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Abstract

This research belongs to the field of Representation Theory and tries to solve questions
through homological algebraic methods. This project deals with the study of symmetries
of the plane and aims at measuring how much a mathematical object of importance for
that study fails to satisfy the property of not needing bracketing when multiplying three
elements together, which is called associativity. More precisely, we study the rational rep-
resentations of GL2(Fp), the general linear group of order 2 over an algebraically closed
field of prime characteristic p. Representations are a means to understand group or al-
gebra elements as linear transformations on a vector space of a given dimension, and it
is possible to “build” representations from smaller ones, e.g. the set of so-called standard
representations. The way to glue these building blocks together is governed by the algebra
of extensions between standard representations. In a series of papers culminating with
[MT13], Miemietz and Turner described precisely the algebra structure of that extension
algebra. It is the homology of a differential-graded algebra and this project aims at es-
timating how non-associative it is by computing its A∞-algebra structure. For any p,
we give the quiver of that extension algebra, and for p = 2, we show that there exists
a subalgebra of the extension algebra which admits a trivial A∞-algebra structure, and
what’s more, in a somewhat peculiar way. We also give its quiver and discuss some of its
properties.
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Introduction

Foreword

This PhD project is based on the work of Miemietz and Turner, more precisely on their
paper The Weyl extension algebra of GL2(Fp) (2013) [MT13]. They provide an alternative
description of the extension algebra of standard modules belonging to the principal block
of rational representations of GL2(Fp) and that description gives the algebra structure: a
basis is parametrised by some polytopes in Z7 and the multiplication is given explicitly in
terms of those polytopes. Let us introduce the setup for this project.

Rational Representations of GLn(Fp)

Let F be an algebraically closed field of positive characteristic p. We consider the poly-
nomial representations of GLn(F ), namely those morphisms of algebraic groups

ρ : GLn(F )→ GL(V ),

for some m-dimensional vector space V over F , such that, after choosing a basis for GL(V ),
all the entries of ρ(g) are polynomials in the coordinate functions of GLn(F ).

Denote by Rn = F [G] the ring of coordinates of G = GLn(F ). As a polynomial ring, it
has a coalgebra structure. In addition, it contains the subcoalgebra A(n, r) of polynomials
of degree r. Dualising this coalgebra with respect to F , we obtain the Schur algebra:

S(n, r) = A(n, r)∗.

Theorem. [Gre81] Denote by Rep G the category of polynomial representations of G, and
by ReprG the category of polynomial representations of G of degree r. Then we have:

Rep G =
⊕
r≥0

ReprG,

namely, if M ∈ Rep G, then M splits as

M =
⊕
r≥0

Mr,

where Mr ∈ ReprG for all r ≥ 0.

In addition,

Theorem. [Gre81] There is an equivalence of categories

ReprG ' S(n, r)−mod.

The simple modules are labelled by partitions of r with at most n parts.
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The Schur algebra S(n, r) decomposes into blocks:

S(n, r) ∼= A1 × . . .×As,
i.e. as a direct product of indecomposable algebras Ai.

We now restrict to the case n = 2, so that G = GL2(F ). Suppose A1 and A2 are
blocks of S(2, r1), S(2, r2) resp. but A1 and A2 have the same number of simple modules,
then A1−mod ∼= A2−mod ([EH02, Theorem 13]). Note that in that case, it is possible to
label simple modules by an integer a: a partition (λ1, λ2) of ri with two parts is uniquely
identified by a := λ1 − λ2. Given a degree r ∈ N, there exists a combinatorial description
of which such a’s are in the same block (cf. [Par07]).

Finally, we have

Theorem. [MT10] If a block A has pr simple modules, where p = char F, then A is
Morita equivalent to the algebra cp

r(F, F ).

We define cp
r(F, F ) in the next section.

Inductive Construction

As this project relies on the paper [MT13], we need to explain their notation and re-
sults. The category G-mod of rational representations of G = GL2(Fp) is a highest weight
category and the standard modules are called Weyl modules. They give an explicit de-
scription of the algebra structure of the Yoneda extension algebra w of the Weyl modules
(belonging to the principal block) of the category G-mod. This description relies on an
inductive construction of some algebra µ using some algebraic operators which turn out
to be well-behaved with respect to homology.

The starting point is to consider the very small quasi-hereditary algebra cp which is
the path algebra of the following quiver:

1 2 . . . p
α α α

β β β

modulo the relations (α2, β2, αβ + βα, αβep). Our convention to write paths is the same
as that to write the composition of maps, namely ab corresponds to the path

• b→ • a→ •.

The algebra cp is a trigraded algebra, with j-grading the path length, k-grading being
identically zero and d-grading the grading with respect to the quasi-hereditary structure
of cp (the filtration of cp by standard modules is unique). We can turn it into a differential
trigraded algebra by adding a differential on it which we choose to be the zero map.

Computing the endomorphism ring of its tilting module tp as a left cp-module, we see
that cp is Ringel self-dual. This yields an isomorphism of left cp-modules tp ⊗cp tp ∼= cp

∗.
Because (−)∗ is a simple preserving duality, cp

∗ looks like cp upside down. Note that tp
is not trigraded as a cp-module: the d-grading on tp is not a module grading over the
d-graded algebra cp but is a vector space grading (cf. [MT13, Corrigendum]).

We now want to make the construction of cp
r(F, F ) explicit. Let us first fix some

notation: let a = ⊕ajk be a differential bigraded algebra, m = ⊕mjk be a differential
bigraded a-a-bimodule, A = ⊕k∈ZAk be a differential graded algebra and M = ⊕k∈ZMk

be a graded bimodule. For simplicity, we assume a and m are non negatively j-graded.
We write:

Pa,m(A,M) := (a(A,M),m(A,M)),

6
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where
ak(A,M) :=

⊕
j

ajk ⊗F M⊗Aj ,

mk(A,M) :=
⊕
j

mjk ⊗F M⊗Aj .

Informally, what we do is glue a, resp. m, with a tensor product of copies of M of length
the j-degree of a, resp. m. The first coordinate a(A,M) of Pa,m(A,M) is a differential
graded algebra with multiplication

a(A,M)⊗ a(A,M)

a(A,M)

(
x
jk ⊗F y1 ⊗A . . .⊗A yj

)
⊗
(
x′
j′k′ ⊗F y′1 ⊗A . . .⊗A y′j′

)

(
xx′

(j+j′)(k+k′) ⊗F y1 ⊗A . . .⊗A yj ⊗A y′1 ⊗A . . .⊗A y′j′
)

with k-grading and differential the total k-grading and total differential on the tensor
products of complexes. The second coordinate m(A,M) is a differential graded a(A,M)-
a(A,M)-bimodule, with left action

a(A,M)⊗m(A,M)

m(A,M)

(
x
jk ⊗F y1 ⊗A . . .⊗A yj

)
⊗
(
mj′k′ ⊗F y′1 ⊗A . . .⊗A y′j′

)

(
xm(j+j′)(k+k′) ⊗F y1 ⊗A . . .⊗A yj ⊗A y′1 ⊗A . . .⊗A y′j′

)
and the right action is defined likewise. The k-grading and differential are defined

similarly as for a(A,M).
We can now define cp

r(F, F ): it is the algebra part of Prcp,tp(F, F ).

Example. To illustrate this construction, consider the case p = 2 and r = 2. There are
two simple modules denoted by 1 and 2, with corresponding idempotents e1 and e2. The
tilting module t2 of c2 admits the following decomposition as a left module:

t2e1 ⊕ t2e2 = 10
1 ⊕

10
0

21
1

11
2

,

where the superscript corresponds to the d-grading and the subscript to the j-grading.
Note that the way the right c2-action is defined ([MT13][Section 6.]) - so that t2 is a
c2-c2-bimodule - imposes that the first tilting module only basis element has j-degree 1.

We can now compute c2
2(F, F ). Recall that t2 ⊗c2 t2

∼= c∗2. Pictorially, we have:

10
0 ⊗ c2

21
1 ⊗ t2

11
2 ⊗ c2

∗
⊕

20
0 ⊗ c2

10
1 ⊗ t2

This algebra has four simple modules (i, j) for 1 ≤ i, j ≤ 2, which we write 2-adically.
We denote the corresponding idempotents by es where s ∈ {1, 2, 3, 4}. To sum things
up, we see in Figure 1 the decomposition of c2

2(F, F ) into indecomposable left projective
modules.

The algebra describing the principal block of rational representations is isomorphic
to the homology of the algebra part of (the inverse limit of) Prcp,tp(F, F ). Let dp be

the extension algebra of the standard modules of cp, and u = (u,u−1) be the image of

7
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c2
2(F, F )e1 ⊕ c2

2(F, F )e2 ⊕ c2
2(F, F )e3 ⊕ c2

2(F, F )e4 =

10

21 31

11 42 11 ⊕

32 21

12

20

10

31 ⊕

11

21

30

41 10

31 20 ⊕

11

40

30

10

Figure 1: Decomposition into indecomposable left projective modules of c2
2(F, F ).

tp = (tp, t
−1
p ), where tp is the tilting module of cp and t−1

p := Homcp(tp, cp), under the dg
derived equivalence given in Proposition 25 of [MT13]. The algebra µ mentioned above is
the result of a similar iteration using dp and the homology of up, instead of cp and tp, and
using an operator O instead of P. The operator O has a similar definition as operator P:

OΓ(Σ)ik =
⊕

j,k1+k2=k

Γijk1 ⊗F Σjk2 ,

where Γ = ⊕i,j,k∈ZΓijk is a Z-trigraded algebra and Σ = ⊕j,k∈ZΣjk is a Z-bigraded algebra.
Informally, we glue the two algebras along the j-degree.

Denoting by wq an idempotent truncation of w with pq simple modules, Miemietz and
Turner prove the following in their paper:

Proposition. [MT13, Proposition 28.] We have

wq
∼= µq := OFO

q
HTd(u)(F [z, z−1]),

where

– H means take homology;

– Td(u) :=
⊕
l>0

u−1⊗dl ⊕ d ⊕
⊕
l>0

u⊗dl is a sum of tensor products of u−1 when the

index is negative and of u when it is positive. Note that it is not an algebra as the
multiplication is not well-defined; however, its homology is an algebra.

In particular, wq can be identified with a subalgebra of d⊗F HTd(u)⊗q−1. After closer
analysis ([MT13, Lemma 29]), it turns out we only need a truncation of HTd(u); we can
keep the non-positive powers of u and u itself, which we denote HTd(u)≤1.

We are interested in µ because it admits a much more explicit algebra structure.
Identifying wq and µq through that isomorphism of algebras, and since wq appears as a
subalgebra of d⊗HTd(u)⊗q−1, it is possible to express the basis elements of a basis of wq

in terms of basis elements of a basis of HTd(u)≤1 which is indexed by a polytope in Z7.

Overview

In this section, we wish to give the reader an overview of how all the different objects
introduced so far come into play and relate to each other. Keller’s duality is a homological
duality inducing a dg-derived equivalence.

In Figure 2, we can see that, starting from cp and the pair (tp, t
−1
p ), we can either

apply the iterative construction, then Keller’s duality and take homology to obtain the

8
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d

u

u−1

c

t

t−1

Td(u)

HTd(u)

OFO
q
HTd(u) := µq

Pqc,t(F, F )

KPqc,t(F, F )

wq
∼= HPF,0KPqc,t(F, F )

Apply Keller’s duality K(−)

∼q.i.

∼q.i.

∼q.i.

K(−)

form “tensor product” iterative construction

iterative construction

Apply homology H

Apply homology H

Proposition 28

[MT13]

Figure 2: Overview of the constructions in [MT13].

extension algebra wq we are interested in, or we can first apply Keller’s duality, then
take homology and finally apply another iterative construction to obtain µq, which is
isomorphic as algebras to wq by Proposition 28 in [MT13]. The fact that we can compute
homology once and for all and then do the iterative construction is the crucial contribution
from Miemietz and Turner.

Project and results

Our project aims at computing the A∞-algebra structure on the Yoneda extension algebra
of Weyl modules of the principal block of rational representations of G = GL2(Fp); it
appears as a subalgebra of a tensor product of the form d⊗HTd(u)q−1.

First, we give a description of the quiver of wq for any p. Since the previous iteration
wq−1 appears as a subalgebra of wq in the form es1 ⊗ wq−1 for 1 ≤ s1 ≤ p, where es is
an idempotent of d, we only give the arrows for which the first constituent of the basis
element is not an idempotent of d. We call them the new arrows. Let p = 2. We have:

Theorem (Theorem 3.3.10). The new arrows for the quiver of wq are of the form

– ξ ⊗ (es2 ⊗ e∗p+1−s2)⊗ . . .⊗ (esq ⊗ e∗p+1−sq);

– x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1);

– x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (ξ ⊗ e1)⊗ el1 ⊗ el2 ⊗ . . . els if there exists 1 ≤ i ≤ s
such that li = 2 (s > 1);

– x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (e2 ⊗ ξ)⊗ el1 ⊗ el2 ⊗ . . . elr if there exists 1 ≤ i ≤ r
such that li = 1 (r > 1).

9
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For p > 2, we have:

Theorem (Theorem 4.6.1). The new arrows for the quiver of wq are of the form

es1ξes1+1 ⊗
q⊗
l=2

(
esl ⊗ e

∗
p+1−sl

)
1 ≤ s1 ≤ p− 1;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗

(
esn+2ξ ⊗ ξep+1−sn+2

)
⊗

q⊗
l=n+3

(esl ⊗ e
∗
p+1−sl)

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 2,

1 ≤ sn+2 ≤ p− 2;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗q−1 1 ≤ s1 ≤ p− 1;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (ξ ⊗ e1)⊗

q⊗
l=3+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 3,
∃l ≥ 3 + n
s.t. sl 6= 1;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (ep ⊗ ξ)⊗

q⊗
l=3+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 3,
∃l ≥ 3 + n
s.t. sl 6= p;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (x⊗ e1)⊗ es3+nwes3+n ⊗

q⊗
l=4+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 3,
s3+n 6= 1, p;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (x⊗ e1)⊗ e1we1 ⊗

q⊗
l=4+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 4,
∃l ≥ 4 + n
s.t. sl 6= 1;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (x⊗ e1)⊗ epwep ⊗

q⊗
l=4+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 4,
∃l ≥ 4 + n
s.t. sl 6= p;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (ep ⊗ x)⊗ es3+nwes3+n ⊗

q⊗
l=4+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 3,
s3+n 6= 1, p;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (ep ⊗ x)⊗ e1we1 ⊗

q⊗
l=4+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 4,
∃l ≥ 4 + n
s.t. sl 6= 1;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (ep ⊗ x)⊗ epwep ⊗

q⊗
l=4+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 4,
∃l ≥ 4 + n
s.t. sl 6= p;

es1xξes1+2 ⊗
q⊗
l=2

esl
1 ≤ s1 ≤ p− 2,
(s2, . . . , sq) /∈ S;

es1x
2es1+2 ⊗ es2wes2 ⊗

q⊗
l=3

esl
1 ≤ s1 ≤ p− 2,
2 ≤ s2 ≤ p− 1;

es1x
2es1+2 ⊗ e1we1 ⊗

q⊗
l=3

esl
1 ≤ s1 ≤ p− 2,

∃l ≥ 3 s.t. sl 6= 1;

es1x
2es1+2 ⊗ epwep ⊗

q⊗
l=3

esl
1 ≤ s1 ≤ p− 2,

∃l ≥ 3 s.t. sl 6= p;

10
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where 1 ≤ sl ≤ p (unless otherwise stated) and S := {(1, . . . , 1), (p, . . . , p)}.

Second, we exhibit a peculiar A∞-structure on HTd(u−1) (note that we get rid of the
positive part u of HTd(u)):

Proposition (Proposition 6.2.6). Let p = 2. Under the assumption that for all 2 < r < n,
the higher multiplication mr : HTd(u−1)⊗r → HTd(u−1) can be chosen to be identically

zero, there is a map fn : HTd(u−1)
⊗n → Td(u−1) defined by:

fn

(
eε12 ξ

m1xl1eη1
1 ⊗ . . .⊗ e

εn
2 ξ

mnxlneηn1

)
:=

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

lj∑
i2(n−j)=1

mj+i2(n−j)−1−1∑
i2(n−(j−1))−1=1

lj−1∑
i2(n−(j−1))=1

. . .

m2+i2n−5−1∑
i2n−3=1

l1∑
i2n−2=1

(−1)
∑n−1
k=1 (i2k−1+

1+(−1)k

2
)ln−keε12 ξ

m1+i2n−3−1xl1−i2n−2e1e2x
i2n−2−1ξm2+i2n−5−1−i2n−3 . . .

. . . xl2−i2n−4e1e2x
i2n−4−1ξm3+i2n−7−1−i2n−5 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1 ,

if ηi 6= εi+1 for all 1 ≤ i ≤ n − 1, and zero otherwise. Moreover, it is a graded map
of k-degree 1 − n such that −m1fn = Φn. In particular, the higher multiplication mn :
HTd(u−1)⊗n → HTd(u−1) can be chosen as identically zero.

The peculiarity of that A∞-structure is that the components of the A∞-morphism are
non-identically zero for any n, even though we can choose all the higher multiplication
maps (n ≥ 3) to be zero. That result leads us to finding a particular subalgebra of wq.

Proposition (Proposition 6.3.1). Let p = 2. There is a large subalgebra of wq which is
formal. We denote it by ωq.

However, we know from some examples that there is a non-trivial A∞-structure on
wq, therefore that A∞-structure must ”come from u”, in a sense that needs to be made
precise. The combinatorics to obtain Proposition 6.2.6 were not easy to grasp and we
doubt that the same approach could be used to reach the same result for greater p - even
trying to compute f3 in the case p = 3 is difficult.

Finally, we give a description of that formal subalgebra.

Proposition (Proposition 6.3.4). Let p = 2. Let v = v1 ⊗ . . . ⊗ vq be an irreducible
monomial of the formal subalgebra ωq. Then it is of the form

• es1 ⊗ . . .⊗ esq ;

• es1 ⊗ . . .⊗ esq−1 ⊗ ξ;

• es1 ⊗ . . .⊗ esn ⊗ x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1);

• es1 ⊗ . . .⊗ esn ⊗ x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (ξ ⊗ e1)⊗ el1 ⊗ el2 ⊗ . . . els, s > 1;

• es1 ⊗ . . .⊗ esn ⊗ x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (e2 ⊗ ξ)⊗ el1 ⊗ el2 ⊗ . . . elr , r > 1.

Proposition (Proposition 6.3.7). Let p = 2. The algebra ωq is not d-Koszul for any
d ≥ 2.
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Description of the Chapters

We now wish to give the reader an overview of the organisation of the present document.
In Chapter 1, we recall important theories underlying the work of Miemietz and Turner in
[MT13] such as quasi-hereditary algebras, tilting theory and Ringel duality. We introduce
some key objects as examples. In Chapter 2, we give a more detailed account of [MT13]
to introduce the setup and notation for the project. In Chapter 3, we give the quiver
of the algebra wq for p = 2 and we do the same for p > 2 in Chapter 4. The methods
used for p > 2 may work for p = 2, but the treatment of case p = 2 exhibits some nice
properties of the combinatorics underlying the iterative construction of wq. In Chapter
5, we recall the necessary definitions and concepts for A∞-algebras and we extend some
well-known results to a multi-graded setting. Finally, we show in Chapter 6 the existence
of a formal subalgebra of wq in case p = 2 and we characterize it. An Appendix completes
the chapters by providing one lengthy computation needed for a proof.
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Chapter 1

Quasi-hereditary algebras and
related theories

1.1 Quasi-hereditary algebras

Since the algebra cp mentioned in the introduction is quasi-hereditary, and that we consider
the extension algebra of some standard modules (the Weyl modules), it appears important
to introduce those concepts and theories. This part relies on [DR92], and missing proofs
were added whenever possible.

1.1.1 First definitions

Let F be a field, and A be a finite-dimensional F -algebra. We denote by A -mod the
category of all (finite-dimensional left) A-modules. If Θ is a class of A-modules (closed
under isomorphisms), F(Θ) denotes the class of all A-modulesM which have a Θ-filtration,
i.e. a filtration M = M0 ⊃ M1 ⊃ . . . ⊃ Mm−1 ⊃ Mm = 0 such that all factors Mt−1/Mt,
1 ≤ t ≤ m, belong to Θ.

Let E(λ), λ ∈ Λ, be the simple A-modules (one from each isomorphism class) and we
assume that the index set Λ is endowed with a partial ordering.

If M ∈ A -mod, we denote the Jordan-Hölder multiplicity of E(λ) in M by [M : E(λ)].
For each λ ∈ Λ, let P (λ) be the projective cover of E(λ) and Q(λ) be the injective hull

of E(λ).

Definition 1.1.1. Denote by ∆(λ) (or ∆A(λ), ∆Λ(λ)) the maximal factor module of P (λ)
with composition factors of the form E(µ) where µ ≤ λ; these modules ∆(λ) are called
standard modules, and we obtain the set of standard modules ∆ := {∆(λ)|λ ∈ Λ}.

Similarly,

Definition 1.1.2. Denote by ∇(λ) (or ∇A(λ), ∇Λ(λ)) the maximal submodule of Q(λ)
with composition factors of the form E(µ) where µ ≤ λ; these modules ∇(λ) are called
costandard modules, and we obtain the set of costandard modules ∇ := {∇(λ)|λ ∈ Λ}.

Let us point out that ∇(λ) is the dual of a corresponding standard module. Let
D := HomF (−, F ) be the duality with respect to the base field F . Let Ao be the opposite
algebra of A. We have:

D : A−mod→ mod−A ∼= Ao −mod,

so we choose simple Ao-modules EAo(λ) to be the image of the simple A-modules EA(λ)
(note the use of the same index).



1.1. Quasi-hereditary algebras

Lemma 1.1.3. We have: ∇A(λ) = D∆Ao(λ).

In particular, any statement on standard modules yields a corresponding statement
for costandard modules.

Proof. This choice of simple Ao-modules is made so that the A-action on the left coincides
with that on the left of EA(λ). Let us compute ∇A(λ). By definition, it fits in a short
exact sequence of the form:

0→ ∇A(λ)→ QA(λ)→ C → 0,

where C is the cokernel of the natural injection map. Applying the exact functor D to
this short exact sequence, we get:

0→ D(C)→ D(QA(λ))→ D(∇A(λ))→ 0,

and D(QA(λ)) = PAo(λ) since D is an exact contravariant functor. The A-module ∇A(λ)
satisfies that its composition factors EA(µ) are such that µ ≤ λ and it is the maximal
submodule of QA(λ) with this property. Therefore, D(∇A(λ)) satisfies the same prop-
erties about its composition factors D(EA(µ)) = EAo(µ) and it is the maximal quotient
of PAo(λ) with this property. By definition, D(∇A(λ)) = ∆Ao(λ). Since we consider
finitely generated modules over a finite dimensional F -algebra, these are in particular
finite-dimensional, hence applying D twice amounts to applying the identity functor, so
that we finally have:

∇A(λ) = D∆Ao(λ).

Note that the only module M with Hom(∆(λ),M) = 0 for all λ ∈ Λ is the zero module:
for M 6= 0, let E(λ) be a submodule, then Hom(∆(λ),M) 6= 0. Dually, the only module
M with Hom(M,∇(λ)) = 0 for all λ ∈ Λ is the zero module.

Given a set χ of A-modules, then for any A-module M , we denote by ηχM the trace
of χ in M ; it is the maximal submodule of M generated by χ.

The standard modules may be characterized as follows:

Lemma 1.1.4. For any A-module M , and λ ∈ Λ the following assertions are equivalent:

(i) M ∼= ∆(λ);

(ii) topM ∼= E(λ), all composition factors of M are of the form E(µ), with µ ≤ λ, and
Ext1(M,E(µ)) = 0 for all µ ≤ λ;

(iii) M ∼= P (λ)/η{P (µ)|µ�λ}P (λ).

Proof.

(i) ⇔ (iii) Let M ∼= P (λ)/η{P (µ)|µ�λ}P (λ), and consider one of its composition factors E(µ).
Then the composition P (µ) → P (λ) � M is non-zero, so that µ ≤ λ. Now let
M ∼= ∆(λ), and consider one of its composition factors E(µ). Since ∆(λ) is a
quotient of P (λ), there is a short exact sequence:

0→ K(λ)→ P (λ)→ ∆(λ)→ 0.

We want to show that K(λ) = η{P (ν)|ν�λ}P (λ). Let ν � λ. Then the compo-
sition P (ν) → P (λ) → ∆(λ) is zero since E(ν) is not a composition factor of
∆(λ). So this map factors through K(λ). This means η{P (ν)|ν�λ}P (λ) is a sub-
module of K(λ), which is equivalent to saying that P (λ)/η{P (ν)|ν�λ}P (λ) surjects
onto ∆(λ). By the first part of the proof, we know that all composition factors
E(µ) of P (λ)/η{P (ν)|ν�λ}P (λ) satisfy µ ≤ λ. By maximality of ∆(λ), we obtain
∆(λ) ∼= P (λ)/η{P (ν)|ν�λ}P (λ).
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1.1. Quasi-hereditary algebras

(i),(iii) ⇒ (ii) Assume M ∼= ∆(λ). From the definition of ∆(λ), we know there is an epimorphism
P (λ) � ∆(λ). This yields an epimorphism topP (λ) � top ∆(λ), i.e. E(λ) �
top ∆(λ), so top ∆(λ) is either 0 or E(λ). Since ∆(λ) ∼= P (λ)/η{P (µ)|µ�λ}P (λ),
top ∆(λ) ∼= E(λ). The fact that all composition factors of M are of the form E(µ)
with µ ≤ λ comes from the definition of ∆(λ). We have the following short exact
sequence:

0→ K(λ)→ P (λ)→ ∆(λ)→ 0,

where K(λ) = η{P (µ)|µ�λ}P (λ), and since Ext(−, E(µ)) (µ ∈ Λ) is a cohomological
functor, we get the following long exact sequence:

0 Hom(∆(λ), E(µ)) Hom(P (λ), E(µ)) Hom(K(λ), E(µ))

Ext1(∆(λ), E(µ)) Ext1(P (λ), E(µ)) . . .

Since P (λ) is projective, Ext1(P (λ), E(µ)) = 0. We have two cases to consider;
assume first that µ = λ. Then, both Hom(∆(λ), E(µ)) and Hom(P (λ), E(µ)) are
isomorphic to F , so that Hom(K(λ), E(µ)) is isomorphic to Ext1(∆(λ), E(µ)). As-
sume now that µ < λ. Then Hom(P (λ), E(µ)) = 0 since a homomorphism from P (λ)
is only determined by the image of its top E(λ), hence must be zero according to
Schur’s Lemma. This means that Ext1(∆(λ), E(µ)) and Hom(K(λ), E(µ)) are iso-
morphic. Hence, in both cases, we have that Ext1(∆(λ), E(µ)) and Hom(K(λ), E(µ))
are isomorphic. Recall that K(λ) = η{P (µ)|µ�λ}P (λ) is generated by the images in

P (λ) of all maps P (ε)→ P (λ) for ε � λ if E(ε) is a composition factor of P (λ). So
E(µ) cannot be a composition factor of topK(λ), hence Hom(K(λ), E(µ)) must be
zero.

(ii) ⇒ (i),(iii) Let M be an A-module such that topM ∼= E(λ), all composition factors of M are
of the form E(µ), with µ ≤ λ, and Ext1(M,E(µ)) = 0 for all µ ≤ λ. Since E(λ)
is a composition factor of M , there is a map P (λ) → M , which is necessarily an
epimorphism. So M is isomorphic to a quotient of P (λ), say P (λ)/K(λ). K(λ)
must contain all composition factors E(µ) of P (λ) such that µ � λ, so K(λ) ⊃
η{P (µ)|µ�λ}P (λ). As a consequence, ∆(λ) � M . We then have the following short
exact sequence:

0→ K ′ → ∆(λ)
π→M → 0.

Let µ ≤ λ. Apply Ext(−, E(µ)) to this short exact sequence to obtain a long exact
sequence:

0 Hom(M,E(µ)) Hom(∆(λ), E(µ)) Hom(K ′, E(µ))

Ext1(M,E(µ)) Ext1(∆(λ), E(µ)) . . .

which yields the following short exact sequence since Ext1(M,E(µ)) = 0 by hypoth-
esis:

0→ Hom(M,E(µ))→ Hom(∆(λ), E(µ))→ Hom(K ′, E(µ))→ 0.

We know that top ∆(λ) ∼= E(λ) ∼= topM , so that

Hom(∆(λ), E(µ)) ∼= Hom(M,E(µ)) =

{
0 if µ 6= λ
F if µ = λ

.
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1.1. Quasi-hereditary algebras

In either case, we obtain from the previous short exact sequence that for all µ ≤ λ,
Hom(K ′, E(µ)) = 0. Since K ′ is a submodule of ∆(λ) and by definition of ∆(λ), we
also have Hom(K ′, E(µ)) = 0 for all µ > λ. Therefore Hom(K ′, E(µ)) = 0 for all
µ ∈ Λ, namely K ′ = 0.

Lemma 1.1.5. Let M be an A-module, and λ, µ ∈ Λ. Then

(a) Hom(∆(λ),M) 6= 0⇒ [M : E(λ)] 6= 0;

(b) Hom(∆(λ),∆(µ)) 6= 0⇒ λ ≤ µ;

(c) Hom(∆(λ),∇(µ)) 6= 0⇒ λ = µ.

Proof. (a) Suppose [M : E(λ)] = 0, then Hom(P (λ),M) = 0. Let f : ∆(λ)→M . Then

the composition P (λ)
p
� ∆(λ)

f→ M is zero, which yields f = 0, and as a result
Hom(∆(λ),M) = 0.

(b) Applying (a), we get that [∆(µ) : E(λ)] 6= 0, which means E(λ) is a composition
factor of ∆(µ), so that by definition, λ ≤ µ.

(c) Applying (a) again, Hom(∆(λ),∇(µ)) 6= 0 gives [∇(µ) : E(λ)] 6= 0, and so λ ≤ µ.
Applying the dual statement of (a), namely Hom(M,∇(λ)) 6= 0 ⇒ [M : E(λ)] 6= 0,
we obtain that µ ≤ λ.

The sets ∆ and ∇ depend in an essential way on the given partial ordering Λ. This
gives rise to the notion of equivalence of two posets Λ,Λ′ used as index sets for the simple
module: Λ and Λ′ are equivalent if the sets of standard modules indexed by Λ, resp. Λ′

coincide, and the sets of costandard modules indexed by Λ, resp. Λ′ coincide.
In general, the standard and costandard modules will change when refining the order-

ing. We then need to consider adapted orderings in order to avoid this situation.

Definition 1.1.6. A partial ordering Λ of the sets of simple A-modules {E(λ)|λ ∈ Λ} is
said to be adapted provided that the following condition holds:

For every A-module M with topM ∼= E(λ1) and socM ∼= E(λ2), with λ1, λ2 ∈ Λ
incomparable, there is some µ > λ1, λ2 such that [M : E(µ)] 6= 0.

Remark 1.1.7. This definition is just an ad-hoc definition in the sense that we choose µ
to be greater than both λ1 and λ2, when we could possibly choose it to be smaller than
both of them. It just makes more sense like this in the view of A being quasi-hereditary
(i.e. filtered by standard modules). Besides, suppose we could find a µ such that µ < λ1

and λ2 < µ, then combining both yields λ2 < λ1 , which is a contradiction since they are
incomparable by assumption.

For Λ adapted, we may always assume that we deal with a total ordering; in such a
case, we may replace Λ by the equivalent index set {1, . . . , n} with its natural ordering.

Then, Lemma 1.1.4 rewrites:

Lemma 1.1.8. For any A-module M , and λ ∈ Λ, where Λ is adapted, the following
assertions are equivalent:

(i) M ∼= ∆(λ);

(ii) topM ∼= E(λ), all composition factors of M are of the form E(µ), with µ ≤ λ, and
Ext1(M,E(µ)) 6= 0 implies µ > λ;
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1.1. Quasi-hereditary algebras

(iii) M ∼= P (λ)/η{P (µ)|µ>λ}P (λ).

As a consequence, we see:

Lemma 1.1.9. Assume Λ is adapted. Let M be an A-module, and λ, µ ∈ Λ. Then

(a) Ext1(∆(λ),M) 6= 0⇒ [M : E(µ)] 6= 0 for some µ > λ;

(b) Ext1(∆(λ),∆(µ)) 6= 0⇒ λ < µ;

(c) Ext1(∆(λ),∇(µ)) = 0.

Proof. See [DR92][Lemma 1.3].

1.1.2 Schurian modules

Definition 1.1.10. A module is called Schurian if its endormorphism ring is a division
ring.

Example 1.1.11. By Schur’s Lemma, simple modules are Schurian.

Lemma 1.1.12. The following statements are equivalent, for any λ ∈ Λ:

(i) ∆(λ) is a Schurian module;

(ii) [∆(λ) : E(λ)] = 1;

(iii) If M is an A-module with top and socle isomorphic to E(λ), and [M : E(µ)] 6= 0
only for µ ≤ λ, then M ∼= E(λ);

(ii)* [∇(λ) : E(λ)] = 1;

(i)* ∇(λ) is a Schurian module.

Proof.

(i) ⇒ (ii) Suppose ∆(λ) is a Schurian module, namely EndA -mod(∆(λ)) is a division ring and
suppose by contradiction that [∆(λ) : E(λ)] > 1 (it cannot be zero since top ∆(λ) =
E(λ)). This means there is at least another composition factor of the form E(λ) in
∆(λ). We then have the following diagram:

P (λ) ∆(λ) E(λ)

∆(λ)

π π̃

π̃ϕ ∃ϕ̃

where the first line is the usual sequence of epimorphisms, and ϕ : P (λ) → ∆(λ)
is the map obtained from sending the top of P (λ) to the other composition factor
E(λ) of ∆(λ). Since the kernel of π only contains composition factors E(µ) with
µ > λ, ϕ(kerπ) = 0, hence ϕ factors through π: there exists ϕ̃ : ∆(λ)→ ∆(λ) such
that ϕ̃ ◦ π = ϕ. Composing ϕ̃ with π̃ yields the zero map since π̃ ◦ ϕ is zero. This
amounts to saying that ϕ̃ is not invertible, which is a contradiction.

(ii) ⇒ (iii) Suppose [∆(λ) : E(λ)] = 1 and let M be an A-module with top and socle isomorphic
to E(λ), and such that [M : E(µ)] 6= 0 only for µ ≤ λ. Since M � E(λ), we
have P (λ)�M . This means that M is isomorphic to a quotient of P (λ) satisfying
topM ∼= E(λ) and [M : E(µ)] 6= 0 only for µ ≤ λ, but by definition, ∆(λ) is the
largest such quotient of P (λ). As a consequence, there is an epimorphism ∆(λ)�M .
Hence, [M : E(λ)] is necessarily 1, and as socM ∼= E(λ), this shows that M ∼= E(λ).
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1.1. Quasi-hereditary algebras

(iii) ⇒ (i) Suppose by contradiction that dimF EndA -mod(∆(λ)) > 1. ∆(λ) has simple top
E(λ), so our hypothesis yields that there is another composition factor E(λ) of
∆(λ). We have the following composition:

radP (λ)
r→ P (λ)

ϕ→ ∆(λ),

where r is the inclusion, and ϕ is the map from P (λ) to ∆(λ) obtained by sending the
top of P (λ) to the composition factor E(λ) of ∆(λ) which is not in the top of ∆(λ).
In particular, Imϕ is a submodule of ∆(λ) such that its top is E(λ) and Imϕ ◦ r is
a submodule of Imϕ which corresponds to rad Imϕ. We set M := ∆(λ)/ Imϕ ◦ r.
Note that all composition factors E(µ) of M satisfy µ ≤ λ, and that topM ∼= E(λ).
In addition, socM ∼= E(λ). According to (iii), M ∼= E(λ), which is a contradiction.

1.1.3 Definition of a quasi-hereditary algebra

It is now possible to formulate the definition of a quasi-hereditary algebra.

Theorem 1.1.13. Assume that Λ is adapted, and that all standard modules are Schurian.
Then the following conditions are equivalent:

(i) F(∆) contains AA;

(ii) F(∆) = {X|Ext1(X,∇) = 0};

(iii) F(∆) = {X|Exti(X,∇) = 0 for all i ≥ 1};

(iv) Ext2(∆,∇) = 0;

(iii)* F(∇) = {Y |Exti(∆, Y ) = 0 for all i ≥ 1};

(ii)* F(∇) = {Y |Ext1(∆, Y ) = 0};

(i)* F(∇) contains D(AA).

Proof. See [DR92][Theorem 1].

We can now give the definition of a quasi-hereditary algebra:

Definition 1.1.14. An algebra A with an adapted partial ordering Λ, whose standard
modules are Schurian and such that the equivalent conditions of Theorem 1.1.13 are sat-
isfied is said to be quasi-hereditary.

1.1.4 Example: the algebra cp

Before going any further, let us consider cp again, which we will describe completely.
Consider the following quiver Q:

1 2 3 . . . p− 1 p.

α α α α α

β β β β β
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Let F be a field. We will consider the quotient of the path algebra over the quiver Q
modulo the relations (α2, β2, αβ + βα, αβep):

cp := FQ/(α2, β2, αβ + βα, αβep),

where ei is the constant path at the vertex indexed by i. Those constant paths form a

family of orthogonal primitive idempotents, and cp admits the unit 1 :=

p∑
λ=1

eλ,.

Considering cp as a left module over itself, we see that it decomposes as

cpcp = cpe1 ⊕ cpe2 ⊕ . . .⊕ cpep,

and cpeλ consists in all paths in Q starting at λ. Being direct summands of a free module,
the cpeλ’s are projective cp-modules, which in addition are indecomposable as the eλ’s are
primitive. We can display a basis for cp, with respect to the decomposition into projectives:

cpcp =
e1

e2αe1

e1βαe1

⊕
e2

e1βe2 e3αe2

e2αβe2

⊕ . . .⊕
ep−1

ep−2βep−1 epαep−1

ep−1αβep−1

⊕
ep

ep−1βep . (1.1)

We set Λ = {1, 2, . . . , p − 1, p} with its natural order. We label the simple modules as
E(λ) =< eλ >, for all λ ∈ Λ and order them using the order on Λ. We will then very
often simplify notations (1.1) as follows:

cpcp =
1
2
1
⊕

2
1 3

2
⊕ . . .⊕

p− 1
p− 2 p

p− 1
⊕

p
p− 1 .

As noticed earlier, the cpeλ’s are indecomposable projective modules, and their tops are
E(λ). We can check that P (λ) := cpeλ is the projective cover of E(λ), for λ ∈ Λ. So we
have, for 2 ≤ λ ≤ p− 1:

P (1) =
1
2
1
, P (λ) =

λ
λ− 1 λ+ 1

λ
, P (p) =

p
p− 1 .

According to Lemma 1.1.8, we may obtain the set ∆ of the standard modules of cp:

∆(1) = 1, ∆(λ) =
λ

λ− 1
,

where 2 ≤ λ ≤ p.
Using the duality introduced earlier, and considering cp

∗ := HomF (cp, F ), the dual of
cp, we know that cp

∗ can be seen as a left cp-module: ∀x ∈ cp,∀f ∈ cp
∗, x · f := (m 7→

f(mx)) (which amounts to seeing cp as a right cp-module, i.e. as a left cp
o-module). We

get the following decomposition into injective indecomposable right cp-modules:

(e1βαe1)∗

(e1βe2)∗

e∗1

⊕
(e2αβe2)∗

(e2βe3)∗ (e2αe1)∗

e∗2

⊕ . . .⊕
(ep−1αβep−1)∗

(ep−1βep)
∗ (ep−1αep−2)∗

e∗p−1

⊕
(epαep−1)∗

e∗p .

(1.2)
As a consequence, we get the injective hulls of the simple modules since direct summands
of the dual of cp correspond to injective modules:

Q(1) =
1
2
1
, Q(λ) =

λ
λ+ 1 λ− 1

λ
, Q(p) =

p− 1
p ,
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1.2. Tilting theory and Ringel duality

where 2 ≤ λ ≤ p− 1. And following the definition of a costandard module, we obtain the
set ∇ of costandard modules:

∇(1) = 1, ∇(λ) =
λ− 1
λ

,

where 2 ≤ λ ≤ p.

1.2 Tilting theory and Ringel duality

1.2.1 Tilting theory

Let A be a finite-dimensional F -algebra with a labelling of the simple A-modules by some
adapted poset (Λ,≤). We defined what standard and costandard A-modules are, and A
is quasi-hereditary if and only if standard modules are Schurian and AA is filtered by
standard modules.

Tilting modules are A-modules filtered both by standard and costandard modules. We
have the following theorem which makes this statement more precise:

Theorem 1.2.1 (Theorem 2, [Koe02]). Let (A,≤) be a quasi-hereditary algebra with set
Λ of isomorphism classes of simple modules. Then, for each λ ∈ Λ, there is a unique (up
to isomorphism) indecomposable module T (λ) which has both a filtration with subquotients
of the form ∆(µ) (for µ ≤ λ and ∆(λ) itself occurring with multiplicity one) and another
filtration with subquotients of the form ∇(µ) (for µ ≤ λ and ∇(λ) itself occurring with
multiplicity one).

Definition 1.2.2. We define the characteristic tilting module T of (A,≤):

T =
⊕
λ∈Λ

T (λ).

It can be characterised as the minimal A-module T such that

add(T ) = F(∆) ∩ F(∇),

where add(M) is the full subcategory of A-mod consisting of direct summands of Mn for
all n ≥ 1.

This characteristic tilting module completely determines the full subcategories F(∆)
and F(∇) as shown by the next result.

Proposition 1.2.3 (Proposition 3.2, [DR92]). Let T be the characteristic tilting module
of a quasi-hereditary algebra A. Then

F(∆) =
{
X ∈ A-mod |Exti(X,T ) = 0 for all i ≥ 1

}
,

and
F(∇) =

{
Y ∈ A-mod |Exti(T, Y ) = 0 for all i ≥ 1

}
.

1.2.2 Ringel duality

We define the Ringel dual of a quasi-hereditary algebra (A,≤) as follows:

Definition 1.2.4. Let (A,≤) be a quasi-hereditary algebra. Then denote by T its char-
acteristic tilting module. We define the Ringel dual (A′,≥) of (A,≤) by

A′ = EndA(AT ).
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1.2. Tilting theory and Ringel duality

In [KKO13], Koenig, Külshammer and Ovsienko remark that Ringel duality accounts
for a central symmetry in the class of quasi-hereditary algebras. Indeed, we have the
following result

Theorem 1.2.5 (Theorem 6, [Rin91]). Consider the functor F := HomA(T,−) : A −
mod → A′ − mod. Then F sends costandard A-modules to standard A′-modules. In
particular, A′ is quasi-hereditary with standard modules F∇(λ) but with the order on the
simples being reversed.

Remark 1.2.6 (Theorem 7, [Rin91]). Assuming A is basic, Ringel duality is a duality in
the class of quasi-hereditary algebras: (A′)′ ∼= A, with the same ordering of the simple
modules.
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Chapter 2

More about object of study

2.1 Preliminaries

Let F be an algebraically closed field of characteristic p. Recall from the introduction the
following definition. The quasi-hereditary algebra cp is defined as the path algebra of the
following quiver:

1 2 . . . p
α α α

β β β

modulo the relations (α2, β2, αβ + βα, αβep).
We denote by d its extension algebra; it is the path algebra of the following quiver:

1 2 . . . p
x

ξ

x

ξ

x

ξ

modulo the relations (xξ − ξx, ξ2), where x is given djk-grading (−1,−1, 1) and ξ is
given djk-degree (0, 1, 0).

We write HomA−(−,−), resp. Hom−A(−,−), to mean morphisms of left A-modules,
resp. of right A-modules.

2.2 Two important bimodules

We define the two important d-d-bimodules u and u−1 in this section. Let us introduce
some notation first. Let d0 be the semisimple quotient of d modulo its radical and write
it d0 = Fe1⊕Fe2⊕ . . .⊕Fep. We denote by σ ∈ Aut(d0) the automorphism of d0 which
maps el to ep+1−l. Finally, for a jk-bigraded d-d-bimodule M , we denote by M〈n〉 the
jk-bigraded d-d-bimodule M shifted by n in the j-degree.

Definition 2.2.1. Let u and u−1 be the d-d-bimodules given by

u := dσ ⊗d0 d∗〈1〉;
u−1 := dσ ⊗d0 d〈−1〉.

Note that they inherit a jk-grading from d by taking the total j-grading and total k-
grading and then applying the shift in the j-degree.



2.2. Two important bimodules

More generally, for i ≥ 1, we can define

u−i := dσ ⊗d0 . . .⊗d0 dσ︸ ︷︷ ︸
i

⊗d0d〈−i〉.

An alternative description of u−i, using canonical isomorphisms, is as follows:

u−i = u−1 ⊗d . . .⊗d u−1︸ ︷︷ ︸
i

.

Remark that if i = 0, we obtain d. Similarly, for i ≥ 1, we can define

ui = u⊗d ⊗u⊗d . . .⊗d u︸ ︷︷ ︸
i

,

and, again, if i = 0, u0 = d. Thus, it makes sense to define the following sum of tensor
products of u−1 and u over d:

Td(u) :=
⊕
i∈Z

u−i.

However, we need some multiplication map to turn this vector space into an algebra: it
is not necessarily obvious how to multiply u with u−1, or the other way round. We have the
following:

Claim: u−1 ∼= Homd−(u,d) as d-d-bimodules.

Proof. We have:

Homd(u,d)
def
= Homd(dσ ⊗d0 d∗〈1〉,d)
= Homd(dσ ⊗d0 d∗,d)〈−1〉
∼= Homd0(d∗,Homd(dσ,d))〈−1〉
∼= Homd0(d∗, σd)〈−1〉
∼= Homd0(d∗,d0)⊗d0

σd〈−1〉 (cf. Remark 2.2.2.1 below)
∼= HomF (d∗, F )⊗d0

σd〈−1〉 (cf. Remark 2.2.2.2 below)
∼= d⊗d0

σd〈−1〉
def
= u−1.

Remark 2.2.2. 1. This is due to d∗ being a projective d0-module (d0 is semisimple)
and the following result taken from [AF92]:

Proposition (Proposition 20.10.). Given modules SP , SUT and TN there is a homo-
morphism, natural in P,U and N :

η : HomS (P,U)⊗T N → HomS (P, (U ⊗T N)) ,

defined via
η(γ ⊗T n) : p 7−→ γ(p)⊗T n.

If SP is finitely generated and projective, then η is an isomorphism.

2. Since d0 is semisimple, there is an isomorphism: d0 ∼= HomF (d0, F ). We then have:

Homd0(d∗,d0) ∼= Homd0(d∗,HomF (d0, F ))
∼= HomF (d0 ⊗d0 d∗, F )
∼= HomF (d∗, F )
= d.
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2.3. Case p > 2

In particular, there is a map u⊗ u−1 → d which corresponds to the evaluation map

u⊗ u−1 ∼= u⊗Homd−(u,d)→ d.

However, u � Homd−(u−1,d). Indeed, we have

Homd(u−1,d)
def
= Homd(dσ ⊗d0 d〈−1〉,d)
∼= Homd0(d,Homd(dσ,d))〈1〉
∼= Homd0(d, σd)〈1〉
∼= Homd0(d,d0)⊗d0

σd〈1〉
∼= HomF (d, F )⊗d0

σd〈1〉
∼= d∗ ⊗d0

σd〈1〉
=: ũ.

That means we cannot find a similar map for u−1 ⊗ u → d. In particular, Td(u) is
not an algebra.

Nonetheless, u, ũ and u−1 are differential graded bimodules with differential given by

δ(a⊗ b) = (−1)|a|k(ax⊗ ξb+ aξ ⊗ xb),

where |a|k is the k-degree of a, and they are jk-bigraded bimodules; they inherit their
gradings from that on d. In particular, the differential is of k-degree 1. We can extend
that differential to ui for i ∈ Z using the standard way of defining a differential on a tensor
product.

We can then take the homology of Td(u), and we denote it by HTd(u); we have

HTd(u) = ⊕i∈ZH(ui),

where H(ui) is the homology of ui.
It turns out that HTd(u) is an algebra in its own right as H(u) ∼= (d0)σ as d0-d0-

bimodules by Lemma 30 in [MT13], and thanks to the following lemma:

Lemma 2.2.3. As a d0-d0-bimodule, H(ũ) ∼= (d0)σ.

Proof. This follows from direct computation. The basis elements spanning the homology
of ũ are e∗s ⊗ ep+1−s for s = 1, . . . , p.

That means that u and ũ have the same homology. In particular, we now have a
well-defined multiplication in homology via the induced maps in homology:

H(u)⊗H(u−1) ∼= H(u)⊗H(Homd−(u,d)) = H(u)⊗Homd−(H(u),d)→ d,

and
H(u−1)⊗H(u) ∼= H(u−1)⊗H(ũ)

∼= H(u−1)⊗H(Homd−(u−1,d))

= H(u−1)⊗Homd−(H(u−1),d)→ d.

Despite this problem, all the main results in [MT13] remain true (cf. [MT13, Corri-
gendum])
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2.3. Case p > 2

d0σ H(u)

d H(d) = d

M
τ → d0σ H(u−1)

M ⊕ d H(u−2)

M τ ⊕ M
τ → d0σ H(u−3)

M ⊕ M ⊕ d H(u−4)

......

Figure 2.1: Decomposition of HTd(u)≤1 (p > 2)

2.3 Case p > 2

2.3.1 Description of HTd(u)≤1 using polytopes

In this section, we collect a number of facts about the truncation HTd(u)≤1 of HTd(u)
which will be useful to prove later results. Let q > 1. We denote HTd(u) by Υ and we
will use both notations in the following.

The space Υ≤1 admits a polytopal basis, and the different polytopes involved in that
basis correspond to different parts of the homology of Td(u)≤1 as shown on Figure 2.1 (cf.
[MT13]).

The superscripts τ and σ indicate that there is a twist in the d-action on the right
on some components, and we refer to [MT13] for their precise definitions as well as those
of M and M . We note that there is a non-trivial extension of M by d0σ, which we have
indicated using an arrow in the diagram; we refer to Remark 2.3.3 below for more details.

Definition 2.3.1 (Lemma 51, [MT13]). Define

Pd =

{
(s, j0, k0, t) ∈ Z4 | 1 ≤ s ≤ t ≤ p, 0 ≤ j0 + k0 ≤ 1,

t− s = j0 + 2k0, j0 = 0 = k0 if s = t

}
;

P
d0 =

{
(s, j0, k0, t) ∈ Z4 | 1 ≤ s, t ≤ p, s+ t = p+ 1,

j0 = 0 = k0

}
\ {(p, 0, 0, 1)};

PM =

{
(s, j0, k0, t) ∈ Z4 | 1 ≤ s, t ≤ p, 0 ≤ j0 + k0 + 2 ≤ 1,

t− s− 1 + p = j0 + 2k0 + 2

}
;

PM = PM \ {(p, 0,−1, 1)}.

Example 2.3.2 (Example 52, [MT13]). The following is a diagram of the polytope for M
in case p = 3 (we depict its structure as a left module):

31−1
0 310

−2

210
−1 211

−3

111
−2 112

−4

320
−1 321

−3

221
−2 222

−4

122
−3 123

−5

331
−2 332

−4

232
−3 233

−5

133
−4 134

−6.

In the diagram an element (s, j, k, t) is written stkj . Similarly a diagram of the polytope
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2.3. Case p > 2

for d in case p = 3 is given by

110
0 220

0

120
1 121

−1

330
0

230
1 231

−1

131
0 132

−2.

Now to obtain the polytopal basis of HTd(u−1) (regardless of the polytope encoding
H(u) which we will define later on), we use two integers a, b ≥ 0 such that the i-degree
satisfies i = −a− b; they determine the coordinates of the component in Figure 2.1, where
a indicates the position on the northeast to southwest axis, and b that on the northwest
to southeast axis, with the origin placed at d on row H(d) = d (i = 0). There exists a
basis for Υ≤0 indexed by the subset

P≤0 := {(s, j0, k0, a, b, t) ∈ Z6 | (s, j0, k0, t) ∈ Pd, a, b ≥ 0, a = b}

∪ {(s, j0, k0, a, b, t) ∈ Z6 | (s, j0, k0, t) ∈ Pd0 , a, b ≥ 0, a = b− 1

(s, j0, k0, t) 6= (p− 1, 0, 0, 2)}

∪ {(s, j0, k0, a, b, t) ∈ Z6 | (s, j0, k0, t) ∈ PM , a, b ≥ 0, a = b+ 1}

∪ {(s, j0, k0, a, b, t) ∈ Z6 | (s, j0, k0, t) = (p− 1, 0, 0, 2), a, b ≥ 0, a = b+ 1}

∪ {(s, j0, k0, a, b, t) ∈ Z6 | (s, j0, k0, t) ∈ PM , a, b ≥ 0, a > b+ 1}.

The ijk-degree of such an element is given by the formulas

i = −a− b;

j =


j0 − (a− b− 1)p+ 1 for a ≥ b+ 1,
j0 for a = b,
j0 + 1 for a = b− 1;

k =

{
k0 + (a− b− 1)(p− 1) for a ≥ b+ 1,
k0 for a ≤ b.

Remark 2.3.3. In Corollary 39 in [MT13], the generator ep ⊗ e1 = (p,−1,−1, 0, 1, 0, 1)
generates more than what is claimed. The element

ep−1ξep ⊗ e1ξe2

is generated by ep ⊗ e1, hence its (a, b)-degree should be (1, 0) and not (0, 1). More
generally, the element

ep−1ξ ⊗ (ξ ⊗ ξ)⊗b ⊗ ξe2

is generated by ep ⊗ (ξ ⊗ ξ)⊗b ⊗ e1, hence its (a, b)-degree should be (b+ 1, b).

We define PΥ≤0 to be the corresponding set of elements (s, i, j, k, a, b, t) in Z7. We
define PΥ≤1 to be PΥ≤0 ∪ PΥ1 , where PΥ1 := {(s, 1, 1, 0,−1, 0, p+ 1− s) ∈ Z7|1 ≤ s ≤ p}
corresponds to H(u).

Note that the description of a polytopal basis for H(u) has been corrected because of
the following remark.

Remark 2.3.4. Due to the position of H(u) in the diagrammatic description of the pieces
of homology (cf. Figure 2.1), we see that the elements of H(u) have (a, b)-degree (−1, 0).

26



2.3. Case p > 2

That change makes sense as we would want the following multiplications to exist and to
be non-identically zero (for i ≤ 0):

H(u)⊗H(ui)→ H(ui+1),

and
H(ui)⊗H(u)→ H(ui+1).

Indeed, let us consider the i-degree of the resulting element:{
i = i1 + i2
i = −(a1 + a2)− (b1 + b2)

⇔ i1 + i2 = −(a1 + a2)− (b1 + b2).

We assume i1 = 1 (the case i2 = 1 is similar). With the (a, b) degree stated in [MT13], we
would obtain:

i2 + 1 = −a2 − b2 = i2,

which is a contradiction. Hence the need to have either (a, b) = (−1, 0) or (a, b) = (0,−1).
Since we want (ep⊗e1) ·(e1⊗e∗p) to be equal to ep and (e1⊗e∗p) ·(ep⊗e1) to be equal to

e1, it seems that (a, b) = (−1, 0) is the most reasonable choice. In addition, it is coherent
with the position of d0σ in the diagram representing the homology of Td(u)≤1.

This allows to describe explicitly the multiplication in Υ≤1.

Theorem (Theorem 53, [MT13]). Υ≤1 has basis {mv}v∈P
Υ≤1

with product given by

mumu′ =

 (−1)aj
′
0+bj′0+ba′mv if v1 = u1, u7 = u′1, u

′
7 = v7, vl = ul + u′l

for 2 ≤ l ≤ 6 and v ∈ PΥ≤1 ,
0 otherwise.

Remark 2.3.5. We call this product of Υ≤1 the concatenation product.

We now want to explain how wq is constructed from Υ≤1.

Definition 2.3.6. We call chained elements the elements of (Υ≤1)⊗q which are of the
form (s1, i1, j1, k1, a1, b1, t1) ⊗ (s2, j1, j2, k2, a2, b2, t2) ⊗ . . . ⊗ (sq, jq−1, jq, kq, aq, bq, tq), i.e.
the j-degree of the n-th component is the i-degree of the (n+ 1)-th.

Recall from [MT13, Proposition 28.] that wq can be identified to a subalgebra of
d⊗Υ⊗q−1, and after identification, every basis element of wq is a chained element of the
form

(s1, 0, j1, k1, 0, 0, t1)⊗ (s2, j1, j2, k2, a2, b2, t2)⊗ . . .⊗ (sq, jq−1, jq, kq, aq, bq, tq),

where each (sn, in, jn, kn, an, bn, tn) is an element of H(uin) with in ≤ 1 for all n. Hence,
to multiply two basis elements of wq, we just need to apply the concatenation product
component wise.

2.3.2 An alternative description of the polytopes

In a following paper ([BLM13]), the authors produce a more uniform combinatorial de-
scription of PΥ≤1 , which will prove useful later on. Let us introduce the following sets.
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2.3. Case p > 2

Definition 2.3.7 (Definition 8. [BLM13]). We define sets S1,S2,S3 by

S1 :=


(s, i, j, k, a, b, t) ∈ Z7 :

1 ≤ s ≤ p, a ≥ b ≥ 0, 1 ≤ t ≤ p,
t− s ≥ 0 if a− b = 0, i = −a− b,
j = −p(a− b)− (t− s) + 2u and
k = (p− 1)(a− b) + (t− s)− u
with u ∈ {0, 1},
u = 0 if t− s = 0 and a− b = 0,
t− s ≥ 2− p if u = 1 and a− b = 1

⋃
{(p− 1,−2b− 1, 1, 0, b+ 1, b, 2) : b ≥ 0};

S2 :=

{
(s, i, j, k, a, b, t) ∈ Z7 :

1 ≤ s ≤ p− 2, t = p+ 1− s, a ≥ 0,
b = a+ 1, i = −2a− 1, j = 1, k = 0

}
;

S3 :=

{
(s, i, j, k, a, b, t) ∈ Z7 :

1 ≤ s ≤ p, i = 1, j = 1, k = 0,
a = −1, b = 0, t = p+ 1− s

}
.

These three sets are disjoint ([BLM13][Proposition 9.]). Note that we implemented
some corrections to the original definition because of Remark 2.3.3 and Remark 2.3.4
above. In addition, the added elements to S1 fit the combinatorial description for u = 2;
this is because the value of u counts the number of multiplications by the elements esξes+1

and the element

(p− 1,−2b− 1, 1, 0, b+ 1, b, 2) = ep−1ξ ⊗ (ξ ⊗ ξ)⊗b ⊗ ξe2

is obtained from ep ⊗ (ξ ⊗ ξ)⊗b ⊗ e1 by multiplying twice by ξ, once on the left, and once
on the right.

That alternative description is very useful to characterize the kind of chained basis
elements we can have in wq. We define the type of a basis element below.

Definition 2.3.8 (Definition 10. [BLM13]). We say that the q-tuple of vectors (v1,v2, ...,vq)
belongs to case (x1, x2, ..., xq) if vg ∈ Sxg with xg ∈ {1, 2, 3} for all g ∈ {1, ..., q}. If sev-
eral adjacent xg take the same value, we will also say that (v1,v2, ...,vq) belongs to case

(xh1
1 xh2

h1+1, . . . ) to mean that xh1 = xh1−1 = · · · = x2 = x1, xh1+h2 = xh1+h2−1 = · · · =
xh1+2 = xh1+1, etc.

Denoting by Bk(m, `) a basis of the subspace Extk(∆m,∆`) (see [BLM13] for an explicit
definition), we can formulate the following lemma.

