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Abstract

This research belongs to the field of Representation Theory and tries to solve questions
through homological algebraic methods. This project deals with the study of symmetries
of the plane and aims at measuring how much a mathematical object of importance for
that study fails to satisfy the property of not needing bracketing when multiplying three
elements together, which is called associativity. More precisely, we study the rational rep-
resentations of GLy(F,), the general linear group of order 2 over an algebraically closed
field of prime characteristic p. Representations are a means to understand group or al-
gebra elements as linear transformations on a vector space of a given dimension, and it
is possible to “build” representations from smaller ones, e.g. the set of so-called standard
representations. The way to glue these building blocks together is governed by the algebra
of extensions between standard representations. In a series of papers culminating with
[MT13], Miemietz and Turner described precisely the algebra structure of that extension
algebra. It is the homology of a differential-graded algebra and this project aims at es-
timating how non-associative it is by computing its A..-algebra structure. For any p,
we give the quiver of that extension algebra, and for p = 2, we show that there exists
a subalgebra of the extension algebra which admits a trivial A,.-algebra structure, and
what’s more, in a somewhat peculiar way. We also give its quiver and discuss some of its
properties.
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Introduction

Foreword

This PhD project is based on the work of Miemietz and Turner, more precisely on their
paper The Weyl extension algebra of GLa(F,) (2013) [MT13]. They provide an alternative
description of the extension algebra of standard modules belonging to the principal block

of rational representations of GLy(F,) and that description gives the algebra structure: a
basis is parametrised by some polytopes in Z7 and the multiplication is given explicitly in
terms of those polytopes. Let us introduce the setup for this project.

Rational Representations of GL,(F,)

Let F' be an algebraically closed field of positive characteristic p. We consider the poly-
nomial representations of G L, (F'), namely those morphisms of algebraic groups

p:GLy(F) — GL(V),

for some m-dimensional vector space V over F', such that, after choosing a basis for GL(V'),
all the entries of p(g) are polynomials in the coordinate functions of GL,,(F).

Denote by R,, = F[G] the ring of coordinates of G = GL,(F). As a polynomial ring, it
has a coalgebra structure. In addition, it contains the subcoalgebra A(n, r) of polynomials
of degree r. Dualising this coalgebra with respect to F', we obtain the Schur algebra:

S(n,r) = A(n,r)*.

Theorem. [Gre81] Denote by Rep G the category of polynomial representations of G, and
by Rep, G the category of polynomial representations of G of degree r. Then we have:

Rep G = @ Rep, G,

r>0

namely, if M € Rep G, then M splits as

M =P M,,

>0
where M, € Rep,G for all r > 0.
In addition,
Theorem. [Gre81] There is an equivalence of categories
Rep,G ~ S(n,r) — mod.

The simple modules are labelled by partitions of v with at most n parts.
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The Schur algebra S(n,r) decomposes into blocks:

S(n,r) = A; X ... x A;,

i.e. as a direct product of indecomposable algebras A;.

We now restrict to the case n = 2, so that G = GLy(F'). Suppose A; and Ay are
blocks of S(2,71), S(2,72) resp. but A; and As have the same number of simple modules,
then A; —mod = Ay —mod ([EH02, Theorem 13]). Note that in that case, it is possible to
label simple modules by an integer a: a partition (A1, A2) of r; with two parts is uniquely
identified by a := A1 — A2. Given a degree r € N, there exists a combinatorial description
of which such a’s are in the same block (cf. [Par07]).

Finally, we have

Theorem. [MT10] If a block A has p" simple modules, where p = char F, then A is
Morita equivalent to the algebra c," (F, F').

We define ¢,"(F, F') in the next section.

Inductive Construction

As this project relies on the paper [MT13], we need to explain their notation and re-
sults. The category G-mod of rational representations of G = GLa(F,) is a highest weight
category and the standard modules are called Weyl modules. They give an explicit de-
scription of the algebra structure of the Yoneda extension algebra w of the Weyl modules
(belonging to the principal block) of the category G-mod. This description relies on an
inductive construction of some algebra g using some algebraic operators which turn out
to be well-behaved with respect to homology.

The starting point is to consider the very small quasi-hereditary algebra c, which is
the path algebra of the following quiver:

a o e
L2 7.7 "p
BB B

modulo the relations (a?, 52, a8 + Ba, afe,). Our convention to write paths is the same
as that to write the composition of maps, namely ab corresponds to the path

b a
e — 0 — 0,

The algebra c,, is a trigraded algebra, with j-grading the path length, k-grading being
identically zero and d-grading the grading with respect to the quasi-hereditary structure
of ¢, (the filtration of ¢, by standard modules is unique). We can turn it into a differential
trigraded algebra by adding a differential on it which we choose to be the zero map.

Computing the endomorphism ring of its tilting module t, as a left c,-module, we see
that c, is Ringel self-dual. This yields an isomorphism of left c,-modules t, ®¢, t, = c,".
Because (—)* is a simple preserving duality, c,* looks like ¢, upside down. Note that t,
is mot trigraded as a cp-module: the d-grading on t, is not a module grading over the
d-graded algebra c, but is a vector space grading (cf. [MT13] Corrigendum]).

We now want to make the construction of c,”(F, F') explicit. Let us first fix some
notation: let a = ®a’* be a differential bigraded algebra, m = ®m’* be a differential
bigraded a-a-bimodule, A = @z A" be a differential graded algebra and M = @z M*
be a graded bimodule. For simplicity, we assume a and m are non negatively j-graded.
We write:

Pom(A, M) := (a(A, M), m(A, M)),
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where

a*(A, M) = @ajk Qp M®AT,

j
mF(A, M) = @mjk @p M®AJ,

J

Informally, what we do is glue a, resp. m, with a tensor product of copies of M of length
the j-degree of a, resp. m. The first coordinate a(A, M) of Py, (A, M) is a differential
graded algebra with multiplication

a(A, M) ® a(A, M) (wjk ®F Y1 ®A~~~®ij) ® (x/jk ®F Y ®A~-~®Ay/j/>

l

j+3") (k+ K
a(A, M) (x:n’(]ﬂ ) op 1 ®4 .. ©4Y; @4y O ... 04 y/j’)

with k-grading and differential the total k-grading and total differential on the tensor
products of complexes. The second coordinate m(A, M) is a differential graded a(A, M )-
a(A, M)-bimodule, with left action

a(A, M) ®@m(A, M) (:U i QFY1 a4 ...Q4 yj) & <mj,k/ Qry'1®a...04 y,j/)

l

m(A, M) (xm(j+jl)(k+k’) QRQF Y1 ®A ... QAY; ®aY 1 ®a...04 y’j,)

and the right action is defined likewise. The k-grading and differential are defined
similarly as for a(A, M).

We can now define c,"(F, F): it is the algebra part of P¢ ¢ (F, F').
Ezample. To illustrate this construction, consider the case p = 2 and r = 2. There are

two simple modules denoted by 1 and 2, with corresponding idempotents e; and es. The
tilting module t9 of co admits the following decomposition as a left module:

19
toe] P toeg = 1(1) D 2% ,
12

where the superscript corresponds to the d-grading and the subscript to the j-grading.

Note that the way the right ce-action is defined ([MT13][Section 6.]) - so that ts is a

co-Co-bimodule - imposes that the first tilting module only basis element has j-degree 1.
We can now compute c3(F, F). Recall that to @, t2 = c5. Pictorially, we have:

13 ® ¢y 29 ® ¢y
21®t; @ 1)@t
1% ® co*

This algebra has four simple modules (i, ) for 1 < 4,7 < 2, which we write 2-adically.
We denote the corresponding idempotents by es where s € {1,2,3,4}. To sum things
up, we see in Figure (1| the decomposition of c%(F , F) into indecomposable left projective
modules.

The algebra describing the principal block of rational representations is isomorphic
to the homology of the algebra part of (the inverse limit of) Pzp,tp(Fv F). Let d, be

the extension algebra of the standard modules of c,, and u = (u, u 1) be the image of



Contents

C%(Fa F)el S C%(Fa F)eQ ©® C%(Fa F)e3 ©® C%(Fa F)€4 =

10 20 30 49
2! 3! 10 4! 10 30
1! 42 11 ¢ 3 ¢ 3! 20 o 19
32 2! 1! 1!
12 2!

Figure 1: Decomposition into indecomposable left projective modules of c% (F,F).

t, = (tp, t;l), where t,, is the tilting module of ¢, and t;l := Home, (t,, c,), under the dg
derived equivalence given in Proposition 25 of [MT13]. The algebra g mentioned above is
the result of a similar iteration using d;, and the homology of u,, instead of ¢, and t,, and
using an operator £ instead of P. The operator O has a similar definition as operator P:

or(E)* = P IMepsi
j:kl+k2:k

where I' = @M’kezlﬂijk is a Z-trigraded algebra and X = @j,keZEﬂ“ is a Z-bigraded algebra.
Informally, we glue the two algebras along the j-degree.

Denoting by w, an idempotent truncation of w with p? simple modules, Miemietz and
Turner prove the following in their paper:

Proposition. [MT13, Proposition 28.] We have

Wq = Mg 1= DFDg—qu( (Flz,271),

u)

where

— H means take homology;

— T4(u) := @u_1®dl ede @u®dl is a sum of tensor products of u~' when the

>0 >0
index is negative and of u when it is positive. Note that it is not an algebra as the

multiplication is not well-defined; however, its homology is an algebra.

In particular, w, can be identified with a subalgebra of d @ HTq (w)®97 1. After closer
analysis ([MT13l Lemma 29]), it turns out we only need a truncation of HTq4(u); we can
keep the non-positive powers of u and u itself, which we denote HTq4 (g)gl.

We are interested in p because it admits a much more explicit algebra structure.
Identifying w, and p, through that isomorphism of algebras, and since w, appears as a
subalgebra of d ® HTy4 (g)®q71, it is possible to express the basis elements of a basis of wy,

in terms of basis elements of a basis of HT4(u)=! which is indexed by a polytope in Z.

Overview

In this section, we wish to give the reader an overview of how all the different objects
introduced so far come into play and relate to each other. Keller’s duality is a homological
duality inducing a dg-derived equivalence.

In Figure [2, we can see that, starting from c, and the pair (t,,t, 1), we can either
apply the iterative construction, then Keller’s duality and take homology to obtain the
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Apply Keller’s duality (—)

~q.i.

d C

u! <—q.i' t!
form “tensor produc/tj’/ iterative construction
Tq (ESI / Pey(FF)
Apply homology H K(-)
HTa(u) KPL(F.E)
iterative construction Apply homology H -

Proposition 28
) [MTT3] -’
OFOy, () = Mg == Wq = HPpoKP¢(F, F)

Figure 2: Overview of the constructions in [MT13].

extension algebra w, we are interested in, or we can first apply Keller’s duality, then
take homology and finally apply another iterative construction to obtain pg, which is
isomorphic as algebras to w, by Proposition 28 in [MT13]. The fact that we can compute
homology once and for all and then do the iterative construction is the crucial contribution
from Miemietz and Turner.

Project and results

Our project aims at computing the A,.-algebra structure on the Yoneda extension algebra
of Weyl modules of the principal block of rational representations of G = GLQ(E); it
appears as a subalgebra of a tensor product of the form d ® HT4 (g)q_l.

First, we give a description of the quiver of w, for any p. Since the previous iteration
W,—1 appears as a subalgebra of w, in the form e;; ® wy_1 for 1 < s1 < p, where e, is
an idempotent of d, we only give the arrows for which the first constituent of the basis
element is not an idempotent of d. We call them the new arrows. Let p = 2. We have:

Theorem (Theorem [3.3.10). The new arrows for the quiver of wy are of the form
- £ ® (682 ® e;—&—l—sz) ®...® (€sq ® e;-ﬁ-l—sq);
— 2@ (e2®e1)®...Q (2@ er);

2@ (e2®e)®...Q(2Qe€1)®(ERe1) Qe ey, @...e if there exists 1 < i < s
such that l; =2 (s > 1);

—rR(ea®e)®...Q(e2®e1)®(e2®&) Ve Ve, @ ...e, if there exists 1 < i <r
such that l; =1 (r > 1).
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For p > 2, we have:

q
es;8es 41 ® ® (esl ® e;+175l)

=2

q

s, Tes;+1 @ (ep ® 61)®n & (esn,+2€ &® 66p+175n+2) & ® (es, ® e;+l—sz)

l=n+3

®g—1
€s1Tes,+1 ® (ep @ 1)

q
es €5, 41 ® (ep ®e1)®" @ (E®er) ® ® es,
1=34+n

q
esres 11 ® (ep ®e1)®" ® (e, ®E) ® ® €s,
1=34n

q
Kn
es1Tes;+1 P (ep®e1)”" @ (r®er) ®esy, , Wess,,, @ ® €s,
l=44+n

q
eses 11 ® (ep ®e1)®" @ (z®e1) ® eqwer ® ® es,
l=4+n

q
s, Tes, 41 ® (e @ e1)®" @ (z® e1) ® epwe, ®@ ® es;
l=4+n

q
®
eares, 11 ® (e ® 1) @ (ep @ ) ® ey, wesy ., @ Q) e
l=4+n

q
es,zes; 41 ® (ep @ €1)®" @ (ep ® 1) @ eqwer ® ® es,
l=44n

q
es, 25,41 @ (e ®€1)®" @ (¢, ®7) ® e, ® Q) e
l=4+n

q
s, rées; +2 ® ® es,
=2

q
2
€s; T €542 Q EsyWesy @ ® €s;
1=3

q
2
€5, T es 42 ® erwe; @ ® €s,
=3

q
2
€s; T es 42 @ epwep @ ® €s;
1=3

10

Theorem (Theorem [4.6.1). The new arrows for the quiver of w, are of the form

1<s1<p—1;

1S81§p717
Ogngq_27

1 <5442 <p—2;

1<s <p-1;

1S81§p717
Ogngq_&
A >3+n
s.t. s # 1

1<s1<p—1,
A>3+n
s.t. s1 # p;

1<s1<p-—-1,
0§”§Q_37
83+n7é17p;

1<s1<p—1,
A >44n
s.t.osp # 1

1<s1<p-—-1,
Oﬁnﬁq_47
A >44+n
s.t. s1 # p;

1S31 Spi]ﬂ
Oﬁnﬂq—?)a
83+n # 1,3

1<s1<p—1,
Ogngq_47
A >4+n
s.t.osp # 1

1<s1<p-1,
Oﬁnﬂq—‘la
A >4+n
s.t. s # p;

1<s1<p-2,
(s2,...,8¢) & 55

1§51 §P—27
2<s2<p—1;

1§51 gp_zv

>3 st s # 1

1§51 gp_27

3l >3 s.t. s # p;
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where 1 < s; < p (unless otherwise stated) and S :={(1,...,1),(p,...,p)}.

Second, we exhibit a peculiar Ay-structure on HTg(u™!) (note that we get rid of the
positive part u of HTq4(u)):

Proposition (Proposition|6.2.6)). Let p = 2. Under the assumption that for all2 < r < n,
the higher multiplication m, : HTq(u 1)®" — HTg(u™!) can be chosen to be identically

zero, there is a map fy : H']I‘d(u_l)®n — Tq(u™t) defined by:

fn( 1§m1 I 771 ®. ®€€"§m"l’ e7l7n) =

M In—1 m7+1+12(n,(J+1))7 -1 l; mj+ig(n_j)—1—1 lj—1 ma+izn—5—1
i=liz=1 fa(n—j)—1=1 ba(n—) =1 t2(n—(j-1))-1=1 f2(n—(i-1) =1 f2n—3=1izn—2=1
—_ k . . . . .
(_1)22;11(i2k71+1+(2 L )lnfke§1§m1+@2n73*1xl1712n72ele2x12n72*1§m2+22n75*1*12n73 o

x127i2n—4 i2n-4*1§7n3+i2n—7*1*i2n—5 o

€1€e2T
. 2l TR0 eq egx2m—i) TLgMit 1 Fi2(n— 41 -1 T T2y -1
» gmn,1+ll—1—23$ln,1—12€1€2x12—1§mn—11 xln 6717117

if i # €41 for all 1 < i < n—1, and zero otherwise. Moreover, it is a graded map
of k-degree 1 — n such that —m1 f, = ®,. In particular, the higher multiplication m,, :
HTq(u™1)®" — HTgq(u™t) can be chosen as identically zero.

The peculiarity of that A..-structure is that the components of the A..-morphism are
non-identically zero for any n, even though we can choose all the higher multiplication
maps (n > 3) to be zero. That result leads us to finding a particular subalgebra of wy.

Proposition (Proposition [6.3.1). Let p = 2. There is a large subalgebra of wy which is
formal. We denote it by w.

However, we know from some examples that there is a non-trivial A,.-structure on
w,, therefore that A,-structure must ”come from u”, in a sense that needs to be made
precise. The combinatorics to obtain Proposition [6.2.6] were not easy to grasp and we
doubt that the same approach could be used to reach the same result for greater p - even
trying to compute f3 in the case p = 3 is difficult.

Finally, we give a description of that formal subalgebra.

Proposition (Proposition [6.3.4). Let p = 2. Let v = v1 ® ... ® vy be an irreducible
monomial of the formal subalgebra wy. Then it is of the form

° esl®...®esq;

0 e, ®...0e5,_, ®;

0 ®...Q€e, TR (e2®e1)R...R (62 ®eq);

0 e, ®...0€e, RrR(20e1)®...0(2®e1)V(ERe) Ve, Ve, D...e,, s> 1;
0, ®... 065, TR (2®e1)R... R (e2Re1)R (208 Re, Rey, @...ep,, > 1.

Proposition (Proposition [6.3.7). Let p = 2. The algebra wq is not d-Koszul for any
d>2.

11
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Description of the Chapters

We now wish to give the reader an overview of the organisation of the present document.
In Chapter 1, we recall important theories underlying the work of Miemietz and Turner in
[MTT3] such as quasi-hereditary algebras, tilting theory and Ringel duality. We introduce
some key objects as examples. In Chapter 2, we give a more detailed account of [MT13]
to introduce the setup and notation for the project. In Chapter 3, we give the quiver
of the algebra w, for p = 2 and we do the same for p > 2 in Chapter 4. The methods
used for p > 2 may work for p = 2, but the treatment of case p = 2 exhibits some nice
properties of the combinatorics underlying the iterative construction of w,. In Chapter
5, we recall the necessary definitions and concepts for A,.-algebras and we extend some
well-known results to a multi-graded setting. Finally, we show in Chapter 6 the existence
of a formal subalgebra of w, in case p = 2 and we characterize it. An Appendix completes
the chapters by providing one lengthy computation needed for a proof.

12



Chapter 1

Quasi-hereditary algebras and
related theories

1.1 Quasi-hereditary algebras

Since the algebra ¢, mentioned in the introduction is quasi-hereditary, and that we consider
the extension algebra of some standard modules (the Weyl modules), it appears important
to introduce those concepts and theories. This part relies on [DR92], and missing proofs
were added whenever possible.

1.1.1 First definitions

Let F' be a field, and A be a finite-dimensional F-algebra. We denote by A-mod the
category of all (finite-dimensional left) A-modules. If © is a class of A-modules (closed
under isomorphisms), F(©) denotes the class of all A-modules M which have a ©-filtration,
i.e. a filtration M = My D My D ... D M;,—1 D M, = 0 such that all factors M;_1 /M,
1 <t < m, belong to ©.

Let E(A), A € A, be the simple A-modules (one from each isomorphism class) and we
assume that the index set A is endowed with a partial ordering.

If M € A-mod, we denote the Jordan-Holder multiplicity of E(X) in M by [M : E(\)].

For each A € A, let P()) be the projective cover of E(\) and Q()) be the injective hull
of E(A).

Definition 1.1.1. Denote by A(\) (or Aa(N), Ax(N)) the maximal factor module of P(\)
with composition factors of the form E(u) where p < A; these modules A()) are called
standard modules, and we obtain the set of standard modules A := {A(M)|X € A}.

Similarly,

Definition 1.1.2. Denote by V(\) (or Va(A), VA(A)) the maximal submodule of Q(A)
with composition factors of the form E(u) where p < A; these modules V() are called
costandard modules, and we obtain the set of costandard modules V := {V(A)|A € A}.

Let us point out that V(\) is the dual of a corresponding standard module. Let
D := Homp(—, F) be the duality with respect to the base field F.. Let A° be the opposite
algebra of A. We have:

D:A—mod — mod — A= A° — mod,

so we choose simple A°-modules E40(\) to be the image of the simple A-modules E4(\)
(note the use of the same index).
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Lemma 1.1.3. We have: V(X)) = DA 40(N).

In particular, any statement on standard modules yields a corresponding statement
for costandard modules.

Proof. This choice of simple A°-modules is made so that the A-action on the left coincides
with that on the left of E4()\). Let us compute V4(A). By definition, it fits in a short
exact sequence of the form:

0—=Vad) > Qa(N) = C —0,

where C' is the cokernel of the natural injection map. Applying the exact functor D to
this short exact sequence, we get:

0= D(C) = D(Qa(A) = D(Va(N) =0,

and D(QA(N)) = Pao(A) since D is an exact contravariant functor. The A-module V 4(A)
satisfies that its composition factors E4(u) are such that g < A\ and it is the maximal
submodule of Q4(\) with this property. Therefore, D(V 4(\)) satisfies the same prop-
erties about its composition factors D(E4(u)) = Ea0(p) and it is the maximal quotient
of Pao(\) with this property. By definition, D(V4(X)) = A4o(A). Since we consider
finitely generated modules over a finite dimensional F-algebra, these are in particular
finite-dimensional, hence applying D twice amounts to applying the identity functor, so
that we finally have:
Va(A) = DA g0 ().

O

Note that the only module M with Hom(A(\), M) = 0 for all A € A is the zero module:
for M # 0, let E(\) be a submodule, then Hom(A(X), M) # 0. Dually, the only module
M with Hom(M, V(X)) =0 for all A € A is the zero module.

Given a set x of A-modules, then for any A-module M, we denote by 7, M the trace
of x in M; it is the maximal submodule of M generated by x.

The standard modules may be characterized as follows:

Lemma 1.1.4. For any A-module M, and X € A the following assertions are equivalent:
(i) M= A(X);

(ii) top M = E(N), all composition factors of M are of the form E(u), with p < X\, and
Ext! (M, E(p)) =0 for all p < \;

(iti) M = P(N)/nipuuga PA)-
Proof.

(i) < (iii) Let M = P(A)/ngp(u)ugry P (A), and consider one of its composition factors E(u).
Then the composition P(u) — P(\) — M is non-zero, so that u < A. Now let
M = A()), and consider one of its composition factors E(u). Since A(A) is a
quotient of P()), there is a short exact sequence:

0— K(A) = P(A) = A(X) — 0.

We want to show that K(X) = nipuywgayP(A). Let v £ A, Then the compo-
sition P(v) — P(A) — A()) is zero since E(v) is not a composition factor of
A(A). So this map factors through K(A). This means n;pqy, £33 2(A) is a sub-
module of K(A), which is equivalent to saying that P(X)/nipq)w¢a P (A) surjects
onto A(A). By the first part of the proof, we know that all composition factors
E(n) of P(A)/ngpu)wgayP(A) satisty p < A, By maximality of A(X), we obtain
AX) = PN /npw)wgay P(A)-
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1.1. Quasi-hereditary algebras

(i),(iii) = (ii)

(il) = (i),(iii)

Assume M = A()). From the definition of A()), we know there is an epimorphism
P(\) — A(X). This yields an epimorphism top P(A\) — top A(M), i.e. E(A) —
top A(A), so top A(A) is either 0 or E(A). Since A(A) = P(A)/ngp(uugay PN,
top A(A) = E(X). The fact that all composition factors of M are of the form E(u)
with g < A comes from the definition of A(\). We have the following short exact
sequence:
0— K(A) — P(A) = AN =0,

where K(A) = nyp(.)ugry P (A), and since Ext(—, E(u)) (1 € A) is a cohomological

functor, we get the following long exact sequence:

0 — Hom(A(N), E(w)) — Hom(P(\), E()) — Hom(K(\), E(u))

Ext! (A(\), E(u)) — Ext! (P(\), E(u))

Since P()) is projective, Ext!(P(\), E(1)) = 0. We have two cases to consider;
assume first that 4 = A. Then, both Hom(A(\), E(r)) and Hom(P(\), E(u)) are
isomorphic to F, so that Hom(K (\), E(u)) is isomorphic to Ext'(A()), B(u)). As-
sume now that g < A. Then Hom(P(X), E(u)) = 0 since a homomorphism from P(\)
is only determined by the image of its top E()), hence must be zero according to
Schur’s Lemma. This means that Ext'(A(\), E(u)) and Hom(K(\), E(u)) are iso-
morphic. Hence, in both cases, we have that Ext!(A(\), E(u)) and Hom (K ()\), E(p))
are isomorphic. Recall that K(A) = ngp(u)u£x3 P (A) is generated by the images in
P(X) of all maps P(e) — P(X) for € £ X if E(e) is a composition factor of P(X). So
E(u) cannot be a composition factor of top K (), hence Hom (K (A), E(x)) must be
Z€ro.

Let M be an A-module such that top M = E()\), all composition factors of M are
of the form E(u), with u < X, and Ext'(M, E(u)) = 0 for all 4 < \. Since E()\)
is a composition factor of M, there is a map P(\) — M, which is necessarily an
epimorphism. So M is isomorphic to a quotient of P(\), say P(A)/K(X). K(\)
must contain all composition factors E(u) of P(X) such that g £ A, so K(\) D
NP ugayP(A). As a consequence, A(A) — M. We then have the following short
exact sequence:
0— K — AN 5 M —o.

Let < X. Apply Ext(—, E(p)) to this short exact sequence to obtain a long exact
sequence:

0 — Hom(M, E(u)) — Hom(A(A), E(1)) — Hom(K', B(y))

Ext! (M, E(u)) — Ext' (A\), E())

which yields the following short exact sequence since Ext!(M, E(u)) = 0 by hypoth-
esis:

0 — Hom(M, E(u1)) — Hom(A(N), E(u)) — Hom(K', E(11)) — 0.
We know that top A(\) = E(X\) = top M, so that

0 ifu#X

Hom(A(N), E(u)) = Hom(M, E(u)) = { Foifpe
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In either case, we obtain from the previous short exact sequence that for all u < A,
Hom(K', E(u1)) = 0. Since K’ is a submodule of A(\) and by definition of A()), we
also have Hom(K’, E(n)) = 0 for all g > A. Therefore Hom(K', E(u)) = 0 for all
€ A, namely K’ = 0.

O
Lemma 1.1.5. Let M be an A-module, and A\, u € A. Then
(a) Hom(A(N),M) # 0= [M : E(\)] #0;
(b) Hom(A(\), A()) #0 = A < g
(

(¢) Hom(A(N),V(p) #0= A= pu.
Proof. (a) Suppose [M : E(\)] =0, then Hom(P(\), M) =0. Let f: A(A) = M. Then

the composition P(\) 5 A(N) Iy M s zero, which yields f = 0, and as a result
Hom(A(N), M) = 0.

(b) Applying (a), we get that [A(p) : E(N)] # 0, which means E(\) is a composition
factor of A(u), so that by definition, A < p.

(c) Applying (a) again, Hom(A(X),V(u)) # 0 gives [V(u) : E(N)] # 0, and so A < p.
Applying the dual statement of (a), namely Hom(M, V(X)) # 0= [M : E(\)] # 0,

we obtain that pu < A.
O

The sets A and V depend in an essential way on the given partial ordering A. This
gives rise to the notion of equivalence of two posets A, A’ used as index sets for the simple
module: A and A’ are equivalent if the sets of standard modules indexed by A, resp. A’
coincide, and the sets of costandard modules indexed by A, resp. A’ coincide.

In general, the standard and costandard modules will change when refining the order-
ing. We then need to consider adapted orderings in order to avoid this situation.

