23*/26 compared to Col-0. Bars represent SEM of 24 biological replicates from 3 independent experiments. Shading represents a significant difference between genotypes (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V and conducted by M.A. under supervision of T.V.
5.3 Discussion

5.3.1 *A. pisum* infestation alters the expression of several Ca$^{2+}$-related genes in Arabidopsis

Aphid feeding alters the expression of a variety of plant genes, including several related to Ca$^{2+}$ signalling (Table 5.1). Feeding by *A. pisum*, a legume specialist incompatible with Arabidopsis [221], resulted in an expression change for several Ca$^{2+}$-related genes. This included *CNGC2*, a cAMP-activated channel [757] capable of conducting various ions including Ca$^{2+}$ [65, 67]. The *CNGC2* mutant *dnd1* exhibits constitutive defence activation, including constitutively high SA production and expression of pathogenesis-related genes [377]. Hence, *CNGC2* may act as a negative regulator of defence, with the downregulation in response to *A. pisum* suggesting it may also act in defence against aphids. Conversely, *CNGC3* and *CNGC12* were upregulated by *A. pisum* infestation. A specific role for *CNGC3* in defence has not been established [59], however *CNGC12* acts as a positive regulator of defence against the mould *Hyaloperonospora parasitica* [374]. Three GLRs were also upregulated by *A. pisum*, including *GLR3.5*, a gene recently linked to systemic wound signalling [104].

The expression of various downstream Ca$^{2+}$ sensors was also altered upon *A. pisum* infestation. This included downregulation of *CDPK1*, a positive regulator of SA [404] and *CDPK6*, which has been linked to defence through its modulation of ABA (Figure 5.2) [758], MeJA [684] and ET [444]. In addition, *A. pisum* feeding resulted in downregulation of *CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3* (*CAMTA3*) which mediates the plant general stress response through modulation of SA/JA crosstalk [381, 759, 760], including during insect attack [382]. Together, these results highlight various links between Ca$^{2+}$ signalling and the plant response to infestation with *A. pisum*.
5.3.2 **CIPK3** is one of the few Arabidopsis Ca\(^{2+}\) signalling genes responsive to *M. persicae*

In response to *M. persicae*, far fewer genes were differentially regulated compared to *A. pisum* (Figure 5.4). This agrees with previous work showing that *M. persicae* effects a very small number of Arabidopsis transcripts [464, 761], and suggests that during this interaction *M. persicae* avoids or actively suppresses detection. Despite this, Ca\(^{2+}\) signalling-related genes are often over-represented in response to phloem-feeding insects, however most of these studies investigated significantly longer periods of infestation than the 48 h used in the present study [583].

Differentially-regulated transcripts after 48 h of *M. persicae* infestation included CNGC12 and CIPK3, which both responded in an opposite direction to when plants were infested with *A. pisum* (Table 5.1). This was especially interesting given the opposing compatibilities of these species on Arabidopsis. Consequently, it may be that these genes are related to the response of a plant to hosts vs non-hosts. Since this chapter is focused on investigating the downstream components of the Ca\(^{2+}\) burst characterised in Chapters 3 and 4, CIPK3 was explored further. In addition, other groups have also observed that feeding by *M. persicae* results in an upregulation of CIPK3 [308], as does infiltration with *M. persicae* saliva [464]. Moreover, the specialist *B. brassicae* also induces an upregulation of the CIPK3 transcript [304].

5.3.3 **CIPK3** expression alone is not sufficient to alter the plant defence response to aphids

Aphids, including both *M. persicae* and *A. pisum*, will probe non-host plants before determining compatibility [762-764]. Therefore, the plant responses that mediate this compatibility are most likely responsive to aphid probing and occur during or after the Ca\(^{2+}\) burst characterised in Chapters 3 and 4. As probing by the incompatible species *A. pisum* resulted in downregulation of CIPK3.2 and CIPK3.3 (Figure 5.5), this might represent part of the basal plant defence response. Conversely, the upregulation of CIPK3.2 during *M. persicae* feeding might represent a direct manipulation of the plant by the aphid to allow successful colonisation. CIPK3 appears to be negative regulator of ABA [175] (Figure 5.2) and although evidence for ABA’s role in aphid defence is contradictory, it clearly plays a role in these
interactions [442, 748]. Consequently, differential regulation of CIPK3.2 and CIPK3.3 might be a result of the modulation of ABA signalling during aphid feeding.

The fitness of *M. persicae* on cipk3-1 was assessed in a fecundity assay, with no effect on knocking out CIPK3 observed (Figure 5.6). However, as a successful generalist adapted to Arabidopsis, the effect of abolishing expression of a single gene on *M. persicae* fecundity might be relatively subtle. Indeed, rearing *M. persicae* on mutant lines over multiple generations can produce fecundity phenotypes not seen with single generations, for example whilst aphid fecundity was not altered over a 2-week period on the cyp81f2 mutant [306], it was significantly reduced on cyp81f2 mutants after 6.5 weeks [305]. However, the trans-generational fecundity of *M. persicae* was not altered on the cipk3-1 mutant (Figure 5.8a), although this assay was only carried out over 4 weeks. Furthermore, plant defence status can also modulate host choice [259], but CIPK3 had no effect on this behaviour (Figure 5.8b).

The production of ROS is a key part of the plant defence response to *M. persicae* [349, 413] and this production is closely linked to Ca$^{2+}$ signals [121, 414, 415]. Based on this evidence, ROS production in the cipk3-1 mutant in response to aphids was assessed. Application of aphid extract to Arabidopsis leaf disks results in the gradual production of ROS over a period of hours, peaking around 150-250 minutes post-application [349], and this finding was repeated in the present work (Figure 5.8c). However, ROS production in response to aphid extract was not altered in the cipk3-1 mutant (Figure 5.8c), in accord with the unaltered aphid performance on this mutant.

As a compatible host of *M. persicae*, scope for further reductions in plant defence may be restricted, given that host defences are likely to already be suppressed. Indeed, this was implied by the small number of genes differentially regulated by *M. persicae* (Figure 5.4). As such, non-host resistance was assessed using *A. pisum* survival [555]. However, the cipk3-1 mutant had no effect on this species either (Figure 5.8d).

For completeness, an additional CIPK3 mutant was identified, cipk3-103, in the Col-0 background as was used for the RNA-seq experiment. The cipk3-103 mutant lacked wildtype transcription of CIPK3 (Figure 5.10), but again this had no effect on *M. persicae* or *A. pisum* performance (Figure 5.12), or the plant ROS response to aphid extract (Figure 5.14c). Interestingly, this mutant did not show the established osmotic stress hypersensitivity found with cipk3-1 (Figure 5.11) [175]. The cipk3-103 insertion is at the C-terminal end of the protein (Figure 5.10a), after the NAF and PPI
domains (Figure 5.1). In addition, upstream transcription of CIPK3 still occurred in the cipk3-103 mutant (Figure 5.10b) and therefore in the remote possibility that a functional protein was produced [765], it would hypothetically contain all the key CIPK functional domains. Alternatively, it may be that a wildtype CIPK3 protein was still produced in cipk3-103, or that salt tolerance mediated by CIPK3 is ecotype-dependent.

Unexpectedly, cipk3-104 showed increased tolerance to salt (Figure 5.11). The cipk3-104 t-DNA insertion is within the PPI domain, and thus if a functional protein was produced it may be disrupted specifically in its interactions with protein phosphatases [161, 739] which may affect the plants response to abiotic stress [740-742]. However, as with the cipk3-103 the more likely situation is that there is an ecotype-specific effect occurring, or a background mutation present in the cipk3-104 line.

5.3.4 A truncated version of CIPK3, CIPK3.2, had no effect on aphid performance

It was hypothesised that there may be functional relevance relating to the C-terminal truncated product produced by CIPK3.2 (Figure 5.1). Although this truncation does not affect the PPI domain [739], alterations in the C-terminal end of CIPK6 result in altered interactions with PP2CA [161]. Thus, CIPK3.2 may encode a functionally distinct product compared to the full-length gene. In order to test if CIPK3.2 alone played a role in plant-aphid interactions, this CIPK3 variant was expressed in the absence of the other four (Figure 5.7a). However, this had no effect on M. persicae fecundity (Figure 5.7b).

5.3.5 Constitutive activation of CIPK3 had no effect on aphid performance

The possibility that the kinase activity of CIPK3 had an effect on plant-aphid interactions was also tested. Constitutive activation of protein kinases can be achieved by mutating conserved residues in the activation domain, as has been exploited previously with SOS2/CIPK24 [766-768] and CIPK3 [176, 756]. Constitutive activation of CIPK3 has been shown to rescue the ABA and osmotic hypersensitivity of cbl9 plants [176]. However, the ability of CIPK3T183D to alter or rescue the cipk3-1
phenotype was not tested. The constitutively-active version (CIPK3T183D) was transformed into the cipk3-1 mutant (Figure 5.9a), however CIPK3T183D had no consistent effect on M. persicae fecundity (Figure 5.9b). One line, cipk3-1/CIPK3T183D line 3 did show reduced fecundity (Figure 5.9b), however this line also exhibited a severe growth impairment phenotype (Figure 5.9c). Interestingly, this type of phenotype is often a feature of constitutive defence activation as a result of trade-off between the growth and defence [769-771]. However, since this phenotype was only observed in one of the three lines, was concluded that it is CIPK3-independent, most probably the result of a pleotropic effect(s) generated by the transgenic insertion.

5.3.6 Altered CIPK3 expression might be irrelevant to plant-aphid interactions

Taken together, the results gathered in this chapter appear to rule out a singular role for CIPK3 in plant-aphid interactions. The differential CIPK3 transcriptional responses to the two aphid species relative to the empty clip cage control (Figure 5.5) suggests that this change in expression is being mediated specifically by aphid feeding, rather than as an artefact of the experimental design. This response might be a non-specific effect, not relevant to plant defence, generated by other changes in the plant upon aphid treatment. Alternatively, it might be that although CIPK3 has no direct effect on aphids, changes in CIPK3 expression are the result of upstream events in the defence response against these insects. CIPK3 is wound-responsive [175] and thus might be induced by the damage caused by stylet penetration, especially if this damage produces a rise in \([\text{Ca}^{2+}]_{\text{cyt}}\) [123]. Indeed, ABA is implicated in plant-aphid interactions [437, 442], and application of 100 µM ABA can induce CIPK3 expression [175]. However, based on the present work showing CIPK3 expression and activity have no effect on aphid performance or plant ROS production, it is not possible to differentiate between these hypotheses.