Lemma 2.3.9 (Lemma 11. [BLM13]). A q-tuple of vectors (v1,v2, ...,vq) ∈ Bk(m, `)
belongs either to case (1q) or to case (1h, 2, 3q−h−1) or to case (1h3q−h) for 1 ≤ h ≤ q− 1.

We see that there is a restricted number of cases to consider for basis elements of wq.
Building upon Lemma 11 from [BLM13] we will call elements belonging to set Sl elements
of type l.

Remark 2.3.10. Note that for v ∈ HTd(u)≤1, if v ∈ S1, then its a- and b-degree av and bv
satisfy av − bv ≥ 0; if v ∈ S2, then av − bv = −1; finally, if v ∈ S3, then av − bv = −1. In
particular, for all v ∈ HTd(u)≤1, we have av − bv ≥ −1.

2.3.3 Polytopal and x, ξ form

We would like to explain how to go from one description to the other as we will rely on it
later on; both forms are useful in different contexts. In Figure 2.1, we see that HTd(u)≤1

is made up of different pieces. We recall the following results from [MT13], which give the
generators of the different parts in homology:
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2.3. Case p > 2

Theorem (Theorem 44, Lemma 45). 1. The generators of the d-d-bimodule M or M
are

xf,−i = ep ⊗ (ξ ⊗ ξ)⊗f ⊗ (xp−1)⊗−i−1−2f ⊗ e1
∼= ±ep ⊗ (xp−1)⊗−i−1−2f ⊗ (ξ ⊗ ξ)⊗f ⊗ e1

∈ H(ui)

and
yf,−i = ep ⊗ (ξ ⊗ ξ)⊗f ⊗ (xp−1)⊗−i−2−2f ⊗ xp−2ξ ⊗ e1

∼= ±ep ⊗ xp−2ξ ⊗ (xp−1)⊗−i−1−2f ⊗ (ξ ⊗ ξ)⊗f ⊗ e1

∈ H(ui)

.

If i is even, 0 ≤ f ≤ −i− 2

2
, and if i is odd, the parameter f satisfies 0 ≤ f ≤ −i− 1

2

for xf,−i and it satisfies 0 ≤ f ≤ −i− 3

2
for yf,−i.

2. For i even, the elements elw
−i
2 el (for 1 ≤ l ≤ p) generate a factor isomorphic to d

in H(ui), where
elwel := el (ξ ⊗ ξ ⊗ 1− 1⊗ ξ ⊗ ξ) el.

3. For i odd, the elements el (ξ ⊗ ξ)
1−i

2 ep+1−l (for 1 ≤ l ≤ p − 1) generate the factor

isomorphic to d0σ in H(ui).

Note that, for i ≤ 0, since ui = dσ ⊗d0 dσ ⊗d0 . . .⊗d0 d〈i〉, we need to apply a shift in
the j-degree to obtain the right degree.

Since x ∈ d is the only element given non-zero k-degree, the number of x’s in the
element will give the right k-degree. Besides, since x ∈ d is given j-degree -1 and ξ ∈ d is
given j-degree 1, we see that the j-degree is given by |ξ| − |x| + i if the element lives in
H(ui). For instance, for xf,−i, we have:

k − deg = (−i− 1− 2f)(p− 1)
j − deg = (p− 1)(i+ 1 + 2f) + 2f + i

We also need to find a and b. We know that they should satisfy −a − b = i. Let us
rearrange the previous system:

k − deg = (p− 1)(−i− 2f) + (1− p)
j − deg = p(i+ 2f)− (1− p)− i− 2f + 2f + i.

For the k-degree, we almost recognise the expression giving the k-degree in the set S1,
namely k − deg = (p− 1)(a− b) + (t− s)− u. Indeed, we have:

−i− 2f = a− b⇔ a+ b− 2f = a− b⇔ f = b.

We can finally write:
s = p
i = −a− b
j = −p(a− b)− (t− s)
k = (p− 1)(a− b) + (t− s)
a = −i− f
b = f
t = 1.

Let (S, I, J,K,A,B, T ) be an element of HTd(u)≤1. Then, we have the following
dictionary.
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2.3. Case p > 2

• If A = B, then

(s,−2a,−(t− s) + 2u, t− s− u, a, a, t) = esw
aesx

t−s−uξuet;

• If A = B + 1, then

(s,−2b− 1,−p− (t− s) + 2u, (p− 1) + (t− s)− u, b+ 1, b, t)

= esx
p−s−uξuep ⊗ (ξ ⊗ ξ)⊗b ⊗ e1x

t−1et
∼= esx

p−sep ⊗ (ξ ⊗ ξ)⊗b ⊗ e1x
t−1−uξuet

if u ∈ {0, 1}, and if u = 2, then we have

(p− 1,−2b− 1, 1, 0, b+ 1, b, 2) = ep−1ξep ⊗ (ξ ⊗ ξ)⊗b ⊗ e1ξe2;

• If A > B + 1, then

(s,−a− b,−p(a− b)− (t− s), (p− 1)(a− b) + (t− s), a, b, t)
= esx

p−sep ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1x
t−1et

if u = 0, and

(s,−a− b,−p(a− b)− (t− s) + 2, (p− 1)(a− b) + (t− s)− 1, a, b, t)

= esx
p−s−1ξep ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1x

t−1et
∼= esx

p−sep ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1x
t−2ξet

∼= esx
p−sep ⊗ xp−2ξ ⊗ (xp−1)⊗a−b−2 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1x

t−1et

if u = 1;

• If B = A+ 1, then

(s,−2a− 1, 1, 0, a, a+ 1, p+ 1− s) = es(ξ ⊗ ξ)a+1ep+1−s

if a ≥ 0, and
(s, 1, 1, 0,−1, 0, p+ 1− s) = es ⊗ e∗p+1−s

if a = −1.

2.3.4 Multiplication in Υ≤1

In this subsection, we want to understand the type of the product of two elements of Υ≤1.
Note that we do not consider the sign obtained from multiplying two monomial basis
elements as seen in Theorem 53 in [MT13]. We have nine cases to consider. We denote
the product of an element of type n by and element of type m by n ·m, and we will write
n ·m = l to mean that the product n ·m is of type l. We will write the different degrees
and parameters of the product obtained with capital letters, e.g. (S, I, J,K,A,B, T ). We
assume that idempotents match, i.e. t1 = s2, as otherwise we obtain zero.
The structure of the nine cases is pretty straightforward:

1. we describe what the product looks like,

2. we try to discriminate some types,

3. for each remaining type, we assume the product is of that type and we see what that
implies for the factors.

30



2.3. Case p > 2

1 · 1 – We have:

(s1,−a1 − b1,−p(a1 − b1)− (t1 − s1) + 2u1, (p− 1)(a1 − b1) + (t1 − s1)− u1, a1, b1, t1)

· (s2,−a2 − b2,−p(a2 − b2)− (t2 − s2) + 2u2, (p− 1)(a2 − b2) + (t2 − s2)− u2, a2, b2, t2)

= (s1,−(a1 + a2)− (b1 + b2),−p((a1 + a2)− (b1 + b2))− (t2 − s1) + 2(u1 + u2),
(p− 1)((a1 + a2)− (b1 + b2)) + (t2 − s1)− (u1 + u2), a1 + a2, b1 + b2, t2).

Since al ≥ bl ≥ 0 for l = 1, 2, we know a1 +a2 ≥ b1 +b2 ≥ 0. In particular, that element
cannot be of type 2 nor 3. So it must be of type 1 or it is zero otherwise. For it to be of
type 1, we see that we only need to ensure u1+u2 ∈ {0, 1}. This is equivalent to u1 ·u2 = 0.

1 · 2 – We have:

(s1,−a1 − b1,−p(a1 − b1)− (t1 − s1) + 2u1, (p− 1)(a1 − b1) + (t1 − s1)− u1, a1, b1, t1)

· (s2,−2a2 − 1, 1, 0, a2, a2 + 1, p+ 1− s2)

= (s1,−a1 − b1 − 2a2 − 1,−p(a1 − b1)− (t1 − s1) + 2u1 + 1,
(p− 1)(a1 − b1) + (t1 − s1)− u1, a1 + a2, b1 + a2 + 1, p+ 1− t1),

where 1 ≤ t1 ≤ p − 1 since 1 ≤ s2 ≤ p − 1 and t1 = s2. We have a1 + a2 ≥ 0 since
a1, a2 ≥ 0, therefore the product cannot be of type 3.

Let us assume that the product is of type 2. We need:
A ≥ 0 ⇔ a1 + a2 ≥ 0 X

B = A+ 1 ⇔ b1 + a2 + 1 = a1 + a2 + 1 ⇔ a1 = b1
T = p+ 1− S ⇔ p+ 1− t1 = p+ 1− s1 ⇔ t1 = s1

J = 1 ⇔ −p(a1 − b1)− (t1 − s1) + 2u1 + 1 = 1 ⇔ u1 = 0
K = 0 ⇔ (p− 1)(a1 − b1) + (t1 − s1)− u1 = 0 X.

So the type 1 factor must be of the form (s1,−2a1, 0, 0, a1, a1, s1) with 1 ≤ s1 ≤ p− 1 for
the product to be of type 2.

Let us now assume that the product is of type 1. We need:
A ≥ B ≥ 0 ⇔ a1 + a2 ≥ b1 + a2 + 1 ≥ 0

J = −p(A−B)− (T − S) + 2U
K = (p− 1)(A−B) + (T − S)− U

The first condition is equivalent to a1 + a2 ≥ b1 + a2 + 1 ≥ 0, i.e. to a1 − b1 ≥ 1 since
a1 ≥ b1 ≥ 0.
The two remaining conditions are equivalent to the following system:{
−p(a1 − b1)− (t1 − s1) + 2u1 + 1 = −p(A−B)− (T − S) + 2U
(p− 1)(a1 − b1) + (t1 − s1)− u1 = (p− 1)(A−B) + (T − S)− U

⇔{
−p(a1 − b1)− (t1 − s1) + 2u1 + 1 = −p(a1 − b1 − 1)− (p+ 1− t1 − s1) + 2U
(p− 1)(a1 − b1) + (t1 − s1)− u1 = (p− 1)(a1 − b1 − 1) + (p+ 1− t1 − s1)− U

⇔{
−t1 + 2u1 + 1 = −(1− t1) + 2U

t1 − u1 = 2− t1 − U
⇔
U = u1 and t1 = 1.
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2.3. Case p > 2

So the type 1 factor must be of the form

(s1,−a1 − b1,−p(a1 − b1)− (1− s1)− 2u1, (p− 1)(a1 − b1) + (1− s1)− u1, a1, b1, 1)

with a1 − b1 ≥ 1 for the product to be of type 1.

1 · 3 – We have:

(s1,−a1 − b1,−p(a1 − b1)− (t1 − s1) + 2u1, (p− 1)(a1 − b1) + (t1 − s1)− u1, a1, b1, t1)

· (s2, 1, 1, 0,−1, 0, p+ 1− s2)

= (s1,−a1 − b1 + 1,−p(a1 − b1)− (t1 − s1) + 2u1 + 1,
(p− 1)(a1 − b1) + (t1 − s1)− u1, a1 − 1, b1, p+ 1− t1).

Let us assume that the product is of type 3. We need:
A = −1 ⇔ a1 − 1 = −1 ⇔ a1 = 0
B = 0 ⇔ b1 = 0

T = p+ 1− S ⇔ p+ 1− t1 = p+ 1− s1 ⇔ t1 = s1

J = 1 ⇔ −p(a1 − b1)− (t1 − s1) + 2u1 + 1 = 1 ⇔ u1 = 0
K = 0 ⇔ (p− 1)(a1 − b1) + (t1 − s1)− u1 = 0 X.

So the type 1 factor must be of the form (s1, 0, 0, 0, 0, 0, s1) for the product to be of type 3.

Let us now assume that the product is of type 2. We need:
A ≥ 0 ⇔ a1 − 1 ≥ 0 ⇔ a1 ≥ 1

B = A+ 1 ⇔ b1 = (a1 − 1) + 1 ⇔ a1 = b1
T = p+ 1− S ⇔ p+ 1− t1 = p+ 1− s1 ⇔ t1 = s1

J = 1 ⇔ −p(a1 − b1)− (t1 − s1) + 2u1 + 1 = 1 ⇔ u1 = 0
K = 0 ⇔ (p− 1)(a1 − b1) + (t1 − s1)− u1 = 0 X

So the type 1 factor must be of the form (s1,−2a1, 0, 0, a1, a1, s1) with 1 ≤ s1 ≤ p− 1 and
a1 ≥ 1 for the product to be of type 2.

Let us finally assume that the product is of type 1. We need:
A ≥ B ≥ 0 ⇔ a1 − 1 ≥ b1 ≥ 0

J = −p(A−B)− (T − S) + 2U
K = (p− 1)(A−B) + (T − S)− U

The first condition is equivalent to a1 − b1 ≥ 1, since a1 ≥ b1 ≥ 0.
The two remaining conditions are equivalent to the following system:{

−p(a1 − b1)− (t1 − s1) + 2u1 + 1 = −p(A−B)− (T − S) + 2U
(p− 1)(a1 − b1) + (t1 − s1)− u1 = (p− 1)(A−B) + (T − S)− U,

which is the same system as for the case 1 · 2 when assuming the product is of type 1. It
is therefore equivalent to

U = u1 and t1 = 1.

So the type 1 factor must be of the form

(s1,−a1 − b1,−p(a1 − b1)− (1− s1)− 2u1, (p− 1)(a1 − b1) + (1− s1)− u1, a1, b1, 1)
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2.3. Case p > 2

with a1 − b1 ≥ 1 for the product to be of type 1.

2 · 1 – We have:

(s1,−2a1 − 1, 1, 0, a1, a1 + 1, p+ 1− s1)

· (s2,−a2 − b2,−p(a2 − b2)− (t2 − s2) + 2u2, (p− 1)(a2 − b2) + (t2 − s2)− u2, a2, b2, t2)

= (s1,−2a1 − 1− a2 − b2,−p(a2 − b2)− (t2 − s2) + 2u2 + 1,
(p− 1)(a2 − b2) + (t2 − s2)− u2, a1 + a2, a1 + 1 + b2, t2)

where 1 ≤ s1 ≤ p − 1 and s2 = p + 1 − s1 (so 2 ≤ s2 ≤ p). We have a1 + a2 ≥ 0 since
a1, a2 ≥ 0, therefore the product cannot be of type 3.

Let us assume that the product is of type 2. We need:
A ≥ 0 ⇔ a1 + a2 ≥ 0 X

B = A+ 1 ⇔ a1 + 1 + b2 = a1 + a2 + 1 ⇔ a2 = b2
T = p+ 1− S ⇔ t2 = p+ 1− s1 ⇔ t2 = s2

J = 1 ⇔ −p(a2 − b2)− (t2 − s2) + 2u2 + 1 = 1 ⇔ u2 = 0
K = 0 ⇔ (p− 1)(a2 − b2) + (t2 − s2)− u2 = 0 X.

So the type 1 factor must be of the form (s2,−2a2, 0, 0, a2, a2, s2) with 2 ≤ s2 ≤ p for the
product to be of type 2.

Let us now assume that the product is of type 1. We need:
A ≥ B ≥ 0 ⇔ a1 + a2 ≥ a1 + 1 + b2 ≥ 0

J = −p(A−B)− (T − S) + 2U
K = (p− 1)(A−B) + (T − S)− U

The first condition is equivalent to a2 − b2 ≥ 1, since a1 ≥ 0 and a2 ≥ b2 ≥ 0. The two
remaining conditions are equivalent to the following system:{

−p(a2 − b2)− (t2 − s2) + 2u2 + 1 = −p(A−B)− (T − S) + 2U
(p− 1)(a2 − b2) + (t2 − s2)− u2 = (p− 1)(A−B) + (T − S)− U

⇔{
−p(a2 − b2)− (t2 − s2) + 2u2 + 1 = −p(a2 − b2 − 1)− (t2 − s1) + 2U
(p− 1)(a2 − b2) + (t2 − s2)− u2 = (p− 1)(a2 − b2 − 1) + (t2 − s1)− U

⇔{
s2 + 2u1 + 1 = p+ s1 + 2U
−s2 − u1 = −p+ 1− s1 − U

⇔{
p+ 1− s1 + 2u1 + 1 = p+ s1 + 2U
−p− 1 + s1 − u1 = −p+ 1− s1 − U

⇔
U = u1 and s1 = 1(⇒ s2 = p).

So the type 1 factor must be of the form

(p,−a2 − b2,−p(a2 − b2)− (t2 − p)− 2u1, (p− 1)(a2 − b2) + (t2 − p)− u1, a2, b2, t2)

with a2 − b2 ≥ 1 for the product to be of type 1.
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2.3. Case p > 2

2 · 2 – We have:

(s1,−2a1 − 1, 1, 0, a1, a1 + 1, p+ 1− s1)

· (s2,−2a2 − 1, 1, 0, a2, a2 + 1, p+ 1− s2)

= (s1,−2a1 − 1− 2a2 − 1, 2, 0, a1 + a2, a1 + 1 + a2 + 1, s1)

as s2 = p + 1 − s1 ⇒ p + 1 − s2 = s1. We see that J = 2 in the product and there is no
such element in Υ≤1. Hence multiplying two type 2 elements together yields zero.
2 · 3 – We have:

(s1,−2a1 − 1, 1, 0, a1, a1 + 1, p+ 1− s1)

· (s2, 1, 1, 0,−1, 0, p+ 1− s2)

= (s1,−2a1, 2, 0, a1 − 1, a1 + 1, s1)

as s2 = p + 1 − s1 ⇒ p + 1 − s2 = s1. We see that J = 2 in the product and there is no
such element in Υ≤1. Hence this product is zero.

3 · 1 – We have:

(s1, 1, 1, 0,−1, 0, p+ 1− s1)

· (s2,−a2 − b2,−p(a2 − b2)− (t2 − s2) + 2u2, (p− 1)(a2 − b2) + (t2 − s2)− u2, a2, b2, t2)

= (s1, 1− a2 − b2, 1− p(a2 − b2)− (t2 − s2) + 2u2,
(p− 1)(a2 − b2) + (t2 − s2)− u2,−1 + a2, b2, t2)

so s2 = p+ 1− s1

Let us assume that the product is of type 3. We need:
A = −1 ⇔ a2 − 1 = −1 ⇔ a2 = 0
B = 0 ⇔ b2 = 0

T = p+ 1− S ⇔ t2 = p+ 1− s1 ⇔ t2 = s2

J = 1 ⇔ −p(a2 − b2)− (t2 − s2) + 2u2 + 1 = 1 ⇔ u2 = 0
K = 0 ⇔ (p− 1)(a2 − b2) + (t2 − s2)− u2 = 0 X.

So the type 1 factor must be of the form (s2, 0, 0, 0, 0, 0, s2) for the product to be of type 3.

Let us now assume that the product is of type 2. We need:

A ≥ 0 ⇔ a2 − 1 ≥ 0 ⇔ a2 ≥ 1
B = A+ 1 ⇔ b2 = (a2 − 1) + 1 ⇔ a2 = b2

T = p+ 1− S ⇔ t2 = p+ 1− s1 ⇔ t2 = s2

1 ≤ S ≤ p− 1 ⇔ 1 ≤ s1 ≤ p− 1 ⇔ 2 ≤ s2 ≤ p
J = 1 ⇔ −p(a2 − b2)− (t2 − s2) + 2u2 + 1 = 1 ⇔ u2 = 0
K = 0 ⇔ (p− 1)(a2 − b2) + (t2 − s2)− u2 = 0 X.

So the type 1 factor must be of the form (s2,−2a2, 0, 0, a2, a2, s2) with 2 ≤ s2 ≤ p and
a2 ≥ 1 for the product to be of type 2.

Let us finally assume that the product is of type 1. We need:
A ≥ B ≥ 0 ⇔ a2 − 1 ≥ b2 ≥ 0

J = −p(A−B)− (T − S) + 2U
K = (p− 1)(A−B) + (T − S)− U
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2.3. Case p > 2

The first condition is equivalent to a2 − b2 ≥ 1 since a2 ≥ b2 ≥ 0. The two remaining
conditions are equivalent to the following system:{

−p(a2 − b2)− (t2 − s2) + 2u2 + 1 = −p(A−B)− (T − S) + 2U
(p− 1)(a2 − b2) + (t2 − s2)− u2 = (p− 1)(A−B) + (T − S)− U

⇔{
−p(a2 − b2)− (t2 − s2) + 2u2 + 1 = −p(a2 − b2 − 1)− (t2 − s1) + 2U
(p− 1)(a2 − b2) + (t2 − s2)− u2 = (p− 1)(a2 − b2 − 1) + (t2 − s1)− U

⇔{
s2 + 2u2 + 1 = p+ s1 + 2U
−s2 − u2 = −(p− 1)− s1 − U

⇔{
p+ 1− s1 + 2u2 + 1 = p+ s1 + 2U
−p− 1 + s1 − u2 = −(p− 1)− s1 − U

⇔
U = u2 and s1 = 1(⇒ s2 = p).

So the type 1 factor must be of the form

(p,−a2 − b2,−p(a2 − b2)− (t2 − p)− 2u2, (p− 1)(a2 − b2) + (t2 − p)− u2, a2, b2, t2)

with a2 − b2 ≥ 1 for the product to be of type 1.

3 · 2 – We have:
(s1, 1, 1, 0,−1, 0, p+ 1− s1)

· (s2,−2a2 − 1, 1, 0, a2, a2 + 1, p+ 1− s2)

= (s1,−2a2, 2, 0, a2 − 1, a2 + 1, s1)

as s2 = p + 1 − s1 ⇒ p + 1 − s2 = s1. We see that J = 2 in the product and there is no
such element in Υ≤1. Hence this product is zero.

3 · 3 – We have:
(s1, 1, 1, 0,−1, 0, p+ 1− s1)

· (s2, 1, 1, 0,−1, 0, p+ 1− s2)

= (s1, 2, 2, 0,−2, 0, s1)

as s2 = p+ 1− s1 ⇒ p+ 1− s2 = s1. We see that I = J = 2 in the product and there is
no such element in Υ≤1. Hence this product is zero.
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2.4. Case p = 2

1 2 3

1
1 ⇔ u1 · u2 = 0

1 ⇔
{
a1 − b1 ≥ 1
t1 = 1

2 ⇔
a1 = b1
t1 = s1

1 ≤ s1 ≤ p− 1

1 ⇔
{
a1 − b1 ≥ 1
t1 = 1

2 ⇔
a1 = b1
a1 ≥ 1
t1 = s1

1 ≤ s1 ≤ p− 1

3 ⇔
{
a1 = b1 = 0
t1 = s1

2

1 ⇔
{
a2 − b2 ≥ 1
s2 = p

2 ⇔


a2 = b2
t2 = s2

2 ≤ s2 ≤ p

0 0

3

1 ⇔
{
a2 − b2 ≥ 1
s2 = p

2 ⇔


a2 = b2
a2 ≥ 1
t2 = s2

2 ≤ s2 ≤ p

3 ⇔
{
a2 = b2 = 0
t2 = s2

0 0

Figure 2.2: Summary of type multiplication for p > 2

2.4 Case p = 2

2.4.1 The polytopes for p = 2

In [MT13], the authors explain that it is possible to use the same combinatorics for the
basis elements: the polytopal description is still valid, even though the module structure
of the homology of u−i (i ≥ 1) is different. Indeed, Lemma 49 in [MT13] shows that
the homology of those bimodules is indecomposable, which means Figure 2.1 is not really
relevant. However, in this subsection, we explain, through examples, how to recover a
polytopal description of the basis from Figure 2.1. In particular, we will see how to get
rid of the integers a and b and write explicitly the extension of M by d0.

Definition 2.4.1. Define

Pd =

{
(s, j0, k0, t) ∈ Z4 | 1 ≤ s ≤ t ≤ 2, 0 ≤ j0 + k0 ≤ 1,

t− s = j0 + 2k0, j0 = 0 = k0 if s = t

}
;
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2.4. Case p = 2

P
d0 =

{
(s, j0, k0, t) ∈ Z4 | 1 ≤ s, t ≤ 2, s+ t = 3,

j0 = 0 = k0

}
\ {(2, 0, 0, 1)};

PM =

{
(s, j0, k0, t) ∈ Z4 | 1 ≤ s, t ≤ 2, 0 ≤ j0 + k0 + 2 ≤ 1,

t− s+ 1 = j0 + 2k0 + 2

}
;

PM = PM \ {(2, 0,−1, 1)}.

From the definition, we easily see that the polytopes are the following sets of tuples.

Lemma 2.4.2. Pd = {(1, 0, 0, 1), (2, 0, 0, 2), (1, 1, 0, 2), (1,−1, 1, 2)};

P
d0 = {(1, 0, 0, 2)};

PM =

{
(1,−1, 0, 1), (1,−3, 1, 1), (2,−1, 0, 2), (2,−3, 1, 2), (1,−2, 1, 2),
(1,−4, 2, 2), (2,−2, 0, 1), (2, 0,−1, 1)

}
;

PM =

{
(1,−1, 0, 1), (1,−3, 1, 1), (2,−1, 0, 2), (2,−3, 1, 2), (1,−2, 1, 2),
(1,−4, 2, 2), (2,−2, 0, 1)

}
.

Example 2.4.3. The following is a diagram of the polytope for M in case p = 2 (we depict
its structure as a left module):

21−1
0 210

−2

110
−1 111

−3

220
−1 221

−3

121
−2 122

−4.

Similarly a diagram of the polytope for d in case p = 2 is given by

110
0 220

0

120
1 121

−1.

We see that it is as if we had cut the lowest row in the picture for p = 3 (cf. Example
2.3.2) and replaced p = 3 by p = 2 (hence only two components).

We consider the following example to describe explicitly the extension of M by d0.
Note that d0 is one-dimensional.

Example 2.4.4. H(u−1) is given by a copy M in position (a, b) = (1, 0) and a copy d0σ

in position (a, b) = (0, 1) for p > 2. However, for p = 2, d0σ is reduced to the element
e1ξ ⊗ ξe2 and it is generated by e2 ⊗ e1, which means it corresponds to the non-trivial
extension of M by d0σ. Therefore, as left modules, the homology of u−1 is given by

210
−2 220

−1 221
−3

110
−1 111

−3 120
0 121

−2 122
−4.

The extension corresponds to multiplying e2⊗ ξe2 = 220
−1 on the left by e1ξe2 = 120

1 ∈
Pd to obtain e1ξ ⊗ ξe2 = 120

0.

In the next diagrams, an element (s, j, k, a, b, t) is written a
bst

k
j .

Example 2.4.5. In Figure 2.1, we see that H(u−4) decomposes in case p > 2 as

M ⊕ M ⊕ d
(4, 0) (3, 1) (2, 2)

with the corresponding positions (a, b) indicated underneath. We reverse the order in
which it is presented to obtain

d ⊕ M ⊕ M
(2, 2) (3, 1) (4, 0)
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2.4. Case p = 2

and writing the structure as left modules, we see

d
(2, 2)

2
2110

0
2
2220

0

2
2120

1
2
2121
−1

M
(3, 1)

3
121−1

0
3
1210
−2

3
1110
−1

3
1111
−3

3
1220
−1

3
1221
−3

3
1121
−2

3
1122
−4

M
(4, 0)

4
021−1

0
4
0210
−2

4
0110
−1

4
0111
−3

4
0220
−1

4
0221
−3

4
0121
−2

4
0122
−4.

That means that, at this stage of the explanation, H(u−4)e1 is given by

3
121
−1
0

3
121

0
−2

2
211

0
0

3
111

0
−1

3
111

1
−3

4
021
−1
0

4
021

0
−2

4
011

0
−1

4
011

1
−3

and H(u−4)e2 by

2
222

0
0

2
212

0
1

2
212

1
−1

3
122

0
−1

3
122

1
−3

3
112

1
−2

3
112

2
−4

4
022

0
−1

4
022

1
−3

4
012

1
−2

4
012

2
−4.

Applying the corrections to the j- and k-degree as prescribed in the case p > 2, we see
for instance that if (a, b) = (4, 0), since a ≥ b+ 1, we have

j = j0 − 5,
k = k0 + 3.

Note that we should have applied corrections on the j- and k-degrees in the previous
example, but for the clarity and progression of the argument, we omitted it. Removing
the indices a and b since we used them to correct the degrees appropriately, we see that
H(u−4)e1 is thus given by

210
−1 211

−3

110
0 111

−2 112
−4

212
−5 213

−7

113
−6 114

−8

and H(u−4)e2 by

220
0

120
1 121

−1

221
−2 222

−4

122
−3 123

−5

223
−6 224

−8

124
−7 125

−9.

It is now clear that we can glue the different pieces together: multiplying 210
−1, 212

−5,

221
−2, 223

−6 on the left by the element 120
1 = e1ξe2, we see that we have the following

structures for H(u−4)e1 and H(u−4)e2

210
−1 211

−3 212
−5 213

−7

110
0 111

−2 112
−4 113

−6 114
−8
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2.4. Case p = 2

220
0 221

−2 222
−4 223

−6 224
−8

120
1 121

−1 122
−3 123

−5 124
−7 125

−9.

Indeed, we have

120
1 · 210

−1 = e1ξe2 · e2 ⊗ ξ ⊗ ξ ⊗ ξ ⊗ e1

= e1ξ ⊗ ξ ⊗ ξ ⊗ ξ ⊗ e1

= 110
0;

120
1 · 212

−5 = e1ξe2 · e2 ⊗ x⊗ x⊗ ξ ⊗ e1

= e1ξ ⊗ x⊗ x⊗ ξ ⊗ e1

= 112
−4;

120
1 · 221

−2 = e1ξe2 · e2 ⊗ x⊗ ξ ⊗ ξ ⊗ ξe2

= e1ξ ⊗ x⊗ ξ ⊗ ξ ⊗ ξe2

= 121
−1;

120
1 · 223

−6 = e1ξe2 · e2 ⊗ x⊗ x⊗ x⊗ ξe2

= e1ξ ⊗ x⊗ x⊗ x⊗ ξe2

= 123
−5.

From this, we see there exists a basis for Υ≤0 indexed by the subset

P≤0 := {(s, i, j, k, t) ∈ Z5 | (s, j, k, t) ∈ Pd, i ∈ −2N}

∪ {(s, i, j, k, t) ∈ Z5 | (s, j − 1, k, t) ∈ P
d0 , i ∈ −2N>0 + 1}

∪ {(s, i, j, k, t) ∈ Z5 | (s, j − 1, k, t) ∈ PM , i ∈ −2N− 1}

∪ {(s, i, j, k, t) ∈ Z5 | i ≤ −2, a >
1− i

2
,

(s, j + 2(2a+ i− 1)− 1, k − (2a+ i− 1), t) ∈ PM}.

Recalling the explicit description of the different polytopes given in Lemma 2.4.2, we
can write

P≤0 := {(1,−2n, 0, 0, 1), (2,−2n, 0, 0, 2), (1,−2n, 1, 0, 2), (1,−2n,−1, 1, 2) | n ∈ N}

∪ {(1,−2n+ 1, 1, 0, 2) | n ∈ N>0}

∪ {(1,−2n− 1, 0, 0, 1), (1,−2n− 1,−2, 1, 1), (2,−2n− 1, 0, 0, 2),
(2,−2n− 1,−2, 1, 2), (1,−2n− 1,−1, 1, 2), (1,−2n− 1,−3, 2, 2),
(2,−2n− 1,−1, 0, 1) | n ∈ N}

∪ {(1, i, 2− 2(2a+ i), 2a+ i− 1, 1), (1, i,−2(2a+ i), 2a+ i, 1),
(2, i, 2− 2(2a+ i), 2a+ i− 1, 2), (2, i,−2(2a+ i), 2a+ i, 2),
(1, i, 1− 2(2a+ i), 2a+ i, 2), (1, i,−1− 2(2a+ i), 2a+ i+ 1, 2),
(2, i, 1− 2(2a+ i), 2a+ i− 1, 1), (2, i, 3− 2(2a+ i), 2a+ i− 2, 1)

| i ≤ −2,
1− i

2
< a ≤ −i

}
.

We define PΥ≤1 to be P≤0 ∪ PΥ1 , where PΥ1 = {(s, 1, 1, 0, 3 − s) ∈ Z5|1 ≤ s ≤ 2}
corresponds to the homology of u.
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2.4. Case p = 2

This enables us to write the multiplication map on Υ≤1 explicitly.

Theorem (Theorem 53, [MT13]). Υ≤1 has basis {mv}v∈P
Υ≤1

with product given by

mumu′ =


mv if v1 = u1, u5 = u′1, u

′
5 = v5, vl = ul + u′l

for 2 ≤ l ≤ 4 and v ∈ PΥ≤1 ,
0 otherwise.

Remark 2.4.6. We call this product of Υ≤1 concatenation product.

We now want to explain how wq is constructed from Υ≤1.

Definition 2.4.7. We call chained elements of (Υ≤1)⊗q elements of the form (s1, i1, j1, k1, t1)⊗
(s2, j1, j2, k2, t2)⊗ . . .⊗ (sq, jq−1, jq, kq, tq), i.e. the j-degree of the n-th component is the
i-degree of the (n+ 1)-th.

Recall from [MT13, Proposition 28.] that wq is a subalgebra of d⊗Υ⊗q−1, and every
basis element of wq is a chained element of the form

(s1, 0, j1, k1, t1)⊗ (s2, j1, j2, k2, t2)⊗ . . .⊗ (sq, jq−1, jq, kq, tq),

where each (sn, in, jn, kn, tn) is an element of H(uin). Thus, to multiply two basis elements
of wq, we just need to apply the concatenation product component wise.

2.4.2 Polytopal and x, ξ form

Similarly as for the case p > 2, we explain how to translate elements in polytopal form to
a more explicit x and ξ form. It is easier in this case since we do not need to consider the
a- and b-degree any longer.

Since x ∈ d is the only element with non-zero k-degree, that degree corresponds to the
number of x’s. To obtain the j-degree, recall that x ∈ d is given in j-degree -1 and ξ ∈ d
is given in j-degree 1. By definition of u−i, we need to apply a shift in the j-degree as
well, so that the j-degree of an element of i-degree i is |ξ| − |x|+ i.

For instance, we have:
(1, 0, 0, 0, 1) = e1

(2, 0, 0, 0, 2) = e2

(1, 0, 1, 0, 2) = ξ
(1, 0,−1, 1, 2) = x.

More generally, we have:

(1, i, j, k, 1) = x⊗k ⊗ ξ⊗j+k−i ⊗ e1 (j + 2k = 0)

(2, i, j, k, 1) = e2 ⊗ x⊗k ⊗ ξ⊗j+k−i ⊗ e1 (j + 2k = −1)

(1, i, j, k, 2) = x⊗k ⊗ ξ⊗j+k−i (j + 2k = 1)

(2, i, j, k, 2) = e2 ⊗ x⊗k ⊗ ξ⊗j+k−i (j + 2k = 0).

2.4.3 Multiplication in Υ≤1

Using the description of basis elements given by polytopes, we see that H(u−i) decomposes
as follows:

For both pictures, going left from the semi-simple top to the socle corresponds to
multiplying on the left by ξ = (1, 0, 1, 0, 2) when going right corresponds to multiplying
on the left by x = (1, 0,−1, 1, 2).

Elements of H(u−i) can be of three types:

Type I. (s,−i,−2l, l, s), where s ∈ {1, 2}, 0 ≤ l ≤ i (circled in blue);
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2.4. Case p = 2

(2,−i,−1, 0, 1) (2,−i,−3, 1, 1) (2,−i,−2i+ 1, i− 1, 1)

(1,−i, 0, 0, 1) (1,−i,−2, 1, 1) . . . (1,−i,−2i, i, 1)

Figure 2.3: Structure of H(u−i)e1 as a d-module

(2,−i, 0, 0, 2) (2,−i,−2, 1, 2) (2,−i,−2i, i, 2)

(1,−i, 1, 0, 2) (1,−i,−1, 1, 2) . . . (1,−i,−2i− 1, i+ 1, 2)

Figure 2.4: Structure of H(u−i)e2 as a d-module

Type II. (2,−i,−2l + 1, l − 1, 1), where 1 ≤ l ≤ i (circled in green);

Type III. (1,−i,−2l − 1, l + 1, 2), where −1 ≤ l ≤ i (circled in red).

Remark 2.4.8. We can deduce the three types from the explicit description of P≤0 as

1− i
2
≤ a ≤ −i ⇔ 1 ≤ 2a+ i ≤ −i.

Set l = 2a + i and we are almost done: the range for l must be corrected since elements
of the same type with different shifts of l appear in the description, e.g. (2, i, 1 − 2(2a +
i), 2a+ i− 1, 1) and (2, i, 3− 2(2a+ i), 2a+ i− 2, 1), which we may rewrite

(2, i,−2l + 1, l − 1, 1), (2, i,−2(l − 1) + 1, (l − 1)− 1, 1).

Let us multiply elements of different types together:

I × I: (s1,−i1,−2l1, l1, s1)× (s2,−i2,−2l2, l2, s2) = (s1,−(i1 + i2),−2(l1 + l2), l1 + l2, s1) if
s1 = s2 (zero otherwise), where

0 ≤ l1 ≤ i1
0 ≤ l2 ≤ i2

}
⇒ 0 ≤ l1 + l2 ≤ i1 + i2,

which means type I elements multiplied with type I elements give type I elements.

I × II: (s1,−i1,−2l1, l1, s1)× (2,−i2,−2l2 +1, l2−1, 1) = (2,−(i1 + i2),−2(l1 + l2)+1, (l1 +
l2)− 1, 1) if s1 = 2 (zero otherwise), where

0 ≤ l1 ≤ i1
1 ≤ l2 ≤ i2

}
⇒ 1 ≤ l1 + l2 ≤ i1 + i2,

which means type I elements multiplied with type II elements give type II elements.

I × III: (s1,−i1,−2l1, l1, s1)× (1,−i2,−2l2−1, l2 +1, 2) = (1,−(i1 + i2),−2(l1 + l2)−1, (l1 +
l2) + 1, 2) if s1 = 1 (zero otherwise), where

0 ≤ l1 ≤ i1
−1 ≤ l2 ≤ i2

}
⇒ −1 ≤ l1 + l2 ≤ i1 + i2,

which means type I elements multiplied with type III elements give type III elements.

II × I: (2,−i1,−2l1 +1, l1−1, 1)× (s2,−i2,−2l2, l2, s2) = (2,−(i1 + i2),−2(l1 + l2)+1, (l1 +
l2)− 1, 1) if s2 = 1 (zero otherwise), where

1 ≤ l1 ≤ i1
0 ≤ l2 ≤ i2

}
⇒ 1 ≤ l1 + l2 ≤ i1 + i2,

which means type II elements multiplied with type I elements give type II elements.
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2.4. Case p = 2

II × II: Multiplying type II elements together gives zero as idempotents do not match.

II × III: (2,−i1,−2l1 +1, l1−1, 1)×(1,−i2,−2l2−1, l2 +1, 2) = (2,−(i1 +i2),−2(l1 +l2), (l1 +
l2), 2), where

1 ≤ l1 ≤ i1
−1 ≤ l2 ≤ i2

}
⇒ 0 ≤ l1 + l2 ≤ i1 + i2,

which means type II elements multiplied with type III elements give type I elements
with idempotent s1 = 2.

III × I: (1,−i1,−2l1−1, l1 +1, 2)× (s2,−i2,−2l2, l2, s2) = (1,−(i1 + i2),−2(l1 + l2)−1, (l1 +
l2) + 1, 2) if s2 = 2 (zero otherwise), where

−1 ≤ l1 ≤ i1
0 ≤ l2 ≤ i2

}
⇒ −1 ≤ l1 + l2 ≤ i1 + i2,

which means type III elements multiplied with type I elements give type III elements.

III × II: (1,−i1,−2l1−1, l1 +1, 2)×(2,−i2,−2l2 +1, l2−1, 1) = (1,−(i1 +i2),−2(l1 +l2), (l1 +
l2), 1), where

−1 ≤ l1 ≤ i1
1 ≤ l2 ≤ i2

}
⇒ 0 ≤ l1 + l2 ≤ i1 + i2,

which means type III elements multiplied with type II elements give type I elements
with idempotent s1 = 1.

III × III: Multiplying type III elements together gives zero as idempotents do not match.

These calculations are summarised in Table 2.1.

× I II III

I I II III

II II 0 I

III III I 0

Table 2.1: Multiplication table of elements (by type) of HTd(u−1)

Remark 2.4.9. We see from the computations that m2 : H(u−i1)⊗H(u−i2)→ H(u−(i1+i2))

is surjective for any i1, i2 ≥ 0, and thus m2 :
∐

i1+i2=i3

H(u−i1)⊗H(u−i2)→ H(u−i3) is also

surjective.
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Chapter 3

Quiver of wq for p = 2

In this chapter, we give a description of the quiver of wq in the case p = 2. Let us first
understand how to decompose chained elements.

3.1 Decomposition of chained elements of HTd(u−1)

Since the multiplication m2 is surjective (cf. Remark 2.4.9), we can decompose any element
from HTd(u−1) as follows.

Lemma 3.1.1. Let (s, i, j, k, t) ∈ HTd(u−1). Let −1 ≥ î ≥ i. There exists an integer
ĩ ≤ 0 such that (s, i, j, k, t) decomposes as the product

(s, i, j, k, t) = (s, ĩ,−2l̃, l̃, s)(s, î, j + 2l̃, k − l̃, t), (*)

such that

1. (s, ĩ,−2l̃, l̃, s) is a type I element;

2. (s, î, j + 2l̃, k − l̃, t) ∈ HTd(u−1);

3. i = ĩ+ î, 0 ≤ l̃ ≤ −ĩ.

Proof. If we let î = i, then ĩ = 0, and there is a trivial solution for the type I element,
namely (s, 0, 0, 0, s), and (s, i, j, k, t) = (s, 0, 0, 0, s)(s, i, j, k, t).

Let i < î ≤ 0 (so that ĩ = i− î). We want to show there exists a type I element such
that (*) holds, i.e. we need to show there exists ĩ ≤ 0 and 0 ≤ l̃ ≤ −i. Note that the type
of (s, î, j + 2l̃, k − l̃, t) is the same as that of the element we start with, (s, i, j, k, t) (cf.
Table 2.1).

Type I. Assume that (s, i, j, k, t) is of type I, i.e. (s, i, j, k, t) = (s, i,−2l, l, t) with 0 ≤ l ≤ −i.
Then (s, î, j + 2l̃, k− l̃, t) = (s, î,−2(l− l̃), l− l̃, t) is of type I too, therefore we have
0 ≤ l − l̃ ≤ −î. Rearranging this inequality yields

l + î ≤ l̃ ≤ l.

For (s, ĩ,−2l̃, l̃, s) to be a type I element, l̃ must satisfy 0 ≤ l̃ ≤ −ĩ with ĩ ≤ 0. Thus,
we obtain the following inequality

max{l + î, 0} ≤ l̃ ≤ min{l,−ĩ},

and we must show the corresponding interval in the integers is not empty.



3.1. Decomposition of chained elements of HTd(u−1)

(a) If max{l + î, 0} = l + î and min{l,−ĩ} = −ĩ, then

−ĩ− l − î = −l − i ≥ 0

since 0 ≤ l ≤ −i;
(b) If max{l + î, 0} = 0 and min{l,−ĩ} = −ĩ, then

−ĩ− 0 = −ĩ ≥ 0

since such a type I element would satisfy ĩ ≤ 0;

(c) If max{l + î, 0} = l + î and min{l,−ĩ} = l, then

l − l − î = −î ≥ 0

since î ≤ 0;

(d) If max{l + î, 0} = 0 and min{l,−ĩ} = l, then

l − 0 = l ≥ 0

since 0 ≤ l ≤ −i by assumption.

Type II. Assume that (s, i, j, k, t) is of type II, i.e. (s, i, j, k, t) = (2, i,−2l + 1, l − 1, 1) with
1 ≤ l ≤ −i. In particular, we need to assume that i ≤ −1 as type II elements only
occur then. Then (s, î, j + 2l̃, k − l̃, t) = (2, î,−2(l − l̃) + 1, l − l̃ − 1, 1) is of type II
too, therefore we have 1 ≤ l− l̃ ≤ −î and î ≤ −1. Rearranging this inequality yields

l + î ≤ l̃ ≤ l − 1.

For (s, ĩ,−2l̃, l̃, s) to be a type I element, l̃ must satisfy 0 ≤ l̃ ≤ −ĩ with ĩ ≤ 0. Thus,
we obtain the following inequality

max{l + î, 0} ≤ l̃ ≤ min{l − 1,−ĩ},

and we must show the corresponding interval in the integers is not empty.

(a) If max{l + î, 0} = l + î and min{l − 1,−ĩ} = −ĩ, then

−ĩ− l − î = −l − i ≥ 0

since 1 ≤ l ≤ −i;
(b) If max{l + î, 0} = 0 and min{l − 1,−ĩ} = −ĩ, then

−ĩ− 0 = −ĩ ≥ 0

since such a type I element would satisfy ĩ ≤ 0;

(c) If max{l + î, 0} = l + î and min{l − 1,−ĩ} = l − 1, then

l − 1− l − î = −1− î ≥ 0

since î ≤ −1;

(d) If max{l + î, 0} = 0 and min{l − 1,−ĩ} = l − 1, then

l − 1− 0 = l − 1 ≥ 0

since 1 ≤ l ≤ −i by assumption.
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3.1. Decomposition of chained elements of HTd(u−1)

Type III. Assume that (s, i, j, k, t) is of type III, i.e. (s, i, j, k, t) = (1, i,−2l − 1, l + 1, 2) with
−1 ≤ l ≤ −i. Then (s, î, j + 2l̃, k − l̃, t) = (1, î,−2(l − l̃) − 1, l − l̃ + 1, 2) is of type
III too, therefore we have −1 ≤ l − l̃ ≤ −î. Rearranging this inequality yields

l + î ≤ l̃ ≤ l + 1.

For (s, ĩ,−2l̃, l̃, s) to be a type I element, l̃ must satisfy 0 ≤ l̃ ≤ −ĩ with ĩ ≤ 0. Thus,
we obtain the following inequality

max{l + î, 0} ≤ l̃ ≤ min{l + 1,−ĩ},

and we must show the corresponding interval in the integers is not empty.

(a) If max{l + î, 0} = l + î and min{l + 1,−ĩ} = −ĩ, then

−ĩ− l − î = −l − i ≥ 0

since 0 ≤ l ≤ −i;
(b) If max{l + î, 0} = 0 and min{l + 1,−ĩ} = −ĩ, then

−ĩ− 0 = −ĩ ≥ 0

since such a type I element would satisfy ĩ ≤ 0;

(c) If max{l + î, 0} = l + î and min{l + 1,−ĩ} = l + 1, then

l + 1− l − î = 1− î ≥ 2 ≥ 0

since î ≤ −1;

(d) If max{l + î, 0} = 0 and min{l + 1,−ĩ} = l + 1, then

l + 1− 0 = l + 1 ≥ 0

since −1 ≤ l ≤ −i by assumption.

Remark 3.1.2. This means in particular for any element (s, i0, j, k, t) of H(ui0), and for
any integer −i0 ≥ n ≥ 0, we can choose an element of the same type (s, i0 + n, j + 2l, k −
l, t) in H(ui0+n) such that (s, i0, j, k, t) decomposes as the product of a type I element
(s,−n,−2l, l, s) ∈ H(u−n) by that same type element we chose. We have one degree of
freedom in the choice of the i-degree for the decomposition.

Corollary 3.1.3. Let (s1, i1, j1, k1, t1) ⊗ (s2, j1, j2, k2, t2) ⊗ . . . ⊗ (sq, jq−1, jq, kq, tq) ∈(
HTd(u−1)

)⊗q
be a chained element with components in HTd(u−1). Then there exists

a decomposition

(s1, i1, j1, k1, t1)⊗ (s2, j1, j2, k2, t2)⊗ . . .⊗ (sq, jq−1, jq, kq, tq)

= (s1, ĩ1,−2l1, l1, s1)⊗ (s2,−2l1,−2l2, l2, s2)⊗ . . .⊗ (sq,−2lq−1,−2lq, lq, sq)

·(s1, î1, j1 + 2l1, k1 − l1, t1)⊗ (s2, j1 + 2l1, j2 + 2l2, k2 − l2, t2)⊗ . . .
⊗(sq, jq−1 + 2lq−1, jq + 2lq, kq − lq, tq)

such that, for all 1 ≤ n ≤ q,

1. (sn, ĩn,−2l̃n, l̃n, sn) is a type I element;

2. (sn, în, jn + 2l̃n, kn − l̃n, tn) ∈ HTd(u−1);
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3.2. Action of H(u) on HTd(u−1)

3. in = ĩn + în, 0 ≤ l̃n ≤ −ĩn.

In addition, both (s1, ĩ1,−2l1, l1, s1)⊗ . . .⊗(sq,−2lq−1,−2lq, lq, sq) and (s1, î1, j1 +2l1, k1−
l1, t1) ⊗ . . . ⊗ (sq, jq−1 + 2lq−1, jq + 2lq, kq − lq, tq) are chained elements with components
in HTd(u−1).

Proof. From Lemma 3.1.1, we know that for every (sn, în, jn + 2ln, kn − ln, tn), there is
a type I element (sn, ĩn,−2ln, ln, sn) such that their product (with the type I element
on the left to respect idempotents) yields (sn, in, jn, kn, tn). In particular, we can choose
în = jn−1 + 2ln−1 for n = 2, . . . , q, and as a result ĩ = in − î = −2ln−1. That means the
chaining rule is preserved and both elements obtained are chained elements.

Remark 3.1.4. The decomposition might be “trivial” in the sense that all the type I
elements on the left could be idempotents of d. We shall use that decomposition result
later on and the only thing we will need, to make sure the decomposition is not trivial, is
if at least one term in the left component is not an idempotent.

3.2 Action of H(u) on HTd(u−1)

We now want to understand how the elements of u act onHTd(u−1). Let (s1,−i1, j1, l1, t1) ∈
H(u−i1), i1 ≥ 1 and let (s2, 1, 1, 0, 3− s2) ∈ H(u). We have three cases:

I. (s1,−i1, j1, l1, t1) = (s1,−i1,−2l1, l1, s1) is of type I. Then we have:

(s1,−i1,−2l1, l1, s1)× (s2, 1, 1, 0, 3− s2) = (s1,−(i1 − 1),−2l1 + 1, l1, 3− s2)
if s1 = s2(zero otherwise)

(s2, 1, 1, 0, 3− s2)× (s1,−i1,−2l1, l1, s1) = (s2,−(i1 − 1),−2l1 + 1, l1, 3− s2)
if s1 = 3− s2(zero otherwise)

In both cases, we obtain the expression (s2,−(i1 − 1),−2l1 + 1, l1, 3− s2), which we
can rewrite: (s2,−(i1 − 1),−2(l1 − 1) − 1, (l1 − 1) + 1, 3 − s2). For that to be an
element of H(u−(i1−1)), since idempotents on the left and on the right are different,
it must be of type II or III. We see that 0 ≤ l1 ≤ i1, so that −1 ≤ l1 − 1 ≤ i1 − 1.
Therefore, it is an element of type III if s2 = 1 and zero otherwise.

II. (s1,−i1, j1, l1, t1) = (2,−i1,−2l1 + 1, l1 − 1, 1) is of type II. Then we have:

(2,−i1,−2l1 + 1, l1 − 1, 1)× (s2, 1, 1, 0, 3− s2) = (2,−(i1 − 1),−2l1 + 2, l1 − 1, 2)
if s2 = 1(zero otherwise);

(s2, 1, 1, 0, 3− s2)× (2,−i1,−2l1 + 1, l1 − 1, 1) = (1,−(i1 − 1),−2l1 + 2, l1 − 1, 1)
if s2 = 1(zero otherwise).

In both cases, we obtain an expression of the form (s1,−(i1−1),−2(l1−1), l1−1, s1)
and this clearly is an element of type I of H(u−(i1−1)). We note that 1 ≤ l1 ≤ i1,
and so 0 ≤ l1 − 1 ≤ i1 − 1, which means that

m2 : e2H(u−i)e1 ⊗ e1H(u)e2 � e2H(u−i+1)e2,

and
m2 : e1H(u)e2 ⊗ e2H(u−i)e1 � e1H(u−i+1)e1

are surjective maps.
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III. (s1,−i1, j1, l1, t1) = (1,−i1,−2l1 − 1, l1 + 1, 2) is of type III. Then we have:

(1,−i1,−2l1 − 1, l1 + 1, 2)× (s2, 1, 1, 0, 3− s2) = (1,−(i1 − 1),−2l1, l1 + 1, 1)
if s2 = 2(zero otherwise);

(s2, 1, 1, 0, 3− s2)× (1,−i1,−2l1 − 1, l1 + 1, 2) = (2,−(i1 − 1),−2l1, l1 + 1, 2)
if s2 = 2(zero otherwise).

In both cases, we obtain an expression of the form (s1,−(i1−1),−2l1, l1 + 1, s1) and
this clearly should be an element of type I of H(u−(i1−1)) since idempotents on the
left and on the right agree. We note however that the j-degree and the k-degree of
that expression are not related appropriately, which means that this expression does
not correspond to any element of H(u−(i1−1)) and the product is zero.

To summarise, we see that H(u) has a non trivial action on HTd(u−1) only through
the element (1, 1, 1, 0, 2) = e1 ⊗ e∗2, and it sends type I elements to type III elements, and
it sends type II elements on type I elements. We can see it pictorially in Figure 3.1.

3.3 Irreducible monomials

Definition 3.3.1. A basis element of wq is called an irreducible monomial if it cannot be
written as a non-trivial product of two other basis elements of wq.

We denote by Vq the set of irreducible monomials of wq. It is non-empty as it contains
the idempotents of wq, namely all the basis elements of the form

(s1, 0, 0, 0, s1)⊗ . . .⊗ (sq, 0, 0, 0, sq) = es1 ⊗ . . .⊗ esq .

Since wq is a subalgebra of d ⊗ (HTd(u))⊗q−1, we know that the first component of
any basis element of wq is an element of d, i.e. it is either e1, e2, ξ or x.

3.3.1 Irreducible monomials starting with an idempotent of d

Lemma 3.3.2. Let a1 ⊗ . . .⊗ aq ∈ Vq. Then e1 ⊗ a1 ⊗ . . .⊗ aq and e2 ⊗ a1 ⊗ . . .⊗ aq are
irreducible monomials of wq+1.

Proof. Suppose ei ⊗ a1 ⊗ . . .⊗ aq ∈ wq+1 is reducible, i.e. ei ⊗ a1 ⊗ . . .⊗ aq = b0 ⊗ . . .⊗
bq · c0⊗ . . .⊗ cq, with b0⊗ . . .⊗ bq, c0⊗ . . .⊗ cq ∈ wq+1. Since b0, c0 ∈ d and ei = b0c0, we
must have b0 = c0 = ei. This shows b1 ⊗ . . . ⊗ bq and c1 ⊗ . . . ⊗ cq are elements of wq as
both b1 and c1 are in d, and their product is a1 ⊗ . . .⊗ aq.

Corollary 3.3.3. The set Vq+1 contains two copies of Vq: {e1⊗A, e2⊗A|A ∈ Vq} ⊂ Vq+1.

3.3.2 Irreducible monomials starting with ξ

Lemma 3.3.4. Let a1 ⊗ . . .⊗ aq ∈ wq such that a1 = ξ. Then a1 ⊗ . . .⊗ aq ∈ Vq.

Proof. Since a1 = ξ = (1, 0, 1, 0, 2) has j-degree 1, a2 must be an element of H(u) =
{(1, 1, 1, 0, 2), (2, 1, 1, 0, 1)}. In either case, a2 has j-degree 1. More generally, we see that
al ∈ H(u) for 2 ≤ l ≤ q. No al can be decomposed for 1 ≤ l ≤ q, hence a1⊗. . .⊗aq ∈ Vq.

Corollary 3.3.5. For 1 ≤ l ≤ q, any basis element of the form

es1 ⊗ . . .⊗ esl−1
⊗ ξ ⊗ (esl+1

⊗ e∗3−sl+1
)⊗ . . .⊗ (esq ⊗ e∗3−sq)

is in Vq.

Proof. Use Lemma 3.3.2 together with Lemma 3.3.4.
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3.3. Irreducible monomials

3.3.3 Irreducible monomials starting with x

Lemma 3.3.6. Let a1 ⊗ . . .⊗ aq ∈ Vq such that a1 = x. Suppose there is an index i0 > 1
such that ai0 ∈ d. Then ai0 ∈ {e1, e2}.

Proof. Suppose that ai0 ∈ {ξ, x}. Then we can write

a1⊗ . . .⊗aq = a1⊗ . . .⊗ai0−1⊗e1⊗esi0+1⊗ . . .⊗esq ·et1⊗ . . .⊗eti0−1⊗ai0⊗ai0+1⊗ . . .⊗aq,

where esl , resp. etl , is the left, resp. right, idempotent of al = (sl, il, jl, kl, tl). This
decomposition is not trivial since at least ai0 is not an idempotent of d.

Lemma 3.3.7. Let a1 ⊗ . . .⊗ aq ∈ wq such that a1 = x. Suppose there is an index l > 1
such that degk al ≥ 1. Then a1⊗ . . .⊗aq /∈ Vq. In particular, irreducible monomials of wq

have total k-degree at most 1.

Proof. Writing a1⊗a2⊗. . .⊗aq = (1, 0,−1, 1, 2)⊗(s2,−1, j2, k2, t2)⊗. . .⊗(sq, jq−1, jq, kq, tq),
we let l0 = min{2 ≤ l ≤ q | kl ≥ 1}.

Case l0 = 2. The element (s2,−1, j2, k2, t2) is such that k2 ≥ 1. We can choose it
among

(s,−1,−2, 1, s) = x⊗ e1 or e2 ⊗ x
(1,−1,−1, 1, 2) = x⊗ ξ
(1,−1,−3, 2, 2) = x⊗ x

We can write those elements as follows

x⊗ e1 = x · e2 ⊗ e1

e2 ⊗ x = e2 ⊗ e1 · x
x⊗ ξ = x · e2 ⊗ ξ
x⊗ x = x · e2 ⊗ x

and note that e2 ⊗ e1 = (2,−1,−1, 0, 1) and e2 ⊗ x = (2,−1,−2, 1, 2) have negative j-
degree, i.e. the element a3 following them has negative i-degree; e2 ⊗ ξ = (2,−1, 0, 0, 2)
has j-degree 0 so the element a3 following must be chosen in d.