Definition 1.1.6. A partial ordering A of the sets of simple A-modules {E(\)|A € A} is
said to be adapted provided that the following condition holds:

For every A-module M with top M = E(A;) and soc M = E(\2), with A\j, A2 € A
incomparable, there is some p > A1, A2 such that [M : E(u)] # 0.

Remark 1.1.7. This definition is just an ad-hoc definition in the sense that we choose u
to be greater than both A; and A2, when we could possibly choose it to be smaller than
both of them. It just makes more sense like this in the view of A being quasi-hereditary
(i.e. filtered by standard modules). Besides, suppose we could find a p such that p < A\
and A2 < pu, then combining both yields A2 < A1 , which is a contradiction since they are
incomparable by assumption.

For A adapted, we may always assume that we deal with a total ordering; in such a
case, we may replace A by the equivalent index set {1,...,n} with its natural ordering.
Then, Lemma rewrites:

Lemma 1.1.8. For any A-module M, and X € A, where A is adapted, the following
assertions are equivalent:

(1) M= AN);
(ii) top M = E()N), all composition factors of M are of the form E(u), with p < X, and
Ext! (M, E(p)) # 0 implies 1 > \;
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(iti) M = P(A) /e usxp P (A)-
As a consequence, we see:
Lemma 1.1.9. Assume A is adapted. Let M be an A-module, and A\, ju € A. Then
(a) Ext'(AN), M) # 0= [M : E(u)] # 0 for some p > \;
(b) Ext!(A(), A(l) £0 = A < p;
(¢) Ext!(A(\), V(u)) = 0.
Proof. See [DR92|[Lemma 1.3]. O

1.1.2 Schurian modules

Definition 1.1.10. A module is called Schurian if its endormorphism ring is a division
ring.

Ezample 1.1.11. By Schur’s Lemma, simple modules are Schurian.
Lemma 1.1.12. The following statements are equivalent, for any A € A:
(i) A(N) is a Schurian module;
(i) [AQA) : EQV] = 1;

(ii3) If M is an A-module with top and socle isomorphic to E(X), and [M : E(u)] # 0
only for u < \, then M = E(\);

()" [V(A) - EQA)] = 1;
(i)* V(X) is a Schurian module.
Proof.

(i) = (ii) Suppose A()) is a Schurian module, namely End g mod(A(A)) is a division ring and
suppose by contradiction that [A(X) : E(A\)] > 1 (it cannot be zero since top A(A) =
E())). This means there is at least another composition factor of the form E()\) in
A(X). We then have the following diagram:

where the first line is the usual sequence of epimorphisms, and ¢ : P(\) — A()\)
is the map obtained from sending the top of P()) to the other composition factor
E(X) of A(\). Since the kernel of 7 only contains composition factors E(u) with
w> A, pkerm) = 0, hence ¢ factors through m: there exists @ : A(A\) — A(A) such
that p o™ = . Composing ¢ with 7 yields the zero map since 7 o ¢ is zero. This
amounts to saying that ¢ is not invertible, which is a contradiction.

(ii) = (ili) Suppose [A(A) : E(A)] =1 and let M be an A-module with top and socle isomorphic
to E(\), and such that [M : E(u)] # 0 only for p < A. Since M — E()\), we
have P(A) — M. This means that M is isomorphic to a quotient of P(\) satisfying
topM = E(X) and [M : E(u)] # 0 only for p < A, but by definition, A(X) is the
largest such quotient of P(\). As a consequence, there is an epimorphism A(\) — M.
Hence, [M : E()\)] is necessarily 1, and as soc M = E()), this shows that M = E(\).
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(iii) = (i) Suppose by contradiction that dimp Endg _meq(A(N)) > 1. A(A) has simple top
E()), so our hypothesis yields that there is another composition factor E(\) of
A(X). We have the following composition:

rad P(A) = P(\) 5 A()N),

where r is the inclusion, and ¢ is the map from P(\) to A()\) obtained by sending the
top of P(A) to the composition factor E(\) of A(A) which is not in the top of A(\).
In particular, Im ¢ is a submodule of A(\) such that its top is E(\) and Im ¢ o r is
a submodule of Im ¢ which corresponds to rad Im ¢. We set M := A(X)/Imypor.
Note that all composition factors F(u) of M satisfy p < A, and that top M = E()\).
In addition, soc M = E()). According to (iii), M = E()\), which is a contradiction.

O]

1.1.3 Definition of a quasi-hereditary algebra

It is now possible to formulate the definition of a quasi-hereditary algebra.

Theorem 1.1.13. Assume that A is adapted, and that all standard modules are Schurian.
Then the following conditions are equivalent:

(i) F(A) contains o A;

(i) F(A) = {X|Ext!(X,V) = 0};
(iii) F(A) = {X|Ext'(X,V) =0 for alli > 1};
V) =

) =
) =
(iv) Ext?(A,
(iii)* F(V) = {Y|Ext{(A,Y) =0 for alli > 1};
(ii)* F(V) = {Y|Ext'(A,Y) = 0};
(i)* F(V)
Proof. See [DR92][Theorem 1]. O

contains D(A4).

We can now give the definition of a quasi-hereditary algebra:

Definition 1.1.14. An algebra A with an adapted partial ordering A, whose standard
modules are Schurian and such that the equivalent conditions of Theorem [1.1.13] are sat-
isfied is said to be quasi-hereditary.

1.1.4 Example: the algebra c,

Before going any further, let us consider c, again, which we will describe completely.
Consider the following quiver Q:

« (0% le% (% «
™ e N\
1 37 -1 p
~ ~ ~—— N— [
BB B B B



1.1. Quasi-hereditary algebras

Let F' be a field. We will consider the quotient of the path algebra over the quiver @
modulo the relations (a2, 32, af + Ba, afep):

cp = FQ/(a?, 8%, af + Ba, afley),
where e; is the constant path at the vertex indexed by 7. Those constant paths form a
P
family of orthogonal primitive idempotents, and ¢, admits the unit 1 := Z ex,-
A=1

Considering ¢, as a left module over itself, we see that it decomposes as

cpCp = Cpll Dcpes ... Dcpep,

and cpey consists in all paths in @) starting at A\. Being direct summands of a free module,
the cpey’s are projective c,-modules, which in addition are indecomposable as the ey’s are
primitive. We can display a basis for ¢,, with respect to the decomposition into projectives:

€1 €9 ep_l €p
c,Cp = e2ae1 © e1fes ezaer ©...D ey ofe, 1 epaey, 1 D oepo1fe, . (1.1)
e1Bae; eaaBes ep—108ep 1

We set A = {1,2,...,p — 1,p} with its natural order. We label the simple modules as
E()\) =< ey >, for all A € A and order them using the order on A. We will then very
often simplify notations (|1.1]) as follows:

1 2 p—1 p
,Cp= 2 & 1 3 D...H6 p—2 p & p—1.
1 2 p—1

As noticed earlier, the c,ey’s are indecomposable projective modules, and their tops are
E(X). We can check that P()\) := cpe) is the projective cover of E()), for A € A. So we
have, for 2 < A <p-—1:

1 A D
Pl)y=2,PN= A—-1 A1, Pp=p-—1.
1 A
According to Lemma we may obtain the set A of the standard modules of c,:
A =1, A0 =
Y )\ _ 1 )

where 2 < \ < p.

Using the duality introduced earlier, and considering ¢, := Hompg(cp, F'), the dual of
cp, we know that c,” can be seen as a left c,-module: Vz € ¢,,Vf € ¢,", - f := (m —
f(mz)) (which amounts to seeing c, as a right c,-module, i.e. as a left c¢,°-module). We
get the following decomposition into injective indecomposable right c,-modules:

(e1faer)” (e20Be2)" (ep-108ep-1)" (epaep—1)”
(elﬁeg)* b (62,363)* (620461)* b... (ep_lﬂep)* (ep_laep_g)* b 6;
el €5 €p1
(1.2)

As a consequence, we get the injective hulls of the simple modules since direct summands
of the dual of ¢, correspond to injective modules:

1
Q)= 2,0\ = A+1  A-1,Qp= »p ,
1
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where 2 < A < p— 1. And following the definition of a costandard module, we obtain the
set V of costandard modules:

A—1

where 2 < A < p.

1.2 Tilting theory and Ringel duality

1.2.1 Tilting theory

Let A be a finite-dimensional F-algebra with a labelling of the simple A-modules by some
adapted poset (A, <). We defined what standard and costandard A-modules are, and A
is quasi-hereditary if and only if standard modules are Schurian and 4A is filtered by
standard modules.

Tilting modules are A-modules filtered both by standard and costandard modules. We
have the following theorem which makes this statement more precise:

Theorem 1.2.1 (Theorem 2, [Koe02]). Let (A, <) be a quasi-hereditary algebra with set
A of isomorphism classes of simple modules. Then, for each A € A, there is a unique (up
to isomorphism) indecomposable module T'(X) which has both a filtration with subquotients
of the form A(u) (for p < X\ and A(N) itself occurring with multiplicity one) and another
filtration with subquotients of the form V(u) (for u < X\ and V() itself occurring with
multiplicity one).

Definition 1.2.2. We define the characteristic tilting module T of (A, <):

T=ETM.

AEA
It can be characterised as the minimal A-module T such that
add(T) = F(A)NF(V),

where add (M) is the full subcategory of A-mod consisting of direct summands of M" for
alln > 1.

This characteristic tilting module completely determines the full subcategories F(A)
and F(V) as shown by the next result.

Proposition 1.2.3 (Proposition 3.2, [DR92]). Let T be the characteristic tilting module
of a quasi-hereditary algebra A. Then

F(A) ={X € A-mod|Ext'(X,T) =0 for all i > 1},

and
F(V)={Y € A-mod|Ext(T,Y) =0 for all i > 1}.

1.2.2 Ringel duality
We define the Ringel dual of a quasi-hereditary algebra (A, <) as follows:

Definition 1.2.4. Let (A, <) be a quasi-hereditary algebra. Then denote by T its char-
acteristic tilting module. We define the Ringel dual (4’,>) of (4, <) by

A’ = Enda(47T).

20
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In [KKO13], Koenig, Kiilshammer and Ovsienko remark that Ringel duality accounts
for a central symmetry in the class of quasi-hereditary algebras. Indeed, we have the
following result

Theorem 1.2.5 (Theorem 6, [Rin91]). Consider the functor F' := Homa(T,—) : A —
mod — A" — mod. Then F sends costandard A-modules to standard A’-modules. In
particular, A" is quasi-hereditary with standard modules FV()\) but with the order on the
simples being reversed.

Remark 1.2.6 (Theorem 7, [Rin91]). Assuming A is basic, Ringel duality is a duality in
the class of quasi-hereditary algebras: (A’)’ = A, with the same ordering of the simple
modules.

21



Chapter 2

More about object of study

2.1 Preliminaries

Let F' be an algebraically closed field of characteristic p. Recall from the introduction the
following definition. The quasi-hereditary algebra c, is defined as the path algebra of the
following quiver:

a o oa
1,,\/23.. Cp
BB g

modulo the relations (o2, 8%, af + Ba, afey).
We denote by d its extension algebra; it is the path algebra of the following quiver:

X xT X
1T T
§ 3 §

modulo the relations (x€ — fx,fQ), where z is given djk-grading (—1,—1,1) and ¢ is
given djk-degree (0,1,0).

We write Hom 4 (—, —), resp. Hom_4(—, —), to mean morphisms of left A-modules,
resp. of right A-modules.

2.2 Two important bimodules

We define the two important d-d-bimodules u and u™" in this section. Let us introduce
some notation first. Let d° be the semisimple quotient of d modulo its radical and write
it d” = Fe; @ Fea®...® Fe,. We denote by o € Aut(d”) the automorphism of d® which
maps e; to e,1—;. Finally, for a jk-bigraded d-d-bimodule M, we denote by M (n) the
jk-bigraded d-d-bimodule M shifted by n in the j-degree.

Definition 2.2.1. Let u and u™! be the d-d-bimodules given by

u = d7®q d*(1);
ul = d°®qpd(-1).

Note that they inherit a jk-grading from d by taking the total j-grading and total k-
grading and then applying the shift in the j-degree.



2.2. Two important bimodules

More generally, for ¢ > 1, we can define

u_i = do ®d0 . ®d0 dg ®d0d<*l>

)

An alternative description of u™", using canonical isomorphisms, is as follows:

—1

u :u_1®d...®du_1.

)

Remark that if ¢ = 0, we obtain d. Similarly, for ¢ > 1, we can define

W=1u®qudy...Rqu,
7

and, again, if i = 0, u’ = d. Thus, it makes sense to define the following sum of tensor
products of u™! and u over d:

Tq(u) := EBu_i.
1EZ
However, we need some multiplication map to turn this vector space into an algebra: it
is not necessarily obvious how to multiply u with u™", or the other way round. We have the
following:

Claim: u™! 2 Homg_ (u,d) as d-d-bimodules.
Proof. We have:

Homg(u,d) Homg(d? ®g0 d*(1),d)

Homg(d? ®go0 d*,d)(—1)

Homgo(d*, Homq(d?,d))(—1)

Homgo (d*,7d)(—1)

Homgo (d*,d°) ®qo 7d(—1) (cf. Remark [2.2.2/1 below)
Homp(d*, F) ®qo °d(—1) (cf. Remark [2.2.212 below)
d ®qo 7d(—1)

—1

R IR MR IR I IE

o
@
h

u

O
Remark 2.2.2. 1. This is due to d* being a projective d’-module (d° is semisimple)

and the following result taken from [AF92]:

Proposition (Proposition 20.10.). Given modules sP, sUr and 7N there is a homo-
morphism, natural in P,U and N:

n: Homg (P,U) @7 N — Homg (P, (U @ N)),
defined via
n(y ®r n) : pr— y(p) @7 n.

If s P is finitely generated and projective, then 7 is an isomorphism.

2. Since d° is semisimple, there is an isomorphism: d° = Homp(do, F). We then have:

Homgo (d*,d°) Homgo (d*, Homp(d°, F))
HOmF(dO ®qo d*, F)
Homp(d*, F)

d.

1111
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2.3. Casep>2

In particular, there is a map u ® u~' — d which corresponds to the evaluation map
u®u !~ u®Homg_(u,d) — d.

However, u 2 Homg_(u~!,d). Indeed, we have

(oW
@
—n

Homg(u™!,d) Homg(d ®qo d{—1),d)
Homgo(d, Homg(d?,d))(1)
Homgo(d,?d)(1)

Homgo (d, d®) @40 7d(1)
HOIIlF(d, F) ®d0 gd<1>

d* ®q0 °d(1)

a.

[l 1111111 1l

That means we cannot find a similar map for u™! ® u — d. In particular, Tq(u) is
not an algebra.
Nonetheless, u, @t and u™! are differential graded bimodules with differential given by

§(a®b) = (1)l (az @ €b+ af @ xb),

where |alg is the k-degree of a, and they are jk-bigraded bimodules; they inherit their
gradings from that on d. In particular, the differential is of k-degree 1. We can extend
that differential to u’ for i € Z using the standard way of defining a differential on a tensor
product.

We can then take the homology of Tq(u), and we denote it by HTq4(u); we have

HTq(u) = ®iezH(u),

where H(u’) is the homology of u’.
It turns out that HTq(u) is an algebra in its own right as H(u) = (d°)° as d°-d’-
bimodules by Lemma 30 in [MT13], and thanks to the following lemma:

Lemma 2.2.3. As a d°-d°-bimodule, H(u) = (d°)°.

Proof. This follows from direct computation. The basis elements spanning the homology
of i are e @ epy1- for s=1,...,p. O]

That means that u and 1 have the same homology. In particular, we now have a
well-defined multiplication in homology via the induced maps in homology:

H(u) ® H(u™') = H(u) ® H(Homg_ (u,d)) = H(u) ® Homg_ (H(u),d) — d,

and
H(u™ ') @ H(u) H(u™ ') ® H(a)
H(u™') ® H(Homg_(u!,d))

= H(u')®Homg_(H(u™'),d) — d.

Despite this problem, all the main results in [MT13] remain true (cf. [MT13|, Corri-
gendum])

~
Y
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2.3. Casep>2

a% H(u)

d H(d) =d

M - do H(u™!)

M & d H(u=?)

M™ @ M — do H(u™3)
M & M & d H(u=?)

Figure 2.1: Decomposition of HTg(u)S! (p > 2)

2.3 Case p>2

2.3.1 Description of HT4(u)=' using polytopes

In this section, we collect a number of facts about the truncation HTg(u)S! of HTq(u)
which will be useful to prove later results. Let ¢ > 1. We denote HT4q(u) by T and we
will use both notations in the following.

The space YS! admits a polytopal basis, and the different polytopes involved in that
basis correspond to different parts of the homology of Tq(u)=! as shown on Figure (cf.
[MT13]).

The superscripts 7 and o indicate that there is a twist in the d-action on the right
on some components, and we refer to [MT13] for their precise definitions as well as those
of M and M. We note that there is a non-trivial extension of M by d%, which we have
indicated using an arrow in the diagram; we refer to Remark [2.3.3] below for more details.

Definition 2.3.1 (Lemma 51, [MT13]). Define

. 1<s<t< 0<jo+ky <1
o 4 = A 2 =~ Jo 0> .
Pd_{(s’”’ko’t)ez TS S o+ 2k, jO:O:k:oifs:t}’
, 1<s,t<p, s+t=p+1,
Pa={ izt | LE5SY P 0.0,

9

1<s,t<p, O§j0+k0+2§1,}

PM:{(Svj0>k07t)6Z4 | t—s—1+p:]0+2k0+2

PH =Pum \ {(pa Oa -1, 1)}

Ezample 2.3.2 (Example 52, [MT13]). The following is a diagram of the polytope for M
in case p = 3 (we depict its structure as a left module):

315" 319, 329, 32% 4 33%, 33%,
N Ve AN N 7 AN N 7 AN
21%, 21, 22, 222, 232, 233 ¢
AN Ve N N Ve N N Ve

~N
115, 112, 122, 123 ; 133, 13%5.

In the diagram an element (s, j, k,t) is written st?. Similarly a diagram of the polytope
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2.3. Casep>2

for d in case p = 3 is given by

113 229 339
/ AN / AN
129 121, 239 23,
N e ~
138 13%,.

Now to obtain the polytopal basis of HTq(u™!) (regardless of the polytope encoding
H(u) which we will define later on), we use two integers a,b > 0 such that the i-degree
satisfies ¢ = —a — b; they determine the coordinates of the component in Figure[2.1] where
a indicates the position on the northeast to southwest axis, and b that on the northwest
to southeast axis, with the origin placed at d on row H(d) = d (¢ = 0). There exists a
basis for T<" indexed by the subset

P<o = {(s,j0,k0,a,0,t) €Z% | (s,j0,k0,t) € Pg,a,b>0,a = b}

U {(S,jo,ko,a,b,t)EZG | (87j07k07t)€ @,a,bZO,azb—l
(Saj07k07t) 7£ (p —1,0,0, 2)}

U {(s,jo, ko,a,b,t) € Z° | (s,jo,ko,t) € Pypra,b>0,a=0b+ 1}
U {(s,jo, ko,a,b,t) € Z° | (s,j0,ko,t) = (p—1,0,0,2),a,b>0,a =b+1}

@] {(S,jg,k‘o,a,b,t) €Z6 | (S,jo,ko,t) EPM,a,bZO,a>b+1}.
The ijk-degree of such an element is given by the formulas
i = —a-—Ub;

jo—(a=b—1p+1 fora>b+1,
J = Jo for a = b,
jo+1 fora=0b0-1;

ko+(a—b—1)(p—1) fora>b+1,
ko for a < b.

Remark 2.3.3. In Corollary 39 in [MT13|, the generator e, ® e; = (p,—1,-1,0,1,0,1)
generates more than what is claimed. The element

ep—18ep @ er1éen

is generated by e, ® ey, hence its (a,b)-degree should be (1,0) and not (0,1). More
generally, the element

ep-1£ @ (E® ) @ Eey
is generated by e, ® (£ ® £)®® ® eq, hence its (a, b)-degree should be (b+1,b).
We define Py<o to be the corresponding set of elements (s,1,j, k,a,b,t) in Z". We
define Py<i1 to be Py<o U Py1, where Py1 := {(s,1,1,0,—1,0,p+1—s) € Z'|1 < s < p}
corresponds to H(u).

Note that the description of a polytopal basis for H(u) has been corrected because of
the following remark.

Remark 2.3.4. Due to the position of H(u) in the diagrammatic description of the pieces
of homology (cf. Figure [2.1)), we see that the elements of H(u) have (a, b)-degree (—1,0).
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2.3. Casep>2

That change makes sense as we would want the following multiplications to exist and to
be non-identically zero (for ¢ < 0):

H(u) ® H(u') — H(u"™),

and
H(u') @ H(u) — H(u).

Indeed, let us consider the i-degree of the resulting element:

) 11 + 12
i = —(a1+a)— (by+ by

) St = —(a1 ~|—a2) — (bl —|—bg).

We assume i1 = 1 (the case i2 = 1 is similar). With the (a,b) degree stated in [MT13], we
would obtain:
io + 1= —as — by = 12,

which is a contradiction. Hence the need to have either (a,b) = (—1,0) or (a,b) = (0, —1).
Since we want (e, ®e1)-(e1®e,) to be equal to e, and (e; ®e,,) - (e, ®e1) to be equal to

e1, it seems that (a,b) = (—1,0) is the most reasonable choice. In addition, it is coherent

with the position of d°’ in the diagram representing the homology of Tq(u)=?t.

This allows to describe explicitly the multiplication in T<!.

Theorem (Theorem 53, [MT13]). YS! has basis {mu}vep, o, with product given by

-/ -/ ’ X
(_1)a]0+b_70+ba M Zf vl = U, U7 = th u,/7 = VU7,V = U + u;
My My = fO'f’2§l§6 andvGPTg,
0 otherwise.

Remark 2.3.5. We call this product of YS! the concatenation product.

We now want to explain how wy, is constructed from T

Definition 2.3.6. We call chained elements the elements of (YS1)®9 which are of the
form (517 i17j17 kla a17 b17 tl) ® (827j17j27 k27 CLQ, b27 t2) ® e ® (Sqajq—17jqu k(p Clq, bQ7 tq)a le
the j-degree of the n-th component is the i-degree of the (n + 1)-th.

Recall from [MT13, Proposition 28.] that w, can be identified to a subalgebra of
d ® T and after identification, every basis element of W, is a chained element of the
form

(517 Oajly kla 07 Oatl) ® (SQajlan, k25 az, b2,t2) ®...Q8 (qujqujq’ k(paqv bq,tq)a

where each (s, in, jn, kn, Gn, bn, tn) is an element of H(uZ") with 4, <1 for all n. Hence,
to multiply two basis elements of w,, we just need to apply the concatenation product
component wise.

2.3.2 An alternative description of the polytopes

In a following paper ([BLM13]), the authors produce a more uniform combinatorial de-
scription of Py<1, which will prove useful later on. Let us introduce the following sets.
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2.3. Casep>2

Definition 2.3.7 (Definition 8. [BLM13]). We define sets S, S2, S3 by

( 1<s<p,a>b>0,1<t<p,
t—s>0ifa—b=0, i=—a—0b,
j=-pla—0b)—(t—s)+2uand

Sy =1 (s,i,5,k,a,b,t) €Z” : k=(p—-1)(a—b)+(t—s)—u

with v € {0, 1},

u=0ift—s=0anda—b=0,

t—s>2—pifu=1landa—0b=1

J{p—1,-20-1,1,0,b+1,b,2) : b>0};
1§5§p_27t:p+1_570207 .
b=a+1,i=-2a—-1,5j=1, k=0 |’
1§8§p)i:17j:17 k:07
a=-1,b=0,t=p+1—3s '

Sy = {(s,i,j,k,a,b,t) eZ’” -
S3 = {(s,i,j,k,a,b,t) eZ’ .

These three sets are disjoint ([BLMI3|[Proposition 9.]). Note that we implemented
some corrections to the original definition because of Remark and Remark
above. In addition, the added elements to S fit the combinatorial description for u = 2;
this is because the value of u counts the number of multiplications by the elements es€es 1
and the element

(p—1,-2b—1,1,0,b+1,b,2) = €)1 ® (£ @ £)®’ @ ey

is obtained from e, ® (£ ® §)®b ® e1 by multiplying twice by &, once on the left, and once
on the right.

That alternative description is very useful to characterize the kind of chained basis
elements we can have in w,. We define the type of a basis element below.

Definition 2.3.8 (Definition 10. [BLMI3]). We say that the g-tuple of vectors (v, va, ..., v4)
belongs to case (21,22, ...,1q) if vy € S;, with 2, € {1,2,3} for all g € {1,...,q}. If sev-
eral adjacent x, take the same value, we will also say that (vq,Va,...,v4) belongs to case
(xfl“:EZfH,...) to mean that xp, = xp,—1 = -+ = T2 = T1, Thythy = Thythy—1 =+ =

Thy+2 = Thy+1, €tc.

Denoting by B¥(m, £) a basis of the subspace Ext®(A,,, Ay) (see [BLMI3] for an explicit
definition), we can formulate the following lemma.

Lemma 2.3.9 (Lemma 11. [BLMI3]). A g-tuple of vectors (vi,va,...,v,) € B¥(m, ()
belongs either to case (19) or to case (1",2,397""1) or to case (1"397") for 1 < h < q—1.

We see that there is a restricted number of cases to consider for basis elements of wy.
Building upon Lemma 11 from [BLM13] we will call elements belonging to set .S; elements
of type l.

Remark 2.3.10. Note that for v € H']I‘d(g)gl, if v € S1, then its a- and b-degree a, and b,
satisfy a, — b, > 0; if v € Sy, then a, — b, = —1; finally, if v € S3, then a, — b, = —1. In

particular, for all v € HTq(u)S!, we have a, — b, > —1.

2.3.3 Polytopal and z, £ form

We would like to explain how to go from one description to the other as we will rely on it
later on; both forms are useful in different contexts. In Figure we see that HT g (u)=?
is made up of different pieces. We recall the following results from [MT13], which give the
generators of the different parts in homology:
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2.3. Casep>2

Theorem (Theorem 44, Lemma 45). 1. The generators of the d-d-bimodule M or M

are ,
Xfi =@ (RO @@ HETT I @e
> 4e,® (2P )T R (ER O ®e
€ H(u')
and

Vi—i =€ ®((E® 6% ® (xp71)®fi7272f ® 2P 2% ® e

s Lo, 0072 0 (7)Y 0 (0 g s e

€ H(u")

-2 | o

, and if i is odd, the parameter f satisfies 0 < f <

—i—3
2

Ifiiseven, 0 < f <

for xy _; and it satisfies 0 < f < foryr_;.

2. For i even, the elements elw%el (for 1 <1 < p) generate a factor isomorphic to d
in H(u"), where
qwe; ;=€ ({RERT-10ERE)e.
3. For i odd, the elements e; (§ ® 5)1; ept1-1 (for 1 <1 < p—1) generate the factor
isomorphic to d% in H(u").

Note that, for i < 0, since u* = d” ®q0 d? ®qo . . . ®go d (i), we need to apply a shift in
the j-degree to obtain the right degree.

Since x € d is the only element given non-zero k-degree, the number of x’s in the
element will give the right k-degree. Besides, since € d is given j-degree -1 and £ € d is
given j-degree 1, we see that the j-degree is given by |£| — |z| + ¢ if the element lives in
H(u"). For instance, for x;_;, we have:

k—deg =(-i1—1-2f)(p—1)
j—deg =(p—-1)(+1+2f)+2f+i

We also need to find a and b. We know that they should satisfy —a — b = i. Let us
rearrange the previous system:

k—deg =(p—1)(=i—2f)+(1-p)
j—deg =pli+2f)—(1—p)—i—2f+2f+1.

