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(Non)-universality of vortex reconnections in superfluids
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An insight into vortex reconnections in superfluids is presented making use of analytical results
and numerical simulations of the Gross—Pitaevskii model. Universal aspects of the reconnection
process are investigated by considering different initial vortex configurations and making use of a
recently developed tracking algorithm to reconstruct the vortex filaments. We show that during a
reconnection event the vortex lines approach and separate always accordingly to the time scaling
8 ~ /2 with pre-factors that depend on the vortex configuration. We also investigate the behavior of
curvature and torsion close to the reconnection point, demonstrating analytically that the curvature
can exhibit a self-similar behavior that might be broken by the development of shock-like structures

in the torsion.
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INTRODUCTION

Reconnections in fluids have been object of study for
long time in the contest of plasma physics [I] and both
classical [2] and superfluid dynamics [3]. Depending on
the physical system considered, such reconnections are
events characterized by a rearrangement in the topol-
ogy of either magnetic field, (magnetic reconnections) or
vorticity field (vortex reconnections). Such topological
modifications are believed to play a fundamental role in
several physical phenomena like eruptive solar events [4],
energy transfer and fine-scale mixing [5] and turbulent
states in superfluids [6]. Despite their physical relevance,
reconnections represent also a stand-alone mathematical
problem, related for instance, to the presence of singu-
larities in the Euler equation [2] [7] [8].

In classical fluids described by the Navier—Stokes-type
equations, reconnecting vortex tubes stretch and deform,
leading to complicated dynamics and formation of struc-
ture like vortex bridges [5]. In order to understand fun-
damental aspects of vortex reconnections it is often desir-
able to work with a vortex configuration where the vortic-
ity results confined along lines of zero core size. Such ide-
alization is called a vortex filament. This limit naturally
arises in superfluids, such as superfluid liquid Helium (He
IT) and Bose—Einstein condensates (BECs). Superfluids
are in fact examples of ideal flows of quantum mechani-
cal nature characterized by the lack of viscous dissipation
and by a Dirac’s § vorticity distribution supported on the
vortex filaments. For such fluids, the velocity circulation
is equal to a multiple of the Feynman-Onsager quantum
of circulation T' = h/m, with h the Planck constant and
m the mass of the superfluid’s bosonic constituents.

Due to the Kelvin’s circulation theorem (or the
Alfven’s theorem in magneto-hydrodynamics), in a
barotropic ideal flow reconnections should be forbidden
since the circulation of vortex lines transported by the

flow is conserved and so their topology is frozen. How-
ever, as already suggested by pioneering works of Feyn-
man [9] and Schwarz [10], vortex reconnections in super-
fluids do exist and play a fundamental role in superfluid
turbulence. This was indeed confirmed in the early 90’s
by Koplik and Levine [3] who performed numerical sim-
ulations of reconnecting vortex lines within the Gross—
Pitaevskii (GP) model. They showed that the Kelvin’s
circulation theorem does not hold in this context because
the superfluid density identically vanishes at the vortex
filament. With the progress of experimental techniques
in the last decade, reconnecting superfluid vortices have
been visualized in He II [6, II] and in BECs [12, [I3].
From the theoretical side, many works have been devoted
to study the reconnecting vortex filaments in superfluids,
either by using the so-called vortex filament (VF) model
introduced by Schwarz [10] or the GP model.

The simplest question to ask, although contradictory
answers appear in the literature, is related to the rates
of approach and separation of two reconnecting vortices.
Assuming that a reconnection event is a local process in
space and the circulation I' is the only relevant dimen-
sional quantity involved, by simple dimensional analysis
it follows that the distance 6(¢) between two reconnecting
filaments should scale as

3(t) ~ (T't)!/2, (1)

independently if it is measured before or after the re-
connection. Such prediction has been confirmed by nu-
merical simulations of the VF model [14] and in He II
experiments [I1I]. In the framework of the GP model,
the same scaling was asymptotically derived in [I5] but
a number of numerical studies report disparate scaling
exponents that may differ between the before and after
reconnection stages [I6HI8]. Another fundamental ques-
tion regards the universality of the geometrical shape of
the vortex filaments at the reconnection. It is expected



that vortices become locally antiparallel during the re-
connection process [15]. However, using the VF model it
has been reported that the reconnection angle may follow
a broad distribution that depends on turbulent regime
that is considered [I4]. It has been also observed that
during a reconnection event cusps are generated on the
filaments and argument has been given either in favor of
those cusps being universal [19] or not [20]. Finally, a lot
interest has arisen recently on the generation of Kelvin
waves (helical waves propagating along vortex filaments)
[6, 2TH23] and evolution of hydrodynamical helicity [24-
28] during reconnection events.