Let n0 = min{l0 < n ≤ q | in = jn−1 ≥ 0}. Then an ∈ H(u−in) (in ≥ 1) for all
l0 = 2 ≤ n ≤ n0 − 1. Applying Corollary 3.1.3, there exists a decomposition

a3 ⊗ . . .⊗ an0−1 = b3 ⊗ . . .⊗ bn0−1 · c3 ⊗ . . .⊗ cn0−1,

such that we can choose the i-degree of b3 and c3 thanks to the decomposition of a2 so that
the chaining rule is respected. For an0 to be in d, resp. H(u), an0−1 must have j-degree
0, resp. 1. So it is one of

(sn0−1, in0−1, 0, 0, sn0−1) = ξ⊗−in0−1 ⊗ e1 or e2 ⊗ ξ⊗−in0−1

(1, in0−1, 1, 0, 2) = ξ⊗−in0−1+1

and we see that we can choose (sn0−1, in0−1+jn0−1, 0, 0, sn0−1) = ξ⊗−in0−1−jn0−1⊗e1 or e2⊗
ξ⊗−in0−1−jn0−1 for the type I element bn0−1 of the decomposition, and, depending on the j-
degree, (sn0−1,−1, 0, 0, sn0−1) = ξ⊗e1 or e2⊗ξ (jn0−1 = 1) or (1, 0, 1, 0, 2) = ξ (jn0−1 = 0)
for the element cn0−1. Finally, we can decompose a1 ⊗ a2 ⊗ . . .⊗ aq as

(1, 0,−1, 1, 2)⊗ (s2,−1, j2, k2, t2)⊗ . . .⊗ (sq, jq−1, jq, kq, tq)
= (1, 0, 0, 0, 1)⊗ (1, 0,−1, 1, 2)⊗ b3 ⊗ . . .⊗ bn0−2⊗

(sn0−1, in0−1 + jn0−1, 0, 0, sn0−1)⊗ (sn0 , 0, 0, 0, sn0)⊗ . . .⊗ (sq, 0, 0, 0, sq)

·(1, 0,−1, 1, 2)⊗


(2,−1,−1, 0, 1)
(2,−1,−2, 1, 1)

(2,−1, 0, 0, 1)
⊗ c3 ⊗ . . .⊗ cn0−2⊗{

(sn0−1,−1, 0, 0, sn0−1)
(1, 0, 1, 0, 2)

⊗ an0 . . .⊗ aq
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if a2 can be decomposed as x · ã2, and as

(1, 0,−1, 1, 2)⊗ (s2,−1, j2, k2, t2)⊗ . . .⊗ (sq, jq−1, jq, kq, tq)
= (1, 0,−1, 1, 2)⊗ (2,−1,−1, 0, 1)⊗ b3 ⊗ . . .⊗ bn0−2⊗

(sn0−1, in0−1 + jn0−1, 0, 0, sn0−1)⊗ (sn0 , 0, 0, 0, sn0)⊗ . . .⊗ (sq, 0, 0, 0, sq)
·(2, 0, 0, 0, 2)⊗ (1, 0,−1, 1, 2)⊗ c3 ⊗ . . .⊗ cn0−2⊗{

(sn0−1,−1, 0, 0, sn0−1)
(1, 0, 1, 0, 2)

⊗ an0 . . .⊗ aq

if a2 = e2 ⊗ x = e2 ⊗ e1 · x.
Case l0 > 2. This means that kl = 0 for all 1 < l < l0. The elements a2 up to al0−1

can be chosen among

(s,−i, 0, 0, s) = ξ⊗i ⊗ e1 or e2 ⊗ ξ⊗i
(2,−i,−1, 0, 1) = e2 ⊗ ξ⊗i−1 ⊗ e1

(1,−i, 1, 0, 2) = ξ⊗i+1

(s, 0, 0, 0, s) = e1 or e2

(1, 0, 1, 0, 2) = ξ
(s, 1, 1, 0, 3− s) = e1 ⊗ e∗2 or e2 ⊗ e∗1

and this is an exhaustive list of k-degree 0 elements of HTd(u)≤1. One must obviously
choose aα before choosing aα+1 to respect the construction of wq from HTd(u)≤1.

If at any point an element of j-degree 1 is chosen for an aα, i.e. (1,−i, 1, 0, 2),
(1, 0, 1, 0, 2) or (s, 1, 1, 0, 3 − s), the following elements must all be in H(u) as seen in
the proof of Lemma 3.3.4, including al0 . This is a contradiction as elements of H(u) have
k-degree 0.

Our choice is thus narrowed to

(s,−i, 0, 0, s) = ξ⊗i ⊗ e1 or e2 ⊗ ξ⊗i
(2,−i,−1, 0, 1) = e2 ⊗ ξ⊗i−1 ⊗ e1

(s, 0, 0, 0, s) = e1 or e2

In particular, a2 is chosen among ξ ⊗ e1, e2 ⊗ ξ, and e2 ⊗ e1. If it is ξ ⊗ e1 or e2 ⊗ ξ,
since they both have j-degree 0, a3 is an element of d and thus either e1 or e2 by Lemma
3.3.6. Inductively, since a3 has j-degree 0, we see that an = (sn, 0, 0, 0, sn) = esn for all
3 ≤ n < l0 and al0 = x. We can then decompose a1 ⊗ . . .⊗ aq as

(1, 0,−1, 1, 2)⊗ (s2,−1, j2, k2, t2)⊗ . . .⊗ (sq, jq−1, jq, kq, tq)
= (1, 0, 0, 0, 1)⊗ (s2, 0, 0, 0, s2)⊗ . . .⊗ (sl0−1, 0, 0, 0, sl0−1)⊗ (1, 0,−1, 1, 2)⊗

al0+1 ⊗ . . .⊗ aq
·(1, 0,−1, 1, 2)⊗ a2 ⊗ . . .⊗ al0−1 ⊗ (2, 0, 0, 0, 2)⊗ (tl0+1, 0, 0, 0, tl0+1)⊗

. . .⊗ (tq, 0, 0, 0, tq)

If a2 = e2 ⊗ e1, then a3 ∈ H(u−1) and it has k-degree 0: a3 is either ξ ⊗ e1, e2 ⊗ ξ,
and e2 ⊗ e1. Choosing ξ ⊗ e1 or e2 ⊗ ξ, we see that we can apply the same argument as
for a2 = ξ ⊗ e1 or e2 ⊗ ξ. This extends to an = ξ ⊗ e1 or e2 ⊗ ξ for 2 ≤ n < l0. The only
remaining case to study is that when an = e2 ⊗ e1 for 2 ≤ n < l0. That means al0 is an
element of H(u−1) with k-degree greater than or equal to one (by definition of l0). So al0
is one of

(1,−1,−2, 1, 1) = x⊗ e1

(2,−1,−2, 1, 2) = e2 ⊗ x
(1,−1,−1, 1, 2) = x⊗ ξ
(1,−1,−3, 2, 2) = x⊗ x

We see that using the same reasoning as for l0 = 2 yields a decomposition of a1⊗ . . .⊗ aq.
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Remark 3.3.8. This means that Ext∗(∆,∆) is generated in Ext1(∆,∆) and Ext0(∆,∆)
elements. This is false for p > 2; in Section 3 of [MT13], the Ext1-quiver has a degree 2
arrow from the 8th simple to the 2nd.

Corollary 3.3.9. Let a1 ⊗ . . . ⊗ aq be an irreducible monomial of wq such that a1 = x.
Then a1 ⊗ . . .⊗ aq has one of the following forms:

– x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1);

– x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (ξ ⊗ e1)⊗ el1 ⊗ el2 ⊗ . . . els if there exists 1 ≤ i ≤ s
such that li = 2 (s > 1);

– x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (e2 ⊗ ξ)⊗ el1 ⊗ el2 ⊗ . . . elr if there exists 1 ≤ i ≤ r
such that li = 1 (r > 1).

Proof. Since a1 = x has j-degree -1, a2 is in H(u−1). Besides by the previous Lemma,
it has k-degree 0, so it could be chosen among {e2 ⊗ e1, ξ ⊗ e1, e2 ⊗ ξ, ξ ⊗ ξ}. They have
j-degrees comprised between -1 and 1.

(i) If e2 ⊗ e1 is chosen for a2, then we have the same choices for a3 as e2 ⊗ e1 has
j-degree -1. Inductively, we see that we can choose an = e2 ⊗ e1 for 2 ≤ n ≤ q and
this element is indecomposable.

(ii) If ξ ⊗ e1 or e2 ⊗ ξ is chosen for a2; the element a3 has j-degree 0, so is in d. By
Lemma 3.3.6, a3 is an idempotent and so must be a4, . . . , aq inductively.

In that case, the element obtained is irreducible if the ”right” idempotents from d
follow. Consider

x⊗ (ξ ⊗ e1)⊗ e1 ⊗ e1 ⊗ . . . e1.

This element is not irreducible because we have

e1 ⊗ ξ ⊗ (e1 ⊗ e∗2)⊗ . . .⊗ (e1 ⊗ e∗2)
· x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)

= x⊗ (ξ ⊗ e1)⊗ e1 ⊗ e1 ⊗ . . . e1.

The only way for this instance not to happen is if we have at least some e2 replacing
an e1 in the tail of the element; this is because e2 can only be obtained from the
right multiplication of e2 ⊗ e1 by e1 ⊗ e∗2 and because of the position of ξ in ξ ⊗ e1,
we are forced to have H(u) act on the left (cf. Section 3.2).

For the same reason, we see that

x⊗ (e2 ⊗ ξ)⊗ e2 ⊗ e2 ⊗ . . . e2

is not irreducible; we need at least some e1 replacing an e2.

Note that we could have chosen a2 to be e2 ⊗ e1, and then have a3 be either ξ ⊗ e1

or e2 ⊗ ξ, and the same argument applies. Inductively, we see that we can choose
e2 ⊗ e1 for a2, . . . , al0 for 2 ≤ l0 < q, and we choose ξ ⊗ e1 or e2 ⊗ ξ for al0+1. This
element is irreducible if and only if the appropriate idempotent of d appears at least
once. Therefore, we must have l0 + 1 < q.

(iii) Finally, if ξ ⊗ ξ is chosen for a2 (or for any al, 2 ≤ l ≤ q with all the preceding an’s
equal to e2 ⊗ e1), then we obtain a reducible element:

x⊗ (e2 ⊗ e1)⊗? ⊗ (ξ ⊗ ξ)⊗ (es1 ⊗ e∗3−s1)⊗ . . .⊗ (esl ⊗ e
∗
3−sl)

= e1 ⊗ e⊗?
2 ⊗ ξ ⊗ (es1 ⊗ e∗3−s1)⊗ . . .⊗ (esl ⊗ e

∗
3−sl)

· x⊗ (e2 ⊗ e1)⊗? ⊗ (e2 ⊗ ξ)⊗ e3−s1 ⊗ . . .⊗ e3−sl .
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3.3. Irreducible monomials

Theorem 3.3.10. The new arrows for the quiver of wq are of the form

– ξ ⊗ (es2 ⊗ e∗p+1−s2)⊗ . . .⊗ (esq ⊗ e∗p+1−sq);

– x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1);

– x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (ξ ⊗ e1)⊗ el1 ⊗ el2 ⊗ . . . els if there exists 1 ≤ i ≤ s
such that li = 2 (s > 1);

– x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (e2 ⊗ ξ)⊗ el1 ⊗ el2 ⊗ . . . elr if there exists 1 ≤ i ≤ r
such that li = 1 (r > 1).

Proof. Use Corollary 3.3.5 and Corollary 3.3.9, and the fact that the first component is
either x or ξ.

Lemma 3.3.11. The set Vq of irreducible monomials for wq has Nq elements, where

Nq := 2q−1(3q − 4) + 2q + 3.

Proof. From Corollary 3.3.3 and the fact that irreducible monomials of wq start by either
e1, e2, ξ or x, we know that

|Vq| = 2|Vq−1|+ |ξq|+ |xq|,

where ξq is the set of irreducible monomials of wq starting with ξ and xq is the set of
irreducible monomials of wq starting with x.

By Corollary 3.3.5, we know that v ∈ ξq if and only if

v = ξ ⊗ (es2 ⊗ e∗3−s2)⊗ . . .⊗ (esq ⊗ e∗3−sq)

with sl ∈ {1, 2} for all 2 ≤ l ≤ q. In particular,

|ξq| = 2q−1.

By Corollary 3.3.9, we know that v ∈ xq if and only if

1. v = x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1);

2. v = x⊗ (e2⊗e1)⊗ . . .⊗ (e2⊗e1)⊗ (ξ⊗e1)⊗el1⊗el2⊗ . . . els if there exists 1 ≤ i ≤ s
such that li = 2 (s > 1);

3. v = x⊗ (e2⊗e1)⊗ . . .⊗ (e2⊗e1)⊗ (e2⊗ ξ)⊗el1⊗el2⊗ . . . elr if there exists 1 ≤ i ≤ r
such that li = 1 (r > 1).

We could rewrite the last two possibilities in the form

v = x⊗ (e2 ⊗ e1)⊗n ⊗ vn+2 ⊗
q⊗

l=n+3

esl

where 0 ≤ n ≤ q − 3, and the condition ∃n + 3 ≤ l ≤ q such that sl = i (i = 1 or i = 2
depending on vn+2) is equivalent to ∃n+ 3 ≤ l ≤ q such that sl 6= 3− i, and finally we see
that it is equivalent to (sn+3, . . . , sq) 6= (3− i, . . . , 3− i).

In particular, the first possibility provides one element and the last two possibilities
each provide the following number of elements:
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3.3. Irreducible monomials

q−3∑
n=0

(2q−2−n − 1) = 2q−1 − q.

Hence

|xq| = 1 + 2(2q−1 − q)
= 2q − 2q + 1.

We thus obtain

|Vq| = 2|Vq−1|+ |ξq|+ |xq|
= 2(2|Vq−2|+ |ξq−1|+ |xq−1|) + |ξq|+ |xq|
...

= 2q−1|V1|+ 2q−2(|ξ2|+ |x2|) + . . .+ 2(|ξq−1|+ |xq−1|) + |ξq|+ |xq|

= 2q−1|V1|+
q−2∑
n=0

2n(|ξq−n|+ |xq−n|)

and, substituting the expressions for |ξq−n| and |xq−n|, we see

|Vq| = 2q−1|V1|+
q−2∑
n=0

2n(2q−n−1 + 2q−n − 2(q − n) + 1)

= 2q−1|V1|+
q−2∑
n=0

(2q−1 + 2q − q2n+1 + n2n+1 + 2n)

= 2q−1|V1|+ (q − 1)(2q−1 + 2q)− 2q
2q−1 − 1

2− 1
+

q−2∑
n=1

n2n+1 +
2q−1 − 1

2− 1

= 2q−1|V1|+ (q − 1)(2q−1 + 2q)− q2q + 2q +

q−2∑
n=1

n2n+1 + 2q−1 − 1.

Now, to simplify this expression, we need a formula for the term

q−2∑
n=1

n2n+1. Let a be a

formal variable. We know
n∑
k=0

ak =
an+1 − 1

a− 1

and deriving both sides of the equality with respect to a gives

n∑
k=1

kak−1 =
nan

a− 1
+

1− an

(a− 1)2
.

Setting a = 2, we obtain:

q−2∑
n=1

n2n+1 = 22
q−2∑
n=1

n2n−1

= 22
(
(q − 2)2q−2 + 1− 2q−2

)
= 2q(q − 3) + 4.

Finally, since |V1| = 4, we get

|Vq| = 2q+1 + (q − 1)(2q−1 + 2q)− q2q + 2q + 2q(q − 3) + 4 + 2q−1 − 1

= 2q−1
(
22 + 2(q − 1− q + q − 3) + (q − 1 + 1)

)
+ 2q + 3

so that
|Vq| = 2q−1(3q − 4) + 2q + 3.
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3.4 The quiver of wq

For any index q ∈ N>0, we have an explicit description of the basis elements of wq as
q-tuples made up from elements of HTd(u)≤1. These constituting elements are (i, j, k)-
graded, and together with their idempotents on the left and on the right, that grading
completely determines them. Therefore, basis elements of wq are (i, j, k)q-graded and are
fully determined by that grading. We denote the simples of wq by their 2-adic expansion,
namely

(s1, 0, 0, 0, s1)⊗ . . .⊗ (sq, 0, 0, 0, sq)↔
q∑
l=2

(sl − 1)2l−1 + s1.

Since wq is the extension algebra of the standard modules of an algebra of finite global
dimension, it is finite-dimensional. By definition of Vq, we can write wq as the quotient of
a tensor algebra by some ideal, namely

wq
∼= TBVq/I,

where the tensor product is taken over the semi-simple algebra B made up by the idem-
potents of wq.

Now, Vq is a (finite) subset of monomial basis elements of wq which is a multiplicative
basis for wq. Since wq is multigraded, I must be homogeneous with respect to that
(i, j, k)q-grading. Since an element z ∈ Vq is uniquely determined by its (i, j, k)q-degree
(together with idempotents on the left and on the right), we obtain that I cannot contain
any element of Vq: let v1 + . . . + vs ∈ I, with vj ’s words in elements of Vq; then all vj ’s
have the same (i, j, k)q-degree since I is homogeneous. In particular, at most one vj is in
Vq. This is a contradiction as we would obtain a linear relation between basis elements
of wq. Therefore, all vj ’s are words in at least two elements of Vq, i.e. I ⊂ Vq ⊗B Vq.
In addition, since wq is finite-dimensional, there cannot be words in Vq of infinite length.
Thus, there exists N > 2 such that

V ⊗BNq ⊂ I ⊂ Vq ⊗B Vq,

so that I is admissible.
We can therefore interpret Vq as the quiver of wq. We see that the vertices are given

by the simples of wq and the set of arrows of the quiver corresponds to Vq.

Example 3.4.1. To illustrate that section, we give the quiver of wq for q = 1, 2, 3. We
denote arrows of degree 1 with a decorated tail. From the proof of Lemma 3.3.11, we
know the number of new arrows starting with ξ or x:

|ξq| = 2q−1

|ξ1| = 1
|ξ2| = 2
|ξ3| = 4

|xq| = 2q − 2q + 1
|x1| = 1
|x2| = 1
|x3| = 3

1. The quiver of w1 = d is given in Figure 3.2.

21

x

ξ

Figure 3.2: Quiver of w1
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21

34

α

a

γ

c

βbd

Figure 3.3: Quiver of w2

2. The quiver of w2 is given in Figure 3.3.

The two copies of w1 have been coloured in blue. The label of the arrows correspond
to the following elements of V2:

a = e1 ⊗ ξ
α = e1 ⊗ x
b = ξ ⊗ (e2 ⊗ e∗1)
β = x⊗ (e2 ⊗ e1)
c = e2 ⊗ ξ
γ = e2 ⊗ x
d = ξ ⊗ (e1 ⊗ e∗2).

3. The quiver of w3 is given in Figure 3.4.

1

2

3

4 5

6

7

8

α1 a1

β1 b1

γ1 c1

d1

α2a2

β2b2

γ2c2

d2

λ

l

µ

m

ν

n

o

Figure 3.4: Quiver of w3

The two copies of w2 have been coloured in blue. The label of the arrows correspond
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3.4. The quiver of wq

to the following elements of V3:

ai = ei ⊗ e1 ⊗ ξ
αi = ei ⊗ e1 ⊗ x
bi = ei ⊗ ξ ⊗ (e2 ⊗ e∗1)
βi = ei ⊗ x⊗ (e2 ⊗ e1)
ci = ei ⊗ e2 ⊗ ξ
γi = ei ⊗ e2 ⊗ x
di = ei ⊗ ξ ⊗ (e1 ⊗ e∗2)
l = ξ ⊗ (e2 ⊗ e∗1)⊗ (e2 ⊗ e∗1)
λ = x⊗ (e2 ⊗ e1)⊗ (e2 ⊗ e1)
m = ξ ⊗ (e2 ⊗ e∗1)⊗ (e1 ⊗ e∗2)
µ = x⊗ (ξ ⊗ e1)⊗ e2

ν = x⊗ (e2 ⊗ ξ)⊗ e1

n = ξ ⊗ (e1 ⊗ e∗2)⊗ (e2 ⊗ e∗1)
o = ξ ⊗ (e1 ⊗ e∗2)⊗ (e1 ⊗ e∗2)

where i ∈ {1, 2}.
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Chapter 4

Quiver of wq for p > 2

4.1 Introduction

We consider the basis elements of wq and would like to find the set Vq of algebra generators
of wq. Those basis elements come under the form

v1 ⊗ . . .⊗ vq.

We know from [BLM13, Lemma 11] that these elements come in three types, namely
1q, 1h 3q−h or 1h 2 3q−h−1. In the following section, we define the notion of irreducibility
for an element of HTd(u) and we prove that type 3 elements are irreducible. That means
in particular that the q-tensor products we are interested in can only be split in the type
1 or type 2 part of the tensor product. Therefore we need to study tensor products of
type 1q−ε 2ε in more detail.

Due to the chaining rule, if v1 is an idempotent of d, then v2 is an element of d and
hence

v2 ⊗ . . .⊗ vq
is a basis element of wq−1. That means in particular that Vq contains p copies of Vq−1,
namely

ei ⊗ Vq−1 ⊂ Vq
for all 1 ≤ i ≤ p.

So by induction, we just need to determine the tensor products such that v1 is not an
idempotent, i.e.

v1 = esx
n1ξε1es+n1+ε1 ,

with 1 ≤ s ≤ p, 1 ≤ n1 + ε1 ≤ p− s and ε1 ∈ {0, 1}.

4.2 Irreducibility

In this section, we define what we mean for a monomial basis element of an algebra to be
irreducible. We then provide all the irreducible monomial basis elements of HTd(u)≤1.

Definition 4.2.1. A monomial basis element of an algebra A is said to be irreducible if
it cannot be written as a non-trivial product. It is otherwise called reducible.

By non-trivial product we mean a product a ·a′ where neither a nor a′ are idempotents
of A.

Remark 4.2.2. The irreducible monomial basis elements of an algebra are precisely a
minimal set of generators for that algebra.



4.2. Irreducibility

Definition 4.2.3. Let B ⊆ A be a subspace of an algebra A. We say that a monomial
basis element is irreducible in B if it cannot be written as a non-trivial product of elements
in B.

In the rest of the section, we take A = HTd(u) and B = HTd(u)≤1.

Lemma 4.2.4. The elements of HTd(u)≤1 of type 3 are irreducible.

Proof. According to Table 2.2, we can write a type 3 element as a product of the form
1 · 3 or 3 · 1. However, the conditions on the type 1 element involved show that it must
be an idempotent. Therefore, there aren’t any non-trivial products yielding a type 3
element.

Let us now determine the irreducible elements of types 1 and 2, if they exist. Let us
consider type 2 elements first. Note that for any element of that type, the i-degree is less
or equal to −1 (i = −2a+ 1 with a ≥ 0). Let

v := (s,−2a− 1, 1, 0, a, a+ 1, p+ 1− s)

with 1 ≤ s ≤ p − 2 be a type 2 element. Assume that its i-degree is less than −1, i.e.
a ≥ 1. Then we can write

v = (s,−2a, 0, 0, a, a, s) · (s,−1, 1, 0, 0, 1, p+ 1− s),

and the element (s,−2a, 0, 0, a, a, s) a valid type 1 element of HTd(u)≤1 which is not an
idempotent since a ≥ 1, so that v is not irreducible. Therefore, we know that if v is
irreducible, then a = 0 and its i-degree is −1. Let us then assume a = 0. From Table 2.2,
we see that a type 2 element can be obtained as the products

(1 · 2)
(s1,−2a1, 0, 0, a1, a1, s1)

· (s2,−2a2 − 1, 1, 0, a2, a2 + 1, p+ 1− s2)
= (s2,−2(a1 + a2)− 1, 1, 0, (a1 + a2), (a1 + a2) + 1, p+ 1− s2)

with a1 ≥ 0 and a2 ≥ 0 so that a1 +a2 ≥ 0. Now, writing v in such a way is possible
if a1 = a2 = 0, and that decomposition is then trivial.

(2 · 1)
(s1,−2a1 − 1, 1, 0, a1, a1 + 1, p+ 1− s1)

· (s2,−2a2, 0, 0, a2, a2, s2)
= (s1,−2(a1 + a2)− 1, 1, 0, (a1 + a2), (a1 + a2) + 1, p+ 1− s1)

with a1 ≥ 0 and a2 ≥ 0. Similar to the previous case, we see a1 = a2 = 0, and the
decomposition is trivial.

(1 · 3)
(s1,−2a1, 0, 0, a1, a1, s1)

· (s2, 1, 1, 0,−1, 0, p+ 1− s2)
= (s2,−2a1 + 1, 1, 0, a1 − 1, a1, p+ 1− s2)

exists if a1 ≥ 1. Writing v in such a way means we must choose a1 = 1, and this
product is non-trivial. Hence v is not irreducible.

(3 · 1)
(s1, 1, 1, 0,−1, 0, p+ 1− s1)

· (s2,−2a2, 0, 0, a2, a2, s2)
= (s1,−2a2 + 1, 1, 0, a2 − 1, a2, p+ 1− s1)

exists if a2 ≥ 1. Writing v in such a way means we must choose a2 = 1, and this
product is non-trivial. Hence v is not irreducible.
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Remark 4.2.5. Since type 3 elements correspond to the H(u) part of homology, we
see from these considerations that type 2 elements of i-degree −1 are irreducible in
HTd(u−1), but not in HTd(u)≤1.

Let us consider type 1 elements now. Let

v := (s,−a− b,−p(a− b)− (t− s) + 2u, (p− 1)(a− b) + (t− s)− u, a, b, t)

be a type 1 element. Then we have the following non-trivial decomposition

(s,−2, 0, 0, 1, 1, s)
· (s,−a− b+ 2,−p(a− b)− (t− s) + 2u, (p− 1)(a− b) + (t− s)− u, a− 1, b− 1, t)

= (s,−a− b,−p(a− b)− (t− s) + 2u, (p− 1)(a− b) + (t− s)− u, a, b, t)

into two type 1 elements, unless a = b = 0, or a = 1 and b = 0, or a = b = 1 and s = t.
Let us analyse those three cases.

1. If a = b = 0, then v is of the form

(s, 0,−(t− s) + 2u, (t− s)− u, 0, 0, t),

and by definition we must have t− s ≥ 0, and if t− s = 0, then u must be equal to
0. We can write it as the non-trivial product

(s, 0,−1 + 2u, 1− u, 0, 0, s+ 1)
· (s+ 1, 0,−(t− (s+ 1)), (t− (s+ 1)), 0, 0, t)

= (s, 0,−(t− s) + 2u, (t− s)− u, 0, 0, t)

unless t−s ≤ 1. Therefore, v = (s, 0,−1+2u, 1−u, 0, 0, s+1) and v = (s, 0, 0, 0, 0, 0, s)
are candidates for irreducibility.

2. If a = 1 and b = 0, then v is of the form

(s,−1,−p− (t− s) + 2u, (p− 1) + (t− s)− u, 1, 0, t),

and, assuming u ∈ {0, 1}, we can write it as the non-trivial product

(s, 0,−1 + 2u, 1− u, 0, 0, s+ 1)
· (s+ 1,−1,−p− (t− (s+ 1)), (p− 1) + (t− (s+ 1)), 1, 0, t)

= (s,−1,−p− (t− s) + 2u, (p− 1) + (t− s)− u, 1, 0, t)

unless s = p. Similarly, assuming u ∈ {0, 1}, we can write it as the non-trivial
product

(s,−1,−p− ((t− 1)− s), (p− 1) + ((t− 1)− s), 1, 0, t− 1)
· (t− 1, 0,−1 + 2u, 1− u, 0, 0, t)

= (s,−1,−p− (t− s) + 2u, (p− 1) + (t− s)− u, 1, 0, t)

unless t = 1. Hence, v = (p,−1,−1, 0, 1, 0, 1) is a candidate for irreducibility. In
addition, if u = 2, so that v is necessarily of the form

(p− 1,−1, 1, 0, 1, 0, 2),

we see that we can write it as the non-trivial product

(p− 1, 0, 1, 0, 0, 0, p)
· (p,−1, 0, 0, 1, 0, 2)

= (p− 1,−1, 1, 0, 1, 0, 2)

which means it is not irreducible.
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3. If a = b = 1 and s = t, then v is of the form

(s,−2, 0, 0, 1, 1, s),

and it is another candidate for irreducibility.

So far, the possible irreducible elements of type 1 are

1. (s, 0, 0, 0, 0, 0, s), for 1 ≤ s ≤ p;

2. (s, 0, 1, 0, 0, 0, s+ 1), for 1 ≤ s ≤ p− 1;

3. (s, 0,−1, 1, 0, 0, s+ 1), for 1 ≤ s ≤ p− 1;

4. (p,−1,−1, 0, 1, 0, 1);

5. (s,−2, 0, 0, 1, 1, s), for 1 ≤ s ≤ p;

since these are the only ones that don’t arise as products of type 1 ·1. Now we can analyse
which ones of those can be obtained by multiplying different types. According to Table
2.2, we see that type 1 elements can be obtained in five ways. We cover the four remaining
ones now.

Let us write down a product 1 · 2 of type 1.

(s1,−a1 − b1,−p(a1 − b1)− (1− s1) + 2u1, (p− 1)(a1 − b1) + (1− s1)− u1, a1, b1, 1)
· (1,−2a2 − 1, 1, 0, a2, a2 + 1, p)

= (s1,−(a1 + a2)− (b1 + a2 + 1),−p(a1 − b1)− (1− s1) + 2u1 + 1,
(p− 1)(a1 − b1) + (1− s1)− u1, a1 + a2, b1 + a2 + 1, p)

with a1 − b1 ≥ 1. Since the b-degree is b1 + a2 + 1 ≥ 1, only the last candidate could fit.
But since t = p, only one element could be decomposed like so, namely (p,−2, 0, 0, 1, 1, p).
Indeed, we have

(p,−1,−1, 0, 1, 0, 1)
· (1,−1, 1, 0, 0, 1, p)

= (p,−2, 0, 0, 1, 1, p).

Let us write down a product 2 · 1 of type 1.

(1,−2a1 − 1, 1, 0, a1, a1 + 1, p)
· (p,−a2 − b2,−p(a2 − b2)− (t2 − p) + 2u2, (p− 1)(a2 − b2) + (t2 − p)− u2, a2, b2, t2)

= (1,−(a1 + a2)− (a1 + b2 + 1),−p(a2 − b2)− (t2 − p) + 2u2 + 1,
(p− 1)(a2 − b2) + (t2 − p)− u2, a1 + a2, a1 + b2 + 1, t2)

with a2 − b2 ≥ 1. Since the b-degree is a1 + b2 + 1 ≥ 1, only the last candidate could fit.
But since s = 1, only one element could be decomposed like so, namely (1,−2, 0, 0, 1, 1, 1).
Indeed, we have

(1,−1, 1, 0, 0, 1, p)
· (p,−1,−1, 0, 1, 0, 1)

= (1,−2, 0, 0, 1, 1, 1).

Let us write down a product 1 · 3 of type 1.

(s1,−a1 − b1,−p(a1 − b1)− (1− s1) + 2u1, (p− 1)(a1 − b1) + (1− s1)− u1, a1, b1, 1)
· (1, 1, 1, 0,−1, 0, p)

= (s1,−a1 − b1 + 1,−p(a1 − b1)− (1− s1) + 2u1 + 1,
(p− 1)(a1 − b1) + (1− s1)− u1, a1 − 1, b1, p)
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with a1 − b1 ≥ 1. Since t = p, the following elements could be decomposed like so:
(p, 0, 0, 0, 0, 0, p), (p−1, 0, 1, 0, 0, 0, p), (p−1, 0,−1, 1, 0, 0, p) and (p,−2, 0, 0, 1, 1, p). Indeed,
we have

(p,−1,−1, 0, 1, 0, 1)
· (1, 1, 1, 0,−1, 0, p)

= (p, 0, 0, 0, 0, 0, p);

(p− 1,−1, 0, 0, 1, 0, 1)
· (1, 1, 1, 0,−1, 0, p)

= (p− 1, 0,−1, 0, 0, 0, p);

(p− 1,−1,−2, 1, 1, 0, 1)
· (1, 1, 1, 0,−1, 0, p)

= (p− 1, 0,−1, 1, 0, 0, p);

(p,−3,−1, 0, 2, 1, 1)
· (1, 1, 1, 0,−1, 0, p)

= (p,−2, 0, 0, 1, 1, p).

Let us write down a product 3 · 1 of type 1.

(1, 1, 1, 0,−1, 0, p)
· (p,−a2 − b2,−p(a2 − b2)− (t2 − p) + 2u2, (p− 1)(a2 − b2) + (t2 − p)− u2, a2, b2, t2)

= (1,−a2 − b2 + 1,−p(a2 − b2)− (t2 − p) + 2u2 + 1,
(p− 1)(a2 − b2) + (t2 − p)− u2, a2 − 1, b2, t2)

with a2 − b2 ≥ 1. Since s = 1, the following elements could be decomposed like so:
(1, 0, 0, 0, 0, 0, 1), (1, 0, 1, 0, 0, 0, 2), (1, 0,−1, 1, 0, 0, 2) and (1,−2, 0, 0, 1, 1, 1). Indeed, we
have

(1, 1, 1, 0,−1, 0, p)
· (p,−1,−1, 0, 1, 0, 1)

= (1, 0, 0, 0, 0, 0, 1);

(1, 1, 1, 0,−1, 0, p)
· (p,−1, 0, 0, 1, 0, 2)

= (1, 0, 1, 0, 0, 0, 2);

(1, 1, 1, 0,−1, 0, p)
· (p,−1,−2, 1, 1, 0, 2)

= (1, 0,−1, 1, 0, 0, 2);

(1, 1, 1, 0,−1, 0, p)
· (p,−3,−1, 0, 2, 1, 1)

= (1,−2, 0, 0, 1, 1, 1).

Remark 4.2.6. As for type 2 elements, we see that some elements of type 1 are irreducible
in HTd(u−1) but not in HTd(u)≤1.

We have proved the following:

Proposition 4.2.7. Let v be an irreducible monomial basis element for HTd(u)≤1. Then
v is one of the following elements:

Type 1 – (s, 0, 0, 0, 0, 0, s) = es, for 2 ≤ s ≤ p− 1;

– (s, 0, 1, 0, 0, 0, s+ 1) = esξes+1, for 2 ≤ s ≤ p− 2;

– (s, 0,−1, 1, 0, 0, s+ 1) = esxes+1, for 2 ≤ s ≤ p− 2;

– (p,−1,−1, 0, 1, 0, 1) = ep ⊗ e1;
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– (s,−2, 0, 0, 1, 1, s) = eswes, for 2 ≤ s ≤ p− 1;

Type 3 – (s, 1, 1, 0,−1, 0, p+ 1− s) = es ⊗ e∗p+1−s, for 1 ≤ s ≤ p.

and

Proposition 4.2.8. Let v be an irreducible monomial basis element for HTd(u−1). Then
v is one of the following elements:

Type 1 – (s, 0, 0, 0, 0, 0, s) = es, for 1 ≤ s ≤ p;

– (s, 0, 1, 0, 0, 0, s+ 1) = esξes+1, for 1 ≤ s ≤ p− 1;

– (s, 0,−1, 1, 0, 0, s+ 1) = esxes+1, for 1 ≤ s ≤ p− 1;

– (p,−1,−1, 0, 1, 0, 1) = ep ⊗ e1;

– (s,−2, 0, 0, 1, 1, s) = eswes, for 2 ≤ s ≤ p− 1;

Type 2 – (s,−1, 1, 0, 0, 1, p+ 1− s) = esξ ⊗ ξep+1−s, for 1 ≤ s ≤ p− 2.

The following Corollary is merely an observation.

Corollary 4.2.9. Let v be an irreducible monomial of HTd(u)≤1. Then its i-degree is in
the set {−2,−1, 0, 1}.

Remark 4.2.10. Comparing the two previous propositions, we see that the following ele-
ments are irreducible in HTd(u−1) but not in HTd(u)≤1:

(1, 0, 0, 0, 0, 0, 1) = e1

(p, 0, 0, 0, 0, 0, p) = ep

(1, 0, 1, 0, 0, 0, 2) = e1ξe2

(p− 1, 0, 1, 0, 0, 0, p) = ep−1ξep

(1, 0,−1, 1, 0, 0, 2) = e1xe2

(p− 1, 0,−1, 1, 0, 0, p) = ep−1xep

In addition, the elements
(1,−2, 0, 0, 1, 1, 1) = e1we1

(p,−2, 0, 0, 1, 1, p) = epwep

are not irreducible in either HTd(u−1) or HTd(u)≤1.

4.3 Study of the j-degree for type 1 elements

Because of the chaining rule making the j-degree of one element correspond to the i-degree
of the next element in the tensor product, it is necessary to understand what values the
j-degree of a given element of type 1 can be. Note that type 2 and type 3 elements have
j-degree 1, hence we just need to study the j-degree of type 1 elements.

The j-degree of a type 1 element is of the form −p(a− b)− (t− s) + 2u, so let us solve
the following equation for some parameter N ,

−p(a− b)− (t− s) + 2u = N.

Since 1 ≤ s ≤ p, 1 ≤ t ≤ p, we have that

1− p ≤ −(t− s) ≤ p− 1,
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and so
1− p−N + 2u ≤ −(t− s)−N + 2u ≤ p− 1−N + 2u,

i.e.
1− p−N + 2u ≤ p(a− b) ≤ p− 1−N + 2u,

which we can further write

1−N + 2u

p
− 1 ≤ a− b ≤ 1 +

−1−N + 2u

p
.

Since a ≥ b ≥ 0, we have a − b ≥ 0 and is an integer; we denote it by n. We want to
determine the interval

[[
1−N + 2u

p
− 1 ; 1 +

−1−N + 2u

p
]] ∩ N≥0

and since it has length 1+
−1−N + 2u

p
−
(

1−N + 2u

p
− 1

)
= 2− 2

p
, it contains at most

2 integers, namely ⌈
1−N + 2u

p
− 1

⌉
and

⌊
1 +
−1−N + 2u

p

⌋
.

Going back to our original equation, we see:

t = s− pn+ 2u−N, (4.1)

where n ∈
{⌈

1−N + 2u

p
− 1

⌉
,

⌊
1 +
−1−N + 2u

p

⌋}
∩ N≥0.

Lemma 4.3.1. The monomial basis elements of HTd(u)≤1 of j-degree 1 are

(s1,−2a,−1, 1, b, b, s1 + 1) = es1w
bξes1+1

(p− 1,−2b− 1, 1, 0, b+ 1, b, 2) = ep−1ξ ⊗ (ξ ⊗ ξ)⊗b ⊗ ξe2

(s2,−2a− 1, 1, 0, a, a+ 1, p+ 1− s2) = es2(ξ ⊗ ξ)⊗a+1ep+1−s2
(s3, 1, 1, 0,−1, 0, p+ 1− s3) = es3 ⊗ e∗p+1−s3

with 1 ≤ s1 ≤ p− 1, 1 ≤ s2 ≤ p− 2, 1 ≤ s3 ≤ p− 1, a, b ≥ 0.

Proof. As said in the introduction, we know that type 2 and type 3 elements have j-degree
1, and they correspond to the last two possibilities in the list above.

Let us now set N = 1 in equation (4.1). We see that

n ∈
{⌈

2u

p
− 1

⌉
,

⌊
1 +
−2 + 2u

p

⌋}
∩ N≥0,

and

0 >
2u

p
− 1,

or equivalently p > 2u, which is always true since p ≥ 3 > 2 ≥ 2u;

2u

p
− 1 > −1

is equivalent to u > 0. Hence, if u = 1,

⌈
2u

p
− 1

⌉
= 0, and if u = 0,

⌈
2u

p
− 1

⌉
= d−1e =

−1.
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In addition, we have

1 +
−2 + 2u

p
> 0

if and only if we have
2u > −p+ 2,

which is always true since p ≥ 3, −p+ 2 ≤ −1 < 0 ≤ 2u, and

1 > 1 +
−2 + 2u

p

is equivalent to
0 > −2 + 2u

and this is if and only if
2 > 2u

which means that u = 0. Hence, if u = 0,

⌊
1 +
−2 + 2u

p

⌋
= 0, and if u = 1,

⌊
1 +
−2 + 2u

p

⌋
=

b1c = 1.
Therefore, we have n ∈ {0, 1}, and n = 1 only if u = 1.
The corresponding elements of type 1 can be written

(s,−2b− n, 1, n(p− 1) + (−pn+ 2u− 1)− u, b+ n, b, s− pn+ 2u− 1),

where u ∈ {0, 1} and n ∈ {0, 1}. Re-arranging the k-degree, we have

(s,−2b− n, 1,−n− 1 + u, b+ n, b, s− pn+ 2u− 1).

If n = 0, the element becomes

(s,−2b, 1,−1 + u, b, b, s+ 2u− 1).

• If u = 0, we have
(s,−2b, 1,−1, b, b, s− 1),

which is not a valid element since by definition, if the a- and b-degree coincide, then
then the s- and t-degree must satisfy t− s ≥ 0.

• If u = 1, we have
(s,−2b, 1, 0, b, b, s+ 1).

If n = 1, in particular u = 1, the element becomes

(s,−2b− 1, 1,−1, b+ 1, b, s− p+ 1),

but since s− p+ 1− s = 1− p < 2− p, this is not a valid 1 element.
Finally, we need to recall that there is an additional type 1 element of j-degree 1, for

which the parameter u is equal to 2, and s = p − 1, t = 2; this is due to the fact that
ep ⊗ (ξ ⊗ ξ)⊗b ⊗ e1 generates more than what is announced in [MT13] (e.g. see Corollary
39). That element is

(p− 1,−2b− 1, 1, 0, b+ 1, b, 2).
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Lemma 4.3.2. The monomial basis elements of HTd(u)≤1 of j-degree 0 are

(s,−2a, 0, u, a, a, s+ 2u) = esw
a(xξ)ues+2u

(p− 1,−2a− 1, 0, 0, a+ 1, a, 1) = ep−1ξep ⊗ (ξ ⊗ ξ)⊗a ⊗ e1

(p,−2a− 1, 0, 0, a+ 1, a, 2) = ep ⊗ (ξ ⊗ ξ)⊗a ⊗ e1ξe2

with u ∈ {0, 1}, 1 ≤ s ≤ p− 2u, a ≥ 0.

Proof. Let us set N = 0 in equation (4.1). We see that{⌈
1 + 2u

p
− 1

⌉
,

⌊
1 +
−1 + 2u

p

⌋}
∩ N≥0 = {0, u}.

The corresponding elements of type 1 can be written

(s,−2a− n, 0, n(p− 1) + 2u− pn− u, a+ n, a, s+ 2u− pn),

where u ∈ {0, 1}, and n ∈ {0, u}. Re-arranging the k-degree, we have

(s,−2a− n, 0, u− n, a+ n, a, s+ 2u− pn).

If n = 0, the element becomes

(s,−2a, 0, u, a, a, s+ 2u).

If n = 1 (so necessarily u = 1), we have

(s,−2a− 1, 0, 0, a+ 1, a, s+ 2− p),

and since 1 ≤ s + 2 − p ≤ p, we see that s ∈ {p − 1, p}, which gives the other two
possibilities.

Lemma 4.3.3. The monomial basis elements of HTd(u)≤1 of j-degree -1 are

(s1,−2a,−1, 1, a, a, s1 + 1) = es1w
axes1+1

(s2,−2a,−1, 2, a, a, s2 + 3) = es2w
ax2ξes2+3

(p,−2a− 1,−1, 0, a+ 1, a, 1) = ep ⊗ (ξ ⊗ ξ)⊗a ⊗ e1

(p,−2a− 1,−1, 1, a+ 1, a, 3) = ep ⊗ (ξ ⊗ ξ)⊗a ⊗ xξe3

(p− 1,−2a− 1,−1, 1, a+ 1, a, 2) = ep−1ξ ⊗ (ξ ⊗ ξ)⊗a ⊗ xe2

(∼= ep−1x⊗ (ξ ⊗ ξ)⊗a ⊗ ξe2)

(p− 2,−2a− 1,−1, 1, a+ 1, a, 1) = ep−2xξ ⊗ (ξ ⊗ ξ)⊗a ⊗ e1

with 1 ≤ s1 ≤ p− 1, 1 ≤ s2 ≤ p− 3, a ≥ 0.

Proof. Let us set N = −1 in equation (4.1). We see that

n ∈
{⌈

2 + 2u

p
− 1

⌉
,

⌊
1 +

2u

p

⌋}
∩ N≥0,

and

1 >
2 + 2u

p
− 1

which is equivalent to
p− 1 > u.

That is always true since p ≥ 3;
2 + 2u

p
− 1 > 0
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is equivalent to
2u > p− 2

which means in particular that u = 1 and p = 3. Furthermore, we have

2 + 2u

p
− 1 > −1

or equivalently
2u > −2,

which is always true since u ∈ {0, 1}.

That means that

⌈
2 + 2u

p
− 1

⌉
= 0 for all p ≥ 3 and u ∈ {0, 1} unless p = 3 and u = 1,

in which case

⌈
2 + 2u

p
− 1

⌉
= 1.

Also,

2 > 1 +
2u

p
≥ 1

is equivalent to
p > 2u ≥ 0

and this is true for all p ≥ 3 and u ∈ {0, 1}, hence

⌊
1 +

2u

p

⌋
= 1 for all p ≥ 3 and

u ∈ {0, 1}.
Therefore, we have

n ∈ {0, 1}

for all p ≥ 3 and u ∈ {0, 1}. In addition, n 6= 0 if p = 3 and u = 1.
The corresponding elements of type 1 can be written

(s,−2a− n,−1, n(p− 1) + 2u− pn+ 1− u, a+ n, a, s+ 2u− pn+ 1),

where u ∈ {0, 1}, and n ∈ {0, 1}. Re-arranging the k-degree, we have

(s,−2a− n,−1, 1 + u− n, a+ n, a, s+ 2u− pn+ 1).

If n = 0, the element becomes

(s,−2a,−1, 1 + u, a, a, s+ 2u+ 1).

• If u = 0, we have
(s,−2a,−1, 1, a, a, s+ 1).

• If u = 1, we have
(s,−2a,−1, 2, a, a, s+ 3).

If n = 1, we have

(s,−2a− 1,−1, u, a+ 1, a, s+ 2u− p+ 1).

• If u = 0, we have
(s,−2a− 1,−1, 0, a+ 1, a, s− p+ 1),

and since 1 ≤ s− p+ 1 ≤ p, we see that s = p so that the element is

(p,−2a− 1,−1, 0, a+ 1, a, 1);
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• If u = 1, we have
(s,−2a− 1,−1, 1, a+ 1, a, s− p+ 3),

and since 1 ≤ s− p+ 3 ≤ p, we see that s ∈ {p, p− 1, p− 2} so that this case gives
the three elements

(p,−2a− 1,−1, 1, a+ 1, a, 3);
(p− 1,−2a− 1,−1, 1, a+ 1, a, 2);
(p− 2,−2a− 1,−1, 1, a+ 1, a, 1).

Remark 4.3.4. 1. Comparing the elements in Lemma 4.3.2 and those in Lemma 4.3.3,
we see that the elements of the second lemma are obtained from the elements of the
first lemma by multiplication with x = (s, 0,−1, 1, 0, 0, s+ 1);

2. We see that the conditions in the previous lemma do not make sense for all values of
p: some elements do not exist if p = 3, and this corresponds to the fact that n 6= 0
if p = 3 and u = 1 in the proof.

Lemma 4.3.5. The monomial basis elements of HTd(u)≤1 of j-degree -2 are

(s1,−2a,−2, 2, a, a, s1 + 2) = es1w
ax2es1+2

(s2,−2a,−2, 3, a, a, s2 + 4) = es2w
ax3ξes2+4

(p,−2a− 1,−2, 1, a+ 1, a, 2) = ep ⊗ (ξ ⊗ ξ)⊗a ⊗ xe2

(p− 1,−2a− 1,−2, 1, a+ 1, a, 1) = ep−1x⊗ (ξ ⊗ ξ)⊗a ⊗ e1

(p,−2a− 1,−2, 2, a+ 1, a, 4) = ep ⊗ (ξ ⊗ ξ)⊗a ⊗ x2ξe4

(p− 1,−2a− 1,−2, 2, a+ 1, a, 3) = ep−1ξ ⊗ (ξ ⊗ ξ)⊗a ⊗ x2e3

(∼= ep−1x⊗ (ξ ⊗ ξ)⊗a ⊗ xξe3)

(p− 2,−2a− 1,−2, 2, a+ 1, a, 2) = ep−2xξ ⊗ (ξ ⊗ ξ)⊗a ⊗ xe2

(∼= ep−2x
2 ⊗ (ξ ⊗ ξ)⊗a ⊗ ξe2)

(p− 3,−2a− 1,−2, 2, a+ 1, a, 1) = ep−3x
2ξ ⊗ (ξ ⊗ ξ)⊗a ⊗ e1

(3,−2a− 2,−2, 1, a+ 2, a, 1) = e3 ⊗ xξ ⊗ (ξ ⊗ ξ)⊗a ⊗ e1 ( if p = 3)

with 1 ≤ s1 ≤ p− 2, 1 ≤ s2 ≤ p− 4, a ≥ 0.

Proof. Let us set N = −2 in equation (4.1). We see that

n ∈
{⌈

3 + 2u

p
− 1

⌉
,

⌊
1 +

1 + 2u

p

⌋}
∩ N≥0,

and

1 >
3 + 2u

p
− 1

which is equivalent to
2p− 3 > 2u,

and that is always true since p ≥ 3;

3 + 2u

p
− 1 > 0

or equivalently
p < 3 + 2u

which means in particular that p = 3 and u = 1. In addition, we have

3 + 2u

p
− 1 > −1
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which may be equivalently written
2u > −3.

That is always true since u ∈ {0, 1}.

That means that

⌈
3 + 2u

p
− 1

⌉
= 0 for all p ≥ 3 and u ∈ {0, 1} unless p = 3 and u = 1,

in which case

⌈
3 + 2u

p
− 1

⌉
= 1.

Also,

2 > 1 +
1 + 2u

p
≥ 1

is equivalent to
p > 1 + 2u ≥ 0

and this is true for all p ≥ 5 and u ∈ {0, 1}, and for p = 3 and u = 0, hence in that case,⌊
1 +

1 + 2u

p

⌋
= 1; if p = 3 and u = 1, we have⌊

1 +
1 + 2u

p

⌋
=

⌊
1 +

3

3

⌋
= 2.

Therefore, we have
n ∈ {0, 1}

for all p ≥ 5 and u ∈ {0, 1}. In addition,

n ∈ {0, 1}

if p = 3 and u = 0, and
n ∈ {1, 2}

if p = 3 and u = 1.
The corresponding elements of type 1 can be written

(s,−2a− n,−2, n(p− 1) + 2u− pn+ 2− u, a+ n, a, s+ 2u− pn+ 2),

where u ∈ {0, 1}, and n ∈ {0, 1, 2}. Re-arranging the k-degree, we have

(s,−2a− n,−2, 2 + u− n, a+ n, a, s+ 2u− pn+ 2).

If n = 0, the element becomes

(s,−2a,−2, 2 + u, a, a, s+ 2u+ 2).

• If u = 0, we have
(s,−2a,−2, 2, a, a, s+ 2).

• If u = 1, we have
(s,−2a,−2, 3, a, a, s+ 4).

If n = 1, we have

(s,−2a− 1,−2, 1 + u, a+ 1, a, s+ 2u− p+ 2).

• If u = 0, we have
(s,−2a− 1,−2, 1, a+ 1, a, s− p+ 2),

and since 1 ≤ s − p + 2 ≤ p, we see that s ∈ {p, p − 1} so that the corresponding
elements are

(p,−2a− 1,−2, 1, a+ 1, a, 2);
(p− 1,−2a− 1,−2, 1, a+ 1, a, 1).
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• If u = 1, we have
(s,−2a− 1,−2, 2, a+ 1, a, s− p+ 4),

and since 1 ≤ s− p+ 4 ≤ p, we see that s ∈ {p, p− 1, p− 2, p− 3} so that this case
gives the four elements

(p,−2a− 1,−2, 2, a+ 1, a, 4);
(p− 1,−2a− 1,−2, 2, a+ 1, a, 3);
(p− 2,−2a− 1,−2, 2, a+ 1, a, 2);
(p− 3,−2a− 1,−2, 2, a+ 1, a, 1).

If n = 2 (for p = 3 and u = 1), we have the element

(s,−2a− 2,−2, 1, a+ 2, a, s− 2),

which implies s = 3, namely

(3,−2a− 2,−2, 1, a+ 2, a, 1).

4.4 Decomposition of chained elements of HTd(u)≤1

In this section, we will exhibit a few key decompositions of chained elements of HTd(u)≤1.
They will enable us to find a criterion to decide when a chained element is reducible and
it will be critical to describe the irreducible monomials of wq.

4.4.1 Decompositions using e1 ⊗ . . .⊗ el−1 ⊗ xξ ⊗ el+1 ⊗ . . .⊗ eq
Proposition 4.4.1. Let v1⊗ . . .⊗ vq be an element of wq. Let 2 ≤ l ≤ q− 1 be such that
vl is a type 1 element such that ul = 1 and such that its k-degree is greater or equal to 1.
If sl ≤ p− 2 or tl ≥ 3, then v1 ⊗ . . .⊗ vq is reducible.

Proof. Note that esxξes+2 corresponds to (s, 0, 0, 1, 0, 0, s + 2). We have the following
decompositions

v1 ⊗ . . .⊗ vl−1 ⊗ vl ⊗ vl+1 ⊗ . . .⊗ vq

= es1 ⊗ . . .⊗ esl−1
⊗ eslxξesl+2 ⊗ esl+1

⊗ . . .⊗ esq
· v1 ⊗ . . .⊗ vl−1⊗

(sl + 2,−al − bl,−p(al − bl)− (tl − sl) + 2ul,
(p− 1)(al − bl) + (tl − sl)− ul − 1, al, bl, tl)

⊗vl+1 ⊗ . . .⊗ vq

= v1 ⊗ . . .⊗ vl−1⊗
(sl,−al − bl,−p(al − bl)− (tl − sl) + 2ul,

(p− 1)(al − bl) + (tl − sl)− ul − 1, al, bl, tl − 2)
⊗vl+1 ⊗ . . .⊗ vq

· et1 ⊗ . . .⊗ etl−1
⊗ etl−2xξetl ⊗ etl+1

⊗ . . .⊗ etq ,
if and only if the elements

(sl + 2,−al − bl,−p(al − bl)− (tl − sl) + 2ul, (p− 1)(al − bl) + (tl − sl)− ul − 1, al, bl, tl),

resp.

(sl,−al − bl,−p(al − bl)− (tl − sl) + 2ul, (p− 1)(al − bl) + (tl − sl)− ul − 1, al, bl, tl − 2),

are valid type 1 elements. The latter is true if and only if
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1. (p−1)(al−bl)+(tl−sl)−ul−1 ≥ 0, which is equivalent to (p−1)(al−bl)+(tl−sl)−ul ≥
1, and (p− 1)(al − bl) + (tl − sl)− ul is the k-degree of vl which is greater of equal
to 1 by assumption;

2. and{
−p(al − bl)− (tl − sl) + 2ul = −p(al − bl)− (tl − (sl + 2)) + 2u′l

(p− 1)(al − bl) + (tl − sl)− ul − 1 = (p− 1)(al − bl) + (tl − (sl + 2))− u′l
resp.{

−p(al − bl)− (tl − sl) + 2ul = −p(al − bl)− ((tl − 2)− sl) + 2u′l
(p− 1)(al − bl) + (tl − sl)− ul − 1 = (p− 1)(al − bl) + ((tl − 2)− sl)− u′l

and both are equivalent to {
2ul = 2 + 2u′l

−ul − 1 = −2− u′l,

and, simplifying further, to {
ul = 1
u′l = 0;

3. and
sl + 2 ≤ p

which is if and only if
sl ≤ p− 2,

resp.
tl − 2 ≥ 1

which is equivalent to
tl ≥ 3.

Since l ≥ 2, v1 is left untouched and it is not an idempotent by assumption. Hence those
decompositions are non-trivial and v1 ⊗ . . .⊗ vq is reducible.

Proposition 4.4.2. Let v1⊗ . . .⊗ vq be an element of wq. Let v1 be such that u1 = 1 and
such that its k-degree is greater or equal to 2. Then v1 ⊗ . . .⊗ vq is reducible.

Proof. The proof uses the same decompositions as in the proof of the previous proposition.
We just need to show that these decompositions are non-trivial. Let us consider the factors

(s1 + 2, 0,−(t1 − s1) + 2u1, (t1 − s1)− u1 − 1, 0, 0, t1),

and
(s1, 0,−(t1 − s1) + 2u1, (t1 − s1)− u1 − 1, 0, 0, t1 − 2).

Since the k-degree of v1 is greater or equal to 2, i.e.

(t1 − s1)− u1 ≥ 2,

we see that the k-degree of the factors satisfies

(t1 − s1)− u1 − 1 ≥ 1 > 0,

hence they are not idempotents and the decompositions are non-trivial. Therefore, v1 ⊗
. . .⊗ vq is reducible.
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Remark 4.4.3. A consequence of these two propositions is that v1⊗ . . .⊗ vq is reducible if
we can factor xξ from any of its components vl, where 2 ≤ l ≤ q, and if we can factor xξ
from v1 where v1 has k-degree at least 2; hence we assume from here onwards that
it is not possible to factor xξ from vl, i.e. for all 2 ≤ l ≤ q, vl is of the form

(s,−a− b,−p(a− b)− (t− s), (p− 1)(a− b) + (t− s), a, b, t)
= xp−s ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ xt−1

(p− 1,−a− b,−p(a− b)− (t− p+ 1) + 2, (p− 1)(a− b) + (t− p+ 1)− 1, a, b, t)

= ξ ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ xt−1

(s,−a− b,−p(a− b)− (2− s) + 2, (p− 1)(a− b) + (2− s)− 1, a, b, 2)

= xp−s ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ ξ
(p,−a− b,−p(a− b)− (1− p) + 2, (p− 1)(a− b) + (1− p)− 1, a, b, 1)

= ep ⊗ xp−2ξ ⊗ (xp−1)⊗a−b−2 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

if a− b ≥ 2, or of the form

(s,−2b− 1,−p− (t− s), (p− 1) + (t− s), b+ 1, b, t)

= xp−s ⊗ (ξ ⊗ ξ)⊗b ⊗ xt−1

(p− 1,−2b− 1,−p− (t− p+ 1) + 2, (p− 1) + (t− p+ 1)− 1, b+ 1, b, t)

= ξ ⊗ (ξ ⊗ ξ)⊗b ⊗ xt−1

(s,−2b− 1,−p− (2− s) + 2, (p− 1) + (2− s)− 1, b+ 1, b, 2)

= xp−s ⊗ (ξ ⊗ ξ)⊗b ⊗ ξ

if a− b = 1, or of the form{
(s,−2a,−(t− s), (t− s), a, a, t) = eswx

t−set
(s,−2a, 1, 0, a, a, s+ 1) = eswξes+1

if a− b = 0, or of the form

(s,−2a− 1, 1, 0, a, a+ 1, p+ 1− s) = es(ξ ⊗ ξ)⊗aep+1−s

if a− b = −1, a ≥ 0, or of the form

(s, 1, 1, 0,−1, 0, p+ 1− s) = es ⊗ e∗p+1−s

if a− b = −1, with a = −1, b = 0.
In addition, v1 is of the form

(s, 0,−(t− s), t− s, 0, 0, t) = esx
t−set

(s, 0, 0, 1, 0, 0, s+ 2) = esxξes+2

(s, 0, 1, 0, 0, 0, s+ 1) = esξes+1

where t− s ≥ 0.

We can therefore rewrite Lemmas 4.3.2, 4.3.3 and 4.3.5 to only include elements which
do not yield these easy decompositions.

Lemma 4.4.4. The monomial basis elements of HTd(u)≤1 of j-degree 0 from which xξ
cannot be non-trivially factored are

(s1, 0, 0, 1, 0, 0, s1 + 2) = es1xξes1
(s2,−2a, 0, 0, a, a, s2) = es2w

aes2
(p− 1,−2a− 1, 0, 0, a+ 1, a, 1) = ep−1ξep ⊗ (ξ ⊗ ξ)⊗a ⊗ e1

(p,−2a− 1, 0, 0, a+ 1, a, 2) = ep ⊗ (ξ ⊗ ξ)⊗a ⊗ e1ξe2

with 1 ≤ s1 ≤ p− 2, 1 ≤ s2 ≤ p, a ≥ 0.
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Lemma 4.4.5. The monomial basis elements of HTd(u)≤1 of j-degree -1 from which xξ
cannot be non-trivially factored are

(s,−2a,−1, 1, a, a, s+ 1) = esw
axes+1

(p,−2a− 1,−1, 0, a+ 1, a, 1) = ep ⊗ (ξ ⊗ ξ)⊗a ⊗ e1

(p− 1,−2a− 1,−1, 1, a+ 1, a, 2) = ep−1ξ ⊗ (ξ ⊗ ξ)⊗a ⊗ xe2

(∼= ep−1x⊗ (ξ ⊗ ξ)⊗a ⊗ ξe2)

with 1 ≤ s ≤ p− 1, a ≥ 0.