For the k-degree, we almost recognise the expression giving the k-degree in the set Si,
namely £ —deg = (p — 1)(a — b) + (t — s) — u. Indeed, we have:

—i—2f=a-b&sa+b-2f=a—-b&s f=0.

We can finally write:

s =D

i =—a-—>»

j =-pla—b)—(t—s)

ko ={@-1a=b)+(t-s)
a =—i—f

b =f

t =1.

Let (S,I,J,K,A B,T) be an element of HT4q(u)S*. Then, we have the following
dictionary.

29



2.3. Casep>2

e If A= B, then
(5,—2a, —(t — 8) + 2u,t — s —u,a,a,t) = eswesx’ 5 U ey

e If A= B +1, then

(s,-2b—1,—p—(t—s)+2u,(p—1)+ (t —s) —u,b+1,b,t)
= esa? T @ (@ O @ en’ e
= eaP%e, @ (E® §)®b ® ezt TITug e,

if w € {0,1}, and if u = 2, then we have
(p—1,-2b—1,1,0,b41,b,2) = e,_1£e, @ (£ @ £)®° @ e1€e;
o If A> B—+1, then

(Sv —a—b, _p(a - b) - (t - 8)7 (p - 1)(0’ - b) + (t - S),CL, bvt)
= esl'p_sep ® (.,L.p—l)@)a—b—l ® (f ® g)@b ® 61.’Et_16t

if u =0, and

(Sv_a_b>_p(a_b) - (t_ S) +27(p_ 1)(0,-()) + (t—S) - 17a7bat)
= ea? e, ® (P @ (@ )P R ern' e

eszP e, ® (P21 @ (£ ® €)%0 @ egat ey

estP e, @ 2P T2 @ (aPH)® 2 @ (@ 6)®P ® ezl ley

1R

ifu=1;
o If B=A+1, then
(s,—2a—1,1,0,a,a+ 1,p+1—35) =es({® f)a+1ep+1_s
if a >0, and
(s,1,1,0,—1,0,p+ 1 —s) :es®e;+1_s
if a =—1.

2.3.4 Multiplication in T=!

In this subsection, we want to understand the type of the product of two elements of T<!.
Note that we do not consider the sign obtained from multiplying two monomial basis
elements as seen in Theorem 53 in [MT13]. We have nine cases to consider. We denote
the product of an element of type n by and element of type m by n-m, and we will write
n-m =1 to mean that the product n - m is of type 1. We will write the different degrees
and parameters of the product obtained with capital letters, e.g. (S,I,J, K, A, B,T). We
assume that idempotents match, i.e. t{ = s9, as otherwise we obtain zero.

The structure of the nine cases is pretty straightforward:

1. we describe what the product looks like,
2. we try to discriminate some types,

3. for each remaining type, we assume the product is of that type and we see what that
implies for the factors.
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1-1 - We have:
(s1,—a1 — b1, —p(a1 — b1) — (t1 — s1) + 2u1, (p — 1)(@1 — b1) + (t1 — s1) — w1, a1,b1,t1)

(s2, —ag — b, —p(ag — ba) — (t2 — s2) + 2uz, (p — 1)(ag — ba) + (t2 — s2) — uz, az, b, t2)

= (81, —(a1 + a2) — (b1 -+ bg), —p((a1 + az) — (bl + bz)) — (tQ — 81) + 2(u1 + UQ),
(p — 1)(((11 + CLQ) — (bl + bQ)) -+ (tz — 81) — (U1 + UQ),CU + a9, b1 + bz,tz).

Since a; > by > 0 for [ = 1,2, we know a1 +ao > b1 +by > 0. In particular, that element
cannot be of type 2 nor 3. So it must be of type 1 or it is zero otherwise. For it to be of
type 1, we see that we only need to ensure uj +ug € {0,1}. This is equivalent to uj-ug = 0.

1-2 — We have:
(s1,—a1 — by, —p(a1 —b1) — (t1 — s1) + 2u1, (p — 1)(@1 — b1) + (t1 — s1) —ui, a1,b1,t1)

(s2,—2a2 —1,1,0,a2,a2 + 1,p+ 1 — s2)

= (s1,—ar — by —2az — 1,—p(ay — b1) — (t1 — 51) + 2u1 + 1,
(p— 1)(@1 — b1) + (t1 — 81) —ui,a1 +as,by +as+1,p+1 —tl),

where 1 < t; < p—1sincel < so < p—1and t; = so. We have a; + as > 0 since
a1, as > 0, therefore the product cannot be of type 3.

Let us assume that the product is of type 2. We need:

A>0 & a1+ax>0 v
B=A+1 & bi+ay+1l=a1+ay+1 S a1 =b
T=p+1—-8 & p+1l—ti=p+1-—3 & =581
J=1 & —p(al—bl)—(t1—51)+2u1+1:1 & up =0

K=0 < (p—l)(al—bl)—l—(tl—sl)—ul:O V.

So the type 1 factor must be of the form (s;, —2a1,0,0,a1,a1,s1) with 1 <s; <p—1 for
the product to be of type 2.
Let us now assume that the product is of type 1. We need:

A>B>0 & aj+ax>b+ax+1>0
J = —p(A—B)— (T —§)+2U
K=(p-1)A-B)+(T-58)-U

The first condition is equivalent to aq + ao > by +as +1 > 0, i.e. to a; — by > 1 since

a; > by > 0.
The two remaining conditions are equivalent to the following system:
{ —p(al—bl)—(t1—31)+2u1+1 = —p(A—B)—(T—S)—i—QU
=D —b)+(t1—s1))—wm = (p-HA-B)+(T'-5)-U
{ pal—bl (t1—s1)+2u1+1 = —plag—b1—1)—(p+1—1t1 —s1) +2U
p—1D@a—b)+(ti—s1)—u1 = p—D(ai—b—1)+@p+1—-ti—s)-U
-~
1+2u+1 = —(1-t)+2U0
{ tl—ul = 2—t1—U
4
U=wu and t; = 1.
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So the type 1 factor must be of the form
(s1,—a; — by, —plag —b1) — (1 — s1) — 2uq, (p— 1)(a1 — b1) + (1 — s1) — uy,a1,b1,1)
with a1 — b1 > 1 for the product to be of type 1.
1-3 — We have:
(s1,—a1 — b1, —p(ar — b1) — (t1 — s1) + 2u1, (p — 1)(a1 — b1) + (t1 — s1) — w1, a1, b1, 1)
(s2,1,1,0,—1,0,p+ 1 — s9)

= (81, —a1 — by +1, —p(a1 — bl) — (tl — 81) + 2up + 1,
(p — 1)((11 — bl) + (tl — 81) —Ur,a1 — 1,bl,p—i— 1-— tl).

Let us assume that the product is of type 3. We need:

A=-1 & a1 —-1=-1 & a1 =0
B=0 < b1:0

T:p—l—l—S &S p+Hl—ti=p+1—s &t =381

J=1 & —p(a1—bl)—(t1—31)+2u1+1:1 < up =0

K=0 < (p—l)(al—b1)+(t1—s1)—u1:O V.

So the type 1 factor must be of the form (s1,0,0,0,0,0, s7) for the product to be of type 3.

Let us now assume that the product is of type 2. We need:

AZO < a1—1>0 & ar>1
B=A+1 & b1:(a1—1)+1 & ap =by
T=p+1-5 & p+1—-—ti=p+1—35 &t =81
J=1 & —p(a1—bl)—(t1—31)+2u1+1:1 S up =0
K=0 < (p—1)(a1—b1)+(t1 —s1)—u1 =0 v

So the type 1 factor must be of the form (s1, —2a1,0,0,a1,a1,s1) with 1 <s; <p—1 and
a1 > 1 for the product to be of type 2.

Let us finally assume that the product is of type 1. We need:

A>B>0 & a1 —1>b;>0
K=p-1)A-B)+(T-S)-U

The first condition is equivalent to a3 — b1 > 1, since a; > by > 0.
The two remaining conditions are equivalent to the following system:

{—p(al—bl)—(t1—31)+2u1—l—1 —p(A—B)—(T—S)+2U
=D —b)+(ti—s1))—w = (p-A-B)+(T-5)-0U,

which is the same system as for the case 1 - 2 when assuming the product is of type 1. It
is therefore equivalent to
UZU1 andtlzl.

So the type 1 factor must be of the form

(s1,—a1 — b1, —plar —b1) — (1 —s1) — 2wy, (p— 1)(a1 — b1) + (1 — s1) — w1, a1,b1,1)
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with a; — b7 > 1 for the product to be of type 1.

2 -1 — We have:

(s1,—2a1 — 1,1,0,a1,a1 + 1,p+ 1 — s1)
(82, —ag — by, —p(ag — ba) — (t2 — s2) + 2ug, (p — 1)(az — ba) + (t2 — s2) — ug, az, ba, t2)

= (s1,—2a1 — 1 —ag — by, —p(az — b2) — (t2 — s2) + 2uz + 1,
(p—1)(ag — be) + (to — s2) — u2,a1 + ag,a; + 1 + ba, t3)

where 1 < s; <p—1land ss =p+1—3s; (so2 < sy <p). We have a; + a2 > 0 since
a1, as > 0, therefore the product cannot be of type 3.

Let us assume that the product is of type 2. We need:

A>0 & a1+a >0 v
B=A+1 & a1+1+by=0a1+as+1 S a9 = by
T=p+1-85 & to=p+1-—s] & 1o =589
J=1 & —p(ag—bQ)—(t2—82)—|—2’d2—|—1:1 S ug =0

K=0 < (p—1)(ag—b3)+ (ta —s2) —u2 =0 V.

So the type 1 factor must be of the form (s2, —2a2, 0,0, az, az, s2) with 2 < s9 < p for the
product to be of type 2.

Let us now assume that the product is of type 1. We need:

A>B>0 & aj+ax>a;+1+b0>0
J=—-p(A—B)—(T-8)+2U
K=p-1)(A-B)+(T-5S)-U

The first condition is equivalent to as — by > 1, since a; > 0 and as > by > 0. The two
remaining conditions are equivalent to the following system:

—plag — b)) — (ta — s2) + 2ug + 1
(p—1)(az —b2) + (t2 — s2) — us

—

—p(GQ — bg) — (tQ — 82) + 2ug + 1
(p—1)(az — b2) + (t2 — s2) —u2

=wu; and 51 = 1(= s2 =p).

= —p(A-B)—(T-S)+2U
= (p-DA-B)+(T-5-U

= —p(ag—bg—l)—(t2—51)+2U
= (p—l)(az—bg—l)-f—(tz—sl)—U

So4+2u1+1 = p+s1+2U
—S2 — U1 = —p+1—81—U
p+1l—s1+2u1+1 = p+s+2U
—p—14+s1—u = —p+1-s5-U

So the type 1 factor must be of the form
(p, —ag — ba, —p(ag — ba) — (t2 — p) — 2u1, (p — 1)(az — b2) + (t2 — p) — u1, a2, by, ta)

with a9 — by > 1 for the product to be of type 1.
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2 -2 — We have:
(81, —2a1 — 1, 1,0,&1,@1 + 1,p+ 1-— 81)

(s2,—2a2 — 1,1,0,a2,a2 + 1,p+ 1 — s9)

= (31,—2a1 —1—2a2—1,2,0,(11+a2,a1+1+a2+1,51)

as ss =p+1—51 = p+1—3s9 =51. We see that J = 2 in the product and there is no
such element in YS!, Hence multiplying two type 2 elements together yields zero.

2 -3 — We have:
(s1,—2a1 —1,1,0,a1,a1 + 1,p+ 1 —s1)

(525 ]-7 17 07 _]-a Oap + 1— 52)

- (517_2a172707a1_17a1+1)81)
as ss =p+1—51 = p+1—sy =51. Wesee that J = 2 in the product and there is no
such element in Y<!. Hence this product is zero.
3 -1 - We have:
(817 17 17 07 _17 07p +1- 81)

(s2, —ag — by, —p(ag — ba) — (ta — s2) + 2ug, (p — 1)(az — be) + (t2 — s2) — ug, ag, ba, ta)

= (s1,1—ags — by, 1 —plag — ba) — (t2 — s2) + 2u2,
(p - 1)(&2 - b2) + (t2 - 82) — U2, -1+ az, b27t2)

SO so=p+1—s1
Let us assume that the product is of type 3. We need:

A=-1 & as—1=-1 < ax =0
B=0 < b2:O

sz—i-l—s S to=p+1-—s5 & to =89

J=1 & —p(ag—bg)—(t2—82)+2U2+1:1 &S uz =0

K=0 <« (p—l)(ag—b2)+(t2—82)—UQ:() V.

So the type 1 factor must be of the form (s2,0,0,0,0,0, s2) for the product to be of type 3.

Let us now assume that the product is of type 2. We need:

( A>0 & a—1>0 <~ as >1
B=A+1 & bQZ(ag—l)-l-l o as = by
T=p+1—-8 & to=p+1—s1 = to = S9
1<S5<p—-1 & 1<s1<p—-1 & 2<s5<p
J=1 & *p(CLQ*bQ)*(tQ*SQ)jLQUQle:1 =4 us =0

. K=0 <« (p—l)(az—bg)—i-(tQ—SQ)—UQZO V.

So the type 1 factor must be of the form (s, —2a2,0,0,az,as,s2) with 2 < s9 < p and
ag > 1 for the product to be of type 2.
Let us finally assume that the product is of type 1. We need:

A>B>0 & ax—1>b>0
J=-p(A-B)— (T -8)+2U
K=p-1)(A-B)+(T-S)-U
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The first condition is equivalent to as — by > 1 since as > by > 0. The two remaining
conditions are equivalent to the following system:

{—p(ag—bg)—(tQ—SQ)—i-QUQ-i-l = —p(A—B)—(T—S)-l-QU
(p—1(azg —bg) +(t2—s2) —uz = (Pp-)A-B)+(T-95)-U
—p(CLQ — bg) — (tg — 82) +2us+1 = —p(a2 — by — 1) — (tz — 51) +2U
(p—l)(ag—b2>+(t2—82)—UQ = (p—l)(ag—bQ—l)-f—(tQ—Sl)—U
s +2ux+1 = p+s+2U
—so—up = —(p—1)—s51—-U

p+1—s1+2u+1 = p+s+2U
—p—1lt+s1—u = —(p—-1)—-—s1-U

= ug and s1 = 1(= s2 = p).
So the type 1 factor must be of the form
(p, —az — by, —p(az — ba) — (ta — p) — 2uz, (p — 1)(a2 — ba) + (ta — p) — u2, az, ba, t2)

with ag — by > 1 for the product to be of type 1.

3 -2 — We have:
(817 17 1707 _1107p+ 11— 81)

(s2,—2a2 —1,1,0,a2,a2 + 1,p+ 1 — s2)

= (s1,—2a2,2,0,a2 —1,a2 + 1, 51)

as ss =p+1—58 = p+1—sy =51. Wesee that J = 2 in the product and there is no
such element in Y<!. Hence this product is zero.

3 -3 — We have:
(517 ]-7 ]-707 _17O7p+ 1- 51)

(527 17 17 07 _1707p + 1-— 82)

- (817272707 _270731)

as sos =p+1—s1=p+1— 59 =351. We see that I = J = 2 in the product and there is
no such element in T<!. Hence this product is zero.
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2.4. Casep=2

1 2 3
a1 —b1 >1
1@{751_1
—-bh>1
1@{?1_11— 2 &
1= a1:b1
1 1 u-up=0 2 & a; >1
a; = by t1 = s1
t1 =51 1<s1<p-1
1<s1<p-—-1
3@{ a1 =b; =0
t1:81
— >
1@{&2 bg_l
S2 =D
2 ay = by 0 0
2 & to = S9
2<s<p
— >
1@{0,2 bz_l
S2 =D
as = by
CLQZl
3129 s 0 0
2<s2<p
3<:>{ a2:b2:0
tQZSQ

Figure 2.2: Summary of type multiplication for p > 2

2.4 Casep=2

Definition 2.4.1. Define

7)d = {(87j07k07t) € Z4 |

2.4.1 The polytopes for p =2

1<s<t<2,

t —s = jo+ 2ko,

36

0<jo+ko<1, .
jo=0=kifs=t [’

In [MT13], the authors explain that it is possible to use the same combinatorics for the
basis elements: the polytopal description is still valid, even though the module structure
of the homology of u™* (i > 1) is different. Indeed, Lemma 49 in [MT13] shows that
the homology of those bimodules is indecomposable, which means Figure is not really
relevant. However, in this subsection, we explain, through examples, how to recover a
polytopal description of the basis from Figure In particular, we will see how to get
rid of the integers a and b and write explicitly the extension of M by d.
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. 1<s5,t<2, s+t=3,
Pw):{(s,yo,ko,t)ez‘* | Lssts }\{(z,o,o,n};
Jjo=0=ko

. 1<s5,t<2, 0<7y k 2<1,
PM:{(SdoJfo,t)EZ‘l | =5t <Jothkot+2< };

t—s+1=jo+2ko+2
Prr =Pu \ {(2,0,-1,1)}.
From the definition, we easily see that the polytopes are the following sets of tuples.
Lemma 2.4.2. Pqa =1{(1,0,0,1),(2,0,0,2),(1,1,0,2),(1,-1,1,2)};

P ={(1,0,0,2)};

(1,-1,0,1),(1,-3,1,1), (2 ,2),(2,-3,1,2),(1,-2,1,2),
PM_{(L £,2,2),(2,-2,0,1),(2,0,~1,1) }

(1’ 1 O 1)’(1’ ’1’ )7( 1 0 2)7(27_371>2) 2a132
Par = { (1,—4,2,2),(2,-2,0,1) }

Ezample 2.4.3. The following is a diagram of the polytope for M in case p = 2 (we depict
its structure as a left module):

Similarly a diagram of the polytope for d in case p = 2 is given by

113 228
PN
129 121,

We see that it is as if we had cut the lowest row in the picture for p = 3 (cf. Example
2.3.2)) and replaced p = 3 by p = 2 (hence only two components).

We consider the following example to describe explicitly the extension of M by dO.
Note that dO is one-dimensional.
Ezample 2.4.4. H(u™1) is given by a copy M in position (a,b) = (1,0) and a copy d%¢
in position (a,b) = (0,1) for p > 2. However, for p = 2, d% is reduced to the element
e1€ ® €ea and it is generated by es ® eq, which means it corresponds to the non-trivial
extension of M by d%. Therefore, as left modules, the homology of u™" is given by

21°, 229, 22!,
/ ~ / ~ ~ ~
119, 1115 129 121, 122 ,.

The extension corresponds to multiplying es ® £e2 = 220_1 on the left by e;€es = 12(1) €
Pq to obtain €1 ® eq = 128.
In the next diagrams, an element (s, j, k, a, b, t) is written gst?.

Ezample 2.4.5. In Figure we see that H(u_4) decomposes in case p > 2 as

M & M ¢ d
(4,0) (3,1) (2,2)

with the corresponding positions (a,b) indicated underneath. We reverse the order in
which it is presented to obtain

d &« M & M
(2,2) (3,1) (4,0)
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2.4. Casep=2

and writing the structure as left modules, we see

d

2110 2990
11 22
2+40 2440
(2,2) AN
2120 2121,
M -1
(3.1) 321, 3210 3220 3221
’ AN e ~ ~N.g \\3 )
3119, 311t 3121, 3122,
M 4091—1 4 4 4
(4.0) 021, 2210 a220 d22!
’ AN e ~ ~Noq s
a119, a1ty o12t, 0122,

That means that, at this stage of the explanation, H(u™%)e; is given by

3215t 3219, 5215 821%,
~ - ~ ~ - ~
2119 3119, 311, a11°, a11t,
and H(u %)ey by
2229 3220, 3901, 622°, 622L 4
- - \2 ) ~ e ~ AN e ~
3123 2127, 3128, 3122, 8121, 8122 ,.

Applying the corrections to the j- and k-degree as prescribed in the case p > 2, we see
for instance that if (a,b) = (4,0), since a > b+ 1, we have

Note that we should have applied corrections on the j- and k-degrees in the previous
example, but for the clarity and progression of the argument, we omitted it. Removing

the indices a and b since we used them to correct the degrees appropriately, we see that
H(u %)e; is thus given by

212, 21%,

212, 213,
~ / ~ ~ // ~
113 111, 112, 1134 1144
and H(u_4)eg by
220 221, 222, 223 ¢ 22% ¢
N ~ ~ ~ ~ // ~
129 121, 122, 123 ; 124, 125 4.

It is now clear that we can glue the different pieces together: multiplying 21(11, 212_5,

221,, 223 ¢ on the left by the element 129 = e;fey, we see that we have the following
structures for H(u™*)e; and H(u *)e,

212, 21,
// ~ // ~

212 213,
119 11%,

// N s
112, 1134

~
114,
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2.4. Casep=2

229 221, 222, 223 ¢ 2244
/s AN 7 N 7 N 7 ~N 7 ~N
129 121, 1224 123 124, 125,.

Indeed, we have

129219 = e1fer - eaRERERER e
= e{RERERER e
= 11;

12?-212,5 = e -eaRLTRXTRER e
= efRzRrRER e
_ 2 .
- 11—47

129.221, = eifer-ea®@r®@ERED Eer
= efRIRERER Een
= 121—1;

12(1)-22316 = e - eRTRVTRxX®Eey
e1ERrRr xR Eeo

From this, we see there exists a basis for T=" indexed by the subset

Pco = {(s,0,4,k,t) €Z° | (8,4, k,t) € Pq,i € —2N}

U {(s,i,4.k,t) €Z° | (s,j—1,k,t) € Pg,i € —2N5o + 1}
U {(s,i g, k,t) €Z° | (s,j—1,k,t) € Pspi€ —2N—1}
. 5 . 1—i

U {(s,i,4,k,t) €Z° | i<—-2,a> 5
(5,7 +2a+i—1)—1,k— (2a+1i—1),t) € Py}

Recalling the explicit description of the different polytopes given in Lemma [2.4.2] we

can write

P<o

{(1,-2n,0,0,1), (2, -2n,0,0,2), (1, ~2n,1,0,2), (1, ~2n,~1,1,2) | neN}
{(1’_2n+1713072) | n€N>0}

{1, —2n— 1, 0 0 1),(1,—2n— 1,-2,1,1),(2,—2n — 1,0,0,2),
(2,—2n—1,-2,1, ), (1,-2n—1,-1,1,2), (1, —2n — 1, -3,2,2),
(2,-2n—-1,-1,0,1) | neN}

{(1,4,2 — 2(2a +1),2a +i — 1,1), (1,4, —2(2a + i), 2a + i, 1),
(2,4,2 —2(2a +1),2a +1i—1,2), (2,4, —2(2a + i), 2a + 1, 2),
(1,4,1 —2(2a +1i),2a +4,2), (1,4, —1 —2(2a +i),2a + i + 1, 2),
(2,4,1 = 2(2a+1),2a+i—1,1),(2,i,3 - 220+ i), 2a + i — 2,1)

1—
| i§—2,?<a§—i

We define Pr<1 to be P<g U Py1, where Py1 = {(s,1,1,0,3 — s) € 771 < s < 2}
corresponds to the homology of u.
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2.4. Casep=2

This enables us to write the multiplication map on T<! explicitly.

Theorem (Theorem 53, [MT13]). YS! has basis {mo}tvep o, with product given by

. / !/ /
my  if V1 = U1, Us = Uy, Us = Vs,V = U + Y
MyMy = for2 <1 <4 and v € Py<,
0 otherwise.

Remark 2.4.6. We call this product of Tt concatenation product.

We now want to explain how w, is constructed from TS

Definition 2.4.7. We call chained elements of (T§1)®q elements of the form (s1,11, j1, k1,t1)®
(52,41, J2, k2,t2) @ ... @ (Sqs Jg—1,Jq: kg, tq), i.e. the j-degree of the n-th component is the
i-degree of the (n + 1)-th.

Recall from [MT13, Proposition 28.] that w, is a subalgebra of d ® T®1~1 and every
basis element of wy is a chained element of the form

(Sl)o)jla klvtl) ® (527j17j25 k27t2) ®...® (Sqajq—lajqa kqvtq)a

where each (s, in, jn, kn, tn) is an element of H(u™). Thus, to multiply two basis elements
of wy, we just need to apply the concatenation product component wise.

2.4.2 Polytopal and z, ¢ form

Similarly as for the case p > 2, we explain how to translate elements in polytopal form to
a more explicit x and £ form. It is easier in this case since we do not need to consider the
a- and b-degree any longer.

Since x € d is the only element with non-zero k-degree, that degree corresponds to the
number of x’s. To obtain the j-degree, recall that x € d is given in j-degree -1 and £ € d
is given in j-degree 1. By definition of u™’, we need to apply a shift in the j-degree as
well, so that the j-degree of an element of i-degree i is [¢| — |z| + 1.

For instance, we have:

(17070707 1) = €1

(2705 7072) = €2

(1707 17072) - é.

(1707_17172) = .

More generally, we have:

(Li gk 1) = 2@ ge (j + 2k =0)
(2,i,5,k1) = e@a®* @ we (j42k=-1)
(1ijk,2) = 2 @edth (j+2k=1)
(27iaja k;’ 2) = e $®k & £®j+k_z (] + 2k = O)

2.4.3 Multiplication in T=!

Using the description of basis elements given by polytopes, we see that H(u_i) decomposes
as follows:

For both pictures, going left from the semi-simple top to the socle corresponds to
multiplying on the left by £ = (1,0,1,0,2) when going right corresponds to multiplying
on the left by x = (1,0,—1,1,2).

Elements of H(u™) can be of three types:

Type L. (s,—i,—2l,1,s), where s € {1,2}, 0 <[ < (circled in blue);
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(2,—i,—1,0,1) (2,—i,—3,1,1) (2,—i,—2i+1,i —1,1)

T e — ~—
o \ / \1, —i,—2i,4,1)

(1,-4,0,0,1) (1,—i,-2,1,1)

Figure 2.3: Structure of H(u %)e; as a d-module

Figure 2.4: Structure of H(u %)ey as a d-module

Type II. (2, —i,—20 + 1,1 —1,1), where 1 <1 < i (circled in green);
Type II. (1,—i,—20 — 1,1+ 1,2), where —1 <1 < (circled in red).
Remark 2.4.8. We can deduce the three types from the explicit description of P<( as
1—1
2

Set | = 2a + i and we are almost done: the range for [ must be corrected since elements
of the same type with different shifts of [ appear in the description, e.g. (2,4,1 — 2(2a +
i),2a+1—1,1) and (2,4,3 — 2(2a + i),2a + i — 2, 1), which we may rewrite

<a<— & 1<2a+1<—1.

(2,4, -2l + 1,1 —1,1),(2,4,—2(l— 1)+ 1,(I—1) — 1,1).
Let us multiply elements of different types together:

I xI: (317 _ila _2l17l17 81) X (827 _Z.Qa _2l27 l21 82) = (817 _(Zl +Z.2)7 _2(11 +l2)7 ll +l27 81) if
s1 = s2 (zero otherwise), where

0<lh <y

< <
0<ly < iy }:&O_l1+12_21+22,

which means type I elements multiplied with type I elements give type I elements.

I xII: (81, —i1, =211, 11, 81) X (2, —i9, —2lo4+1,15—1, 1) = (2, —(il —f—ig), —2(l1 +l2) +1, (ll +
lo) —1,1) if 51 = 2 (zero otherwise), where

0<h <1

< < .
1<y < i }:>1_11+12_21+22,

which means type I elements multiplied with type II elements give type II elements.

I xIII: (81, —i1, —2lq, 11, 81) X (1, —ig, —2lo—1,l0+1, 2) = (1, —(il —|—’i2), —2([1 —|—l2) —1, (ll +
l2) +1,2) if s; = 1 (zero otherwise), where

0< ll < 7:1 . .
. 1< <
—1§l2§22}2> <l + 1y <+ 19,
which means type I elements multiplied with type III elements give type III elements.