The VF model is based on Biot-Savart equations that
describe a regularized Dirac’s § vorticity distribution field
in the incompressible Euler equation; it provides direct
information on the vortex filaments and it is widely used
to mimic superfluid vortex dynamics and turbulence in
He II. However, due to Kelvin’s circulation theorem in
the Euler equation, reconnections need here to be added
by some ad-hoc cut-and-connect mechanisms. In addi-
tion the VF model introduces a small scale cut-off to
regularize Biot-Savart integral divergence and thus can-
not explore the vortex dynamics at the smallest scales
where the reconnection events take place. The GP model
represents an alternative in the study vortex dynamics
and reconnections, the main advantages being that it
naturally contains vortex reconnections in its dynamics
and that the entire reconnection process is regular due to
the identically zero superfluid density field at the vortex
core. Studying such small scale dynamics is crucial for
understanding how energy is transferred through scales
and eventually dissipated. Unfortunately, no information
can be directly inferred from GP on the vortex dynamics
because this model described the evolution of an order
parameter complex field which contains simultaneously
sound excitations and vortex lines in the form of topo-
logical defects. We will present here a detailed study of
vortex reconnections by exploiting a recently developed
tracking algorithm [29] that is able to track vortex fila-
ments in numerical simulations of the GP model with an
machine epsilon level of accuracy.

In order to understand what is universal in vortex fil-
ament reconnection mechanisms, we study the dynamics
of four different initial configurations: (a) perpendicu-
lar and (b) almost anti-parallel lines, (c) a trefoil knot,
and (d) reconnections occurring in a full turbulent tangle
dynamics. We will show that reconnecting vortex lines
always obey the dimensional analysis scaling (both
before and after reconnection), and they generally sep-
arate faster than they approach. In addition we report
that regardless of the initial configuration, vortices be-
come anti-parallel at the reconnection. We also report a
self-similar behavior of the curvature close to the recon-
nection point when torsion does not play an important
role and shock-like structures appearing in the torsion
evolution for some configurations. Those findings are ex-
plained by some asymptotic calculations.

THE GP MODEL AND THE RECONNECTION
CASE STUDIES

The GP model is a dispersive non-linear wave equa-
tion describing the dynamics of the order parameter 1 of
a BEC arising in dilute Bose gases; for the sake of com-
pleteness and clarity we introduce it in App. When
1 is linearized about a constant value ¢y = \/po/m, the
sound velocity results in ¢ = /gpo/m and dispersive ef-
fects take place at length scales smaller than the healing
length & = h/\/2ppg. This can be easily understood by
rewriting the GP model using those physical parameters
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and comparing the magnitude of the r.h.s. first and sec-
ond terms. Note also that by a suitable time and space
rescaling the parameters ¢ and & can be re-absorbed; in
this work length- and time-scales are expressed in units of
the healing length £ and its characteristic time 7 = £/ec.

The relationship between the GP equation and a hy-
drodynamical model is immediately illustrated by intro-
ducing the Madelung’s transformation

P(x,t) = e Vaee, 3)
that relates ¢ to an inviscid, compressible, irrotational
and barotropic superfluid of density p(x,t) and velocity
v = V. In the domain where the Madelung’s transfor-
mation is well defined (¢ # 0), the velocity field is poten-
tial. However, vortices may exist as topological defects
of the order parameter. In places where the density van-
ishes (nodal lines) argt is not defined. The field ¢ still
remains a single-valued function if the circulation ¢ v-d¢
along a nodal line is a multiple of the quantum of circu-
lation I' = h/m = 2\/§7rc§. For this reason nodal lines
of ¢ are called quantum (or quantized) vortices. Their
corresponding velocity field v thus decay as the inverse
of the distance to the vortex, and their vorticity is there-
fore a Dirac-supported distribution. Their typical vortex
core size is order of &.

The GP equation is numerically integrated with a
pseudo-spectral code. The resolution is chosen carefully
to sufficiently resolve the vortex core in space and the
reconnections in time. We consider four different initial
configurations in a cubic box of size L with N collocation
points in each dimension:

a) Perpendicular lines.: The order parameter field
characterized by straight vortex filaments perpendicular
to each other and having initial distance of 6. This ini-
tial configuration is shown in Fig[th.1. L/¢ = 128, N =
256.

b) Antiparallel lines.: Vortex filaments with opposite
circulation are set at an average distance of 6¢. In order
to trigger a Crow instability [30] a small perturbation is



introduced by adding a Kelvin wave of amplitude & and
wavelength equal to the system size. The initial configu-
ration is shown in Fig.l. L/ =128, N = 256.

c) Trefoil knot.: A vortex filament reproducing a torus
72,3 knot (a trefoil) is produced following [31]; the torus
on which the knot is built has toroidal and poloidal radii
of Ry = 16¢ and R; = 4£ respectively. The initial con-
figuration is shown in Fig.l. L/ =128 N = 256.

d) Turbulent tangle.: We prepare an initial condition
consisting of several large-scale vortex rings that repli-
cates a Taylor-Green flow as in [32]. The initial condi-
tion is then evolved in time: the rings reconnect break-
ing the initial symmetry and creating a dense turbulent
tangle displayed in .1 (see [33] for complete descrip-
tion of the field evolution). We study four successive
vortex reconnection events occurring in a small volume
(Fig[ld.2) at stages when the tangle density is higher.
L/€ =256, N = 256.