Lemma 4.4.6. The monomial basis elements of HTd(u)≤1 of j-degree -2 from which xξ
cannot be non-trivially factored are

(s,−2a,−2, 2, a, a, s+ 2) = esw
ax2es+2

(p,−2a− 1,−2, 1, a+ 1, a, 2) = ep ⊗ (ξ ⊗ ξ)⊗a ⊗ xe2

(p− 1,−2a− 1,−2, 1, a+ 1, a, 1) = ep−1x⊗ (ξ ⊗ ξ)⊗a ⊗ e1

(3,−2a− 2,−2, 1, a+ 2, a, 1) = e3 ⊗ xξ ⊗ (ξ ⊗ ξ)⊗a ⊗ e1 ( if p = 3)

with 1 ≤ s ≤ p− 2, a ≥ 0.

4.4.2 Decompositions using v1 ⊗ . . .⊗ vl ⊗ (ξuep ⊗ e1ξ
1−u)⊗ el+1 ⊗ . . .⊗ eq

Lemma 4.4.7. Let v = v1 ⊗ . . . ⊗ vq be a monomial of wq. Let 1 ≤ l ≤ q − 1. Assume
that there are non-trivial decompositions

v1 ⊗ . . .⊗ vl = v̂1 ⊗ . . .⊗ v̂l · ṽ1 ⊗ . . .⊗ ṽl,

with the j-degree of v̂l being equal to -1, resp. the j-degree of ṽl, and

vl+1 = (ξ ⊗ e1) · ṽl+1, (resp. v̂l+1 · (ep ⊗ ξ)),

then v is reducible.

Proof. Since v̂l has j-degree -1, resp. ṽl, we see that v̂l ⊗ (ξ ⊗ e1), resp. ṽl ⊗ (ep ⊗ ξ) are
chained. Besides, ξ⊗e1, resp. ep⊗ξ has j-degree 0, hence can be followed by idempotents.
We can therefore write the following non-trivial decomposition

v1 ⊗ . . .⊗ vq
= v̂1 ⊗ . . .⊗ v̂l ⊗ (ξ ⊗ e1)⊗ esl+2

. . .⊗ esq
· ṽ1 ⊗ . . .⊗ ṽl ⊗ ṽl+1 ⊗ vl+2 ⊗ . . .⊗ vq

resp.
v1 ⊗ . . .⊗ vq

= v̂1 ⊗ . . .⊗ v̂l ⊗ v̂l+1 ⊗ vl+2 ⊗ . . .⊗ vq
· ṽ1 ⊗ . . .⊗ ṽl ⊗ (ep ⊗ ξ)⊗ etl+2

. . .⊗ etq .
Thus v is reducible.

4.4.3 Decomposition of elements such that a− b ≥ 2

Lemma 4.4.8. Let v ∈ HTd(u)≤1 such that its a- and b-degree satisfy a − b ≥ 2. Then
for all 1 ≤ m ≤ p, there exists a decomposition

v = (s,−a− b,−p(a− b)− (t− s) + 2u, (p− 1)(a− b) + (t− s)− u, a, b, t)
= (s,−α− β,−p(α− β)− (m− s) + 2ν, (p− 1)(α− β) + (m− s)− ν, α, β,m)
· (m,−(a− α)− (b− β),−p((a− α)− (b− β))− (t−m) + 2(u− ν),

(p− 1)((a− α)− (b− β)) + (t−m)− (u− ν), a− α, b− β, t),

with α ≤ a, β ≤ b such that α ≥ β ≥ 0.
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Proof. Since a− b ≥ 2, v is of the form

L⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗R,

where (L,R) ∈ {(xp−s, xt−1), (ξ, xt−1), (xp−s, ξ)}, and we know there is at least a xp−1

component, or v is of the form

ep ⊗ xp−2ξ ⊗ (xp−1)⊗a−b−2 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1,

and we know there is a xp−2ξ component.
We decompose v along one xp−1 component

L⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗R
= L⊗ (xp−1)⊗α−β−1 ⊗ (ξ ⊗ ξ)⊗β ⊗ e1x

m−1

· xp−m ⊗ (xp−1)⊗(a−α)−(b−β)−1 ⊗ (ξ ⊗ ξ)⊗b−β ⊗R

in the first case, or along the xp−2ξ component

ep ⊗ xp−2ξ ⊗ (xp−1)⊗a−b−2 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

= ep ⊗ (xp−1)⊗α−β−1 ⊗ (ξ ⊗ ξ)⊗β ⊗ e1x
m−1−νξν

· xp−m−(1−ν)ξ1−ν ⊗ (xp−1)⊗(a−α)−(b−β)−1 ⊗ (ξ ⊗ ξ)⊗b−β ⊗ e1

in the second case. Writing these decompositions in the form (s, t, i, j, k, a, b, t) yields the
result.

Proposition 4.4.9. Let v = v1⊗ . . .⊗vq be a monomial of wq such that there is an index
2 ≤ l ≤ q such that for all l ≤ n ≤ q the a- and b-degree of vn satisfy an − bn ≥ 2. We let
l be minimal with that property. Then there exists a decomposition

v1 ⊗ . . .⊗ vl−1 ⊗ vl ⊗ vl+1 ⊗ . . .⊗ vq
= es1 ⊗ . . .⊗ esl−2

⊗ x⊗ v̂l ⊗ v̂l+1 ⊗ . . .⊗ v̂q
· v1 ⊗ . . .⊗ vl−2 ⊗ ṽl−1 ⊗ ṽl ⊗ ṽl+1 ⊗ . . .⊗ ṽq

or
v1 ⊗ . . .⊗ vl−1 ⊗ vl ⊗ vl+1 ⊗ . . .⊗ vq

= v1 ⊗ . . .⊗ vl−2 ⊗ v̂l−1 ⊗ v̂l ⊗ v̂l+1 ⊗ . . .⊗ v̂q
· et1 ⊗ . . .⊗ etl−2

⊗ x⊗ ṽl ⊗ ṽl+1 ⊗ . . .⊗ ṽq
.

In particular, v is reducible.

Proof. Let us note that since an − bn ≥ 2 for all l ≤ n ≤ q, there exists a decomposition

vn = v̂n · ṽn

for all l ≤ n ≤ q by Lemma 4.4.8, and more precisely there exists 1 ≤ mn ≤ p for all
l ≤ n ≤ q such that the idempotent on the right of v̂n is mn (t̂n = mn) and such that the
idempotent on the left of ṽn is mn (s̃n = mn).

Consider the following identities:

i = −a− b⇔ a = −i− b⇔ a− b = −i− 2b,

and for all 1 ≤ n ≤ q, we have

jn = −p(an − bn)− (tn − sn) + 2un,

which we may rewrite

jn = −p(−in − 2bn)− (tn − sn) + 2un.
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Now, if n ≥ 1, we can replace in by jn−1 and we see

jn = −p(−jn−1 − 2bn)− (tn − sn) + 2un,

hence, if n ≥ 2,

jn = −p(−(−p(−jn−2 − 2bn−1)− (tn−1 − sn−1) + 2un−1)− 2bn)− (tn − sn) + 2un,

which we may rewrite

jn = −p(p(−jn−2 − 2bn−1) + (tn−1 − sn−1)− 2un−1 − 2bn)− (tn − sn) + 2un
= −p2(−jn−2 − 2bn−1)− p(tn−1 − sn−1) + 2pun−1 + 2pbn − (tn − sn) + 2un
= p2jn−2 + 2p2bn−1 + 2pbn − p(tn−1 − sn−1 − 2un−1)− (tn − sn − 2un).

In particular, for 1 ≤ n′ < n, we have

jn = pn−n
′
jn′ −

n∑
r=n′+1

pn−r(tr − sr − 2ur) + 2
n∑

r=n′+1

pn−r+1br .

If we let n′ = l − 1, then, since there exists 1 ≤ mz ≤ p for all l ≤ z ≤ q such that
t̂z = mz and s̃z = mz, we have

jn = pn−l+1jl−1 −
n∑
r=l

pn−r(tr −mr +mr − sr − 2ur + 2νr − 2νr)

+2
n∑
r=l

pn−r+1(br − βr + βr)

= pn−l+1jl−1 −
n∑
r=l

pn−r(tr −mr − 2νr)−
n∑
r=l

pn−r(mr − sr − 2(ur − νr))

+2

n∑
r=l

pn−r+1βr + 2

n∑
r=l

pn−r+1(br − βr)

for all l − 1 < n ≤ q.
That means that the decomposition of each individual vn = v̂n · ṽn is compatible with

the chaining rule after index l − 1, namely we have

vl ⊗ . . .⊗ vq = v̂l ⊗ . . .⊗ v̂q · ṽl ⊗ . . .⊗ ṽq,

where v̂n has j-degree −
n∑
r=l

pn−r(tr −mr) + 2

n∑
r=l

pn−r+1βr and ṽn has j-degree

−
n∑
r=l

pn−r(mr − sr − 2ur) + 2

n∑
r=l

pn−r+1(br − βr).

Obviously, for this decomposition to propagate to the whole element, we at least need
to split vl−1 too so that it is compatible with that decomposition. By minimality of l, we
know that 1 ≥ al−1 − bl−1 ≥ 0, i.e. it is of the form

(s,−2b− 1,−p− (t− s), (p− 1) + (t− s), b+ 1, b, t)

= xp−s ⊗ (ξ ⊗ ξ)⊗b ⊗ xt−1

(p− 1,−2b− 1, 1− t, t− 1, b+ 1, b, t)

= ξ ⊗ (ξ ⊗ ξ)⊗b ⊗ xt−1

(s,−2b− 1, s− p, p− s, b+ 1, b, t)

= xp−s ⊗ (ξ ⊗ ξ)⊗b ⊗ ξ
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if al−1 − bl−1 = 1, or of the form{
(s,−2a,−(t− s), (t− s), a, a, t) = eswx

t−set
(s,−2a, 1, 0, a, a, s+ 1) = eswξes+1

if al−1 − bl−1 = 0. Since al − bl ≥ 2 is equivalent to al ≥ bl + 2, we have in particular

jl−1 = il = −al − bl ≤ −2bl − 2 ≤ −2,

so vl−1 could be

(s,−2b− 1,−p− (t− s), (p− 1) + (t− s), b+ 1, b, t)

= xp−s ⊗ (ξ ⊗ ξ)⊗b ⊗ xt−1,
with t− s ≥ 2− p

(p− 1,−2b− 1, 1− t, t− 1, b+ 1, b, t)

= ξ ⊗ (ξ ⊗ ξ)⊗b ⊗ xt−1,
with t ≥ 3

(s,−2b− 1, s− p, p− s, b+ 1, b, t)

= xp−s ⊗ (ξ ⊗ ξ)⊗b ⊗ ξ, with s ≤ p− 2

if al−1 − bl−1 = 1, or

(s,−2a,−(t− s), (t− s), a, a, t) = eswx
t−set, with t− s ≥ 2

if al−1 − bl−1 = 0. In particular, it is possible to factor one x from vl−1, either on the left
or on the right, which means we can write

jn = pn−l+1(−1 + 1 + jl−1)−
n∑
r=l

pn−r(tr −mr − 2νr)−
n∑
r=l

pn−r(mr − sr − 2(ur − νr))

+2
n∑
r=l

pn−r+1βr + 2
n∑
r=l

pn−r+1(br − βr)

= ĵn + j̃n

for all l − 1 < n ≤ q, where

ĵn = −pn−l+1 −
n∑
r=l

pn−r(tr −mr − 2νr) + 2

n∑
r=l

pn−r+1βr

j̃n = pn−l+1(1 + jl−1)−
n∑
r=l

pn−r(mr − sr − 2(ur − νr)) + 2

n∑
r=l

pn−r+1(br − βr)

or

ĵn = pn−l+1(1 + jl−1)−
n∑
r=l

pn−r(tr −mr − 2νr) + 2

n∑
r=l

pn−r+1βr

j̃n = −pn−l+1 −
n∑
r=l

pn−r(mr − sr − 2(ur − νr)) + 2

n∑
r=l

pn−r+1(br − βr).

Hence the result.
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4.4.4 Decomposition using v1 ⊗ . . .⊗ vl−1 ⊗ w ⊗ el+1 ⊗ . . .⊗ eq
Lemma 4.4.10. Let v be an element of HTd(u)≤1 such that its i-degree is greater or equal
to -2 and its j-degree is less or equal to -3. Then v is one of

(sl−1, 0,−n, n, 0, 0, s+ n) = xn n ≥ 3

(s,−1,−p− (t− s),
p− 1 + (t− s), 1, 0, t) = xp−s ⊗ xt−1 t− s ≥ 3− p

(p− 1,−1,−t+ 1,
t− 1, 1, 0, t)

= ξ ⊗ xt−1 t− 1 ≥ 3

(s,−1,−p+ s,
p− s, 1, 0, 2)

= xp−s ⊗ ξ p− s ≥ 3

(s,−2,−n, n, 1, 1, s+ n) = eswx
n n ≥ 3

(s,−2,−2p− (t− s),
2(p− 1) + (t− s), 2, 0, t) = xp−s ⊗ xp−1 ⊗ xt−1

(p− 1,−2,−p− t+ 1,
p+ t− 2, 2, 0, t)

= ξ ⊗ xp−1 ⊗ xt−1

(s,−2,−2p+ s,
2p− s− 1, 2, 0, 2)

= xp−s ⊗ xp−1 ⊗ ξ

(p,−2,−p+ 1, p− 2, 2, 0, 1) = ep ⊗ xp−2ξ ⊗ e1 p > 3

Proof. Let v ∈ HTd(u)≤1 such that its i-degree iv is greater or equal to -2.

• If iv = 1, then jv = 1 and no element of i-degree less or equal to -3 could follow.

• If iv = 0, then
v = (s, 0,−(t− s) + 2u, t− s− u, 0, 0, t)

and by Remark 4.4.3, u must be equal to 0. It has j-degree less or equal to -3 if and
only if −(t− s) ≤ −3, i.e. if and only if t ≥ s+ 3, hence the description.

• If iv = −1 and v is of type 2, then jv = 1 and no element of i-degree less or equal
to -3 could follow.

• If iv = −1 and v is of type 1, then

v = (s,−1,−p− (t− s) + 2u, p− 1 + t− s− u, 1, 0, t)

and by Remark 4.4.3, we have three subcases:

– No ξ at all, in which case u = 0, and the element has j-degree less or equal to
-3 if and only if −p− (t− s) ≤ −3 which is equivalent to t− s ≥ 3− p;

– A ξ on the left, and all its x’s on the right, and the element has j-degree less
or equal to -3 if and only if −p− (t− p+ 1) + 2 = −t+ 1 ≤ −3, or equivalently
t− 1 ≥ 3;

– A ξ on the right, and all its x’s on the left, and the element has j-degree less
or equal to -3 if and only if −p− (2− s) + 2 = −(p− s) ≤ −3, i.e. if and only
if p− s ≥ 3.

Hence the description.
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• If iv = −2, then v is of type 1 and

– if a = b = 1, then

v = (s,−2,−(t− s) + 2u, t− s− u, 1, 1, t)

and by Remark 4.4.3, u must be equal to 0; it has j-degree less or equal to -3
if and only if −(t− s) ≤ −3, or equivalently t ≥ s+ 3;

– if a = 2, b = 0, then

v = (s,−2,−2p− (t− s) + 2u, 2(p− 1) + t− s− u, 2, 0, t),

and, similarly to case iv = −1, we have four subcases by Remark 4.4.3. In all
but one case, the j-degree is greater or equal to -3:

∗ No ξ at all, in which case u = 0, and the element has j-degree less or equal
to -3 if and only if −2p− (t− s) ≤ −3 which is equivalent to 2p+ t− s ≥ 3,
and since t − s ≥ 1 − p, we have 2p + t − s ≥ 2p + 1 − p = p + 1 ≥ 3 as
p > 2;

∗ A ξ on the left, and all its x’s on the right, and the element has j-degree
less or equal to -3 if and only if −2p− (t− p+ 1) + 2 = −p− t+ 1 ≤ −3,
or equivalently p+ t− 1 ≥ 3 and since t ≥ 1, p+ t− 1 ≥ p > 2;

∗ A ξ on the right, and all its x’s on the left, and the element has j-degree
less or equal to -3 if and only if −2p − (2 − s) + 2 = −2p + s ≤ −3, i.e if
and only if 2p− s ≥ 3 and since s ≤ p, we have 2p− s ≥ p > 2;

∗ We have a ξ in ”the middle” which correspond to the yf,−i in [MT13],
namely

(p,−2,−p+ 1, p− 2, 2, 0, 1) = ep ⊗ xp−2ξ ⊗ e1,

and −p+ 1 ≤ −3 is equivalent to p ≥ 4.

Hence the description.

Lemma 4.4.11. Let v = v1⊗ . . .⊗vq be a monomial of wq. Suppose there exists 2 ≤ l ≤ q
such that the b-degree of vl satisfies bl ≥ 1, and

(a) the i-degree of vl is less or equal to -3;

or

(b) the a- and b-degree of vl−1 satisfy al−1 − bl−1 ≥ 2.

If sl−1 ≤ p− 2 or tl−1 ≥ 3, v is reducible.

Proof. Assume bl ≥ 1. We have the following non-trivial decomposition

v1 ⊗ v2 ⊗ . . .⊗ vl ⊗ . . .⊗ vq

= es1 ⊗ es2 ⊗ . . .⊗ esl−2

⊗esl−1
x2esl−1+2 ⊗ eslwesl

⊗esl+1
⊗ . . .⊗ esq

· v1 ⊗ v2 ⊗ . . .⊗ vl−2

⊗(sl−1 + 2, il−1, jl−1 + 2, kl−1 − 2, al−1, bl−1, tl−1)
⊗(sl, il + 2, jl, kl, al − 1, bl − 1, tl)
⊗vl+1 ⊗ . . .⊗ vq
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or
v1 ⊗ v2 ⊗ . . .⊗ vl ⊗ . . .⊗ vq

= v1 ⊗ v2 ⊗ . . .⊗ vl−2

⊗(sl−1, il−1, jl−1 + 2, kl−1 − 2, al−1, bl−1, tl−1 − 2)
⊗(sl, il + 2, jl, kl, al − 1, bl − 1, tl)
⊗vl+1 ⊗ . . .⊗ vq

· et1 ⊗ et2 ⊗ . . .⊗ etl−2

⊗etl−1−2x
2etl−1

⊗ etlwesl
⊗etl+1

⊗ . . .⊗ etq
unless al − 1 < 0 or (sl−1 + 2 > p and tl−1 − 2 < 1). Equivalently, this decomposition
exists unless al < 1 or (sl−1 > p− 2 and tl−1 < 3).

Let us analyse these conditions.

• If vl is of type 1, then al ≥ bl ≥ 1 by assumption.

• If vl is of type 2, then

– if the i-degree of vl is less or equal to -3, then −3 ≥ il = −2al − 1 and al ≥ 1;

– if the a- and b-degree of vl−1 satisfy al−1−bl−1 ≥ 2, then the obstruction al < 1
can only occur if al = 0 and bl = 1, namely vl has i-degree -1, which means
vl−1 must have j-degree -1, so from Lemma 4.4.5, it must be one of

(s1,−2a,−1, 1, a, a, s1 + 1) = es1w
axes1+1

(p,−2a− 1,−1, 0, a+ 1, a, 1) = ep ⊗ (ξ ⊗ ξ)⊗a ⊗ e1,

(p− 1,−2a− 1,−1, 1, a+ 1, a, 2) = ep−1ξ ⊗ (ξ ⊗ ξ)⊗a ⊗ xe2

(∼= ep−1x⊗ (ξ ⊗ ξ)⊗a ⊗ ξe2).

with 1 ≤ s1 ≤ p − 1, 1 ≤ s2 ≤ p − 3, a ≥ 0. But by assumption, the a- and
b-degree of vl−1 must satisfy al−1 − bl−1 ≥ 2. So vl cannot be of type 2 with
al = 0 and bl = 1 in that case, and there is no obstruction to the decomposition.

• If vl is of type 3, in particular bl = 0, which is a contradiction. Hence vl cannot be
of type 3.

That means the previous decomposition fails if and only if sl−1 > p−2 and tl−1 < 3.

Lemma 4.4.12. Let v = v1 ⊗ . . . ⊗ vq be a monomial of wq such that v1 is not an
idempotent of d. If there exists 2 ≤ l ≤ q such that the a- and b-degree of vl are equal and
the idempotents on either side of vl are different, then v is reducible.

Proof. Assume there exists 2 ≤ l ≤ q such that the al − bl = 0 and sl 6= tl. Then we have
the following decomposition

v1 ⊗ . . .⊗ vq
= v1 ⊗ . . .⊗ vl1−1 ⊗ (sl1 ,−2al1 , 0, 0, al1 , al1 , sl1)

⊗esl1+1
⊗ . . .⊗ esq

· et1 ⊗ . . .⊗ etl1−1
⊗ (sl1 , 0,−(tl1 − sl1) + 2ul1 , (tl1 − sl1)− ul1 , 0, 0, tl1)

⊗vl1+1 ⊗ . . .⊗ vq
and it is not trivial since v1 is not an idempotent and sl 6= tl. Thus v is reducible.

Corollary 4.4.13. Let v = v1 ⊗ . . . ⊗ vq be a monomial of wq such that v1 is not an
idempotent of d. Assume v is irreducible. If there exists 2 ≤ l ≤ q such that the a- and
b-degree of vl are equal and the idempotents on either side of vl are equal, then vn = esn
for all l < n ≤ q.
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Proof. Assume there exists 2 ≤ l ≤ q such that the al − bl = 0 and sl = tl. Then in
particular, vl+1 has i-degree 0. By the previous lemma, if sl+1 6= tl+1, then v is reducible.
That is a contradiction. Hence sl+1 = tl+1 and vl+1 = esl+1

. That shows that vl+2 has
i-degree 0 too, and repeating the argument yields the proof.

Proposition 4.4.14. Let v = v1 ⊗ . . . ⊗ vq be a monomial of wq such that v1 is not an
idempotent of d. Suppose there exists 2 ≤ l ≤ q such that the i-degree il of vl is less or
equal to -3, and that there exists l < l′ ≤ q such that the a- and b- degree of vl′ are equal.
Then v is reducible.

Proof. We choose l and l′ to be minimal with that property. If al′ − bl′ = 0, then by
Lemma 4.4.12, v is reducible as long as sl′ 6= tl′ . Furthermore, by Corollary 4.4.13, it is
reducible unless vn = esn for all l′ < n ≤ q. Hence, we assume that the idempotents on
either side of vl′ are equal and that vn = esn for all l′ < n ≤ q, i.e. we are in the situation

v = v1 ⊗ . . .⊗ vl ⊗ . . .⊗ vl′−1 ⊗ esl′w
al′esl′ ⊗ esl′+1

⊗ . . .⊗ eq.

By minimality of l, for all 1 ≤ m < l, vm has at least i-degree -2, and for all l ≤ n < l′,
vn is of type 1 and its a- and b-degree satisfy an − bn ≥ 1. Using Remark 4.4.3, we see
that vn is of the form

(s,−a− b,−p(a− b)− (t− s), (p− 1)(a− b) + (t− s), a, b, t)
= xp−s ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ xt−1

(p− 1,−a− b,−p(a− b)− (t− p+ 1) + 2, (p− 1)(a− b) + (t− p+ 1)− 1, a, b, t)

= ξ ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ xt−1

(s,−a− b,−p(a− b)− (2− s) + 2, (p− 1)(a− b) + (2− s)− 1, a, b, 2)

= xp−s ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ ξ

(p,−a− b,−p(a− b)− (1− p) + 2, (p− 1)(a− b) + (1− p)− 1, a, b, 1)

= ep ⊗ xp−2ξ ⊗ (xp−1)⊗a−b−2 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

if an − bn ≥ 2, or of the form

(s,−2b− 1,−p− (t− s), (p− 1) + (t− s), b+ 1, b, t)

= xp−s ⊗ (ξ ⊗ ξ)⊗b ⊗ xt−1

(p− 1,−2b− 1,−p− (t− p+ 1) + 2, (p− 1) + (t− p+ 1)− 1, b+ 1, b, t)

= ξ ⊗ (ξ ⊗ ξ)⊗b ⊗ xt−1

(s,−2b− 1,−p− (2− s) + 2, (p− 1) + (2− s)− 1, b+ 1, b, 2)

= xp−s ⊗ (ξ ⊗ ξ)⊗b ⊗ ξ

if an − bn = 1.
In addition, since al′ = bl′ , vl′ has an even i-degree, and therefore vl′−1 must have an

even j-degree.
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• Assume al′ ≥ 1. Then we have the following non-trivial decomposition

v1 ⊗ . . .⊗ vq

= es1 ⊗ . . .⊗ esl′−2
⊗ esl′−1

x2esl′−1+2 ⊗ esl′wesl′ ⊗ esl′+1
⊗ . . .⊗ esq

· v1 ⊗ . . .⊗ vl′−2

⊗(sl′−1 + 2, il′−1,−p(al′−1 − bl′−1)− (tl′−1 − (sl′−1 + 2)) + 2ul′−1,
(p− 1)(al′−1 − bl′−1) + (tl′−1 − (sl′−1 + 2))− ul′−1, al′−1, bl′−1, tl′−1)

⊗esl′w
al′−1esl′ ⊗ esl′+1 ⊗ . . .⊗ esq

or

v1 ⊗ . . .⊗ vq

= v1 ⊗ . . .⊗ vl′−2

⊗(sl′−1, il′−1,−p(al′−1 − bl′−1)− ((tl′−1 − 2)− sl′−1) + 2ul′−1,
(p− 1)(al′−1 − bl′−1) + ((tl′−1 − 2)− sl′−1)− ul′−1, al′−1, bl′−1, tl′−1 − 2)

⊗esl′w
al′−1esl′ ⊗ esl′+1 ⊗ . . .⊗ esq

· et1 ⊗ . . .⊗ etl′−2
⊗ etl′−1−2x

2etl′−1
⊗ esl′wesl′ ⊗ esl′+1

⊗ . . .⊗ esq

unless sl′−1 + 2 > p and tl′−1 − 2 < 1, i.e. unless sl′−1 > p − 2 and tl′−1 < 3. We
need to investigate that case further. Assume sl′−1 > p − 2 and tl′−1 < 3. Recall
that vl′−1 must have even j-degree and since al′ ≥ 1, −2 ≥ il′ = jl′−1. That means
the element in position l′ − 1 is one of the following elements

(p− 1,−2b− 1,−p− (2− p), (p− 1) + (2− p), b+ 1, b, 1)

= x⊗ (ξ ⊗ ξ)⊗b ⊗ e1

(p,−2b− 1,−p− (2− p), (p− 1) + (2− p), b+ 1, b, 2)

= ep ⊗ (ξ ⊗ ξ)⊗b ⊗ x

(p− 1,−2b− 1,−p− (2− p), (p− 1) + (2− p), b+ 1, b, 2)

= ep ⊗ (ξ ⊗ ξ)⊗b ⊗ x

if al′−1 − bl′−1 = 1, and
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

(p− 1,−a− b,−p(a− b)− (2− p), (p− 1)(a− b) + (2− p), a, b, 1)

= x⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1
if a− b− 1 is even,

(p− 1,−a− b,−p(a− b)− (3− p), (p− 1)(a− b) + (3− p), a, b, 2)

= x⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ x
if a− b− 1 is odd,

(p,−a− b,−p(a− b)− (1− p), (p− 1)(a− b) + (1− p), a, b, 1)

= ep ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1
if a− b− 1 is odd,

(p,−a− b,−p(a− b)− (2− p), (p− 1)(a− b) + (2− p), a, b, 2)

= ep ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ x
if a− b− 1 is even,

(p− 1,−a− b,−p(a− b)− (1− p+ 1) + 2, (p− 1)(a− b) + (1− p+ 1)− 1, a, b, 1)

= ξ ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1
if a− b− 1 is even,

(p− 1,−a− b,−p(a− b)− (2− p+ 1) + 2, (p− 1)(a− b) + (2− p+ 1)− 1, a, b, 2)

= ξ ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ x
if a− b− 1 is odd,

(p− 1,−a− b,−p(a− b)− (2− p+ 1) + 2, (p− 1)(a− b) + (2− p+ 1)− 1, a, b, 2)

= x⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ ξ
if a− b− 1 is odd,

(p,−a− b,−p(a− b)− (2− p) + 2, (p− 1)(a− b) + (2− p)− 1, a, b, 2)

= ep ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ ξ
if a− b− 1 is even,

(p,−a− b,−p(a− b)− (1− p) + 2, (p− 1)(a− b) + (1− p)− 1, a, b, 1)

= ep ⊗ xp−2ξ ⊗ (xp−1)⊗a−b−2 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1
if a− b− 1 is odd,

if al′−1 − bl′−1 ≥ 2.

We notice that in all cases, we can factor from vl′−1, both on the left and on the
right, an element of H(u−1) of j-degree -2, namely one of

(p− 1,−1,−2, 1, 1, 0, 1) = x⊗ e1

(p,−1,−2, 1, 1, 0, 2) = ep ⊗ x
(p− 1,−1,−2, 2, 1, 0, 3) = ξ ⊗ x2

(p− 2,−1,−2, 2, 1, 0, 2) = x2 ⊗ ξ

so that we could still have a similar non-trivial decomposition as before. However, for
that decomposition to exist, we must be able to find a decomposition of vl′−2 of the
form v̂l′−2 · ṽl′−2 with one of the factor being of j-degree -1. If we can factor x from
either side of vl′−2, then we are done, as we could write the following decomposition

v1 ⊗ . . .⊗ vl ⊗ . . .⊗ vl′−2 ⊗ vl′−1 ⊗ vl′ ⊗ . . .⊗ vq
= es1 ⊗ . . .⊗ esl ⊗ . . .⊗ x⊗ L⊗ esl′wesl′ ⊗ esl′+1

⊗ . . .⊗ esq
· v1 ⊗ . . .⊗ vl ⊗ . . .⊗ ṽl′−2 ⊗ ṽl′−1 ⊗ ṽl ⊗ vl′+1 ⊗ . . .⊗ vq
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if we can factor x on the left of vl′−2, or

v1 ⊗ . . .⊗ vl ⊗ . . .⊗ vl′−2 ⊗ vl′−1 ⊗ vl′ ⊗ . . .⊗ vq
= v1 ⊗ . . .⊗ vl ⊗ . . .⊗ ṽl′−2 ⊗ ṽl′−1 ⊗ ṽl ⊗ vl′+1 ⊗ . . .⊗ vq
· et1 ⊗ . . .⊗ etl ⊗ . . .⊗ x⊗R⊗ etl′wetl′ ⊗ etl′+1

⊗ . . .⊗ etq

if we can factor x on the right of vl′−2, where ṽc is the remaining part of vc after
factorisation and L,R ∈ {x ⊗ e1, ep ⊗ x, ξ ⊗ x2, x2 ⊗ ξ} depending on the element
vl′−1.

If not, that means that vl′−2 is of the form

(p,−a− b,−p(a− b)− (1− p), (p− 1)(a− b) + (1− p), a, b, 1)

= ep ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1
if a− b− 1 is odd,

(p− 1,−a− b,−p(a− b)− (1− p+ 1) + 2, (p− 1)(a− b) + (1− p+ 1)− 1, a, b, 1)

= ξ ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1
if a− b− 1 is even,

(p,−a− b,−p(a− b)− (2− p) + 2, (p− 1)(a− b) + (2− p)− 1, a, b, 2)

= ep ⊗ (xp−1)⊗a−b−1 ⊗ (ξ ⊗ ξ)⊗b ⊗ ξ
if a− b− 1 is even,

(p,−a− b,−p(a− b)− (1− p) + 2, (p− 1)(a− b) + (1− p)− 1, a, b, 1)

= ep ⊗ xp−2ξ ⊗ (xp−1)⊗a−b−2 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1
if a− b− 1 is odd,

and in particular, al′−2 − bl′−2 ≥ 2 in that case.

We note that it is possible to factor an element of H(u−1) of j-degree -1 for all of
these possibilities, both on the left and on the right, namely we can factor one of

(p,−1,−1, 0, 1, 0, 1) = ep ⊗ e1

(p− 1,−1,−1, 1, 1, 0, 2) = x⊗ ξ
∼= ξ ⊗ x

Again, for the decomposition to make sense, we need to be able to factor an element
of j-degree -1 from vl′−3, and again if we can factor x then we are done. If not,
we apply the same reasoning as for vl′−2. Eventually, in the worst case, we reach
l′− (l′− l) = l and vl has i-degree less or equal to -3. Since l is chosen minimal with
that property, we know that vl−1 has at least i-degree −2 with j-degree at most −3.
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By Lemma 4.4.10, vl−1 is one of

(sl−1, 0,−n, n, 0, 0, sl−1 + n) = xn n ≥ 3

(sl−1,−1,−p− (tl−1 − sl−1),
p− 1 + (tl−1 − sl−1), 1, 0, tl−1)

= xp−sl−1 ⊗ xtl−1−1 tl−1 − sl−1 ≥ 3− p

(p− 1,−1,−tl−1 + 1,
tl−1 − 1, 1, 0, tl−1)

= ξ ⊗ xtl−1−1 tl−1 − 1 ≥ 3

(sl−1,−1,−p+ sl−1,
p− sl−1, 1, 0, 2)

= xp−sl−1 ⊗ ξ p− sl−1 ≥ 3

(sl−1,−2,−n, n, 1, 1, sl0−1 + n) = esl−1
wxn n ≥ 3

(sl−1,−2,−2p− (tl−1 − sl−1),
2(p− 1) + (tl−1 − sl−1), 2, 0, tl−1)

= xp−sl−1 ⊗ xp−1 ⊗ xtl−1−1

(p− 1,−2,−p− tl−1 + 1,
p+ tl−1 − 2, 2, 0, tl−1)

= ξ ⊗ xp−1 ⊗ xtl−1−1

(sl−1,−2,−2p+ sl−1,
2p− sl−1 − 1, 2, 0, 2)

= xp−sl−1 ⊗ xp−1 ⊗ ξ

(p,−2,−p+ 1, p− 2, 2, 0, 1) = ep ⊗ xp−2ξ ⊗ e1 p > 3

and if it is possible to factor an x, then by the same reasoning, we are done. If not,
then vl−1 is one of the following elements

(p,−2,−p− 1, p− 1, 2, 0, 1) = ep ⊗ xp−1 ⊗ e1

(p− 1,−2,−p, p− 1, 2, 0, 1) = ξ ⊗ xp−1 ⊗ e1

(p,−2,−p, p− 1, 2, 0, 2) = ep ⊗ xp−1 ⊗ ξ

(p,−2,−p+ 1, p− 2, 2, 0, 1) = ep ⊗ xp−2ξ ⊗ e1 p > 3

by Lemma 4.4.6, noticing that higher values of a give rise to smaller i-degrees. We
note that it is possible to factor an element of H(u−1) of j-degree -1 for all of these
possibilities, both on the left and on the right, namely we can factor one of

(p,−1,−1, 0, 1, 0, 1) = ep ⊗ e1

(p− 1,−1,−1, 1, 1, 0, 2) = x⊗ ξ
∼= ξ ⊗ x

In particular vl−1 has i-degree -2, hence vl−2 has i-degree at most -2 with j-degree
-2; it must be one of

(s1,−2a,−2, 2, a, a, s1 + 2) = es1w
ax2es1+1, 0 ≤ a ≤ 1

(p,−1,−2, 1, 1, 0, 2) = ep ⊗ xe2,
(p− 1,−1,−2, 1, 1, 0, 1) = ep−1x⊗ e1,

(3,−2,−2, 1, 2, 0, 1) = e3 ⊗ xξ ⊗ e1 ( if p = 3)

Again, we can factor an x in all cases but e3 ⊗ xξ ⊗ e1 if p = 3. That means we are
done, unless p = 3 and vl−2 = e3 ⊗ xξ ⊗ e1. Since that element has j-degree -2, the
same reasoning as for vl−2 can be applied to vl−3. Hence, in the worst case, and if
p = 3, we have a sequence of e3⊗ xξ⊗ e1 for all vf where 2 ≤ f ≤ l− 1, and we can
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factor ep ⊗ e1 = e3 ⊗ e1 both on the left and on the right of all of them. But then
v1 is an element of d (its i-degree is 0) with j-degree -2, thus v1 = x2 and we can
factor an x, and v is reducible.

• Assume al′ = 0. That means in particular that vl′−1 has j-degree 0 with its a- and
b-degree satisfying al′−1 − bl′−1 ≥ 1 by minimality of l′ with respect to al′ = bl′ . By
Lemma 4.4.4, it is one of{

(p− 1,−2a− 1, 0, 0, a+ 1, a, 1) = ep−1ξep ⊗ (ξ ⊗ ξ)⊗a ⊗ e1

(p,−2a− 1, 0, 0, a+ 1, a, 2) = ep ⊗ (ξ ⊗ ξ)⊗a ⊗ e1ξe2

We notice that we can factor an element of H(u−1) of j-degree 0, namely ξ ⊗ e1 on
the left for the first possibility or ep⊗ξ on the right for the second possibility. We will
treat the two cases in parallel, namely factoring on the left for the first possibility, or
factoring on the right for the second possibility (compare to the previous case when
we could factor both on the left and on the right). Similar to the previous case, we
want to factor on the left, resp. right, an element of j-degree −1 from element vl′−2.
If we can factor x on the left, resp. right, then we are done. If we cannot, that
means vl′−2 is one of

(p− u,−2b− 1,−p− (t− p+ u) + 2u, (p− 1) + (t− p+ u)− u, b+ 1, b, t)

= ξuep ⊗ (ξ ⊗ ξ)⊗b ⊗ e1xt−1

resp.

(s,−2b− 1,−p− (1 + u− s) + 2u, (p− 1) + (1 + u− s)− u, b+ 1, b, 1 + u)

= xp−sep ⊗ (ξ ⊗ ξ)⊗b ⊗ e1ξu

if al′−2 − bl′−2 = 1, and

(p,−a− b,−p(a− b)− (t− p) + 2u, (p− 1)(a− b) + (t− p)− u, a, b, t)
= ep ⊗ (xp−1−uξu)⊗ (xp−1)⊗a−b−2 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1xt−1

resp.

(s,−a− b,−p(a− b)− (1− s) + 2u, (p− 1)(a− b) + (1− s)− u, a, b, 1)

= xp−sep ⊗ (xp−1−uξu)⊗ (xp−1)⊗a−b−2 ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

if al′−2 − bl′−2 ≥ 2.

In all cases, we can factor the elements of H(u−1) ξuep ⊗ e1, resp. ep ⊗ e1ξ
u with

u ∈ {0, 1} from the left, resp. right of vl′−2. Suppose we can decompose v with that
factorisation at vl′−2, then without loss of generality, we can assume u = 0; indeed,
if u = 1 instead, that means we would factor ξ⊗ e1, resp. ep⊗ ξ, which has j-degree
0, and by Lemma 4.4.7 we then obtain a non-trivial decomposition. Hence, we can
assume we can factor ep ⊗ e1 on the left, resp. right, from vl′−2, which has the right
j-degree -1 to be compatible with the decomposition of vl′−1 we discussed earlier.

Repeating the same argument as before, if we can factor an x from vl′−3 on the left,
resp. right, then we have our decomposition. If not, we must be able to factor ep⊗e1

from it on the left, resp. right. In the worst case, we reach l′− (l′− l) = l and vl has
i-degree less or equal to −3. Since l is chosen minimal with that property, we know
that vl−1 has at least i-degree −2 with j-degree at most −3. By Lemma 4.4.10, vl−1
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is one of

(sl−1, 0,−n, n, 0, 0, sl−1 + n) = xn n ≥ 3

(sl−1,−1,−p− (tl−1 − sl−1),
p− 1 + (tl−1 − sl−1), 1, 0, tl−1)

= xp−sl−1 ⊗ xtl−1−1 tl−1 − sl−1 ≥ 3− p

(p− 1,−1,−tl−1 + 1,
tl−1 − 1, 1, 0, tl−1)

= ξ ⊗ xtl−1−1 tl−1 − 1 ≥ 3

(sl−1,−1,−p+ sl−1,
p− sl−1, 1, 0, 2)

= xp−sl−1 ⊗ ξ p− sl−1 ≥ 3

(sl−1,−2,−n, n, 1, 1, sl0−1 + n) = esl−1
wxn n ≥ 3

(sl−1,−2,−2p− (tl−1 − sl−1),
2(p− 1) + (tl−1 − sl−1), 2, 0, tl−1)

= xp−sl−1 ⊗ xp−1 ⊗ xtl−1−1

(p− 1,−2,−p− tl−1 + 1,
p+ tl−1 − 2, 2, 0, tl−1)

= ξ ⊗ xp−1 ⊗ xtl−1−1

(sl−1,−2,−2p+ sl−1,
2p− sl−1 − 1, 2, 0, 2)

= xp−sl−1 ⊗ xp−1 ⊗ ξ

(p,−2,−p+ 1, p− 2, 2, 0, 1) = ep ⊗ xp−2ξ ⊗ e1 p > 3

Again, if we can factor x from the left, resp. right, then we are done. If not, vl−1

must be one of

(p,−1,−p− (tl−1 − p),
p− 1 + (tl−1 − p), 1, 0, tl−1)

= ep ⊗ xtl−1−1 if tl−1 ≥ 3

(p− 1,−1,−p− (tl−1 − p+ 1) + 2,
p− 1 + (tl−1 − p+ 1)− 1, 1, 0, tl−1)

= ξ ⊗ xtl−1−1 if tl−1 − 1 ≥ 3

(p,−2,−2p− (tl−1 − p),
2(p− 1) + (tl−1 − p), 2, 0, tl−1)

= ep ⊗ xp−1 ⊗ xtl−1−1

(p− 1,−2,−p− tl−1 + 1,
p+ tl−1 − 2, 2, 0, tl−1)

= ξ ⊗ xp−1 ⊗ xtl−1−1

(p,−2,−p, p− 1, 2, 0, 2) = ep ⊗ xp−1 ⊗ ξ

(p,−2,−p+ 1, p− 2, 2, 0, 1) = ep ⊗ xp−2ξ ⊗ e1 p > 3
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resp. one of

(sl−1,−1,−p− (1− sl−1),
p− 1 + (1− sl−1), 1, 0, 1)

= xp−sl−1 ⊗ e1 if p− sl−1 ≥ 2

(sl−1,−1,−p− (2− sl−1) + 2,
p− 1 + (2− sl−1)− 1, 1, 0, 2)

= xp−sl−1 ⊗ ξ if p− sl−1 ≥ 3

(sl−1,−2,−2p− (1− sl−1),
2(p− 1) + (1− sl−1), 2, 0, 1)

= xp−sl−1 ⊗ xp−1 ⊗ e1

(p− 1,−2,−p, p− 1, 2, 0, 1) = ξ ⊗ xp−1 ⊗ e1

(sl−1,−2,−2p+ sl−1,
2p− sl−1 − 1, 2, 0, 2)

= xp−sl−1 ⊗ xp−1 ⊗ ξ

(p,−2,−p+ 1, p− 2, 2, 0, 1) = ep ⊗ xp−2ξ ⊗ e1 p > 3

It is possible to factor either an ep ⊗ e1 on the left, resp. right, or ξ ⊗ x on the left,
resp. x⊗ ξ on the right. Now, if vl−2 has j-degree -1, we see that we are done as we
have the following decomposition

v = v1 ⊗ . . .⊗ vl ⊗ . . .⊗ vl′−1 ⊗ esl′ ⊗ esl′+1
⊗ . . .⊗ eq

= v1 ⊗ . . .⊗ vl−2 ⊗ (ep ⊗ e1)⊗ . . .⊗ (ep ⊗ e1)⊗ (ξ ⊗ e1)⊗ esl′ ⊗ esl′+1
⊗ . . .⊗ eq

· et1 ⊗ . . .⊗ etl−2
⊗ e1x

tl−1−1 ⊗ ṽl ⊗ . . .⊗ ṽl′−2 ⊗ e1w
al′−1e1 ⊗ esl′ ⊗ . . .⊗ esq

resp.

v = v1 ⊗ . . .⊗ vl ⊗ . . .⊗ vl′−1 ⊗ esl′ ⊗ esl′+1
⊗ . . .⊗ eq

= es1 ⊗ . . .⊗ esl−2
⊗ e1x

p−sl−1 ⊗ v̂l ⊗ . . .⊗ v̂l′−2 ⊗ e1w
al′−1e1 ⊗ esl′ ⊗ . . .⊗ esq

· v1 ⊗ . . .⊗ vl−2 ⊗ (ep ⊗ e1)⊗ . . .⊗ (ep ⊗ e1)⊗ (ep ⊗ ξ)⊗ esl′ ⊗ esl′+1
⊗ . . .⊗ eq

or

v = v1 ⊗ . . .⊗ vl ⊗ . . .⊗ vl′−1 ⊗ esl′ ⊗ esl′+1
⊗ . . .⊗ eq

= v1 ⊗ . . .⊗ vl−2 ⊗ (ξ ⊗ x)⊗ . . .⊗ (ep ⊗ e1)⊗ (ξ ⊗ e1)⊗ esl′ ⊗ esl′+1
⊗ . . .⊗ eq

· et1 ⊗ . . .⊗ etl−2
⊗ e2x

tl−1−2 ⊗ ṽl ⊗ . . .⊗ ṽl′−2 ⊗ e1w
al′−1e1 ⊗ esl′ ⊗ . . .⊗ esq

resp.

v = v1 ⊗ . . .⊗ vl ⊗ . . .⊗ vl′−1 ⊗ esl′ ⊗ esl′+1
⊗ . . .⊗ eq

= es1 ⊗ . . .⊗ esl−2
⊗ e1x

p−sl−1−1 ⊗ v̂l ⊗ . . .⊗ v̂l′−2 ⊗ e1w
al′−1e1 ⊗ esl′ ⊗ . . .⊗ esq

· v1 ⊗ . . .⊗ vl−2 ⊗ (x⊗ ξ)⊗ . . .⊗ (ep ⊗ e1)⊗ (ep ⊗ ξ)⊗ esl′ ⊗ esl′+1
⊗ . . .⊗ eq

and v is reducible. If vl−2 has j-degree -2, then the same analysis yields that v is
reducible unless vl−3 has j-degree -2. In the worst case, v1 has j-degree -2 and it is
an element of d. Hence v1 = x2 and it is possible to factor an x on the left, resp.
right. Hence v is reducible.

4.4.5 Criterion for reducibility

Proposition 4.4.15. Let v = v1 ⊗ . . . ⊗ vq be a monomial of wq such that v1 is not an
idempotent of d. If there exists 2 ≤ l ≤ q such that the i-degree il of vl is less or equal to
-3, then v is reducible.
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Proof. Assume there exists 2 ≤ l ≤ q such that il ≤ −3, and let l0 be the minimal l with
that property. Then il ≥ −2 for all l < l0. In particular, by Lemma 4.4.10, vl0−1 is one of

(sl0−1, 0,−n, n, 0, 0, sl0−1 + n) = xn n ≥ 3

(sl0−1,−1,−p− (tl0−1 − sl0−1),
p− 1 + (tl0−1 − sl0−1), 1, 0, tl0−1)

= xp−sl0−1 ⊗ xtl0−1−1 tl0−1 − sl0−1 ≥ 3− p

(p− 1,−1,−tl0−1 + 1,
tl0−1 − 1, 1, 0, tl0−1)

= ξ ⊗ xtl0−1−1 tl0−1 − 1 ≥ 3

(sl0−1,−1,−p+ sl0−1,
p− sl0−1, 1, 0, 2)

= xp−sl0−1 ⊗ ξ p− sl0−1 ≥ 3

(sl0−1,−2,−n, n, 1, 1, sl0−1 + n) = esl0−1
wxn n ≥ 3

(sl0−1,−2,−2p− (tl0−1 − sl0−1),
2(p− 1) + (tl0−1 − sl−1), 2, 0, tl0−1)

= xp−sl0−1 ⊗ xp−1 ⊗ xtl0−1−1

(p− 1,−2,−p− tl0−1 + 1,
p+ tl0−1 − 2, 2, 0, tl0−1)

= ξ ⊗ xp−1 ⊗ xtl0−1−1

(sl0−1,−2,−2p+ sl0−1,
2p− sl0−1 − 1, 2, 0, 2)

= xp−sl0−1 ⊗ xp−1 ⊗ ξ

(p,−2,−p+ 1, p− 2, 2, 0, 1) = ep ⊗ xp−2ξ ⊗ e1 p > 3

Note that the a- and b-degree in these elements satisfy a− b ∈ {0, 1, 2}. Let us rewrite
that list with respect to the value of a− b:

1. If al0−1 − bl0−1 = 0, vl0−1 is one of
(sl0−1, 0,−n, n, 0, 0, sl0−1 + n) = xn n ≥ 3

(sl0−1,−2,−n, n, 1, 1, sl0−1 + n) = esl0−1
wxn n ≥ 3

(4.2)

2. If al0−1 − bl0−1 = 1, vl0−1 is one of

(sl0−1,−1,−p− (tl0−1 − sl0−1),
p− 1 + (tl0−1 − sl0−1), 1, 0, tl0−1)

= xp−sl0−1 ⊗ xtl0−1−1 tl0−1 − sl0−1 ≥ 3− p

(p− 1,−1,−tl0−1 + 1,
tl0−1 − 1, 1, 0, tl0−1)

= ξ ⊗ xtl0−1−1 tl0−1 − 1 ≥ 3

(sl0−1,−1,−p+ sl0−1,
p− sl0−1, 1, 0, 2)

= xp−sl0−1 ⊗ ξ p− sl0−1 ≥ 3

(4.3)

3. If al0−1 − bl0−1 = 2, vl0−1 is one of

(sl0−1,−2,−2p− (tl0−1 − sl0−1),
2(p− 1) + (tl0−1 − sl−1), 2, 0, tl0−1)

= xp−sl0−1 ⊗ xp−1 ⊗ xtl0−1−1

(p− 1,−2,−p− tl0−1 + 1,
p+ tl0−1 − 2, 2, 0, tl0−1)

= ξ ⊗ xp−1 ⊗ xtl0−1−1

(sl0−1,−2,−2p+ sl0−1,
2p− sl0−1 − 1, 2, 0, 2)

= xp−sl0−1 ⊗ xp−1 ⊗ ξ

(p,−2,−p+ 1, p− 2, 2, 0, 1) = ep ⊗ xp−2ξ ⊗ e1 p > 3

(4.4)
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We need to study four cases, namely

• l0 = 2;

• l0 > 2 and

1. al0−1 − bl0−1 = 0;

2. al0−1 − bl0−1 = 1;

3. al0−1 − bl0−1 = 2.

The strategy is similar in all cases:

1. if bl0 ≥ 1, we factor a w from vl0 and v is reducible;

2. otherwise, bl0 = 0. This divides into two subcases:

(i) either the difference between the a- and b-degree of all the subsequent elements
is greater or equal to 2, and Proposition 4.4.9 provides a non-trivial decompo-
sition and v is reducible;

(ii) or there exists an index l such that the difference between the a- and b-degree
of vl is at most 1 and we take l to be minimal with that property. In that case,
we have three additional subcases:

(a) if al − bl = 0, then by Proposition 4.4.14 v is reducible;

(b) if bl ≥ 1, we factor a w from vl, and v is reducible;

(c) if bl = 0 and al− bl 6= 0, then al = 1 or al = −1 as −1 ≤ al− bl by Remark
2.3.10, and al − bl ≤ 1 by definition of l. We see that these two situations
lead to a contradiction.

All the decompositions we try to construct in the following paragraphs are of the form

v1 ⊗ . . .⊗ vq
= es1 ⊗ . . .⊗ esl−2

⊗ x⊗ ṽl ⊗ . . .⊗ ṽq
· v1 ⊗ . . .⊗ vl−2 ⊗ v̂l−1 ⊗ v̂l ⊗ . . .⊗ v̂q

if we can factor x on the right of vl−1, or

v1 ⊗ . . .⊗ vq
= v1 ⊗ . . .⊗ vl−2 ⊗ ṽl−1 ⊗ ṽl ⊗ . . .⊗ ṽq
· et1 ⊗ . . .⊗ etl−2

⊗ x⊗ v̂l ⊗ . . .⊗ v̂q

if we can factor x on the left of vl−1, where ṽc · v̂c = vc. In particular, when we say that
we factor w, say from vm+1, the decompositions will look like

v1 ⊗ . . .⊗ vq
= es1 ⊗ . . .⊗ esl−2

⊗ x⊗ ṽl ⊗ . . .⊗ . . .⊗ ṽm ⊗ w ⊗ esm+2 ⊗ . . .⊗ esq
· v1 ⊗ . . .⊗ vl−2 ⊗ v̂l−1 ⊗ v̂l ⊗ . . .⊗ v̂m ⊗ v̂m+1 ⊗ vm+2 ⊗ . . .⊗ vq

if we can factor x on the right of vl−1, or

v1 ⊗ . . .⊗ vq
= v1 ⊗ . . .⊗ vl−2 ⊗ ṽl−1 ⊗ ṽl ⊗ . . .⊗ ṽm ⊗ ṽm+1 ⊗ vm+2 ⊗ . . .⊗ vq
· et1 ⊗ . . .⊗ etl−2

⊗ x⊗ v̂l ⊗ . . .⊗ . . .⊗ v̂m ⊗ w ⊗ etm+2 ⊗ . . .⊗ etq

if we can factor x on the left of vl−1.
The aim is to determine those elements v̂c that we can factor from vc to make the

decomposition work.
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• Assume l0 = 2. We have in particular that al0−1 − bl0−1 = 0, as al0−1 = a1 = 0
and bl0−1 = b1 = 0. This means that vl0−1 = v1 = es1x

nes1+n for some n ≥ 3 by
Expression 4.2.

– If bl0 = b2 ≥ 1, since i2 ≤ −3, we can apply Lemma 4.4.11: if s1 ≤ p − 2 or
t1 ≥ 3, v is reducible. Assume now that s1 > p − 2 and t1 < 3. We have
−3 ≥ i2 = j1 = −t1 + s1 + 2u1 if and only if

−3− 2u1 ≥ −t1 + s1 > −3 + p− 2 = p− 5,

and p− 5 ≥ −3 for all p ≥ 2. Hence we have a contradiction and that situation
cannot arise. (Note that this means that we have at least three powers of x in
first position, which is why it is possible to factor x2).

Hence v is reducible.

– If bl0 = b2 = 0, then a2 ≥ 3 since −a2 − b2 = i2 ≤ −3.

∗ Assume an − bn ≥ 2 for all 2 ≤ n ≤ q. Then by Proposition 4.4.9, there
exists a non-trivial decomposition and v is reducible.

∗ Otherwise, let l be the minimal index, 2 < l ≤ q, such that al − bl ≤ 1. In
particular, an − bn ≥ 2 for all 2 ≤ n < l. We are in the following situation

v1 ⊗
an−bn≥2︷ ︸︸ ︷

v2 ⊗ . . .⊗ vl−1⊗vl ⊗ . . .⊗ vq

We need to examine three cases.

· Assume al − bl = 0. Then by Proposition 4.4.14, v is reducible.

· Assume bl = 0 and al − bl 6= 0. Since al − bl ≤ 1, we see that al = 1 or
al = −1 (al < −1 does not correspond to any element in HTd(u)≤1).
Assume al = −1, i.e. vl is of type 3 and has i-degree 1. Then vl−1 has
j-degree 1 and by Lemma 4.3.1 must be of the form

(s1,−2a,−1, 1, b, b, s1 + 1) = es1w
bξes1+1

(p− 1,−2b− 1, 1, 0, b+ 1, b, 2) = ep−1ξ ⊗ (ξ ⊗ ξ)⊗b ⊗ ξe2

(s2,−2a− 1, 1, 0, a, a+ 1, p+ 1− s2) = es2(ξ ⊗ ξ)⊗a+1ep+1−s2
(s3, 1, 1, 0,−1, 0, p+ 1− s3) = es3 ⊗ e∗p+1−s3

with 1 ≤ s1 ≤ p − 1, 1 ≤ s2 ≤ p − 2, 1 ≤ s3 ≤ p − 1, a, b ≥ 0. By
minimality of l, the a- and b-degree of vl−1 must satisfy al−1−bl−1 ≥ 2.
Hence al cannot be equal to -1.
Assume al = 1. That means vl−1 has j-degree -1 and by Lemma 4.4.5
is of the form

(s,−2a,−1, 1, a, a, s+ 1) = esw
axes+1

(p,−2a− 1,−1, 0, a+ 1, a, 1) = ep ⊗ (ξ ⊗ ξ)⊗a ⊗ e1

(p− 1,−2a− 1,−1, 1, a+ 1, a, 2) = ep−1ξ ⊗ (ξ ⊗ ξ)⊗a ⊗ xe2

(∼= ep−1x⊗ (ξ ⊗ ξ)⊗a ⊗ ξe2)

with 1 ≤ s ≤ p − 1, a ≥ 0. However, again by minimality of l, the a-
and b-degree of vl−1 must satisfy al−1 − bl−1 ≥ 2. Hence al cannot be
equal to 1 either.

· Assume bl ≥ 1, and al − bl 6= 0; in particular vl is not of type 3, and
thus vl−1 must be of type 1. Since al−1 − bl−1 ≥ 2 by minimality of l,
we can apply Lemma 4.4.11: if sl−1 ≤ p− 2 or tl−1 ≥ 3, v is reducible.
Assume now that sl−1 > p− 2 and tl−1 < 3.
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That means that vl−1 is of the form

(p,−a− b,−p(a− b)− (1− p) + 2u,
(p− 1)(a− b) + (1− p)− u, a, b, 1)

= ep ⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

(p,−a− b,−p(a− b)− (2− p) + 2u,
(p− 1)(a− b) + (2− p)− u, a, b, 2)

= ep ⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ xe2

(p− 1,−a− b,−p(a− b)− (1− (p− 1)) + 2u,
(p− 1)(a− b) + (1− (p− 1))− u, a, b, 1)

= ep−1x⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

(p− 1,−a− b,−p(a− b)− (2− (p− 1)) + 2u,
(p− 1)(a− b) + (2− (p− 1))− u, a, b, 2)

= ep−1x⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ xe2

with al−1 − bl−1 ≥ 2 by minimality of l. Recall that

ep ⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

is the same element as

ep ⊗ (ξ ⊗ ξ)⊗b ⊗ (xp−1)⊗a−b−1−u ⊗ (xp−2ξ)u ⊗ e1

in homology. Hence in all cases, we can factor j-degree -2 elements
x ⊗ e1 or ep ⊗ x from vl−1 both from the left side and the right side.
Let λ ≤ l − 2 be the largest index for which x can be factored from
vλ, either from the left or from the right. Note that such an index λ
exists: v1 = xn with n ≥ 3 by assumption, so λ ≥ 1. In particular, for
all λ < λ′ ≤ l − 2, it is impossible to factor x both from the left and
from the right of vλ′ . In addition, recall that for l0 = 2 ≤ λ′ ≤ l, the a-
and b-degree of vλ′ satisfy aλ′ − bλ′ ≥ 2 by minimality of l. Hence for
all λ < λ′ ≤ l − 2, vλ′ must be of the form

(p,−a− b,−p(a− b)− (1− p) + 2u, (p− 1)(a− b) + (1− p)− u, a, b, 1)

= ep ⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

∼= ep ⊗ (ξ ⊗ ξ)⊗b ⊗ (xp−1)⊗a−b−1−u ⊗ (xp−2ξ)u ⊗ e1

and we can factor ep ⊗ e1 on both sides. Therefore, we can write the
following decomposition

v1 ⊗ . . .⊗ vλ ⊗ . . .⊗ vl ⊗ . . .⊗ vq
= es1 ⊗ . . .⊗ esλ−1

⊗ x⊗ (ep ⊗ e1)⊗ . . .⊗ (ep ⊗ e1)⊗ L⊗ eslwesl
⊗esl+1

⊗ . . .⊗ esq
· v1 ⊗ . . .⊗ vλ−1 ⊗ ṽλ ⊗ ṽλ+1 ⊗ . . .⊗ ṽl−1 ⊗ ṽl ⊗ vl+1 ⊗ . . .⊗ vq

if we can factor x from the left of vλ, or

v1 ⊗ . . .⊗ vλ ⊗ . . .⊗ vl ⊗ . . .⊗ vq
= v1 ⊗ . . .⊗ vλ−1 ⊗ ṽλ ⊗ ṽλ+1 ⊗ . . .⊗ ṽl−1 ⊗ ṽl ⊗ vl+1 ⊗ . . .⊗ vq
· et1 ⊗ . . .⊗ etλ−1

⊗ x⊗ (ep ⊗ e1)⊗ . . .⊗ (ep ⊗ e1)⊗R⊗ etlwetl
⊗etl+1

⊗ . . .⊗ etq

if we can factor x from the right of vλ, where ṽc is the remaining part
of vc after factorisation, and L,R ∈ {x⊗ e1, ep ⊗ x} depending on the
element vl−1. Hence v is reducible.
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• If l0 > 2, then we are in the following situation

v1 ⊗
i≥−2︷ ︸︸ ︷

v2 ⊗ . . .⊗ vl0−1⊗vl0 ⊗ . . .⊗ vq.