Indeed, despite induction of CIPK3 during drought, no physiological effect of this stress can be seen adult cipk3-1 mutant plants [175]. It is also worthy of note that the established cipk3-1 seedling phenotype in the presence of ABA or salt was not observed in adult plants [176]. As a result, the role of CIPK3 in stress responses might be primarily during early development.
5.3.7 CIPK9 and CIPK23 have a significant effect on aphid performance that might be mediated by plant nutrient homeostasis

CIPK3 might act redundantly in plant-aphid interactions, as occurs with Mg$^{2+}$ stress [165, 166]. In order to assess this hypothesis, aphid performance on Arabidopsis mutants of additional genes related to the CIPK3 pathway was assessed. Neither ABF2 nor PP2CA expression appeared to have an effect on *M. persicae* performance (Figure 5.13a), ruling out a role for these ABA-signalling genes in successful defence against *M. persicae*. Loss of CIPK26 transcription had no effect on *M. persicae* fecundity (Figure 5.13b) or on aphid-induced ROS production (Figure 5.14d), despite its role in the regulation of RBOHF [692]. However, a significant effect on *M. persicae* fecundity was observed on cipk9/23 and cipk3/9/23/26 plants (Figure 5.13b). This implies that CIPK9 and/or CIPK23 might play a direct role in plant defence against aphids, and that all four CIPKs might be acting with some redundancy in this response. Moreover, this is the first demonstration to the author’s knowledge of a role for Arabidopsis CIPKs in biotic stress, although CIPKs in other species have been linked to PTI against fungi [385] and ETI against *P. syringae* [772].

CIPK23 acts in nitrogen homeostasis in Arabidopsis, phosphorylating NITROGEN TRANSPORTER 1.1 (NRT1.1) during low nitrogen conditions to modulate nitrogen sensing and uptake [189]. Plant nitrogen is key to the nutritional content of the plant, and although few studies have explicitly investigated the role of nitrogen in plant-aphid interactions, it is clear that the nutritional quality of the host has an effect on insect performance [773-776] and more widely on plant defence [777]. Increased amounts of essential amino acids in the phloem results in a higher assimilation of such amino acids by *M. persicae* [778], and *R. padi* reproduction is decreased on *H. vulgare* grown in nitrogen-deficient soil [779]. It has therefore been speculated that plant nitrogen status is a contributing factor to aphid performance [780] In addition, CIPK23 has a role in K$^+$ uptake in roots, and loss of this protein leads to ABA hypersensitivity and drought tolerant plants as a result of reduced transpiration [183]. Moreover, CBL1 and CBL9 are required for CIPK23 action, presumably by localising the protein to the PM [183], where it activates K$^+$ TRANSPORTER 1 (AKT1) to enhance K$^+$ uptake into the cell [163, 186].

The only reported singular role for CIPK9 so far is also in K$^+$ homeostasis. However, there is conflicting evidence regarding this role, with the same cipk9
mutant showing both increased tolerance to low K⁺, as well as hypersensitivity to K⁺ [182, 754]. CIPK9 is recruited to the tonoplast by CBL3 [165], and cannot interact with AKT1 [754], implying it might act in a separate pathway. It might be that CIPK9 is involved in vacuolar K⁺ sequestration, as it for Mg²⁺ [165, 166].

Furthermore, ROS production in response to aphid extract was not altered on the cipk9/23 double mutant (Figure 5.14e). Taken together, these results suggest there might be a link between the potassium status of the plant and aphid performance, and that this may be independent of PTI. Most evidence so far points to potassium deficiency as being beneficial to aphids [781-784], potentially by increasing the plant nitrogen availability in the shoots [784, 785]. Although this hypothesis agrees with the reduced aphid fecundity on cipk9/23 (Figure 5.13b), without dissection of the individual roles played by CIPK9 and CIPK23 in plant resistance to aphids, it is impossible to attribute their individual roles in nitrogen or potassium homeostasis to this reduced fecundity.

5.3.8 The clade I CIPKs act as a hub to negatively regulate plant defence

M. persicae fecundity was reduced beyond that observed on cipk9/23 when feeding on the cipk3/9/23/26 mutant, implying that there may be additional redundancy in this system, as seen for Mg²⁺ homeostasis [165, 166]. Furthermore, aphid extract-induced ROS production was greater in this mutant (Figure 5.14f). ROS forms a key part of PTI against pathogens and aphids [331, 349, 360, 413] and the increased ROS production in the cipk3/9/23/26 mutant might be partially responsible for the enhanced aphid resistance of this mutant. CIPK26 has been implicated in ROS signalling through a direct interaction with RESPIRATORY BURST OXIDASE HOMOLOG F (RBOHF) [691, 692]. However, since aphid extract-induced ROS production was higher in the cipk3/9/23/26 mutant, and not significantly altered in the cipk3/26 mutant, positive regulation of RBOHF by CIPK26 does not appear to be occurring in this context. The role of CIPKs in biotic stress are unexplored in Arabidopsis. However, there is a precedent for negative regulation of ROS by CIPKs in wheat, where overexpression of CIPK29 reduces accumulation of H₂O₂ [786]. Conversely, heterologous expression of *S. lycopersicum* CIPK6 in *N. benthamiana* leaves results in the accumulation of ROS [772].
Since the enhanced aphid resistance and increased ROS production is the result of abolishing all four CIPKs, it appears that these proteins act as a hub to negatively regulate defence. This agrees with observations of these CIPKs acting as a hub to regulate Mg$^{2+}$ sequestration [165, 166] and that Ca$^{2+}$ signalling can suppress defence as well as activate it [375]. However, necrotic lesions, reminiscent of HR, can be observed on cipk3/9/23/26 leaves [165, 166], suggesting a possible role for these CIPKs in ETI, as seen for CIPK6 in S. lycopersicum [772]. Loss of Ca$^{2+}$-ATPases can result in similar HR lesions in Arabidopsis [787], implicating disrupted ion homeostasis in this phenotype.

However, the author cannot exclude pleiotropic effects in the cipk3/9/23/26 mutant from affecting aphid performance. The growth phenotype of this mutant [165, 166] may be a result of such effects, or due to enhanced defence activation [769-771]. Reduced early growth can impact aphid populations [236], however a dwarfing phenotype per se does not affect M. persicae fecundity [306]. The ABA sensitivity of this mutant is similar to that of the wild type [166], implying that altered ABA signalling is probably not the cause of the cipk9/23 and cipk3/9/23/26 phenotypes.

Nevertheless, it is clear that the clade I CIPKs modulate a range of plant responses. It is impossible to dissect their exact role in plant-aphid interactions without first identifying the individual role of each of these genes and how they may combine to effect aphid performance. To that end, the suite of double and triple mutants presented by Mogami et al. [166] represent a highly useful tool for further investigations. In this chapter evidence has been presented that rules out a unilateral role for CIPK3 in plant-aphid interactions. However, it has also been demonstrated that CIPK3, in combination with its close homologues CIPK9, CIPK23 and CIPK26, may play a role in mediating aphid success on plants. Consequently, these CIPKs might act as vital components, downstream of the Ca$^{2+}$ signal, in the plant response to M. persicae.
This page is intentionally left blank
Chapter 6: General Discussion
6.1 **Summary of research findings**

The proposed role of Ca\(^{2+}\) signalling in plant-aphid interactions, as investigated in the current study, is outlined in Figure 6.1.
Figure 6.1: Proposed role of Ca\(^{2+}\) signalling during the *M. persicae*-Arabidopsis interaction

1. Aphids probe epidermal and mesophyll cell layers within a minute of feeding (Chapter 3).
2. An aphid-induced Ca\(^{2+}\) burst can be detected around the feeding site within a few minutes of settling (Chapter 3). (3) This Ca\(^{2+}\) burst is restricted to the feeding site and cannot be detected systemically (Chapter 3). (4) BAK1 and an unknown PRR perceive aphid HAMPs, resulting in aphid-induced Ca\(^{2+}\) bursts (Chapter 3). (5) Perception of aphid HAMPs by BAK1 leads to activation of GLR3.3/GLR3.6, potentially through the intracellular release of glutamate [726]. (6) GLR3.3/GLR3.6 mediate extracellular Ca\(^{2+}\) influx into the cell within minutes of the aphid settling (Chapters 4). (7) The increase in \([\text{Ca}^{2+}]_{\text{cyt}}\) results in activation of TPC1 [112, 114, 115]. (8) TPC1 mediates release of intracellular Ca\(^{2+}\) from the vacuole into the cytosol in response to *M. persicae* (Chapter 4). (9) The rise in \([\text{Ca}^{2+}]_{\text{cyt}}\) mediated by TPC1 contributes to camalexin production via PAD3 (Chapter 4). (10) The rise in \([\text{Ca}^{2+}]_{\text{cyt}}\) mediated by TPC1 contributes to MAPK activation (Chapter 4). (11) The rise in \([\text{Ca}^{2+}]_{\text{cyt}}\) mediated by GLR3.3, GLR3.6 and TPC1 results extracellular ROS production most likely through activation of RBOHD and RBOHF [283,349] (Chapter 4). (12) Ca\(^{2+}\) binds CBL2, 3 and 9, leading to activation of CIPK3, 9, 23 and 26 which negatively regulate defence, partially through suppression of ROS (Chapter 5). (13) Accumulation of JA is detrimental to aphids, but is not required for effective defence against *M. persicae* or *A. pisum* (Chapter 4). (14) Glucosinolate production is mediated through a TPC1/GLR-independent pathway that involves a contribution from BAK1 (Chapter 4). (15) *M. persicae* suppresses Arabidopsis defence responses using effectors, including Mp10 that partially suppresses the Ca\(^{2+}\) burst (Chapter 3). Ca\(^{2+}\) represented by blue circles. Aphid image taken from Hogenhout and Bos [275].
6.1.1 *M. persicae* elicits a rapid, localised Ca$^{2+}$ burst in the upper cell layers of Arabidopsis

This study identified a rapid Ca$^{2+}$ burst in Arabidopsis around the feeding site of *M. persicae*. Recordings from the EPG show that penetration of the epidermal and mesophyll cells layers occurred within a minute of feeding, whilst the microscopy assay demonstrated that a [Ca$^{2+}$]$_{cyt}$ elevation, distinguishable at the tissue level, occurred within 2 min of settling (Chapter 3). This burst occurred as single transient release of Ca$^{2+}$, unlike the sustained biphasic or oscillatory signatures produced by other stresses such as cold shock [50, 626, 652] DAMPs [371] or PAMPs [17, 219]. The rise in [Ca$^{2+}$]$_{cyt}$ also appeared to be restricted to the region of the feeding site (Figure 6.1) (Chapters 3 & 4), with small signals bring detected systemically on occasion but not reliably (Appendices C & D).