The time stepping scheme for cases (a) and (b) is a
Strang-spliting method, whereas for cases (c) and (d) is
a second-order Runge-Kutta. In each case, the time step
is chosen to be smaller than the fastest linear time scale
of the system. Conservation of the invariants has been
carefully checked.

APPROACH AND SEPARATION RATES

Apart from the characteristic length scale £ inherently
present in the GP model, when quantized vortices are
considered, the quantum of circulation I' can be used to
formulate an extra length scale. Hence, by dimensional
analysis the distance between two reconnecting lines is
expected to be

+

FE(t) = AT 2T T (8 — )|, (4)

where aF and A are dimensionless parameters and the
superscript + stands for before (-) and after (4) the re-
connection event. The temporal evolution of the minimal
distances between reconnecting filaments for the differ-
ent case studies are displayed in FigPh-d. An explana-
tory movie of the knot reconnection is also provided as
SI. Remarkably, in all cases the approach and separation
rates follow the same dimensional ¢!/2-scaling. For each
event we estimate the reconnection time ¢, by doing a lin-
ear fit on 6% (¢)? and compute ¢, as the arithmetic mean
between ¢ that satisfy 0% (¢)2 = 0. The t'/2-scaling
extends beyond £ and only slight deviations are observed
in some cases. Perhaps this fact could explain the dif-
ferent results for the scaling obtained in [T6HIR] where it
was concluded that the exponents before and after the re-
connection are different. For instance in [I6] it was found
that o~ € (0.3,0.44) and ot € (0.6,0.73) and in [I8] that
either a* = 1/2ora™ = 1/3 and at = 2/3 depending on
the initial vortex filament configuration. In these works

the time asymmetry was interpreted as a manifestation
of the irreversible dynamics due to sound emission; we
will come back to this interesting point in the Discus-
sion. Let us stress that the tracking algorithm we used is
able to measure the inter-vortex distances even in pres-
ence of sound waves (the Taylor-Green tangle analyzed
contains moderate sound at all scales) and no asymmetry
concerning the exponent is observed.

Although the measured exponent is always a™ = 1/2,
the full dynamics is not symmetrical with respect to the
reconnection time as it can be immediately deduced by
observing Fig By estimating the pre-factors A* with
a fit, shown in Fig[3h, we conclude that these are always
order of the unity but are not universal. Moreover, we
observe that the vortex filaments usually separate faster
than they approach (A~ < A™).

The tracking algorithm we use follows the pseudo-
vorticity and it naturally provides the orientation of the
filament with respect to the circulation. It thus allows us
to compute the tangent vectors to the lines and infer the
orientation of the filaments by evaluating the cosine of
the angle 6 between the vectors at the two closest points
as illustrated in Fig[3p and in the supplied movie. By ap-
proaching to the reconnection point each vortex filament
develops a cusp-like structure characterized by high and
localized values of the curvature (displayed in green/blue
colors). The temporal evolution of cosf for all the case
studies is presented in Fig[3|c. It is apparent that, inde-
pendently of the initial configurations, vortices are always
antiparallel at the reconnection point. This behavior ap-
pears to be time-symmetric about the reconnection time
and is smooth, as highlighted in the inset of Fig[3]c where
we show cos 6 in LogLin coordinates for a better view on
the short times before and after reconnection.

ANALYTICAL PREDICTIONS USING A LINEAR
APPROXIMATION

The results presented in Figs. 2] and [3] support the an-
alytical predictions obtained by Nazarenko&West in [15].
Their seminal calculations consider a planar reconnection
of two vortex filaments having a hyperbolic configuration
at times close to t,.. As we shall observe in the following,
vortex reconnections not always fully lay in a plane and
the local torsion of the filament can play an important
role. We generalize here the calculations performed in
[15] including torsion of the vortex lines to understand
its effect during the reconnection. Let us assume that
at the reconnection time ¢, and close to the reconnection
point the order parameter of two reconnecting non-planar
vortex lines is given by