I x I: (2, —i1, =201 +1,11 — 1, 1) X (SQ, —ig, —2lo, o, 52) = (2, —(il —l—’L'Q), —2(l1 —|—l2) +1, (ll +
la) — 1,1) if s = 1 (zero otherwise), where

1<h <4y

< < .
0§12§i2 }:>1_l1+l2_21+22,

which means type II elements multiplied with type I elements give type II elements.
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I1I < II:

II < III:

IIT x I

11T x II:

IIT < III:

Multiplying type II elements together gives zero as idempotents do not match.

(2, =iy, =203 +1,1; —1,1) x (1, —ig, —2lo— 1,19 4+1,2) = (2, — (i1 +1i2), —2(11 +12), (I +
l2),2), where
1<h <4y

< < .
1<y <iy }:>0_l1+l2_11+12,

which means type II elements multiplied with type III elements give type I elements
with idempotent s; = 2.

(1, —i1, =201 — 1,11 +1,2) X (82, —i2, —2la, 12, 82) = (1, — (i1 +142), —2(l1 +12) — 1, (L1 +
la) +1,2) if s = 2 (zero otherwise), where

-1<h <4y

. —-1< <3 )
0< Iy < iy }i <l 41l <y +io,

which means type III elements multiplied with type I elements give type III elements.

(17 _7:17 _211 - 17 ll +17 2) X (27 _i27 _212_‘_17 l2 - 17 1) - (17 _(21 +i2)7 _2(11_'_12)7 (ll+
l2),1), where
-1<h <4y

< < .
1< 1y < i }:>0_11+l2_11+12,

which means type III elements multiplied with type II elements give type I elements
with idempotent s; = 1.

Multiplying type III elements together gives zero as idempotents do not match.

These calculations are summarised in Table [2.11

X I [II| III

I I [II| III
I |11 0| 1
1 | IIT | I

Table 2.1: Multiplication table of elements (by type) of HTq(u ')

Remark 2.4.9. We see from the computations that ms : H(u™)@H(u™"2) — H(u~ 1+72))
is surjective for any 1,42 > 0, and thus my : H H(u ™) @ H(u™2) — H(u™ %) is also

11+i2=13

surjective.
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Chapter 3

Quiver of w, for p =2

In this chapter, we give a description of the quiver of w, in the case p = 2. Let us first
understand how to decompose chained elements.

3.1 Decomposition of chained elements of HT4(u ')

Since the multiplication ms is surjective (cf. Remark|2.4.9), we can decompose any element
from HTq(u™') as follows.

Lemma 3.1.1. Let (s,i,j,k,t) € HTq(u™'). Let —1 > i > i. There exists an integer
i <0 such that (s,i,7,k,t) decomposes as the product

(s,i,,k,t) = (5,4, —20,1,5)(s,i,j + 2L,k — 1,¢), (*)
such that
1. (s,1, —2l,1, s) is a type I element;
2. (s,i,j+ 21,k —1,t) € HTg(u™b);
8 i=i+4+1,0<1<—i.

Proof. If we let i =i, then i = 0, and there is a trivial solution for the type I element,
namely (s,0,0,0,s), and (s,14,7,k,t) = (s,0,0,0,5s)(s, 1,7, k, t).

Let i <7 <0 (so that i = i — %) We want to show there exists a type I element such
that (E]) hold§, i.e. we need to show there exists i < 0 and 0 < l~§ —i. Note that the type
of (s,4,7 + 2,k — I,t) is the same as that of the element we start with, (s,i,j,k,t) (cf.

Table [2.1]).

Type I. Assume that (s, 4,4, k, t) is of type I, i.e. (s,4, ], k,t) = (8,4, —2l,1,t) with 0 <1 < —i.
Then (s, 1,5 +2l,k —1,t) = (s,4,=2(l = 1),1 = 1,t) is of type I too, therefore we have
0 <1l -1 < —i. Rearranging this inequality yields

I+i<1<l.

For (s,%, —QZN, l~, s) to be a type I element, [ must satisfy 0 < [ < —iwithi<0. Thus,
we obtain the following inequality

max{l +,0} <1 < min{l, -1},

and we must show the corresponding interval in the integers is not empty.
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(a) If max{l + 7,0} = [ + i and min{l, —i} = —i, then
—i—l—i=—1-i>0

since 0 <[ < —i;
(b) If max{l 44,0} = 0 and min{l, —i} = —i, then

—i—0=—-i>0

since such a type I element would satisfy 7 < 0;
(¢) If max{l 4,0} = [ 47 and min{l, —} = [, then

|—]—i=—i>0

since ¢ < 0;
(d) If max{l 41,0} = 0 and min{l, —i} = [, then
[—0=1>0
since 0 <[ < —i by assumption.
Type II. Assume that (s,i,7,k,t) is of type II, i.e. (s,i,7,k,t) = (2,4,—2l+ 1,1 —1,1) with
1 <1< —i. In particular, we need to assume that ¢ < —1 as type II elements only
occur then. Then (s,4,7 + 20,k —1,t) = (2,4, =2(l = 1) + 1,1 — 1 = 1,1) is of type II
too, therefore we have 1 <1 —1 < —i and ¢ < —1. Rearranging this inequality yields

[+i<I<l—1.

For (s, 1, —2l.1, s) to be a type I element, [ must satisfy 0 < [ < —i with i < 0. Thus,
we obtain the following inequality

max{l + 4,0} << min{l — 1, —i},
and we must show the corresponding interval in the integers is not empty.
(a) If max{l +14,0} =+ and min{l — 1, —i} = —i, then
—i—l—i=—1—i>0

since 1 <1< —i;
(b) If max{l 44,0} = 0 and min{l — 1, =} = —i, then

—i—0=—-7>0

since such a type I element would satisfy ¢ < 0;
(¢) If max{l 44,0} =1+ and min{l — 1, —;} = — 1, then

l—-1—-1—i=-1-71>0

since 1 < —1;

(d) If max{l 4,0} = 0 and min{l — 1, —i} =1 — 1, then
I-1-0=1-1>0

since 1 <[ < —i by assumption.

44



3.1. Decomposition of chained elements of HTq(u™")

Type II1. Assume that (s, i, j, k,t) is of type 111, i.e. (s,i,j,k,t) = (1,4, -2l — 1,1+ 1,2) with
—1 <1< —i. Then (s,4,j + 2L,k = 1,t) = (1,4, -2(l = 1) = 1,1 = I + 1,2) is of type
IIT too, therefore we have —1 <[ — [ < —i. Rearranging this inequality yields

[+i<I<l+1.

For (s, 1, —2l.1, s) to be a type I element, [ must satisfy 0 < [ < —i with i < 0. Thus,
we obtain the following inequality

max{l + 1,0} <[ < min{l + 1, —i},
and we must show the corresponding interval in the integers is not empty.
(a) If max{l +14,0} =144 and min{l + 1, -3} = —i, then
i —l—i=-1-i>0
since 0 <1 < —i;
(b) If max{l 47,0} = 0 and min{l + 1, =} = —i, then
—i—0=—i>0
since such a type I element would satisfy ¢ < 0;
(¢) If max{l 44,0} =1+ and min{l + 1, —i} = [ + 1, then
I+1-1—i=1-7>2>0
since 1 < -1
(d) If max{l 47,0} = 0 and min{l + 1, —i} = + 1, then
l+1-0=1412>0
since —1 <[ < —i by assumption.
O

Remark 3.1.2. This means in particular for any element (s, g, j, k,t) of H(u®), and for
any integer —ig > n > 0, we can choose an element of the same type (s,io+n,j + 2,k —
1,t) in H(u"™) such that (s,4o,7,%,t) decomposes as the product of a type I element
(s,—n,—2l,1,s) € H(u™") by that same type element we chose. We have one degree of
freedom in the choice of the i-degree for the decomposition.

Corollary 3.1.3. Let (s1,i1,71,k1,t1) ® (s2,71,J2,k2,t2) ® ... ® (SqsJg—1,Jq kq:tq) €
(HTd(u_l))®q be a chained element with components in HTq(u™'). Then there exists
a decomposition

(1,11, J1, k1, 11) ® (82, 71, 2, k2, t2) ® ... ® (Sq, Jig-1, Jg» Kqs tq)
= (51, i}, —2[1, l1, 51) & (52, —2lq, —2l2, lo, 82) R...&® (Sq, —2lq,1, —2lq, lq, Sq)
~(81,i1,j1 + 2[1, k‘l - ll,tl) X (82,j1 + 2l1,j2 + 2[2, k‘Q - lg,tg) R...
®Q(8q; Jg—1 + 2g—1, jg + 2lg, kg — lg, tq)

such that, for all 1 <n < g,
1. (Snyin, —2ln, Iy, sp) is a type I element;

2. (8pyins gn + 2ln, ki — Iny tn) € HTq(u™1);
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3.2. Action of H(u) on HTq(u™")

8 ip =1p +in, 0< 1, < —ip.

In addition, both (s1,11, —2l1,11,51)®...® (8¢, —=2lg—1,—2lg, 1y, s¢) and (s1, i1, j1+ 20, k1 —
lit) ® ... ® (8qy Jg—1 + 2lg—1,Jq + 2lg, kg — lg, tq) are chained elements with components
in HTq(u™t).

Proof. From Lemma we know that for every (sn,%n,jn + 20,k — Uy, ty), there is
a type I element (sy,in, —2lp,ln, Sn) such that their product (with the type I element
on the left to respect idempotents) yields (Sy, in, jn, kn, tn). In particular, we can choose
%n = jp_1+ 20,1 for n=2,...,q, and as a result =i, — i = —2l,,—1. That means the
chaining rule is preserved and both elements obtained are chained elements. O

Remark 3.1.4. The decomposition might be “trivial” in the sense that all the type I
elements on the left could be idempotents of d. We shall use that decomposition result
later on and the only thing we will need, to make sure the decomposition is not trivial, is
if at least one term in the left component is not an idempotent.

3.2 Action of H(u) on HT4(u™")

We now want to understand how the elements of u act on HTd(u_l). Let (s1,—11,71,101,t1) €
H(u "), 43 > 1 and let (s2,1,1,0,3 — s2) € H(u). We have three cases:

L (s1,—11,71,01,t1) = (81, —11, —2l1, 11, 51) is of type I. Then we have:

(81, =11, =2l1, 11, 81) X (82,1,1,0,3 — s2) = (81, — (i1 — 1), =201 + 1, 11,3 — s2)
if s1 = sa(zero otherwise)

(2,1,1,0,3 = s2) X (s1, =1, =201, 11, 1) = (82, — (i1 — 1), =201 + 1, 11,3 — s2)
if s1 = 3 — sa(zero otherwise)

In both cases, we obtain the expression (s2, —(i1 — 1), —2l; + 1,11,3 — s2), which we
can rewrite: (s2,—(iy —1),—2(l1 —1) —1,(l — 1) + 1,3 — s2). For that to be an
element of H(u~("~Y), since idempotents on the left and on the right are different,
it must be of type II or III. We see that 0 <[y <141, so that —1 <} —1 <14 — 1.
Therefore, it is an element of type III if so = 1 and zero otherwise.

IT. (s1,—%1,71,0,t1) = (2,—i1, =201 + 1,11 — 1, 1) is of type II. Then we have:

(2, —i1, =2l + 1,11 — 1, 1) X (82, 1,1,0,3 — 82) = (2, —(il — 1), =201+ 2,11 — 1,2)
if s9 = 1(zero otherwise);
(82, 1,1,0,3 — Sg) X (2, —i1, =2l + 1,11 — 1, 1) = (1, —(il — 1), =201+ 2,11 — 1, 1)
if s9 = 1(zero otherwise).

In both cases, we obtain an expression of the form (s1, —(i1 —1), =2(l1 —1),l1 — 1, 51)
and this clearly is an element of type I of H(u_(“_l)). We note that 1 < I < 41,
and so 0 <[y —1 <y — 1, which means that

ms ¢ esH(u " )e; ® erH(u)es — exH(u™)es,

and ' ‘
ma : eyH(u)es @ esH(u*)e; — elH(u*ZH)el

are surjective maps.
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3.3. Irreducible monomials

L. (s1,—i1,71,0,t1) = (1,—i1, =2l — 1,13 + 1,2) is of type III. Then we have:

(1, —il, —2l1 - 1,[1 + 1,2) X (SQ, 1, 1,0,3 - 82) = (1, —(il - 1), —2l1,ll + 1, 1)
if s9 = 2(zero otherwise);
(82, 1, 1,0,3 - 82) X (1, —il, —2l1 — 1,l1 + 1,2) = (2, —(il — 1), —2l1,ll + 1, 2)
if s9 = 2(zero otherwise).

In both cases, we obtain an expression of the form (s1, — (i1 — 1), —2l1,11 + 1, s1) and
this clearly should be an element of type I of H(u*(ilfl)) since idempotents on the
left and on the right agree. We note however that the j-degree and the k-degree of
that expression are not related appropriately, which means that this expression does
not correspond to any element of H(u_(“_l)) and the product is zero.

To summarise, we see that H(u) has a non trivial action on HT4q(u™!) only through
the element (1,1,1,0,2) = e; ® €3, and it sends type I elements to type III elements, and
it sends type Il elements on type I elements. We can see it pictorially in Figure (3.1

3.3 Irreducible monomials

Definition 3.3.1. A basis element of w, is called an irreducible monomial if it cannot be
written as a non-trivial product of two other basis elements of wy.

We denote by V; the set of irreducible monomials of w,. It is non-empty as it contains
the idempotents of w,, namely all the basis elements of the form

(51,0,0,0,51) ®...® (84,0,0,0,8,) = €5, @ ... D esg,.
Since wy is a subalgebra of d ® (HTgq (u))®?!, we know that the first component of
any basis element of w, is an element of d, i.e. it is either eq, es, & or .

3.3.1 Irreducible monomials starting with an idempotent of d

Lemma 3.3.2. Let a1 ®...®aq €V, Thenei®a1 ®...Qaq andea @ a1 ® ... aq are
irreducible monomials of Wq1.

Proof. Suppose €¢; ® a1 ® ... ® ag € Wgy1 is reducible, ie. ¢, ®a1 ®...®a; =by® ... ®
bg-co®...®cqg, with by ® ... Rbg,co® ... R cq € Wgp1. Since by, cp € d and e; = bocy, we
must have by = ¢y = e;. This shows b1 ® ... ® b, and ¢1 ® ... ® ¢4 are elements of w, as
both b1 and ¢y are in d, and their product is a1 ® ... ® aq. ]

Corollary 3.3.3. The set Vg1 contains two copies of Vg: {e1®A,ea@A|A € Vi} C Vg

3.3.2 Irreducible monomials starting with &
Lemma 3.3.4. Let a1 ® ... ® aq € Wy such that a1 =§. Then a1 ® ... ®aq € V.

Proof. Since a1 = ¢ = (1,0,1,0,2) has j-degree 1, as must be an element of H(u) =
{(1,1,1,0,2),(2,1,1,0,1)}. In either case, ay has j-degree 1. More generally, we see that
a; € H(u) for 2 <1 < g. No g; can be decomposed for 1 <[ < ¢, hence a;®...®aq € V,. O

Corollary 3.3.5. For 1 <[ < q, any basis element of the form
es; ®... Q€5 ®ER (65, ® e§_sl+1) ®...® (65, ® eg_sq)
is in Vg.

Proof. Use Lemma together with Lemma [3.3.4 0
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3.3. Irreducible monomials

3.3.3 Irreducible monomials starting with =

Lemma 3.3.6. Let a1 ®...®aq € Vy such that a1 = x. Suppose there is an index 19 > 1
such that a;, € d. Then a;, € {e1,ea}.

Proof. Suppose that a;, € {£,z}. Then we can write
N®..Qag=018...0a;,-1€] ®€3i0+1 X.. .®esq e .. -®6t¢0,1 Ry R j+1 X . .. R ay,

where eg,, resp. ey, is the left, resp. right, idempotent of a; = (s, ji, ki, ;). This
decomposition is not trivial since at least a;, is not an idempotent of d. ]

Lemma 3.3.7. Let a1 ® ... ® ag € Wy such that ay = x. Suppose there is an index | > 1
such that degy a; > 1. Then a1 ®...®aq ¢ Vy. In particular, irreducible monomials of wg
have total k-degree at most 1.

Proof. Writing a1®a2®. . .®aq = (1,0,—1,1,2)®(s2, —1, j2, k2, t2)®. . .®(Sq, Jq—1, Jq: kg, tq)s
we let [p =min{2<1<q | k>1}.

Case lp = 2. The element (s2,—1, j2, k2, t2) is such that ks > 1. We can choose it
among

(s,—1,-2,1,8) = z®ejorea®@c
(1,-1,-1,1,2) = z®¢
(1,-1,-3,2,2) = zQux
We can write those elements as follows

re = T-ea2®e

R = eaRer-x

TRE = T-ea®E

rTRxr = T -ea2QT

and note that e ® e = (2,—1,—1,0,1) and e ® x = (2,—1,—2,1,2) have negative j-
degree, i.e. the element agz following them has negative i-degree; ea ® £ = (2,—1,0,0,2)
has j-degree 0 so the element ag following must be chosen in d.

Let ng = min{lp <n <q | in = ju1 > 0}. Then a, € H(u ") (i, > 1) for all
lp=2<n<ng—1. Applying Corollary there exists a decomposition

a3®...®an0_1:bg®...®bn0_1-03®...®cn0_1,

such that we can choose the i-degree of b and c3 thanks to the decomposition of as so that
the chaining rule is respected. For a,, to be in d, resp. H(u), an,—1 must have j-degree
0, resp. 1. So it is one of

(Sng—1,ng—1,0,0,8p0-1) = §®_24"0*1 ®e1 or ey ® £¥7 "m0~
(1,4p9-1,1,0,2) = £®~ing-1+1

and we see that we can choose (Snp—15 tng—1+7ng—1,0,0, Spg—1) = £87Ino=1"Jno-1Qe; or ea®
£¥7mo—17Ino=1 for the type I element by, of the decomposition, and, depending on the j-
degree7 (Snofla _17 07 07 snofl) = 5@61 or €2®€ (jnofl = 1) or (L Oa 17 07 2) = 5 (jnofl = 0)
for the element c,,—1. Finally, we can decompose a1 ® a2 ® ... ® aq as

(17 07 _17 17 2) ® (327 _17j27 k2ﬂt2) ® e ® (3q7jq—1,jq7 kqatq)
= (1,0,0,0,1) ®(1,0,-1,1,2) @ b3 @ ... ® bpy—_2®
(Sno—la ino—l +jn0—17 07 07 S?’Lo—l) ® (snoa 07 07 07 STLQ) ® s ® (sqa 07 07 07 Sq)

(2, —-1,-1,0, 1)

(1,0,-1,1,2) ®< (2,-1,-2,1,1) ®ec3® ... QR Cpy—2®
(2, —1,0,0, 1)

(Sngfla _17 07 07 snofl)

(1,0,1,0,2) o+
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3.3. Irreducible monomials

if ao can be decomposed as x - ao, and as

(1,0,—1,1,2) @ (s3,—1, jo, ko, t2) ® - .. ® (Sq ja1 da» ks tq)
= (1,0,-1,1,2)® (2,-1,-1,0,1) @ b3 & . .. @ bpy_2®
(Sno—15 Ing—1 + Jno—150,0, 8ny—1) ® (Sng,0,0,0,5p,) ® ... ® (54,0,0,0, 54)
-(2,0,0,0,2)®(1,0,*1,1,2)®63®...®0n0,2®
{ (Sn0_17—1,0,0,8n0_1>

(1,0,1,0,2) o+

fags=eaRr=e3Re1-x.
Case [y > 2. This means that k; = 0 for all 1 < < ly. The elements az up to a;,—;
can be chosen among

(s, —i,0,0,8) = ¥ @e; or eg @ &S
(2,—i,—1,0,1) = @& 1xe
( 17170 2) — §®i+1

(50005) = ejorep

(1,0,1,0,2) = ¢
(5,1,1,0,3—5) = e1®e;0r ea® e

and this is an exhaustive list of k-degree 0 elements of HT4(u)S!. One must obviously

choose a, before choosing a1 to respect the construction of w, from HTgq (g)gl.

If at any point an element of j-degree 1 is chosen for an a,, ie. (1,—i,1,0,2),
(1,0,1,0,2) or (s,1,1,0,3 — s), the following elements must all be in H(u) as seen in
the proof of Lemma including a;,. This is a contradiction as elements of H(u) have
k-degree 0.

Our choice is thus narrowed to

(5,—1,0,0,5) = 2" @e; or ey ® X
(2,=6,-1,0,1) = 20 'oe
(5,0,0,0,s) = egorey

In particular, as is chosen among £ ® e1, eo ® £, and ea ® e1. If it is £ ® e1 or eg ® &,
since they both have j-degree 0, a3 is an element of d and thus either e; or es by Lemma
Inductively, since as has j-degree 0, we see that a, = (s,,0,0,0,s,) = e, for all
3 <n <lyand q, = x. We can then decompose a1 ® ... ® a4 as

(707 1,1 72)®(827*17j27k2at2)®"'®(SQ7jqfl7jq7kqatq)
= (1,0,0,0,1) ® (52,0,0,0,52) ® ... ® (81-1,0,0,0, s50-1) ® (1,0, —1,1,2)®
Alp+1 Q... aq
'(1,0, —-1,1, 2) Raz ¥ ...Qa;,-1& (2,0,0,0, 2) & (tl0+17070707tlo+1)®
® (t4,0,0,0, )

If a3 = ey ® ey, then a3 € H(u™!) and it has k-degree 0: a3 is either £ ® ey, e @ &,
and ey ® e1. Choosing £ ® e or eg ® £, we see that we can apply the same argument as
for ao = £ ® e1 or eo ® £. This extends to a, = &R ej or ea ®E for 2 < n < ly. The only
remaining case to study is that when a,, = ea ® e; for 2 < n < lp. That means g, is an
element of H(u™') with k-degree greater than or equal to one (by definition of ly). So ay,
is one of

(1,-1,-2,1,1) = z®e;
(2,-1,-2,1,2) = ex®ux
(1,-1,-1,1,2) = z2®¢

(1,-1,-3,2,2) = zQu

We see that using the same reasoning as for Iy = 2 yields a decomposition of a; ®...® aq.
O
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3.3. Irreducible monomials

Remark 3.3.8. This means that Ext*(A,A) is generated in Ext!(A,A) and Ext?(A, A)
elements. This is false for p > 2; in Section 3 of [MT13], the Ext!-quiver has a degree 2
arrow from the 8th simple to the 2nd.

Corollary 3.3.9. Let a1 ® ... ® aq be an irreducible monomial of wy such that a1 = x.
Then a1 @ ... ® aq has one of the following forms:

—r®(ea®e)®...Q (e2®eq);

TR (e2®e)®...Q(e2®e) ®(ERe) Ve, Ve, @ ...e, if there exists 1 <i<'s

such that l; =2 (s > 1);

—rR(ea®e)®...Q(e2®e)®(e2®&) Ve Ve, @...e, if there exists 1 < i <r

such that l; =1 (r > 1).

Proof. Since a; = x has j-degree -1, ag is in H(ufl). Besides by the previous Lemma,
it has k-degree 0, so it could be chosen among {es ® €1, @ e1,e2 ® £, ® £}. They have
j-degrees comprised between -1 and 1.

(i)

(i)

(iii)

If es ® e is chosen for as, then we have the same choices for ag as es ® e; has
j-degree -1. Inductively, we see that we can choose a, = es ® e; for 2 < n < g and
this element is indecomposable.

If £ ®e; or ea ® € is chosen for ag; the element a3 has j-degree 0, so is in d. By
Lemma a3 is an idempotent and so must be ay, ..., a, inductively.

In that case, the element obtained is irreducible if the "right” idempotents from d
follow. Consider
TR ((Re)Re; Qe @...e1.

This element is not irreducible because we have

e1RER (1 ®ey) ... R (61 ®es)
TR (e2®e1)R...0 (e2 ®eq)
= zR(ERe)Re1®er®...e1.

The only way for this instance not to happen is if we have at least some ey replacing
an ey in the tail of the element; this is because es can only be obtained from the
right multiplication of es ® e; by e; ® €5 and because of the position of £ in £ ® eq,
we are forced to have H(u) act on the left (cf. Section [3.2)).

For the same reason, we see that
$®(€2®f)®€2®62®...62

is not irreducible; we need at least some e; replacing an es.

Note that we could have chosen as to be es ® e1, and then have ag be either £ ® e;
or es ® &, and the same argument applies. Inductively, we see that we can choose
ez ® e for ag,...,ay for 2 <ly < g, and we choose £ ® e; or ea ® & for aj,4+1. This
element is irreducible if and only if the appropriate idempotent of d appears at least
once. Therefore, we must have lp + 1 < q.

Finally, if £ ® € is chosen for ag (or for any a;, 2 <1 < ¢ with all the preceding a,’s
equal to es ® e1), then we obtain a reducible element:

r®(ea®e)” ®(EDE) O (65, Q€3 _4)D... O (e, D €5_)
? * %
= e ®e ®f®?(651 ®e3 ) ®... 0 (e ®es_g)
T®(e20e)? @(2®E) ®ez_g, ©...Qez_g,.
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3.3. Irreducible monomials

Theorem 3.3.10. The new arrows for the quiver of wq are of the form
- é ® (682 ® e;+1732) ®...0 (eSq ® €;+1,Sq);
—1®(e2®e1)®...® (e2®@e1);

~ 2R (e2®e1)®...0(2®e1) R (ERe) Ve, Re, & ..., if there exists 1 <i < s
such that l; =2 (s > 1);

—rR(ea®e)®...0(2Qe1)R(2®&) Ve, Ve, . ..e, if there exists 1 < i <r
such that l; =1 (r > 1).

Proof. Use Corollary and Corollary [3.3.9] and the fact that the first component is
either x or &. O

Lemma 3.3.11. The set V, of irreducible monomials for wy has N4 elements, where

N, :=271(3¢ — 4) + 2¢ + 3.
Proof. From Corollary and the fact that irreducible monomials of w, start by either
e1,e2,£& or x, we know that

Val = 2Vg—1] + 1&4] + Ixql,

where &, is the set of irreducible monomials of w, starting with £ and x; is the set of
irreducible monomials of w, starting with .
By Corollary we know that v € &, if and only if

v=§Q (652 ® 6;—52) @...0 (esq ® 6§_sq)
with s; € {1,2} for all 2 <[ < ¢q. In particular,

&, = 2071,
By Corollary [3.3.9} we know that v € x, if and only if
lLLv=zr®(ea®e)®...0 (ea®e1);

2. v=20®(e2Re)®...Q(ea®e1)R(E®er) Ve, Ve, @ ... e, if there exists 1 <i <s
such that [; =2 (s > 1);

. v=1®(e2Re)®...0(e2®e1)R(2®E) Ve, Ve, ... e, if there exists 1 <i <r
such that I; =1 (r > 1).

We could rewrite the last two possibilities in the form

q
v=xQ (62 & 61)®n & Un+2 & ® €s;
l=n+3

where 0 < n < ¢ — 3, and the condition In +3 <[ < ¢ such that sy =i (i =1ori =2
depending on v, 12) is equivalent to In+ 3 < < ¢ such that s; # 3 — i, and finally we see
that it is equivalent to (sp43,...,8¢) # (3 —14,...,3 —1).