The variability in systemic signalling in response to *M. persicae* might be a result of the variability in the number of neighbouring cells the aphid stylets penetrate on their way to the phloem. In addition, the systemic ROIs were defined relative to the aphid and therefore represented a different location on the leaf for each sample (Chapter 2). As such, optimisation of the Ca$^{2+}$ analysis is required to investigate systemic signalling further. The absence of reliable systemic signals puts the aphid-induced Ca$^{2+}$ burst in sharp contrast to other abiotic [7, 538] and biotic [103, 123] stresses. For systemic Ca$^{2+}$ signals to occur it is assumed that [Ca$^{2+}$]$_{cyt}$ or ROS concentration in the apoplast must reach a threshold value in order to successfully activate subsequent components in the chain [121] and cellular penetrations by the *M. persicae* stylets might not cause enough damage [296] to reach this threshold. Alternatively, the insect may be actively suppressing systemic Ca$^{2+}$ signals [123, 502]. The use of isolated leaves for the assay might also have had an effect on systemic signalling, although systemic Ca$^{2+}$ signals [538] and defence activation against aphids [469] have been observed previously in isolated leaves. The absence of a consistent systemic signal agrees with the lack of SAR observed in response to *M. persicae* (Chapter 3, [308, 464]). Systemic signals could be reconstituted by over-activation of TPC1 (Chapter 4), a channel already implicated in systemic signalling during salt stress and wounding [7, 123].

The timing and area of the burst indicated that the Ca$^{2+}$ release measured in 35S::GCAMP3 occurred primarily in the epidermal and mesophyll cell layers. Indeed, aphid feeding from the phloem does not usually occur within the same time-frame,
and whilst localisation of GCAMP3 to phloem could detect signals in response to wounding, aphid-induced signals could not be detected in this tissue (Chapter 3). The aphid-induced Ca$^{2+}$ signals propagate relatively slowly, around 100-fold slower compared to other stresses [7, 536, 538], which is likely to be related to the lack of phloem and systemic components involved in the signal [103, 123, 538]. However, the speed of the aphid-induced burst is comparable to rates of Ca$^{2+}$ wave propagation in cultured animal cells and tissues [788]. Furthermore, the partial requirement for vacuolar Ca$^{2+}$ release for this burst (Chapter 4) makes a SE-elicited signal less likely given the lack of vacuoles in these cells [701]. This separates the characterised Ca$^{2+}$ burst from phloem-based resistance mechanisms such as occlusion, and agrees with work showing that resistance to phloem feeders is also mediated by factors in the mesophyll [637, 789].

6.1.2 BAK1, GLR3.3, GLR3.6 and TPC1 mediate Ca$^{2+}$ release in response to *M. persicae*

The feeding site burst is dependent on BAK1, with complete abolition of the signal in the *bak1*-5 mutant (Chapter 3). BAK1’s role early in PTI against aphids [349, 350] suggests this co-receptor is one of the first molecular components involved in the generation of the Ca$^{2+}$ burst, along with an as-yet uncharacterised HAMP receptor [277]. The involvement of PTI in this response suggests this is not a damage-mediated response as seen with chewing insects such as Lepidoptera [123]. This is not surprising given the effort aphids invest in minimising wounding, for example through the use of gelling saliva to plug damage sites [270, 271, 789]. It would be interesting to analyse Ca$^{2+}$ dynamics response to wounding by a stylet-mimic, such as a thin glass capillary [287], in order to dissect the potential role of wounding in this response.

The perception of the aphid via BAK1 leads to an influx of Ca$^{2+}$ from the apoplast and from intracellular stores. The extracellular component is mediated by GLR3.3 and GLR3.6, with a vacuole-derived contribution from TPC1 (Chapter 4). The complete abolition of the signal in the *glr3.3*/*3.6* mutant and a small but reduced signal in the *tpc1*-2 mutant implies that extracellular Ca$^{2+}$ release lies upstream of intracellular release.

The abolition of Ca$^{2+}$ burst in *bak1*-5 and *glr3.3/glr3.6* mutants implies GLR3.3/3.6 and BAK1 lie in the same pathway (Chapters 3 & 4). The link between
BAK1 perception and GLR opening is unclear. Glutamate is proposed to be a ligand of the GLRs [76, 92, 356], and can function as a physiological signal in plants that generates a GLR-mediated Ca\(^{2+}\) burst [97, 99, 100, 687]. Furthermore, release of glutamate into the extracellular space is facilitated by exocytosis downstream of cryptogein perception, implying this amino acid may function in PTI [726]. It is therefore possible that PTI-triggered release of glutamate into the apoplast binds the extracellular ligand-binding domain of GLR3.3/GLR3.6 and elicits a Ca\(^{2+}\) burst. Alternatively, activation of the GLRs may occur independently of glutamate, and involves one of the other BAK1-regulated signalling pathways. Given the promiscuity of BAK1 during plant defence [360, 361], and the wide range of potential GLR agonists and antagonists [92], it is difficult to select a specific signalling pathway for investigation. However, a good place to start would be to check if glutamate-elicited Ca\(^{2+}\) signals still occur in the bak1-5 mutant.

TPC1 also mediates Ca\(^{2+}\) release in response to M. persicae (Chapter 4) and these results add to the growing amount of literature implicating this channel and vacuolar Ca\(^{2+}\) as components involved in the plant response to stress [7, 121, 123]. A small [Ca\(^{2+}\)]\(_{\text{cyt}}\) elevation can be seen in the tpc1-2 mutant, suggesting that GLR-facilitated Ca\(^{2+}\) entry is still occurring, and that TPC1 is required to amplify this signal. Indeed, TPC1 is Ca\(^{2+}\)-activated [112, 114, 115], can be regulated by CaMs [790-792] and has a hypothesised role in CICR [7, 121, 537, 539], allowing for a model whereby GLR-mediated Ca\(^{2+}\) influx leads to TPC1 channel opening and a second release of Ca\(^{2+}\) (Figure 6.1). It is also possible that GLR or BAK1-mediated signalling activates TPC1 independently of Ca\(^{2+}\). TPC1 activity can also be modulated by phosphorylation status [109, 114, 115, 793] and owing to the considerable role of protein kinases and phosphatases in PTI, it is possible that TPC1 opening is mediated by these pathways. Furthermore, CIPKs are known to regulate ion channels [161, 163, 167, 186, 794], and the tonoplast-localisation of CIPKs 3, 9, 23 and 26 by CBL2 and CBL3 [165] do not exclude CIPK-based regulation of TPC1 as a possibility.

6.1.3 Activation of plant defence is modulated by BAK1 and Ca\(^{2+}\) signalling

To prove that Ca\(^{2+}\) is a physiologically relevant signal in plant-aphid interactions, at least two lines of evidence need to be demonstrated. Firstly, loss of the signal should result in an alteration of the downstream response, and secondly
Ca2+-sensitive elements should be present in the system [795]. Loss of BAK1 is already established to be beneficial to aphids [349], and in this study it was linked to having a role in camalexin and glucosinolate production during plant-aphid interactions (Chapter 4). However, this is not direct evidence of a role for Ca2+ in this system.

Abolition of TPC1 expression attenuated the expression of marker genes implicated in MAPK activation (FRK1) and camalexin biosynthesis (PAD3) in response to aphid extract, suggesting a role for Ca2+ signalling in these processes (Chapter 4) (Figure 6.1). This defence gene induction was GLR-independent, whilst loss of TPC1 or GLR3.3/3.6 did not result in a significant effect on aphid-induced ROS production (Chapter 4). This suggests that the activation of these pathways is distinct from the Ca2+ burst measured with GCAMP3. This might be a result of using aphid extract for these assays as opposed to live insects. As a result, it will be interesting to measure marker gene expression and ROS production in mutant leaves infested with live aphids. Nevertheless, overexpression of TPC1 and loss of CIPK3/9/23/26 resulted in significant effects on aphid-elicited ROS production and aphid performance (Chapters 4 & 5), implicating Ca2+ in aphid-elicited ROS production and fitting with observations of substantial interplay between Ca2+, TPC1 and ROS [119, 121, 691, 692]. Furthermore, the timing of defence marker induction in the mutants was not explored and might be affected by Ca2+ signalling.

Several Ca2+-sensitive elements are present in Arabidopsis during aphid attack. Of the genes that directly bind or allow transport of Ca2+, only CNGC12 and CIPK3 were differentially regulated after 48 h of M. persicae infestation (Chapter 5). However, several genes with an established role in plant-aphid interactions have connections to Ca2+ signalling, including the MAPKs [152, 372, 386, 693-695] and those involved in ROS production (e.g. RBOHD [119, 349, 350]). Furthermore, loss of the Ca2+ decoders CIPK9 and CIPK23 significantly reduced M. persicae fecundity, and fecundity was even further reduced on the cipk3/9/23/26 quadruple mutant (Chapter 5). The CIPKs have been linked to regulation of PTI responses in O. sativa [385] wheat [786], and tomato [772], but this is the first reported role for Arabidopsis CIPKs in biotic interactions to the author’s knowledge. The alterations in plant and aphid responses upon loss of the aphid-induced Ca2+ burst, in combination with the modulation of several Ca2+-sensitive elements during this interaction, provides supports the hypothesis that the Ca2+ burst is acting as a physiologically relevant signal in plant-aphid interactions.
6.1.4 *M. persicae* suppresses BAK1-mediated PTI and Ca\(^{2+}\) signalling

Despite the role of GLR3.3/GLR3.6 and TPC1 in the aphid-induced Ca\(^{2+}\) burst, *M. persicae* fecundity on tpc1-2 or glr3.3/3.6 mutants was unaffected (Chapter 4). The same is seen with the bak1-5 mutant [349], suggesting that PTI elicited by *M. persicae* has a limited effect on the aphid. This is not surprising given compatibility of *M. persicae* with Arabidopsis, which implies that basal immunity in this plant species is not sufficient to affect aphid performance. As a result, further reductions in this defence by attenuation of the Ca\(^{2+}\) signal might have a limited effect. However, this assumes that Ca\(^{2+}\) signalling is a positive regulator of defence against aphids, and the increased aphid resistance observed in the cipk3/9/23/26 mutant (Chapter 5) suggests that this is not necessarily the case.