Uole,y.2) =2 4 20 +07) ez + B —y7), (5)

with ¢ # 0 and 5% > 0 (Nazarenko& West reconnect-

ing vortex profile is recovered by setting v = 0). In
the vicinity of the vortex filaments, v is small and the
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FIG. 1. (Color online) 3D plot showing the reconnection events explored numerically. The initial configuration is displayed
for the perpendicular vortex lines (a.1), the anti-parallel lines (b.1) and the trefoil know (c.1). Figures (a.2), (b.2), (c.2) show
a corresponding zoom at the moment of reconnection. Figure (d.1) displays the turbulent tangle and (d.2) a zoom in a place
where a reconnection takes place. Red and blue correspond to the reconnecting vortex filaments, the light blue iso-surfaces

render the density field at low values.

non-linear term in can be neglected. Within this ap-
proximation the pre- and post-reconnection solution is
given by ¢(x,y, z,t) = el(tjlfrr)rvzwr(x,y, z). By solving
Y(z,y,z,t) = 0 we can explicitly obtain the temporal
evolution of the vortex lines. (ED is obtained with

1 AT [T+~
t g =2 _— = _—
at=a" =g and e et (6)

for a > 0 and B < 1 — 2vy/a® (please refer to App.
for a figure of the vortex profiles, details on the above
calculations and different choices of a and §). Interest-
ingly, the angle between the asymptotes of the hyperbolic
vortex configuration close to reconnection is found to be
¢ =2tan"1(A=/AT).

The linear approximation also allows for computing
the curvature and torsion of the vortex lines. As pointed
out by Schwarz in [I0], the curvature x*(s,t) should
present a self-similar behavior close to the reconnec-
tion point of the form k¥ (s,t) = kL, (t)®*((F), where
¢t = (s — s,)kE, (), s, is the coordinate of the recon-
necting point and Kpax is the maximum value of curva-
ture. The present calculations predict

o) [ATN?
+ t t— . 71/2 Hmax( — . .
i 1) ¢ £ = /% ama = () (D)

Note that the t~!/2-scaling could be directly inferred by

dimensional analysis arguments but not the scaling of
the dimensionless pre-factors. Moreover these self-similar
functions ®*(¢*) can be expressed in compact forms for
small values of v and (¢ — t,.) as:

! +0 [nivzw} :

(ofoereger™
(8)

with n* = (AF/ Ai)2 — 1. This function corresponds to
a cusp in the vortex filament at ¢t = ¢, and s = s,. The
dependence on the coefficient (A¥/ Ai)2 + 1 multiplying
the self-similar variable ¢* is unexpected and could not
also be guessed by dimensional arguments. We also re-
miark that the self-similarity is only exact when v = 0 or
n~ =0.

Finally, the torsion 7% (s,t) of vortex line can be also
computed within this approximation. When v # 0 tor-
sion is not identically null but it vanishes at s,., thus con-
firming that reconnections occur locally on a plane. Also,
it can be proved that it changes sign linearly at s, with
a slope that diverges as |t — t,|~1/2, creating shock-like
structures. The slope ratio before and after the recon-
a7t 47— = AT/A".

ds ds
s=5,
We observe that in the context of Euler and Navier—
Stokes flows, dynamical equations for torsion and curva-

() =

nection satisfies the relation
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FIG. 2. (Color online) Temporal evolution of the distance between the reconnecting vortex filaments before (blue) and after
(red) the estimated reconnection time ¢, for the perpendicular (a), antiparallel (b), trefoil knot (¢) and turbulent tangle (d)
configurations. For the turbulent tangle four different reconnection events have been tracked. a.2-d.2) same plots as in a.1-d.1

but in LoglLog scales.
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FIG. 3. (Color online) a) Fitted values of the pre-factors A*
corresponding to (4). b) An example of reconnecting fila-
ments (trefoil knot case): the black dots represent the points
of minimal distances and are used to compute §(¢), the ar-
rows are the tangents of the filaments at those points, the
reconnection angle 0 is defined by using the scalar product
of the tangents. The coloring is proportional to the filament
curvature (low in red and high in green/blue). ¢) Temporal
evolution of the cosine of the reconnecting angle. The inset
displays the same plot in LoglLog scales.

ture have been derived in [34]. To our knowledge, these
non-linear equations do not allow for predicting the gen-
eration of curvature cusps and shock-like torsion struc-
tures. It would be interesting to investigate if the scaling
laws reported above also remain valid in classical fluids

ing at the curvature at a fixed time very close to the
reconnection. In Fig[dla the curvature just before ¢, nor-
malized using Kmax is shown for all configurations. We
indeed observe the formation of a cusp at the reconnec-
tion point s, in all cases. Note that strictly speaking, no
universal function of the curvature is observed. This is
actually expected from the calculations of the curvature
which shows a dependence on the values AT /A~ that
differ from case to case. However, suggests that if the
variable /1 + (A+/A7)2(s — $y)Kmax 18 used instead, a
universal form should be recovered. As shown in Figllb
the data indeed collapse into one universal function when
using this new variable. The theoretical prediction is
also plotted with dashed black line to appreciate the re-
markable agreement.