1. If al0−1 − bl0−1 = 0, then by Lemma 4.4.12, v is reducible;

2. If al0−1 − bl0−1 = 1, then in particular, al0−1 = 1 and bl0−1 = 0 since −al0−1 −
bl0−1 = il0−1 ≥ −2. By Expression 4.3, we see that vl0−1 is one of

(sl0−1,−1,−p− (tl0−1 − sl0−1),
p− 1 + (tl0−1 − sl0−1), 1, 0, tl0−1)

= xp−sl0−1 ⊗ xtl0−1−1 tl0−1 − sl0−1 ≥ 3− p

(p− 1,−1,−tl0−1 + 1,
tl0−1 − 1, 1, 0, tl0−1)

= ξ ⊗ xtl0−1−1 tl0−1 − 1 ≥ 3

(sl0−1,−1,−p+ sl0−1,
p− sl0−1, 1, 0, 2)

= xp−sl0−1 ⊗ ξ p− sl0−1 ≥ 3

– If bl0 ≥ 1, since il0 ≤ −3, we can apply Lemma 4.4.11: if sl0−1 ≤ p − 2 or
tl0−1 ≥ 3, v is reducible. Assume now that sl0−1 > p− 2 and tl0−1 < 3. We
have −3 ≥ il0 = jl0−1 = −p− tl0−1 + sl0−1 + 2ul0−1, i.e.

p− 3− 2ul0−1 ≥ −tl0−1 + sl0−1 > −3 + p− 2 = p− 5

with ul0−1 ∈ {0, 1}. We get ul0−1 = 0, sl0−1 = p − 1 and tl0−1 = 2. In
particular, il0 = −3.
Hence we are in the situation where vl0 ∈ H(u−3) and v writes

v1 ⊗ . . .⊗ vl0−2 ⊗ (x⊗ x)⊗ vl0 ⊗ . . .⊗ vq,

and we clearly cannot factor any x2 from vl0−1. However, we can always
write

v1 ⊗ . . .⊗ vq

= v1 ⊗ . . .⊗ vl0−2 ⊗

ep−1x⊗e1︷ ︸︸ ︷
(p− 1,−1,−2, 1, 1, 0, 1)⊗

esl0
wesl0︷ ︸︸ ︷

(sl0 ,−2, 0, 0, 1, 1, sl0)
⊗esl0+1

⊗ . . .⊗ esq

· et1 ⊗ . . .⊗ etl0−2

⊗
e1xe2︷ ︸︸ ︷

(1, 0,−1, 1, 0, 0, 2)⊗(sl0 , il0 + 2, jl0 , kl0 , al0 − 1, bl0 − 1, tl0)
⊗vl0+1 ⊗ . . .⊗ vq.

So v is reducible in that case too.

– The remaining case to cover is if bl0 = 0. Since il0 = −al0 − bl0 , we have
al0 ≥ 3, and in particular, al0 − bl0 ≥ 3 ≥ 2.

∗ Assume that an−bn ≥ 2 for all l0 ≤ n ≤ q. Then, by Proposition 4.4.9,
v is reducible.

∗ Otherwise, we see that there exists an index l0 < l ≤ q such that
al − bl ≤ 1, and we assume it is minimal with that property.
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· If al − bl = 0, then by Proposition 4.4.14 v is reducible.

· If bl ≥ 1 and al − bl 6= 0, then in particular vl is not of type 3, and
thus vl−1 must be of type 1. Since al−1 − bl−1 ≥ 2 by minimality
of l, we can apply Lemma 4.4.11: if sl−1 ≤ p − 2 or tl−1 ≥ 3, v is
reducible. Assume now that sl−1 > p− 2 and tl−1 < 3.
That means that vl−1 is of the form

(p,−a− b,−p(a− b)− (1− p) + 2u,
(p− 1)(a− b) + (1− p)− u, a, b, 1)

= ep ⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

(p,−a− b,−p(a− b)− (2− p) + 2u,
(p− 1)(a− b) + (2− p)− u, a, b, 2)

= ep ⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ xe2

(p− 1,−a− b,−p(a− b)− (1− (p− 1)) + 2u,
(p− 1)(a− b) + (1− (p− 1))− u, a, b, 1)

= ep−1x⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

(p− 1,−a− b,−p(a− b)− (2− (p− 1)) + 2u,
(p− 1)(a− b) + (2− (p− 1))− u, a, b, 2)

= ep−1x⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ xe2

with al−1 − bl−1 ≥ 2 by minimality of l. Recall that

ep ⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

is the same element as

ep ⊗ (ξ ⊗ ξ)⊗b ⊗ (xp−1)⊗a−b−1−u ⊗ (xp−2ξ)u ⊗ e1

in homology. Hence in all cases, we can factor j-degree -2 elements
x⊗ e1 or ep ⊗ x from vl−1 both from the left side and the right side.
Let 1 ≤ λ ≤ l−2 be the largest index for which x can be factored from
vλ, from the left or from the right. In particular, for all λ < λ′ ≤ l−2,
it is both impossible to factor x from the left and from the right of
vλ′ . Hence if maxλ, l0 − 1 < λ′ ≤ l − 2, vλ′ must be of the form

(p,−a− b,−p(a− b)− (1− p) + 2u, (p− 1)(a− b) + (1− p)− u, a, b, 1)

= ep ⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

∼= ep ⊗ (ξ ⊗ ξ)⊗b ⊗ (xp−1)⊗a−b−1−u ⊗ (xp−2ξ)u ⊗ e1

as aλ′ − bλ′ ≥ 2 for all l0 ≤ λ′ ≤ l − 2, and we can factor ep ⊗ e1 on
both sides of vλ′ . Thus, if λ ≥ l0 − 1, we have a decomposition as
announced in the introduction, namely we have

v1 ⊗ . . .⊗ vl0 ⊗ . . .⊗ vλ ⊗ . . .⊗ vq
= es1 ⊗ . . .⊗ esλ−1

⊗ x⊗ (ep ⊗ e1) . . .⊗ (ep ⊗ e1)⊗ L⊗ w
⊗esl+1

⊗ . . .⊗ esq
· v1 ⊗ . . .⊗ vl0 ⊗ . . .⊗ vλ−1 ⊗ ṽλ ⊗ . . .⊗ ṽl ⊗ vl+1 ⊗ . . .⊗ vq

or

v1 ⊗ . . .⊗ vl0 ⊗ . . .⊗ vλ ⊗ . . .⊗ vq
= v1 ⊗ . . .⊗ vl0 ⊗ . . .⊗ vλ−1 ⊗ ṽλ ⊗ . . .⊗ ṽl ⊗ vl+1 ⊗ . . .⊗ vq
· et1 ⊗ . . .⊗ etλ−1

⊗ x⊗ (ep ⊗ e1) . . .⊗ (ep ⊗ e1)⊗R⊗ w
⊗etl+1

⊗ . . .⊗ etq
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4.4. Decomposition of chained elements of HTd(u)≤1

where R,L ∈ {x⊗ e1, ep ⊗ x}, and v is reducible.
Going back to the introduction of Case al0−1− bl0−1 = 1, we see that
by Expression 4.3, vl0−1 is one of

(s,−1,−p− (t− s),
p− 1 + (t− s), 1, 0, t) = xp−s ⊗ xt−1 t− s ≥ 3− p

(p− 1,−1,−t+ 1,
t− 1, 1, 0, tl0−1)

= ξ ⊗ xt−1 t− 1 ≥ 3

(s,−1,−p+ s,
p− s, 1, 0, 2)

= xp−s ⊗ ξ p− s ≥ 3

and all the elements above have at least one factor x on the left or
on the right; in particular, λ ≥ l0 − 1, so v is reducible.

· The only outstanding cases are if al − bl ≤ 1, al − bl 6= 0, and bl = 0,
namely if al = 1 or if al = −1.
Assume al = −1, i.e. vl is of type 3. Then by Lemma 4.3.1, the
element vl−1 must then be of the form

(s1,−2a,−1, 1, b, b, s1 + 1) = es1w
bξes1+1

(p− 1,−2b− 1, 1, 0, b+ 1, b, 2) = ep−1ξ ⊗ (ξ ⊗ ξ)⊗b ⊗ ξe2

(s2,−2a− 1, 1, 0, a, a+ 1, p+ 1− s2) = es2(ξ ⊗ ξ)⊗a+1ep+1−s2
(s3, 1, 1, 0,−1, 0, p+ 1− s3) = es3 ⊗ e∗p+1−s3

with 1 ≤ s1 ≤ p − 1, 1 ≤ s2 ≤ p − 2, 1 ≤ s3 ≤ p − 1, a, b ≥ 0. By
minimality of l, the a- and b-degree of vl−1 must satisfy al−1−bl−1 ≥
2. Hence al cannot be equal to -1.
Assume al = 1. That means vl−1 has j-degree -1 and by Lemma
4.4.5 is of the form

(s1,−2a,−1, 1, a, a, s1 + 1) = es1w
axes1+1

(s2,−2a,−1, 2, a, a, s2 + 3) = es2w
ax2ξes2+3

(p,−2a− 1,−1, 0, a+ 1, a, 1) = ep ⊗ (ξ ⊗ ξ)⊗a ⊗ e1,

(p,−2a− 1,−1, 1, a+ 1, a, 3) = ep ⊗ (ξ ⊗ ξ)⊗a ⊗ xξe3,

(p− 1,−2a− 1,−1, 1, a+ 1, a, 2) = ep−1ξ ⊗ (ξ ⊗ ξ)⊗a ⊗ xe2

(∼= ep−1x⊗ (ξ ⊗ ξ)⊗a ⊗ ξe2),

(p− 2,−2a− 1,−1, 1, a+ 1, a, 1) = ep−2xξ ⊗ (ξ ⊗ ξ)⊗a ⊗ e1.

with 1 ≤ s1 ≤ p − 1, 1 ≤ s2 ≤ p − 3, a ≥ 0. However, again by
minimality of l, the a- and b-degree of vl−1 must satisfy al−1−bl−1 ≥
2. Hence al cannot be equal to 1 either.

3. If al0−1 − bl0−1 = 2, then in particular, al0−1 = 2 and bl0−1 = 0 since −al0−1 −
bl0−1 = il0−1 ≥ −2. This means vl0−1 is one of

(sl0−1,−2,−2p− (tl0−1 − sl0−1),
2(p− 1) + (tl0−1 − sl−1), 2, 0, tl0−1)

= xp−sl0−1 ⊗ xp−1 ⊗ xtl0−1−1

(p− 1,−2,−p− tl0−1 + 1,
p+ tl0−1 − 2, 2, 0, tl0−1)

= ξ ⊗ xp−1 ⊗ xtl0−1−1

(sl0−1,−2,−2p+ sl0−1,
2p− sl0−1 − 1, 2, 0, 2)

= xp−sl0−1 ⊗ xp−1 ⊗ ξ

(p,−2,−p+ 1, p− 2, 2, 0, 1) = ep ⊗ xp−2ξ ⊗ e1 p > 3
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– If bl0 ≥ 1, since il0 ≤ −3, we can apply Lemma 4.4.11: if sl0−1 ≤ p − 2 or
tl0−1 ≥ 3, v is reducible. Assume now that sl0−1 > p− 2 and tl0−1 < 3.
Thus vl0−1 is one of

(p,−2,−2p− (1− p),
2(p− 1) + (1− p), 2, 0, 1)

= ep ⊗ xp−1 ⊗ e1

(p− 1,−2,−2p− (1− p+ 1),
2(p− 1) + (1− p+ 1), 2, 0, 1)

= x⊗ xp−1 ⊗ e1

(p,−2,−2p− (2− p),
2(p− 1) + (2− p), 2, 0, 2)

= ep ⊗ xp−1 ⊗ x

(p− 1,−2,−2p− (2− p+ 1),
2(p− 1) + (2− p+ 1), 2, 0, 2)

= x⊗ xp−1 ⊗ x

(p− 1,−2,−p− 1 + 1,
p+ 1− 2, 2, 0, 1)

= ξ ⊗ xp−1 ⊗ e1 ∼= x⊗ xp−2ξ ⊗ e1

(p− 1,−2,−p− 2 + 1,
p+ 2− 2, 2, 0, 2)

= ξ ⊗ xp−1 ⊗ x ∼= x⊗ xp−2ξ ⊗ x

(p,−2,−2p+ p,
2p− p− 1, 2, 0, 2)

= ep ⊗ xp−1 ⊗ ξ ∼= ep ⊗ xp−2ξ ⊗ x

(p− 1,−2,−2p+ p− 1,
2p− p− 1− 1, 2, 0, 2)

= x⊗ xp−1 ⊗ ξ ∼= x⊗ xp−2ξ ⊗ x

(p,−2,−p+ 1, p− 2, 2, 0, 1) = ep ⊗ xp−2ξ ⊗ e1 p > 3

In all cases, we can factor an element of H(u−1) of j-degree -2, namely one
of 

(p,−1,−2, 1, 1, 0, 2) = ep ⊗ x

(p− 1,−1,−2, 1, 1, 0, 1) = x⊗ e1

both from the left and from the right. Let 1 ≤ λ ≤ l0 − 2 be the largest
index such that x can be factored from vλ from the left or from the right.
In particular, if λ < l0− 2, for all λ < λ′ ≤ l0− 2, it is impossible to factor
x both from the left and from the right of vλ′ . Since vl0−1 has i-degree -2
by assumption, vl0−2 has j-degree -2 and by Lemma 4.4.6, it implies that

∗ either λ = l0 − 2, i.e. we can factor x from the left or from the right of
vl0−2, and we can write the following non-trivial decomposition

v1 ⊗ . . .⊗ vλ−1 ⊗ vλ ⊗ . . .⊗ vl0−1 ⊗ vl0 ⊗ vl0+1 ⊗ . . .⊗ vq
= es1 ⊗ . . .⊗ esl0−3

⊗ x⊗ L⊗ esl0wesl0 ⊗ esl0+1
⊗ . . .⊗ esq

· v1 ⊗ . . .⊗ vl0−3 ⊗ ṽl0−2 ⊗ ṽl0−1 ⊗ ṽl0 ⊗ vl0+1 ⊗ . . .⊗ vq

if we can factor x from the left of vl0−2, or

v1 ⊗ . . .⊗ vλ−1 ⊗ vλ ⊗ . . .⊗ vl0−1 ⊗ vl0 ⊗ vl0+1 ⊗ . . .⊗ vq
= v1 ⊗ . . .⊗ vl0−3 ⊗ ṽl0−2 ⊗ ṽl0−1 ⊗ ṽl0 ⊗ vl0+1 ⊗ . . .⊗ vq
· et1 ⊗ . . .⊗ etl0−3

⊗ x⊗R⊗ etl0wetl0 ⊗ etl0+1
⊗ . . .⊗ etq

if we can factor x from the right of vl0−2, where ṽc is the remaining
part of vc after factorisation, and L,R ∈ {ep⊗ x, x⊗ e1} depending on
the element vl0−1;
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∗ or we cannot factor x from either side of vl0−2, and hence by Lemma
4.4.6 p = 3 and vl0−2 must be

(3,−2a− 2,−2, 1, a+ 2, a, 1) = e3 ⊗ xξ ⊗ (ξ ⊗ ξ)⊗a ⊗ e1

By minimality of l0, it has i-degree at least -2, hence a = 0. Thus it has
i-degree -2 and as a result, we see that vλ′ must be the same element

(3,−2,−2, 1, 2, 0, 1) = e3 ⊗ xξ ⊗ e1

for all λ < λ′ ≤ l0 − 2. We see that we can factor

(3,−1,−1, 0, 1, 0, 1) = e3 ⊗ e1

both on the left and on the right from all vλ′ , λ < λ′ ≤ l0 − 2, and
hence, if we factor x from the left of vλ, we can write the following
decomposition

v1 ⊗ . . .⊗ vλ−1 ⊗ vλ ⊗ . . .⊗ vl0−1 ⊗ vl0 ⊗ vl0+1 ⊗ . . .⊗ vq

= es1 ⊗ . . .⊗ esλ−1
⊗ x⊗ (e3 ⊗ e1)⊗ . . .⊗ (e3 ⊗ e1)⊗ L

⊗esl0wesl0 ⊗ esl0+1
⊗ . . .⊗ esq

· v1 ⊗ . . .⊗ vλ−1 ⊗ ṽλ ⊗ ṽλ+1 ⊗ . . .⊗ ṽl0 ⊗ vl0+1 ⊗ . . .⊗ vq

or

v1 ⊗ . . .⊗ vλ−1 ⊗ vλ ⊗ . . .⊗ vl0−1 ⊗ vl0 ⊗ vl0+1 ⊗ . . .⊗ vq

= v1 ⊗ . . .⊗ vλ−1 ⊗ ṽλ ⊗ ṽλ+1 ⊗ . . .⊗ ṽl0 ⊗ vl0+1 ⊗ . . .⊗ vq

· et1 ⊗ . . .⊗ etλ−1
⊗ x⊗ (e3 ⊗ e1)⊗ . . .⊗ (e3 ⊗ e1)⊗R

⊗etl0wetl0 ⊗ etl0+1
⊗ . . .⊗ etq

if we factor x from the right of vλ, where ṽc is the remaining part of vc
after factorisation, and L,R ∈ {ep⊗x, x⊗ e1, ξ⊗x2, x2⊗ ξ} depending
on the element vl0−1. Note that in both cases, if λ = 1, then v1 must
be x2 and it is possible to factor x both from the left and from the
right, hence v is reducible.

– If bl0 = 0, then al0 ≥ 3 since −al0 − bl0 = il0 ≤ −3.

∗ Assume an − bn ≥ 2 for all l0 ≤ n ≤ q. Then by Proposition 4.4.9,
there exists a non-trivial decomposition and v is reducible.

∗ Otherwise, let l be the minimal index, l0 < l ≤ q, such that al− bl ≤ 1.
In particular, an − bn ≥ 2 for all l0 ≤ n < l. We need to examine three
cases.

· Assume al − bl = 0. Then by Proposition 4.4.14, v is reducible.

· Assume bl ≥ 1, and al − bl 6= 0; in particular vl is not of type 3, and
thus vl−1 must be of type 1. Since al−1 − bl−1 ≥ 2 by minimality
of l, we can apply Lemma 4.4.11: if sl−1 ≤ p − 2 or tl−1 ≥ 3, v is
reducible. Assume now that sl−1 > p− 2 and tl−1 < 3.
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That means that vl−1 is of the form

(p,−a− b,−p(a− b)− (1− p) + 2u,
(p− 1)(a− b) + (1− p)− u, a, b, 1)

= ep ⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

(p,−a− b,−p(a− b)− (2− p) + 2u,
(p− 1)(a− b) + (2− p)− u, a, b, 2)

= ep ⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ xe2

(p− 1,−a− b,−p(a− b)− (1− (p− 1)) + 2u,
(p− 1)(a− b) + (1− (p− 1))− u, a, b, 1)

= ep−1x⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

(p− 1,−a− b,−p(a− b)− (2− (p− 1)) + 2u,
(p− 1)(a− b) + (2− (p− 1))− u, a, b, 2)

= ep−1x⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ xe2

with al−1 − bl−1 ≥ 2 by minimality of l. Recall that

ep ⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

is the same element as

ep ⊗ (ξ ⊗ ξ)⊗b ⊗ (xp−1)⊗a−b−1−u ⊗ (xp−2ξ)u ⊗ e1

in homology. Hence in all cases, we can factor j-degree -2 elements
x⊗ e1 or ep ⊗ x from vl−1 both from the left side and the right side.
Let 1 ≤ λ ≤ l−2 be the largest index for which x can be factored from
vλ, from the left or from the right. In particular, for all λ < λ′ ≤ l−2,
it is both impossible to factor x from the left and from the right of
vλ′ . Hence if max l0 − 1, λ < λ′ ≤ l − 2, vλ′ must be of the form

(p,−a− b,−p(a− b)− (1− p) + 2u, (p− 1)(a− b) + (1− p)− u, a, b, 1)

= ep ⊗ (xp−2ξ)u ⊗ (xp−1)⊗a−b−1−u ⊗ (ξ ⊗ ξ)⊗b ⊗ e1

∼= ep ⊗ (ξ ⊗ ξ)⊗b ⊗ (xp−1)⊗a−b−1−u ⊗ (xp−2ξ)u ⊗ e1

as aλ′ − bλ′ ≥ 2.
And for all l0 ≤ λ′ ≤ l − 2, and we can factor ep ⊗ e1 on both sides
of vλ′ .
Thus, if λ ≥ l0 − 1, we have a decomposition as announced in the
introduction, namely we have

v1 ⊗ . . .⊗ vl0 ⊗ . . .⊗ vλ ⊗ . . .⊗ vq
= es1 ⊗ . . .⊗ esλ−1

⊗ x⊗ (ep ⊗ e1) . . .⊗ (ep ⊗ e1)⊗ L⊗ w
⊗esl+1

⊗ . . .⊗ esq
· v1 ⊗ . . .⊗ vl0 ⊗ . . .⊗ vλ−1 ⊗ ṽλ ⊗ . . .⊗ ṽl ⊗ vl+1 ⊗ . . .⊗ vq

or

v1 ⊗ . . .⊗ vl0 ⊗ . . .⊗ vλ ⊗ . . .⊗ vq
= v1 ⊗ . . .⊗ vl0 ⊗ . . .⊗ vλ−1 ⊗ ṽλ ⊗ . . .⊗ ṽl ⊗ vl+1 ⊗ . . .⊗ vq
· et1 ⊗ . . .⊗ etλ−1

⊗ x⊗ (ep ⊗ e1) . . .⊗ (ep ⊗ e1)⊗R⊗ w
⊗etl+1

⊗ . . .⊗ etq

where R,L ∈ {x⊗ e1, ep ⊗ x}, and v is reducible.
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Now, if 1 ≤ λ ≤ l0−2, we use the same factorisations found so far for
vλ′ where l0 ≤ λ′ ≤ l. For all 1 ≤ λ′ ≤ l0− 1 vλ′ has at least i-degree
-2 by assumption. Thus the element vl0−1 has i-degree at least -2
and j-degree at most -3 and it is not possible to factor any x from it.
Recall that by assumption al0−1 − bl0−1 = 2, so by Expression (4.4),
vl0−1 is one of

(s,−2,−2p− (t− s),
2(p− 1) + (t− s), 2, 0, t) = xp−s ⊗ xp−1 ⊗ xt−1

(p− 1,−2,−p− t+ 1,
p+ t− 2, 2, 0, t)

= ξ ⊗ xp−1 ⊗ xt−1

(s,−2,−2p+ s,
2p− s− 1, 2, 0, 2)

= xp−s ⊗ xp−1 ⊗ ξ

(p,−2,−p+ 1, p− 2, 2, 0, 1) = ep ⊗ xp−2ξ ⊗ e1 p > 3

Since it is impossible to factor x from it (as λ ≤ l0− 2), vl0−1 is then
one of

(p,−2,−p− 1, p− 1, 2, 0, 1) = ep ⊗ xp−1 ⊗ e1

(p− 1,−2,−p, p− 1, 2, 0, 1) = ξ ⊗ xp−1 ⊗ e1

(p,−2,−p, p− 1, 2, 0, 2) = ep ⊗ xp−1 ⊗ ξ

(p,−2,−p+ 1, p− 2, 2, 0, 1) = ep ⊗ xp−2ξ ⊗ e1 p > 3

Due to the following equalities in homology,

ξ ⊗ xp−1 ⊗ e1 = x⊗ xp−2ξ ⊗ e1

and
ep ⊗ xp−1 ⊗ ξ ∼= ep ⊗ xp−2ξ ⊗ x,

we see that x can actually be factored from the middle two possibil-
ities and v is reducible. Again, we can factor ep⊗ e1 from both sides
for the first and last possibility.
Now, for all λ < λ′ < l0 − 1, vλ′ is an element with i-degree at least
-2 such that x cannot be factored from it. Considering the i-degree,
vλ′ is one of

(s, 1, 1, 0,−1, 0, p+ 1− s) = es ⊗ e∗p+1−s

(s, 0,−(t− s) + 2u, t− s− u, 0, 0, t) = esx
t−s−uξuet

(s,−1, 1, 0, 0, 1, p+ 1− s) = esξ ⊗ ξep+1−s

(p− 1,−1, 1, 0, 1, 0, 2) = ep−1ξ ⊗ ξe2

(s,−1,−p− (t− s) + 2u,

(p− 1) + (t− s)− u, 1, 0, t) = esx
p−s−uξu ⊗ xt−1et

∼= esx
p−s ⊗ xt−1−uξuet

(s,−2,−(t− s) + 2u, t− s− u, 1, 1, t) = eswx
t−s−uξuet

(s,−2,−2p− (t− s) + 2u,

2(p− 1) + (t− s)− u, 2, 0, t) = esx
p−s ⊗ xp−1−uξu ⊗ xt−1et
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and removing the elements from which x can be factored, we are left
with 

(s, 1, 1, 0,−1, 0, p+ 1− s) = es ⊗ e∗p+1−s

(s, 0, u, 0, 0, 0, s+ u) = esξ
ues+u

(s,−1, 1, 0, 0, 1, p+ 1− s) = esξ ⊗ ξep+1−s

(p− 1,−1, 1, 0, 1, 0, 2) = ep−1ξ ⊗ ξe2

(p− u,−1, u− 1, 0, 1, 0, 1) = ep−uξ
u ⊗ e1

(p,−1, u− 1, 0, 1, 0, 1 + u) = ep ⊗ ξue1+u

(s,−2, u, 0, 1, 1, s+ u) = eswξ
ues+u

(p,−2,−p− 1 + 2u,

p− 1− u, 2, 0, 1) = ep ⊗ xp−1−uξu ⊗ e1

and finally, we can remove the elements with j-degree 1 as type 3
elements cannot follow: vl0−1 is a type 1 element and can only be
preceded by type 1 elements. That means the possibilities reduce to

(s, 0, 0, 0, 0, 0, s) = es

(p− u,−1, u− 1, 0, 1, 0, 1) = ep−uξ
u ⊗ e1

(p,−1, u− 1, 0, 1, 0, 1 + u) = ep ⊗ ξue1+u

(s,−2, 0, 0, 1, 1, s) = eswes

(p,−2,−p− 1 + 2u,

p− 1− u, 2, 0, 1) = ep ⊗ xp−1−uξu ⊗ e1

Now, if vλ′ ∈ {esλ′ , ξ⊗ e1, ep⊗ ξ, esλ′wesλ′} for some λ < λ′ < l0− 1,
since it has j-degree 0, vλ′+1 is an element of d. In particular, its a-
and b-degree are equal. By Lemma 4.4.12, we see that v is reducible
unless vλ′+1 is an idempotent. By Corollary 4.4.13, if v is irreducible,
then vη = esη for all λ′ < η < l0−1. In particular, vl0−1 has i-degree
0, which is a contradiction since we assumed vl0−1 is one of the two
following i-degree -2 elements

(p,−2,−p− 1, p− 1, 2, 0, 1) = ep ⊗ xp−1 ⊗ e1

(p,−2,−p+ 1, p− 2, 2, 0, 1) = ep ⊗ xp−2ξ ⊗ e1

Hence, if vλ′ ∈ {esλ′ , ξ⊗e1, ep⊗ξ, esλ′wesλ′} for some λ < λ′ < l0−1,
then v is reducible.
Furthermore, if vλ′ = ep ⊗ e1 for some λ < λ′ < l0 − 1, then vλ′+1 ∈
{ξ ⊗ e1, ep ⊗ ξ, ep ⊗ e1}. By the same analysis as before, we see that
v is reducible if vλ′+1 is one of the two j-degree 0 elements ξ ⊗ e1

or ep ⊗ ξ. Thus, it remains to consider the case vη = ep ⊗ e1 for all
λ′ ≤ η < l0 − 1. We reach another contradiction as vl0−2 = ep ⊗ e1

has j-degree -1 when vl0−1 has i-degree -2 by assumption.
Finally, if vλ′ = ep ⊗ xp−1−uξu ⊗ e1 for some λ < λ′ < l0 − 1, since
vη has i-degree at least -2 for all 2 ≤ η ≤ l0 − 1, the j-degree of vλ′
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must satisfy
−p− 1 + 2u ≥ −2

or equivalently
1 + 2u ≥ p

which is if and only if u = 1 and p = 3. That means that if p > 3,
then v is reducible and λ ≥ l0−2. If p = 3, we see that in particular,
vλ′ = e3 ⊗ xξ ⊗ e1 has j-degree -2 and vη ∈ {eswes, e3 ⊗ xξ ⊗ e1}
for all λ′ < η < l0 − 1. Similarly to previous considerations, if vη
is equal to the j-degree 0 element eswes, then v is reducible. Thus
we need to consider the case when vη is equal to e3 ⊗ xξ ⊗ e1 for all
λ′ ≤ η < l0 − 1, and vl0−1 equals e3 ⊗ x2 ⊗ e1. In particular, for the
chaining rule to be respected, if vλ′ = e3 ⊗ xξ ⊗ e1 (an (i, j)-degree
(-2,-2) element) for some λ < λ′ < l0 − 1, then vη = e3 ⊗ xξ ⊗ e1 for
all λ < η < l0 − 1. In addition, vλ must have j-degree -2. Hence, we
are in the following situation

v1⊗ . . .⊗ vλ⊗ (e3 ⊗ xξ ⊗ e1)⊗l0−2−λ⊗
(
e3 ⊗ x2 ⊗ e1

)
⊗ vl0 ⊗ . . .⊗ vq

and we can again factor ep⊗e1 = e3⊗e1 both from the left and from
the right of vη for all λ < η ≤ l0 − 1. By assumption, we can factor
x from vλ and we obtain the following decomposition

v1 ⊗ . . .⊗ vλ ⊗ . . .⊗ vl ⊗ . . .⊗ vq
= es1 ⊗ . . .⊗ esλ−1

⊗ x⊗ (ep ⊗ e1)⊗ . . .⊗ (ep ⊗ e1)⊗ L⊗ eslwesl
⊗esl+1

⊗ . . .⊗ esq
· v1 ⊗ . . .⊗ vλ−1 ⊗ ṽλ ⊗ ṽλ+1 ⊗ . . .⊗ ṽl−1 ⊗ ṽl ⊗ vl+1 ⊗ . . .⊗ vq

if we can factor x from the left of vλ, or

v1 ⊗ . . .⊗ vλ ⊗ . . .⊗ vl ⊗ . . .⊗ vq
= v1 ⊗ . . .⊗ vλ−1 ⊗ ṽλ ⊗ ṽλ+1 ⊗ . . .⊗ ṽl−1 ⊗ ṽl ⊗ vl+1 ⊗ . . .⊗ vq
· et1 ⊗ . . .⊗ etλ−1

⊗ x⊗ (ep ⊗ e1)⊗ . . .⊗ (ep ⊗ e1)⊗R⊗ etlwetl
⊗etl+1

⊗ . . .⊗ etq

if we can factor x from the right of vλ, where ṽc is the remaining
part of vc after factorisation, and L,R ∈ {x⊗ e1, ep ⊗ x} depending
on the element vl−1.
Note that if λ = 1, vλ = v1 is an element of d with j-degree -2, hence
v1 = x2 and we can factor x. In particular, λ exists.

· Assume bl = 0 and al−bl 6= 0. Since al−bl ≤ 1, we see that al = 1 or
al = −1 (al < −1 does not correspond to any element in HTd(u)≤1).
Assume al = −1, i.e. vl is of type 3. Then by Lemma 4.3.1, the
element vl−1 must then be of the form

(s1,−2a,−1, 1, b, b, s1 + 1) = es1w
bξes1+1

(p− 1,−2b− 1, 1, 0, b+ 1, b, 2) = ep−1ξ ⊗ (ξ ⊗ ξ)⊗b ⊗ ξe2

(s2,−2a− 1, 1, 0, a, a+ 1, p+ 1− s2) = es2(ξ ⊗ ξ)⊗a+1ep+1−s2
(s3, 1, 1, 0,−1, 0, p+ 1− s3) = es3 ⊗ e∗p+1−s3

with 1 ≤ s1 ≤ p − 1, 1 ≤ s2 ≤ p − 2, 1 ≤ s3 ≤ p − 1, a, b ≥ 0. By
minimality of l, the a- and b-degree of vl−1 must satisfy al−1−bl−1 ≥
2. Hence al cannot be equal to -1.
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Assume al = 1. That means vl−1 has j-degree -1 and by Lemma
4.4.5 is of the form

(s1,−2a,−1, 1, a, a, s1 + 1) = es1w
axes1+1

(p,−2a− 1,−1, 0, a+ 1, a, 1) = ep ⊗ (ξ ⊗ ξ)⊗a ⊗ e1

(p− 1,−2a− 1,−1, 1, a+ 1, a, 2) = ep−1ξ ⊗ (ξ ⊗ ξ)⊗a ⊗ xe2

(∼= ep−1x⊗ (ξ ⊗ ξ)⊗a ⊗ ξe2)

with 1 ≤ s1 ≤ p − 1, 1 ≤ s2 ≤ p − 3, a ≥ 0. However, again by
minimality of l, the a- and b-degree of vl−1 must satisfy al−1−bl−1 ≥
2. Hence al cannot be equal to 1 either.

Hence v is reducible.

4.5 New irreducible monomials of wq

A consequence of the previous result is that we can only build irreducible monomials from
elements of i-degree at least -2, and they must have j-degree at least -2 as well.

Lemma 4.5.1. The monomial basis elements of HTd(u)≤1 of i-degree at least -2 and
j-degree at least -2 from which xξ cannot be non-trivially factored are given below

(s, 1, 1, 0, −1, 0, p+ 1− s) = es ⊗ e∗p+1−s

(s, 0, 1, 0, 0, 0, s+ 1) = esξes+1

(s, 0, 0, 0, 0, 0, s) = es
(s, 0, 0, 1, 0, 0, s+ 2) = esxξes+2

(s, 0, −1, 1, 0, 0, s+ 1) = esxes+1

(s, 0, −2, 2, 0, 0, s+ 2) = esx
2es+2

(p− 1, −1, 1, 0, 1, 0, 2) = ep−1ξ ⊗ ξe2

(s, −1, 1, 0, 0, 1, p+ 1− s) = esξ ⊗ ξep+1−s
(p, −1, 0, 0, 1, 0, 2) = ep ⊗ ξe2

(p− 1, −1, 0, 0, 1, 0, 1) = ep−1ξ ⊗ e1

(p, −1, −1, 0, 1, 0, 1) = ep ⊗ e1

(p− 1, −1, −1, 1, 1, 0, 2) = ep−1ξ ⊗ xe2
∼= ep−1x⊗ ξe2

(p, −1, −2, 1, 1, 0, 2) = ep ⊗ xe2

(p− 1, −1, −2, 1, 1, 0, 1) = ep−1x⊗ e1

(s, −2, 0, 0, 1, 1, s) = eswes
(3, −2, −2, 1, 2, 0, 1) = e3 ⊗ xξ ⊗ e1( if p = 3).

Proof. Let v be such a monomial basis element of HTd(u)≤1. Then its i-degree iv satisfies
−2 ≤ iv ≤ 1. Let us study these four different cases.

(iv = 1) If iv = 1, then v is an element of H(u) and so is of the form v = (s, 1, 1, 0,−1, 0, p+
1− s) = es ⊗ e∗p+1−s. Note that it is irreducible.

(iv = 0) If iv = 0, then v is an element of d, so it is of the form

(s, 0,−(t− s) + 2u, (t− s)− u, 0, 0, t),
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with t− s ≥ 0. The element v has at least j-degree -2 if and only if

−(t− s) + 2u ≥ −2

i.e. if and only if
t− s ≤ 2 + 2u.

If u = 0, we then have

� t− s = 0, and v = (s, 0, 0, 0, 0, 0, s) = es;

� t− s = 1, and v = (s, 0,−1, 1, 0, 0, s+ 1) = esxes+1;

� t− s = 2, and v = (s, 0,−2, 2, 0, 0, s+ 2) = esx
2es+2.

If u = 1, in particular t− s > 0 by definition of type 1 elements, and we have

� t− s = 1, and v = (s, 0, 1, 0, 0, 0, s+ 1) = esξes+1;

� t− s = 2, and v = (s, 0, 0, 1, 0, 0, s+ 2) = esxξes+2;

� t− s = 3, and v = (s, 0,−1, 2, 0, 0, s+ 3) = esx
2ξes+3;

� t− s = 4, and v = (s, 0,−2, 3, 0, 0, s+ 4) = esx
3ξes+4.

By Proposition 4.4.2, we know that we must eliminate esx
2ξes+3 and esx

3ξes+4 from
that list of possibilities. The elements of i-degree 0 satisfying the required conditions
are

(s, 0, 0, 0, 0, 0, s) = es
(s, 0,−1, 1, 0, 0, s+ 1) = esxes+1

(s, 0,−2, 2, 0, 0, s+ 2) = esx
2es+2

(s, 0, 1, 0, 0, 0, s+ 1) = esξes+1

(s, 0, 0, 1, 0, 0, s+ 2) = esxξes+2.

(iv = −1) If iv = −1, then v is an element of H(u−1) and so is of the form

(s,−1,−p− (t− s) + 2u, p− 1 + (t− s)− u, 1, 0, t),

or
(p− 1,−1, 1, 0, 1, 0, 2),

or
(s,−1, 1, 0, 0, 1, p+ 1− s),

with 1 ≤ s ≤ p− 2 in the last case.

The last two possibilities satisfy the conditions required and so are on the list. We
need to study the first possibility more carefully. Recall that 1 ≤ s, t ≤ p, so that
1− p ≤ t− s ≤ p− 1. The element v has at least j-degree -2 if and only if

−p− (t− s) + 2u ≥ −2

which writes equivalently
t− s ≤ 2 + 2u− p.

If u = 0, then 1− p ≤ t− s ≤ 2− p, so we have

� t− s = 1− p, and v = (p,−1,−1, 0, 1, 0, 1) = ep ⊗ e1;

� t− s = 2− p, and

∗ v = (p,−1,−2, 1, 1, 0, 2) = ep ⊗ xe2;

∗ or v = (p− 1,−1,−2, 1, 1, 0, 1) = ep−1x⊗ e1.
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If u = 1, then t− s ≥ 2− p by definition of type 1 elements as u = 1 and a− b = 1,
hence 2− p ≤ t− s ≤ 4− p, and we have

� t− s = 2− p, and

∗ v = (p,−1, 0, 0, 1, 0, 2) = ep ⊗ ξe2;

∗ or v = (p− 1,−1, 0, 0, 1, 0, 1) = ep−1ξ ⊗ e1;

� t− s = 3− p, and

∗ v = (p,−1,−1, 1, 1, 0, 3) = ep ⊗ xξe3;

∗ or v = (p− 1,−1,−1, 1, 1, 0, 2) = ep−1ξ ⊗ xe2
∼= ep−1x⊗ ξe2;

∗ or v = (p− 2,−1,−1, 1, 1, 0, 1) = ep−2xξ ⊗ e1;

� t− s = 4− p, and

∗ v = (p,−1,−2, 2, 1, 0, 4) = ep ⊗ x2ξe4;

∗ or v = (p− 1,−1,−2, 2, 1, 0, 3) = ep−1ξ ⊗ x2e3
∼= ep−1x⊗ xξe3;

∗ or v = (p− 2,−1,−2, 2, 1, 0, 2) = ep−2xξ ⊗ xe2
∼= ep−2x

2 ⊗ ξe2;

∗ or v = (p− 3,−1,−2, 2, 1, 0, 1) = ep−3x
2ξ ⊗ e1.

By Proposition 4.4.1, s and t must satisfy s > p− 2 and t < 3, so we must eliminate
all the elements of case u = 1 and t−s = 4−p, and elements ep⊗xξe3 and ep−2xξ⊗e1

of case u = 1 and t− s = 3− p.
The elements of i-degree -1 satisfying the required conditions are

(p,−1,−1, 0, 1, 0, 1) = ep ⊗ e1

(p,−1,−2, 1, 1, 0, 2) = ep ⊗ xe2

(p− 1,−1,−2, 1, 1, 0, 1) = ep−1x⊗ e1

(p,−1, 0, 0, 1, 0, 2) = ep ⊗ ξe2

(p− 1,−1, 0, 0, 1, 0, 1) = ep−1ξ ⊗ e1

(p− 1,−1,−1, 1, 1, 0, 2) = ep−1ξ ⊗ xe2
∼= ep−1x⊗ ξe2

(p− 1,−1, 1, 0, 1, 0, 2) = ep−1ξ ⊗ ξe2

(s,−1, 1, 0, 0, 1, p+ 1− s) = esξ ⊗ ξep+1−s.

(iv = −2) If iv = −2, then v is an element of H(u−2) and so is of the form

(s,−2,−(t− s) + 2u, (t− s)− u, 1, 1, t),

and t− s ≥ 0, or

(s,−2,−2p− (t− s) + 2u, 2(p− 1) + (t− s)− u, 2, 0, t).

Consider the j-degree in the latter case:

−2p− (t− s) + 2u ≥ −2

is equivalent to
t− s ≤ 2(1 + u− p),

but since 1 ≤ s, t ≤ p, 1− p ≤ t− s, and we have

1− p ≤ 2(1 + u− p)

or equivalently
p ≤ 1 + 2u.
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If u = 0, then we obtain a contradiction, so u = 1 and p = 3. We get 1− p = −2 ≤
t− s ≤ −2 = 2(1 + 1− 3), so s = t+ 2 and it satisfies 1 ≤ t+ 2 ≤ 3, i.e. s = 3 and
t = 1. The corresponding element is v = (3,−2,−2, 1, 2, 0, 1) = e3 ⊗ xξ ⊗ e1.

For the first possibility, by Lemma 4.4.12, we must have s = t in order not to get
any splitting. The corresponding element is v = (s,−2, 0, 0, 1, 1, s) = eswes.

The elements of i-degree -2 satisfying the required conditions are

(s,−2, 0, 0, 1, 1, s) = eswes
(3,−2,−2, 1, 2, 0, 1) = e3 ⊗ xξ ⊗ e1( if p = 3).

Corollary 4.5.2. The element in first position of an irreducible monomial v1 can be one
of

(s, 0, 1, 0, 0, 0, s+ 1) = esξes+1

(s, 0, 0, 0, 0, 0, s) = es
(s, 0, 0, 1, 0, 0, s+ 2) = esxξes+2

(s, 0, −1, 1, 0, 0, s+ 1) = esxes+1

(s, 0, −2, 2, 0, 0, s+ 2) = esx
2es+2

Since we want to understand the new arrows of wq, we can assume v1 is not an
idempotent of d.

4.5.1 Irreducible monomials starting with ξ, xξ or x2

Proposition 4.5.3 (Irreducible monomials starting with ξ). Let v = v1 ⊗ . . . ⊗ vq be an
irreducible monomial of wq such that v1 = es1ξes1+1 for some 1 ≤ s1 ≤ p− 1. Then v is
of the form

es1ξes1+1 ⊗
(
es2 ⊗ e∗p+1−s2

)
⊗ . . .⊗

(
esq ⊗ e∗p+1−sq

)
.

Proof. If v1 = es1ξes1+1, it has j-degree 1, hence only elements of type 3 can follow and
these elements are irreducible. We saw that only e1ξe2 and ep−1ξep are not always irre-
ducible (cf Remark 4.2.10). However, being in first position, they could only be obtained
as a product of two elements of d and we saw they are irreducible in HTd(u−1), hence the
result.

Proposition 4.5.4 (Irreducible monomials starting with xξ). Let v = v1⊗ . . .⊗ vq be an
irreducible monomial of wq such that v1 = es1xξes1+2 for some 1 ≤ s1 ≤ p− 2. Then v is
of the form

es1xξes1+2 ⊗ es2 ⊗ . . .⊗ esq ,

such that (s2, . . . , sq) /∈ {(1, . . . , 1), (p, . . . , p)}.

Proof. If v1 = es1xξes1+2, it has j-degree 0, hence an element of d must follow. By
Corollary 4.4.13 and since v is irreducible, vl = esl for all 2 ≤ l ≤ q. Note that v1 is not
irreducible: v1 = es1xes1+1 · es1+1ξes1+2 = es1ξes1+1 · es1+1xes1+2. Suppose we can write

es1xξes1+2 ⊗ es2 ⊗ . . .⊗ esq
= es1xes1+1 ⊗ ṽ2 ⊗ . . .⊗ ṽq
· es1+1ξes1+2 ⊗

(
et2 ⊗ e∗p+1−t2

)
⊗ . . .⊗

(
etq ⊗ e∗p+1−tq

)
or

es1xξes1+2 ⊗ es2 ⊗ . . .⊗ esq
= es1ξes1+1 ⊗

(
ep+1−s2 ⊗ e∗s2

)
⊗ . . .⊗

(
ep+1−sq ⊗ e∗sq

)
· es1+1xes1+2 ⊗ ṽ2 ⊗ . . .⊗ ṽq
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then in both cases we see that ṽl must have j-degree -1 for all 2 ≤ l ≤ q. By Table 2.2,
the only way to obtain a type 1 element of the form 1 · 3 or 3 · 1 is if the idempotents of
the type 1 element satisfy t = 1 or s = p (in particular, the element of type 3 is e1 ⊗ e∗p).
Hence, the first decomposition is possible if and only if esl = ep for all 2 ≤ l ≤ q, and the
second is possible if and only if esl = e1 for all 2 ≤ l ≤ q.

Proposition 4.5.5 (Irreducible monomials starting with x2). Let v = v1 ⊗ . . .⊗ vq be an
irreducible monomial of wq such that v1 = es1x

2es1+2 for some 1 ≤ s1 ≤ p− 2. Then v is
of the form

es1x
2es1+2 ⊗ es2wes2 ⊗ es3 ⊗ . . .⊗ esq ,

such that

• if s2 = 1, there exists 3 ≤ l ≤ q such that sl 6= 1;

• if s2 = p, there exists 3 ≤ l ≤ q such that sl 6= p.

Proof. If v1 = es1x
2es1+2, it has j-degree -2, hence by Lemma 4.5.1, v2 is one of

(s,−2, 0, 0, 0, 0, s) = eswes
(3,−2,−2, 1, 2, 0, 1) = e3 ⊗ xξ ⊗ e1 (if p = 3).

Assume p = 3 and v2 = e3 ⊗ xξ ⊗ e1. Since it has j-degree -2, v3 has i-degree -2. We can
write the following decomposition:

es1x
2es1+2 ⊗ (e3 ⊗ xξ ⊗ e1)⊗ v3 ⊗ . . .⊗ vq

= es1xes1+1 ⊗ (e3 ⊗ x)⊗ v3 ⊗ . . .⊗ vq
· es1+1xes1+2 ⊗ (ξ ⊗ e1)⊗ et3 ⊗ . . .⊗ etq

since e3 ⊗ xξ ⊗ e1 is the product of j-degree -2 element e3 ⊗ x with j-degree 0 element
ξ ⊗ e1.

Therefore v2 must be of the form es2wes2 for v to be irreducible. By Corollary 4.4.13,
vn = esn for all 3 ≤ n ≤ q and v is of the form

es1x
2es1+2 ⊗ es2wes2 ⊗ es3 ⊗ . . .⊗ esq .

By Remark 4.2.10, we know that eswes is not irreducible if and only if s = 1 or s = p,
in which case it can be more conveniently written

e1we1 = e1ξ ⊗ ξ ⊗ e1,

and
epwep = −ep ⊗ ξ ⊗ ξep.

We can write the following decompositions if s2 = 1

es1x
2es1+2 ⊗ es2wes2 ⊗ es3 ⊗ . . .⊗ esq

= es1xes1+1 ⊗ (e1ξ ⊗ ξep)⊗
(
es3 ⊗ e∗p+1−s3

)
⊗ . . .⊗

(
esq ⊗ e∗p+1−sq

)
· es1+1xes1+2 ⊗ (ep ⊗ e1)⊗ ṽ3 ⊗ . . .⊗ ṽq

and we can write the following decomposition if s2 = p

es1x
2es1+2 ⊗ es2wes2 ⊗ es3 ⊗ . . .⊗ esq

= es1xes1+1 ⊗ (ep ⊗ e1)⊗ ṽ3 ⊗ . . .⊗ ṽq
· es1+1xes1+2 ⊗ (e1ξ ⊗ ξep)⊗

(
ep+1−s3 ⊗ e∗s3

)
⊗ . . .⊗

(
ep+1−sq ⊗ e∗sq

)
where, for all 3 ≤ n ≤ q,

(
esn ⊗ e∗p+1−sn

)
· ṽn = esn if s2 = 1 or ṽn ·

(
ep+1−sn ⊗ e∗sn

)
= esn if

s2 = p. By Table 2.2, we know that type 1 elements of the form 3 · 1 or 1 · 3 must satisfy
sn = 1 if s2 = 1, or sn = p if s2 = p. Thus, if there exists 3 ≤ n ≤ q such that sn 6= 1 if
s2 = 1, that decomposition fails and v is irreducible. Similarly, if there exists 3 ≤ l ≤ q
such sn 6= p if s2 = p, v is irreducible.
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4.5.2 Irreducible monomials starting with x

We will now give a few results concerning the irreducible monomials starting with x. By
Lemma 4.5.1, we know v2 is one of

(p− 1, −1, 1, 0, 1, 0, 2) = ep−1ξ ⊗ ξe2

(s, −1, 1, 0, 0, 1, p+ 1− s) = esξ ⊗ ξep+1−s
(p, −1, 0, 0, 1, 0, 2) = ep ⊗ ξe2

(p− 1, −1, 0, 0, 1, 0, 1) = ep−1ξ ⊗ e1

(p, −1, −1, 0, 1, 0, 1) = ep ⊗ e1

(p− 1, −1, −1, 1, 1, 0, 2) = ep−1ξ ⊗ xe2
∼= ep−1x⊗ ξe2

(p, −1, −2, 1, 1, 0, 2) = ep ⊗ xe2

(p− 1, −1, −2, 1, 1, 0, 1) = ep−1x⊗ e1.

We study the different possibilities below.

Lemma 4.5.6 (Elements starting with x⊗(p−1ξ⊗ξ2)). Let v = v1⊗. . .⊗vq be a monomial
of wq such that v1 = es1xes1+1 for some 1 ≤ s1 ≤ p− 1, and v2 = ep−1ξ ⊗ ξe2. Then v is
reducible.

Proof. If v1 = es1xes1+1 for some 1 ≤ s1 ≤ p − 2, and v2 = ep−1ξ ⊗ ξe2, then v is of the
form

es1xes1+1 ⊗ (ep−1ξ ⊗ ξe2)⊗
(
es3 ⊗ e∗p+1−s3

)
⊗ . . .

(
esq ⊗ e∗p+1−sq

)
since v2 has j-degree 1. Note that we can write v2 as the product of j-degree 1 element
ep−1ξep by j-degree 0 element ep ⊗ ξe2. That gives us the following decomposition

es1xes1+1 ⊗ (ep−1ξ ⊗ ξe2)⊗
(
es3 ⊗ e∗p+1−s3

)
⊗ . . .

(
esq ⊗ e∗p+1−sq

)
= es1 ⊗ ep−1ξep ⊗

(
es3 ⊗ e∗p+1−s3

)
⊗ . . .

(
esq ⊗ e∗p+1−sq

)
· es1xes1+1 ⊗ (ep ⊗ ξe2)⊗ ep+1−s3 ⊗ . . . ep+1−sq .

Hence v is reducible.

Lemma 4.5.7 (Elements starting with x⊗ (ξ ⊗ ξ)). Let v = v1 ⊗ . . .⊗ vq be a monomial
of wq such that v1 = es1xes1+1 for some 1 ≤ s1 ≤ p − 1, and v2 = es2ξ ⊗ ξep+1−s2 for
some 1 ≤ s2 ≤ p− 2. Then v is irreducible.

Proof. If v1 = es1xes1+1 for some 1 ≤ s1 ≤ p − 1, and v2 = es2ξ ⊗ ξep+1−s2 , then v is of
the form

es1xes1+1 ⊗ (es2ξ ⊗ ξep+1−s2)⊗
(
es3 ⊗ e∗p+1−s3

)
⊗ . . .

(
esq ⊗ e∗p+1−sq

)
.

By Proposition 4.2.7, Proposition 4.2.8 and Remark 4.2.10, the only possibly non irre-
ducible component is v1 if s1 = 1 or s1 = p − 1. However, since v1 is in first position, it
can only be obtained as a product of elements of d and it is irreducible in HTd(u−1) by
Proposition 4.2.8. Hence vn is irreducible for all 1 ≤ n ≤ q and v is irreducible.

Lemma 4.5.8 (Elements starting with x⊗(ep⊗ξ)). Let v = v1⊗ . . .⊗vq be an irreducible
monomial of wq such that v1 = es1xes1+1 for some 1 ≤ s1 ≤ p − 1, and v2 = ep ⊗ ξe2.
Then v is of the form

es1xes1+1 ⊗ (ep ⊗ ξe2)⊗ es3 ⊗ . . .⊗ esq ,

such that there exists 3 ≤ n ≤ q satisfying sn 6= p.
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Proof. Since ep ⊗ ξe2 has j-degree 0, by Corollary 4.4.13, we know that vn = esn for all
3 ≤ n ≤ q. Hence, v is of the form

es1xes1+1 ⊗ (ep ⊗ ξe2)⊗ es3 ⊗ . . .⊗ esq .

However, ep ⊗ ξe2 can be decomposed as the product of j-degree -1 element ep ⊗ e1 by
j-degree 1 element e1ξe2. So we could write the following decomposition

es1xes1+1 ⊗ (ep ⊗ ξe2)⊗ es3 ⊗ . . .⊗ esq
= es1xes1+1 ⊗ (ep ⊗ e1)⊗ ṽ3 ⊗ . . .⊗ ṽq
· es1+1 ⊗ e1ξe2 ⊗

(
ep+1−s3 ⊗ e∗s3

)
⊗ . . .⊗

(
ep+1−sq ⊗ e∗sq

)
if and only if esn = ṽn ·

(
ep+1−sn ⊗ e∗sn

)
for all 3 ≤ n ≤ q. From Table 2.2, we see that the

only idempotent which can be written as a product of type 1 ·3 is ep. Thus v is irreducible
if there exists 3 ≤ n ≤ q such that sn 6= p.

Lemma 4.5.9 (Elements starting with x⊗(ξ⊗e1)). Let v = v1⊗ . . .⊗vq be an irreducible
monomial of wq such that v1 = es1xes1+1 for some 1 ≤ s1 ≤ p − 1, and v2 = ep−1ξ ⊗ e1.
Then v is of the form

es1xes1+1 ⊗ (ep−1ξ ⊗ e1)⊗ es3 ⊗ . . .⊗ esq ,

such that there exists 3 ≤ n ≤ q satisfying sn 6= 1.

Proof. The proof is very similar to that of Lemma 4.5.8. Since ep−1ξ ⊗ e1 has j-degree 0,
by Corollary 4.4.13, we know that vn = esn for all 3 ≤ n ≤ q. Hence, v is of the form

es1xes1+1 ⊗ (ep−1ξ ⊗ e1)⊗ es3 ⊗ . . .⊗ esq .

However, ep−1ξ ⊗ e1 can be decomposed as the product of j-degree 1 element ep−1ξep by
j-degree -1 element ep ⊗ e1. So we could write the following decomposition

es1xes1+1 ⊗ (ep ⊗ ξe2)⊗ es3 ⊗ . . .⊗ esq
= es1 ⊗ ep−1ξep ⊗

(
es3 ⊗ e∗p+1−s3

)
⊗ . . .⊗

(
esq ⊗ e∗p+1−sq

)
· es1xes1+1 ⊗ (ep ⊗ e1)⊗ ṽ3 ⊗ . . .⊗ ṽq

if and only if esn =
(
esn ⊗ e∗p+1−sn

)
· ṽn for all 3 ≤ n ≤ q. From Table 2.2, we see that the

only idempotent which can be written as a product of type 3 ·1 is e1. Thus v is irreducible
if there exists 3 ≤ n ≤ q such that sn 6= 1.

Lemma 4.5.10 (Elements starting with x⊗ (ξ⊗x)). Let v = v1⊗ . . .⊗ vq be a monomial
of wq such that v1 = es1xes1+1 for some 1 ≤ s1 ≤ p− 1, and v2 = ep−1ξ ⊗ xe2. Then v is
reducible.

Proof. The element v2 = ep−1ξ ⊗ xe2 has j-degree -1, hence v3 has i-degree -1. Note that
v2 can be decomposed as the product of j-degree 0 element ep−1ξ ⊗ ep by j-degree -1
element e1xe2. We then have the following decomposition

es1xes1+1 ⊗ (ep−1ξ ⊗ xe2)⊗ v3 ⊗ . . .⊗ vq
= es1xes1+1 ⊗ (ep−1ξ ⊗ e1)⊗ es3 ⊗ . . .⊗ esq
· es1+1 ⊗ e1xe2 ⊗ v3 ⊗ . . .⊗ vq.

Therefore, v is reducible.
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Lemma 4.5.11 (Elements starting with x⊗ (ep⊗x) or x⊗ (x⊗e1)). Let v = v1⊗ . . .⊗vq
be an irreducible monomial of wq such that v1 = es1xes1+1 for some 1 ≤ s1 ≤ p− 1, and
v2 = ep−1x⊗ e1 or v2 = ep ⊗ xe2. Then v is of the form

es1xes1+1 ⊗ v2 ⊗ es3wes3 ⊗ es4 ⊗ . . .⊗ esq ,

such that

• if s3 = 1, there exists 4 ≤ l ≤ q such that sl 6= 1;

• if s3 = p, there exists 4 ≤ l ≤ q such that sl 6= p.

Proof. If v2 = ep−1x ⊗ e1 or v2 = ep ⊗ xe2, we see that it can be decomposed into two
parts of j-degree -1:

ep−1x⊗ e1 = ep−1xep · (ep ⊗ e1)

or
ep ⊗ xe2 = (ep ⊗ e1) · e1xe2.

Note also that v2 has j-degree -2, hence by Lemma 4.5.1, v3 is one of

(s,−2, 0, 0, 0, 0, s) = eswes
(3,−2,−2, 1, 2, 0, 1) = e3 ⊗ xξ ⊗ e1 (if p = 3).