Small effects on aphid feeding behaviour were observed in the BAK1 and TPC1 mutants (Chapters 3 & 4). In both cases pathway behaviour was unaffected, demonstrating that there is latency between BAK1-mediated Ca\(^{2+}\) signalling, defence activation and an effect on aphid feeding. Indeed, secondary metabolite production is not induced for several hours or even days post-feeding [78, 159]. Surprisingly, loss of BAK1 or TPC1 expression disturbed phloem feeding, whilst TPC1 overexpression enhanced it. Whilst this fits with established literature showing that the main effects of plant defence are experienced by aphids when they are feeding from the phloem [301, 796, 797], it appears to contradict the hypothesis that BAK1-mediated Ca\(^{2+}\) signalling forms a part of PTI. However, the feeding phenotypes are relatively subtle, only occurring as differences in single behaviours that are not consistent between EPG experiments. Consequently, it is hypothesised that *M. persicae* targets BAK1-mediated Ca\(^{2+}\) signalling during its successful colonisation of the plant and loss of this pathway disturbs the aphid manipulation of its host, resulting in feeding disruption.

M. persicae uses a suite of effectors to suppress plant defence [275, 501], and this might explain the relatively small number of Arabidopsis genes differentially regulated by *M. persicae* attack (Chapter 5). These effectors include Mp10 that acts in the BAK1 pathway [277, 502]. Mp10 is capable of partially suppressing the feeding site Ca\(^{2+}\) burst (Chapter 3), as well as flg22-elicited Ca\(^{2+}\) bursts [502]. Thus, Mp10 has a role in the BAK1 Ca\(^{2+}\) signalling pathway. Indeed, Mp10 is delivered preferentially into the mesophyll tissue [279], the very location of the feeding site Ca\(^{2+}\) burst. Therefore, it is possible that BAK1/GLR/TPC1 pathway is one that *M. persicae*
monitors and manipulates in order to modulate the plant defence network (Figure 6.1). In order to test this hypothesis, analysis of the feeding behaviour of dsMp10 aphids on the bak1-5 mutant should be conducted. Reducing expression of C002 in A. pisum results in a considerable increase in pathway phase probing and almost complete loss of phloem feeding [276], highlighting the role of the epidermal and mesophyll cells in PTI and effector function and agreeing with the role of these processes in phloem acceptance. One might also predict the fecundity penalty suffered by dsMp10 M. persicae on Col-0 will be abolished on tpc1-2 and glr3.3/3.6 mutants, as seen on the bak1-5 mutant [502], if Mp10 is required to manipulate this Ca²⁺ signalling pathway.

It is also important to consider that other M. persicae effectors might be modulating BAK1-mediated Ca²⁺ signalling. It is possible that effectors are delivered into the apoplast, along with the watery [619] or sheath [267] saliva. Recent results from the Hogenhout lab indicate that Mp1 [501] is associated with aphid salivary sheath [279] and it reasonable to suggest such apoplast effectors might target extracellular Ca²⁺ influx. The involvement of other effectors in the suppression of Ca²⁺ signalling would explain the relatively subtle effects of reducing expression of Mp10 alone (Chapter 3), and therefore testing the role of these other effectors, or combinations of them, on the Ca²⁺ signal could potentially identify additional components involved in the suppression of defence. Furthermore, it would also be intriguing to use aphid extract from effector knock-down aphids in ROS and defence gene assays to test the role of effectors in these defence responses.

6.2 Open questions

6.2.1 The role of Ca²⁺ signalling in non-host resistance

The lack of a significant M. persicae fitness penalty on the mutants investigated in this study is suggested to be the result of using an aphid species compatible with Arabidopsis. This implies that exploring the role of Ca²⁺ signalling in incompatible interactions, where it might play a role in non-host resistance, would be informative. Indeed, A. pisum has a greater survival rate on bak1-5 mutants [349], suggesting the BAK1 pathway contributes to non-host resistance. However, the aphids still cannot complete their life cycle on this mutant, demonstrating that BAK1-independent pathways are also at play during plant defence against aphids.
One might predict that disturbance of Ca\(^{2+}\) signalling could result in enhanced susceptibility to incompatible insects. Several Arabidopsis Ca\(^{2+}\)-binding proteins and channels are differentially regulated by \textit{A. pism\textit{um}} infestation (Chapter 5), implying that such signalling may play a role in resistance to this aphid. Non-host resistance to \textit{P. syringae} can be affected by altered plant Ca\(^{2+}\) dynamics \cite{798} and the same may true in aphid resistance. Incompatible aphid species might also induce larger feeding site Ca\(^{2+}\) bursts, or even systemic signals and it will be revealing to analyse Ca\(^{2+}\) dynamics in response to \textit{A. pism\textit{um}} using GCAMP3. This analysis might also reveal if Arabidopsis resistance to this species is mediated by PTI or ETI, given the biphasic nature of Ca\(^{2+}\) signal one might expect during ETI \cite{379, 509, 513}.

Abolition of \textit{TPC1} transcription alone is not sufficient to alter \textit{A. pism\textit{um}} survival on Arabidopsis (Chapter 4). However, Ca\(^{2+}\) signalling mediated by other genes, including the GLRs, is still occurring in the \textit{tpc1-2} mutant (Chapter 4). It will therefore be informative to study the survival of \textit{A. pism\textit{um}} on the \textit{glr3.3/3.6} mutant to fully investigate the role of the feeding site Ca\(^{2+}\) burst in non-host resistance.

In combination with this, analysis of the downstream Arabidopsis defence response will also be enlightening. Arabidopsis ROS production is greater in response to the incompatible aphid \textit{R. padi} \cite{283}, and the same may be true for \textit{A. pism\textit{um}}. This could be analysed in the existing aphid extract-based assay (Chapters 4 & 5) or to make it more comparable to the Ca\(^{2+}\) assay, live ROS imaging could be attempted \textit{in vivo} during aphid feeding using a fluorescent redox probe such as roGFP \cite{799-801}. Interestingly, \textit{FRK1}, \textit{CYP81F2} and \textit{PAD3} induction is comparable between \textit{M. persicae} and \textit{A. pism\textit{um}} when aphid extract is applied to leaf disks for 1 h \cite{349}, however the same might not be true for live aphid infestation of a leaf.

6.2.2 The role of other Ca\(^{2+}\) stores and Ca\(^{2+}\)-related genes in plant-aphid interactions

The aphid-elicited [Ca\(^{2+}\)]\(_{cyt}\) elevation documented in this study is an early event in the plant-aphid interaction, however \textit{M. persicae} and other aphids can feed from a plant for hours (Chapter 3 & 4) or even days \cite{270}. Ca\(^{2+}\) signalling may still be playing a role during this time, and this may involve additional proteins and/or pools of Ca\(^{2+}\) not investigated in this study.

Whole tissue imaging does not necessarily reflect signalling at the single cell level \cite{802}, and thus in the future confocal microscopy might help to uncover the
characteristics of the signal at the subcellular level. Direct targeting of fluorescent
Ca$^{2+}$ sensors to the vacuole has been underutilised [648], but tonoplast-localised Ca$^{2+}$
sensors may provide finer detail on the dynamics of Ca$^{2+}$ release from this
compartment. This could be attempted with existing FRET sensors such as TP-D3cpv
[803], or new ratiometric single-FP sensors such as GEM-GECO1 [213]. The same is
true for other subcellular compartments, including the nucleus and the ER. Indeed,
nuclear-localised CaM-binding protein IQD1 positively regulates defence against M.
persicae [696], suggesting that Ca$^{2+}$ in this compartment also plays a role in plant-
aphid interactions. Concurrent imaging of several cellular compartments could also
be achieved using the GECO suite of Single-FP sensors. Furthermore, fluorescence
sensors have been incorporated within transporters to allow analysis of ion flux in
yeast [804], and a similar method could be developed in plants to analyse transporter
or channel activity in vivo.

Aphid-induced Ca$^{2+}$ bursts are observable in some bak1-5 and glr3.3/3.6
samples but once the data were compiled the rarity of these Ca$^{2+}$ bursts made it
impossible to distinguish such events from the no-aphid controls (Chapter 3 & 4).
These bursts might be mediated by additional Ca$^{2+}$-permeable channels, candidates
of which include CNGC2, which already has an established defence phenotype [79,
84, 377] and CNGC17, which is co-expressed in vivo and interacts in vitro with BAK1
[805]. Furthermore, analysis of Ca$^{2+}$ signalling in the pepr1/2 mutant may reveal a
role for DAMPs in the aphid-elicited Ca$^{2+}$ burst [757]. Consequently, transformation of
GCAMP3 into additional mutants may uncover additional regulators of the signal.

The role of Ca$^{2+}$ export systems and decoders in this interaction should also be
considered. Ca$^{2+}$-ATPases in have been implicated in altered Ca$^{2+}$ signatures during
cryptogein-elicited PTI in N. tabacum [798] and loss of ACA4 or ACA11 in Arabidopsis
leads to HR-like symptoms [787]. Furthermore, in addition to the CIPKs (Chapter 5),
CDPKs and CMLs are also differentially regulated during aphid attack [134, 402].

6.2.3 The role of other ions in plant-aphid interactions

None of the characterised Ca$^{2+}$-permeable channels in plants are specific for
Ca$^{2+}$. This includes the GLRs and TPC1, which are also permeable to Na$^+$ and K$^+$ [88,
95, 96, 112, 113]. As a result, other ions may contribute to the observed GLR and
TPC1 phenotypes. Furthermore, Ca$^{2+}$ signalling is interlinked with electrical signals
and both have been observed to follow similar patterns of spread in response to
wounding [103, 104, 123], with the wound-induced electrical signal, thought to be based on K⁺ channel activity [540]. Furthermore, TPC1 is voltage activated [114, 115] and is regulated by Na⁺ and Mg²⁺ concentrations inside the vacuole [658]. Conversely, Ca²⁺ can also regulate K⁺ channel activity [1, 806], demonstrating the level of interplay between Ca²⁺ and electrical signalling pathways. Indeed, the changes in tonoplast voltage in the fou2 mutant may have activated additional ion channels that might have contributed to the aberrant signalling seen in this mutant (Chapter 4).