We now study the temporal evolution of the curvature
to determine if a self-similar evolution is observed. Fig-
ure [bh shows how the trefoil knot curvature, rescaled by
their maximum values, almost perfectly collapse into one
single plot, demonstrating the self-similar behavior for
this configuration. In the inset we plot the maximum
value of the curvature as a function of time in LogLog
scale. The predicted ¢t~'/2-scaling of is clearly ob-
served. In Figlip, we present the same analysis done
for the antiparallel case where a clear break-down of the
self-similar behavior is observed. This can be explained
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FIG. 4. (Color online) a) Curvature normalized by Kmax close
to the reconnection time (just before) for all reconnection
events explored as a function of (s — $;)Kkmax. b) Same data
represented using the scaling suggested by the self-similar
form . The black dashed line displays the theoretical pre-
diction.
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FIG. 5. (Color online) a) Self-similar evolution of the cur-
vature close to the reconnection point for the trefoil vortex.
Blue lines (from light to dark) correspond to times before re-
connection and red lines (from dark to light) to times after
reconnection. The inset displays the temporal evolution of
the maximum value of the curvature in Loglog scales before
and after, normalized as suggested in @ b) Same plot as in
a) but for the reconnection occurring in the antiparallel case.
In both the figures we consider times such that |t —¢.| < 0.57
and the dashed line shows the ¢t~/ 2_scaling. In both figures
the black dashed line displays the theoretical prediction .
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FIG. 6. (Color online) a) Temporal evolution of the torsion 7
as a function of the arc-length in the antiparallel case. Blue
lines (from light to dark) correspond to times before reconnec-
tion and red lines (from dark to light) to times after reconnec-
tion. The inset displays the temporal evolution of the slope
of torsion computed at the reconnection point s, in LoglLog
scales before and after, normalized as (A" /A™). b) Torsion 7
as a function of the arc-length close to the reconnection (just
before) reconnection for all configurations (same legend as in

Fig[).

by assuming a non-negligible value of 7, hence a strong
torsion, that breaks the validity of the expansion done to
obtain , only recovered when times are very close to ¢,
as evident when comparing with the theoretical predic-
tion displayed in dashed black line. The temporal evo-
lution of the maximum of curvature, shown in the inset
of Fig, still confirms the relations presented in @,
namely the scaling ¢~'/?-scaling normalized by the ratio
of the pre-factors are confirmed. Note that the agreement
is very good given the large value (AT /A7)? = 4.153. For
all other cases except tangle 2, self-similarity is observed
(data not shown).

The breakdown of self-similarity is predicted by
when AT/A~ # 1 and v # 0. A non-zero value of v is
related, as we have seen, to torsion close to the recon-
nection point and a shock-like structure formation (see
App . In Fig@a we show the temporal evolution of
the torsion 7 for the antiparallel case. The shock-like
structure formation, and the linear behavior close to the
reconnection point is clearly visible, thus explaining the
breakdown of the self-similarity in Fig[j|b. The inset
shows that the temporal evolution of the slope of the tor-
sion at s, obeys the scaling |t — ¢,|~/? with the correct
normalization AT /A~ suggested by the analytical calcu-
lations. For completeness, in Figl6lb we show the torsion
normalized by the maximum value of the curvature for all
the configurations close to the reconnection time. In all
the other cases, except for tangle 2, the slope of torsion



is almost zero at the reconnection point. Remarkably,
the tangle 2 and antiparallel configurations correspond
to the cases where vortices separate much faster than
they approach (see Figa).

We remark finally that measuring quantities such as
curvature and torsion is numerically very challenging as
they involve high-order derivatives.

DISCUSSION

The reconnection of quantized vortex filaments within
the Gross—Pitaevskii model displays both universal and
non-universal phenomena. We found that close to the re-
connection the approach and separation rates follow the
same scaling § ~ (I't)'/? and the vortex filaments always
become locally anti-parallel. Previous numerical stud-
ies reported scaling rates in the form of power-law with
exponents depending on the configuration. By dimen-
sional analysis, any scaling different from « = 1/2 would
introduce necessarily a new time or length-scale to the
problem that needs to be made explicit. The discrepan-
cies in previous studies might be due to the fact that: (i)
the computational domain is not big enough hence intro-
ducing a non-negligible system size length-scale, or (ii)
the initial condition contains a considerable amount of
sound waves such that the rms value of the compress-
ible kinetic energy can be used to construct an extra
time-scale, or (iii) the observed scaling correspond to dy-
namical regimes occurring much farther/later than the
reconnection event and thus driven by the specific vor-
tex configuration and therefore non-universal. In that
spirit, reconnections within Navier—Srokes flows, modi-
fied version of the model GP with non-local potential
and/or high-order non-linearities to better replicate su-
perfluid liquid helium, or coupled GP equations modeling
multi-component or spinorial BECs could indeed lead to
different scalings.