In particular, the first possibility provides one element and the last two possibilities
each provide the following number of elements:
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3.3. Irreducible monomials

q—3
d o1 =20 — g
n=0
Hence
xg| = 142(297" —q)

= 29-2¢+1.
We thus obtain
Vol = 2[Vg—1| + & + |x4]
= 2(2|Vg—a| + [€g—1] + [xg-1]) + [&q] + [%4]

= 277 Vi| + 272 (|€2| + [xal) + o+ 2(1€g-1] + xg-1]) + [€g] + x4l
q—2

= 2q_1|vl| + Z2n(|£qfn| + [Xg—nl)

n=0

and, substituting the expressions for |§,_,| and |x,—p|, we see

q—2
Vol = 2071 W+ ) 202 4207 —2(g —n) + 1)
n=0
q—2
— 2(1*1“/1‘ 4 Z(qul + 99 — q2n+1 + n2n+1 + 2n)
n=0 )
=1 _ - q—1 _
= 27HVi| + (¢ — 1271 +29) —2‘122— 11 +2 n2" 22— 11
q72n71
= 27|+ (¢ — 1T +27) — 27+ 2g+ Y m2"T 42071 — 1,
n=1
q—2

Now, to simplify this expression, we need a formula for the term Zn2"+1. Let a be a
n=1
formal variable. We know
n+1 1

n a _
Sar=

a—1
k=0

and deriving both sides of the equality with respect to a gives

n n n
1—a
b1 na .
k;zl “ a—1 (a—1)2

Setting a = 2, we obtain:

q—2 q—2

Zn2n+l - 92 ann—l

n=1 n=1
= 22 ((¢—2)272+1-27?)
= 29q-3)+4.

Finally, since |Vj| = 4, we get
Vol = 271+ (¢ = 1)(277" +29) — q27+ 29+ 27(g —3) + 4 +277' — 1
= 2071 (224 2(q—1—q+q—3)+(g—1+1)) +2¢+3

so that
Vgl =2771(3¢ — 4) + 2¢ + 3.
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3.4. The quiver of w,

3.4 The quiver of w,

For any index ¢ € Ny, we have an explicit description of the basis elements of w, as
g-tuples made up from elements of HTq(u)<!. These constituting elements are (3, 7, k)-
graded, and together with their idempotents on the left and on the right, that grading
completely determines them. Therefore, basis elements of w, are (i, j, k)?-graded and are
fully determined by that grading. We denote the simples of w, by their 2-adic expansion,

namely

q
(51,0,0,0,51) ®...® (54,0,0,0,54) Z(Sl — 1)21_1 + 57.
=2
Since w, is the extension algebra of the standard modules of an algebra of finite global
dimension, it is finite-dimensional. By definition of V;, we can write w, as the quotient of
a tensor algebra by some ideal, namely

w, = TRV, /T,

where the tensor product is taken over the semi-simple algebra B made up by the idem-
potents of w.

Now, Vj is a (finite) subset of monomial basis elements of w, which is a multiplicative
basis for w,. Since w, is multigraded, Z must be homogeneous with respect to that
(4,7, k)%-grading. Since an element z € V; is uniquely determined by its (¢, j, k)?-degree
(together with idempotents on the left and on the right), we obtain that Z cannot contain
any element of V: let v1 + ... + v, € Z, with v;’s words in elements of V;; then all v;’s
have the same (i, j, k)?-degree since Z is homogeneous. In particular, at most one v; is in
Vg This is a contradiction as we would obtain a linear relation between basis elements
of wy. Therefore, all v;’s are words in at least two elements of V,, i.e. T C V, ®p Vj.
In addition, since wy is finite-dimensional, there cannot be words in V; of infinite length.
Thus, there exists N > 2 such that

V:I®BNCICV;J®BV;1’

so that 7 is admissible.
We can therefore interpret V; as the quiver of w,. We see that the vertices are given
by the simples of w, and the set of arrows of the quiver corresponds to V.

Ezample 3.4.1. To illustrate that section, we give the quiver of w, for ¢ = 1,2,3. We
denote arrows of degree 1 with a decorated tail. From the proof of Lemma [3.3.11] we
know the number of new arrows starting with & or x:

&, = 2971 x| = 29-2¢+1
&l = 1 lz1| = 1
&2 = 2 lz2| = 1
&3] = 4 lzs| = 3

1. The quiver of wi = d is given in Figure |3.2

Figure 3.2: Quiver of w;
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3.4. The quiver of w,

Figure 3.3: Quiver of wo

2. The quiver of wy is given in Figure 3.3

The two copies of wy have been coloured in blue. The label of the arrows correspond
to the following elements of Va:

= e1®¢
= e1Qx
= (®(e2®e€])
r® (ea®eq)
= e®¢
= e
= (R (e1 ®e€3).

QA2 0 D=Ll 2
I

3. The quiver of wj is given in Figure
1< T

N

a1 ai c2 72

2 e—n—17
dy 61//}1 V)b;/}h d2
WIRENY
3e—m—6
NN
VL
4 55

Figure 3.4: Quiver of ws

The two copies of wo have been coloured in blue. The label of the arrows correspond
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3.4.

The quiver of wy,

to the following elements of Vi:

where ¢ € {1,2}.

a;
Q;

b;

&=

o3 TTE I >80

e;®e1®&

e, e Qx

e; ®E® (e2 ®e])

ei®x®(62®61)

e ®ex ®E

e, ey

ez®€®(61®€§)
® (e2®e€]) ®
®(e2®er) ®
® (2 ®e]) ®
®((@e1) ®er
®(2®&) ®er
®(e1®es)®
® (e1®e3) ®

o6

(e2 ®e7)
(e2 ®eq)
(e1®e€3)

(e2 ® e7)
(e1 ®e€3)



Chapter 4

Quiver of w, for p > 2

4.1 Introduction

We consider the basis elements of w, and would like to find the set V; of algebra generators
of w,. Those basis elements come under the form

V1 Q... Qv

We know from [BLM13, Lemma 11] that these elements come in three types, namely
19, 1" 397" or 17 2 39771 In the following section, we define the notion of irreducibility
for an element of HTq4(u) and we prove that type 3 elements are irreducible. That means
in particular that the g-tensor products we are interested in can only be split in the type
1 or type 2 part of the tensor product. Therefore we need to study tensor products of
type 197¢ 2° in more detail.

Due to the chaining rule, if v; is an idempotent of d, then vy is an element of d and
hence

Vg Q... Qg

is a basis element of w,_1. That means in particular that V, contains p copies of V,_1,
namely
€ ®Vg—1 C Vg

for all 1 <14 <p.
So by induction, we just need to determine the tensor products such that v; is not an
idempotent, i.e.

_ ny ¢€1
V1 = €sT 5 €s+niters

with1<s<p, 1<n;+e <p-—sande €{0,1}.

4.2 Irreducibility

In this section, we define what we mean for a monomial basis element of an algebra to be

irreducible. We then provide all the irreducible monomial basis elements of HTq(u)<!.

Definition 4.2.1. A monomial basis element of an algebra A is said to be irreducible if
it cannot be written as a non-trivial product. It is otherwise called reducible.

By non-trivial product we mean a product a-a’ where neither a nor a’ are idempotents
of A.

Remark 4.2.2. The irreducible monomial basis elements of an algebra are precisely a
minimal set of generators for that algebra.



4.2. TIrreducibility

Definition 4.2.3. Let B C A be a subspace of an algebra A. We say that a monomial
basis element is irreducible in B if it cannot be written as a non-trivial product of elements
in B.

In the rest of the section, we take A = HT4(u) and B = HTq(u)<St.
Lemma 4.2.4. The elements of HTq(u)=! of type 3 are irreducible.

Proof. According to Table 2.2] we can write a type 3 element as a product of the form
1-3 or 3-1. However, the conditions on the type 1 element involved show that it must
be an idempotent. Therefore, there aren’t any non-trivial products yielding a type 3
element. O

Let us now determine the irreducible elements of types 1 and 2, if they exist. Let us
consider type 2 elements first. Note that for any element of that type, the i-degree is less
or equal to —1 (i = —2a + 1 with a > 0). Let

v:=_(s,-2a—1,1,0,a,a+ 1,p+1—3)

with 1 < s < p — 2 be a type 2 element. Assume that its i-degree is less than —1, i.e.
a > 1. Then we can write

v=_(s,—2a,0,0,a,a,s)-(s,—1,1,0,0,1,p+ 1 — s),

and the element (s, —2a,0,0,a,a,s) a valid type 1 element of HTq(u)=! which is not an
idempotent since a > 1, so that v is not irreducible. Therefore, we know that if v is
irreducible, then a = 0 and its i-degree is —1. Let us then assume a = 0. From Table
we see that a type 2 element can be obtained as the products

(1-2)
(317 _2a17 07 07 ai,ai, 31)
(s2,—2a2 — 1,1,0,a2,a2 + 1,p+ 1 — s9)
= (s2,—2(a1 +az)—1,1,0,(a; + a2), (a1 +az) + L,p+ 1 — s9)
with a; > 0 and as > 0 so that a; +as > 0. Now, writing v in such a way is possible
if a1 = a9 = 0, and that decomposition is then trivial.

(81, —2a1 — 1, 1,0,&1,@1 + 1,p—|— 1-— 81)
(527 —2CL2, 07 07 az, az, 32)
= (s1,—2(a1 +a2) —1,1,0, (a1 + a2), (a1 +a2) + 1,p+ 1 — s1)
with a1 > 0 and as > 0. Similar to the previous case, we see a1 = as = 0, and the
decomposition is trivial.

(1-3)
(81, —20,1, 0, 0, ai,ai, 81)
(s2,1,1,0,—1,0,p 4+ 1 — s9)
= (s2,—2a1+1,1,0,a1 — 1,a1,p+ 1 — s2)
exists if a; > 1. Writing v in such a way means we must choose a; = 1, and this
product is non-trivial. Hence v is not irreducible.

(3-1)
(81, 1, 1, 0, —1, 0,]) +1-— 81)
(52, —2&2, 0, 0, as, ag, 52)
= (s1,—2a2+1,1,0,a2 — 1,a2,p+ 1 — s1)
exists if ap > 1. Writing v in such a way means we must choose a2 = 1, and this
product is non-trivial. Hence v is not irreducible.
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4.2. TIrreducibility

Remark 4.2.5. Since type 3 elements correspond to the H(u) part of homology, we
see from these considerations that type 2 elements of i-degree —1 are irreducible in
HTq(u™ ), but not in HTg(u)St.

Let us consider type 1 elements now. Let
vi=(s,—a—b,—pla—b)—(t—s)+2u,(p—1)(a—0)+ (t —s) —u,a,b,t)
be a type 1 element. Then we have the following non-trivial decomposition

(s,—2,0,0,1,1,s)
(s,—a—b+2,—pla—b)—(t—s)+2u,(p—1)(a—b)+(t —s) —u,a—1,b—1,t)
= (s,—a—b,—pla—b)—(t—s)+2u,(p—1)(a—0b)+ (t —s) —u,a,b,t)

into two type 1 elements, unless a =b=0,ora=1and b=0,ora=b=1 and s =t.
Let us analyse those three cases.

1. If a = b =0, then v is of the form
(s,0,—(t —s) +2u, (t —s) — u,0,0,t),

and by definition we must have t — s > 0, and if ¢ — s = 0, then u must be equal to
0. We can write it as the non-trivial product

(s,0,—1+2u,1—u,0,0,s+1)
(3+1707_(t_ (S+1))7(t_ (S+1))70707t)
= (s,0,—(t—s)+2u,(t—s)—u,0,0,t)

unless t—s < 1. Therefore, v = (s,0, —142u, 1—u,0,0,s+1) and v = (s,0,0,0,0,0, s)
are candidates for irreducibility.

2. If a =1 and b = 0, then v is of the form
(8,—1,—]?— (t_ S) +2u,(p— 1) + (t_ 8) —u,l,O,t),
and, assuming u € {0, 1}, we can write it as the non-trivial product

(s,0,—1+2u,1—u,0,0,s+1)
(8—|—1,—1,—p—(t— (3+1))a(p_1)+(t_(3+1))71707t)
= (5,—1,—p—(t—s)—|—2u,(p—1)+(t—s)—u,1,0,t)

unless s = p. Similarly, assuming v € {0,1}, we can write it as the non-trivial
product

(s,—1,—p—(t—=1)—3s),(p—1)+((t—1)—s),1,0,t — 1)
(t—1,0,—1 4 2u,1 — u,0,0, 1)
= (s,—1,-p—(t—98)+2u,(p—1)+ (t—s) —u,1,0,t)

unless ¢ = 1. Hence, v = (p,—1,—1,0,1,0,1) is a candidate for irreducibility. In
addition, if u = 2, so that v is necessarily of the form

(p - 17 _1a 17 07 17 07 2)7
we see that we can write it as the non-trivial product

(p - 1707 17070707p)
(p7 717 070’ 1’07 2)
- (p_17_17170717072)

which means it is not irreducible.
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4.2. TIrreducibility

3. If a=b=1 and s =t, then v is of the form
(87 _27 07 07 17 17 3)7
and it is another candidate for irreducibility.

So far, the possible irreducible elements of type 1 are

1. (5,0,0,0,0,0,s), for 1 < s < p;

2. (5,0,1,0,0,0,s+ 1), for 1 <s<p-—1;
3. (5,0,-1,1,0,0,s + 1), for 1 < s <p—1;
4. (p,-1,-1,0,1,0,1);

5. (s,—2,0,0,1,1,5s), for 1 < s < p;

since these are the only ones that don’t arise as products of type 1-1. Now we can analyse
which ones of those can be obtained by multiplying different types. According to Table
2:2] we see that type 1 elements can be obtained in five ways. We cover the four remaining
ones Now.

Let us write down a product 1 -2 of type 1.

(s1,—a1 — b1, —p(ar —b1) — (1 —s1) +2ur, (p— 1)(a1 — b1) + (1 — s1) — w1, a1,b1,1)
(17 —2@2 - 17 1,0,&270,2 + ]-7p)
= (s1,—(a1 +a2) — (b1 + a2 +1),—play —by) — (1 —s1) + 2uy + 1,
(p—1)(ar —b1) + (1 —s1) —u1,a1 + ag, by +az +1,p)

with a1 — by > 1. Since the b-degree is b1 + as + 1 > 1, only the last candidate could fit.
But since t = p, only one element could be decomposed like so, namely (p, —2,0,0, 1,1, p).
Indeed, we have
(p,—1,-1,0,1,0,1)
(1,-1,1,0,0,1,p)
= (p,—2,0,0,1,1,p).

Let us write down a product 2 -1 of type 1.

(1,—2a; — 1,1,0,a1,a1 + 1,p)
(p, —az — ba, —p(az — ba) — (ta — p) + 2uz, (p — 1)(az — ba) + (t2 — p) — ua, az, ba, ta)
= (1,—(a1 +a2) — (a1 + b2 + 1), —p(az — b2) — (t2 — p) + 2uz + 1,
(p —1)(a2 — b2) + (t2 — p) — u2,a1 + az, a1 + ba + 1,12)

with as — by > 1. Since the b-degree is a1 + b + 1 > 1, only the last candidate could fit.
But since s = 1, only one element could be decomposed like so, namely (1,-2,0,0,1,1,1).
Indeed, we have
(1,-1,1,0,0,1,p)
(p,—1,-1,0,1,0,1)
= (1,-2,0,0,1,1,1).

Let us write down a product 1 -3 of type 1.

(s1,—ar — by, —p(a1 — b1) — (1 —s1) +2uy, (p — 1)(ar — by) + (1 — s1) —uy,a1,b1,1)
(1,1,1,0,—1,0,p)
= (s1,—a1 —b1+1,—plar —b1) — (1 —s1) + 2ug + 1,
(p—1)(ar —b1) + (1 —s1) —u1,a1 — 1,b1,p)
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4.2. TIrreducibility

with a1 — by > 1. Since t = p, the following elements could be decomposed like so:
(p,0,0,0,0,0,p), (p—1,0,1,0,0,0,p), (p—1,0,—1,1,0,0,p) and (p, —2,0,0,1,1,p). Indeed,
we have
(p,—1,—-1,0,1,0,1)
(1,1,1,0,—1,0,p)
= (p,0,0,0,0,0,p);

(p - 17 _17 07 Oa 1707 1)
(17 17 17 07 _1a Oap)
= (p_l,()?_lvovo’o’p);

(p_ ]-7_1)_27171707 1)
(1,1,1,0,—1,0,]9)
= (p_ 1707_17]-707071?);

(pv _37 _1707 27 17 1)
(]—7 17 17 07 _17 Ovp)
= (p7 _2701())1)17]9)'

Let us write down a product 3 - 1 of type 1.

(1,1,1,0,—1,0,]))
(p, —az — bz, —p(az — b2) — (t2 — p) + 2ua, (p — 1)(az2 — b2) + (t2 — p) — uz, a2, ba, t2)
= (1, —ay — by + 1, —p(a2 — bg) — (tg —p) + 2us + 1,
(p—1)(az — b2) + (t2 — p) — uz, a2 — 1,ba,t2)

with ag — by > 1. Since s = 1, the following elements could be decomposed like so:
(1,0,0,0,0,0,1), (1,0,1,0,0,0,2), (1,0,—1,1,0,0,2) and (1,-2,0,0,1,1,1). Indeed, we
have
(1,1,1,0,—1,0,p)
(p,—1,—1, 0 ,0,1)
= (1707 070 9 7 )7

(1,1,1,0,—1,0,p)
(p,—1,0,0,1,0,2)
(

= 1010002)
1,1,1,0 ~1,0,p)
p,—1,-2,1,1,0,2)
1,0, 1,1,002)

1,110 ~1,0,p)
~1,0,2,1,1)
= (, 2,0,0,1,1,1).

(
X
-
(
(

Remark 4.2.6. As for type 2 elements, we see that some elements of type 1 are irreducible
in HTg(u™') but not in HT4(u)=!

We have proved the following:
Proposition 4.2.7. Let v be an irreducible monomial basis element for HTq(u)=St. Then
v is one of the following elements:
5,0,0,0,0,0,5) = e, for2 <s<p-—1;
$,0,1,0,0,0,s + 1) = es€esy1, for2<s<p-—2;
$,0,—1,1,0,0,s + 1) = esxesyy, for2<s<p-—2;
p, _17 _11 Oa 17 07 1) =€p & €1,

Type 1 —

~ A/~ o~
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4.3. Study of the j-degree for type 1 elements

- (5,—2,0,0,1,1,5) = eswes, for2 <s<p-—1;
Type 3 - (87171707_1507p+ 1 - S) = €s ®€;+1—37 fO’f' 1 S S Sp
and

Proposition 4.2.8. Let v be an irreducible monomial basis element for HTg(u™'). Then
v 1s one of the following elements:

Typel — (s,0,0,0,0,0,s) =es, for 1 < s <p;
- (5,0,1,0,0,0,s + 1) = es€est1, for 1 <s<p—1;
— (s,0, 1,1,005+ 1) =esxesyr, for 1 <s<p-—1;
- (p,—1,-1,0,1,0,1) = e, ®eq;
- (5,—2,0,0,1,1,s) = eswes, for2 <s<p-—1;
Type 2  — (s5,—1,1,0,0,1,p+1—5) =es{ @ Eepri—s, for 1 <s<p—2.

The following Corollary is merely an observation.

Corollary 4.2.9. Let v be an irreducible monomial of H’]Td(g)gl. Then its i-degree is in

the set {—2,—1,0,1}.

Remark 4.2.10. Comparing the two previous propositions, we see that the following ele-
ments are irreducible in HTg(u™') but not in HTq(u)>!

(1,0,0,0,0,0,1) = e;
(p,0,0,0,0,0,p) = €p

(17 07 17 07 05 07 2) = €1£€2
(p - 1707 170707 Oap) = ep—lé.ep

(1,0,—1,1,0,0,2) = ejxes
(p -1,0,-1, 17O>O,p) = €p—1T€p

In addition, the elements
(1,-2,0,0,1,1,1) = eqwey
(p7 _27 Oa Oa 17 17p) = epwep

are not irreducible in either HTq(u™!) or HTg4(u)<!

4.3 Study of the j-degree for type 1 elements

Because of the chaining rule making the j-degree of one element correspond to the i-degree
of the next element in the tensor product, it is necessary to understand what values the
j-degree of a given element of type 1 can be. Note that type 2 and type 3 elements have
j-degree 1, hence we just need to study the j-degree of type 1 elements.

The j-degree of a type 1 element is of the form —p(a —b) — (t — s) + 2u, so let us solve
the following equation for some parameter N,

—pla—0b) — (t—s) +2u= N.

Since 1 < s <p, 1 <t <p, we have that

l—-p<—(t—s)<p-1,
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4.3. Study of the j-degree for type 1 elements

and so
l-p—N+2u<—(t—s)—N+2u<p—1-—N + 2u,

l.e.

l-p—N+2u<pla—b) <p—1—N + 2u,
which we can further write

1-N-+2 —-1-N+2

#—1§a—b§1+#.
p

Since a > b > 0, we have a — b > 0 and is an integer; we denote it by n. We want to
determine the interval

[1—N+2u —1—N+2u

1;1+4 ——— ] NNxp
p p B

and since it has length 1+ —

1-N+2u (1—N+2u

2
— 1) = 2— —, it contains at most
p p p

2 integers, namely
1-N+2 —1-N+2
[—i_ v 1-‘ and {1 + —to e uJ .
p p

Going back to our original equation, we see:

t=s—pn+2u—N, (4.1)
1-N+2 —1—-N+2
where e {[ 12020y 1y ST
p p B

Lemma 4.3.1. The monomial basis elements of ]I-}I"]I“d(g)Sl of j-degree 1 are

(s1,—2a,—1,1,b,b,51 +1) = ez w’teq 41
(p—1,-20—1,1,0,b+1,0,2) = e, 1£® (EDE)E @ Eey
(s2,—2a—1,1,0,a,a+ 1,p+1—52) = e5({® §)®“+1ep+1_52
(s3,1,1,0,—1,0,p+ 1 — s3) €sy @ €pi1 g,

wz’thlfslgp*l:1§52§p*2;1§33§p*17%b20-

Proof. As said in the introduction, we know that type 2 and type 3 elements have j-degree
1, and they correspond to the last two possibilities in the list above.
Let us now set N =1 in equation (4.1). We see that

2 —24+2
nE{’Vu—l—‘ , \‘14-_‘_ uJ}ﬂN>0,
b b N

2
O>—u—1,
p

and

or equivalently p > 2u, which is always true since p > 3 > 2 > 2u;

2
is equivalent to u > 0. Hence, if u = 1, { — 1} =0, and if u = 0, [u — 1—‘ =[-1]=
p p

—1.
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4.3. Study of the j-degree for type 1 elements

In addition, we have

if and only if we have
2u > —p+ 2,

which is always true since p > 3, —p+2 < -1 < 0 < 2u, and

—2+4+2
114 22
p

is equivalent to

0>—-2+2u
and this is if and only if

2> 2u
—242 —242
which means that v = 0. Hence, if u = 0, {1 + MJ =0, and ifu =1, {1 + MJ =
p p

1] =1.
Therefore, we have n € {0,1}, and n =1 only if u = 1.
The corresponding elements of type 1 can be written

(s,=2b—n,1,n(p—1)+ (—pn+2u—1) —u,b+n,b,s —pn+2u — 1),
where u € {0,1} and n € {0,1}. Re-arranging the k-degree, we have
(s,—2b—n,1,—n—1+u,b+n,b,s —pn+2u—1).
If n = 0, the element becomes
(s,—2b,1,—1 4 u,b,b, s+ 2u — 1).

e If u =0, we have
(s,—2b,1,—1,b,b,s — 1),

which is not a valid element since by definition, if the a- and b-degree coincide, then
then the s- and t-degree must satisfy ¢t — s > 0.

e If u =1, we have
(s,—2b,1,0,b,b,s+ 1).

If n =1, in particular v = 1, the element becomes
(s,—2b—1,1,-1,b+1,b,s —p+1),

but since s —p+1—s=1—p < 2 — p, this is not a valid 1 element.

Finally, we need to recall that there is an additional type 1 element of j-degree 1, for
which the parameter v is equal to 2, and s = p — 1, ¢ = 2; this is due to the fact that
ep @ (£ ® €)% ® e generates more than what is announced in [MTT3] (e.g. see Corollary
39). That element is

(p—1,-2b—1,1,0,b+1,b,2).
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Lemma 4.3.2. The monomial basis elements of HTd(g)Sl of j-degree 0 are

(s,—2a,0,u,a,a,s +2u) = esw*(xf)"estou
(p—1,-2a—1,0,0,a+1,a,1) = e, 1€, ® (£ @ ey
(p,—2a—1,0,0,a+1,0,2) = e, ®(E®E)P* @ eréey

with uw € {0,1}, 1 <s<p—2u, a > 0.

Proof. Let us set N =0 in equation (4.1). We see that

{[14—%_1} , {1—%_1;—21LJ}ON>0:{0,U}.

p

The corresponding elements of type 1 can be written
(s,—2a —n,0,n(p—1)+2u —pn —u,a + n,a,s + 2u — pn),
where u € {0,1}, and n € {0, u}. Re-arranging the k-degree, we have
(s,—2a —n,0,u —n,a+n,a,s+ 2u— pn).

If n = 0, the element becomes

(s, —2a,0,u,a,a,s+ 2u).
If n =1 (so necessarily u = 1), we have

(s,—2a—1,0,0,a+ 1,a,s+ 2 — p),

and since 1 < s+ 2 —p < p, we see that s € {p — 1,p}, which gives the other two
possibilities. 0

Lemma 4.3.3. The monomial basis elements of ]H[Td(g)Sl of j-degree -1 are

(s1,—2a,—1,1,a,a,s1 + 1
(s2,—2a,—1,2,a,a,s2 + 3

) es,W'res, +1

)
(p,—2a—1,—-1,0,a+ 1,a,1)

)

)

€s W T Eegy 13

e (ERE™ Qe

= ®(EREQate
ep-1€ ® (E® &) ® zey
ep17 ® (£ @ €)% ® Ee)
(p—2,—2a—1,-1,1,a+1,a,1) = e, 226R(£{® %@ ey

(p,—2a—-1,-1,1,a+1,a,3
(p—1,-2a—-1,-1,1,a+1,a,2

°

withl1 <s1<p—1,1<s9<p—3,a>0.

Proof. Let us set N = —1 in equation (4.1)). We see that

242 2
neﬂ - “_1] | {1+UJ}QN>0,
p p -

and 242
1>
p
which is equivalent to
p—1>u.
That is always true since p > 3;
24 2u
-1>0
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4.3. Study of the j-degree for type 1 elements

is equivalent to
2u>p—2

which means in particular that « = 1 and p = 3. Furthermore, we have

24 2u
b

1>-1

or equivalently
2u > =2,
which is always true since u € {0, 1}.

2+2
That means that teu 1—‘ =0forallp>3andu € {0,1} unlessp=3and u =1,

in which case P +2u — 1—‘ =1.
b

Also,
2
2>1+ %>
p
is equivalent to
p>2u>0

2
and this is true for all p > 3 and u € {0,1}, hence {1 + uJ =1 for all p > 3 and
p

u e {0,1}.
Therefore, we have
n € {0,1}

for all p > 3 and u € {0,1}. In addition, n # 0 if p =3 and u = 1.
The corresponding elements of type 1 can be written

(s,—2a—n,—1l,n(p—1)+2u—pn+1—u,a+n,a,s+2u—pn+1),
where u € {0,1}, and n € {0, 1}. Re-arranging the k-degree, we have
(s,—2a—n,—1,1+u—n,a+n,a,s+2u—pn+1).
If n = 0, the element becomes
(s,—2a,—1,1+wu,a,a,s +2u+1).

e If u =0, we have
(s,—2a,—1,1,a,a,s+ 1).

e If u =1, we have
(s,—2a,—1,2,a,a,s + 3).