In addition, the K⁺ [182, 183, 754] and Mg²⁺ [165, 166] homeostasis genes CIPK9 and CIPK23 negatively regulate defence against M. persicae (Chapter 5). This provides a link between ion homeostasis and aphid performance. Moreover, M. persicae elicits a membrane depolarisation in infested leaves that can be detected by intracellular electrodes [365]. Taken together, these data suggest that K⁺ might play an important role in plant-aphid interactions. However, it will be important to decipher the difference between altered host nutritional quality and altered plant defence.

6.2.4 The role of plant hormones in plant-aphid interactions

Loss of JA biosynthesis has no effect on M. persicae performance or plant defence gene induction, suggesting that this hormone is not responsible for defending Arabidopsis against M. persicae (Chapter 4). This agrees with a body of evidence suggesting that JA does not play a significant role in plant-aphid interactions [306, 430], in accord with the relatively low number of differentially regulated JA-related genes caused by aphid infestation [426, 427]. This result is in sharp contrast to the plant response to chewing insects such as Lepidoptera, which relies heavily on JA-mediated wound signalling [308, 332, 334, 335, 417-420], hypothetically regulated by BAK1 [362]. It has been argued that SA-upregulation during aphid infestation [304, 308, 433] might antagonise JA production in order to increase plant susceptibility [426, 427, 434-436], whilst the increased aphid resistance seen on the fou2 mutant (Chapter 4) clearly shows that JA is detrimental to M. persicae. Therefore, whilst basal levels of JA have no effect on aphids, it might be that aphids induce an increased level of JA that reduces aphid performance. This effect would be masked during compatible interactions by effectors that suppress defence but during incompatible interactions an increase in JA might represent a factor contributing to successful resistance. However, this hypothesis is not
supported by the results collected in the present study, with JA biosynthesis having no effect on *A. pisum* survival on Arabidopsis (Chapter 4).

ABA has also been implicated in plant-aphid interactions, with accumulation of this hormone occurring upon *M. persicae* feeding [437]. ABA and JA are highly interlinked, with JA-upregulation in the *fou2* mutant dependent on ABA biosynthesis [552] and both JA and ABA being regulated by the PP2Cs [740, 741, 807]. It is not clear whether ABA is beneficial or detrimental to aphids, with conflicting reports on the matter [437, 442]. However, ABA is related to Ca\(^{2+}\) signalling and forms a possible link between links TPC1 and CIPK3, with both *tpc1*-2 and *cipk3*-1 mutants showing ABA hypersensitivity phenotypes [15, 175]. Furthermore, BAK1 directly interacts with and modulates OST1 and ABI1 during the regulation of ABA-induced stomatal closure [808], a pathway implicated in ROS production via RBOHF [809]. As a result, it is possible that ABA may play a role in PTI against aphids.

6.3 Implications of the research findings

The work outlined in this thesis contributes significantly to our understanding of the role of Ca\(^{2+}\) signalling in plant-aphid interactions. The molecular mechanisms that underlie defence against phloem-feeding insects are less well characterised than those of plant pathogens, which is surprising given that such insects can cause large amounts of damage to crop species around the world. The traditionally ecological understanding of plant-aphid interactions is now being complemented with molecular characterisation, to which the current study offers a significant contribution.

The role of TPC1 in plants has been a controversial issue, however the present work adds to the growing body of evidence in support of TPC1’s role in Ca\(^{2+}\) signalling. Moreover, the role of Ca\(^{2+}\) signalling in plant defence against pathogens is well-established but lacks mechanistic detail. Given the common mechanisms utilised by plants to protect themselves from various biotic threats, including signalling via BAK1, it is possible that the work included in this thesis can inform the wider plant defence field.

The vast host range and ecological success of aphids such as *M. persicae* make them a huge threat to world agriculture [238-240]. In order to breed crops more resistant to aphids, the plant mechanisms that limit aphid success must be elucidated. One of the largest impact aphids have on agriculture is through their transmission of plant viruses during feeding. The work in this thesis has demonstrated
that one of the first plant responses to aphid probing is Ca$^{2+}$ signalling, and therefore further investigation of such signalling may offer opportunities to disturb aphid feeding and virus transmission.

Consequently, the findings of this work enhance our fundamental understanding of Ca$^{2+}$ signalling in plant defence against aphids and contribute to a growing collection of literature that might one day offer practical solutions for crop protection.
Appendix A: Synthesised genetic units
TGAGAGGAGGCGCAATGAGATCATCGAGAAGATAGAAGAAGCTGCAAAGCCTCTCGGTTCGATGTTCAAAAGAAGAACTACAAGGTTAG
TGAAAACTCTGTAACGGAAATGAAATGAAATGAAAAGAATCAATAAC
TAAAGACGTCGATGACATTACTTGCATAAACGAGTAACTGTCTGAGCAGATGGAAGTTGTTTAT
TGAAATCATGATGTTTTTGTGTTATGATGATGACAAACAAACAGATATTTCAGTAGAAGTCAAGGAAC
TTTTTATCATCTTGGAGATGTATGTACAGGAGGAAACTCTTGGATAAGATTTGAAATATGATGAGGAGAGTA
AAAGAAGTGAAGGGCCAGGATATTTCACACAGCTTACATCTGAGCAGTATCAAGCAGGAAAC
CTACATGACATCTTCTAAGCTGAAGTGAATGCTCGGCTTGCAATATCGGACGAGTACG
TGTTGTACTGTTGCTCGGAGTTGTTATCAGTGCTTCTGCTTACATCGGACGAGTACG
TTTTATCCCTCTTGGAGAAGGAGAAGTTCTCTGCTATGGTAAATTGGAAGTGAGTACG
GCTACTATGAGTGTAATTACACAGTCAAGCTGAAAATTTACATTGGACTCCTATGGAAACCTCAAGATCTCAGATTT
TGGATTAAGTGGCTTTTGCTCCCAAACAGTCAAGCTGAAAATTTACATTGGACTCCTATGGAAACCTCAAGATCTCAGATTT
ATTACAGGACCTTCTGAGGAGAGGATTTCCAAACATGGACGATATTGATGCTTCTTCAAGGG
ACCTCGAGGAAACATCTTGTCTTTACTGAGCACAAAGACGAGGAGGAGGAGTTTTCCAAACCTGAGGAGGAGG
TTCGATGGGAGCAGTATCTGCTCTGCTTACATCGGACGAGTACG
GGATAACATTTGAGAGGAGGGCAGGATTTGAGACAGTATCTGCTCTGCTTACATCGGACGAGTACG
TTTGTTTCTTACACAGCTTCATCTGCTCTGCTTACATCGGACGAGTACG

pL0M-SC-cCIPK3sv2-73017
CACTCTGTGTGCTCAAATGAGAATGCGGAGACAGCAAGTGAACCTGAACTGAGAGATGTTGAAATATGAGAAGTTG
AAAGAAGAAATGGGAAAGAAGGAAACCTGAACTGAGAGATGTTGAAATATGAGAAGTTG
TTGCTCTCAAGATTCTTGGATAAAGAAGAGTTCTCAAGGCAATGAAACTGAACTGAGAGATGTTGAAATATGAGAAGTTG
GCTACTATGAGTGTAATTACACAGTCAAGCTGAAAATTTACATTGGACTCCTATGGAAACCTCAAGATCTCAGATTT
TGGATTAAGTGGCTTTTGCTCCCAAACAGTCAAGCTGAAAATTTACATTGGACTCCTATGGAAACCTCAAGATCTCAGATTT
ATTACAGGACCTTCTGAGGAGAGGATTTCCAAACATGGACGATATTGATGCTTCTTCAAGGG
ACCTCGAGGAAACATCTTGTCTTTACTGAGCACAAAGACGAGGAGGAGGAGTTTTCCAAACCTGAGGAGGAGG
TTCGATGGGAGCAGTATCTGCTCTGCTTACATCGGACGAGTACG
GGATAACATTTGAGAGGAGGGCAGGATTTGAGACAGTATCTGCTCTGCTTACATCGGACGAGTACG
TTTGTTTCTTACACAGCTTCATCTGCTCTGCTTACATCGGACGAGTACG

pL0M-SC-cCIPK3sv3-73018
CACTCTGTGTGCTCAAATGAGAATGCGGAGACAGCAAGTGAACCTGAACTGAGAGATGTTGAAATATGAGAAGTTG
AAAGAAGAAATGGGAAAGAAGGAAACCTGAACTGAGAGATGTTGAAATATGAGAAGTTG
TTGCTCTCAAGATTCTTGGATAAAGAAGAGTTCTCAAGGCAATGAAACTGAACTGAGAGATGTTGAAATATGAGAAGTTG
GCTACTATGAGTGTAATTACACAGTCAAGCTGAAAATTTACATTGGACTCCTATGGAAACCTCAAGATCTCAGATTT
TGGATTAAGTGGCTTTTGCTCCCAAACAGTCAAGCTGAAAATTTACATTGGACTCCTATGGAAACCTCAAGATCTCAGATTT
ATTACAGGACCTTCTGAGGAGAGGATTTCCAAACATGGACGATATTGATGCTTCTTCAAGGG
ACCTCGAGGAAACATCTTGTCTTTACTGAGCACAAAGACGAGGAGGAGGAGTTTTCCAAACCTGAGGAGGAGG
TTCGATGGGAGCAGTATCTGCTCTGCTTACATCGGACGAGTACG
GGATAACATTTGAGAGGAGGGCAGGATTTGAGACAGTATCTGCTCTGCTTACATCGGACGAGTACG
TTTGTTTCTTACACAGCTTCATCTGCTCTGCTTACATCGGACGAGTACG