Assume p = 3 and v3 = e3 ⊗ xξ ⊗ e1. Since it has j-degree -2, v4 has i-degree -2. If
v2 = ep−1x⊗ e1, we can write the following decomposition

es1xes1+1 ⊗ ep−1x⊗ e1 ⊗ (e3 ⊗ xξ ⊗ e1)⊗ v4 ⊗ . . .⊗ vq
= es1 ⊗ ep−1xep ⊗ (e3 ⊗ x)⊗ v4 ⊗ . . .⊗ vq
· es1xes1+1 ⊗ (ep ⊗ e1)⊗ (ξ ⊗ e1)⊗ et4 ⊗ . . .⊗ etq

since e3 ⊗ xξ ⊗ e1 is the product of j-degree -2 element e3 ⊗ x with j-degree 0 element
ξ ⊗ e1.

If v2 = ep ⊗ xe2, we can write the following decomposition

es1xes1+1 ⊗ ep−1x⊗ e1 ⊗ (e3 ⊗ xξ ⊗ e1)⊗ v4 ⊗ . . .⊗ vq
= es1xes1+1 ⊗ (ep ⊗ e1)⊗ (e3 ⊗ ξ)⊗ es4 ⊗ . . .⊗ esq
· es1+1 ⊗ e1xe2 ⊗ (x⊗ e1)⊗ v4 ⊗ . . .⊗ vq

since e3 ⊗ xξ ⊗ e1 is the product of j-degree 0 element e3 ⊗ ξ with j-degree -2 element
x⊗ e1.

Therefore v3 must be of the form es3wes3 for v to be irreducible. By Corollary 4.4.13,
vn = esn for all 4 ≤ n ≤ q and v is of the form

es1xes1+1 ⊗ v2 ⊗ es3wes3 ⊗ es4 ⊗ . . .⊗ esq .

By Remark 4.2.10, we know that eswes is not irreducible if and only if s = 1 or s = p,
in which case it can be more conveniently written

e1we1 = e1ξ ⊗ ξ ⊗ e1,

and
epwep = −ep ⊗ ξ ⊗ ξep.

We will ignore the sign of epwep for convenience. Assume that s3 = 1. Then, if v2 =
ep−1x⊗ e1, we can write the following decomposition

es1xes1+1 ⊗ (ep−1x⊗ e1)⊗ es3wes3 ⊗ es4 ⊗ . . .⊗ esq
= es1 ⊗ ep−1xep ⊗ (e1ξ ⊗ ξep)⊗

(
es4 ⊗ e∗p+1−s4

)
⊗ . . .⊗

(
esq ⊗ e∗p+1−sq

)
· es1xes1+1 ⊗ (ep ⊗ e1)⊗ (ep ⊗ e1)⊗ ṽ4 ⊗ . . .⊗ ṽq
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and if v2 = ep ⊗ xe2, we can write the following decomposition

es1xes1+1 ⊗ (ep ⊗ xe2)⊗ es3wes3 ⊗ es4 ⊗ . . .⊗ esq
= es1xes1+1 ⊗ (ep ⊗ e1)⊗ (e1ξ ⊗ ξep)⊗

(
es4 ⊗ e∗p+1−s4

)
⊗ . . .⊗

(
esq ⊗ e∗p+1−sq

)
· es1+1 ⊗ e1xe2 ⊗ (ep ⊗ e1)⊗ ṽ4 ⊗ . . .⊗ ṽq.

Assume now that s3 = p. If v2 = ep−1x⊗ e1, we can write the following decomposition

es1xes1+1 ⊗ (ep−1x⊗ e1)⊗ es3wes3 ⊗ es4 ⊗ . . .⊗ esq
= es1 ⊗ ep−1xep ⊗ (ep ⊗ e1)⊗ ṽ4 ⊗ . . .⊗ ṽq
· es1xes1+1 ⊗ (ep ⊗ e1)⊗ (e1ξ ⊗ ξep)⊗

(
ep+1−s4 ⊗ e∗s4

)
⊗ . . .⊗

(
ep+1−sq ⊗ e∗sq

)
and if v2 = ep ⊗ xe2, we can write the following decomposition

es1xes1+1 ⊗ (ep ⊗ xe2)⊗ es3wes3 ⊗ es4 ⊗ . . .⊗ esq
= es1xes1+1 ⊗ (ep ⊗ e1)⊗ (ep ⊗ e1)⊗ ṽ4 ⊗ . . .⊗ ṽq
· es1+1 ⊗ e1xe2 ⊗ (e1ξ ⊗ ξep)⊗

(
ep+1−s4 ⊗ e∗s4

)
⊗ . . .⊗

(
ep+1−sq ⊗ e∗sq

)
.

These decompositions are possible if and only if for all 4 ≤ n ≤ q,
(
esn ⊗ e∗p+1−sn

)
·ṽn = esn

if s3 = 1 or ṽn ·
(
ep+1−sn ⊗ e∗sn

)
= esn if s3 = p. By Table 2.2, we know that type 1 elements

of the form 3 · 1 or 1 · 3 must satisfy sn = 1 if s3 = 1, or sn = p if s3 = p. Thus, if there
exists 4 ≤ n ≤ q such that sn 6= 1 if s3 = 1, that decomposition fails and v is irreducible.
Similarly, if there exists 4 ≤ l ≤ q such sn 6= p if s3 = p, v is irreducible.

All the previous results can be summarised in the proposition below.

Proposition 4.5.12 (Irreducible monomials starting with x). Let v = v1⊗ . . .⊗ vq be an
irreducible monomial of wq such that v1 = es1xes1+1 for some 1 ≤ s1 ≤ p− 1. Then v is
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of the form

x⊗ (ep ⊗ e1)⊗n ⊗
(
esn+2ξ ⊗ ξep+1−sn+2

)
⊗

q⊗
l=n+3

(esl ⊗ e
∗
p+1−sl)

0 ≤ n ≤ q − 2,
1 ≤ sn+2 ≤ p− 2;

x⊗ (ep ⊗ e1)⊗q−1

x⊗ (ep ⊗ e1)⊗n ⊗ (ξ ⊗ e1)⊗
q⊗

l=3+n

esl

0 ≤ n ≤ q − 3,
∃l ≥ 3 + n
s.t. sl 6= 1;

x⊗ (ep ⊗ e1)⊗n ⊗ (ep ⊗ ξ)⊗
q⊗

l=3+n

esl

0 ≤ n ≤ q − 3,
∃l ≥ 3 + n
s.t. sl 6= p;

x⊗ (ep ⊗ e1)⊗n ⊗ (x⊗ e1)⊗ es3+nwes3+n ⊗
q⊗

l=4+n

esl
0 ≤ n ≤ q − 3,
s3+n 6= 1, p;

x⊗ (ep ⊗ e1)⊗n ⊗ (x⊗ e1)⊗ e1we1 ⊗
q⊗

l=4+n

esl

0 ≤ n ≤ q − 4,
∃l ≥ 4 + n
s.t. sl 6= 1;

x⊗ (ep ⊗ e1)⊗n ⊗ (x⊗ e1)⊗ epwep ⊗
q⊗

l=4+n

esl

0 ≤ n ≤ q − 4,
∃l ≥ 4 + n
s.t. sl 6= p;

x⊗ (ep ⊗ e1)⊗n ⊗ (ep ⊗ x)⊗ es3+nwes3+n ⊗
q⊗

l=4+n

esl
0 ≤ n ≤ q − 3,
s3+n 6= 1, p;

x⊗ (ep ⊗ e1)⊗n ⊗ (ep ⊗ x)⊗ es1we1 ⊗
q⊗

l=4+n

esl

0 ≤ n ≤ q − 4,
∃l ≥ 4 + n
s.t. sl 6= 1;

x⊗ (ep ⊗ e1)⊗n ⊗ (ep ⊗ x)⊗ espwep ⊗
q⊗

l=4+n

esl

0 ≤ n ≤ q − 4,
∃l ≥ 4 + n
s.t. sl 6= p.

Proof. For v1 = es1xes1+1 with 1 ≤ s1 ≤ p− 1, an element of i-degree -1 must follow. So
by Lemma 4.5.1, we know v2 is one of

(p− 1, −1, 1, 0, 1, 0, 2) = ep−1ξ ⊗ ξe2

(s, −1, 1, 0, 0, 1, p+ 1− s) = esξ ⊗ ξep+1−s
(p, −1, 0, 0, 1, 0, 2) = ep ⊗ ξe2

(p− 1, −1, 0, 0, 1, 0, 1) = ep−1ξ ⊗ e1

(p, −1, −1, 0, 1, 0, 1) = ep ⊗ e1

(p− 1, −1, −1, 1, 1, 0, 2) = ep−1ξ ⊗ xe2
∼= ep−1x⊗ ξe2

(p, −1, −2, 1, 1, 0, 2) = ep ⊗ xe2

(p− 1, −1, −2, 1, 1, 0, 1) = ep−1x⊗ e1.

By Lemma 4.5.6, v2 cannot be ep−1ξ ⊗ ξe2 as v would then be reducible.
By Lemma 4.5.7, v2 can be es2ξ ⊗ ep+1−s2 for 1 ≤ s2 ≤ p− 2, and v is of the form

es1xes1+1 ⊗ (es2ξ ⊗ ξep+1−s2)⊗ (es3 ⊗ e∗p+1−s3)⊗ . . . (esq ⊗ e∗p+1−sq).
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By Lemma 4.5.8, v2 can be ep⊗ ξe2 as long as there exists 3 ≤ l ≤ q such that vl 6= ep;
v is then of the form

es1xes1+1 ⊗ (ep ⊗ ξe2)⊗ es3 ⊗ . . .⊗ esq .

By Lemma 4.5.9, v2 can be ep−1ξ ⊗ e1 as long as there exists 3 ≤ l ≤ q such that
vl 6= e1; v is then of the form

es1xes1+1 ⊗ (ep−1ξ ⊗ e1)⊗ es3 ⊗ . . .⊗ esq .

By Lemma 4.5.8, v2 cannot be ep−1ξ⊗xe2
∼= ep−1x⊗ξe2 as v would then be reducible.

By Lemma 4.5.11, v2 can be ep ⊗ xe2 or ep−1x ⊗ e1 as long as there exists 4 ≤ l ≤ q
such that vl 6= e1 if s3 = 1, and such that vl 6= ep if s3 = p; v is then of the form

es1xes1+1 ⊗ v2 ⊗ es3wes3 ⊗ es4 ⊗ . . .⊗ esq .

Finally, we need to address the case when v2 = ep ⊗ e1. Assume it is the case. Since
that element has j-degree -1, by Lemma 4.5.1 again, we know that v3 must be one of

(p− 1, −1, 1, 0, 1, 0, 2) = ep−1ξ ⊗ ξe2

(s, −1, 1, 0, 0, 1, p+ 1− s) = esξ ⊗ ξep+1−s
(p, −1, 0, 0, 1, 0, 2) = ep ⊗ ξe2

(p− 1, −1, 0, 0, 1, 0, 1) = ep−1ξ ⊗ e1

(p, −1, −1, 0, 1, 0, 1) = ep ⊗ e1

(p− 1, −1, −1, 1, 1, 0, 2) = ep−1ξ ⊗ xe2
∼= ep−1x⊗ ξe2

(p, −1, −2, 1, 1, 0, 2) = ep ⊗ xe2

(p− 1, −1, −2, 1, 1, 0, 1) = ep−1x⊗ e1.

Considering all the decompositions provided in the previous proofs of the results concerning
irreducible monomials starting with x, we see that they all are of the same form, namely

es1xes1+1 ⊗ v2 ⊗ v3 ⊗ . . .⊗ vq
= es1xes1+1 ⊗ ṽ2 ⊗ ṽ3 ⊗ . . .⊗ ṽq
· es1+1 ⊗ v̂2 ⊗ v̂3 ⊗ . . .⊗ v̂q

or
es1xes1+1 ⊗ v2 ⊗ v3 ⊗ . . .⊗ vq

= es1 ⊗ v̂2 ⊗ v̂3 ⊗ . . .⊗ v̂q
· es1xes1+1 ⊗ ṽ2 ⊗ ṽ3 ⊗ . . .⊗ ṽq

such that v̂2 is an element of d, and ṽ2 is an element of H(u−1). Informally, we could
append the element ep ⊗ e1 in position 2 and still obtain a valid decomposition, namely

es1xes1+1 ⊗ (ep ⊗ e1)⊗ v2 ⊗ v3 ⊗ . . .⊗ vq
= es1xes1+1 ⊗ (ep ⊗ e1)⊗ ṽ2 ⊗ ṽ3 ⊗ . . .⊗ ṽq
· es1+1 ⊗ e1 ⊗ v̂2 ⊗ v̂3 ⊗ . . .⊗ v̂q

or
es1xes1+1 ⊗ (ep ⊗ e1)⊗ v2 ⊗ v3 ⊗ . . .⊗ vq

= es1 ⊗ ep ⊗ v̂2 ⊗ v̂3 ⊗ . . .⊗ v̂q
· es1xes1+1 ⊗ (ep ⊗ e1)⊗ ṽ2 ⊗ ṽ3 ⊗ . . .⊗ ṽq

as ep ⊗ e1 has j-degree -1.
Furthermore, we see that we can append as many ep ⊗ e1’s as we want (as long as we

are still in the bounds regarding the length of the element), and the decompositions and
results will go through. One just needs to adjust the indices upon which the results rely.
Hence, if vl = ep ⊗ e1 for all 2 ≤ l ≤ n+ 1, we have
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• by Lemma 4.5.6, vn+2 cannot be ep−1ξ ⊗ ξe2 as v would then be reducible;

• by Lemma 4.5.7, vn+2 can be esn+2ξ ⊗ ep+1−sn+2 for 1 ≤ sn+2 ≤ p − 2, and v is of
the form

es1xes1+1⊗(ep ⊗ e1)⊗n⊗
(
esn+2ξ ⊗ ξep+1−sn+2

)
⊗(esn+3⊗e∗p+1−sn+3

)⊗. . . (esq⊗e∗p+1−sq);

• by Lemma 4.5.8, vn+2 can be ep⊗ ξe2 as long as there exists n+ 3 ≤ l ≤ q such that
vl 6= ep; v is then of the form

es1xes1+1 ⊗ (ep ⊗ e1)⊗n ⊗ (ep ⊗ ξe2)⊗ esn+3 ⊗ . . .⊗ esq ;

• by Lemma 4.5.9, vn+2 can be ep−1ξ ⊗ e1 as long as there exists n + 3 ≤ l ≤ q such
that vl 6= e1; v is then of the form

es1xes1+1 ⊗ (ep ⊗ e1)⊗n ⊗ (ep−1ξ ⊗ e1)⊗ esn+3 ⊗ . . .⊗ esq ;

• by Lemma 4.5.8, vn+2 cannot be ep−1ξ ⊗ xe2
∼= ep−1x ⊗ ξe2 as v would then be

reducible;

• by Lemma 4.5.11, vn+2 can be ep⊗ xe2 or ep−1x⊗ e1 as long as there exists n+ 4 ≤
l ≤ q such that vl 6= e1 if sn+3 = 1, and such that vl 6= ep if sn+3 = p; v is then of
the form

es1xes1+1 ⊗ (ep ⊗ e1)⊗n ⊗ vn+2 ⊗ esn+3wesn+3 ⊗ esn+4 ⊗ . . .⊗ esq .

Finally, since ep ⊗ e1 is irreducible, we see that

es1xes1+1 ⊗ (ep ⊗ e1)⊗ . . .⊗ (ep ⊗ e1)

is irreducible. The description is now complete.

4.6 The quiver of wq

4.6.1 Description of Vq

We now gather all the results obtained so far.
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Theorem 4.6.1. The new arrows for the quiver of wq are of the form

es1ξes1+1 ⊗
q⊗
l=2

(
esl ⊗ e

∗
p+1−sl

)
1 ≤ s1 ≤ p− 1;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗

(
esn+2ξ ⊗ ξep+1−sn+2

)
⊗

q⊗
l=n+3

(esl ⊗ e
∗
p+1−sl)

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 2,

1 ≤ sn+2 ≤ p− 2;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗q−1 1 ≤ s1 ≤ p− 1;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (ξ ⊗ e1)⊗

q⊗
l=3+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 3,
∃l ≥ 3 + n
s.t. sl 6= 1;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (ep ⊗ ξ)⊗

q⊗
l=3+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 3,
∃l ≥ 3 + n
s.t. sl 6= p;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (x⊗ e1)⊗ es3+nwes3+n ⊗

q⊗
l=4+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 3,
s3+n 6= 1, p;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (x⊗ e1)⊗ e1we1 ⊗

q⊗
l=4+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 4,
∃l ≥ 4 + n
s.t. sl 6= 1;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (x⊗ e1)⊗ epwep ⊗

q⊗
l=4+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 4,
∃l ≥ 4 + n
s.t. sl 6= p;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (ep ⊗ x)⊗ es3+nwes3+n ⊗

q⊗
l=4+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 3,
s3+n 6= 1, p;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (ep ⊗ x)⊗ e1we1 ⊗

q⊗
l=4+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 4,
∃l ≥ 4 + n
s.t. sl 6= 1;

es1xes1+1 ⊗ (ep ⊗ e1)
⊗n ⊗ (ep ⊗ x)⊗ epwep ⊗

q⊗
l=4+n

esl

1 ≤ s1 ≤ p− 1,
0 ≤ n ≤ q − 4,
∃l ≥ 4 + n
s.t. sl 6= p;

es1xξes1+2 ⊗
q⊗
l=2

esl
1 ≤ s1 ≤ p− 2,
(s2, . . . , sq) /∈ S;

es1x
2es1+2 ⊗ es2wes2 ⊗

q⊗
l=3

esl
1 ≤ s1 ≤ p− 2,
2 ≤ s2 ≤ p− 1;

es1x
2es1+2 ⊗ e1we1 ⊗

q⊗
l=3

esl
1 ≤ s1 ≤ p− 2,

∃l ≥ 3 s.t. sl 6= 1;

es1x
2es1+2 ⊗ epwep ⊗

q⊗
l=3

esl
1 ≤ s1 ≤ p− 2,

∃l ≥ 3 s.t. sl 6= p;

where 1 ≤ sl ≤ p (unless otherwise stated) and S := {(1, . . . , 1), (p, . . . , p)}.
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Remark 4.6.2 (On the value of q and irreducibility). Suppose q = 2. Note that the element

x2 ⊗ e1we1 = x⊗ (e1ξ ⊗ ξep) · x⊗ (ep ⊗ e1)

is not irreducible, but the element
x2 ⊗ eswes

is irreducible for all 2 ≤ s ≤ p− 1. We see that going to q = 3 and appending idempotent
e2 to the element x2 ⊗ e1we1 makes the resulting element

x2 ⊗ e1we1 ⊗ e2

irreducible.

Corollary 4.6.3. The algebra wq is generated in degrees 0, 1 and 2.

4.6.2 Quiver of wq

Similarly to the case p = 2, we can view Vq as the quiver of wq. Since wq is the extension
algebra of the standard modules of an algebra of finite global dimension, it is finite-
dimensional. By definition of Vq, we can write wq as the quotient of a tensor algebra by
some ideal, namely

wq
∼= TBVq/I,

where the tensor product is taken over the semi-simple algebra B made up by the idem-
potents of wq.

Now, Vq is a (finite) subset of monomial basis elements of wq which is a multiplicative
basis for wq. Since wq is multigraded, I must be homogeneous with respect to that
(i, j, k, a, b)q-grading. Since an element z ∈ Vq is uniquely determined by its (i, j, k, a, b)q-
degree (together with idempotents on the left and on the right), we obtain that I cannot
contain any element of Vq: let v1 + . . . + vs ∈ I, with vj ’s words in elements of Vq; then
all vj ’s have the same (i, j, k, a, b)q-degree since I is homogeneous. In particular, at most
one vj is in Vq. This is a contradiction as we would obtain a linear relation between
basis elements of wq. Therefore, all vj ’s are words in at least two elements of Vq, i.e.
I ⊂ Vq ⊗B Vq. In addition, since wq is finite-dimensional, there cannot be words in Vq of
infinite length. Thus, there exists N > 2 such that

V ⊗BNq ⊂ I ⊂ Vq ⊗B Vq,

so that I is admissible.
We can therefore interpret Vq as the quiver of wq. We see that the vertices are given

by the simples of wq and the set of arrows of the quiver corresponds to Vq.

Example 4.6.4. To illustrate that section, we give the quiver of w2 for p = 3 in Figure 4.1.
The labels correspond to the following irreducible monomials of w2:

ai = ei ⊗ e1ξe2

bi = ei ⊗ e2ξe3

ci = e1ξe2 ⊗ (e4−i ⊗ e∗i )
di = e2ξe3 ⊗ (e4−i ⊗ e∗i )
αi = ei ⊗ e1xe2

βi = ei ⊗ e2xe3

γ1 = e1xe2 ⊗ (e1ξ ⊗ ξe3)
γ3 = e1xe2 ⊗ (e3 ⊗ e1)
δ1 = e2xe3 ⊗ (e3 ⊗ e1)
δ3 = e2xe3 ⊗ (e1ξ ⊗ ξe3)
µ = e1xξe3 ⊗ e2

ν = e1x
2e3 ⊗ e2we2.
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1 2 3
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c1 γ1

d1 δ1

c2

d2
µ ν

c3 γ3

d3 δ3

Figure 4.1: Quiver of w2 for p = 3
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Chapter 5

A∞-algebras

This chapter relies on [Kel99], [Lef03] and [Amo12].

5.1 First definitions

5.1.1 Motivations

Let F be a field. The following problem constitute a motivation for the study of the
A∞-algebra structure of the extension algebra of Weyl modules of the principal block of
rational representations of GL2(Fp).

Let A be an associative unital F -algebra and let ∆1,∆2, . . . ,∆n be A-modules. Denote
by F(∆) the full subcategory of the category of left A-modules whose objects admit finite
filtrations with subquotients among the ∆i. We can describe that category as the closure
under extensions of the ∆i’s. One can ask if F(∆) is determined by the extension algebra

Ext∗A(∆,∆),where ∆ = ⊕1≤i≤n∆i.

In particular, how can one reconstruct the category of iterated extensions of ∆i’s from
Ext∗A(∆,∆)?

In [Kel99], Keller shows that one can do so if the A∞-structure on the extension algebra
is known.

5.1.2 Definition of an A∞-algebra

Definition 5.1.1. [Kel99] Let F be a field. An A∞-algebra over F is the datum of a
Z-graded vector space

A =
⊕
p∈Z

Ap

together with graded maps (i.e. homogeneous F -linear maps)

mn : A⊗n → A,n ≥ 1,

of degree 2− n satisfying the following relation for all n ≥ 1

n∑
s=1

n−s∑
r=0

(−1)r+s(n−r−s)mn−s+1(1⊗r ⊗ms ⊗ 1⊗n−r−s) = 0.

We call these relations Stasheff identities of order n.



5.1. First definitions

Remark 5.1.2 (About signs). In the definition, the sign convention adopted by Getzler-
Jones [GJ+90] is used. In addition, note that when formulae are applied to elements,
additional signs appear because of the Koszul sign rule:

(f ⊗ g)(x⊗ y) = (−1)|x||g|f(x)⊗ g(y),

and
(f ⊗ g)(h⊗ k) = (−1)|h||g|f ◦ h⊗ g ◦ k,

if f, g, h, k are homogeneous F -linear maps and x, y homogeneous elements whose degree
is denoted between vertical bars, e.g. |f | for the degree of f .

For small values of n ≥ 1, the Stasheff identities give:

• For n = 1, we have m1m1 = 0, which means that (A,m1) is a differential complex;

• For n = 2, we have
m1m2 = m2(m1 ⊗ 1 + 1⊗m1)

so m1 is a graded derivation with respect to the multiplication m2. We have indeed:

m1m2(x⊗ y) = m2(m1 ⊗ 1 + 1⊗m1)(x⊗ y)

= m1(x)⊗ y + (−1)|m1||x|x⊗m1(y)

and since |m1| = 1, the map m1 is then the usual differential on the tensor product;

• For n = 3, we have

m2(1⊗m2 −m2 ⊗ 1) = m1m3 +m3(m1 ⊗ 1⊗ 1 + 1⊗m1 ⊗ 1 + 1⊗ 1⊗m1),

so that m2 is associative up to a homotopy given by m3.

The definition yields three immediate consequences:

(i) In general, an A∞-algebra is not associative, but its homology with respect to m1,
H∗(A), is an associative graded algebra for the multiplication induced by m2.

(ii) If Al = 0 for all l 6= 0, then A is concentrated in degree 0 and is an ordinary
associative algebra. Indeed, since mn is of degree 2− n, all mn other than m2 have
to vanish.

(iii) If mn vanishes for all n ≥ 3, then A is an associative differential Z-graded algebra
(or dg-algebra) and conversely, each dg-algebra yields an A∞-algebra with mn = 0
for all n ≥ 3.

5.1.3 Morphisms of A∞-algebras

Definition 5.1.3. [Kel99] A morphism of A∞-algebras f : A→ B is a family

fn : A⊗n → B

of graded maps of degree n− 1 such that for all n ≥ 1

n∑
s=1

n−s∑
r=0

(−1)#fn−s+1(1⊗r ⊗ms ⊗ 1⊗n−r−s) =

n∑
r=1

∑
i1+...+ir=n

(−1)∗mr(fi1 ⊗ · · · ⊗ fir),

where # = r + s(n− r − s) and ∗ =

r−1∑
l=1

(r − l)(il − 1).

116



5.2. Minimal models and formality

As for the multiplication maps in the definition of an A∞-algebra, we write down the
relations defining morphisms of A∞-algebras for small values of n ≥ 1:

• For n = 1, we have f1m1 = m1f1, namely f1 is morphism of complexes;

• For n = 2, we have

f1m2 = m2(f1 ⊗ f1) +m1f2 + f2(m1 ⊗ 1 + 1⊗m1)

so f1 commutes with the multiplication m2 up to a homotopy given by f2.

Definition 5.1.4. We define the composition of two morphisms f : B → C and g : A→ B
by

(f ◦ g)n =
n∑
r=1

∑
i1+...+ir=n

(−1)∗fr ◦ (gi1 ⊗ · · · ⊗ gir),

where ∗ =

r−1∑
l=1

(r − l)(il − 1).

Definition 5.1.5. We say that a morphism f = (fn)n≥1 is:

1. a quasi-isomorphism if f1 is a quasi-isomorphism;

2. strict if fi = 0 for all i 6= 1.

5.2 Minimal models and formality

We now give an important result in the field of A∞-algebras which is important for our
task of computing an A∞-algebra structure.

Theorem 5.2.1 (Kadeishvili [Kad80],[Kel99],[Lef03] ). Let A be an A∞-algebra. Then
the homology H∗A has an A∞-algebra structure such that

1. we have m1 = 0 and m2 is induced by mA
2 ;

2. there is a quasi-isomorphism of A∞-algebras H∗A→ A lifting the identity of H∗A.

Moreover, this structure is unique up to (non unique) isomorphism of A∞-algebras.

Proof. See in [Kad80] for instance.

Definition 5.2.2. An A∞-algebra such that m1 is identically zero is called minimal.

In the context of Theorem 5.2.1, we say that H∗A is a minimal model for the A∞-
algebra A.

Definition 5.2.3. An A∞-algebra whose minimal model can be chosen such that all
higher multiplications vanish, namely mH∗

n = 0 for all n ≥ 3 is called formal.
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5.3 Multi-graded A∞-algebras

Our task at hand relies on several multi-graded algebras and we see that we can easily ex-
tend the definitions of A∞-algebras and morphims to a multi-graded setting. Furthermore,
we also have an equivalent of Kadeishvili’s Theorem in that setting.

Let F be a field. Let A be an (d1, d2, . . . , dN , k)-graded dg-algebra, whose differen-
tial graded structure is taken with respect to the k-grading. We want to prove that its
homology H∗A carries an A∞-structure with respect to the k-grading and which is also
(d1, d2, . . . , dN , k)-graded. Let us make this statement more precise:

Definition 5.3.1. A (d1, d2, . . . , dN , k)-graded A∞-algebra A is the datum of an (i1, i2, . . . , in, k)-
graded F -vector space together with graded maps

mn : A⊗n → A

of degree (0, 0, . . . , 0, 2− n) satisfying Stasheff multiplication identities:

SI(n)
∑

(−1)r+stmu(1⊗r ⊗ms ⊗ 1⊗t) = 0,

for all n ≥ 1, where the sum runs over decompositions n = r+s+t and we let u = r+1+t,
where r, t ≥ 0 and s ≥ 1.

Note that the identity SI(n) has homogeneous degree (0, . . . , 0, 3− n).
Similarly, we can extend the definition of A∞-morphisms:

Definition 5.3.2. A morphism of (d1, d2, . . . , dN , k)-graded A∞-algebras f : A → B is a
family

fn : A⊗n → B

of (i1, i2, . . . , iN , k)-graded graded maps of degree (0, 0, . . . , 0, 1−n) such that for all n ≥ 1

n∑
s=1

n−s∑
r=0

(−1)#fn−s+1(1⊗r ⊗ms ⊗ 1⊗n−r−s) =

n∑
r=1

∑
i1+...+ir=n

(−1)∗mr(fi1 ⊗ · · · ⊗ fir),

where # = r + s(n− r − s) and ∗ =

r−1∑
l=1

(r − l)(il − 1).

Theorem 5.3.3 (Kadeishvili’s Theorem analogue). Let A be an (d1, d2, . . . , dN , k)-graded
dg-algebra, whose differential graded structure is taken with respect to the k-grading. There
is an A∞-algebra structure on its homology H∗A with m1 = 0 and m2 induced by the
multiplication on A, such that there is a quasi-isomorphism of A∞-algebras H∗A → A
lifting the identity of H∗A.

Proof. We follow in essence the proof provided by Kadeishvili in [Kad80] and show it is
compatible with the additional gradings.

We denote by δ the differential on A; it is in particular a graded F -linear map of degree
(0, . . . , 0, 1). We let mA

2 denote the multiplication map in A; it is a graded bilinear map
of degree (0, . . . , 0, 0).

We need to construct graded higher multiplications mn on H∗A satisfying the Stasheff
identities and a graded A∞-morphism f = (fn)n between H∗A and A which lifts the
identity of H∗A such that the gradings (d1, . . . , dN ) are preserved by both the higher
multiplications and the A∞-morphism, by which we mean that they are of (d1, . . . , dN )-
degree (0, . . . , 0).
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We will do this inductively. Let i = 1. We take m1 = 0 of k-degree 1 and, since we are
working over a field, we can define f1 : H∗A → A to be an embedding of the homology
into A, i.e. δf1 = 0 and it has k-degree 0. In particular,

m1m1 = 0,

and
f1m1 = 0 = δf1,

hence the A∞-relations for multiplications and for morphisms are satisfied, and by defi-
nition, they preserve the gradings (d1, . . . , dN ) and are of the right k-degree. In addition,
f1 lifts the identity of H∗A.

Suppose that mn and fn are constructed for n ≤ i− 1 in such a way that they satisfy
the A∞-relations. Let

Un =
n−1∑
i1=1

(−1)i1−1mA
2 (fi1 ⊗ fn−i1)

+
n−1∑
s=2

n−s∑
r=0

(−1)#+1fn−s+1(1⊗r ⊗ms ⊗ 1n−r−s)

where # = r + s(n − r − s). This is well defined as Un only involves maps ml and fl
such that l ≤ n ≤ i − 1, and they exist by assumption. In particular, Un preserves the
(d1, . . . , dN ) grading.

The defining relations for morphisms of multi-graded A∞-algebras in Definition 5.3.2
write

δfn = f1mn − Un,
or equivalently

Un = f1mn − δfn.
Applying δ, we see

δUn = δf1mn − δδfn,
and by definition of a differential and by definition of f1, we know that δ2 = 0 and
δf1 = 0, so that δUn = 0. This means that Un(a1 ⊗ . . . ⊗ an) is a cycle in A, so we can
define mn(a1 ⊗ . . .⊗ an) to be the class of Un(a1 ⊗ . . .⊗ an); we have

f1mn(a1 ⊗ . . .⊗ an) = Un(a1 ⊗ . . .⊗ an)

as f1 is an embedding of the homology into A. In addition, we see that mn preserves the
(d1, . . . , dN ) grading and is of k-degree 2− n.

Finally, we can define fn(a1 ⊗ . . .⊗ an) to be an element of A which is a boundary for
the difference f1mn − Un, and assuming a1, . . . , an are generators of H∗A, we can extend
fn linearly for it to be a well-defined graded map. Again, defining fn in such a way means
that it is a (d1, . . . , dN , k)-degree (0, . . . , 0, 1 − n) map, and the maps mn and fn satisfy
the relations for f to be a morphism of multi-graded A∞-algebras.

We still need to check that the higher multiplications satisfy the Stasheff identity
SI(n + 1), i.e. the relation

n∑
r=0

n−r∑
t=0

(−1)r+(n+1−r−t)tmr+1+t(1
⊗r ⊗mn+1−r−t ⊗ 1⊗t) = 0.

Note that this is the first relation in which mn appears; in SI(n), the terms containing

mn are m1mn and
n−1∑
r=1

mn(1⊗r ⊗m1 ⊗ 1⊗n−1−r), and since we chose m1 to be identically

zero, these terms vanish.
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Due to the complexity of the formulas, we will show that m3 satisfies SI(4); the
general case follows in the same manner after very lengthy computations using the different
Stasheff identities for higher multiplications and morphisms of A∞-algebras. Note that
these relations preserve the (d1, . . . , dN )-grading.

Assume n = 3, the higher multiplication m3 writes

m3 = m2(f1 ⊗ f2 − f2 ⊗ f1) + f2(1⊗m2 −m2 ⊗ 1),

and SI(4) is the relation

m3(m2 ⊗ 1⊗2 − 1⊗m2 ⊗ 1 + 1⊗2 ⊗m2)
−m2(m3 ⊗ 1 + 1⊗m3)
= 0.

We will call the first line of SI(4) expression A, and the second expression B. We have

A = m2(f1m2 ⊗ f2 −f2(m2 ⊗ 1)⊗ f1) +f2(m2 ⊗m2 −m2(m2 ⊗ 1)⊗ 1)

−m2(f1 ⊗ f2(m2 ⊗ 1) −f2(1⊗m2)⊗ f1) −f2(1⊗m2(m2 ⊗ 1) −m2(1⊗m2)⊗ 1)
+m2(f1 ⊗ f2(1⊗m2) −f2 ⊗ f1m2) +f2(1⊗m2(1⊗m2) −m2 ⊗m2)

= m2(f2(1⊗m2 −m2 ⊗ 1)⊗ f1) +m2(f1 ⊗ f2(1⊗m2 −m2 ⊗ 1))
+m2(f1m2 ⊗ f2) −m2(f2 ⊗ f1m2)

and

B = −m2(m2(f1 ⊗ f2 −f2 ⊗ f1)⊗ 1) +f2(1⊗m2 −m2 ⊗ 1)⊗ 1
−m2(1⊗m2(f1 ⊗ f2 −f2 ⊗ f1) +1⊗ f2(1⊗m2 −m2 ⊗ 1))

so that, cancelling elements with opposite signs, A+B gives

A+B = m2(f1m2 ⊗ f2 − f2 ⊗ f1m2

−m2(m2(f1 ⊗ f2 − f2 ⊗ f1)⊗ 1 + 1⊗m2(f1 ⊗ f2 − f2 ⊗ f1))

Recalling the A∞-morphism relations for n = 2, which, since m1 = 0, is

f1m2 = m2(f1 ⊗ f1)

we have

A+B = m2(m2(f1 ⊗ f1)⊗ f2 − f2 ⊗m2(f1 ⊗ f1)
−m2(m2(f1 ⊗ f2 − f2 ⊗ f1)⊗ 1 + 1⊗m2(f1 ⊗ f2 − f2 ⊗ f1))

= m2(m2 ⊗ 1− 1⊗m2)(f1 ⊗ f1 ⊗ f2 + f1 ⊗ f2 ⊗ f1 + f2 ⊗ f1 ⊗ f1)

and by SI(3), we have
m2(m2 ⊗ 1− 1⊗m2) = 0,

which means A+B = 0 and SI(4) holds for m3.

5.4 Tensor product of A∞-algebras

5.4.1 A naive approach

Since the extension algebra we are interested in appears as a subalgebra in the tensor
product of HTd(u) with itself, it is natural to ask if the A∞-structure of this tensor
product can be described in terms of the A∞-structure of the tensorands.
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Considering that dg-algebras are a subclass of A∞-algebras and that it is well-known
how to tensor two such algebras, it looks like there is a natural way to define the tensor
product of two A∞-algebras.

Let (A,mA
n ) and (B,mB

n ) be two A∞-algebras. Naively attempting to define an A∞-
structure on A⊗B by setting the multiplication maps to be

mA⊗B
n := mA

n ⊗mB
n ,

does not work since the degree of mA⊗B
n is equal to 2− n+ 2− n = 2(2− n), and unless

n = 0, we see that it differs from the requested degree of higher multiplications in the
definition of an A∞-algebra. Therefore, it is not possible to tensor A∞-algebras in the
same naive way as to tensor dg-algebras.

5.4.2 The solution

The right way to define such an A∞-algebra structure on the tensor product of two A∞-
algebras is a lot more involved as we can see in Chapter 2 of [Amo12]. Let us introduce
some of the notation used in the theorem of interest to us.

LetGn be the set of planar rooted trees with n leaves satisfying the following conditions:
if we denote by val(v) the number of incoming edges of a vertex v, then val(v) ≥ 2 for
each internal vertex v, by which we mean any vertex that is not one of the leaves or the
root.

Denote by Gbin
n ⊂ Gn the subset of binary trees, i.e. those trees such that all internal

vertices have valency 2. There is a natural partial order on the set Gbin
n which is generated

by the relation on the following picture:

≤

Given T ∈ Gn, we define a binary tree Tmax ∈ Gbin
n as the maximal (with respect to

the partial order) binary tree that resolves T , by which we mean that T can be obtained
by collapsing several edges in Tmax. For instance

T Tmax

We denote by cn ∈ Gn the tree with only one internal vertex and call it the n-corolla.
Finally, let Ln be the subset of Gn of trees obtained by grafting corollas together but
avoiding the last leaf.

Let V ∈ Ln be a tree with k internal edges. There is a natural correspondence between
internal edges of V and right leaning edges of Vmax. Denote by R(B) the set of right leaning
edges of a binary tree B and by |R(B)| the order of this set. We can define some map
t : Ln → k[Gn] which assigns a formal sum of trees of Gn to a tree of Ln, more precisely
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5.4. Tensor product of A∞-algebras

t(V ) :=
∑

S ∈ Gbinn

S ≥ Vmax

|R(S)| = k

S/R(S),

where S/R(S) is the tree obtained by collapsing all the edges of S in R(S). For
example,

t
( )

= +

Let (A,mn) be an A∞-algebra. Let T ∈ Gn. Then we can produce a map

TA : A⊗n → A

by assigning mval(v) to each vertex and using T as a flow chart. For example, the map
corresponding to the tree in Figure 5.2 is m2(m3 ⊗ 1) where 1 denotes the identity map.

m2

m3

Figure 5.2: Example of a tree of Gn with vertices labeled by mval(v)

Theorem 5.4.1 (Theorem 2.21, [Amo12]). Let A and B be (unital) A∞-algebras. Then
the tensor product A⊗∞ B is quasi-isomorphic to the A∞-algebra

{
A⊗B,m⊗k

}
given by

m⊗1 = mA
1 ⊗ id+ id⊗mB

1 ,

m⊗2 = mA
2 ⊗mB

2 ,

m⊗n =
∑
U∈Ln

UA ⊗ t(U)B, for n ≥ 3.

For example, we can write the map m⊗3 explicitly:

m⊗3 =
⊗ + ⊗

which we interpret as the map

m⊗3 =
(
mA

2 (mA
2 ⊗ 1A)

)
⊗mB

3 +mA
3 ⊗

(
mB

2 (1B ⊗mB
2 )
)
.

Lemma 5.4.2. Let (A,mA
n ) and (B,mB

n ) be two formal A∞-algebras. Their tensor product
(A ⊗ B,m⊗n ) is formal. In particular, any finite tensor product of formal A∞-algebras is
formal.
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Proof. Let n ≥ 3. Suppose that given U ∈ Ln, U has, or all the trees of t(U) have, a
vertex of valency greater or equal to 3. Then the map UA or the maps t(U)B are zero by
formality of A or B. If this is true for all U ∈ Ln, we obtain that m⊗n is zero.

Let U ∈ Ln. We then want to show that U has a vertex of valency greater or equal
to 3 or all the trees of t(U) have a vertex of valency greater or equal to 3. Suppose U
does not have a vertex of valency greater or equal to 3. That means that all the internal
vertices v and the root of U satisfy val(v) = 2, i.e. U is a binary tree. In particular, U
has n − 2 internal edges. Indeed, let us prove that by induction on the number of leaves
n. If n = 2, then the edges linking the root to the leaves are not internal, namely there
are no internal edge. Suppose that a binary tree with n leaves has n − 2 internal edges.
To obtain a binary tree with n+ 1 leaves, we would need to connect an additional leaf to
the binary tree with n leaves, and to respect the fact that it is a binary tree, we cannot
link the additional leaf to any internal vertex nor to the root of the tree. The only thing
we can do to create an internal vertex of valency 2 is to connect the additional leaf to a
non-internal edge. In doing so, we create an internal edge. Hence the number of internal
edges become n− 2 + 1 = (n+ 1)− 2.

Now, recall the expression of t(U):

t(U) :=
∑

S ∈ Gbinn

S ≥ Umax

|R(S)| = n− 2

S/R(S).

Since U is binary, we have that U = Umax. Besides, there is only one binary tree S
with n leaves and n− 2 right leaning edges. As a result, the corresponding tree obtained
by collapsing right leaning edges S/R(S) is an n-corolla. In particular, the unique vertex
of t(U) has valency n, which is greater or equal to 3 by assumption.

5.5 Examples

5.5.1 The A∞-structure of Ext(∆,∆) for c2(c2, t2)

5.5.1.1 Computation of Ext(∆,∆) for c2(c2, t2)

Recall that we obtained the following decomposition of c2(c2, t2) into indecomposable
projective modules P (i), i = 1, 2, 3, 4 (cf. Figure 5.3).

10

21 31

11 42 11

32 21

12

(a) P (1)

20

10

31

11

21

(b) P (2)

30

41 10

31 20

11

(c) P (3)

40

30

10

(d) P (4)

Figure 5.3: Projective modules

It is easily seen that the standard module ∆(i) corresponds to the 0-d-degree part of
the projective module P (i) (cf. Figure 5.4).

123



5.5. Examples

1

(a) ∆(1)

2

1

(b) ∆(2)

3

1

2

(c) ∆(3)

4

3

1

(d) ∆(4)

Figure 5.4: Standard modules

To compute Extc2(c2,t2)(∆,∆) where ∆ = ⊕4
i=1∆(i), we need to find projective reso-

lutions of the standard modules and then use that

Extnc2(c2,t2)(∆,∆) ∼= HomDb(c2(c2,t2))(P, P [n]),

where P is a projective resolution of ∆ and P [n] is the complex P shifted n times to the
left (n ∈ N). We have:

P1 : 0 →
4
3
1
→

3
4 1

3 2
1

→

2
1
3
1
2

⊕

3
4 1

3 2
1

→

1
2 3

1 4 1
3 2

1

→ 1

P2 : 0 →
4
3
1

→

3
4 1

3 2
1

→

2
1
3
1
2

→ 2
1

P3 : 0 →
4
3
1

→

3
4 1

3 2
1

→
3
1
2

P4 : 0 →
4
3
1

→
4
3
1

and P = ⊕4
i=1Pi.

5.5.1.1.1 Exti(∆(1),∆) We will only need to go through the cases i = 0, . . . , 3 since
the projective resolutions have length up to 4.

• i = 0: In this case, Ext0(∆(1),∆) ∼= Hom(∆(1),∆). So we have:

1→
1 2 3 4
⊕ 1 ⊕ 1 ⊕ 3

2 1
.

We get three different generators:

e1 = id∆(1) ∈ Hom(∆(1),∆(1))

a ∈ Hom(∆(1),∆(2))
d ∈ Hom(∆(1),∆(4)).

124



5.5. Examples

• i = 1: We need to understand the non null-homotopic maps between the two com-
plexes:

. . .→

3
4 1

3 2
1

→

2
1
3
1
2

⊕

3
4 1

3 2
1

→

1
2 3

1 4 1
3 2

1
↓ ↓

. . .→

2
1
3
1
2

⊕

3
4 1

3 2
1

⊕

3
4 1

3 2
1

⊕
4
3
1
→

1
2 3

1 4 1
3 2

1

⊕

2
1
3
1
2

⊕

3
4 1

3 2
1

⊕
4
3
1

We get three different generators:

α ∈ Ext1(∆(1),∆(2))

α1 ∈ Ext1(∆(1),∆(3))

α2 ∈ Ext1(∆(1),∆(4)).

• i = 2: We need to understand the non null-homotopic maps between the two com-
plexes:

0→
4
3
1

→

3
4 1

3 2
1

→

2
1
3
1
2

⊕

3
4 1

3 2
1

→ . . .

↓ ↓

. . .→

2
1
3
1
2

⊕

3
4 1

3 2
1

⊕

3
4 1

3 2
1

⊕
4
3
1
→

1
2 3

1 4 1
3 2

1

⊕

2
1
3
1
2

⊕

3
4 1

3 2
1

⊕
4
3
1

We get two different generators:

α3 ∈ Ext2(∆(1),∆(3))

α4 ∈ Ext2(∆(1),∆(4)).

• i = 3: We need to understand the non null-homotopic maps between the two com-
plexes:

0 →
4
3
1

→

3
4 1

3 2
1

→ . . .

↓ ↓

. . .→

2
1
3
1
2

⊕

3
4 1

3 2
1

⊕

3
4 1

3 2
1

⊕
4
3
1
→

1
2 3

1 4 1
3 2

1

⊕

2
1
3
1
2

⊕

3
4 1

3 2
1

⊕
4
3
1

We get one generator:
α5 ∈ Ext3(∆(1),∆(4)).

5.5.1.1.2 Computing Exti(∆(2),∆) We will only need to go through the cases i =
0, . . . , 2 since the projective resolution of ∆(2) has length up to 3.

• i = 0: In this case, Ext0(∆(2),∆) ∼= Hom(∆(2),∆). So we have:

2
1 →

1 2 3 4
⊕ 1 ⊕ 1 ⊕ 3

2 1
.
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We get two different generators:

e2 = id∆(2) ∈ Hom(∆(2),∆(2))

b ∈ Hom(∆(2),∆(3)).

• i = 1: We need to understand the non null-homotopic maps between the two com-
plexes:

0→
4
3
1

→

3
4 1

3 2
1

→

2
1
3
1
2

↓ ↓

. . .→

2
1
3
1
2

⊕

3
4 1

3 2
1

⊕

3
4 1

3 2
1

⊕
4
3
1
→

1
2 3

1 4 1
3 2

1

⊕

2
1
3
1
2

⊕

3
4 1

3 2
1

⊕
4
3
1

We get two different generators:

β ∈ Ext1(∆(2),∆(3))

β1 ∈ Ext1(∆(2),∆(4)).

• i = 2: We need to understand the non null-homotopic maps between the two com-
plexes:

0 →
4
3
1

→

3
4 1

3 2
1

→ . . .

↓ ↓

. . .→

2
1
3
1
2

⊕

3
4 1

3 2
1

⊕

3
4 1

3 2
1

⊕
4
3
1
→

1
2 3

1 4 1
3 2

1

⊕

2
1
3
1
2

⊕

3
4 1

3 2
1

⊕
4
3
1

We get one generator:
β2 ∈ Ext2(∆(2),∆(4)).

5.5.1.1.3 Computing Exti(∆(3),∆) We will only need to go through the cases i =
0, 1 since the projective resolution of ∆(3) has length up to 2.

• i = 0: In this case, Ext0(∆(3),∆) ∼= Hom(∆(3),∆). So we have:

3
1
2
→

1 2 3 4
⊕ 1 ⊕ 1 ⊕ 3

2 1
.

We get two different generators:

e3 = id∆(3) ∈ Hom(∆(3),∆(3))

c ∈ Hom(∆(3),∆(4)).

• i = 1: We need to understand the non null-homotopic maps between the two com-
plexes:

0 →
4
3
1

→

3
4 1

3 2
1

↓ ↓

. . .→

2
1
3
1
2

⊕

3
4 1

3 2
1

⊕

3
4 1

3 2
1

⊕
4
3
1
→

1
2 3

1 4 1
3 2

1

⊕

2
1
3
1
2

⊕

3
4 1

3 2
1

⊕
4
3
1
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We get one generator:
γ ∈ Ext1(∆(3),∆(4)).

5.5.1.1.4 Computing Exti(∆(4),∆) We will only need to go through the cases i = 0
since the projective resolution of ∆(3) has length up to 1.

• i = 0: In this case, Ext0(∆(4),∆) ∼= Hom(∆(4),∆). So we have:

4
3
1
→

1 2 3 4
⊕ 1 ⊕ 1 ⊕ 3

2 1
.

We get one generator:

e4 = id∆(4) ∈ Hom(∆(3),∆(3)).

5.5.1.1.5 A basis for Ext(∆,∆) Composing the different maps found above, we see
that a minimal generating set is given by:

e1 ∈ Hom(∆(1),∆(1));
e2 ∈ Hom(∆(2),∆(2));
e3 ∈ Hom(∆(3),∆(3));
e4 ∈ Hom(∆(4),∆(4));
a ∈ Hom(∆(1),∆(2));
b ∈ Hom(∆(2),∆(3));
c ∈ Hom(∆(3),∆(4));
d ∈ Hom(∆(1),∆(4));

α ∈ Ext1(∆(1),∆(2));

β ∈ Ext1(∆(2),∆(3));

γ ∈ Ext1(∆(3),∆(4));

and that they satisfy the following relations:

b ◦ a = c ◦ b = c ◦ β ◦ α− γ ◦ β ◦ a = b ◦ α = γ ◦ b = 0.

Since we want the c2(c2, t2)-action on ∆ to match (hence the redundant notation for
the ei’s), we will actually consider Ext(∆,∆)op, so that for instance:

b ∈ Hom(∆(2),∆(3)) = Hom(∆e2,∆e3) = e2 Hom(∆,∆)e3,

where b = e2be3, which is the same as e3 ◦ b ◦ e2.
We can finally represent Ext(∆,∆)op as the path algebra of the following quiver:

1 2

4 3

a

b
c

d

α

β

γ

modulo relations (ab, bc, αβc − aβγ, αb, bγ). It is an 18-dimensional k-algebra, with
basis:
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Degree 0:
e1 ∈ Hom(∆(1),∆(1));
a ∈ Hom(∆(1),∆(2));
e2 ∈ Hom(∆(2),∆(2));
b ∈ Hom(∆(2),∆(3));
e3 ∈ Hom(∆(3),∆(3));
c ∈ Hom(∆(3),∆(4));
e4 ∈ Hom(∆(4),∆(4));
d ∈ Hom(∆(1),∆(4));

Degree 1:
α ∈ Ext1(∆(1),∆(2));

βa ∈ Ext1(∆(1),∆(3));

cβa ∈ Ext1(∆(1),∆(4));

β ∈ Ext1(∆(2),∆(3));

cβ ∈ Ext1(∆(2),∆(4));

γ ∈ Ext1(∆(3),∆(4));

Degree 2:
βα ∈ Ext2(∆(1),∆(3));

cβα ∈ Ext2(∆(1),∆(4));

γβ ∈ Ext2(∆(2),∆(4));

Degree 3:
γβα ∈ Ext3(∆(1),∆(4)).

5.5.1.2 Computation of the A∞-structure

We can now compute the A∞-structure of this algebra (which exists by Kadeishvili’s
theorem, Ext(∆,∆)op being the homology of the dg-algebra A = Hom(P, P )op). We
follow a recipe found in [Mad02] or in [Kel99]. We want to construct the compositions
mi : H∗(A)⊗i → H∗(A) and a quasi-isomorphism of A∞-algebras f : H∗(A) → A. Since
A is a dg-algebra, we have:

– mA
1 : A→ A is the differential of A;

– mA
2 : A⊗A→ A is the multiplication;

– mA
i : A⊗i → A vanishes for all i ≥ 3.

Since H∗(A) is the homology of A, we can choose the differential m1 : H∗(A)→ H∗(A)
to be zero. We choose the map of complexes f1 : (H∗(A), 0)→ (A,mA

1 ) such that Hf1 is
the identity. Considering how we computed H∗(A), it is quite obvious how to define it.

Next, we need to consider Φ2 = f1m2−mA
2 (f1⊗f1). This expression is going to be zero

when we evaluate it on pairs of basis elements of H∗(A) if and only if their multiplication
was already zero or it becomes zero in homology. Therefore, we only need to check on the
relations of length two to find pairs of basis elements which will yield non-zero Φ2 when
evaluating.

It turns out that there are only two pairs with non-zero Φ2:

Φ2(a⊗ b) = −g1

where g1 is the following map of complexes:
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P (4) → P (3)⊕ P (4) → P (2)⊕ P (3)⊕ P (3)⊕ P (4) → P (1)⊕ P (2)⊕ P (3)⊕ P (4)

P (4) → P (3)⊕ P (4) → P (2)⊕ P (3)⊕ P (3)⊕ P (4) → P (1)⊕ P (2)⊕ P (3)⊕ P (4)

0 0 0 g1

which sends the top of P (1) to the socle of P (3), and

Φ2(α⊗ b) = −g2

where g2 is the following map of complexes:

P (4) → P (3)⊕ P (4) → P (2)⊕ P (3)⊕ P (3)⊕ P (4) → P (1)⊕ P (2)⊕ P (3)⊕ P (4)

P (4) → P (3)⊕ P (4) → P (2)⊕ P (3)⊕ P (3)⊕ P (4) → P (1)⊕ P (2)⊕ P (3)⊕ P (4)

0 0 g2

which sends the top of P (2) to the composition factor 2 of P (3).
It is now possible to choose f2 : H∗(A)⊗2 → A as a morphism of complexes of degree

-1 so that m1f2 = Φ2. We may choose f2(x⊗ y) = 0 for all x⊗ y ∈ H∗(A)⊗H∗(A) such
that Φ2(x⊗ y) = 0, and for a⊗ b and α⊗ b, we choose:

f2(a⊗ b) = −g3

where g3 is the following map of complexes:

P (4) → P (3)⊕ P (4) → P (2)⊕ P (3)⊕ P (3)⊕ P (4) → P (1)⊕ P (2)⊕ P (3)⊕ P (4)

P (4) → P (3)⊕ P (4) → P (2)⊕ P (3)⊕ P (3)⊕ P (4) → P (1)⊕ P (2)⊕ P (3)⊕ P (4)
0 0 g3

which sends the top of P (1) to the socle of P (4), and

f2(α⊗ b) = −g4

where g4 is the following map of complexes:

P (4) → P (3)⊕ P (4) → P (2)⊕ P (3)⊕ P (3)⊕ P (4) → P (1)⊕ P (2)⊕ P (3)⊕ P (4)

P (4) → P (3)⊕ P (4) → P (2)⊕ P (3)⊕ P (3)⊕ P (4) → P (1)⊕ P (2)⊕ P (3)⊕ P (4)

0 0 0 g4

which sends the top of P (1) to the composition factor 1 of d-degree 0 of P (3).
Since we have found non-zero f2, we continue the construction. Consider Φ3 :=

mA
2 (f1 ⊗ f2 − f2 ⊗ f1) + f2(1⊗m2 −m2 ⊗ 1) and let us evaluate it for triple x⊗ y ⊗ z of

basis elements of H∗(A). It turns out it is non-zero for a⊗ b⊗ γ and α⊗ b⊗ c, and

Φ3(a⊗ b⊗ γ) = Φ3(α⊗ b⊗ c) = d.

We must choose maps m3 and f3 such that:

f1m3 = mA
1 f3 + Φ3.

Taking f3 to be identically zero, m3(a⊗ b⊗ γ) = m3(α⊗ b⊗ c) = d and m3(x⊗ y⊗ z) = 0
otherwise, the required relation is satisfied on H∗(A)⊗3. Since f3 is identically zero, the
construction finishes and all other mi’s are zero for i ≥ 4.
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5.5.2 A partial A∞-structure on HTd(u)

We want to compute a partial A∞-structure onHTd(u); more specifically, we are interested
in knowing m3 : d⊗H(u)⊗ d→ HTd(u), and we need to build a quasi-isomorphism:

f : HTd(u)→ Td(u)→ TK(c)

(
K(t̃)

)
.

To compute m3, we have the following formula derived from the relations defining an
A∞-structure:

f1m3 = m1f3 +m2(f1 ⊗ f2 − f2 ⊗ f1) + f2(1⊗m2 −m2 ⊗ 1),

so we need to know the following maps:

• f1 : d→ TK(c)

(
K(t̃)

)
;

• f1 : H(u)→ TK(c)

(
K(t̃)

)
;

• f2 : d⊗H(u)→ TK(c)

(
K(t̃)

)
;

• f2 : H(u)⊗ d→ TK(c)

(
K(t̃)

)
;

• m2 : d⊗H(u)→ HTd(u);

• m2 : H(u)⊗ d→ HTd(u);

• m2 : TK(c)

(
K(t̃)

)
⊗ TK(c)

(
K(t̃)

)
→ TK(c)

(
K(t̃)

)
.

5.5.2.1 Making f1’s explicit

From [MT13], we have:

• f1 : d
q.i.→ K(c);

• f1 : H(u)
q.i.→ K(t).

We want to make those two maps explicit.
Recall K(M) = HomA(P,A)⊗AM ⊗A P ∼= HomA(P,M)⊗A P . In particular, K(c) ∼=

Endc(P ), where P is a projective resolution of the standard modules of c:

P1 : 0 → 2
1
→

1
2
1
→ 1

P2 : 0 → 2
1
→ 2

1

We have the following:

Endc(P ) = Homc (ce2 → c, ce2 → c) .

It is a chain complex with differential:

∂(f)(−) = dP (f(−)) + (−1)|f |f(dP (−)),

which decomposes as
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Endc(P ) = Hom0
c

 1
2
1
,

1
2
1

 ⊕ Hom0
c

 1
2
1
,

2
1

 ⊕ Hom0
c

 2
1
,

1
2
1


⊕ Hom0

c

(
2
1
,

2
1

)
⊕ Hom0

c

(
2
1
,

2
1

)
⊕ Hom−1

c

 1
2
1
,

2
1


⊕ Hom−1

c

(
2
1
,

2
1

)
⊕ Hom1

c

 2
1
,

1
2
1

 ⊕ Hom1
c

(
2
1
,

2
1

)

where the superscripts on the Hom’s indicate the degree of the maps. We obtain 10 basis
elements:

Endc(P ) = 〈e1 7→ e1, e1 7→ βα〉0 ⊕ 〈e1 7→ β〉0 ⊕ 〈eII2 7→ α〉0
⊕ 〈eI2 7→ eI2〉0 ⊕ 〈eII2 7→ eII2 〉0 ⊕ 〈e1 7→ β〉−1

⊕ 〈eII2 7→ eI2〉−1 ⊕ 〈eI2 7→ α〉1 ⊕ 〈eI2 7→ eII2 〉1.