If n =1, we have
(s,—2a—1,-1,u,a+1,a,s+2u—p+1).

e If u =0, we have
(s,—2a—1,-1,0,a+1,a,5 —p+ 1),

and since 1 < s —p+ 1 < p, we see that s = p so that the element is

(p,—2a—1,-1,0,a+ 1,a,1);
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4.3. Study of the j-degree for type 1 elements

e If u =1, we have
(s,—2a—1,-1,1,a+1,a,5 —p+3),

and since 1 < s — p+ 3 < p, we see that s € {p,p — 1,p — 2} so that this case gives
the three elements
(p,—2a—1,-1,1,a+1,a,3);
(p—1,-2a—-1,-1,1,a+ 1,a,2);
(p—2,—2a—-1,-1,1,a+1,a,1).

O]

Remark 4.3.4. 1. Comparing the elements in Lemma [4.3.2] and those in Lemma [4.3.3
we see that the elements of the second lemma are obtained from the elements of the
first lemma by multiplication with = (s,0,—1,1,0,0,s 4+ 1);

2. We see that the conditions in the previous lemma do not make sense for all values of
p: some elements do not exist if p = 3, and this corresponds to the fact that n #£ 0
if p=3 and u =1 in the proof.

Lemma 4.3.5. The monomial basis elements of ]H[Td(g)Sl of j-degree -2 are

€Slwa$2€$1+2
= es2wa$3§es2+4
ep® (E® 6)%* ® zey
ep17® (ER 6% @ e
ep ® (E® &) @ a’Ley
ep-1€£ @ (£ ® €)% @ z’es
ep-12 ® (£ ® £)%* ® wles)
ep—21€ ® (£ ® &% @ wey
ep—2” ® (£ ® )% @ Ley)
ep—372 ® (E® )% @ ey
3Rl (E®)™ e (ifp=3)

(s1,—2a,-2,2,a,a,s1 +2)
(s2,—2a,—-2,3,a,a,s2 +4)
(p,—2a—1,-2,1,a+ 1,a,2)
)
)
)

(p—1,-2a—-1,-2,1,a+1,a,1
(p,—2a—1,-2,2,a+1,a,4
(p—1,-2a—-1,-2,2,a+1,a,3

°

(p—2,-2a—1,-2,2,a+1,a,2)

°

(p—3,-2a—1,-2,2,a+1,a,1)
(3,—2a —2,-2,1,a + 2,a,1)

withl1 <s1<p—2,1<s<p—4,a>0.

Proof. Let us set N = —2 in equation (4.1]). We see that

EHSJFZU_J 7 {1+1+2UJ}QN>O’
D D -

and

2
1> 3+2u 1
which is equivalent to

2p — 3 > 2u,
and that is always true since p > 3;

342
reu 1>0
p

or equivalently

p<3+2u

which means in particular that p = 3 and u = 1. In addition, we have

3+ 2u
p

1>-1
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4.3. Study of the j-degree for type 1 elements

which may be equivalently written
2u > =3.

That is always true since u € {0,1}.

3+2
That means that [ teu 1—‘ =0forallp>3andue€ {0,1} unless p =3 and u = 1,
p
2
in which case F) teu 1-‘ =1
p
Also,
142
2> 14>
is equivalent to
p>1+2u>0

and this is true for all p > 5 and uw € {0, 1}, and for p = 3 and u = 0, hence in that case,
1+2
{1+ + qul;ifp:?)andu:l,wehave

p
142
{1—1— * “J:{H?’J — 2.
P 3

n € {0,1}
for all p > 5 and u € {0,1}. In addition,

Therefore, we have

n € {0,1}

if p=3and u =0, and
n € {1,2}

ifp=3and u=1.
The corresponding elements of type 1 can be written

(s,—2a—n,-2,n(p—1)+2u—pn+2—u,a+n,a,s+2u—pn+2),
where u € {0,1}, and n € {0, 1,2}. Re-arranging the k-degree, we have
(s,—2a—n,—2,24u—n,a+n,a,s+ 2u—pn+2).
If n = 0, the element becomes
(s, —2a,—2,2 4+ u,a,a,s+ 2u + 2).
e If u =0, we have
(s,—2a,-2,2,a,a,s+ 2).
e If u =1, we have
(s,—2a,—-2,3,a,a,s+4).
If n =1, we have
(s,—2a—1,-2,14u,a+1,a,s+2u—p+2).

e If u =0, we have
(s5,—2a—1,-2,1,a+1,a,5 —p+2),

and since 1 < s —p+ 2 < p, we see that s € {p,p — 1} so that the corresponding

elements are
(p7 _2a - 17 _21 1,(1 + 1,@,2);
(p—1,-2a—-1,-2,1,a+1,a,1).
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4.4. Decomposition of chained elements of HTq(u)<!

e If u =1, we have
(5,—2a—1,-2,2,a+1,a,5 — p+4),

and since 1 < s —p+4 < p, we see that s € {p,p — 1,p — 2,p — 3} so that this case
gives the four elements
(p,—2a—1,-2,2,a+ 1,a,4);
(p—1,-2a—-1,-2,2,a+1,a,3);
(p—2,-2a—1,-2,2,a+1,a,2);
(p—3,-2a—1,-2,2,a+1,a,1).

If n =2 (for p =3 and u = 1), we have the element
(s,—2a—2,-2,1,a+2,a,s — 2),
which implies s = 3, namely

(3,—2a —2,-2,1,a+2,a,1).

4.4 Decomposition of chained elements of HTq(u)~!

In this section, we will exhibit a few key decompositions of chained elements of HTq(u)=!.

They will enable us to find a criterion to decide when a chained element is reducible and
it will be critical to describe the irreducible monomials of wy.

4.4.1 Decompositions using e¢; ®...®e_1QrEQ €11 @ ... Qe

Proposition 4.4.1. Let v1 ®...® v, be an element of wy. Let 2 <1 < q—1 be such that
vy 1s a type 1 element such that up = 1 and such that its k-degree is greater or equal to 1.
If s <p—2ort; >3, then v1 ®...R® vy s reducible.

Proof. Note that esz€esio corresponds to (s,0,0,1,0,0,s + 2). We have the following
decompositions

V1 Q...0U_- 180U QU441 Q...Q 7Y

= €5 ®...0¢5_, Qegrles 2 ®es,, B...Q €,
M RX...R00_1®
(5142, —ag — by, —p(ag — by) — (t; — s1) + 2wy,
(p—1)(ar —by) + (ty — s1) —wy — 1,a3,by, 1)
QU411 ® ... B Vq

= 11RX...0U1®
(st,—ar — by, —p(ag — by) — (4 — s1) + 2wy,
(p—D)(ar —by) + (t; = s1) —w — 1,05, b, 4 — 2)
®’UZ+1®...®U(I
ey, ... Qe | Qeyoxley Qey,, Q... R e,
if and only if the elements
(s14+2,—a; — by, —plag — by) — (t1 — s1) + 2wy, (p — 1)(ag — by) + (1 — s1) —w — 1,a5, by, 1),
resp.
(81, —ag — by, =plag — by) — (ty — s1) + 2wy, (p — 1) (g — by) + (t1 — s1) —wg — 1, a1, by, t; — 2),

are valid type 1 elements. The latter is true if and only if
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4.4. Decomposition of chained elements of HTq4(u)>

<1

. (p—1)(a;—by)+(t;—s;)—u;—1 > 0, which is equivalent to (p—1)(a;—b;)+(t;—s;)—u; >
1, and (p — 1)(a; — by) + (t; — 1) — w; is the k-degree of v; which is greater of equal

to 1 by assumption;

. and
{ —plag — b)) — (t; — s1) + 2wy
(p—1D)(ar—b) + (tr—s1) —w —1

resp.

{ —plag —by) — (t; — s1) + 2y
(p—1D)(ar — b))+ (tr —s1) —uy — 1

and both are equivalent to

2uy
—Uu; — 1

—p(al — bl) — (tl — (81 + 2)) + 2u;
(p— D(ar—by) + (tr = (51 +2)) —

—plag — b)) — ((t; — 2) — s1) + 2u)
(p— (@ — b)) + ((t1 = 2) = s1) — g

2+ 2u;
-2 — uj,

and, simplifying further, to

3. and
s51+2<p
which is if and only if
S1 < b — 27
resp.
tp—22>1
which is equivalent to
t, > 3.

Since | > 2, vy is left untouched and it is not an idempotent by assumption. Hence those
decompositions are non-trivial and v; ® ... ® v, is reducible. O

Proposition 4.4.2. Let v1 ®...®v, be an element of wy. Let v be such that u; =1 and
such that its k-degree is greater or equal to 2. Then v1 ® ... ® vg is reducible.

Proof. The proof uses the same decompositions as in the proof of the previous proposition.
We just need to show that these decompositions are non-trivial. Let us consider the factors

(81 + 2,0, —(tl — Sl) + 2uq, (tl — 81) — U — 1,0,0,t1),

and
(81,0, —(tl — 81) + 2uq, (tl — 81) —u; —1,0,0,t1 — 2).

Since the k-degree of vy is greater or equal to 2, i.e.
(t1 —s1) —u1 > 2,
we see that the k-degree of the factors satisfies
(t1 —s1) —u; —1>1>0,

hence they are not idempotents and the decompositions are non-trivial. Therefore, v; ®
... ®vq is reducible. O
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Remark 4.4.3. A consequence of these two propositions is that v1 ® ... ® v, is reducible if
we can factor x€ from any of its components v;, where 2 <[ < ¢, and if we can factor x¢
from v, where v has k-degree at least 2; hence we assume from here onwards that
it is not possible to factor x£ from vy, i.e. for all 2 <[ < ¢, v; is of the form

(87 —a—0b, _p(a - b) - (t - 8)7 (p - 1)(@ - b) + (t - 8)7a7 bvt)

=P 5 (xp—l)@)a—b—l ® (5 ® g)@b ® xt—l
(p_17_a_b7_p(a_b)_(t_p+1)+2’(p_1)(a_b)+(t_p+1)_17aabvt)
— é- ® (xp71)®a7b71 ® (f ® €)®b ® 'rtfl

(s,—a—b,—p(a—b)—(2—5)+2,(p—1)(a—b)—|—(2—8) _17a7b72)
= () e (e P ot

(p,—a—b,—pla—b)—(1—=p)+2,(p—1)(a—b)+ (1 —p)—La,b1)
=e®a? 2@ @ )PP e (€0 )P ®e

if a—b > 2, or of the form

((s,—2b—1,—p—(t—39),(p—1)+ (t —s),b+1,b,1)
=P R ()P @t
p—-1,-2b—-1,—p—(t—p+1)+2,(p—1)+(t—p+1)—1,b+1,b,t)
=¢@ ()P e
(s,-2b—1,-p—(2—-8)+2,(p—1)+(2—5)—1,b+1,b,2)
=" Q0P ¢

if a — b =1, or of the form

(5, —2a,—(t — s),(t — 5),a,a,t) = eswz' e
(s,—2a,1,0,a,a,s+ 1) = eswesyit

if a — b =0, or of the form
(5,—2a—1,1,0,a,a+1,p+1—35) = e5(£ ® £)®%pi1-s
ifa—b=—1,a > 0, or of the form
(5,1,1,0,~1,0,p+ 1 — 5) = e, @ ey y_,

ifa—b=-1,witha=-1,b=0.
In addition, vy is of the form

(5,0, —(t —8),t —5,0,0,t) = esx' ¢
(s,0,0,1,0,0,s + 2) = esx€esyo
(s,0,1,0,0,0,s + 1) = eslest1

where t — s > 0.

We can therefore rewrite Lemmas [£.3.2] [£.3.3] and [4.3.5] to only include elements which
do not yield these easy decompositions.

Lemma 4.4.4. The monomial basis elements of IHI’]I'GI(Q)Sl of j-degree 0 from which x€
cannot be non-trivially factored are

(81,0,0,1,0,0,81 +2)
(s2,—2a,0,0,a,a,s2)
(p—1,-2a—-1,0,0,a+1,a,1)
(p,—2a—1,0,0,a+1,a,2)

es, rées,

= egwles,

ep-18ep @ (E@ )P @ e
= 2 (ERH)% ®ertes

with1 <s1<p—2,1<s<p,a>0.
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Lemma 4.4.5. The monomial basis elements of HTd(g)Sl of j-degree -1 from which x&
cannot be non-trivially factored are

(s,—2a,—1,1,a,a,s + 1) eswresyq
(p,—2a—1,-1,0,a+1,0,1) = €, ()% e
—1,-2a—1,-1,1,a+1,a,2 ep—1£ ® (£ ® €)% @ peo
(p ) 9 s Ly s Wy §Y
ep—17 ® (£ ® £)®* ® Eea)

°

withl1 <s<p-1,a>0.

Lemma 4.4.6. The monomial basis elements of HTq(u)=! of j-degree -2 from which ¢
cannot be non-trivially factored are

(5,—2a,-2,2,a,a,5+2) = eswzieso
(p,—2a—1,-2,1,a+1,0,2) = ¢,® (£®E)% @ zey
(p—1,-2a—1,-2,1,a4+1,a,1) = e, 12Q (D)% Qe
(3,—2a—2,-2,1,a4+2,a,1) = e3Rz£@(ERE)®@e; (ifp=23)

with1 <s<p—2,a>0.

4.4.2 Decompositions using v; ® ... ® v, ® ('€, ® el R ®...® €q

Lemma 4.4.7. Let v = v1 ® ... ® vq be a monomial of wq. Let 1 <1 < q—1. Assume
that there are non-trivial decompositions

M. =Q..00 - "NQ...0U,
with the j-degree of U; being equal to -1, resp. the j-degree of ¥y, and
g1 = (E®er) Ty, (resp. Vi1 - (ep ®E)),
then v is reducible.

Proof. Since ?; has j-degree -1, resp. 7, we see that 0; ® (£ ® e1), resp. 0; ® (e, ® £) are
chained. Besides, {®e1, resp. e, ®¢ has j-degree 0, hence can be followed by idempotents.
We can therefore write the following non-trivial decomposition

V1 Q... QY
= 171®-.-®@z®(§®el)®esl+2...®esq
Q... QAU+ QU2 ® ... ® Uy

resp.
V1 Q... QY
= 01®..0U0QU4+1 ®U42® ...V,
CNR...OUR(pRE) ey, ... Ve,
Thus v is reducible. ]

4.4.3 Decomposition of elements such that a — b > 2

Lemma 4.4.8. Let v € HTq(u)S! such that its a- and b-degree satisfy a —b > 2. Then
for all 1 < m < p, there exists a decomposition
v= (s,—a—b,—pla—0b)—(t—s)+2u,(p—1)(a—0b)+ (t —s) —u,a,b,t)
= (s,—a—ﬁ,—p(a—ﬂ)—(m—s)—|—21/,(p—1)(0¢—6)—|—(m—3) —V,Oé,ﬁ,m)
- (m,—(a—a) = (b= p),—plla—a) = (b—p)) — (t —m)+2(u—v),
p-Dla—a)=(b=3))+({t-—m)—(u—v),a—ab=p1),

with a < a, 8 < b such that o > 3 > 0.
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Proof. Since a — b > 2, v is of the form
L@ ) e o) R,

where (L, R) € {(«~*,2'71), (€, 2"7Y), (aP7%,€)}, and we know there is at least a xF~!
component, or v is of the form

ep@aP @ (P )PP R ()P ®el,

and we know there is a 2P~2¢ component.
We decompose v along one #P~! component

L® (xp—l)@)a—b—l ® (§ ® §)®b ® R
= L@ @P )% P leEe6)®P eam !
PR (Scpfl)@(afa)f(bfﬁ)fl ® (g ® §)®b75 @R

in the first case, or along the zP~2¢ component

ep @aP 2@ (P P20 (@ )P @ e
= @@ ) @ (@) © eV
l,pfmf(lfu)glfu Q (xp71)®(afa)f(bfﬂ)fl ® (5 ® €)®b75 ® ey

in the second case. Writing these decompositions in the form (s,t,1, j, k, a, b, t) yields the
result. O

Proposition 4.4.9. Let v = 11 ®...®v, be a monomial of w, such that there is an index
2 <1 < q such that for alll <n < q the a- and b-degree of vy, satisfy an — by, > 2. We let
[ be minimal with that property. Then there exists a decomposition

VR...Q0U_1 QU1 Q... 014
= €,®..0€ , QTR QU1 ® ... R Uy
. U1®...®UZ,2®17[,1®1~)1®171+1®...®1~)q

or
V1.0 U 1 Q0UQUL1 Q... Q7Y

= 7)1®...®vl_2®f)l_1®’[)l®@l+1®...®f}q .
. etl®...®€tl_2®.’lﬁ®?~}l®’l~)l+1®...®1~)q

In particular, v is reducible.

Proof. Let us note that since a, — b, > 2 for all | < n < ¢, there exists a decomposition
Up = Up, - Un

for all | < n < ¢ by Lemma and more precisely there exists 1 < m,, < p for all
[ < n < ¢ such that the idempotent on the right of 0, is m, (fn = my,) and such that the
idempotent on the left of ¥, is m,, (5, = my).

Consider the following identities:

i=—a—-bsoa=—-i—bsa—b=—1i—2b,
and for all 1 < n < ¢, we have
Jn = —plan —byp) — (tn — Sp) + 2,
which we may rewrite

jn = _p(_in - an) - (tn - Sn) + 2un
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Now, if n > 1, we can replace i,, by j,_1 and we see
Jn = =P(—jn-1 = 2bn) — (tn — $n) + 2un,
hence, if n > 2,
gn = =P(=(=p(=Jn-2 = 2bp—1) = (tn—1 — Sn—1) + 2up—1) — 2bn) — (tn — sn) + 2un,
which we may rewrite

jn = _p(p(_jnf2 - anfl) + (tnfl - Snfl) — 2Up—1 — an) - (tn - Sn) + 2un
= _p2(_jn72 - anfl) - p(tnfl - Snfl) + 2pun71 + 2pbn - (tn - Sn) + 2u,
= ijn—2 + 2p2bn—1 + 2pbn - p(tn—l — Sp—1 — 2un—1) - (tn — Sn — 2un)

In particular, for 1 < n/ < n, we have

n n
gn o= P g — Z " (b — sp — 2uy) + 2 Z P,
r=n’+1 r=n’+1

If we let n’ = [ — 1, then, since there exists 1 < m, < p for all | < z < ¢ such that

~

t, = m, and §, = m,, we have
n
Jn = pn_H—ljlfl - an_r(tr — My + My — $p — 2up + 20y — 2Vr)
r=l

+2) p" by — B+ By)

r=l
n

n
PG =D T (e = me = 200) = Y P T (= 8 — 2(up — 1))
r=l r=l

42 p B 2 T (b - By)

r:l 7"=l

foralll —1<n <gq.
That means that the decomposition of each individual v,, = v, - ¥,, is compatible with
the chaining rule after index [ — 1, namely we have

Ul®...®’uq:f}l®...®f}q'f}l®...®’5q,

n n
where 0,, has j-degree — Zp"_r(tr —my)+2 Zp"_”lﬁr and v, has j-degree

r=l r=l
n

_ an_r(mr — Sy — 2Ur) + Qan—’/“Fl(bT - ﬁT)

r=l r=lI

Obviously, for this decomposition to propagate to the whole element, we at least need
to split v;_1 too so that it is compatible with that decomposition. By minimality of [, we
know that 1 > a;_1 — b;_1 > 0, i.e. it is of the form

(((s,—-2b—1,—p—(t—3s),(p—1)+ (t —s),b+1,b,1)
=P PR ()P Q!
(p—1,-2b— 1,1 —t,¢ — 1,b+1,b,t)
=t (EHP o
(s,—2b—1,s—p,p—s,b+1,b,t)
=" @ (RO e
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if aj_1 — bj_1 = 1, or of the form

(5, —2a,—(t —s),(t — 8),a,a,t) = eswzr' e
(s,—2a,1,0,a,a,s+ 1) = eswéest

if aj_1 — b;_1 = 0. Since a; — b; > 2 is equivalent to a; > b; + 2, we have in particular
Jiii=0 = —a—b < =2b —2< -2,
so v;_1 could be

(s,=2b—1,-p—(t—s),(p—1)+ (t—s),b+ 1,b,t)
=" @ ()P oa’,
(p—1,-2b— 1,1 —t,t — 1,b+1,b,t)

=(R(EHP o

(s,—2b—1,s —p,p—s,b+1,b,t)

( =" @ ()™ oL,

witht—s>2—p

with t > 3

with s <p —2

if aj—1 — bl—l = 1, or
(5, —2a,—(t — ), (t — 8),a,a,t) = eswx' *e;,  with t — s> 2

if aj_1 — bj_1 = 0. In particular, it is possible to factor one = from v;_1, either on the left
or on the right, which means we can write

n n
Jn = pn_H_l(*l +1 +jl—l) - an_r(tr — My — 21/1”) - an_r(mr — Sr — 2(UT - Vr))
r=I

r=I|
n n
+2) p B2 T b - )
. r=l r=l
= Jn+tJn
forall I —1 < n < g, where

n n
jn _ _pnflJrl - anfr(tr —m, — 2’/7") +9 anfr%lﬂr

r=l| r=I

n n
jn = pn_l+1<1 + .jlfl) - an_r(m'r - Sr — 2(u'r - V'r)) + Qan_r+1(br - Br)
r=I

r=I

or
n n
Jn = pn_l+1(1 + jl71> - an_r(t’r — My — 2VT) +2 an_T—Hﬂr
r=l r=l
n n
Jn = _pn—l+1 - an_r(mr — Sy — 2(“7’ - V'r)) + 2zpn_r+l<br - ﬂr)
r=Il r=l
Hence the result. ]
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4.4.4 Decomposition using 11 ®...QU_1 QWX e @ ... X e,

Lemma 4.4.10. Let v be an element of HTy4 (g)Sl such that its i-degree is greater or equal
to -2 and its j-degree is less or equal to -3. Then v is one of

( (s1-1,0,—n,n,0,0,5+n) =" n>3
(87_1a_p_(t_5)3 p—Ss t—1
= — > —
p—1+(t—s),1,0,t) e t-s=23-p
(p_17_17_t+17 t—1
= — >
t—1,1,0,1) fow t-1=23
(57—1,_]3"‘5; p—s
= — 85>
p_8717072) v ®€ P 3_3
(s,—2,—n,n,1,1,s+n) = e;wz” n>3

(87 _27 _2p - (t - S)v __ ,.p—S p—1 t—1
Ap—1)+(t—s)2,00) O T T
(p_17_2u _P—t+17 _ p—1 t—1
pHt—2,20,1) =fea o
(57 _25 _2p + S,

— p—S p—1
2 —s—1,2,0,2) e ee el

\ (p7_27_p+17p_27270’1) :€p®$p_2§®€1 p>3
Proof. Let v € HTg(u)=! such that its i-degree i, is greater or equal to -2.

e If i, =1, then j, = 1 and no element of i-degree less or equal to -3 could follow.

e If 4, =0, then
v=1(50,—(t —s)+2u,t —s—u,0,0,t)
and by Remark u must be equal to 0. It has j-degree less or equal to -3 if and
only if —(t —s) < =3, i.e. if and only if ¢ > s+ 3, hence the description.

e If i, = —1 and v is of type 2, then j, = 1 and no element of i-degree less or equal
to -3 could follow.

e If i, = —1 and v is of type 1, then
v=_(s,—1,—-p—(t—8)+2u,p—1+t—s—u,1,0,t)
and by Remark we have three subcases:
— No £ at all, in which case u = 0, and the element has j-degree less or equal to

-3 if and only if —p — (¢t — s) < —3 which is equivalent to t — s > 3 — p;

— A £ on the left, and all its z’s on the right, and the element has j-degree less
or equal to -3 if and only if —p— (t —p+1)+2 = —t+1 < —3, or equivalently
t—12>3;

— A £ on the right, and all its x’s on the left, and the element has j-degree less
or equal to -3 if and only if —p — (2 —s) +2 = —(p — s) < =3, i.e. if and only
ifp—s>3.

Hence the description.
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e If 4, = —2, then v is of type 1 and
—ifa=b=1, then
v=_(s,—-2,—(t—s)+2u,t—s—u,1,1,t)

and by Remark u must be equal to 0; it has j-degree less or equal to -3
if and only if —(t — s) < —3, or equivalently t > s + 3;

— ifa =2,b=0, then
v=_(s,-2,-2p—(t—s)+2u,2(p—1)+t—s—u,2,0,t),

and, similarly to case i, = —1, we have four subcases by Remark [£.4.3] In all
but one case, the j-degree is greater or equal to -3:

* No & at all, in which case u = 0, and the element has j-degree less or equal
to -3 if and only if —2p — (¢t — s) < —3 which is equivalent to 2p+t—s > 3,
and sincet —s >1—p, we have 2p+t—s>2p+1—p=p+12> 3 as
p>2

x A £ on the left, and all its x’s on the right, and the element has j-degree
less or equal to -3 if and only if —2p— (t —p+1)+2=—-p—t+1< -3,
or equivalently p4+t—1>3 andsincet > 1, p+t—1>p> 2;

* A £ on the right, and all its ’s on the left, and the element has j-degree
less or equal to -3 if and only if —2p — (2 —s) +2 = —2p+ s < =3, i.e if
and only if 2p — s > 3 and since s < p, we have 2p — s > p > 2;

* We have a & in "the middle” which correspond to the yy_; in [MT13],
namely

(p,—2,—p+1,p—2,2,0,1) = ¢, @ 2P 2 @ ey,

and —p + 1 < —3 is equivalent to p > 4.
Hence the description. O

Lemma 4.4.11. Letv =11 ®...®v4 be a monomial of wg. Suppose there exists 2 <1 < q
such that the b-degree of vy satisfies by > 1, and

(a) the i-degree of vy is less or equal to -3;
or
(b) the a- and b-degree of vj_1 satisfy aj—1 — b1 > 2.
If ss 1 <p—2ort_1 >3, v is reducible.
Proof. Assume b; > 1. We have the following non-trivial decomposition

V1 RUVE...0 K ... QY

= €5 Vs, ®...Q€5_,
2
®es, 1 T7€s, 142 & €5, Weg,
Xeg , ©...Qeg,

V] QU Q... QU9
®(81-1 + 2,411, i1 + 2, ki1 — 2,a5-1, b1, 1)
®(syy i + 2, g1, ki, a0 — 1,0 — 1, 47)
QU1 ® ... Oy
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4.4. Decomposition of chained elements of HTq(u)<!

or
V1O ...QUK... R0

= VI RUR...VU_2
®(s1-1, -1, Ji-1 + 2, k-1 — 2,001, b1, t—1 — 2)
®(Sl,il + 2,91, ka1 — 1,0 — l,tl)
QU1 ¥ ... ® vy

e, Ve, X...Q e,
®€t171*2x26t171 & ey wes,
Qe ... Qe
unless a; — 1 < 0 or (s;_1+2>pand ;1 —2 < 1). Equivalently, this decomposition
exists unless a; < 1 or (s;_1 > p—2 and ¢;_1 < 3).
Let us analyse these conditions.

e If vy is of type 1, then a; > b; > 1 by assumption.
e If v; is of type 2, then

— if the i-degree of v; is less or equal to -3, then —3 > 4 = —2a; — 1 and a; > 1;

— if the a- and b-degree of v;_1 satisfy a;_1 —b;_1 > 2, then the obstruction a; < 1
can only occur if ¢ = 0 and b; = 1, namely v; has i-degree -1, which means
v;—1 must have j-degree -1, so from Lemma [£.4.5] it must be one of

(s1,—2a,—1,1,a,a,s1+1) = eswzes 41
(p,—2a—1,-1,0,a+1,a,1) = ¢, (EQRE% e,
(p—1,-2a—1,-1,1,a+1,a,2) ep 1E @ (E® )% @ zen
(& ep12® (€6 @ Een).
with 1 <s1<p—-1,1<s92 <p—3, a > 0. But by assumption, the a- and
b-degree of v;_1 must satisfy a;_1 — b;j_1 > 2. So v; cannot be of type 2 with
a; = 0 and b; = 1 in that case, and there is no obstruction to the decomposition.