pL0M-SC-cCIPK3sv2-73017
CACTCTGTGTGCTCAAATGAGAATGCGGAGACAGCAAGTGAACCTGAACTGAGAGATGTTGAAATATGAGAAGTTG
AAAGAAGAAATGGGAAAGAAGGAAACCTGAACTGAGAGATGTTGAAATATGAGAAGTTG
TTGCTCTCAAGATTCTTGGATAAAGAAGAGTTCTCAAGGCAATGAAACTGAACTGAGAGATGTTGAAATATGAGAAGTTG
GCTACTATGAGTGTAATTACACAGTCAAGCTGAAAATTTACATTGGACTCCTATGGAAACCTCAAGATCTCAGATTT
TGGATTAAGTGGCTTTTGCTCCCAAACAGTCAAGCTGAAAATTTACATTGGACTCCTATGGAAACCTCAAGATCTCAGATTT
ATTACAGGACCTTCTGAGGAGAGGATTTCCAAACATGGACGATATTGATGCTTCTTCAAGGG
ACCTCGAGGAAACATCTTGTCTTTACTGAGCACAAAGACGAGGAGGAGGAGTTTTCCAAACCTGAGGAGGAGG
TTCGATGGGAGCAGTATCTGCTCTGCTTACATCGGACGAGTACG
GGATAACATTTGAGAGGAGGGCAGGATTTGAGACAGTATCTGCTCTGCTTACATCGGACGAGTACG
TTTGTTTCTTACACAGCTTCATCTGCTCTGCTTACATCGGACGAGTACG

pL0M-SC-cCIPK3sv3-73018
CACTCTGTGTGCTCAAATGAGAATGCGGAGACAGCAAGTGAACCTGAACTGAGAGATGTTGAAATATGAGAAGTTG
AAAGAAGAAATGGGAAAGAAGGAAACCTGAACTGAGAGATGTTGAAATATGAGAAGTTG
TTGCTCTCAAGATTCTTGGATAAAGAAGAGTTCTCAAGGCAATGAAACTGAACTGAGAGATGTTGAAATATGAGAAGTTG
GCTACTATGAGTGTAATTACACAGTCAAGCTGAAAATTTACATTGGACTCCTATGGAAACCTCAAGATCTCAGATTT
TGGATTAAGTGGCTTTTGCTCCCAAACAGTCAAGCTGAAAATTTACATTGGACTCCTATGGAAACCTCAAGATCTCAGATTT
ATTACAGGACCTTCTGAGGAGAGGATTTCCAAACATGGACGATATTGATGCTTCTTCAAGGG
ACCTCGAGGAAACATCTTGTCTTTACTGAGCACAAAGACGAGGAGGAGGAGTTTTCCAAACCTGAGGAGGAGG
TTCGATGGGAGCAGTATCTGCTCTGCTTACATCGGACGAGTACG
GGATAACATTTGAGAGGAGGGCAGGATTTGAGACAGTATCTGCTCTGCTTACATCGGACGAGTACG
TTTGTTTCTTACACAGCTTCATCTGCTCTGCTTACATCGGACGAGTACG

225
CTACGTTGCTCCTGAGGTTCTCAATGATAGAGGCTATGATGGAGCAACAGCTGACATGTGGTCATGCGG
TGTTGTACTCTATGTCCTGCTTGCAGGTTACTTACCTTTTGATGATTCTAATCTAATGAATCTTTATAAA
AAAATATCATCTGGTGAATTCAACTGTCCTCCGTGGCTCTCACTTGGAGCCATGAAACTCATCACTAGAA
TCTTAGATCCGAATCCGATGACTCGTGTAACACCGCAAGAGGTTTTCGAAGATGAATGGTTCAAGAAAG
ATTACAAGCCACCTGTTTTCGAGGAGAGGGATGATTCAAACATGGACGATATTGATGCTGTTTTCAAGG
ACTCTGAGGAACATCTTGTTACTGAGAAGAGAGAAGAACAGCCAGCGGCGATCAATGCCTTCGAGATCA
TTTCAATGTCAAGGGGACTTAACCTAGAGAATCTGTTTGATCCAGAACAGGAATTTAAGAGGGAAACAA
GGATAACATTGAGAGGAGGCGCGAATGAGATCATCGAGAAGATAGAAGAAGCTGCAAAGCCTCTCGGT
TTCGATGTTCAAAAGAAGAACTACAAGATGAGGCTTGAGAATGTGAAGGCTGGAAGAAAGGGGAATCTC
AATGTAGCGACAGAGATATTCCAAGTAGCGCCAAGTCTCCATATGGTTCAAGTATCGAAGTCGAAAGGA
GACACTCTCGAATTTCACAAGTTCTATAAGAAGCTCTCTAATTCTCTGGAGCAAGTAGTCTGGACGAATA
ACGAAGTTAAGAAAGAAACAGCAAAGTGAGCTTTGAGACCACGAAGTG

pL0M-T-CIPK3sv2-73019
CACTCTGTGGTCTCAGCTTAATCAGATGAGGCTTGAGAATGTGAAGGCTGGAAGAAAGGGGAATCTCAA
TGTAGCGACAGAGATATTCCAAGTAGCGCCAAGTCATCATATGGTTCAAGTATCGAAGTCGAAAGGAGA
CACTCTCGAATTTCACAAGTTCTATAAGAAGCTCTCTAATTCTCTGGAGCAAGTAGTCTGGACGAATAAC
GAAGTTAAGAAAGAAACAGCAAAGTGATGTATGAGAGTTTTCTTTTGGGACAATTCTTGCTTTCTTTGT
GTATAAGAGCTTTTTTGCTTTACCGGCTACTTTGTGTGGATGATGAGAAAGGGAGTGGGATTGGTTTTG
TGTAAAAGAAAGGTGTAAATATGAACTGCATTACTCGATAAGGTGCTGCGATGCCAGTTATAAAGTCAT
ATCAAAGCTTGTTGGCTAAAAGTTTGAAAATGCCTCATTGCTCTATTTGTTATTCTGTGCCGGCGAAATT
TGTCTCGTTTCAAAAAAACTATCTGATCCGTTTTGTCTTTTCTTTTACAACTTGAAGATGGAACGTATCA
AAAATGTCATGATCGAAGGACTGCCTATTTCCACTCATAAGGAATTCAGTAACCTTACTATGACGGTTTC
AGATCATTATGATAGCTTCATGTCCATCCTGAAGTTATAAGTTTTTAGGGCTTTTCATTTTATATTTACTT
ATTCTTATTTATGTAAGTTAAGATTTTGTTTTGAGAAGCACCATGATTCAAAGATTTTAGTTTAAAATCAC
GCTTGAGACCACGAAGTG

pL0M-T-CIPK3sv3-73020
CACTCTGTGGTCTCAGCTTTGTATGAGAGTTTTCTTTTGGGACAATTCTTGCTTTCTTTGTGTATAAGAG
CTTTTTTGCTTTACCGGCTACTTTGTGTGGATGATGAGAAAGGGAGTGGGATTGGTTTTGTGTAAAAGA
AAGGTGTAAATATGAACTGCATTACTCGATAAGGTGCTGCGATGCCAGTTATAAAGTCATATCAAAGCTT
GTTGGCTAAAAGTTTGAAAATGCCTCATTGCTCTATTTGTTATTCTGTGCCGGCGAAATTTGTCTCGTTT
CAAAAAAACTATCTGATCCGTTTTGTCTTTTCTTTTACAACTTGAAGATGGAACGTATCAAAAATGTCAT
GATCGAAGGACTGCCTATTTCCACTCATAAGGAATTCAGTAACCTTACTATGACGGTTTCAGATCATTAT
GATAGCTTCATGTCCATCCTGAAGTTATAAGTTTTTAGGGCTTTTCATTTTATATTTACTTATTCTTATTT
ATGTAAGTTAAGATTTTGTTTTGAGAAGCACCATGATTCAAAGATTTTAGTTTAAAATCACGCTTGAGAC
CACGAAGTG

226


pLOM-PU-CIPK3-73021

CACTCTGTTGTCCTCAAGAGCTTTGGAAACCTCTCTTTTGATGATTTGGATTTGGCGTTGATTCTTT
GTTGATTATCTCTTCTCTTCACATAGTGGATTTGAGTTTTATAAACCACCTTCAAATGCCGAAAGAAA
AGATTTTGGAAATTTTCTTTCTCTTCATTTTTAAAAATTGTTTTTCAACTTTGCGAACATAGATAGAT
TGCAAGCGATGGGTGTATGGCAGCAGACTACCTTAAATACGTGAGCTCTTTTCGAGTAAGGTTAC
GACTATGAATTTTTTTGTTGAAAGTAAAATTGTTGGAATATTTAAAGTATTTGATTTTCTTTTCAACAGTT
ATTGTCACCTTCTCTGTATGCTCTTGTGTTACACTGAGCGCGATTTTCGAGCACATCAATTTAGCTTCT
TTTTATTTTTTTTTTTAAAGCACCACATTGTCATTTTTCTTTTTTTGCTTTTTTTTTTTTTTTTTTTTTTTTT
GAGACTGTAAAGGCCAGCTGCAATATAAGTCTTTTGTCATATAAAAAATTGAACTATTATTTAATTTTT
ATACAAACTTAACTGTTGGTAATACCATCTTACGTACGAGATTCTTTTTTTTTTTTTTTTTTTTTTTTTTTT
AGTATCTTTTTACATGTTCAATTTTTTGTGAGTACAAAAATTACTTAAATCGAAAAACTTTTGTGGTTAT
GTCACTATCAAGTCAATTTTAAAAACATTTACATTTTTAAAGTATTTTCTTAACTTTGCAGCAACTAGATAGTAAT
TGCAAGCGATGGGTGATATGCACCGGAACTCTTACAAATAACGTGGATGTCTTTTTCGAGTAAGGTTAC
GACTA