Our findings demonstrate that the pre-factors AT are
not universal in GP. However, once measured case by
case, their ratio determines many properties of the re-
connection dynamics. Note that the easiest way to de-
termine this ratio is to look at the medium/large scale
reconnection angle ¢ between the hyperbola asymptotes
which should be an accessible quantity in superfluid ex-
periments [IT], [[3, B5]. Let us also remark that the #!/2-
scaling we observed extends beyond the distance £. This
suggests that the linear approximation might be used as
a matching theory in order to relate measurements done
well before and far from the reconnection events. BEC
experimentalists are able today to study vortex dynam-
ics and reconnections [I3] [35]. Our predictions should
directly apply to those systems.

Finally, let us underline that understanding the dy-
namics of the reconnection events is crucial to provide a
full comprehension of the dissipative processes occurring
in superfluids in the low-temperature limit. It is largely
believed that Kelvin waves play a fundamental role carry-

ing the energy to the smallest scales where it gets finally
dissipated by sound radiation. The cusps arising in the
vortex filaments due to reconnection events are responsi-
ble for a rapid and efficient excitation of Kelvin waves at
all scales. Here we provided an analytical formula for the
dynamical formation of the cusps and we aim to use this
result in further theoretical studies to estimate the rate
of radiation during reconnection. Also, we have shown
that non-negligible torsion of the reconnecting filaments
implies the break-down of self-similarity, results in the
formation of shock-like structures of the torsion. This
phenomenon seems to be linked to the large difference
observed in the A* pre-factors, hence to extremes events
where vortices separate much faster than they approach,
and to the irreversibility of the reconnection events. We
do not have yet a theoretical understanding of this fact
and more data would be desirable to perform a detailed
statistical analysis.
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Appendix A: The Gross—Pitaevskii equation

In the limit of very low temperature a weakly-
interacting Bose gas can be described using a mean field
approximation in terms of a complex order parameter (or
condensate wave function) . Such system is governed
by a dispersive non-linear wave equation called Gross—
Piteaveskii equation

R

A L D) 2.
Zhat oV Y+ gl  — b,

(A1)
where m is the mass of the bosons and g = 4rah?/m,
with a the boson s-wave scattering length. The chemical
1 can be in principle absorbed by a global phase shift.
Although formally derived for BECs, the GP model qual-
itatively reproduces many aspects of superfluid liquid He-
lium too. It can be used to model classical vortex dynam-
ics in situations where a large scale separation between
the vortex core and the size of such vortex is present.

The GP equation posses a Hamiltonian structure and
conserves the total number of particles

N:/wm&, (A2)



the total energy

a= [ (Erwppspt)ax, @)
2m 2 ’
and the total momentum
h
Py [rve—uveidx. (A

The speed of sound for such model is given by ¢ =
\/9po/m. This value can be derived by linearizing
about a constant value ¢ = /po/m = \/p/g. Tt is also
possible to identify a characteristic length £ = fi/v/2pog,
called healing length, representing the scale where the
linear contribution in equals the non-linear one.
Dispersive effects will then take place for length scales
smaller than &. can be rewritten in term of the two
physical quantities ¢ and & as

N c ( 272 m 2>
i— = =&V -+ — . A5
5t = e (€Y Py (A5)
By using the Madelung’s transformation
1) et
vl 1) = 1/ 2D (A6)

it possible to relate the order parameter 1 to a com-

pressible, irrotational and barotropic superfluid having

density p(x,t) and velocity v = V. Indeed, plugging

transformation (A6) in (2|) we directly obtain
dp

a—i—V-(pV):O

%+1V2202(p0_p) +62§QVQ\/E- (A8)

(A7) and (AS8) are the continuity equation and the

Bernoulli equation respectively, except for the last term
in which is called quantum pressure and has no ana-
log in classical fluid mechanics.

Although the velocity field defined by the Madelung
transformation is potential, solutions with non-zero
circulation can exist in the form of topological defects
of the order parameter 1. For such vortex solutions the
vorticity is supported on the curves (nodal lines) where
the density field vanishes and the phase is not defined.
In order to ensure that the order parameter stays single-
valued, the circulation around such nodal lines must be
constant and equal to a multiple of the Onsager-Feynman
quantum of circulation I' = h/m = 2v/2mcé. For this
reason, nodal lines of the order parameter are called
quantum (or quantized) vortices. The region around
the topological defect where the density drops to zero
is called vortex core and its size is of the order of the
healing length €. The hydrodynamical interpretation of
superfluids is thus the one of a compressible (dispersive)
flow where vorticity is a distribution (a superposition of
Dirac deltas) supported on the vortex filament.