I

e If v is of type 3, in particular b; = 0, which is a contradiction. Hence v; cannot be
of type 3.

That means the previous decomposition fails if and only if s;_1 > p—2and ¢t;_; < 3. O

Lemma 4.4.12. Let v = v1 ® ... ® vq4 be a monomial of w, such that v is not an
idempotent of d. If there exists 2 < [ < q such that the a- and b-degree of v; are equal and
the idempotents on either side of v; are different, then v is reducible.

Proof. Assume there exists 2 <[ < ¢ such that the a; — b; = 0 and s; # t;. Then we have
the following decomposition

V1 Q... Qv
= 1)1®...®Ull_1®(Sll,—2(111,0,0,(111,(1117811)
Qes 41 @ ... B ey
ety & ... ®6t1171 ® (5l170’ _(th - Sll) + 2y, (tll - Sll) - ull’o’o’tll)
®'Ull+1®...®’l)q

and it is not trivial since v1 is not an idempotent and s; # ¢;. Thus v is reducible. ]
Corollary 4.4.13. Let v = v1 ® ... ® vg be a monomial of wy such that v is not an
idempotent of d. Assume v is irreducible. If there exists 2 < | < q such that the a- and

b-degree of v; are equal and the idempotents on either side of v; are equal, then v, = es,
foralll <n <gq.
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Proof. Assume there exists 2 < [ < ¢ such that the a; — b; = 0 and s; = ;. Then in
particular, v;;1 has i-degree 0. By the previous lemma, if s;11 # #;41, then v is reducible.
That is a contradiction. Hence s;11 = #;41 and vj41 = e, ,. That shows that v;,o has
i-degree 0 too, and repeating the argument yields the proof. O

Proposition 4.4.14. Let v = v1 ® ... ® vy be a monomial of wy such that vy is not an
idempotent of d. Suppose there exists 2 < | < q such that the i-degree i; of v is less or
equal to -3, and that there exists | <1 < q such that the a- and b- degree of vy are equal.
Then v is reducible.

Proof. We choose [ and I’ to be minimal with that property. If ay — by = 0, then by
Lemma v is reducible as long as sy # ty. Furthermore, by Corollary [.4.13] it is
reducible unless v, = es for all I’ < n < q. Hence, we assume that the idempotents on
either side of vy are equal and that v, = e, for all I’ < n < g, i.e. we are in the situation

V=01®... QU ® ... Qur_1 ® e, w e, ® €5, ®... Qe

By minimality of [, for all 1 < m < [, v, has at least i-degree -2, and for all [ < n < ',
vy, s of type 1 and its a- and b-degree satisfy a, — b, > 1. Using Remark we see
that v,, is of the form

(s,—a—b,—pla—0b)—(t—s),(p—1)(a—>b)+ (t — s),a,b,t)
=P 5 ® (xp71)®afbfl ® (§ ® §)®b ® xtfl

(p—1,—a=b,—pla—=b)—(t—p+1)+2,(p—1)(a—b)+(t—p+1)—1,a,b1)
—¢® (xp—l)(g)a—b—l ® (£®§)®b ®l’t_1

(s,—a—b,—pla—b) —(2—-8)+2,(p—1)(a—b)+(2—5)—1,a,b,2)
=" @ ) e ()P e

(p,—a—b,—p(a—b)—(1—p)—|—2,(p—1)(a—b)—|—(1—p) _17a7b71)
=, P 2@ @P 2R (RO Re

if a,, — b, > 2, or of the form

(Sa_Qb_ 17_p_ (t—S),(p— 1)+(t_8)7b+17bat)
= P75 ® (5 ® f)®b ® xtfl

p—-1,-2b-1,—p—(t—p+1)+2,(p—1)+(t—p+1)—1,b+1,b,t)
={e (e e

(s,-2b—1,—p—(2—-98)+2,(p—1)+(2—3s)—1,b+1,b,2)
=" R (RO L

if ap, — b, = 1.
In addition, since ay = by, vy has an even i-degree, and therefore vy_; must have an
even j-degree.
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e Assume ay > 1. Then we have the following non-trivial decomposition

V1 ® ... Qg
2
= €5 ®...Q sy, X €sy_ T €sy_ +2 X €5, Wes,, & €syr iy ®...Q €s,

V1 X...R0vp_9
®(sp—1 + 2,ip—1, =play—1 —by—1) — (ty—1 — (sy—1 +2)) + 2up 1,
(p—D)(ay—1 —by—1) + (tr—1 — (sy—1 +2)) —uy_1,ap—1,by_1,ty_1)
®esl,wal’*1esl, Qespy1 ... Qes,

or

V1 8 ... Qg

= NRX...QV_9
®(sr—1,dr—1, —play—1 —by_1) — ((tr—1 —2) — sp—1) + 2up_1,
(p— Dlar—1 —br—1) + ((tr—1 = 2) = sp—1) —wp—1,ap—1,by—1,ty—1 — 2)
®esl,wal’_1esl, ®esy 1@ ... D e,

2
e, ... Q €ty _, & €ty —2T €, X €5, Wes), (=) €syyy ®...Q0es,

unless sy_14+2 >pand ty_1 —2 < 1, i.e. unless spy_1 >p—2and ty_1 < 3. We
need to investigate that case further. Assume sy_1 > p — 2 and ty_1; < 3. Recall
that vy_1 must have even j-degree and since ay > 1, —2 > iy = jp_1. That means
the element in position I’ — 1 is one of the following elements

,

(p—1,-20—-1,-p—(2-p),(p—1)+(2—p),b+1,b,1)
=zR(ERH® e

(p7_2b_1a_p_(2_p)a(p_1)+(2_p)7b+17b72>
=60 (¢ o

(p—1,-20-1,-p—(2-p),(p—1)+(2—p),b+1,b,2)
=,®(ERH)"

if apy_1 — bl’—l = 1, and
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(( (p—1,—a—b,—pla—>b)—(2—p),(p—1)(a—b)+(2—p),a,b,1)
=z @ )" e e o
if a —b—1is even,

(p_ 17_a_b7_p(a’_b) - (3_p)7(p_ 1)(a_b)+ (3_p)7a’aba2)
=z@ @ ) e ()P e
ifa—b—11is odd,

(pa —a — ba 7p(a - b) - (1 7p)7 (p - 1)(& - b) + (1 7p)aa’b71)
=@ @ )9 ER)P e
ifa—b—11is odd,

(pr—a— b, —pla—b) — 2~ p), (p— 1)(a—b) + (2~ p),a,5,2)
= e @ ) e (e e
if a—b—1is even,

(p—1,—a=b—pla=d)—(1-p+1)+2,(p-1)(a—b)+(1-p+1)—1,a0,1)
=fe@ ) e e e
if a —b—1is even,

={e@E ™M e o) e
ifa—b—11is odd,

(p—1,—a—b,—p(a—b)—(2—p—|—1)+2,(p—1)(a—b)+(2—p+1)—1,a,b,2)
=@ @ )T e (o) et
ifa—>b—11is odd,

(p,—a—b,—pla—>b)—(2—p)+2,(p—1)(a—b)+ (2—p) —1,a,b,2)
=@ @ )" e e og
if a —b—1is even,

(p7_a_ba_p(a_b) - (1 _p) +23(p_ 1)(Cl—b)+ (1 _p) - 1aa7b71)
=e, ® l_p—2€ ® (xp—1)®a—b—2 ® (5 ® £)®b ® ey

ifa—b—11is odd,

if apy_1 — bl’—l Z 2.

We notice that in all cases, we can factor from vy_1, both on the left and on the
right, an element of H(u™!) of j-degree -2, namely one of

(p—1,-1,-2,1,1,0,1) = z®e;

(p,—1,-2,1,1,0,2) = e,@x
(p—1,-1,-2,2,1,0,3) = £®a>
(p—2,-1,-2,2,1,0,2) = 2*®¢

so that we could still have a similar non-trivial decomposition as before. However, for
that decomposition to exist, we must be able to find a decomposition of v;_o of the
form 0y _g - Up_o with one of the factor being of j-degree -1. If we can factor x from
either side of vy _g, then we are done, as we could write the following decomposition

'U1®...®'I}l®...®’l}l/_2®'l)l/_1®’Ul/®...®’l)q
= 651®...®esl®...®33®L®esl/wesl/®esl,+1®...®esq
v1®...®vl®...®ﬁl/,2®@l/,1®6l®vl/+1®...®vq
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if we can factor x on the left of vy_o, or

’Ul®...®'I}l®...®’l}l/_2®'l}l/_1®’Ul/®...®’l)q
= Ul®--~®Ul®-~~®7jl’—2®ﬁl’—1®6l®vl’+1®-~®vq
et1®...®etl®...®:):®R®etl/w€tl/®etl,+1®...®etq

if we can factor x on the right of vy_o, where ¥, is the remaining part of v. after
factorisation and L, R € {xr ® e1,€, ® 2, ® 2,22 ® ¢} depending on the element
V1.

If not, that means that vy_o is of the form

( (p7_a_ba_p(a_b) - (1_p)7(p_1)(a’_b)+(l_p)aa7b71)
=@ @ ) e (ER)P e
ifa—b—11is odd,

(p—1,—a—b,fp(afb)7(17p+1)+2,(p71)(afb)+(1fp+1)71,a,b,1)
=@ @ ) e ()P Re

if a —b—1 is even,

(p—a—=b,—pla—b)—(2-p)+2,(p—1(a—b)+(2-p) - 1ab2)
f =@ @ ) o) ot
if a —b—1 is even,

(py,—a—b,—pla—b)—(1—p)+2,(p—1)(a—b)+ (1 —p)—1,a,b,1)
=@ e @ )T e ()Y 0

ifa—b—11is odd,

and in particular, ay_o — by_9 > 2 in that case.

We note that it is possible to factor an element of H(ufl) of j-degree -1 for all of
these possibilities, both on the left and on the right, namely we can factor one of

(p7 aOa 707 ) = ep®€1
(p_17 ]- a]-u 707 ) = .’IT®€
= QT

Again, for the decomposition to make sense, we need to be able to factor an element
of j-degree -1 from vy_3, and again if we can factor = then we are done. If not,
we apply the same reasoning as for vy_o. Eventually, in the worst case, we reach
' —(I"—1) =l and v; has i-degree less or equal to -3. Since [ is chosen minimal with
that property, we know that v;_; has at least i-degree —2 with j-degree at most —3.
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By Lemma v;_1 is one of

(s1-1,0,—n,n,0,0,8_1 +n) =" n>3

(Sl—la _17 ey (tl—l - sl—l)a

— pP—s1-1 ti—1—1 _ >q_
p—1+4 (o1 —si-1),1,0,t,-1) . ®z tier—s1-123—p
(p—l,—l,—tl,1+1, o1
= - 1>
tion—1,1,0,¢-1) (@ ti1—1>3
(511, —1,—p + 511, o
= aP~ %= - >
p—s1-1,1,0,2) x ®¢ p—s_1>3
S1—1,—2,—n,n, 1, 1,5,1+n = €g5,_,WT n >
( 2 1,1, s, ) wz" >3

(s1-1,—2,—2p — (ti—1 — 51-1),
2(p - 1) + (tl—l - Sl—l)a 27 0) tl—l)

P11 ® xpfl ® xtz—lfl

(p - 17 725 iy 2 tl—l + 17
p + tl*l - 2) 270at171)

§® xp—l ® xtl—l_l

(Slfh _27 _2p + Si—1,

— pP—Si-1 p—1
% — 511 — 1,2,0,2) T e oL

(pa_za_p+1ap_272a0al) :€p®xp72£®€1 p>3

and if it is possible to factor an z, then by the same reasoning, we are done. If not,
then v;_1 is one of the following elements

( (pa _27 ey 2 1ap_ 172707 1) =€p ®xp—l ®er
(p7177277pap71’27071) :§®xp_1®61

(p7_27_p7p_1a2;072) :€p®l’p71®§

\ (pa_27_p+1ap_2727071) :€p®l'p_2£®€1 p>3

by Lemma [£.4.6] noticing that higher values of a give rise to smaller i-degrees. We
note that it is possible to factor an element of H(u™!) of j-degree -1 for all of these
possibilities, both on the left and on the right, namely we can factor one of

(pa_lv_laoalvovl) = ep®€1
(p—1,-1,-1,1,1,0,2) = z®¢
= (Qr

In particular v;_; has i-degree -2, hence v;_5 has i-degree at most -2 with j-degree
-2; it must be one of

(s1,—2a,-2,2,a,a,51 +2) = egquw'z?es41, 0<a<l

(p,—1,-2,1,1,0,2) = e, ® zey,
(p—1,-1,-2,1,1,0,1) = ep_1x®ey,

(3,-2,-2,1,2,0,1) = es@at@e; (ifp=3)

Again, we can factor an z in all cases but es ® € ® ey if p = 3. That means we are
done, unless p = 3 and v;_9 = e3 ® € ® e1. Since that element has j-degree -2, the
same reasoning as for v;_s can be applied to v;_3. Hence, in the worst case, and if
p = 3, we have a sequence of e3 ® x{ ® e for all vy where 2 < f <[ —1, and we can
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4.4. Decomposition of chained elements of HTq(u)<!

factor e, ® e; = e3 ® e both on the left and on the right of all of them. But then
vy is an element of d (its i-degree is 0) with j-degree -2, thus v; = z? and we can
factor an =, and v is reducible.

Assume ay = 0. That means in particular that vy_; has j-degree 0 with its a- and
b-degree satisfying ay_1 — by_1 > 1 by minimality of I’ with respect to ay = by. By
Lemma [4.4.4} it is one of

(p—1,-2a—1,0,0,a+1,a,1) = e, 16, @ (ERET @ e
(p,—2a—1,0,0,a+1,a,2) = €, @ (@& ®erées

We notice that we can factor an element of H(u™!) of j-degree 0, namely £ @ e; on
the left for the first possibility or e, ®¢ on the right for the second possibility. We will
treat the two cases in parallel, namely factoring on the left for the first possibility, or
factoring on the right for the second possibility (compare to the previous case when
we could factor both on the left and on the right). Similar to the previous case, we
want to factor on the left, resp. right, an element of j-degree —1 from element vy _o.
If we can factor z on the left, resp. right, then we are done. If we cannot, that
means vy _o is one of

=@ () @ear'™!

resp.

(s,-2b—1,-p—(1+u—s)+2u,(p—1)+(1+u—s)—ub+1,b,14+u)
=", ® (E© )P @ er€"

if apy_9 — bl/_g = 1, and

(p77a7 bvip(af b) - (t*p) + 2u, (pf 1)(0’7 b) + (t*p) 7u’a7b7t)
=e, @ @17 @ (PP T2 R (€@ )PP @ et

resp.

(57_a‘_b7_p(a_b) - (1 —S)+2U,(p— 1)(&-()) + (1 _8) —U,&,b,l)
=2 ® (2P @ (PP T e (e )T e a

if ay_o9 — bl’—2 > 2.

In all cases, we can factor the elements of H(u ') £'ep ® eq, resp. e, ® e1&" with
u € {0,1} from the left, resp. right of vy_5. Suppose we can decompose v with that
factorisation at vy_o, then without loss of generality, we can assume u = 0; indeed,
if u = 1 instead, that means we would factor £ ® e1, resp. e, ® £, which has j-degree
0, and by Lemma |4.4.7| we then obtain a non-trivial decomposition. Hence, we can
assume we can factor e, ® e; on the left, resp. right, from vy _5, which has the right
j-degree -1 to be compatible with the decomposition of vy_; we discussed earlier.

Repeating the same argument as before, if we can factor an x from vy_3 on the left,
resp. right, then we have our decomposition. If not, we must be able to factor e, ®eq
from it on the left, resp. right. In the worst case, we reach I’ — (I’ =) = [ and v; has
i-degree less or equal to —3. Since [ is chosen minimal with that property, we know
that v;_1 has at least i-degree —2 with j-degree at most —3. By Lemma 4.4.10} v;_1
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4.4. Decomposition of chained elements of HTq(u)<!

is one of
$1-1,0,—n,n,0,0,81 +n =a" n>3
(
(s1-1, =1, =p — (ti—1 — s1-1), p—sj_1 t_1—1
— - - — >3
p—14 (ti—1 —s1-1),1,0,t;_1) v o fi-1 =81 23-p
(pilvilaftl—l“i’lv t —1
=&t ti.1—1>3
tlfl - ]-, 1707tl71) 6 =1 -
(Slfh _17 —p+si-1, P—Si—-1
= - — >
p_sl—1a15072) v ®§ p Si-1 73
(si—1,—2,—n,mn,1,1,8,,_1 +n) =e,,_,wx" n>3

(Sl—la 727 *2]) - (tl—l - 5l—1)7 pP—Si—1 —1 t —1
= -1® xP ® xh-t
2(p—1) + (ti1 — 81-1),2,0,t11)
(p - 17 _25 —-PpP— tl—l + 17

p—1 ti—1—1
pHti—1—2,2,0,t_1) E@xP ®x

(Slfla _27 _2]9 + si-1,

— P—Si-1 p—1
% — 511 —1,2,0,2) =7 SR

(pa7277p+17p72727031) :€p®xp_2€®€1 p>3

\

Again, if we can factor x from the left, resp. right, then we are done. If not, v;_
must be one of

,

<p’p_—1,1_—|]-0 (;lf?fzy_),l)l),’o, ti) = ep@at =3
A ST o =123
N By oo
RS SV ARy -t ot

(pv _27_p7p_172a0a2) :€p®xpil®§

(pa_27_p+17p_2727071) :ep®mp72€®€1 p>3
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4.4. Decomposition of chained elements of HTq(u)<!

resp. one of

\

(Sl—17_17_p_ (1_Sl—1)7 pP—S;_1 :

= - — >
p—1+(1-5-1),1,0,1) v ea ifp—si-122
(Slfla_]w_p_ (2_5l71)+27 p—S| :

= -1 —_ >

p—1+Q2—s1)—1,1,02 ©¢ fp—=s123
(Sl—la _27 _2p - (1 - sl—l)a _ P—Si—1 p—1
2p—1)+(1—5.1),201) ~© @ @a

(p_la_27_pap_172a071) :£®.’Ep_1®€1

(Sl—17 _27 _2p + S1—1,

— pP—Si-1 p—1
% — 511 —1,2,0,2) T eaT el

(pa_za_p+1ap_272a0a1) :ep®1’p_2£®61 p>3

It is possible to factor either an e, ® e; on the left, resp. right, or { ® x on the left,
resp. £ ® & on the right. Now, if v;_s has j-degree -1, we see that we are done as we
have the following decomposition

V= Ul®...®vl®...®vl/_1®€sl,®65l,+1®...®6q
= U®..0Uu20(pRe)R...0(pRer)R(E®e1) Ve, Ves,, B...Q¢
C e ®..®e , @z TR ®... QT2 ®ewn ey Res, ®... @ e,

V= v1®...®vl®...®vl/_1®esl,®esl,+1®...®eq

es; ®... Q€5 , @12V I RY®... QU2 @ew-leg ey, ®...Q e,

11®...0U-2®(pRe)®...0(p®e1)R(pRE) ®es, Ve, ®...Q e

or

V= U1Q0...0UQ...Q0u_1 Ve, Ve,

X... Qe

+1

11®...0U 2@ (ERT)R...0(pRe1)®(E®e1) Ve, Ves,,, B...Q¢

e Q... Q€ , Ve

resp.

212 o ~
i1 ®vl®...®vl/,2®elwal’*1el®esl,®...®esq

V= vl®...®vl®...®vy_1®esl,®esl,+1®...®eq
= €, ®...0€ , Q2" 1T RH Q... Qiy_s®ewley Ve, V... R ey,
V1®...0U 2@ (TRER...0(pRe1)R(pRE) Ve, Ve, B...Q ¢

and v is reducible. If v;_5 has j-degree -2, then the same analysis yields that v is
reducible unless v;_3 has j-degree -2. In the worst case, v; has j-degree -2 and it is
an element of d. Hence v; = 2% and it is possible to factor an x on the left, resp.
right. Hence v is reducible.

4.4.5 Criterion for reducibility

Proposition 4.4.15. Let v = v1 ® ... ® vg be a monomial of wy such that v is not an
idempotent of d. If there exists 2 <1 < q such that the i-degree i; of v; is less or equal to
-3, then v is reducible.
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4.4. Decomposition of chained elements of HTq(u)<!

Proof. Assume there exists 2 <[ < ¢ such that i; < —3, and let Iy be the minimal [ with
that property. Then 7; > —2 for all [ < ly. In particular, by Lemma [4.4.10] v;,_; is one of

(810*1,07 —’I”L,TL,0,0,Slofl + TL) =z" n=3
(Slo—l’ -1,-p— (tlo—l - 510—1)7 P—Si5—1 tig—1—1
= - - t;,—1— 8,1 >3 —
p—14 (tiy—1 — S10-1), 1,0, t15-1) v wr lo=1 ™ Slo-1 =9 P
(p_ 17_17_tl0—1 +1a tin_1—1
= - — >
tlo—l - 1a laoatlo—l) € e tl071 1 - 3
(S19—1, =1, —p + s1y—1, =P Sl @ ¢ p—s >3
p_81071717072) b=t =
(S1g—1,—2,—n,m,1,1,8,-1 +mn) = e, ,wa" n>3

(310—17 —2,-2p — (tlo—l - Slo—l)a — P—Sig—1 p—1 tig—1—1
2(p*1)+(tlo_1*51_1),2707tl0_1) =T 0 Rx ® x"to
(p—1,-2,—p—ti,—1 +1, B U
p+ty—1—2,2,0,t,-1) =& ®@a'o
(819—1, =2, =2p + 811,

_ 2 P—Slg—1 p—1
9 — 511 — 1,2,0,2) =T e et

(p77277p+15p72a25071) :ep®$p_2£®el p>3

Note that the a- and b-degree in these elements satisfy a — b € {0, 1,2}. Let us rewrite
that list with respect to the value of a — b:

1. If ajy—1 — bjy—1 = 0, vyy—1 is one of
(s15-1,0,—m,n,0,0,5,_1 +n) =z" n>3
(S19—1,—2,—n,m,1,1,8,-1+n) = s, wT" N >3
2. If ajy—1 — byy—1 =1, vj,—1 is one of

(s19—1, =1, =p — (tiy—1 — S1-1),

— pP—S1g—1 tig—1—1 _ >3 _
pP— 1 + (tlofl - 81071)7 1307tl071) . ®Jf tlo—l Slo—l el 3 P

(p - 1a _17 —th,1 + 13

— t 71—1 _ >
tig—1 — 1,1,0,¢,-1) st fo-1 =123
(519-1, =1, —p + 811, p—si
= -1 - >
s 1,1,0,2) P~o-1 @ ¢ P = Sip—1 >3
(4.3)
3. If ajy—1 — bjy—1 = 2, vj,—1 is one of
(Slofla _27 _2p - (tlofl - Slo*l)a o P—S1y—1 p—1 tio—1—1
2p— 1) + (tg-1 — 51-1), 2,0, 1—1)  © R
(p7177277p7tl0—1+1, —1 t —1
= ®$p ® xtlo-1
p"‘tlofl - 212707tl071) § (44)

(Slo—h _27 _2p + Slo—1»

— pP—Sig-1 p—1
% — 1,1 — 1,2,0,2) T @t e g

(p7_2a_p+1ap_272a071) :6p®xp_2§®el p>3
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4.4. Decomposition of chained elements of HTq(u)<!

We need to study four cases, namely
o ly=2
e [y > 2 and

1. ajg—1 — blofl = 07
2. a’lofl - blofl = 1)

3. ajy—1 — by—1 = 2.
The strategy is similar in all cases:
1. if b, > 1, we factor a w from v;, and v is reducible;
2. otherwise, by, = 0. This divides into two subcases:

(i) either the difference between the a- and b-degree of all the subsequent elements
is greater or equal to 2, and Proposition [£.4.9] provides a non-trivial decompo-
sition and v is reducible;

(ii) or there exists an index [ such that the difference between the a- and b-degree
of v; is at most 1 and we take [ to be minimal with that property. In that case,
we have three additional subcases:

(a) if a; — by = 0, then by Proposition v is reducible;

(b) if by > 1, we factor a w from v;, and v is reducible;

(c) if by =0and a;—b; # 0, then a; = 1 or q; = —1 as —1 < a; — b; by Remark
and a; — by < 1 by definition of [. We see that these two situations
lead to a contradiction.

All the decompositions we try to construct in the following paragraphs are of the form

V1 ... QY
= €5 ®...0€4 ,QTV Q... QU
1)1®...®’Ul,2®@l,1®f)l®...®@q

if we can factor x on the right of v;_q, or

V1 & ... Qv
= 11®...0U 2@V 1V Q...Q 7Y
e, ®...Q0€e,; , QTR Q... Q7

if we can factor z on the left of v;_1, where ¥. - 0. = v.. In particular, when we say that
we factor w, say from vp,11, the decompositions will look like

V1 Q... QY
esl®...®esl72®m®ﬁl®...®...®f1m®w®esm+2®...®esq
MO...0UN 20010 Q... 00 Imt1 @Uni2® ... QY

if we can factor x on the right of v;_q, or

V1 Q... QY
= v1®...®vl_2®ﬁl_1®®l®...®f)m®f)m+1®vm+2®...®vq
etl®...®etl72®x®ﬁl®...®...®f)m®w®etm+2®...®etq

if we can factor z on the left of v;_.
The aim is to determine those elements 0. that we can factor from v. to make the
decomposition work.
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4.4. Decomposition of chained elements of HTq(u)<!

e Assume lp = 2. We have in particular that a;,—1 — b,—1 = 0, as ajp—1 = a1 =0
and bj,—; = by = 0. This means that v;,_; = v1 = e5,2"€s, 4+ for some n > 3 by

Expression

— If by, = by > 1, since iy < —3, we can apply Lemma [£.4.11} if s; < p—2or
t1 > 3, v is reducible. Assume now that s; > p — 2 and t; < 3. We have
—3 > i9 = j1 = —t1 + s1 + 2wy if and only if

—3—-2u1 > —-t1+81>-3+p—2=p-—235,

and p—5 > —3 for all p > 2. Hence we have a contradiction and that situation
cannot arise. (Note that this means that we have at least three powers of x in
first position, which is why it is possible to factor xz).

Hence v is reducible.
— If by, = by =0, then az > 3 since —as — by =ipy < —3.
* Assume a, — b, > 2 for all 2 < n < q. Then by Proposition there
exists a non-trivial decomposition and v is reducible.

x Otherwise, let [ be the minimal index, 2 < [ < ¢, such that a; — b < 1. In
particular, a, — b, > 2 for all 2 < n < [. We are in the following situation

an—bp>2

e e
VIRV ... 0 V1 QU X ...RQ Y

We need to examine three cases.

- Assume a; — by = 0. Then by Proposition v is reducible.

- Assume b, = 0 and a; — b; # 0. Since a; — b; < 1, we see that a; = 1 or
a; = —1 (a; < —1 does not correspond to any element in HTq(u)S!).
Assume a; = —1, i.e. v; is of type 3 and has i-degree 1. Then v;_1 has
j-degree 1 and by Lemma [£.3.T] must be of the form

(s1,—2a,—1,1,b,b,s1 +1) = esw’€eq 41
(p—1,-20—1,1,0,04+1,b,2) = e, 1£® (ERE)Z @ Eey
(s2.—2a—1,1,0,a,a+1,p+1—s3) = es,(€@E% Mepyy,

(53,1,1,0,=1,0,p+1—83) = es3®@¢€p11 g,

with 1 <s1<p—-—1,1<s50<p—-—2,1<s3<p—1,a,b>0. By
minimality of [, the a- and b-degree of v;_1 must satisfy a;_1 —b;_1 > 2.
Hence a; cannot be equal to -1.