For these to appear in homology, they must vanish under the differential; this exactly
means that they must be maps of chain complexes, i.e. commute with the differential of
the complex P . We see that they are the following maps:

Hom0
Ch(c)(P, P ) : 2 1 2 〈e1 7→ e1〉0, 〈e2 7→ e2〉0

1 2 ⊕ 1 〈e1 7→ β〉0, 〈e2 7→ α〉0

1 〈e1 7→ βα〉0

2 1 2

1 2 ⊕ 1

1

Hom1
Ch(c)(P, P ) : 2 1 2 〈e2 7→ e2〉1

1 2 ⊕ 1 〈e2 7→ α〉1

1

2 1 2

1 2 ⊕ 1

1

In particular, the homology is positively graded. Therefore, it comes that:

131



5.5. Examples

Ext0
c(∆,∆) : 2 1 2 〈e1 7→ e1〉0 = idP1

1 2 ⊕ 1 〈e1 7→ β〉0 : P1 → P2, e1 7→ β

1 〈e2 7→ e2〉0 = idP2

2 1 2

1 2 ⊕ 1

1

Ext1
c(∆,∆) : 2 1 2 〈e2 7→ e2〉1 : P1 → P2, e2 7→ e2[1]

1 2 ⊕ 1

1

2 1 2

1 2 ⊕ 1

1

We conclude that f1 : d→ Endc(P )op is given by

e1 7→ 〈e1 7→ e1〉0 + 〈eI2 7→ eI2〉0
e2 7→ 〈eII2 7→ eII2 〉0
ξ 7→ 〈e1 7→ β〉0 : P1 → P2, e1 7→ β

x 7→ 〈e2 7→ e2〉1 : P1 → P2, e
I
2 7→ eII2 [1]

where eI2, resp. eII2 , refers to the basis element at the top of the second projective module
in the first, resp. second, projective resolution.

This map induces the identity in homology and it satisfies

m1f1 = f1m1 : d→ Endc(P ),

which rewrites as m1f1 = 0, because the differential m1 : d → d is the zero map. This
equation means that all lifts of elements of d are mapped to elements in the kernel of the
differential on Endc(P ), which is true because those elements appear in homology (and
are non-zero).

We now want the map f1 : H(u)→ K(t) to be explicit. We work with a (c, c)-bimodule
resolution t̃ of t which is projective both on the left and on the right:

0 −→ c
f−→ ce1 ⊗ e1c −→ t −→ 0

1 7−→ e1 ⊗ βα+ α⊗ β − βα⊗ e1

We would like to express K(t̃) in the form of a complex and compute its differentials,
so that we may then compute its homology. It writes:

K(t̃) = Homc

(
ce2

·α→ c, c
f→ ce1 ⊗ e1c

)
⊗c

(
ce2

·α→ c
)
.

Focusing on the first tensorand, we have the following:

132



5.5. Examples

Homc

(
ce2

·α→ c, c
f→ ce1 ⊗ e1c

)
= Homc

(
c, c

f→ ce1 ⊗ e1c
)

Homc

(
ce2, c

f→ ce1 ⊗ e1c
)

= Homc (c, c) Homc (ce2, c)

Homc (c, ce1 ⊗ e1c) Homc (ce2, ce1 ⊗ e1c)

(·α)∗

(·α)∗

(·α)∗
f∗ f∗

This can be considered trivially as a double complex, and using the sign trick [Wei95,
p. 8], we take the total complex:

Homc

(
ce2

·α→ c, c
f→ ce1 ⊗ e1c

)
=

Homc(c, c)

 (·α)∗

−f∗


−→ Homc(ce2, c)⊕Homc(c, ce1 ⊗ e1c)

(f∗,(·α)∗)−→ Homc(ce2, ce1 ⊗ e1c)

It is now possible to include the second tensorand, and K(t̃) becomes:

Homc(c, c)⊗c ce2 Homc(ce2, c)⊗c ce2 ⊕Homc(c, ce1 ⊗ e1c)⊗c ce2 Homc(ce2, ce1 ⊗ e1c)⊗c ce2

Homc(c, c)⊗c c Homc(ce2, c)⊗c c⊕Homc(c, ce1 ⊗ e1c)⊗c c Homc(ce2, ce1 ⊗ e1c)⊗c c

(
(·α)∗ ⊗ 1
−f∗ ⊗ 1

)
(f∗ ⊗ 1, (·α)∗ ⊗ 1)

(
(·α)∗ ⊗ 1
−f∗ ⊗ 1

)
(f∗ ⊗ 1, (·α)∗ ⊗ 1)

1⊗ (·α)

(
1⊗ (·α) 0

0 1⊗ (·α)

)
1⊗ (·α)

This is a double complex, and taking the total complex yields the following complex:

Homc(c, c)⊗c ce2 Homc(ce2, c)⊗c ce2 ⊕Homc(c, ce1 ⊗ e1c)⊗c ce2 ⊕Homc(c, c)⊗c c

Homc(ce2, c)⊗c c⊕Homc(c, ce1 ⊗ e1c)⊗c c⊕Homc(ce2, ce1 ⊗ e1c)⊗c ce2

Homc(ce2, ce1 ⊗ e1c)⊗c c

∂3

∂2

∂1

where

∂3 =

 (·α)∗ ⊗ 1
−f∗ ⊗ 1
−1⊗ (·α)



∂2 =

 1⊗ (·α) 0 (·α)∗ ⊗ 1
0 1⊗ (·α) −f∗ ⊗ 1

f∗ ⊗ 1 (·α)∗ ⊗ 1 0


∂1 = (f∗ ⊗ 1, (·α)∗ ⊗ 1,−1⊗ (·α))

We can simplify the complex by means of classical isomorphisms, and we obtain:

ce2 e2ce2 ⊕ ce1 ⊗ e1ce2 ⊕ c e2c⊕ ce1 ⊗ e1c⊕ e2ce1 ⊗ e1ce2 e2ce1 ⊗ e1c
∂̃3 ∂̃2 ∂̃1
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where

∂̃3 =

 α·
−(·α⊗ β)
−(·α)



∂̃2 =

 ·α 0 α·
0 ·α ·(βα⊗ e1 − α⊗ β − e1 ⊗ βα)

·α⊗ β α· 0


∂̃1 = (·(e1 ⊗ βα+ α⊗ β − βα⊗ e1), α·, −(·α))

Let us compute the homology of this complex. We know that ce2 = 〈e2, β〉, and we
have:

∂̃3(e2) =

 0
−α⊗ β
−α

 ,

∂̃3(β) =

 0
−βα⊗ β
−βα

 ,

and hence we see that Ker ∂̃3 = 0 and Im ∂̃3 =

〈 0
−α⊗ β
−α

 ,

 0
−βα⊗ β
−βα

〉.

We know that e2ce2 = 〈e2〉, so:

∂̃2

 e2

0
0

 =

 α
0

α⊗ β

 ,

and ce1 ⊗ e1ce2 = 〈e1 ⊗ β, α⊗ β, βα⊗ β〉, so:

∂̃2

 0
e1 ⊗ β

0

 =

 0
e1 ⊗ βα
α⊗ β

 ,

∂̃2

 0
α⊗ β

0

 =

 0
α⊗ βα

0

 ,

∂̃2

 0
βα⊗ β

0

 =

 0
βα⊗ βα

0

 ,

and c = 〈e1, α, βα, e2, β〉, so:

∂̃2

 0
0
e1

 =

 α
βα⊗ e1 − e1 ⊗ βα

0

 , ∂̃2

 0
0
e2

 =

 0
−α⊗ β

0

 ,

∂̃2

 0
0
α

 =

 0
−α⊗ βα

0

 , ∂̃2

 0
0
β

 =

 0
−βα⊗ β

0

 ,

∂̃2

 0
0
βα

 =

 0
−βα⊗ βα

0

 ,
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and we see that Ker ∂̃2 =

〈 0
α⊗ β
α

 ,

 0
βα⊗ β
βα

〉 and

Im ∂̃2 =

〈 α
0

α⊗ β

 ,

 α
βα⊗ e1 − e1 ⊗ βα

0

 ,

 0
e1 ⊗ βα
α⊗ β

 ,

 0
α⊗ βα

0

 ,

 0
βα⊗ βα

0

 ,

 0
−α⊗ β

0

 ,

 0
−βα⊗ β

0

〉 .
We know that e2c = 〈e2, α〉, so:

∂̃1

 e2

0
0

 = α⊗ β,

∂̃1

 α
0
0

 = α⊗ βα.

We also know that ce1 ⊗ e1c = 〈e1 ⊗ e1, α⊗ e1, βα⊗ e1, e1 ⊗ β, α⊗ β, βα⊗ β, e1 ⊗ βα,
α⊗ βα, βα⊗ βα〉, so:

∂̃1

 0
e1 ⊗ e1

0

 = α⊗ e1, ∂̃1

 0
e1 ⊗ β

0

 = α⊗ β,

∂̃1

 0
α⊗ e1

0

 = 0, ∂̃1

 0
α⊗ β

0

 = 0,

∂̃1

 0
βα⊗ e1

0

 = 0, ∂̃1

 0
βα⊗ β

0

 = 0,

∂̃1

 0
e1 ⊗ βα

0

 = α⊗ βα,

∂̃1

 0
α⊗ βα

0

 = 0,

∂̃1

 0
βα⊗ βα

0

 = 0,

and e2ce1 ⊗ e1ce2 = 〈α⊗ β〉, so:

∂̃1

 0
0

α⊗ β

 = −α⊗ βα.
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Hence

Ker ∂̃1 =

〈 α
0

α⊗ β

 ,

 −e2

e1 ⊗ β
0

 ,

 0
e1 ⊗ βα
α⊗ β

 ,

 0
α⊗ e1

0

 ,

 0
α⊗ β

0

 , 0
βα⊗ e1

0

 ,

 0
βα⊗ β

0

 ,

 0
α⊗ βα

0

 ,

 0
βα⊗ βα

0

〉

and Im ∂̃1 = 〈α⊗ e1, α⊗ β, α⊗ βα〉.
We can compute homology; to sum up we have:

Ker ∂̃3 = 0 ⇒ H3(K(t̃)) = 0

Im ∂̃3 =

〈 0
−α⊗ β
−α

 ,

 0
−βα⊗ β
−βα

〉

Ker ∂̃2 =

〈 0
α⊗ β
α

 ,

 0
βα⊗ β
βα

〉


⇒ H2(K(t̃)) = 0

Im ∂̃2 =
〈 α

0
α⊗ β

 ,

 α
βα⊗ e1 − e1 ⊗ βα

0

 ,

 0
e1 ⊗ βα
α⊗ β

 ,

 0
α⊗ βα

0

 ,

 0
βα⊗ βα

0

 ,

 0
−α⊗ β

0

 ,

 0
−βα⊗ β

0

〉

Ker ∂̃1 =
〈 α

0
α⊗ β

 ,

 −e2

e1 ⊗ β
0

 ,

 0
e1 ⊗ βα
α⊗ β

 ,

 0
α⊗ e1

0

 ,

 0
α⊗ β

0

 , 0
βα⊗ e1

0

 ,

 0
βα⊗ β

0

 ,

 0
α⊗ βα

0

 ,

 0
βα⊗ βα

0

〉


⇒ H1(K(t̃)) = 〈v1, v2〉

where v1 =

 e2

−e1 ⊗ β
0

 and v2 =

 0
α⊗ e1

0

.

There is one non-zero homology group, and there is a natural d-d-bimodule structure

on it, e.g. there is a left action of e1 on

 e2

−e1 ⊗ β
0

, since using the map f1 : d→ K(c),

we know that:

e1 ·

 e2

−e1 ⊗ β
0

 = (〈e1 7→ e1〉0 + 〈eI2 7→ eI2〉0)

 e2

−e1 ⊗ β
0


=

 〈eI2 7→ eI2〉0(e2)

〈e1 7→ e1〉0(−e1 ⊗ β)
0


=

 e2

−e1 ⊗ β
0


The only part of d acting non trivially on both sides is the semi-simple top, thus this
homology group really is a d0-d0-bimodule.
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Recall that the homology of u := d⊗σd0 d∗ is given by H(u) = 〈e1⊗ e∗2, e2⊗ e∗1〉, which
is isomorphic to σ(d0). We can thus define the following map:

f1 : H(u) → K(t)

e1 ⊗ e∗2 7→

 e2

−e1 ⊗ β
0


e2 ⊗ e∗1 7→

 0
α⊗ e1

0


In addition, if we want homological degrees to match, we can shift the complex K(t̃).

5.5.2.2 Making m2’s explicit

We are now concerned with the following maps:

• m2 : d⊗H(u)→ HTd(u);

• m2 : H(u)⊗ d→ HTd(u);

• m2 : TK(c)

(
K(t̃)

)
⊗ TK(c)

(
K(t̃)

)
→ TK(c)

(
K(t̃)

)
.

The first two consist in concatenating the tensors and using the multiplication in d.
The third multiplication map comes from the natural multiplication in the tensor

algebra, that is the multiplication that arises from the K(c)-bimodule structure on K(t̃).
It is given in figures 5.5 and 5.6.

ce2 e2ce2 ⊕ ce1 ⊗ e1ce2 ⊕ c

e2c ⊕ ce1 ⊗ e1c ⊕ e2ce1 ⊗ e1ce2

e2ce1 ⊗ e1c

〈eI2 7→ e
II
2 〉

1
= ·e2, 〈e

I
2 7→ α〉1 = ·α

〈e1 7→ β〉−1
= ·β, 〈eII2 7→ e

I
2〉
−1

= ·e2

·e2

·α

·e2

·β
·e2

·α

·e2

·β

·e2

·α

·e2

·β

〈eI2 7→ e
I
2〉

0
= ·e2

·e2 ·e2

·e2

·e1, ·e2,

·β, ·α,

·βα

·e1, ·e2,

·β, ·α,

·βα

·e1, ·e2,

·β, ·α,

·βα

·e1, ·e2,

·β, ·α,

·βα
Key

Red: (-1)-degree map

Blue: 0-degree map

Green: 1-degree map

Figure 5.5: Right action of K(c) on K(t̃)
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ce2 e2ce2 ⊕ ce1 ⊗ e1ce2 ⊕ c

e2c ⊕ ce1 ⊗ e1c ⊕ e2ce1 ⊗ e1ce2

e2ce1 ⊗ e1c

e2·, α·

β·, e2·

e2·

α·
e2·

β·

e2·

α·

e2·

β·

e2·

α·

e2·

β·
e2·

e2·

e2·

e2·

e1·, e2·,

β·, α·,

βα·

e1·, e2·,

β·, α·,

βα·

e1·, e2·,

β·, α·,

βα·

e1·, e2·,

β·, α·,

βα·

Key

Red: (-1)-degree map

Blue: 0-degree map

Green: 1-degree map

Figure 5.6: Left action of K(c) on K(t̃)

5.5.2.3 Making f2’s explicit

We can now tackle the description of the maps:

• f2 : d⊗H(u)→ TK(c)

(
K(t̃)

)
;

• f2 : H(u)⊗ d→ TK(c)

(
K(t̃)

)
.

To achieve this, we need to evaluate the following expression Φ2, derived from the
A∞-structure relations, on d ⊗ H(u) and H(u) ⊗ d, and then find preimages of non-zero
elements under the differential:

Φ2 = f1m2 −m2(f1 ⊗ f1).

Note that we do not need to pay attention to hypothetical signs coming from the
Koszul sign rule when evaluating Φ2: the maps f1 and m2 are both of degree 0.
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d⊗H(u) m2 f1m2 f1 ⊗ f1 m2(f1 ⊗ f1) Φ2

e1 ⊗ (e1 ⊗ e∗2) e1 ⊗ e∗2

 e2

−e1 ⊗ β
0

 (〈e1 7→ e1〉0
+〈eI2 7→ eI2〉0)

⊗

 e2

−e1 ⊗ β
0

  e2

−e1 ⊗ β
0

 0

e1 ⊗ (e2 ⊗ e∗1) 0 0
(〈e1 7→ e1〉0

+〈eI2 7→ eI2〉0)
⊗

 0
α⊗ e1

0

 0 0

e2 ⊗ (e1 ⊗ e∗2) 0 0 〈eII2 7→ eII2 〉0 ⊗

 e2

−e1 ⊗ β
0

 0 0

e2 ⊗ (e2 ⊗ e∗1) e2 ⊗ e∗1

 0
α⊗ e1

0

 〈eII2 7→ eII2 〉0 ⊗

 0
α⊗ e1

0

  0
α⊗ e1

0

 0

ξ ⊗ (e1 ⊗ e∗2) 0 0 〈e1 7→ β〉0 ⊗

 e2

−e1 ⊗ β
0

 0 0

ξ ⊗ (e2 ⊗ e∗1) 0 0 〈e1 7→ β〉0 ⊗

 0
α⊗ e1

0

  0
βα⊗ e1

0

  0
−βα⊗ e1

0


x⊗ (e1 ⊗ e∗2) 0 0 〈eI2 7→ eII2 〉1 ⊗

 e2

−e1 ⊗ β
0

 0 0

x⊗ (e2 ⊗ e∗1) 0 0 〈eI2 7→ eII2 〉1 ⊗

 0
α⊗ e1

0

 α⊗ e1 −α⊗ e1

We have:

m1

 e2

−e1 ⊗ β
−e1

 =

 0
−βα⊗ e1

0


m1

 0
−e1 ⊗ e1

0

 = −α⊗ e1

Therefore, we choose:

f2(ξ ⊗ (e2 ⊗ e∗1)) =

 e2

−e1 ⊗ β
−e1


f2(x⊗ (e2 ⊗ e∗1)) =

 0
−e1 ⊗ e1

0


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H(u)⊗ d m2 f1m2 f1 ⊗ f1 m2(f1 ⊗ f1) Φ2

(e1 ⊗ e∗2)⊗ e1 0 0

 e2

−e1 ⊗ β
0

⊗ (〈e1 7→ e1〉0
+〈eI2 7→ eI2〉0)

0 0

(e2 ⊗ e∗1)⊗ e1 e2 ⊗ e∗1

 0
α⊗ e1

0

  0
α⊗ e1

0

⊗ (〈e1 7→ e1〉0
+〈eI2 7→ eI2〉0)

 0
α⊗ e1

0

 0

(e1 ⊗ e∗2)⊗ e2 e1 ⊗ e∗2

 e2

−e1 ⊗ β
0

  e2

−e1 ⊗ β
0

⊗ 〈eII2 7→ eII2 〉0
 e2

−e1 ⊗ β
0

 0

(e2 ⊗ e∗1)⊗ e2 0 0

 0
α⊗ e1

0

⊗ 〈eII2 7→ eII2 〉0 0 0

(e1 ⊗ e∗2)⊗ ξ 0 0

 e2

−e1 ⊗ β
0

⊗ 〈e1 7→ β〉0 0 0

(e2 ⊗ e∗1)⊗ ξ 0 0

 0
α⊗ e1

0

⊗ 〈e1 7→ β〉0
 0

α⊗ β
0

  0
−α⊗ β

0


(e1 ⊗ e∗2)⊗ x 0 0

 e2

−e1 ⊗ β
0

⊗ 〈eI2 7→ eII2 〉1 0 0

(e2 ⊗ e∗1)⊗ x 0 0

 0
α⊗ e1

0

⊗ 〈eI2 7→ eII2 〉1 0 0

We have:

m1

 0
0
e2

 =

 0
−α⊗ β

0


Therefore, we choose:

f2((e2 ⊗ e∗1)⊗ ξ) =

 0
0
e2


5.5.2.4 Computing m3

As stated in the introduction, to compute m3 on d ⊗ H(u) ⊗ d, we have the following
formula derived from the relations defining an A∞-structure:

f1m3 = m1f3 +m2(f1 ⊗ f2 − f2 ⊗ f1) + f2(1⊗m2 −m2 ⊗ 1),

which means we must consider:

Φ3 := m2(f1 ⊗ f2 − f2 ⊗ f1) + f2(1⊗m2 −m2 ⊗ 1).

Let us evaluate it on d⊗H(u)⊗ d. Note that we need to be careful with signs:

(f1 ⊗ f2)(x⊗ y) = (−1)|f2||x|f1(x)⊗ f2(y).

Instead of writing all basis elements, we shall only write those which yield non-trivial
results:
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d⊗H(u)⊗ d f1 ⊗ f2 −f2 ⊗ f1 m2(f1 ⊗ f2 − f2 ⊗ f1) f2(1⊗m2 −m2 ⊗ 1) Φ3

ξ ⊗ (e2 ⊗ e∗1)⊗ e1 0 −

 e2

−e1 ⊗ β
−e1

⊗ (〈e1 7→ e1〉0
+〈eI2 7→ eI2〉0)

 −e2

e1 ⊗ β
e1

 f2(ξ ⊗ (e2 ⊗ e∗1)) =

 e2

−e1 ⊗ β
−e1

 0

x⊗ (e2 ⊗ e∗1)⊗ e1 0 −

 0
−e1 ⊗ e1

0

⊗ (〈e1 7→ e1〉0
+〈eI2 7→ eI2〉0)

 0
e1 ⊗ e1

0

 f2(x⊗ (e2 ⊗ e∗1)) =

 0
−e1 ⊗ e1

0

 0

ξ ⊗ (e2 ⊗ e∗1)⊗ e2 0 −

 e2

−e1 ⊗ β
−e1

⊗ 〈eII2 7→ eII2 〉0 0 0 0

x⊗ (e2 ⊗ e∗1)⊗ e2 0 −

 0
−e1 ⊗ e1

0

⊗ 〈eII2 7→ eII2 〉0 0 0 0

e2 ⊗ (e2 ⊗ e∗1)⊗ ξ 〈eII2 7→ eII2 〉0 ⊗

 0
0
e2

 0

 0
0
e2

 f2(−(e2 ⊗ e∗1)⊗ ξ) = −

 0
0
e2

 0

ξ ⊗ (e2 ⊗ e∗1)⊗ ξ 〈e1 7→ β〉0 ⊗

 0
0
e2

 −

 e2

−e1 ⊗ β
−e1

⊗ 〈e1 7→ β〉0
 0

0
2β

= 0 0 0

x⊗ (e2 ⊗ e∗1)⊗ ξ −〈eI2 7→ eII2 〉1 ⊗

 0
0
e2

 −

 0
−e1 ⊗ e1

0

⊗ 〈e1 7→ β〉0
 −e2

0
0

+

 0
e1 ⊗ β

0

 0

 −e2

e1 ⊗ β
0


ξ ⊗ (e2 ⊗ e∗1)⊗ x 0 −

 e2

−e1 ⊗ β
−e1

⊗ 〈eI2 7→ eII2 〉1
 −e2

e1 ⊗ β
0

 0

 −e2

e1 ⊗ β
0


x⊗ (e2 ⊗ e∗1)⊗ x 0 −

 0
−e1 ⊗ e1

0

⊗ 〈eI2 7→ eII2 〉1 0 0 0

In a nutshell, we find:

Φ3(ξ ⊗ (e2 ⊗ e∗1)⊗ ξ) =

 0
0

2β

 = 0 since char k = 2,

Φ3(x⊗ (e2 ⊗ e∗1)⊗ ξ) =

 −e2

e1 ⊗ β
0

 = f1(−e1 ⊗ e∗2)

Φ3(ξ ⊗ (e2 ⊗ e∗1)⊗ x) =

 −e2

e1 ⊗ β
0

 = f1(−e1 ⊗ e∗2)

We then choose:

m3(x⊗ (e2 ⊗ e∗1)⊗ ξ) = m3(ξ ⊗ (e2 ⊗ e∗1)⊗ x) = −e1 ⊗ e∗2 ∈ H(u),

and take f3 to be the zero map. The construction therefore finishes.
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Chapter 6

Formality Result for p = 2

6.1 Non-trivial A∞-structure on Ext(∆,∆) and w2

We recall the A∞-structure obtained on Extc2(c2,t2)(∆,∆) in Example 5.5.1. We can
represent Ext(∆,∆)op ∼= w2 as the path algebra of the following quiver:

1 2

4 3

a

b
c

d

α

β

γ

modulo relations (ab, bc, αβc− aβγ, αb, bγ).
We showed that the only non-zero higher multiplication is m3, and the only non-zero

terms are
m3(a⊗ b⊗ γ) = m3(α⊗ b⊗ c) = d. (6.1)

Now, we can replace a, b, γ, α, c, and d by their expression in terms of x’s and ξ’s thanks
to Chapter 3. We obtained

a = e1 ⊗ ξ
α = e1 ⊗ x
b = ξ ⊗ (e2 ⊗ e∗1)
c = e2 ⊗ ξ
γ = e2 ⊗ x
d = ξ ⊗ (e1 ⊗ e∗2).

Rewriting Equation (6.1), we see

m3((e1 ⊗ ξ)⊗ (ξ ⊗ (e2 ⊗ e∗1))⊗ (e2 ⊗ x)) = (ξ ⊗ (e1 ⊗ e∗2))
m3((e1 ⊗ x)⊗ (ξ ⊗ (e2 ⊗ e∗1))⊗ (e2 ⊗ ξ)) = (ξ ⊗ (e1 ⊗ e∗2)) .

A possible interpretation is that it encodes the fact that acting on u on the left or on
the right is not trivial.

6.2 Computation of an A∞-structure on HTd(u−1)

We need to restrict the scope of our computation toHTd(u−1) in order to apply Kadeishvili’s
theorem and use the recipe to construct an A∞-structure (as can be seen in [Mad02, Ap-
pendix B.] or Keller in [Kel99]). Indeed, we saw in Chapter 2 that Td(u) is not an algebra,



6.2. Computation of an A∞-structure on HTd(u−1)

and it is enough to consider the subspace HTd(u)≤1 in homology to obtain the alternative
description of wq. Thus, we will focus on the subspace Td(u−1) of Td(u) which is an
algebra and such that its homology is a subspace of the necessary part to construct wq.

We can decompose this vector space according to the k-grading:

Td(u−1) =
⊕
k∈Z

Td(u−1)k.

As mentioned in Chapter 2, on each u−i, there is a differential δi of k-degree 1 obtained
by internal multiplication by some elements (cf. [MT13]), and therefore, Td(u−1) can be
turned into a differential complex. We denote by m1 : Td(u−1)→ Td(u−1) the differential
obtained in this way. As a consequence, Td(u−1) is a dg-algebra, and by Kadeishvili’s
theorem, its homology H(Td(u−1)) carries an A∞-structure. We now wish to make it
explicit and will use the recipe mentioned previously.

We assume that the characteristic p is equal to 2 in the rest of this section. In [MT13,
pp. 188-189], the homology H(u−i) of u−i has been computed and using the same notation,
we have H(u−i) ∼= Vi, for i > 0, and H(d) = d since δ0 = 0 (recall that d = Extc2(∆,∆)).
Finally, we know that H(u) = (d0)σ.

It is then possible to represent basis elements of H(u−i) in the form:

e⊗ε2 ⊗ ξ
⊗m ⊗ x⊗l ⊗ e⊗η1 , (6.2)

with ε, η ∈ {0, 1}, m, l ∈ N0, and such that ε + m + l + η = i + 1, and its k-degree is
1− ε−m− η. This description is also valid if i = 0. As expressions involving tensors will
get bigger, we will more often than not notationally simplify those by omitting the tensor
product symbol; e.g. expression 6.2 is equivalent to eε2ξ

mxleη1.

1. Let m1 : H(Td(u−1))→ H(Td(u−1)) be zero.

We need to choose f1 as a morphism of complexes
(
H(Td(u−1)), 0

)
→
(
Td(u−1), δ1

)
such that Hf1 identifies with the identity of H(Td(u−1)). There is an obvious choice
by taking lifts of basis elements of H(Td(u−1)) in Td(u−1).

2. Let m2 : H(Td(u−1)) ⊗ H(Td(u−1)) → H(Td(u−1)) be the multiplication map in-
duced from the multiplication of Td(u−1).

Then, by definition, the morphisms m2(f1 ⊗ f1) and f1m2 are homotopic as mor-
phisms of complexes from H(Td(u−1))⊗H(Td(u−1)) to Td(u−1).

We need to choose f2 : H(Td(u−1)) ⊗ H(Td(u−1)) → Td(u−1) as a graded map of
degree -1 such that

f1m2 = m1f2 +m2(f1 ⊗ f1).

Let Φ2 = f1m2−m2(f1⊗ f1). We need to compute the image of each basis elements
of H(Td(u−1))⊗H(Td(u−1)) under Φ2.
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We have:

Φ2

(
eε12 ξ

m1xl1eη1
1 , e

ε2
2 ξ

m2xl2eη2
1

)
= f1(m2

(
eε12 ξ

m1xl1eη1
1 , e

ε2
2 ξ

m2xl2eη2
1

)
)

−m2((f1 ⊗ f1)
(
eε12 ξ

m1xl1eη1
1 , e

ε2
2 ξ

m2xl2eη2
1

)
)

= f1((1− δη1,ε2)(−1)m2l1eε12 ξ
m1+m2xl1+l2eη2

1 )

−m2(
(
eε12 ξ

m1xl1eη1
1 , e

ε2
2 ξ

m2xl2eη2
1

)
)

= (1− δη1,ε2)
(

(−1)m2l1eε12 ξ
m1+m2xl1+l2eη2

1 − e
ε1
2 ξ

m1xl1ξm2xl2eη2
1

)
.

To choose f2, we need a good understanding of the image of u−i under the differential
δi. For i = 0, 1, they are defined as follows ([MT13]):

δ−1 : u→ u, a⊗ b 7→ (−1)|a|k (ax⊗ ξb+ aξ ⊗ xb)
δ0 : d→ d, a⊗ b 7→ 0

δ1 : u−1 → u−1, a⊗ b 7→ (−1)|a|k (ax⊗ ξb+ aξ ⊗ xb)

and more generally, we have:

Lemma 6.2.1. For i ≥ 1, δi : u−i → u−i sends a1 ⊗ . . .⊗ ai+1 to

i∑
l=1

(−1)
∑l
j=1 |ai|k (. . .⊗ alx⊗ ξal+1 ⊗ . . .+ . . .⊗ alξ ⊗ xal+1 ⊗ . . .) .

Idea of proof. Recall the description of u−i = u−1 ⊗d . . .⊗d u−1 and use induction
on i ≥ 1 together with the usual way to define a differential on the tensor product
of two complexes.

For i ≥ 1 and 1 ≤ l ≤ i, we define δi,l (a1 ⊗ . . .⊗ ai+1) as:

(−1)
∑l
j=1 |ai|k (. . .⊗ alx⊗ ξal+1 ⊗ . . .+ . . .⊗ alξ ⊗ xal+1 ⊗ . . .) .

It turns out that δi,l (a1 ⊗ . . .⊗ ai+1) 6= 0 if and only if al = e1 and al+1 = e2; this
comes from the multiplication rule in d.

The following comes rather immediately:

Lemma 6.2.2. The map f2 : HTd(u−1)
⊗2 → Td(u−1) defined by:

f2

(
eε12 ξ

m1xl1eη1
1 ⊗ e

ε2
2 ξ

m2xl2eη2
1

)
:=

m2∑
i1=1

l1∑
i2=1

(−1)i1l1eε12 ξ
m1+i1−1xl1−i2e1e2x

i2−1ξm2−i1xl2eη2
1 ,

if η1 6= ε2, and zero otherwise, is a graded map of k-degree -1 such that m1f2 = Φ2.

Proof. Let eε12 ξ
m1xl1eη1

1 , e
ε2
2 ξ

m2xl2eη2
1 ∈ HTd(u−1). Their tensor product is of k-

degree l1 + l2 and all elements in the sum are of the form

eε12 ξ
m1+i1−1xl1−i2e1e2x

i2−1ξm2−i1xl2eη2
1
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and these have k-degree l1 − i2 + i2 − 1 + l2 = l1 + l2 − 1, so f2 is a graded map of

k-degree -1. Let us now compute m1f2

(
eε12 ξ

m1xl1eη1
1 ⊗ e

ε2
2 ξ

m2xl2eη2
1

)
:

m1

(
m2∑
i1=1

l1∑
i2=1

(−1)i1l1eε12 ξ
m1+i1−1xl1−i2e1e2x

i2−1ξm2−i1xl2eη2
1

)

=

m2∑
i1=1

l1∑
i2=1

(−1)i1l1m1

(
eε12 ξ

m1+i1−1xl1−i2e1e2x
i2−1ξm2−i1xl2eη2

1

)
=

m2∑
i1=1

l1∑
i2=1

(−1)i1l1+l1−i2eε12 ξ
m1+i1−1xl1−i2 (xξ + ξx)xi2−1ξm2−i1xl2eη2

1

=

m2∑
i1=1

l1∑
i2=1

(−1)i1l1+l1−i2eε12 ξ
m1+i1−1xl1−i2+1ξxi2−1ξm2−i1xl2eη2

1

+

m2∑
i1=1

l1∑
i2=1

(−1)i1l1+l1−i2eε12 ξ
m1+i1−1xl1−i2ξxi2ξm2−i1xl2eη2

1

=

m2∑
i1=1

l1∑
i2=1

(−1)i1l1+l1−i2eε12 ξ
m1+i1−1xl1−i2+1ξxi2−1ξm2−i1xl2eη2

1

+

m2∑
i1=1

l1+1∑
i2=2

(−1)i1l1+l1−i2+1eε12 ξ
m1+i1−1xl1−i2+1ξxi2−1ξm2−i1xl2eη2

1

=

m2∑
i1=1

(−1)i1l1+l1−1eε12 ξ
m1+i1−1xl1ξm2−i1+1xl2eη2

1

+

m2∑
i1=1

(−1)i1l1eε12 ξ
m1+i1xl1ξm2−i1xl2eη2

1

=

m2∑
i1=1

(−1)i1l1+l1−1eε12 ξ
m1+i1−1xl1ξm2−i1+1xl2eη2

1

+

m2+1∑
i1=2

(−1)i1l1−l1eε12 ξ
m1+i1−1xl1ξm2−i1+1xl2eη2

1

= −eε12 ξ
m1xl1ξm2xl2eη2

1 + (−1)m2l1eε12 ξ
m1+m2xl1+l2eη2

1 ,

which is exactly expression Φ2 if we assume η1 6= ε2.

Remark 6.2.3. When working with specific examples, one really sees that this for-
mula encodes how to ’entangle’ the configuration eε12 ξ

m1xl1ξm2xl2eη2
1 to our chosen

representation of elements eε12 ξ
m1+m2xl1+l2eη2

1 .

3. Let us move on to the next step of the construction: we try to determine the higher
multiplication m3 : HTd(u−1)⊗3 → HTd(u−1). We consider the following expres-
sion, which comes from the relations defining A∞-morphisms:

m1f3 −m2(f1 ⊗ f2 − f2 ⊗ f1) = f1m3 − f2(1⊗m2 −m2 ⊗ 1),

bearing in mind that this equality is an equality as graded maps from HTd(u−1)⊗3 →
Td(u−1); we use the same notation for higher multiplications of HTd(u−1) and those
of Td(u−1). We define

Φ3 := m2(f1 ⊗ f2 − f2 ⊗ f1) + f2(1⊗m2 −m2 ⊗ 1),

so that we have the equality: Φ3 = −m1f3 +f1m3. We evaluate Φ3 on basis elements
of HTd(u−1)⊗3. Note that since f2 is of k-degree -1, the Koszul sign rule will apply.
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We have:

Φ3

(
eε12 ξ

m1xl1eη1
1 ⊗ e

ε2
2 ξ

m2xl2eη2
1 ⊗ e

ε3
2 ξ

m3xl3eη3
1

)
= A+B + C +D,

where

• A = m2(f1 ⊗ f2)
(
eε12 ξ

m1xl1eη1
1 ⊗ e

ε2
2 ξ

m2xl2eη2
1 ⊗ e

ε3
2 ξ

m3xl3eη3
1

)
,

• B = −m2(f2 ⊗ f1)
(
eε12 ξ

m1xl1eη1
1 ⊗ e

ε2
2 ξ

m2xl2eη2
1 ⊗ e

ε3
2 ξ

m3xl3eη3
1

)
,

• C = f2(1⊗ f2)
(
eε12 ξ

m1xl1eη1
1 ⊗ e

ε2
2 ξ

m2xl2eη2
1 ⊗ e

ε3
2 ξ

m3xl3eη3
1

)
,

• D = −f2(m2 ⊗ 1)
(
eε12 ξ

m1xl1eη1
1 ⊗ e

ε2
2 ξ

m2xl2eη2
1 ⊗ e

ε3
2 ξ

m3xl3eη3
1

)
.

Let us write down those expressions explicitly. We assume that η1 6= ε2 and η2 6= ε3.

A = m2((−1)l1f1(eε12 ξ
m1xl1eη1

1 )⊗ f2(eε22 ξ
m2xl2eη2

1 ⊗ e
ε3
2 ξ

m3xl3eη3
1 ))[Koszul sign rule]

=

m3∑
i1=1

l2∑
i2=1

(−1)i1l2−l1eε12 ξ
m1xl1ξm2+i1−1xl2−i2e1e2x

i2−1ξm3−i1xl3eη3
1

B = −m2(f2(eε12 ξ
m1xl1eη1

1 ⊗ e
ε2
2 ξ

m2xl2eη2
1 )⊗ f1(eε32 ξ

m3xl3eη3
1 ))

=

m2∑
i1=1

l1∑
i2=1

(−1)i1l1+1eε12 ξ
m1+i1−1xl1−i2e1e2x

i2−1ξm2−i1xl2ξm3xl3eη3
1

C = f2(eε12 ξ
m1xl1eη1

1 ⊗ (−1)m3l2eε22 ξ
m2+m3xl2+l3eη3

1 ))

=

m2+m3∑
i1=1

l1∑
i2=1

(−1)i1l1+m3l2eε12 ξ
m1+i1−1xl1−i2e1e2x

i2−1ξm2+m3−i1xl2+l3eη3
1

D = −f2((−1)m2l1eε12 ξ
m1+m2xl1+l2eη2

1 ⊗ e
ε3
2 ξ

m3xl3eη3
1 ))

=

m3∑
i1=1

l1+l2∑
i2=1

(−1)i1(l1+l2)+m2l1+1eε12 ξ
m1+m2+i1−1xl1+l2−i2e1e2x

i2−1ξm3−i1xl3eη3
1

We see that there are some cancellations appearing between C and D:

C i1 = m2 +m3

l1∑
i2=1

(−1)(m2+m3)l1+m3l2eε12 ξ
m1+m2+m3−1xl1−i2e1e2x

i2−1+l2+l3eη3
1

D i1 = m3

l1+l2∑
i2=1+l2

(−1)m3(l1+l2)+m2l1+1eε12 ξ
m1+m2+m3−1xl1+l2−i2e1e2x

i2−1+l3eη3
1

=

l1∑
i2=1

(−1)m3(l1+l2)+m2l1+1eε12 ξ
m1+m2+m3−1xl1−i2e1e2x

i2−1+l2+l3eη3
1

They have opposite signs and cancel each other. Therefore, there is still one sum-
mand of D corresponding to i1 = m3, however, i2 runs between 1 and l2.

The task is to try and find a preimage under the differential of Φ3. It can be achieved
in the following way.

146



6.2. Computation of an A∞-structure on HTd(u−1)

Lemma 6.2.4. There is a map f3 : HTd(u−1)
⊗3 → Td(u−1) defined by:

f3

(
eε12 ξ

m1xl1eη1
1 ⊗ e

ε2
2 ξ

m2xl2eη2
1 ⊗ e

ε3
2 ξ

m3xl3eη3
1

)
:=

m3∑
i1=1

l2∑
i2=1

m2+i1−1∑
i3=1

l1∑
i4=1

(−1)i1l2+i3l1−l1eε12 ξ
m1+i3−1xl1−i4e1e2x

i4−1ξm2+i1−1−i3 . . .

. . . xl2−i2e1e2x
i2−1ξm3−i1xl3eη3

1 ,

if η1 6= ε2 and η2 6= ε3, and zero otherwise. Moreover, it is a graded map of k-
degree -2 such that −m1f3 = Φ3. In particular, the higher multiplication m3 :
HTd(u−1)⊗3 → HTd(u−1) can be chosen as identically zero.

Proof. Similarly to the proof of Lemma 6.2.2, we count the number of x’s in the
expression to compute the k-degree. The argument has k-degree l1 + l2 + l3, and
elements in the expression have k-degree l1 − i4 + i4 − 1 + l2 − i2 + i2 − 1 + l3 =
l1 + l2 + l3 − 2. Therefore, the map f3 has k-degree -2. We apply the differential to
f3 and we obtain:

−m1f3
(
eε12 ξ

m1xl1eη11 ⊗ e
ε2
2 ξ

m2xl2eη21 ⊗ e
ε3
2 ξ

m3xl3eη31
)

= −m1

(
m3∑
i1=1

l2∑
i2=1

m2+i1−1∑
i3=1

l1∑
i4=1

(−1)i1l2+i3l1−l1eε12 ξ
m1+i3−1xl1−i4e1e2x

i4−1ξm2+i1−1−i3 . . .

. . . xl2−i2e1e2x
i2−1ξm3−i1xl3eη31

)
=

m3∑
i1=1

l2∑
i2=1

m2+i1−1∑
i3=1

l1∑
i4=1

(−1)i1l2+i3l1−l1+1+l1−i4eε12 ξ
m1+i3−1xl1−i4(xξ + ξx)xi4−1ξm2+i1−1−i3 . . .

. . . xl2−i2e1e2x
i2−1ξm3−i1xl3eη31

+

m3∑
i1=1

l2∑
i2=1

m2+i1−1∑
i3=1

l1∑
i4=1

(−1)i1l2+i3l1−l1+1+l1−i4+i4−1+l2−i2eε12 ξ
m1+i3−1xl1−i4e1e2x

i4−1ξm2+i1−1−i3 . . .

. . . xl2−i2(xξ + ξx)xi2−1ξm3−i1xl3eη31

=

m3∑
i1=1

l2∑
i2=1

m2+i1−1∑
i3=1

l1∑
i4=1

(−1)i1l2+i3l1+1−i4eε12 ξ
m1+i3−1xl1−i4+1ξxi4−1ξm2+i1−1−i3 . . .

. . . xl2−i2e1e2x
i2−1ξm3−i1xl3eη31

+

m3∑
i1=1

l2∑
i2=1

m2+i1−1∑
i3=1

l1∑
i4=1

(−1)i1l2+i3l1+1−i4eε12 ξ
m1+i3−1xl1−i4ξxi4ξm2+i1−1−i3 . . .

. . . xl2−i2e1e2x
i2−1ξm3−i1xl3eη31

+

m3∑
i1=1

l2∑
i2=1

m2+i1−1∑
i3=1

l1∑
i4=1

(−1)i1l2+i3l1+l2−i2eε12 ξ
m1+i3−1xl1−i4e1e2x

i4−1ξm2+i1−1−i3 . . .

. . . xl2−i2+1ξxi2−1ξm3−i1xl3eη31

+

m3∑
i1=1

l2∑
i2=1

m2+i1−1∑
i3=1

l1∑
i4=1

(−1)i1l2+i3l1+l2−i2eε12 ξ
m1+i3−1xl1−i4e1e2x

i4−1ξm2+i1−1−i3 . . .

. . . xl2−i2ξxi2ξm3−i1xl3eη31

Cancellations occur in this sum of sums. In the second sum, make the change of
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variable i4 = i′4 − 1, and in the last sum, make the change of variable i2 = i′2 − 1:

=

m3∑
i1=1

l2∑
i2=1

m2+i1−1∑
i3=1

l1∑
i4=1

(−1)i1l2+i3l1+1−i4eε12 ξ
m1+i3−1xl1−i4+1ξxi4−1ξm2+i1−1−i3 . . .

. . . xl2−i2e1e2x
i2−1ξm3−i1xl3eη3

1

+

m3∑
i1=1

l2∑
i2=1

m2+i1−1∑
i3=1

l1+1∑
i′4=2

(−1)i1l2+i3l1+1−i′4+1eε12 ξ
m1+i3−1xl1−i

′
4+1ξxi

′
4−1ξm2+i1−1−i3 . . .

. . . xl2−i2e1e2x
i2−1ξm3−i1xl3eη3

1

+

m3∑
i1=1

l2∑
i2=1

m2+i1−1∑
i3=1

l1∑
i4=1

(−1)i1l2+i3l1+l2−i2eε12 ξ
m1+i3−1xl1−i4e1e2x

i4−1ξm2+i1−1−i3 . . .

. . . xl2−i2+1ξxi2−1ξm3−i1xl3eη3
1

+

m3∑
i1=1

l2+1∑
i′2=2

m2+i1−1∑
i3=1

l1∑
i4=1

(−1)i1l2+i3l1+l2−i′2+1eε12 ξ
m1+i3−1xl1−i4e1e2x

i4−1ξm2+i1−1−i3 . . .

. . . xl2−i
′
2+1ξxi

′
2−1ξm3−i1xl3eη3

1

We see that the first two sums have opposite signs and yield one term when i4 = 1
and another one when i′4 = l1 + 1; similarly, the last two sums have opposite signs
and yield one term when i2 = 1 and another one when i′2 = l2 + 1:

=

m3∑
i1=1

l2∑
i2=1

m2+i1−1∑
i3=1

(−1)i1l2+i3l1eε12 ξ
m1+i3−1xl1ξm2+i1−i3 . . .

. . . xl2−i2e1e2x
i2−1ξm3−i1xl3eη3

1

+

m3∑
i1=1

l2∑
i2=1

m2+i1−1∑
i3=1

(−1)i1l2+i3l1+1+l1eε12 ξ
m1+i3xl1ξm2+i1−1−i3 . . .

. . . xl2−i2e1e2x
i2−1ξm3−i1xl3eη3

1

+

m3∑
i1=1

m2+i1−1∑
i3=1

l1∑
i4=1

(−1)i1l2+i3l1+l2−1eε12 ξ
m1+i3−1xl1−i4e1e2x

i4−1ξm2+i1−1−i3 . . .

. . . xl2ξm3−i1+1xl3eη3
1

+

m3∑
i1=1

m2+i1−1∑
i3=1

l1∑
i4=1

(−1)i1l2+i3l1eε12 ξ
m1+i3−1xl1−i4e1e2x

i4−1ξm2+i1−i3 . . .

. . . xl2ξm3−i1xl3eη3
1

Further cancellations occur. In the second sum, we make the change of variable

148



6.2. Computation of an A∞-structure on HTd(u−1)

i3 = i′3 − 1; in the last sum, set i1 = i′1 − 1:

=

m3∑
i1=1

l2∑
i2=1

m2+i1−1∑
i3=1

(−1)i1l2+i3l1eε12 ξ
m1+i3−1xl1ξm2+i1−i3 . . .

. . . xl2−i2e1e2x
i2−1ξm3−i1xl3eη3

1

+

m3∑
i1=1

l2∑
i2=1

m2+i1∑
i′3=2

(−1)i1l2+i′3l1+1eε12 ξ
m1+i′3−1xl1ξm2+i1−i′3 . . .

. . . xl2−i2e1e2x
i2−1ξm3−i1xl3eη3

1

+

m3∑
i1=1

m2+i1−1∑
i3=1

l1∑
i4=1

(−1)i1l2+i3l1+l2−1eε12 ξ
m1+i3−1xl1−i4e1e2x

i4−1ξm2+i1−1−i3 . . .

. . . xl2ξm3−i1+1xl3eη3
1

+

m3+1∑
i′1=2

m2+i′1−2∑
i3=1

l1∑
i4=1

(−1)i
′
1l2+i3l1−l2eε12 ξ

m1+i3−1xl1−i4e1e2x
i4−1ξm2+i′1−1−i3 . . .

. . . xl2ξm3−i′1+1xl3eη3
1

We see that the first two sums have opposite signs and yield one term when i3 = 1
and another one when i′3 = m2 + i1. Although the last two sums have opposite signs
as well, we must be more careful: in the third one, we have 1 ≤ i3 ≤ m2 + i1 − 1,
while in the fourth we have 1 ≤ i3 ≤ m2 + i1 − 2. Therefore, three sums will be
produced: one corresponding to i1 = 1, another corresponding to i′1 = m3 + 1, and
one last corresponding to i3 = m2 + i1 − 1 (where 2 ≤ i1 ≤ m3):

=

m3∑
i1=1

l2∑
i2=1

(−1)i1l2+l1eε12 ξ
m1xl1ξm2+i1−1xl2−i2e1e2x

i2−1ξm3−i1xl3eη3
1

+

m3∑
i1=1

l2∑
i2=1

(−1)i1l2+(m2+i1)l1+1eε12 ξ
m1+m2+i1−1xl1+l2−i2e1e2x

i2−1ξm3−i1xl3eη3
1

+

m2∑
i3=1

l1∑
i4=1

(−1)l2+i3l1+l2−1eε12 ξ
m1+i3−1xl1−i4e1e2x

i4−1ξm2−i3xl2ξm3xl3eη3
1

+

m2+m3−1∑
i3=1

l1∑
i4=1

(−1)(m3+1)l2+i3l1−l2eε12 ξ
m1+i3−1xl1−i4e1e2x

i4−1ξm2+m3−i3xl2xl3eη3
1

+

m3∑
i1=2

l1∑
i4=1

(−1)i1l2+(m2+i1−1)l1+l2−1eε12 ξ
m1+m2+i1−2xl1−i4e1e2x

i4−1+l2ξm3−i1+1xl3eη3
1

We perform some changes of variable and some relabellings:

- in the third sum, relabel i3 by i1, relabel i4 by i2;

- in the fourth sum, relabel i3 by i1 and i4 by i2;

- in the last sum, make the change of variable i1 = i′1 + 1 and i4 = i2 − l2.
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After simplifying the exponents governing the sign, we obtain:

=

m3∑
i1=1

l2∑
i2=1

(−1)i1l2+l1eε12 ξ
m1xl1ξm2+i1−1xl2−i2e1e2x

i2−1ξm3−i1xl3eη3
1

+

m3∑
i1=1

l2∑
i2=1

(−1)i1(l1+l2)+m2l1+1eε12 ξ
m1+m2+i1−1xl1+l2−i2e1e2x

i2−1ξm3−i1xl3eη3
1

+

m2∑
i1=1

l1∑
i2=1

(−1)i1l1+1eε12 ξ
m1+i1−1xl1−i2e1e2x

i2−1ξm2−i1xl2ξm3xl3eη3
1

+

m2+m3−1∑
i1=1

l1∑
i2=1

(−1)m3l2+i1l1eε12 ξ
m1+i1−1xl1−i2e1e2x

i2−1ξm2+m3−i1xl2xl3eη3
1

+

m3−1∑
i′1=1

l1+l2∑
i2=1+l2

(−1)i
′
1(l1+l2)+m2l1−1eε12 ξ

m1+m2+i′1−1xl1+l2−i2e1e2x
i2−1ξm3−i′1xl3eη3

1

We can see that:

- the first sum corresponds to term A in Φ3;

- the third sum corresponds to term B;

- the fourth sum corresponds to term C;

- the second and fifth sums combined together give exactly term D.

This shows that −m1f3 = Φ3 and m3 : HTd(u−1)⊗3 → HTd(u−1) can thus be
chosen to be identically zero.

Remark 6.2.5. We have constructed f3 in the following manner. Consider expression
A in Φ3:

A = m2((−1)l1f1(eε12 ξ
m1xl1eη1

1 )⊗ f2(eε22 ξ
m2xl2eη2

1 ⊗ e
ε3
2 ξ

m3xl3eη3
1 ))

=

m3∑
i1=1

l2∑
i2=1

(−1)i1l2−l1eε12 ξ
m1xl1ξm2+i1−1xl2−i2e1e2x

i2−1ξm3−i1xl3eη3
1

and ’entangle’ the first occurrence of xaξb using f2:

m3∑
i1=1

l2∑
i2=1

(−1)i1l2−l1eε12 ξ
m1f2(xl1eη1

1 ⊗ e
ε2
2 ξ

m2+i1−1)xl2−i2e1e2x
i2−1ξm3−i1xl3eη3

1

We obtain:

m3∑
i1=1

l2∑
i2=1

m2+i1−1∑
i3=1

l1∑
i4=1

(−1)i1l2−l1+i3l1eε12 ξ
m1+i3−1xl1−i4e1e2x

i4−1ξm2+i1−1−i3 . . .

. . . xl2−i2e1e2x
i2−1ξm3−i1xl3eη3

1

which is exactly f3.

We want to generalise this construction for fn, n ≥ 3. Let n > 3. We make the fol-
lowing assumption: for all 2 < r < n, the higher multiplication mr : HTd(u−1)⊗r →
HTd(u−1) can be chosen to be identically zero. Note that we also have that m1 :
HTd(u−1)→ HTd(u−1) is the zero map. Under this hypothesis, we can write down
the n-analogue Φn of Φ3:

Φn :=

n−2∑
s=1

(−1)s+1fn−1(1⊗s ⊗m2 ⊗ 1⊗n−2−s) +

n−1∑
t=1

(−1)t−1m2(ft ⊗ fn−t),

150



6.3. A formal subalgebra of wq

so that Φn satisfies Φn = −m1fn + f1mn. We want to show that mn can be chosen
zero.

Proposition 6.2.6. Under the assumption that for all 2 < r < n, the higher multi-
plication mr : HTd(u−1)⊗r → HTd(u−1) can be chosen to be identically zero, there

is a map fn : HTd(u−1)
⊗n → Td(u−1) defined by:

fn

(
eε12 ξ

m1xl1eη1
1 ⊗ . . .⊗ e

εn
2 ξ

mnxlneηn1

)
:=

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

lj∑
i2(n−j)=1

mj+i2(n−j)−1−1∑
i2(n−(j−1))−1=1

lj−1∑
i2(n−(j−1))=1

. . .

m2+i2n−5−1∑
i2n−3=1

l1∑
i2n−2=1

(−1)
∑n−1
k=1 (i2k−1+

1+(−1)k

2
)ln−keε12 ξ

m1+i2n−3−1xl1−i2n−2e1e2x
i2n−2−1ξm2+i2n−5−1−i2n−3 . . .

. . . xl2−i2n−4e1e2x
i2n−4−1ξm3+i2n−7−1−i2n−5 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1 ,

if ηi 6= εi+1 for all 1 ≤ i ≤ n− 1, and zero otherwise. Moreover, it is a graded map
of k-degree 1 − n such that −m1fn = Φn. In particular, the higher multiplication
mn : HTd(u−1)⊗n → HTd(u−1) can be chosen as identically zero.

Proof. Counting the number of x’s in the expression gives us the k-degree; it is given

by
∑n−1

j=1
(lj − 1) + ln =

∑n

j=1
lj + 1− n. Hence, fn is of k-degree 1− n. Although

very similar to the computation for f3, the one leading to the result is given in
Appendix A because of its length.

Corollary 6.2.7. The algebra HTd(u−1) is formal.

6.3 A formal subalgebra of wq

6.3.1 Existence of ωq

Since Td(u) is not an algebra, we cannot use Kadeishvili’s recipe. Therefore, we restrict
ourselves to the subspace Td(u−1), which is a dg-algebra.

By Corollary 6.2.7, we know that HTd(u−1) is formal. In addition, by Lemma 5.4.2,
we obtain that HTd(u−1)⊗q−1 is formal since it is a finite tensor product of formal A∞-
algebras. Finally, since d is a dg-algebra with 0-differential, it is formal and the tensor
product d⊗HTd(u−1)⊗q−1 is as well.

We know that wq is a subspace of d ⊗ (HTd(u)≤1)⊗q−1, so we can consider its inter-
section with d⊗HTd(u−1)⊗q−1. Since d⊗HTd(u−1)⊗q−1 is formal, the subalgebra of wq

generated by basis elements in d⊗HTd(u−1)⊗q−1 is formal. This shows:

Proposition 6.3.1. Let p = 2. There is a large subalgebra of wq which is formal. We
denote it by ωq.

In particular, those basis elements cannot ”involve u”, in a sense that needs to be
made precise. Recall that H(u) is the i-degree 1 part of HTd(u)≤1.

Definition 6.3.2. Let v = v1 ⊗ . . .⊗ vq be a monomial basis element of wq. We say that
v involves u if there exists an index 1 ≤ l ≤ q such that vl has i-degree 1.
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6.3. A formal subalgebra of wq

By [BLM13, Lemma 11], all the elements v = v1 ⊗ . . . ⊗ vq of wq of type 1h23q−h−1

for 1 ≤ h ≤ q − 2, or of type 1h3q−h for 1 ≤ h ≤ q − 1 satisfy that their last component
vq is of type 3, namely vq has i-degree 1 and it is of the form

esq ⊗ e∗3−sq .

Thus v is in the formal subalgebra ωq if it is of type 1q or 1q−12.

6.3.2 Quiver of ωq

In Chapter 3, we determined the quiver of wq for any value of the parameter q. To obtain
the arrows of ωq, we now need to remove all the arrows involving u.

Lemma 6.3.3. Let v ∈ Vq. Then v involves u if it is of the form

es1 ⊗ . . .⊗ esl ⊗ ξ ⊗ (esl+1
⊗ e∗3−sl+1

)⊗ . . .⊗ (esq ⊗ e∗3−sq),

with l < q.

In particular, amongst the arrows involving ξ, we only keep those of the form

es1 ⊗ . . .⊗ esq−1 ⊗ ξ.

However, that means that some new elements might be irreducible. Indeed, we must
trace back in the proofs determining the irreducible monomials of wq which elements were
decomposed using an element of the form described in Lemma 6.3.3. In fact, we only need
to consider the Corollary describing the irreducible arrows of wq starting with x:

Corollary (Corollary 3.3.9). Let a1⊗ . . .⊗aq be an irreducible monomial of wq such that
a1 = x. Then a1 ⊗ . . .⊗ aq has one of the following forms:

– x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1);

– x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (ξ ⊗ e1)⊗ el1 ⊗ el2 ⊗ . . . els if there exists 1 ≤ i ≤ s
such that li = 2 (s > 1);

– x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (e2 ⊗ ξ)⊗ el1 ⊗ el2 ⊗ . . . elr if there exists 1 ≤ i ≤ r
such that li = 1 (r > 1).

To obtain the condition on

x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (ξ ⊗ e1)⊗ el1 ⊗ el2 ⊗ . . . els

and on
x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (e2 ⊗ ξ)⊗ el1 ⊗ el2 ⊗ . . . elr ,

we tried to factor an element of the form

el1 ⊗ el2 ⊗ . . .⊗ elr ⊗ ξ ⊗ (e1 ⊗ e∗2)⊗ . . .⊗ (e1 ⊗ e∗2).

However, that element does not appear in our subalgebra, so these decompositions do not
happen there. Hence we must add the missing arrows

es1 ⊗ . . .⊗ esl ⊗ x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (ξ ⊗ e1)⊗ e1 ⊗ . . .⊗ e1

and
es1 ⊗ . . .⊗ esl ⊗ x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (e2 ⊗ ξ)⊗ e2 ⊗ . . .⊗ e2.
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6.3. A formal subalgebra of wq

Note that since the element

es1 ⊗ . . .⊗ esq−1 ⊗ ξ,

still features in ωq, it is easily seen that the elements

es1 ⊗ . . .⊗ esl ⊗ x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (ξ ⊗ e1)

and
es1 ⊗ . . .⊗ esl ⊗ x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (e2 ⊗ ξ)

are still reducible.
We have proved the following

Proposition 6.3.4. Let v = v1⊗ . . .⊗ vq be an irreducible monomial of ωq. Then it is of
the form

• es1 ⊗ . . .⊗ esq ;

• es1 ⊗ . . .⊗ esq−1 ⊗ ξ;

• es1 ⊗ . . .⊗ esn ⊗ x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1);

• es1 ⊗ . . .⊗ esn ⊗ x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (ξ ⊗ e1)⊗ el1 ⊗ el2 ⊗ . . . els, s > 1;

• es1 ⊗ . . .⊗ esn ⊗ x⊗ (e2 ⊗ e1)⊗ . . .⊗ (e2 ⊗ e1)⊗ (e2 ⊗ ξ)⊗ el1 ⊗ el2 ⊗ . . . elr , r > 1.

We can compare the quiver obtained in Chapter 3 for w1, w2 and w3 and the one for
ω1, ω2 and ω3 below.

Example 6.3.5. 1. The quiver of w1 = d and ω1 are given in Figure 6.1.

21

x

ξ

w1

21

x

ξ

ω1

Figure 6.1: Comparison between the quiver of w1 and that of ω1

2. The quiver of w2 and ω2 are given in Figure 6.2.

21

34

α

a
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βbd
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γ

c

β

ω2

Figure 6.2: Comparison between the quiver of w2 and that of ω2
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Recall that the label of the arrows correspond to the following elements of V2:

a = e1 ⊗ ξ
α = e1 ⊗ x
b = ξ ⊗ (e2 ⊗ e∗1)
β = x⊗ (e2 ⊗ e1)
c = e2 ⊗ ξ
γ = e2 ⊗ x
d = ξ ⊗ (e1 ⊗ e∗2)

so we see that we need to remove arrows b and d, and there aren’t any arrows to
add.