(A7)

FIG. 7. Sketch of the plane on which the Newton—Raphson
method is implemented.

We would like to remark that often quantum vortices
are misleadingly referred as the singularities of the sys-
tem, as the velocity field diverges as 1/r where r is
the distance to the filament. This divergence is just a
consequence of the change of coordinates given by the
Madelung transformation. At the vortex position, the
order parameter solution of the GP equation is a smooth
field. We can thus precisely track vortices finding the
zeros of ¢ as described in the next section.

Appendix B: Vortex Tracking Algorithm

We have recently developed a robust and accurate al-
gorithm to track vortex lines of the order parameter ¥ in
arbitrary geometries. The details of the algorithm and
accuracy of the method can be found in [29]. We recall
here the basic ideas. A quantized vortex line in three
dimensions corresponds to a nodal line defined by

Re[y(z,y,2)] = Im[¢(z,y,2)] =0.

The algorithm is based on a Newton-Raphson method
to find zeros of ¢ and on the knowledge of the pseudo-
vorticity field W = V Re[y)] x VIm[y)], always tangent to
the filaments, to follow vortex lines [I8]. Starting from
a point xo where the density [1|? is below a given small
threshold (therefore very close to a vortex), we define the
orthogonal plane to the vortex line using W(xg). The
plane is then spanned by the two directors ti; and 05 as il-
lustrated in Fig[7] A better approximation for the vortex
position x, on the plane is then given by x; = x¢ + dx.
Here the increment §x is obtained using the Newton—
Raphson formula (the linear approximation):

(B1)

0 = (%o + 0x) = 9(x0) + J(x0)0x, (B2)
where J(xg) is the Jacobian matrix expressed as
_ (VRe[Y] @, VRely] a
J= <VIm[¢] Cay VIm[y] - u22> - (B3

The increment can be therefore calculated using dx =
—J Y(x0) - (Re[th(x0)], Im[th(x0)])T. Sufficiently close



to the line the Jacobian matrix is always a non-singular
2 X 2 matrix so its inverse can be computed. We un-
derline that the method requires the evaluation of the
Jacobian at intermesh points. Making use of the
spectral representation of i, we can precisely compute
those values using Fourier transforms. This process can
be iterated until the exact location x, is determined upon
a selected convergence precision.

To track the following vortex point of the same line
we use as a next initial guess xg = x, + (W, which
is obtained evolving along W by a small step (. The
process is reiterated until the entire line is tracked and
closed, then repeated with another line until the whole
computation domain has been fully explored.

Appendix C: Linear approximation detailed
calculations

A first analytical study of a reconnection event in
the GP model have been provided by Nazarenko and
West [I5], where it is shown that two vortices are anti-
parallel during a reconnection and their distance scales
as 6(t) ~ t'/2. In the same spirit of the work [15], we
assume that inside the vortex core the non-linear term
of the GP equation can be neglected and so a reconnec-
tion event should be governed by the (linear) Schrédinger
equation. For the sake of simplicity, in dimensionless
units this equations reads

101 + %v% =0. (C1)

Note that we absorbed the parameters ¢ and £ in by
a suitable time and space rescaling. We remark that in
[15] reconnections are studied just on a plane, whereas
here we consider vortex filaments with non-zero torsion.
At the reconnection time ¢, we use as initial condition
the ansatz

Ur(e,9,2) = 2+ 1@” +47) +ilaz + B2’ = ). (C2)

Looking for i, = 0 one can recover the vortex profile,
given by the curves

_ B— _827(6+1)
R(s)-(s, is“fijl, a(7+1)>, (C3)

where s is the parametrization of the curve. We note

that (C3|) requires that
B—n
v+1

In figure |8 we plot the the vortex filaments R(s) (blue
lines) for our initial condition. The vortices projected on
the z-y planes form two hyperbola (orange lines) crossing
at the reconnection point. We note that the values 5 and

v fix the angle
¢ =2tan"! (, / ;tz> (C5)

> 0. (C4)

FIG. 8. Plot of the initial condition using v = 0.01, 8 = 1/2
and a = 1. The vortex filaments are shown in blue while their
projection on the z-y is shown in orange.The arrows identify
the circulation around each vortex.

between the two hyperbola. The arrows identify the cir-
culation around each vortex.
The formal solution of equation (C1)) is given by

h(t) = i3IV, (C6)

where t, is the time when the reconnection occurs. The
choice of a second order polynomial for 1, allows us to
find the exact solution of (C1):

W(t) = z+%(z2+y2)f2t(671)+i (az B — P At — tT)%) .
(C7)

2
Assuming @ > 0 and v < 8 < 2 ;227 the vortex lines

before the reconnection (¢t < ¢,.) are given by

Ria(s,t) =(s, i\/(tr —t)(a?(1 — B) — 2v) + as?(8 — )

a(y+1) '
(t —t)(a*(B—1) —29*) — ay(B + 1)32)
(v+ 1Da?