pLOM-gCIPK3-73032

CACTCTGTTGTCCTCAAGCTTTTTGGCGTATGCTCTTTTTTGATGATTTGGATTTGGCGTTGATTCTTT
GTTGATTATCTCTTCTCTTCACATAGTGGATTTGAGTTTTATAAACCACCTTCAAATGCCGAAAGAAA
AGATTTTGGAAATTTTCTTTCTCTTCATTTTTAAAAATTGTTTTTCAACTTTGCGAACATAGATAGAT
TGCAAGCGATGGGTGTATGGCAGCAGACTACCTTAAATACGTGAGCTCTTTTCGAGTAAGGTTAC
GACTATGAATTTTTTTGTTGAAAGTAAAATTGTTGGAATATTTAAAGTATTTGATTTTCTTTTCAACAGTT
ATTGTCACCTTCTCTGTATGCTCTTGTGTTACACTGAGCGCGATTTTCGAGCACATCAATTTAGCTTCT
TTTTATTTTTTTTTTTAAAGCACCACATTGTCATTTTTCTTTTTTTTTTTTTTTTTTTTTTTTTTTT
GAGACTGTAAAGGCCAGCTGCAATATAAGTCTTTTGTCATATAAAAAATTGAACTATTATTTAATTTTT
ATACAAACTTAACTGTTGGTAATACCATCTTACGTACGAGATTCTTTTTTTTTTTTTTTTTTTTTTTTTTTT
AGTATCTTTTTACATGTTCAATTTTTTGTGAGTACAAAAATTACTTAAATCGAAAAACTTTTGTGGTTAT
GTCACTATCAAGTCAATTTTAAAAACATTTACATTTTTAAAGTATTTTCTTAACTTTGCAGCAACTAGATAGTAAT
TGCAAGCGATGGGTGATATGCACCGGAACTCTTACAAATAACGTGGATGTCTTTTTCGAGTAAGGTTAC
GACTA
TTTTTACGATGAAGATCCTTTTGACACACAAATATATATGAGAGTTCCAAAAATGACATG
GATAGTCATGAAAATTAAGTCAAAATGTTTCTTTCTTTTCTTTATTTCTGCTAATTTTTAAGTCTTGAT
GAAGAAGAGATGATGGTAATATTATATGGAATAAAATGTTGACTGTCACACATGAA
TTAATTTTTATGGAATTTATATCTACGAACAAAAAGGTGAATACATATGGGATTAAAGTTTGTCTTT
AGATATCTATACAATGAGTTATAATATATTAGCTTTCTTGTGACGCTGTGTTTTTTTTCTTTTACTTTCTT
ATAAATTTTTTTGCTATCAACAGATATAGTTTTGTGCTAGCTTAGCATAAAAGTTTACCTTTATCTCAG
AGAGAACTAACAGTGAGTGACGGCGTTTGGTTATTTATTTTTGTTGTTGAAATTTATCATCTACATGACT
ACATCATCTACAATACGGTCAGCAGACCACGAGTG
Appendix B: Golden Gate modules and vectors
Table B1: Level 0 Golden Gate modules.

<table>
<thead>
<tr>
<th>ENSA ID</th>
<th>ENSA Standard name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>73016</td>
<td>pL0M-SC-gCIPK3-73016</td>
<td>CIPK3 Genomic sequence</td>
</tr>
<tr>
<td>73017</td>
<td>pL0M-SC-cCIPK3sv2-73017</td>
<td>CIPK3 SV2 CDS</td>
</tr>
<tr>
<td>73018</td>
<td>pL0M-SC-cCIPK3sv3-73018</td>
<td>CIPK3 SV3 CDS</td>
</tr>
<tr>
<td>73019</td>
<td>pL0M-T-CIPK3sv2-73019</td>
<td>CIPK3 SV2 3'UTR</td>
</tr>
<tr>
<td>73020</td>
<td>pL0M-T-CIPk3sv3-73020</td>
<td>CIPK3 SV3 3'UTR</td>
</tr>
<tr>
<td>73021</td>
<td>pL0M-PU-CIPK3-73021</td>
<td>CIPK3 native promoter</td>
</tr>
<tr>
<td>73032</td>
<td>pL0M-T-gCIPK3-73032</td>
<td>Genomic CIPK3 3'UTR</td>
</tr>
<tr>
<td>15058</td>
<td>pL0M-PU-p35S(short)-15058</td>
<td>35S promoter</td>
</tr>
<tr>
<td>41414</td>
<td>pL0M-T-35S-1-41414</td>
<td>35S terminator</td>
</tr>
<tr>
<td>15112</td>
<td>pL0M-SC-eGFP-15112</td>
<td>eGFP CDS</td>
</tr>
</tbody>
</table>
Table B2: Golden Gate level 2 modules.

<table>
<thead>
<tr>
<th>ENSA ID</th>
<th>ENSA Standard Name</th>
<th>Backbone</th>
<th>P/PU</th>
<th>S/SC/SC1</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>73029</td>
<td>pL1M-pCIPK3::gCIPK3-73029</td>
<td>pL1V-R2-47811</td>
<td>pLOM-PU-CIPK3-73021</td>
<td>pLOM-SC-gCIPK3-73016</td>
<td>pLOM-T-gCIPK3-73032</td>
</tr>
<tr>
<td>73024</td>
<td>pL1M-p35S::gCIPK3-73024</td>
<td>pL1V-R2-47811</td>
<td>pLOM-PU-p35S(short)-15058</td>
<td>pLOM-SC-gCIPK3-73016</td>
<td>pLOM-T-35S-1-41414</td>
</tr>
<tr>
<td>73025</td>
<td>pL1M-pCIPK3::cCIPK3sv2-73025</td>
<td>pL1V-R2-47811</td>
<td>pLOM-PU-CIPK3-73021</td>
<td>pLOM-SC-cCIPK3sv2-73017</td>
<td>pLOM-T-CIPK3sv2-73019</td>
</tr>
<tr>
<td>73026</td>
<td>pL1M-pCIPK3::cCIPK3sv3-73026</td>
<td>pL1V-R2-47811</td>
<td>pLOM-PU-CIPK3-73021</td>
<td>pLOM-SC-cCIPK3sv3-73018</td>
<td>pLOM-T-CIPK3sv3-73020</td>
</tr>
<tr>
<td>73033</td>
<td>pL1M-pCIPK3::GFP-73033</td>
<td>pL1V-R2-47811</td>
<td>pLOM-PU-CIPK3-73021</td>
<td>pLOM-SC-eGFP-15112</td>
<td>pLOM-T-gCIPK3-73032</td>
</tr>
</tbody>
</table>
Table B3: GoldenGate Level 2 modules.

<table>
<thead>
<tr>
<th>ENSA ID</th>
<th>ENSA Standard name</th>
<th>Backbone vector</th>
<th>Position 1</th>
<th>Position 2</th>
<th>Position 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>73034</td>
<td>pL2B-CIPK3::CIPK3-73034</td>
<td>pL2V-HYG-15027</td>
<td>HYG</td>
<td>pL1M-pCIPK3::gCIPK3-73029</td>
<td>pL1M-ELE-2-41744</td>
</tr>
<tr>
<td>73035</td>
<td>pL2B-35S::CIPK3-73035</td>
<td>pL2V-HYG-15027</td>
<td>HYG</td>
<td>pL1M-p35S::gCIPK3-73024</td>
<td>pL1M-ELE-2-41744</td>
</tr>
<tr>
<td>73036</td>
<td>pL2B-CIPK3::CIPK3sv2-73036</td>
<td>pL2V-HYG-15027</td>
<td>HYG</td>
<td>pL1M-pCIPK3::cCIPK3sv2-73025</td>
<td>pL1M-ELE-2-41744</td>
</tr>
<tr>
<td>73037</td>
<td>pL2B-CIPK3::CIPK3sv3-73037</td>
<td>pL2V-HYG-15027</td>
<td>HYG</td>
<td>pL1M-pCIPK3::cCIPK3sv3-73026</td>
<td>pL1M-ELE-2-41744</td>
</tr>
<tr>
<td>73038</td>
<td>pL2B-35S::CIPK3sv2-73038</td>
<td>pL2V-HYG-15027</td>
<td>HYG</td>
<td>pL1M-p35S::cCIPK3sv2-73027</td>
<td>pL1M-ELE-2-41744</td>
</tr>
<tr>
<td>73039</td>
<td>pL2B-35S::CIPK3sv3-73039</td>
<td>pL2V-HYG-15027</td>
<td>HYG</td>
<td>pL1M-p35S::cCIPK3sv3-73028</td>
<td>pL1M-ELE-2-41744</td>
</tr>
<tr>
<td>73040</td>
<td>pL2B-CIPK3::GFP-73040</td>
<td>pL2V-HYG-15027</td>
<td>HYG</td>
<td>pL1M-pCIPK3::GFP-73033</td>
<td>pL1M-ELE-2-41744</td>
</tr>
</tbody>
</table>
Appendix C: Chapter 3 supplemental figures
Figure C1: Normalised GFP fluorescence ($\Delta F/F$) in the midrib, systemic to the feeding site, in 35S::GCAMP3 and SUC2::GCAMP3 Arabidopsis upon M. persicae settling.

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) SUC2::GCAMP3 control (no aphid treatment) vs aphid treatment. Error bars represent SEM (35S::GCAMP3 n=31, SUC2::GCAMP3 n=34). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at $p<0.05$). Experiment conceived and designed by T.V. and conducted by T.V. and M.A.
Figure C2: Normalised GFP fluorescence ($\Delta F/F$) in the lateral tissue, systemic to the feeding site, in 35S::GCAMP3 and SUC2::GCAMP3 Arabidopsis upon M. persicae settling.
A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) SUC2::GCAMP3 control (no aphid treatment) vs aphid treatment. Error bars represent SEM (35S::GCAMP3 n=31, SUC2::GCAMP3 n=34). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at $p<0.05$). Experiment conceived and designed by T.V. and conducted by T.V. and M.A.
Figure C3: Normalised GFP fluorescence (ΔF/F) in the midrib, systemic to the feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x bak1-5 Arabidopsis upon *M. persicae* settling.
A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x bak1-5 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 35S::GCAMP3 x bak1-5 aphid treatment. Bars represent SEM (35S::GCAMP3 n=30, 35S::GCAMP3 x bak1-5 n=30). Experiment conceived and designed by T.V. and conducted by T.V. and M.A.
Figure C4: Normalised GFP fluorescence (ΔF/F) in the lateral tissue, systemic to the feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x bak1-5 Arabidopsis upon M. persicae settling.

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x bak1-5 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 35S::GCAMP3 x bak1-5 aphid treatment. Bars represent SEM (35S::GCAMP3 n=30, 35S::GCAMP3 x bak1-5 n=30). Experiment conceived and designed by T.V. and conducted by T.V. and M.A.
Figure C5: Normalised GFP fluorescence (ΔF/F) around the midrib, systemic to the feeding site, in 35S::GCAMP3 Arabidopsis upon *M. persicae* settling.