3. The quiver of w3 and ω3 are given in Figure 6.3.
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Figure 6.3: Comparison between the quiver of w3 and that of ω3

Recall that the label of the arrows correspond to the following elements of V3:

ai = ei ⊗ e1 ⊗ ξ
αi = ei ⊗ e1 ⊗ x
bi = ei ⊗ ξ ⊗ (e2 ⊗ e∗1)
βi = ei ⊗ x⊗ (e2 ⊗ e1)
ci = ei ⊗ e2 ⊗ ξ
γi = ei ⊗ e2 ⊗ x
di = ei ⊗ ξ ⊗ (e1 ⊗ e∗2)
l = ξ ⊗ (e2 ⊗ e∗1)⊗ (e2 ⊗ e∗1)
λ = x⊗ (e2 ⊗ e1)⊗ (e2 ⊗ e1)
m = ξ ⊗ (e2 ⊗ e∗1)⊗ (e1 ⊗ e∗2)
µ = x⊗ (ξ ⊗ e1)⊗ e2

ν = x⊗ (e2 ⊗ ξ)⊗ e1

n = ξ ⊗ (e1 ⊗ e∗2)⊗ (e2 ⊗ e∗1)
o = ξ ⊗ (e1 ⊗ e∗2)⊗ (e1 ⊗ e∗2)

where i ∈ {1, 2}. Hence we need to remove b1, b2, d1, d2, l,m, n, o and we must add
π = x⊗ (ξ ⊗ e1)⊗ e1, ρ = x⊗ (e2 ⊗ ξ)⊗ e2.
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6.3. A formal subalgebra of wq

6.3.3 Properties of ωq

We first recall a few definitions and explain why some of these properties might be expected
for ωq.

Definition (Definition 1.2.1 [Bei96]). A Koszul algebra is a positively graded algebra
A = ⊕j≥0Aj such that

1. A0 is semisimple;

2. Considering A0 as a graded left A-module, it admits a graded projective resolution

. . .→ P 2 → P 1 → P 0 � A0

such that P j is generated by its component of degree j, i.e. P j = AP jj .

In particular, Koszul algebras are quadratic algebras (cf. Proposition 1.2.3 in [Bei96]),
which means A is generated by A1 over A0 with relations of degree 2. They can be
represented as the quotient of the tensor algebra

A = TA0(A1)/I

by some homogeneous ideal I ⊂ A1 ⊗A0 A1.
In the setting of graded A-modules, we consider graded extensions and denote by

extA(M,N) the graded extension algebra of M by N . We have the following result:

Proposition (Proposition 2.1.3, [Bei96]). Let A = ⊕j≥0Aj be a positively graded algebra
and suppose A0 is semisimple. The following conditions are equivalent

1. A is Koszul;

3. extiA(A0, A0〈n〉) = 0 unless i = n.

This result means in particular thatA is Koszul if and only if extA(A0, A0) = ext0
A(A0, A0)

is concentrated in degree 0, i.e. if and only if ExtA(A0, A0) is concentrated in degree 0 as
a graded A-module. Thus, we have the following

Proposition 6.3.6. Let A = ⊕j≥0Aj be a positively graded algebra and suppose A0 is
semisimple. The following conditions are equivalent

1. A is Koszul;

2. ExtA(A0, A0) is formal.

Due to Koszul duality, there exists a Koszul algebra B such that

ExtB(B0, B0)op ∼= A

and in fact,
B = ExtA(A0, A0)op =: E(A),

so that A ∼= E(E(A)). The algebra B is called the Koszul dual of A.
Since we found a formal subalgebra of wq, the extension algebra of Weyl modules of

the principal block of rational representations of GL2(F2), one could hope that ωq would
have some nice properties such as Koszulity.

As for wq, the algebra ωq contains two copies of the previous iteration ωq−1, which
are both subalgebras.
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6.3. A formal subalgebra of wq

Let us write down the Loewy structure of ω3 (cf. Figure 6.4). We do not provide a
list of relations between the generators as it is straightforward knowing the expression of
the generators under x and ξ form.

The algebra ωq is not quadratic since ω3 is a non-quadratic subalgebra; we have the
following relation α1β1c1 = a1β1γ1, which is of length 3. In particular, ωq is not Koszul.

Since it is not Koszul, we could look at some generalisation of Koszulity such as N -
Koszulity:

Definition ([GMMVZ04]). Let A = ⊕j≥0Aj be a positively graded algebra such that A0

is a semisimple algebra and A1 is finite-dimensional, and denote by P• is a minimal graded
A-projective resolution of A0. Then A is called a d-Koszul algebra if for each n ≥ 0, the
n-th term Pn of P• is generated in exactly one degree δ(n), where

δ(n) =


n

2
d if n is even,

(
n− 1

2
d

)
+ 1 if n is odd.

Note that if d = 2, then we recover the definition of a Koszul algebra.
Looking at the projective resolutions of the simples, we see that ωq is not d-Koszul

for any d ≥ 3. Indeed, simple 1 up to simple 6 have the first projective in the resolution
generated in degree 1, and the second projective in the resolution (if any) is generated in
degree 3. However, the 7th simple has its second projective in the resolution generated in
degree 2. Hence we cannot find a suitable d ≥ 3 for ωq to be d-Koszul.

We have shown:

Proposition 6.3.7. The algebra ωq is not d-Koszul for any d ≥ 2.

6.3.4 The case p > 2

For p > 2, the complexity of the formulae increases dramatically when computing an A∞-
structure on HTd(u−1) and it looks very difficult to apply the same method as before to
obtain a similar result concerning the formality of HTd(u−1) for p = 2.
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Appendix A

Computation for the proof of
Proposition 6.2.6

The following completes the proof of Proposition 6.2.6. Let us compute −m1fn:

−m1fn
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1
)

= −m1

 mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

lj∑
i2(n−j)=1

mj+i2(n−j)−1−1∑
i2(n−(j−1))−1=1

lj−1∑
i2(n−(j−1))=1

. . .

m2+i2n−5−1∑
i2n−3=1

l1∑
i2n−2=1

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−keε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . .xlj−i2(n−j)e1e2xi2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .
. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

)

=

n−1∑
j=1

∑
i

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+
∑j−1

a=1(la−1)+lj−i2(n−j)

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . .xlj−i2(n−j) (xξ + ξx) xi2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .
. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

=

n−1∑
j=1

∑
i

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+
∑j−1

a=1(la−1)+lj−i2(n−j)

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . .xlj−i2(n−j)+1ξxi2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .
. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+

n−1∑
j=1

∑
i

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+
∑j−1

a=1(la−1)+lj−i2(n−j)

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . .xlj−i2(n−j)ξxi2(n−j)ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .
. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

For 1 ≤ j ≤ n− 1, we perform the change of variable i2(n−j) = i′2(n−j) − 1 in the second sum:



=

n−1∑
j=1

∑
i\{i2(n−j)}

lj∑
i2(n−j)=1

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+
∑j−1

a=1(la−1)+lj−i2(n−j)

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . xlj−i2(n−j)+1ξxi2(n−j)−1 ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+

n−1∑
j=1

∑
i\{i2(n−j)}

lj+1∑
i′
2(n−j)

=2

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+
∑j−1

a=1(la−1)+lj−i
′
2(n−j)+1

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . xlj−i
′
2(n−j)+1ξxi

′
2(n−j)−1 ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

Since they those two expressions have opposite signs, they cancel out, except for i2(n−j) = 1
and i′2(n−j) = lj + 1. We have:

=

n−1∑
j=1

∑
i\{i2(n−j)}

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+
∑j−1

a=1(la−1)+lj−1

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . xljξ ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+

n−1∑
j=1

∑
i\{i2(n−j)}

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+
∑j−1

a=1(la−1)

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . ξxlj ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

Let us write down the neighbourhoods of the boxes; to do so, we need to consider the cases
j = 1, n− 1 separately:

=
∑

i\{i2n−2}

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+l1−1

eε12 ξm1+i2n−3−1xl1ξ1+m2+i2n−5−1−i2n−3 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+
∑

i\{i2n−2}

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1

eε12 ξm1+i2n−3−1+1xl1ξm2+i2n−5−1−i2n−3 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1
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+

n−2∑
j=2

∑
i\{i2(n−j)}

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+
∑j−1

a=1(la−1)+lj−1

. . . eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . ξmj+i2(n−j)−1−1−i2(n−(j−1))−1xljξ1+mj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+

n−2∑
j=2

∑
i\{i2(n−j)}

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+
∑j−1

a=1(la−1)

. . . eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . ξmj+i2(n−j)−1−1−i2(n−(j−1))−1+1xljξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+
∑
i\{i2}

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+
∑n−2

a=1 (la−1)+ln−1−1

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1ξ1+mn−i1 xlneηn1

+
∑
i\{i2}

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+
∑n−2

a=1 (la−1)

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3+1xln−1ξmn−i1 xlneηn1

We make the changes of variable i2n−3 = i′2n−3−1 in the second sum, i2(n−j)−1 = i′2(n−j)−1−1

in the fourth sum, and i1 = i′1 − 1 in the sixth sum so that:

=
∑

i\{i2n−2,i2n−3}

m2+i2n−5−1∑
i2n−3=1

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+l1−1

eε12 ξm1+i2n−3−1xl1ξ1+m2+i2n−5−1−i2n−3 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+
∑

i\{i2n−2,i′2n−3}

m2+i2n−5∑
i′2n−3=2

(−1)
∑n−2

k=1 (i2k−1+
1+(−1)k

2 )ln−k+(i′2n−3−1+
1+(−1)n−1

2 )l1+1

eε12 ξm1+i
′
2n−3−1xl1ξm2+i2n−5−1−i′2n−3+1 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1
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+

n−2∑
j=2

∑
i\{i2(n−j),i2(n−j)−1,i2(n−(j−1))−1}

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

mj+i2(n−j)−1−1∑
i2(n−(j−1))−1=1

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+
∑j−1

a=1(la−1)+lj−1

. . . eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . ξmj+i2(n−j)−1−1−i2(n−(j−1))−1xljξ1+mj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+

n−2∑
j=2

∑
i\{i2(n−j),i

′
2(n−j)−1

,i2(n−(j−1))−1}

mj+1+i2(n−(j+1))−1∑
i′
2(n−j)−1

=2

mj+i
′
2(n−j)−1−2∑

i2(n−(j−1))−1=1

(−1)
∑n−1

k=1,k 6=n−j(i2k−1+
1+(−1)k

2 )ln−k+(i′2(n−j)−1−1+
1+(−1)n−j

2 )lj+1+
∑j−1

a=1(la−1)

. . . eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . ξmj+i
′
2(n−j)−1−1−i2(n−(j−1))−1xljξmj+1+i2(n−(j+1))−1−1−i′2(n−j)−1+1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+
∑

i\{i2,i1,i3}

mn∑
i1=1

mn−1+i1−1∑
i3=1

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+
∑n−2

a=1 (la−1)+ln−1−1

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1ξ1+mn−i1 xlneηn1

+
∑

i\{i2,i′1,i3}

mn+1∑
i′1=2

mn−1+i
′
1−2∑

i3=1

(−1)
∑n−1

k=2 (i2k−1+
1+(−1)k

2 )ln−k+(i′1−1+0)ln−1+1+
∑n−2

a=1 (la−1)

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i
′
1−1−i3xln−1ξmn−i′1+1 xlneηn1

Rearranging the exponents of the signs and of the ξ’s in the boxes, we obtain:

=
∑

i\{i2n−2,i2n−3}

m2+i2n−5−1∑
i2n−3=1

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+l1

eε12 ξm1+i2n−3−1xl1ξm2+i2n−5−i2n−3 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+
∑

i\{i2n−2,i2n−3}

m2+i2n−5∑
i2n−3=2

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k−l1+1

eε12 ξm1+i2n−3−1xl1ξm2+i2n−5−i2n−3 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1
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+

n−2∑
j=2

∑
i\{i2(n−j),i2(n−j)−1,i2(n−(j−1))−1}

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

mj+i2(n−j)−1−1∑
i2(n−(j−1))−1=1

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+
∑j−1

a=1(la−1)+lj

. . . eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . ξmj+i2(n−j)−1−1−i2(n−(j−1))−1xljξmj+1+i2(n−(j+1))−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+

n−2∑
j=2

∑
i\{i2(n−j),i2(n−j)−1,i2(n−(j−1))−1}

mj+1+i2(n−(j+1))−1∑
i2(n−j)−1=2

mj+i2(n−j)−1−2∑
i2(n−(j−1))−1=1

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+
∑j−1

a=1(la−1)−lj+1

. . . eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . ξmj+i2(n−j)−1−1−i2(n−(j−1))−1xljξmj+1+i2(n−(j+1))−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+
∑

i\{i2,i1,i3}

mn∑
i1=1

mn−1+i1−1∑
i3=1

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+
∑n−2

a=1 (la−1)+ln−1

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1ξ1+mn−i1 xlneηn1

+
∑

i\{i2,i1,i3}

mn+1∑
i1=2

mn−1+i1−2∑
i3=1

(−1)
∑n−1

k=1 (i2k−1+
1+(−1)k

2 )ln−k+
∑n−2

a=1 (la−1)−ln−1+1

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1ξ1+mn−i1 xlneηn1

Similarly to the proof of Lemma 6.2.4, these three pairs of sums have opposite signs and a lot of
care must be taken when simplifying them. The first two sums give two sums, one if we set i2n−3 = 1
in the first, and one if i2n−3 = m2 + i2n−5 in the second. The other two pairs will give three sums
each: set i2(n−j)−1 = 1 in the third sum, set i2(n−j)−1 = mj+1 + i2(n−(j+1))−1 in the fourth and set
i2(n−(j−1))−1 = mj+i2(n−j)−1−1 in the third sum (where 2 ≤ i2(n−j)−1 ≤ mj+1+i2(n−(j+1))−1−1).
Finally, in the fifth sum set i1 = 1 and in the sixth sum set i1 = mn+1, and set i3 = mn−1 + i1−1
in the fifth sum (where 2 ≤ i1 ≤ mn).
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=
∑

i\{i2n−2,i2n−3}

(−1)
∑n−2

k=1 (i2k−1+
1+(−1)k

2 )ln−k+l1+(1+
1+(−1)n−1

2 )l1

eε12 ξm1xl1ξm2+i2n−5−1 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+
∑

i\{i2n−2,i2n−3}

(−1)
∑n−2

k=1 (i2k−1+
1+(−1)k

2 )ln−k−l1+1+(m2+i2n−5+
1+(−1)n−1

2 )l1

eε12 ξm1+m2+i2n−5−1xl1 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+

n−2∑
j=2

∑
i\{i2(n−j),i2(n−j)−1,i2(n−(j−1))−1}

mj∑
i2(n−(j−1))−1=1

(−1)
∑n−1

k=1,k 6=n−j(i2k−1+
1+(−1)k

2 )ln−k+
∑j−1

a=1(la−1)+lj+(1+
1+(−1)n−j

2 )lj

. . . eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . ξmj−i2(n−(j−1))−1xljξmj+1+i2(n−(j+1))−1−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+

n−2∑
j=2

∑
i\{i2(n−j),i2(n−j)−1,i2(n−(j−1))−1}

mj+mj+1+i2(n−(j+1))−1−2∑
i2(n−(j−1))−1=1

(−1)
∑n−1

k=1,k 6=n−j(i2k−1+
1+(−1)k

2 )ln−k+
∑j−1

a=1(la−1)−lj+1+(mj+1+i2(n−(j+1))−1+
1+(−1)n−j

2 )lj

. . . eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . ξmj+mj+1+i2(n−(j+1))−1−1−i2(n−(j−1))−1xlj . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+

n−2∑
j=2

∑
i\{i2(n−j),i2(n−j)−1,i2(n−(j−1))−1,i2(n−(j−2))−1}

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=2

mj−1+mj+i2(n−j)−1−2∑
i2(n−(j−2))−1=1

(−1)
∑n−1

k=1,k 6=n−(j−1)
(i2k−1+

1+(−1)k

2 )ln−k+
∑j−1

a=1(la−1)+lj+(mj+i2(n−j)−1−1+
1+(−1)n−(j−1)

2 )lj−1

. . . eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . ξmj−1+mj+i2(n−j)−1−1−1−i2(n−(j−2))−1xlj−1−i2(n−(j−1))

. . . e1e2x
i2(n−(j−1))−1+ljξmj+1+i2(n−(j+1))−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1
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+
∑

i\{i2,i1,i3}

mn−1∑
i3=1

(−1)
∑n−1

k=2 (i2k−1+
1+(−1)k

2 )ln−k+
∑n−2

a=1 (la−1)+ln−1+ln−1

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1−i3xln−1ξmn xlneηn1

+
∑

i\{i2,i1,i3}

mn−1+mn−1∑
i3=1

(−1)
∑n−1

k=2 (i2k−1+
1+(−1)k

2 )ln−k+
∑n−2

a=1 (la−1)−ln−1+1+(mn+1)ln−1

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+mn−i3xln−1+ln eηn1

+
∑

i\{i2,i1,i3,i5}

mn∑
i1=2

mn−2+mn−1+i1−2∑
i5=1

(−1)
∑n−1

k=1,k 6=2(i2k−1+
1+(−1)k

2 )ln−k+
∑n−2

a=1 (la−1)+ln−1+(mn−1+i1−1+1)ln−2

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−2+mn−1+i1−2−i5xln−2−i4e1e2

. . . xi4−1+ln−1ξ1+mn−i1 xlneηn1

Considering the neighbouring terms of the boxes and simplifying the exponents of the signs,
we obtain:

=
∑

i\{i2n−2,i2n−3}

(−1)
∑n−2

k=1 (i2k−1+
1+(−1)k

2 )ln−k+(
1+(−1)n−1

2 )l1

eε12 ξm1xl1ξm2+i2n−5−1 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+
∑

i\{i2n−2,i2n−3}

(−1)
∑n−2

k=1 (i2k−1+
1+(−1)k

2 )ln−k+1+(m2+i2n−5+
1+(−1)n−1

2 −1)l1

eε12 ξm1+m2+i2n−5−1xl1+l2−i2n−4e1e2x
i2n−4−1 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1
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+

n−2∑
j=2

∑
i\{i2(n−j),i2(n−j)−1,i2(n−(j−1))−1}

mj∑
i2(n−(j−1))−1=1

(−1)
∑n−1

k=1,k 6=n−j(i2k−1+
1+(−1)k

2 )ln−k+
∑j−1

a=1(la−1)+(
1+(−1)n−j

2 )lj

. . . eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . ξmj−i2(n−(j−1))−1xljξmj+1+i2(n−(j+1))−1−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+

n−2∑
j=2

∑
i\{i2(n−j),i2(n−j)−1,i2(n−(j−1))−1}

mj+mj+1+i2(n−(j+1))−1−2∑
i2(n−(j−1))−1=1

(−1)
∑n−1

k=1,k 6=n−j(i2k−1+
1+(−1)k

2 )ln−k+
∑j−1

a=1(la−1)+1+(mj+1+i2(n−(j+1))−1+
1+(−1)n−j

2 −1)lj

. . . eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . ξmj+mj+1+i2(n−(j+1))−1−1−i2(n−(j−1))−1xlj+lj+1−i2(n−(j+1))e1e2x
i2(n−(j+1))−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+

n−2∑
j=2

∑
i\{i2(n−j),i2(n−j)−1,i2(n−(j−1))−1,i2(n−(j−2))−1}

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=2

mj−1+mj+i2(n−j)−1−2∑
i2(n−(j−2))−1=1

(−1)
∑n−1

k=1,k 6=n−(j−1)
(i2k−1+

1+(−1)k

2 )ln−k+
∑j−1

a=1(la−1)+lj+(mj+i2(n−j)−1−1+
1+(−1)n−(j−1)

2 )lj−1

. . . eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . ξmj−1+mj+i2(n−j)−1−2−i2(n−(j−2))−1xlj−1−i2(n−(j−1))

. . . e1e2x
i2(n−(j−1))−1+ljξmj+1+i2(n−(j+1))−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1
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+
∑

i\{i2,i1,i3}

mn−1∑
i3=1

(−1)
∑n−1

k=2 (i2k−1+
1+(−1)k

2 )ln−k+
∑n−2

a=1 (la−1)

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1−i3xln−1ξmn xlneηn1

+
∑

i\{i2,i1,i3}

mn−1+mn−1∑
i3=1

(−1)
∑n−1

k=2 (i2k−1+
1+(−1)k

2 )ln−k+
∑n−2

a=1 (la−1)+1+mnln−1

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+mn−i3xln−1+ln eηn1

+
∑

i\{i2,i1,i3,i5}

mn∑
i1=2

mn−2+mn−1+i1−2∑
i5=1

(−1)
∑n−1

k=1,k 6=2(i2k−1+
1+(−1)k

2 )ln−k+
∑n−2

a=1 (la−1)+ln−1+(mn−1+i1)ln−2

eε12 ξ
m1+i2n−3−1xl1−i2n−2e1e2x

i2n−2−1ξm2+i2n−5−1−i2n−3 . . .
. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−2+mn−1+i1−2−i5xln−2−i4e1e2

. . . xi4−1+ln−1ξ1+mn−i1 xlneηn1

Similarly to the proof of Lemma 6.2.4, we perform some relabellings and some changes of
variable:

- in the third sum, relabel i2(n−k)−1 by i′2(j−k)−1 and relabel i2(n−k) by i′2(j−k) for all 1 ≤ k ≤
j − 1.

- in the fourth sum, relabel i2(n−k)−1 by i2(n−(k+1))−1 and relabel i2(n−k) by i2(n−(k+1)) for
all k ≤ j − 1;

- in the fifth sum, make the change of variable i2(n−j)−1 = i2(n−j)−1+1, and relabel i2(n−(j−1))
by i2(n−j), i2(n−k)−1 by i2(n−(k+1))−1 and i2(n−k) by i2(n−(k+1)) for all 1 ≤ k ≤ j − 2.

- in the sixth sum, relabel i2(n−k)−1 by i2(n−(k+1))−1 and relabel i2(n−k) by i2(n−(k+1)) for all
1 ≤ k ≤ n− 2.

- in the seventh sum, relabel i2(n−k)−1 by i2(n−(k+1))−1 and relabel i2(n−k) by i2(n−(k+1)) for
all k ≤ n− 2;

- in the eighth sum, make the change of variable i1 = i1 + 1, relabel i4 by i2, i2(n−k)−1 by
i2(n−(k+1))−1 and i2(n−k) by i2(n−(k+1)) for all 1 ≤ k ≤ n− 3.

=
∑

i\{i2n−2,i2n−3}

(−1)σ1eε12 ξm1xl1ξm2+i2n−5−1 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+
∑

i\{i2n−2,i2n−3}

(−1)σ2eε12 ξm1+m2+i2n−5−1xl1+l2−i2n−4e1e2x
i2n−4−1 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1
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+

n−2∑
j=2

mj∑
i′1=1

lj−1∑
i′2=1

. . .

m2+i
′
2j−5−1∑

i′2j−3=1

l1∑
i′2j−2=1

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+2−i2(n−(j+2))−1−1∑
i2(n−(j+1))−1=1

lj+1∑
i2(n−(j+1))=1

(−1)σ3eε12 ξ
m1+i

′
2j−3−1xl1−i

′
2j−2e1e2x

i′2j−2−1ξm2+i
′
2j−5−1−i

′
2j−3 . . .

. . .

. . . ξmj−i′1xljξmj+1+i2(n−(j+1))−1−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+

n−2∑
j=2

mn∑
i1=1

ln−1∑
i2=1

. . .

lj+1∑
i2(n−(j+1))=1

mj+mj+1+i2(n−(j+1))−1−2∑
i2(n−j)−1=1

lj−1∑
i2(n−j)=1

. . .

m2+i7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ4eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . ξmj+mj+1+i2(n−(j+1))−1−1−i2(n−j)−1xlj+lj+1−i2(n−(j+1))e1e2x
i2(n−(j+1))−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

+

n−2∑
j=2

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−2∑
i2(n−j)−1=1

lj−1∑
i2(n−j)=1

mj−1+mj+i2(n−j)−1−1∑
i2(n−(j−1))−1=1

lj−2∑
i2(n−(j−1))=1

. . .

. . .

m2+i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ5eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .

. . .

. . . ξmj−1+mj+i2(n−j)−1−1−i2(n−(j−1))−1xlj−1−i2(n−j)

. . . e1e2x
i2(n−j)−1+ljξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

6 +

mn−1∑
i1=1

ln−2∑
i2=1

. . .

mj+i2(n−(j+2)−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2−i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ6eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−1−i1xln−1ξmn xlneηn1

7 +

mn−1+mn−1∑
i1=1

ln−2∑
i2=1

. . .

mj+i2(n−(j+2)−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2−i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ7eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−1+mn−i1xln−1+ln eηn1

8 +

mn−1∑
i1=1

ln−2∑
i2=1

mn−2+mn−1+i1−1∑
i3=1

ln−3∑
i4=1

. . .

mj+1+i2(n−(j+2))−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2+i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ8eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−2+mn−1+i1−1−i3xln−2−i2e1e2

. . . xi2−1+ln−1ξmn−i1 xlneηn1
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where the exponents σi are given below (after applying the same changes):

σ1 =

n−2∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (

1 + (−1)n−1

2
)l1

σ2 =

n−2∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + 1 + (m2 + i2n−5 +

1 + (−1)n−1

2
− 1)l1

σ3 =

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k +

j−1∑
k=1

(i′2k−1 +
1 + (−1)n−j+k

2
)lj−k

+

j−1∑
a=1

(la − 1) + (
1 + (−1)n−j

2
)lj

σ4 =

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k +

n−2∑
k=n−j

(i2k−1 +
1 + (−1)k+1

2
)ln−k−1

+

j−1∑
a=1

(la − 1) + 1 + (mj+1 + i2(n−(j+1))−1 +
1 + (−1)n−j

2
− 1)lj

σ5 =

n−j∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + lj +

n−2∑
k=n−(j−1)

(i2k−1 +
1 + (−1)k+1

2
)ln−k−1

+

j−1∑
a=1

(la − 1) + lj + (mj + i2(n−j)−1 +
1 + (−1)n−(j−1)

2
)lj−1

σ6 =

n−2∑
k=1

(i2k−1 +
1 + (−1)k+1

2
)ln−k−1 +

n−2∑
a=1

(la − 1)

σ7 =

n−2∑
k=1

(i2k−1 +
1 + (−1)k+1

2
)ln−k−1 +

n−2∑
a=1

(la − 1) + 1 +mnln−1

σ8 =

n−2∑
k=2

(i2k−1 +
1 + (−1)k+1

2
)ln−k−1 + (i1 + 1)ln−1 +

n−2∑
a=1

(la − 1)

+ln−1 + (mn−1 + i1 + 1)ln−2

We need to pay close attention to those exponents governing the signs and transform them
appropriately. We will thus work in Z/2Z. We note that the following equality holds:

1 + (−1)k

2
= k + 1[ mod 2],
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for all k ∈ Z. We have:

σ1 =

n−2∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (

1 + (−1)n−1

2
)l1

=

n−2∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (n− 2)l1

σ2 =

n−2∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + 1 + (m2 + i2n−5 +

1 + (−1)n−1

2
− 1)l1

=

n−3∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2n−5 +

1 + (−1)n−2

2
)l2 + 1

+(m2 + i2n−5 +
1 + (−1)n−1

2
− 1)l1

=

n−3∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2n−5 + n− 1)l2 + 1 + (m2 + i2n−5 + n− 2 + 1)l1

=

n−3∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2n−5 + n− 1)(l2 + l1) +m2l1 + 1

σ3 =

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k +

j−1∑
k=1

(i′2k−1 +
1 + (−1)n−j+k

2
)lj−k

+

j−1∑
a=1

(la − 1) + (
1 + (−1)n−j

2
)lj

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k +

j−1∑
k=1

(i′2k−1 + n− j + k + 1)lj−k

+

j−1∑
a=1

la − j + 1 + (n− j + 1)lj

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k +

j−1∑
k=1

(i′2k−1 + k + 1)lj−k

+

j−1∑
k=1

(n− j)lj−k +

j−1∑
a=1

la − j + 1 + (n− j + 1)lj

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k +

j−1∑
k=1

(i′2k−1 +
1 + (−1)k

2
)lj−k

+(n− j)
j−1∑
k=1

lk +

j−1∑
a=1

la − j + 1 + (n− j + 1)lj

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k +

j−1∑
k=1

(i′2k−1 +
1 + (−1)k

2
)lj−k

+(n− j + 1)

j∑
k=1

lk − j + 1
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σ4 =

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k +

n−2∑
k=n−j

(i2k−1 +
1 + (−1)k+1

2
)ln−k−1 +

j−1∑
a=1

(la − 1)

+1 + (mj+1 + i2(n−(j+1))−1 +
1 + (−1)n−j

2
− 1)lj

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k +

n−2∑
k=n−j

(i2k−1 + k + 2)ln−k−1 +

j−1∑
a=1

la − j + 1

+1 + (mj+1 + i2(n−(j+1))−1 + n− j + 1− 1)lj

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k +

n−2∑
k=n−j

(i2k−1 + k + 1)ln−k−1 +

n−2∑
k=n−j

ln−k−1

+

j−1∑
a=1

la − j + 1 + 1 + (mj+1 + i2(n−(j+1))−1 + n− j − 1 + 1)lj

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k +

n−2∑
k=n−j

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +

j−1∑
k=1

lk

+

j−1∑
a=1

la − j + 1 + 1 + (mj+1 + i2(n−(j+1))−1 +
1 + (−1)n−(j+1)

2
)lj

=

n−(j+2)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2(n−(j+1))−1 +

1 + (−1)n−(j+1)

2
)(lj+1 + lj)

+

n−2∑
k=n−j

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +mj+1lj − j + 2

(
1 +

j−1∑
k=1

lk

)

=

n−(j+2)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2(n−(j+1))−1 +

1 + (−1)n−(j+1)

2
)(lj+1 + lj)

+

n−2∑
k=n−j

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +mj+1lj − j
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σ5 =

n−j∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + lj +

n−2∑
k=n−(j−1)

(i2k−1 +
1 + (−1)k+1

2
)ln−k−1 +

j−1∑
a=1

(la − 1)

+lj + (mj + i2(n−j)−1 +
1 + (−1)n−(j−1)

2
)lj−1

=

n−j∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + lj +

n−2∑
k=n−(j−1)

(i2k−1 + k + 1)ln−k−1 +

n−2∑
k=n−(j−1)

ln−k−1

+

j−1∑
a=1

la − j + 1 + lj +mj lj−1(i2(n−j)−1 + (n− j + 1) + 1)lj−1

=

n−j∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + lj +

n−2∑
k=n−(j−1)

(i2k−1 + k + 1)ln−k−1 +

j−2∑
k=1

lk +

j−1∑
a=1

la

−j + 1 + lj + lj−1 +mj lj−1 + (i2(n−j)−1 +
1 + (−1)n−j

2
)lj−1

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2(n−j)−1 +

1 + (−1)n−j

2
)(lj + lj−1)

+

n−2∑
k=n−(j−1)

(i2k−1 + k + 1)ln−k−1 +

j−2∑
k=1

lk + lj−1 + lj

j−1∑
a=1

la + lj − j + 1 +mj lj−1

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2(n−j)−1 +

1 + (−1)n−j

2
)(lj + lj−1)

+

n−2∑
k=n−(j−1)

(i2k−1 +
1 + (−1)k

2
)ln−k−1 + 2

j∑
k=1

lk − j + 1 +mj lj−1

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2(n−j)−1 +

1 + (−1)n−j

2
)(lj + lj−1)

+

n−2∑
k=n−(j−1)

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +mj lj−1 − (j − 1)

σ6 =

n−2∑
k=1

(i2k−1 +
1 + (−1)k+1

2
)ln−k−1 +

n−2∑
a=1

(la − 1)

=

n−2∑
k=1

(i2k−1 + (k + 1) + 1)ln−k−1 +

n−2∑
a=1

la − (n− 2)

=

n−2∑
k=1

(i2k−1 + (k + 1))ln−k−1 +

n−2∑
k=1

ln−k−1 +

n−2∑
a=1

la − (n− 2)

=

n−2∑
k=1

(i2k−1 + (k + 1))ln−k−1 + 2

n−2∑
k=1

lk − (n− 2)

=

n−2∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k−1 − (n− 2)

σ7 =

n−2∑
k=1

(i2k−1 +
1 + (−1)k+1

2
)ln−k−1 +

n−2∑
a=1

(la − 1) + 1 +mnln−1

=

n−2∑
k=1

(i2k−1 + (k + 1) + 1)ln−k−1 +

n−2∑
a=1

la − (n− 2) + 1 +mnln−1

=

n−2∑
k=1

(i2k−1 + (k + 1))ln−k−1 +

n−2∑
k=1

ln−k−1 +

n−2∑
a=1

la − (n− 3) +mnln−1

=

n−2∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k−1 + 2

n−2∑
k=1

lk − (n− 3) +mnln−1

=

n−2∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k−1 − (n− 3) +mnln−1

171



σ8 =

n−2∑
k=2

(i2k−1 +
1 + (−1)k+1

2
)ln−k−1 + (i1 + 1)ln−1 +

n−2∑
a=1

(la − 1) + ln−1 + (mn−1 + i1 + 1)ln−2

=

n−2∑
k=2

(i2k−1 + (k + 1) + 1)ln−k−1 + i1ln−1 + ln−1 +

n−2∑
a=1

la − (n− 2) + ln−1 +mn−1ln−2

+i1ln−2 + ln−2

= i1(ln−1 + ln−2) +

n−2∑
k=2

(i2k−1 + (k + 1))ln−k−1 +

n−2∑
k=2

ln−k−1 + ln−1 +

n−2∑
a=1

la − (n− 2)

+ln−2 + ln−1 +mn−1ln−2

= i1(ln−1 + ln−2) +

n−2∑
k=2

(i2k−1 + (k + 1))ln−k−1 +

n−3∑
k=1

lk + ln−2 + ln−1 +

n−2∑
a=1

la + ln−1

−(n− 2) +mn−1ln−2

= i1(ln−1 + ln−2) +

n−2∑
k=2

(i2k−1 +
1 + (−1)k

2
)ln−k−1 + 2

n−1∑
k=1

lk

+mn−1ln−2 − (n− 2)

= i1(ln−1 + ln−2) +

n−2∑
k=2

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +mn−1ln−2 − (n− 2)

Let us now analyse the following situations:

- Compare σ4 with i2(n−j)−1 = mj + mj+1 + i2(n−(j+1))−1 − 1 and σ5 with i2(n−j)−1 =
mj+1 + i2(n−(j+1))−1 − 1;

- Compare σ7 with i1 = mn−1 +mn and σ8 with i1 = mn.

σ4 =

n−(j+2)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2(n−(j+1))−1 +

1 + (−1)n−(j+1)

2
)(lj+1 + lj)

+(mj +mj+1 + i2(n−(j+1))−1 − 1 +
1 + (−1)n−j

2
)lj−1

+

n−2∑
k=n−(j−1)

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +mj+1lj − j

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2(n−(j+1))−1 +

1 + (−1)n−(j+1)

2
)lj

+(mj +mj+1 + i2(n−(j+1))−1 − 1 + n− j + 1)lj−1

+

n−2∑
k=n−(j−1)

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +mj+1lj − j

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2(n−(j+1))−1 +

1 + (−1)n−(j+1)

2
)lj

+(mj +mj+1 + i2(n−(j+1))−1 +
1 + (−1)n−(j+1)

2
)lj−1

+

n−2∑
k=n−(j−1)

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +mj+1lj − j

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2(n−(j+1))−1 +

1 + (−1)n−(j+1)

2
)(lj + lj−1)

+

n−2∑
k=n−(j−1)

(i2k−1 +
1 + (−1)k

2
)ln−k−1 + (mj +mj+1)lj−1 +mj+1lj − j
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σ5 =

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (mj+1 + i2(n−(j+1))−1 − 1 +

1 + (−1)n−j

2
)(lj + lj−1)

+

n−2∑
k=n−(j−1)

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +mj lj−1 − (j − 1)

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2(n−(j+1))−1 − 1 + n− j + 1)(lj + lj−1)

+

n−2∑
k=n−(j−1)

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +mj+1(lj + lj−1) +mj lj−1 − (j − 1)

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2(n−(j+1))−1 +

1 + (−1)n−(j+1)

2
)(lj + lj−1)

+

n−2∑
k=n−(j−1)

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +mj+1(lj + lj−1) +mj lj−1 − (j − 1)

One sees that σ4 and σ5 in that case are opposite of each other.

σ7 =

n−2∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k−1 − (n− 3) +mnln−1

= (mn−1 +mn)ln−2 +

n−2∑
k=2

(i2k−1 +
1 + (−1)k

2
)ln−k−1 − (n− 3) +mnln−1

=

n−2∑
k=2

(i2k−1 +
1 + (−1)k

2
)ln−k−1(mn−1 +mn)ln−2 +mnln−1 − (n− 3)

σ8 = i1(ln−1 + ln−2) +

n−2∑
k=2

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +mn−1ln−2 − (n− 2)

= mn(ln−1 + ln−2) +

n−2∑
k=2

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +mn−1ln−2 − (n− 2)

=

n−2∑
k=2

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +mn(ln−1 + ln−2) +mn−1ln−2 − (n− 2)

One sees that σ7 and σ8 in that case are opposite of each other.
This means we can add two sums of opposite signs between the fourth and the fifth sums, and

between the seventh and eighth sums:

(4).

n−2∑
j=2

mn∑
i1=1

ln−1∑
i2=1

. . .

lj+1∑
i2(n−(j+1))=1

mj+mj+1+i2(n−(j+1))−1−2∑
i2(n−j)−1=1

lj−1∑
i2(n−j)=1

. . .

m2+i7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ4eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . ξmj+mj+1+i2(n−(j+1))−1−1−i2(n−j)−1xlj+lj+1−i2(n−(j+1))e1e2x
i2(n−(j+1))−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1
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(i2(n−j)−1 = mj +mj+1 + i2(n−(j+1))−1 − 1)

+

n−2∑
j=2

mn∑
i1=1

ln−1∑
i2=1

. . .

lj+1∑
i2(n−(j+1))=1

lj−1∑
i2(n−j)=1

mj−1+mj+mj+1+i2(n−(j+1))−1−2∑
i2(n−(j−1))−1=1

. . .

m2+i7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ4eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . ξmj−1+mj+mj+1+i2(n−(j+1))−1−1−1−i2(n−(j−1))−1xlj−1−i2(n−j) . . .

. . . e1e2x
i2(n−j)−1+lj+lj+1−i2(n−(j+1))e1e2x

i2(n−(j+1))−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

(i2(n−j)−1 = mj+1 + i2(n−(j+1))−1 − 1)

+

n−2∑
j=2

mn∑
i1=1

ln−1∑
i2=1

. . .

lj−1∑
i2(n−j)=1

mj−1+mj+mj+1+i2(n−(j+1))−1−2∑
i2(n−(j−1))−1=1

lj−2∑
i2(n−(j−1))=1

. . .

. . .

m2+i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ5eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .

. . .

. . . ξmj−1+mj+mj+1+i2(n−(j+1))−1−1−1−i2(n−(j−1))−1xlj−1−i2(n−j)

. . . e1e2x
i2(n−j)−1+lj+lj+1−i2(n−(j+1)) . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

(5). +

n−2∑
j=2

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−2∑
i2(n−j)−1=1

lj−1∑
i2(n−j)=1

mj−1+mj+i2(n−j)−1−1∑
i2(n−(j−1))−1=1

lj−2∑
i2(n−(j−1))=1

. . .

. . .

m2+i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ5eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .

. . .

. . . ξmj−1+mj+i2(n−j)−1−1−i2(n−(j−1))−1xlj−1−i2(n−j)

. . . e1e2x
i2(n−j)−1+ljξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

(4′). =

n−2∑
j=2

mn∑
i1=1

ln−1∑
i2=1

. . .

lj+1∑
i2(n−(j+1))=1

mj+mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

lj−1∑
i2(n−j)=1

. . .

m2+i7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ4eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . ξmj+mj+1+i2(n−(j+1))−1−1−i2(n−j)−1xlj+lj+1−i2(n−(j+1))e1e2x
i2(n−(j+1))−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

(5′). +

n−2∑
j=2

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

lj−1∑
i2(n−j)=1

mj−1+mj+i2(n−j)−1−1∑
i2(n−(j−1))−1=1

lj−2∑
i2(n−(j−1))=1

. . .

. . .

m2+i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ5eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .

. . .

. . . ξmj−1+mj+i2(n−j)−1−1−i2(n−(j−1))−1xlj−1−i2(n−j)

. . . e1e2x
i2(n−j)−1+ljξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1
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and

(7).

mn−1+mn−1∑
i1=1

ln−2∑
i2=1

. . .

mj+i2(n−(j+2)−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2−i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ7eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−1+mn−i1xln−1+ln eηn1

(i1 = mn−1 +mn)

+

ln−2∑
i2=1

mn−2+mn−1+mn−1∑
i3=1

. . .

mj+i2(n−(j+2)−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2−i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ7eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−2+mn−1+mn−1−i3xln−2−i2e1e2x
i2−1+ln−1+ln eηn1

(i1 = mn)

+

ln−2∑
i2=1

mn−2+mn−1+mn−1∑
i3=1

ln−3∑
i4=1

. . .

mj+1+i2(n−(j+2))−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2+i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ8eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−2+mn−1+mn−1−i3xln−2−i2e1e2x
i2−1+ln−1+ln eηn1

(8). +

mn−1∑
i1=1

ln−2∑
i2=1

mn−2+mn−1+i1−1∑
i3=1

ln−3∑
i4=1

. . .

mj+1+i2(n−(j+2))−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2+i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ8eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−2+mn−1+i1−1−i3xln−2−i2e1e2

. . . xi2−1+ln−1ξmn−i1 xlneηn1

(7′). =

mn−1+mn∑
i1=1

ln−2∑
i2=1

. . .

mj+i2(n−(j+2)−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2−i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ7eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−1+mn−i1xln−1+ln eηn1
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(8′). +

mn∑
i1=1

ln−2∑
i2=1

mn−2+mn−1+i1−1∑
i3=1

ln−3∑
i4=1

. . .

mj+1+i2(n−(j+2))−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2+i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ8eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−2+mn−1+i1−1−i3xln−2−i2e1e2

. . . xi2−1+ln−1ξmn−i1 xlneηn1

For us to recognise Φn, we need to consider expressions (4′). for index j− 1 and (5′). for index
j. We make the change of variable i2(n−j) = i2(n−j) − lj in expression (5′). Note that this change
of variable does not affect σ5. The expressions write:

(j − 1)

(4′).

mn∑
i1=1

ln−1∑
i2=1

. . .

l(j−1)+1∑
i2(n−((j−1)+1))=1

m(j−1)+m(j−1)+1+i2(n−((j−1)+1))−1−1∑
i2(n−(j−1))−1=1

l(j−1)−1∑
i2(n−(j−1))=1

. . .

m2+i7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ4eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . ξm(j−1)+m(j−1)+1+i2(n−((j−1)+1))−1−1−i2(n−(j−1))−1xl(j−1)+l(j−1)+1−i2(n−((j−1)+1))

. . . e1e2x
i2(n−((j−1)+1))−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

=

mn∑
i1=1

ln−1∑
i2=1

. . .

lj∑
i2(n−j)=1

mj−1+mj+i2(n−j)−1−1∑
i2(n−(j−1))−1=1

lj−2∑
i2(n−(j−1))=1

. . .

m2+i7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ4eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . ξmj−1+mj+i2(n−j)−1−1−i2(n−(j−1))−1xlj−1+lj−i2(n−j)e1e2x
i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

(j) and (i2(n−j) = i2(n−j) − lj)

(5′′).

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

lj−1+lj∑
i2(n−j)=1+lj

mj−1+mj+i2(n−j)−1−1∑
i2(n−(j−1))−1=1

lj−2∑
i2(n−(j−1))=1

. . .

. . .

m2+i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ5eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .

. . .

. . . ξmj−1+mj+i2(n−j)−1−1−i2(n−(j−1))−1xlj−1+lj−i2(n−j)

. . . e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

If σ4(j − 1) is the same as σ5(j), we see that these two sums complement each other:

- in (4′)., we have 1 ≤ i2(n−j) ≤ lj ;

- in (5′)., we have 1 + lj ≤ i2(n−j) ≤ lj−1 + lj .

Let us compare σ4(j − 1) with σ5(j).

176



σ4(j − 1) =

n−((j−1)+2)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2(n−((j−1)+1))−1 +

1 + (−1)n−((j−1)+1)

2
)(l(j−1)+1 + l(j−1))

+

n−2∑
k=n−(j−1)

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +m(j−1)+1l(j−1) − (j − 1)

=

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2(n−j)−1 +

1 + (−1)n−j

2
)(lj + lj−1)

+

n−2∑
k=n−(j−1)

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +mj lj−1 − (j − 1)

σ5(j) =

n−(j+1)∑
k=1

(i2k−1 +
1 + (−1)k

2
)ln−k + (i2(n−j)−1 +

1 + (−1)n−j

2
)(lj + lj−1)

+

n−2∑
k=n−(j−1)

(i2k−1 +
1 + (−1)k

2
)ln−k−1 +mj lj−1 − (j − 1)

In addition, expression (4′) at j = n − 2 complements expression (8′) after having made the
change of variable i2 = i2 − ln−1 in (8′), and expression (5′) at j = 2 complements expression (2).

Finally, we see that:

−m1fn
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1
)

(1). =

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

lj∑
i2(n−j)=1

. . .

m3+i7−1∑
i2n−5=1

l2∑
i2n−4=1

(−1)σ1eε12 ξm1xl1ξm2+i2n−5−1 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

(2′). +

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

lj∑
i2(n−j)=1

. . .

m3+i7−1∑
i2n−5=1

l1+l2∑
i2n−4=1

(−1)σ2eε12 ξm1+m2+i2n−5−1xl1+l2−i2n−4e1e2x
i2n−4−1 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

(3). +

n−2∑
j=2

mj∑
i′1=1

lj−1∑
i′2=1

. . .

m2+i
′
2j−5−1∑

i′2j−3=1

l1∑
i′2j−2=1

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+2−i2(n−(j+2))−1−1∑
i2(n−(j+1))−1=1

lj+1∑
i2(n−(j+1))=1

(−1)σ3eε12 ξ
m1+i

′
2j−3−1xl1−i

′
2j−2e1e2x

i′2j−2−1ξm2+i
′
2j−5−1−i

′
2j−3 . . .

. . .

. . . ξmj−i′1xljξmj+1+i2(n−(j+1))−1−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1
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(5′′). +

n−2∑
j=3

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

lj−1+lj∑
i2(n−j)=1

mj−1+mj+i2(n−j)−1−1∑
i2(n−(j−1))−1=1

lj−2∑
i2(n−(j−1))=1

. . .

. . .

m2+i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ5eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .

. . .

. . . ξmj−1+mj+i2(n−j)−1−1−i2(n−(j−1))−1xlj−1+lj−i2(n−j)

. . . e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

(6). +

mn−1∑
i1=1

ln−2∑
i2=1

. . .

mj+i2(n−(j+2)−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2−i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ6eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−1−i1xln−1ξmn xlneηn1

(7′). +

mn−1+mn∑
i1=1

ln−2∑
i2=1

. . .

mj+i2(n−(j+2)−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2−i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ7eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−1+mn−i1xln−1+ln eηn1

(8′′). +

mn∑
i1=1

ln−2+ln−1∑
i2=1

mn−2+mn−1+i1−1∑
i3=1

ln−3∑
i4=1

. . .

mj+1+i2(n−(j+2))−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2+i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)σ8eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−2+mn−1+i1−1−i3xln−2+ln−1−i2e1e2

. . . xi2−1ξmn−i1 xlneηn1

Let us review each sum separately, and insert back the σi’s.
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(1).

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

lj∑
i2(n−j)=1

. . .

m3+i7−1∑
i2n−5=1

l2∑
i2n−4=1

(−1)
∑n−2

k=1 (i2k−1+
1+(−1)k

2 )ln−k+(n−2)l1

eε12 ξm1xl1ξm2+i2n−5−1 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

= (−1)(n−2)l1
mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

lj∑
i2(n−j)=1

. . .

m3+i7−1∑
i2n−5=1

l2∑
i2n−4=1

(−1)
∑n−2

k=1 (i2k−1+
1+(−1)k

2 )ln−k

eε12 ξm1xl1ξm2+i2n−5−1 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

= (−1)(n−2)l1
(
f1(eε12 ξ

m1xl1eη11 )⊗ fn−1(eε22 ξ
m2xl2eη21 ⊗ . . .⊗ e

εn
2 ξ

mnxlneηn1 )
)

= m2(f1 ⊗ fn−1)
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1 )
)

[ Koszul sign rule]

(2′).

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

lj∑
i2(n−j)=1

. . .

m3+i7−1∑
i2n−5=1

l1+l2∑
i2n−4=1

(−1)
∑n−3

k=1 (i2k−1+
1+(−1)k

2 )ln−k+(i2n−5+n−1)(l2+l1)+m2l1+1

eε12 ξm1+m2+i2n−5−1xl1+l2−i2n−4e1e2x
i2n−4−1 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

= (−1)m2l1+1
mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

lj∑
i2(n−j)=1

. . .

m3+i7−1∑
i2n−5=1

l1+l2∑
i2n−4=1

(−1)
∑n−3

k=1 (i2k−1+
1+(−1)k

2 )ln−k+(i2n−5+n−1)(l2+l1)

eε12 ξm1+m2+i2n−5−1xl1+l2−i2n−4e1e2x
i2n−4−1 . . .

. . .

. . . xlj−i2(n−j)e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

= (−1)m2l1+1fn−1
(
eε12 ξ

m1+m2xl1+l2eη21 ⊗ e
ε3
2 ξ

m3xl3eη31 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1 )
)

= fn−1
(
(−1)m2l1eε12 ξ

m1+m2xl1+l2eη21 ⊗ e
ε3
2 ξ

m3xl3eη31 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1 )
)

= −fn−1
(
m2(eε12 ξ

m1xl1eη11 ⊗ e
ε2
2 ξ

m2xl2eη21 )⊗ eε32 ξm3xl3eη31 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1 )
)

= −fn−1(m2 ⊗ 1n−2)
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1 )
)
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(3).

n−2∑
j=2

mj∑
i′1=1

lj−1∑
i′2=1

. . .

m2+i
′
2j−5−1∑

i′2j−3=1

l1∑
i′2j−2=1

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+2−i2(n−(j+2))−1−1∑
i2(n−(j+1))−1=1

lj+1∑
i2(n−(j+1))=1

(−1)
∑n−(j+1)

k=1 (i2k−1+
1+(−1)k

2 )ln−k+
∑j−1

k=1(i
′
2k−1+

1+(−1)k

2 )lj−k+(n−j+1)
∑j

k=1 lk−j+1

eε12 ξ
m1+i

′
2j−3−1xl1−i

′
2j−2e1e2x

i′2j−2−1ξm2+i
′
2j−5−1−i

′
2j−3 . . .

. . .

. . . ξmj−i′1xljξmj+1+i2(n−(j+1))−1−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

=

n−2∑
j=2

(−1)(n−j+1)
∑j

k=1 lk−j+1

mj∑
i′1=1

lj−1∑
i′2=1

. . .

m2+i
′
2j−5−1∑

i′2j−3=1

l1∑
i′2j−2=1

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+2−i2(n−(j+2))−1−1∑
i2(n−(j+1))−1=1

lj+1∑
i2(n−(j+1))=1

(−1)
∑j−1

k=1(i
′
2k−1+

1+(−1)k

2 )lj−k

eε12 ξ
m1+i

′
2j−3−1xl1−i

′
2j−2e1e2x

i′2j−2−1ξm2+i
′
2j−5−1−i

′
2j−3 . . .

. . .

. . . ξmj−i′1xlj

(−1)
∑n−(j+1)

k=1 (i2k−1+
1+(−1)k

2 )ln−k+ξmj+1+i2(n−(j+1))−1−1 . . .
. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

=

n−2∑
j=2

(−1)(n−j+1)
∑j

k=1 lk−j+1fj
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εj
2 ξ

mjxlje
ηj
1

)
⊗

fj
(
e
εj+1

2 ξmj+1xlj+1e
ηj+1

1 ⊗ . . .⊗ eεn2 ξmnxlneηn1
)

=

n−2∑
j=2

(−1)j−1m2(fj ⊗ fn−j)
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1
)

180



(5′′).

n−2∑
j=3

mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

lj−1+lj∑
i2(n−j)=1

mj−1+mj+i2(n−j)−1−1∑
i2(n−(j−1))−1=1

lj−2∑
i2(n−(j−1))=1

. . .

. . .

m2+i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)
∑n−(j+1)

k=1 (i2k−1+
1+(−1)k

2 )ln−k+(i2(n−j)−1+
1+(−1)n−j

2 )(lj+lj−1)+
∑n−2

k=n−(j−1)
(i2k−1+

1+(−1)k

2 )ln−k−1+mj lj−1−(j−1)

eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . ξmj−1+mj+i2(n−j)−1−1−i2(n−(j−1))−1xlj−1+lj−i2(n−j)

. . . e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

=

n−2∑
j=3

(−1)mj lj−1−(j−1)
mn∑
i1=1

ln−1∑
i2=1

. . .

mj+1+i2(n−(j+1))−1−1∑
i2(n−j)−1=1

lj−1+lj∑
i2(n−j)=1

mj−1+mj+i2(n−j)−1−1∑
i2(n−(j−1))−1=1

lj−2∑
i2(n−(j−1))=1

. . .

. . .

m2+i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)
∑n−(j+1)

k=1 (i2k−1+
1+(−1)k

2 )ln−k+(i2(n−j)−1+
1+(−1)n−j

2 )(lj+lj−1)+
∑n−2

k=n−(j−1)
(i2k−1+

1+(−1)k

2 )ln−k−1

eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . ξmj−1+mj+i2(n−j)−1−1−i2(n−(j−1))−1xlj−1+lj−i2(n−j)

. . . e1e2x
i2(n−j)−1ξmj+1+i2(n−(j+1))−1−1−i2(n−j)−1 . . .

. . .

. . . ξmn−1+i1−1−i3xln−1−i2e1e2x
i2−1ξmn−i1xlneηn1

=

n−2∑
j=3

(−1)mj lj−1−(j−1)fn−1
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εj−2

2 ξmj−2xlj−2e
ηj−2

1 ⊗

e
εj−1+εj
2 ξmj−1+mjxlj−1+lje

ηj−1ηj
1 ⊗

e
εj+1

2 ξmj+1xlj+1e
ηj+1

1 ⊗ . . .⊗ eεn2 ξmnxlneηn1
)

=

n−2∑
j=3

(−1)j−1fn−1(1j−2 ⊗m2 ⊗ 1⊗n−j)
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1
)

181



(6).

mn−1∑
i1=1

ln−2∑
i2=1

. . .

mj+i2(n−(j+2)−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2−i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)
∑n−2

k=1 (i2k−1+
1+(−1)k

2 )ln−k−1−(n−2)

eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−1−i1xln−1ξmn xlneηn1

= (−1)n−2
mn−1∑
i1=1

ln−2∑
i2=1

. . .

mj+i2(n−(j+2)−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2−i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)
∑n−2

k=1 (i2k−1+
1+(−1)k

2 )ln−k−1

eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−1−i1xln−1ξmn xlneηn1
= (−1)n−2

(
fn−1(eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn−1

2 ξmn−1xln−1e
ηn−1

1 )⊗ f1(eεn2 ξ
mnxlneηn1 )

)
= (−1)n−2m2(fn−1 ⊗ f1)

(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1 )
)

(7′).

mn−1+mn∑
i1=1

ln−2∑
i2=1

. . .

mj+i2(n−(j+2)−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2−i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)
∑n−2

k=1 (i2k−1+
1+(−1)k

2 )ln−k−1−(n−3)+mnln−1

eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−1+mn−i1xln−1+ln eηn1

= (−1)mnln−1−(n−3)
mn−1+mn∑

i1=1

ln−2∑
i2=1

. . .

mj+i2(n−(j+2)−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2−i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)
∑n−2

k=1 (i2k−1+
1+(−1)k

2 )ln−k−1

eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−1+mn−i1xln−1+ln eηn1
= (−1)mnln−1−(n−3)

fn−1

(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn−2

2 ξmn−2xln−2e
ηn−2

1 ⊗ eεn−1+εn
2 ξmn−1+mnxln−1+lne

ηn−1+ηn
1

)
= (−1)n−3fn−1(1n−2 ⊗m2)

(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1 )
)
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(8′′).

mn∑
i1=1

ln−2+ln−1∑
i2=1

mn−2+mn−1+i1−1∑
i3=1

ln−3∑
i4=1

. . .

mj+1+i2(n−(j+2))−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2+i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)i1(ln−1+ln−2)+
∑n−2

k=2 (i2k−1+
1+(−1)k

2 )ln−k−1+mn−1ln−2−(n−2)

eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−2+mn−1+i1−1−i3xln−2+ln−1−i2e1e2

. . . xi2−1ξmn−i1 xlneηn1
= (−1)mn−1ln−2−(n−2)

mn∑
i1=1

ln−2+ln−1∑
i2=1

mn−2+mn−1+i1−1∑
i3=1

ln−3∑
i4=1

. . .

mj+1+i2(n−(j+2))−1−1∑
i2(n−(j+1))−1=1

lj∑
i2(n−(j+1))=1

. . .

m2+i2n−7−1∑
i2n−5=1

l1∑
i2n−4=1

(−1)i1(ln−1+ln−2)+
∑n−2

k=2 (i2k−1+
1+(−1)k

2 )ln−k−1

eε12 ξ
m1+i2n−5−1xl1−i2n−4e1e2x

i2n−4−1ξm2+i2n−7−1−i2n−5 . . .
. . .

. . . xlj−i2(n−(j+1))e1e2x
i2(n−(j+1))−1ξmj+1+i2(n−(j+2))−1−1−i2(n−(j+1))−1 . . .

. . .

. . . ξmn−2+mn−1+i1−1−i3xln−2+ln−1−i2e1e2

. . . xi2−1ξmn−i1 xlneηn1
= (−1)mn−1ln−2−(n−2)fn−1

(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn−3

2 ξmn−3xln−3e
ηn−3

1 ⊗
e
εn−2+εn−1

2 ξmn−2+mn−1xln−2+ln−1e
ηn−2+ηn−1

1 ⊗ eεn2 ξmnxlneηn1

)
= (−1)n−2fn−1(1n−3 ⊗m2 ⊗ 1)

(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1 )
)

Consequently, −m1fn evaluated on
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1
)

yields:

−m1fn
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1
)

(1). = m2(f1 ⊗ fn−1)
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1 )
)

(2′). −fn−1(m2 ⊗ 1n−2)
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1 )
)

(3). +

n−2∑
j=2

(−1)j−1m2(fj ⊗ fn−j)
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1
)

(5′′). +

n−2∑
j=3

(−1)j−1fn−1(1j−2 ⊗m2 ⊗ 1⊗n−j)
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1
)

(6). +(−1)n−2m2(fn−1 ⊗ f1)
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1
)

(7′). +(−1)n−3fn−1(1n−2 ⊗m2)
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1 )
)

(8′′). +(−1)n−2fn−1(1n−3 ⊗m2 ⊗ 1)
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1 )
)

which is exactly Φn evaluated on
(
eε12 ξ

m1xl1eη11 ⊗ . . .⊗ e
εn
2 ξ

mnxlneηn1
)

after rearranging the
terms.
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