(C8)

while after the reconnection (¢ > t,)

S,

t(sf) = (t—tr)(a*(1 = B) —27) +as’(1+7)
R1,2( 775) (i\/ a(,@—’y) ’
(t —t)(a®(B=1) +29%) —ay(B+1)s°

(B —7)a?

).
(C9)

From the above curves we observe that the two vortices
approach along the y-direction and separate along the
z-direction. It follows that

5E(t) = [RE(0, )~ R (0,6)] = V2 AZ[t—1,]"/2, (C10)

where the ratio of pre-factors satisfies

AT /1

A~ B—n
From equation (C5) we can see how the quantity ﬁ—t
is related to the angle ¢. Calling ¢~ the angle of the

(C11)



approaching vortices and ¢ the angle of the separating
2
vortices, we can conclude that for A < = ;2”’ then

¢~ > ¢t. On the other hand, when 8 > <522 the two
vortices approach along the x-direction and separate

B=y

= For sake of

along the y-direction with ﬁ—_
completeness in Fig@ we show the values of the ratio ﬁ—t
and the angles ¢~ and ¢+ for different values of 5 We

note that A < 1 for aa_z'Y <fB< 1+27Whlle L= >1
for > 1+ 27 As a final remark, we note that changing

AT <1 AT

At
/// F>1 a F>1
no solutions
//// o~ <ot 6~ > 9" o~ <ot
0 B= s B=1+2y

a2

FIG. 9. Dependence of the ratio F and the angles ¢~
¢ on different values of 8.

the sign of a corresponds to look at the reconnection

back in time, hence each value of ﬁ—t in Fig@ will then
be reversed.

The linear approximation also allows for computing the
curvature

IR(s,t) x R"(s,1)|

K(s,t) = R(s.0)F (C12)

and torsion
T(s.t) = (R/(s,t) x R"(s,t)) - R"'(s,1)

[R/(s,1) x R"(s, 1)|?

(C13)

of the vortex lines.

The curvature can be directly evaluated. Its maxima
as a function of time before and after reconnection are
given by

oy, [P0 B @5~ 1)+ 29)(¢ ) £ 038~ )21 +)
s a2(1+7)2(@2(5 — 1) + 29)(t — t)

(C14)
and
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where nt = (AT /A*)2 — 1. Remarkably, once the ra-
tio AT /A~ is reintroduced, v only appears as quadratic
correction to the self-similar form. Note that within this
approximation, self-similarity is destroyed when n*~2(t—
t.)/7 is of order 1.

n
2V then 4 ==

We note that in case one chooses 3 > £

B
’/1+v and

(2] gy 20 = [BF Q)] gz n - (C17)

a

The former calculations were evaluated using a symbolic
computation software.

Finally, the torsion 7(s,t) of vortex line can be also
computed within this approximation. It vanishes at s,
(suggesting a locally planar reconnection), however it
changes sign linearly at this point. Its slope is given by

ar+ . 3V2(1 + B)
ds VaB =N/t =t) @ (1 = 8) —27)’
(C18)
and it diverges as |t —t,| /2. The torsion thus develops
shock-like structures as displayed in Fig[I0] The inset in

K

e a?(B —7)(a?(B — 1) + 27)(t — tr)

(C15)
respectively. The present calculation predicts k-, (t) o
|t —t,|~1/? that also corresponds to a dimensional anal-
ysis prediction. In addition, the linear approximation
predicts that s, /kp.e = (AT/A7)3 in the limit of
t — t,.. This non-trivial result can not be found by
dimensional arguments. Moreover one can show that
k¥ presents a self-similar behavior close to the reconnec-
tion point of the form x*(s,t) = sk, (t)®*((s), where
¢t = (s — s,)kE,, (t) and s, is the coordinate of the re-
connecting point. For small values of -y, these self-similar
functions can be found to be

3 (B +1)¢?
L+ 5 Ene Y

TENCERNTE R

1 iQ(t_tr)
= 3/2—"_0(7777' )

[1 + ((%)2 + 1> 52]

PE(C) =

(C16)

b \/472(1 +8)%(a*(8 = 1) +2)(t — tr) — a3(8 —1)>(1 +7)?

1.5
0.1
1,
0
0.5
-0.1
w 02 0 02
o0
~
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—t —t, = 0.0257]
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FIG. 10. Plot of the torsion versus the y-coordinate, for dif-
ferent time steps using v =0.01 , 3 =1/2 and a = 1.

Fig. shows the linear behavior close to the reconnec-
tion point It is possible to prove analytically that the

dT d7— — A+/A_.

ds
S=S,
The full formulas for the torsmn are too long to be pre-
sented here.
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