A) No aphid control vs dsGFP aphid treatment. B) No aphid control vs dsMp10 aphid treatment. C) dsGFP aphid treatment vs dsMp10 aphid treatment. Bars represent SEM (dsGFP n=34, dsMp10 n=34). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V. and conducted by T.V. and M.A.
A)

- No Aphid
- dsGFP aphid

B)

- No aphid
- dsMp10 aphid

C)

- dsGFP aphid
- dsMp10 aphid

p<0.05
Figure C6: Normalised GFP fluorescence (ΔF/F) around the lateral tissue, systemic to the feeding site, in 35S::GCAMP3 Arabidopsis upon M. persicae settling.

A) No aphid control vs dsGFP aphid treatment. B) No aphid control vs dsMp10 aphid treatment. C) dsGFP aphid treatment vs dsMp10 aphid treatment. Bars represent SEM (dsGFP n=34, dsMp10 n=34). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V. and conducted by T.V. and M.A.
Figure C7: Settling behaviour of dsGFP and dsMp10 *M. persicae* on 35S::GCAMP3 leaves.

A) Number of settles greater than 5 min in length. B) Number of settles less than 5 min in length. C) Total number of settles. D) Time before first settle that lasted over 5 min. E) Time aphid spent settled during a settling event used to measure GCAMP3 fluorescence. Bars represent SEM (dsGFP n=34, dsMp10 n=34). Experiment conceived and designed by T.V. and conducted by T.V. and M.A.
Appendix D: Chapter 4 supplemental figures
Figure D1: Normalised fluorescence (ΔF/F) around the *M. persicae* feeding site at 7 mins post-settling in 35S::GCAMP3 and 35S::GCAMP3 x *tpc1-2* leaves.

Raw ΔF/F value for each leaf sample plotted. Experiment conceived and designed by T.V. and conducted by T.V. and J.C.
A) 35S::GCAMP3 control 35S::GCAMP3 aphid

B) 35S::GCAMP x tpc1-2 control 35S::GCAMP x tpc1-2 aphid

C) 35S::GCAMP3 aphid 35S::GCAMP3 x tpc1-2 aphid

p<0.05

Time post-settling (min)
Figure D2: Normalised GFP fluorescence (ΔF/F) in the midrib, systemic to the feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x tpc1-2 Arabidopsis upon M. persicae settling.
A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x tpc1-2 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 35S::GCAMP3 x tpc1-2 aphid treatment. Bars represent SEM (35S::GCAMP3 n=27, 35S::GCAMP3 x tpc1-2 n=29). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V. and conducted by T.V. and J.C.
A) 35S::GCAMP3 control
35S::GCAMP3 aphid

B) 35S::GCAMP3 x tpc1-2 control
35S::GCAMP3 x tpc1-2 aphid

C) 35S::GCAMP3 aphid
35S::GCAMP3 x tpc1-2 aphid
Figure D3: Normalised GFP fluorescence (ΔF/F) in the lateral tissue, systemic to the feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x tpc1-2 Arabidopsis upon *M. persicae* settling.
A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x tpc1-2 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 35S::GCAMP3 x tpc1-2 aphid treatment. Bars represent SEM (35S::GCAMP3 n=27, 35S::GCAMP3 x tpc1-2 n=29). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V. and conducted by T.V. and J.C.
Figure D4: Settling behaviour of *M. persicae* on 35S::GCAMP3 and 35S::GCAMP3 x tpc1-2 leaves.

A) Number of settles greater than 5 min in length. B) Number of settles less than 5 min in length. C) Total number of settles. D) Time before first settle that lasted over 5 min. E) Time aphid spent settled during a settling event used to measure GCAMP3 fluorescence. Bars represent SEM (35S::GCAMP3 n=28, 35S::GCAMP3 x tpc1-2 n=29). Experiment conceived and designed by T.V. and conducted by T.V. and J.C.
A) $35S::$GCAMP3 control \rightarrow $35S::$GCAMP3 aphid

B) $35S::$GCaMP3 x $35S::$TPC1 control \rightarrow $35S::$GCaMP3 x $35S::$TPC1 aphid

C) $35S::$GCAMP3 aphid \rightarrow $35S::$GCaMP3 x $35S::$TPC1 aphid
Figure D5: Normalised GFP fluorescence (ΔF/F) in the midrib, systemic to the feeding site, in 35S::GCAMP3 and 35S::GCAMP3 × 35S::TPC1 5.6 Arabidopsis upon *M. persicae* settling.
A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment.
B) 35S::GCAMP3 × 35S::TPC1 5.6 control (no aphid treatment) vs aphid treatment.
C) 35S::GCAMP3 aphid treatment vs 35S::GCAMP3 × 35S::TPC1 5.6 aphid treatment. Bars represent SEM (35S::GCAMP3 n=30, 35S::GCAMP3 × 35S::TPC1 5.6 n=29). Experiment conceived and designed by T.V. and conducted by T.V. and M.A.
A) 35S::GCAMP3 control and 35S::GCAMP3 aphid.

B) 35S::GCAMP x 35S::TPC1 control and 35S::GCAMP x 35S::TPC1 aphid.

C) 35S::GCAMP3 aphid and 35S::GCAMP x 35S::TPC1 aphid.
Figure D6: Normalised GFP fluorescence (ΔF/F) in the lateral tissue, systemic to the feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x 35S::TPC1 5.6 Arabidopsis upon M. persicae settling.

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x 35S::TPC1 5.6 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 35S::GCAMP3 x 35S::TPC1 5.6 aphid treatment. Bars represent SEM (35S::GCAMP3 n=30, 35S::GCAMP3 x 35S::TPC1 5.6 n=29). Experiment conceived and designed by T.V. and conducted by T.V. and M.A.
Figure D7: Settling behaviour of M. persicae on 35S::GCAMP3 and 35S::GCAMP3 x 35S::TPC1 5.6 leaves.

A) Number of settles greater than 5 min in length. B) Number of settles less than 5 min in length. C) Total number of settles. D) Time before first settle that lasted over 5 min. E) Time aphid spent settled during a settling event used to measure GCAMP3 fluorescence. Bars represent SEM (35S::GCAMP3 n=30, 35S::GCAMP3 x 35S::TPC1 5.6 n=29). Experiment conceived and designed by T.V. and conducted by T.V. and J.C.
Figure D8: Settling behaviour of *M. persicae* on 35S::GCAMP3 and 35S::GCAMP3 x *fou2* leaves.

A) Number of settles greater than 5 min in length. B) Number of settles less than 5 min in length. C) Total number of settles. D) Time before first settle that lasted over 5 min. E) Time aphid spent settled during a settling event used to measure GCAMP3 fluorescence. Bars represent SEM (35S::GCAMP3 n=28, 35S::GCAMP3 x *fou2* n=26). Experiment conceived and designed by T.V. and conducted by T.V. and M.A.
Figure D9: Normalised florescence (ΔF/F) around the *M. persicae* feeding site at 7 mins post-settling in 35S::GCAMP3 and 35S::GCAMP3 x *glr3.3/3.6* leaves. Raw ΔF/F value for each leaf sample plotted. Experiment conceived and designed by T.V. and conducted by T.V. and M.A.
A) 35S::GCAMP3 control, 35S::GCAMP3 aphid

B) 35S::GCAMP x glr3.3/3.6 control, 35S::GCAMP x glr3.3/3.6 aphid

C) 35S::GCAMP3 aphid, 35S::GCAMP x glr3.3/3.6 aphid

p<0.05
Figure D10: Normalised GFP fluorescence (ΔF/F) in the midrib, systemic to the feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x glr3.3/glr3.6 Arabidopsis upon M. persicae settling.

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x glr3.3/glr3.6 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 35S::GCAMP3 x glr3.3/glr3.6 aphid treatment. Bars represent SEM (35S::GCAMP3 n=34, 35S::GCAMP3 x glr3.3/glr3.6 n=37). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V. and conducted by T.V. and M.A.
A)

\[\Delta F/F \]

Time post-settling (min)

35S::GCAMP3 control
35S::GCAMP3 aphid

\[p<0.05 \]

B)

35S::GCAMP x glr3.3/3.6 control
35S::GCAMP x glr3.3/3.6 aphid

C)

35S::GCAMP3 aphid
35S::GCAMP x glr3.3/3.6 aphid

\[p<0.05 \]
Figure D11: Normalised GFP fluorescence (ΔF/F) in the lateral tissue, systemic to the feeding site, in 35S::GCAMP3 and 35S::GCAMP3 x glr3.3/glr3.6 Arabidopsis upon M. persicae settling.

A) 35S::GCAMP3 control (no aphid treatment) vs aphid treatment. B) 35S::GCAMP3 x glr3.3/glr3.6 control (no aphid treatment) vs aphid treatment. C) 35S::GCAMP3 aphid treatment vs 35S::GCAMP3 x glr3.3/glr3.6 aphid treatment. Bars represent SEM (35S::GCAMP3 n=34, 35S::GCAMP3 x glr3.3/glr3.6 n=37). Grey shading indicates significant difference between treatments (Student’s t-test within GLM at p<0.05). Experiment conceived and designed by T.V. and conducted by T.V. and M.A.
Figure D12: Settling behaviour of *M. persicae* on 35S::GCAMP3 and 35S::GCAMP3 x *glr3.3/3.6* leaves.

A) Number of settles greater than 5 min in length. B) Number of settles less than 5 min in length. C) Total number of settles. D) Time before first settle that lasted over 5 min. E) Time aphid spent settled during a settling event used to measure GCAMP3 fluorescence. Bars represent SEM (35S::GCAMP3 n=33, 35S::GCAMP3 x *glr3.3/3.6* n=33). Experiment conceived and designed by T.V. and conducted by T.V. and M.A.
Appendix E: Chapter 5 supplemental figures
Figure E1: Full electrophoresis gel of CIPK3 candidate mutant RT-PCR
PCR conducted using CIPK3-specific primers, and TPC1 as a control gene (AtTPC1-F2 & R2, Table 2.4).
Bibliography

75. Chin K, Moeder W, Yoshioka K. (2009). Biological roles of cyclic-nucleotide-gated ion channels in plants: what we know and don’t know about this 20 member ion channel family. *Botany*; 87:668-77.

276

the levels of cytosolic Ca\({}^{2+}\) and expression of Ca\({}^{2+}\)-related genes in Arabidopsis thaliana roots. Plant Physiol Biochem; 65:55-60.

285

idaeus have deterrent effects on spider mites but not aphids. Ann Appl Biol; 168:159-72.

Esau K. (1977) Phloem. Anatomy of Seed Plants
London: John Wiley and Sons.