Assume a; = 1. That means v;_; has j-degree -1 and by Lemma [4.4.5
is of the form

(s,—2a,—1,1,a,a,s+ 1) eswregyq
(pv —2a—1,—1,0,a+1,a,1) = ep®(£®£)®a®el
—-1,-2a—1,-1,1,a+1,a,2 ep_1€ @ (€ R 8% @ zey
(p 9 9 ] ) Yy ) P g (E 5)
ep-12 ® (£ ® £)* ® Leo)

°

with 1 < s <p—1, a > 0. However, again by minimality of [, the a-
and b-degree of v;_1 must satisfy a;_1 — b;_1 > 2. Hence a; cannot be
equal to 1 either.

- Assume b; > 1, and a; — b; # 0; in particular v; is not of type 3, and
thus v;_1 must be of type 1. Since a;_1 — b;_1 > 2 by minimality of [,
we can apply Lemma [£.4.11} if s;—1 < p—2 or t;_1 > 3, v is reducible.
Assume now that s;_1 >p—2 and t;_; < 3.
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4.4. Decomposition of chained elements of HTq(u)<!

That means that v;_; is of the form

(pa —a — b7 _p(a - b) - (1 _p) + 2u7
(p_ 1)(a’_b)+ (1 _p) _uaa’7b71)
= ® (2P ® (@ )T e (0 )T @

(p,—a —b,—p(a—0) — (2 —p) + 2u,
(p_l)(a_b)+(2_p) _uaa7ba2)
=e, ® (l‘p_2§)“ ® (:Cp—l)@a—b—l—u ® (€ ® §)®b ® ey

(p=D@=b)+ (1 —(p—1)—uabl)
=epo12® (2P72) @ (2P I N ((@ )P R e

(p—1,—a—b,—pla—b)— (2~ (p—1)) +2u,
(p_ 1)(a_b) + (2_ (p_ 1)) _uva’b’Q)
=ep12® (zP2E)" @ (P )P @ (£ @ 6)FP @ mey

with a;_1 — b;_1 > 2 by minimality of [. Recall that

ep® (2P 2E) @ (P ) T ()T e
is the same element as

ep® (E®EP @ (2P @ (P ) @ e

in homology. Hence in all cases, we can factor j-degree -2 elements
T ® ey or e, ®x from v;_; both from the left side and the right side.
Let A < [ — 2 be the largest index for which = can be factored from
vy, either from the left or from the right. Note that such an index A
exists: vy = a" with n > 3 by assumption, so A > 1. In particular, for
all A\ < X' <1 —2, it is impossible to factor x both from the left and
from the right of vy,. In addition, recall that for [p = 2 < X <[, the a-
and b-degree of vy satisfy ayr — by > 2 by minimality of [. Hence for
all A < X <1 —2, vy must be of the form

(p7 _a_b7_p(a_b) - (1 _p) +2u> (p_ 1)((1—b) + (1 _p) —u,a,b,l)
=e, ® (xp—2£)u ® ($p—1)®a—b—1—u ® (5 ® f)®b ® €1
o~ ep ® (5 ® €)®b ® (xp—1)®a—b—1—u ® (xp—2§)u ® €1

and we can factor e, ® e; on both sides. Therefore, we can write the
following decomposition

VIR...0n®...0 Q... QY
= €, ®...0€e, , 2R (ep,Re1)X...0 (ep®e1) ®L X egwes,
Kes 1 & ... & e,
vl®...®v)\_1®1§,\®77>\+1®...®17l_1®ﬁl®vl+1®...®vq

if we can factor x from the left of vy, or

VIR...00NK®...0 X ...Q 1Y
= v1®...®v/\_1®17)\®17)\+1®...®17l_1®ﬁl®vl+1®...®vq
e Q... 06, Rr@(ep®e)®...0(ep,Rer) ® R eywey,
®ey,, ®... Qe

if we can factor x from the right of vy, where 9. is the remaining part
of v, after factorisation, and L, R € {z ® e1,e, ® x} depending on the
element v;_1. Hence v is reducible.
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4.4. Decomposition of chained elements of HTq(u)<!

o If [y > 2, then we are in the following situation

i>—2

—_——
V1RV ... V-1V, & ... Vg.

1. If ajy—1 — bj;—1 = 0, then by Lemma v is reducible;

2. If ajy—1 — bjy—1 = 1, then in particular, a;,—; = 1 and b;,—; = 0 since —a;,—; —
biy—1 = ijy—1 > —2. By Expression we see that vj,_1 is one of

(151, =1, =p = (tig—1 — s10-1), P—Sig—1 tig—1—1
= - _ _ > _
b= 1 + (tl()*l - Slo*l)? 170atl0*1) r ° ® z7o tlo_l Slp—1 = 3 p
(p—1,—1,~t,_1 +1, N
= B —1>
tlo—l - 17 170atl0—1) £® e tl()*l 1 = 3
(slgfla_:I-v_p"‘Sl(),l7

— pP—Sip-1 _ >
P = Sip-1, 17072) x 0t ®E D —=Sip-1 = 3

— If b, > 1, since 45, < —3, we can apply Lemma [4.4.11} if 5;,_1 <p—2or
tiy—1 > 3, v is reducible. Assume now that s;,_1 >p—2and ¢;,_1 < 3. We
haVe -3 2 Z‘lo - jlofl =P tlofl + 3[071 + 2ul0717 ie.

p_3_2ul071 Z _tlofl +Sl071 > _3+p_2:p_5
with w;,—1 € {0,1}. We get wj;—1 =0, sjp—-1 = p—1and t;,_1 = 2. In

particular, 4;, = —3.
Hence we are in the situation where v, € H(u™®) and v writes

VI ®...0V2@(2®r) U, ®...Q v,

and we clearly cannot factor any 22 from v;,—1. However, we can always
write

V1 Q... Qg

ep—12®e1 sy, Wesy,

-~

= ®...0U,—2®(p—1,-1,-2,1,1,0,1) ® (s1,, —2,0,0, 1,1, 51,)
®€810+1 ® ... eg,

€ty ®...® th072
ei1xes
® (170? _17 17070, 2) ®(Sloailo + zajloa kloaalo - 17bl0 - ]-7tl())
®’U[0+1 R...xQ ’Uq.

So v is reducible in that case too.
— The remaining case to cover is if b, = 0. Since 7;, = —a;, — by,, we have
aj, > 3, and in particular, aj, — b;, > 3 > 2.
* Assume that a, —b, > 2 for all [y <n < ¢. Then, by Proposition £.4.9]
v is reducible.

x Otherwise, we see that there exists an index lyp < [ < ¢ such that
a; — b <1, and we assume it is minimal with that property.
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4.4. Decomposition of chained elements of HTq(u)<!

- If a; — by = 0, then by Proposition v is reducible.

- If by > 1 and a; — b; # 0, then in particular v; is not of type 3, and
thus v;_1 must be of type 1. Since a;_; — b;_1 > 2 by minimality
of I, we can apply Lemma ifs; 1 <p—2ort_q4 >3 vis
reducible. Assume now that s;_1 >p—2 and t;_1 < 3.

That means that v;_1 is of the form

(p,—a — b, —p(a —b) — (1 — p) + 2u,
(p_ 1)(0,—b)+(1—p) _'U/,G,,b,l)
=, ® (272" ® (2P TR (€@ ) e

(p,—a—b,—p(a—b) — (2 —p) + 2u,
(p_ 1)(a_b)+ (2_p) _u7a7b72)
=ep ® (xpf2£)u ® (xp71)®a7b717u ® (f ® £)®b ® ey

(p—1,-a—b,—pla—b)—(1—(p—1))+2u,
(p—Da-b)+(1~(p—1)) —u,a,b1)
=ep12® (272" @ (2P TR (€@ ) e

p—-D@=-b+2-(p-1)) —u,a,b,2)
=612 ® (729" B (@) @ (0.6 @ ey

with a;_1 — b;_1 > 2 by minimality of [. Recall that

e ® (172" @ () g (0 )T e
is the same element as

ep ® (5 ® §)®b ® (xp—1)®a—b—1—u ® (xp—Qg)u ® ey

in homology. Hence in all cases, we can factor j-degree -2 elements
T ® ey or e, ®x from v;_q both from the left side and the right side.
Let 1 < X < [—2 be the largest index for which x can be factored from
vy, from the left or from the right. In particular, for all A < X < [—2,
it is both impossible to factor z from the left and from the right of
vy. Hence if max A, lg —1 < X <1 —2, vy must be of the form

(pa_a_ba_p(a’_b) - (1 _p) +2u’ (p_ 1)(a_b) + (1 _p) —u,a,b,l)
=, ® (2P @ (a7 )P T @ (@) @ e
2o (EeH)T e )T e (@) g a

as ay — by > 2 forall [y < XN <1 —2, and we can factor ep ® e on
both sides of vy. Thus, if A > [y — 1, we have a decomposition as
announced in the introduction, namely we have

V1 ®...00U,X...0 0)\&...Q Y
= €, ®...0€e,  QrR(epRer)...R(epRe) VLW
®esl+1®...®esq
111®...®le®...®v>\,1®1~)}\®...®@l®vl+1®...®Uq

or
V1O...Q0U, ... 00\ Q... 014
= 1M®..QUR..N_1QU\Q..UQU4+1 R ... Yy

e ®...Qe, RrR(ep®er)...R(ep®er) ®R@w
®6tl+1®...®6tq
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4.4. Decomposition of chained elements of HTq4(u)>

<1

where R, L € {z ® e1,e, ® x}, and v is reducible.
Going back to the introduction of Case a;,—1 —b;,—1 = 1, we see that

by Expression vj,—1 1s one of

( (s,—1,—p—(t—29),

Pt (810 O e tmszdop
1,1t 1, _
(pt—l,l;o,tlofl) =feat™h o123
57_1a_ +Sa —s
(p—s7€0,2) =oTTeL prsz23d

and all the elements above have at least one factor x on the left or
on the right; in particular, A > Iy — 1, so v is reducible.

- The only outstanding cases are if a; —b; < 1, a; —b; # 0, and b; = 0,

namely if a; = 1 or if a; = —1.
Assume q; =
element v;_1 must then be of the form

(s1,—2a,—1,1,b,b,s1 + 1)
(p—1,-2b—1,1,0,b+1,b,2)
(s2,—2a —1,1,0,a,a+ 1,p+ 1 — s9)

(83, 1, 1,0, —1,0,p—|— 1-— 83)

—1, i.e. v is of type 3. Then by Lemma the

= eslwb£e$1+1
= 1@ (89T 0t
= €s (5 ® €)®a+ €p+1—s9

*
€s3 ® €pt+1—s3

WlthlSSl Sp_]-a1§52§p_271§53§p_17a7b20 By

minimality of [, the a- and b-degree of v;_

2. Hence a; cannot be equal to -1.
Assume q; =
[£.4.5)is of the form

(s1,—2a,—1,1,a,a,s1 + 1)
(s2,—2a,—1,2,a,a,s9 + 3)
(p,—2a—1,—-1,0,a+ 1,a,1)
)
)

(p,—2a—1,-1,1,a+1,a,3
(p—1,-2a—-1,-1,1,a+1,a,2

°

(p—2,-2a—-1,-1,1,a+1,a,1) =

1 must satisfy a;_1 —b;_1 >

1. That means v;_; has j-degree -1 and by Lemma

es,wres, 41
esQwa$2€€SQ+3

e ® (@6 ®e,

ep ® (£ ® €)% ® ates,
ep-1€ ® (£ ® )P ® zey
ep-12 @ (£ ® €)™ @ Eea),
ep27E ® (ER ¥ ®ey.

with 1 <51 <p—-1,1< s < p—3, a>0. However, again by
minimality of [, the a- and b-degree of v;_; must satisfy a;_1 —b;_1 >

2. Hence a; cannot be equal to 1 either.

3. If aj,—1 — bj,—1 = 2, then in particular, a;,—1 = 2 and b;,—; = 0 since —aj,—1 —
bjy—1 = tjy—1 > —2. This means v;,_ is one of

,

(510—17 _2a _2p - (tlo—l - Slo—l)a
2(p— 1) + (tiy—1 — 81-1),2,0,t;,-1)

(p - 1) _23 —-p — t10,1 + 13
p + tlo—l - 27 2a Oatlo—l)

(816-1, =2, =2p + 5151,
2p —s1,-1 — 1,2,0,2)

(p7 725 7p+ 17p - 252707 1)
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4.4. Decomposition of chained elements of HTq(u)<!

— If by, > 1, since 4, < —3, we can apply Lemma [£.4.11} if 5,01 <p—2or
tij,—1 > 3, v is reducible. Assume now that s;,_1 >p —2 and ¢;,_1 < 3.
Thus vy, is one of

(prpQ ’__12)p+_ (<11__ plg?é, 0,1) =eo B
TG oy e e
T e phay  Seerier
"a e pe by <roren
O eerteamserie.
(pp_f’z_f’g,_ga,;)ﬂ’ (R @2 e
Ay mnesotsn e iten
(p—1,-2,—2p+p—1,

— p—1 o~ p—2
2p—p—1-1,2,0,2) ST el

(p7_2a_p+1ap_27270a1) :6p®xp72§®61 p>3

In all cases, we can factor an element of H(ufl) of j-degree -2, namely one

of
(p7_17_271’1’0)2) = 6p®x

(p—1,-1,-2,1,1,0,1) = z®e

both from the left and from the right. Let 1 < A < [yp — 2 be the largest
index such that x can be factored from vy from the left or from the right.
In particular, if A < lg — 2, for all A < X < lp — 2, it is impossible to factor
x both from the left and from the right of vy/. Since v;,—1 has i-degree -2
by assumption, v;,_» has j-degree -2 and by Lemma it implies that
% either A = [p — 2, i.e. we can factor x from the left or from the right of
v1,—2, and we can write the following non-trivial decomposition

VI R...0 0N 1QUNR ... Q-1 RV QUgt+1 X ... R Vq
esl®...®631073®x®L®esl0weslo®€SZO+1®...®esq
U1®...®Ulo_3®1~)lo_2®2~}lo_1 ®6l0®vlo+1®...®vq

if we can factor x from the left of v;,_9, or

VIR ...0UN_1RUANR... V-1 U, QU+1 ® ... V4
= Ul®...®UZO_3®’L~)ZO_2®?~HO_1®’L~)lo®1}l0+1®...®vq
etl®...®etlo_3®x®R®ethweth®etlo+l®...®etq

if we can factor x from the right of v;,_o, where v, is the remaining
part of v, after factorisation, and L, R € {e, ® z,z ® e1} depending on
the element vy, _1;
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4.4. Decomposition of chained elements of HTq(u)<!

* or we cannot factor = from either side of v;,_2, and hence by Lemma

4.4.6| p = 3 and v;,_o must be
0
(3,-2a—2,-2,1,a+2,a,1) = e302£® (2% @ ey

By minimality of [y, it has i-degree at least -2, hence a = 0. Thus it has
i-degree -2 and as a result, we see that vy, must be the same element

(37 _2a _271727(]’ 1) = €3 ®J)£®€1
for all A < \ < lp— 2. We see that we can factor
(3, -1,-1,0,1,0,1) = es ® €1

both on the left and on the right from all vy, A < X < Iy — 2, and
hence, if we factor x from the left of vy, we can write the following
decomposition

V1 R...0 0N 1QUNR ... Q01 RV, QU1 X ... Vg

= €, ®...06, QrR(e3Re)D...0(e3®e1) QL
Qeg wegy D es . O Qe

Ul®...®U)\_1®1~1/\®’L~))\+1®...®’L~)10®Ulo+1®...®vq

or

VI X...0 N1 QUNR ... Q-1 RV QUg4+1 X ... R Vg
= V®..0UN_1QUN QU1 ®...Q U, QU1 X ... Yy

e, Q... 06, Rr@(z®e)®...Q0(e3Re) R
ey, wey @ ey Q... ey,

if we factor x from the right of vy, where ¥, is the remaining part of v,
after factorisation, and L, R € {e, ® z,x ®e1,{® 22, 22 ® €} depending
on the element v;,_;. Note that in both cases, if A = 1, then v; must
be 22 and it is possible to factor 2 both from the left and from the
right, hence v is reducible.
— If b, =0, then a;, > 3 since —a;, — by, = 7, < —3.

* Assume a, — b, > 2 for all [y < n < ¢q. Then by Proposition
there exists a non-trivial decomposition and v is reducible.

x Otherwise, let [ be the minimal index, Iy < [ < ¢, such that a; —b; < 1.
In particular, a, — b, > 2 for all [y < n <. We need to examine three
cases.

- Assume a; — b; = 0. Then by Proposition v is reducible.
- Assume b; > 1, and a; — b; # 0; in particular v; is not of type 3, and
thus v;_1 must be of type 1. Since a;_1 — b;_1 > 2 by minimality

of I, we can apply Lemma ifs; 1 <p—2ort_ >3 vis
reducible. Assume now that s;_1 >p—2 and t;_1 < 3.
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4.4. Decomposition of chained elements of HTq(u)<!

That means that v;_; is of the form

(p, —a—b,—p(a —b) — (1 —p) + 2u,
(p_ 1)(a'_b) +(1 _p) _u7a"ba1)
=, ® (2P72)" @ (2P P g (R ) e e

(p,—a—b,—p(a—b) — (2 —p) + 2u,
(p_ 1)(a_b)+ (2_p) —u,a,b72)
=ep ® (xp—2§)u ® (xp—1)®a—b—1—u ® (5 ® §)®b ® ey

(p—1,—a—=0b,—pla—>b)— (1 —(p—1)) + 2u,
(p—D(@=b+1—-(p-1)—u,a,b1)
—ep 12 ® (2P 20)" @ (xR (0 )PP @ e

(p—1,—a—=b,—pla—b)—(2—(p—1)) +2u,
(p_ 1)(a_b)+(2_ (p—l)) _u7a’b’2)
=ep 12 @ (2P @ (2P H)®T TN g (€@ % @ zes

with a;_1 — b;_1 > 2 by minimality of /. Recall that

ep® (@) @ (@ )T e (e )P o
is the same element as

ep®(E®EP @) e (P H) © e

in homology. Hence in all cases, we can factor j-degree -2 elements
T ® ey or e, ®x from v;_q both from the left side and the right side.
Let 1 < X < [—2 be the largest index for which x can be factored from
vy, from the left or from the right. In particular, for all A < X < [—2,
it is both impossible to factor z from the left and from the right of
vy. Hence if maxly — 1, A < X <1 —2, vy must be of the form

(p,—a—b,—pla—b)—(1—-p)+2u,(p—1)(a—b)+ (1 —p) —u,a,b,1)
—e, ® (:Cpf2§)u ® (xp71)®afb717u ® (é ® §)®b ® €1
~ ep ® (f ® €)®b Q (xpfl>®a7b717u ® (mp72§)u ® €1

as ay — b)\/ > 2.

And for all I < ) <1 — 2, and we can factor ep ® e1 on both sides
of v 2\ -

Thus, if A > lp — 1, we have a decomposition as announced in the
introduction, namely we have

V1 X...Q0U,RK...0 0K ... QY
= €, R...0¢€e5, , QR (pRe1)...0(pRe1) LR W
Qes, B ... es,
U1®...®Ul0®...®U)\_1®1~1/\®...®2~}l®’ul+1®...®vq

or

VI R...Q0U)RK...0 0K ... QY
= U1®...®UZO®...®U)\_1®1~})\®...®Q~1l®vl+1®...®vq
e ®...0e,  QrR(epRer)...Q(epRe) RR@W
®ey, ... Qe

where R, L € {z ® e1,e, ® x}, and v is reducible.
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4.4. Decomposition of chained elements of HTq(u)<!

Now, if 1 < X\ <ly—2, we use the same factorisations found so far for
vy where lp < X < 1. For all 1 < ) < ly—1 vy has at least i-degree
-2 by assumption. Thus the element v;,_; has i-degree at least -2
and j-degree at most -3 and it is not possible to factor any x from it.
Recall that by assumption a;,—1 — b;,—1 = 2, so by Expression ,
U,—1 is one of
( (5,-2,-2p— (t— ),
2(p—1)+ (t —s),2,0,t)

=Pt @rPt gatt

—1,-2,—p—t+1, _ -
(pp+t—2,2{)0,t) =¢{@a" e
(s,—2,—2p+s,

_ .pP—S p—1
% —5—1,2,0,2) et et el

\ (p7_27_p+]—7p_2727071) :6p®xp72§®61 p>3

Since it is impossible to factor x from it (as A < Iy —2), vj,—1 is then

one of
.

(p,=2,-p—1,p—1,2,0,1) =¢e, 0" ' Qe
(p_17_2)_p7P_172,0,1) :§®xp*1®el

(p,—2,—p,p—1,2,0,2) — @’ o

(p77277p+17p727270a1) :6p®l‘p_2£®€1 p>3
Due to the following equalities in homology,
P e =227 % Qe

and

ep ® Pl ep ® P2 @,
we see that x can actually be factored from the middle two possibil-
ities and v is reducible. Again, we can factor e, ® e; from both sides
for the first and last possibility.
Now, for all A < X < Iy — 1, vy is an element with i-degree at least
-2 such that z cannot be factored from it. Considering the i-degree,
vy is one of

(s,1,1,0,—1,0,p+ 1 —s) =es @€y
(5,0, —(t — 8) 4+ 2u,t — s —u,0,0,t) = e,a’ "%,
(s,—1,1,0,0,1,p+1—s) = el @ Eepri—s
(p—1,-1,1,0,1,0,2) = e, 1€ ® Eey

(s,—1,—p— (t — s) + 2u,
(p—1)+(t—s)—u,1,0,¢t) estP ST @ 2l T ey

esxpfs ® xtflfuguet

11l

(s,—2,—(t —s)+2u,t —s —u,1,1,t)

esthfsfuéhuet

(s,—2,—2p — (t — s) + 2u,
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4.4. Decomposition of chained elements of HTq(u)<!

and removing the elements from which z can be factored, we are left
with

( (5,1,1,0,—1,0,p+ 1 —s) =es @€y
(5,0,u,0,0,0,s + u) = esfesin
(s,—1,1,0,0,1,p+1—35) =es{@Lepyi—s
(p—1,-1,1,0,1,0,2) =ep—1E ®&e

(p—u,—1,u—1,0,1,0,1) =ep_ " @e;
(pa_lau_170717071+u) :€p®fu€1+u

(s,—2,u,0,1,1,s 4 u) = e;w'es iy

(pa _27 —D— 1 + 2U,
p—1—u,2,0,1) :ep®xp_1_“§“®el

and finally, we can remove the elements with j-degree 1 as type 3
elements cannot follow: v;,—; is a type 1 element and can only be
preceded by type 1 elements. That means the possibilities reduce to

((s,0,0,0,0,0,s) = e

(p—u,—1,u—1,0,1,0,1) =ep_,{" @ey
(p,—l,u—l,O,l,O,l—l—u) :€p®£u€1+u

(s,—2,0,0,1,1,s) = eswes

(pa _27 2 1 + 2U,
p—1—u,2,0,1) :ep®a:p_1_“§“®el

Now, if vy € {es,,, { ®e1, e, RE, €5, wes,, } for some A < N <lp—1,
since it has j-degree 0, vy/41 is an element of d. In particular, its a-
and b-degree are equal. By Lemma, we see that v is reducible
unless vy/41 is an idempotent. By Corollary [£.4.13] if v is irreducible,
then v, = e;, for all N < n < lp—1. In particular, v, has i-degree
0, which is a contradiction since we assumed v;,_; is one of the two
following i-degree -2 elements

(p7_27_p_17p_1727071) = 6p®xp_1®el
(p7 _27 _p+17p_2a27071) = 6p®xp_2§®61

Hence, if vy € {es,,,E{®e1, €, ®E, €5, wes,, } for some X < N <lp—1,
then v is reducible.

Furthermore, if vy = e, ® e; for some A < N <lp—1, then vy, €
{{®e1,ep @& €y @er}. By the same analysis as before, we see that
v is reducible if vy 41 is one of the two j-degree 0 elements £ ® e
or e, ® {. Thus, it remains to consider the case v, = ¢, ® e; for all
N < n<lp—1. We reach another contradiction as v,_o = ep ® e1
has j-degree -1 when v;,_; has i-degree -2 by assumption.

Finally, if vy = €, ® ZP7ITUEY @ eq for some A < N < [y — 1, since
vy has i-degree at least -2 for all 2 < n <y — 1, the j-degree of vy
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4.4. Decomposition of chained elements of HTq(u)<!

must satisfy
—p—1+2u> -2

or equivalently
1+2u>p

which is if and only if w = 1 and p = 3. That means that if p > 3,
then v is reducible and A > [g— 2. If p = 3, we see that in particular,
vy = e3 ® x€ ® e has j-degree -2 and v, € {eswe,, e3 ® € @ e1}
for all N’ < n < lp — 1. Similarly to previous considerations, if v,
is equal to the j-degree 0 element es;weg, then v is reducible. Thus
we need to consider the case when v, is equal to e3 ® 2§ ® e for all
N <n<ly—1,and U1,—1 equals ez ® 2 ®e;. In particular, for the
chaining rule to be respected, if vy = e3 ® € ® €1 (an (i, 7)-degree
(-2,-2) element) for some A\ < X < lp — 1, then v,) = e3 ® £ ® e; for
all A <n <lp—1. In addition, vy must have j-degree -2. Hence, we
are in the following situation

V®... 000 (erEe) P e (3012 ®e) QU ®. .. QY

and we can again factor e, ®e1 = e3 ®eq both from the left and from
the right of v, for all A < n <y — 1. By assumption, we can factor
x from vy and we obtain the following decomposition

V1Q...0UNRK..0U&... Qv
= €5, R...065, , @R (p®Re)R...Q (e, ®e1) @ L® eswes,
Regq V... B eg,
U1®...®U)\_1®17)\®1~}>\+1®...®@l_1®2~}l®’ul+1®...®Uq

if we can factor x from the left of vy, or

VR...0n®...0 & ... QY
= 2}1®...®U)\_1®@)\®ﬁ>\+1®...®ﬁl_1®2~}l®’vl+1®...®Uq
en®...0e, rR(epRe)R...0 (epRer) ® R ey,wey,
®€t1+1®“'®etq

if we can factor x from the right of vy, where ¥, is the remaining
part of v, after factorisation, and L, R € {z ® e, e, ® x} depending
on the element v;_.

Note that if A = 1, vy = vy is an element of d with j-degree -2, hence
v = 22 and we can factor z. In particular, \ exists.

- Assume b; = 0 and a; —b; # 0. Since a; —b; < 1, we see that a; = 1 or
a; = —1 (a; < —1 does not correspond to any element in HTq(u)=?).
Assume a; = —1, i.e. v is of type 3. Then by Lemma the
element v;_1 must then be of the form

(s1,—2a,—1,1,b,b,51 +1) = ez w’€ey 41
(p—1,-20—1,1,0,b+1,b,2) = e, 1£@ (EDE)® @ Ley
(s2,—2a—1,1,0,a,a+ 1,p+ 1 —s2) = 682(§®§)®a+1ep+1_52
(s3,1,1,0,—1,0,p+ 1 — s3) €s3 ® €pi1 sy

with1 <s31 <p-1,1<s3<p—-2,1<s3<p—1,a,b>0. By
minimality of [, the a- and b-degree of v;_1 must satisfy a;_1 —b;_1 >
2. Hence a; cannot be equal to -1.
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Assume a; = 1. That means v;_; has j-degree -1 and by Lemma

(445l is of the form

(s1,—2a,—1,1,a,a,s1 +1) =
(p,—2a—1,-1,0,a+1,a,1) =

(p—1,-2a—-1,-1,1,a+1,a,2)

IR

es, Wres, +1

ep® (R ®e
ep—1£ ® (£ ® &) ® wey
ep—17 ® (£ ® €)% ® Eea)

with 1 <51 <p—1,1< s <p—3, a>0. However, again by
minimality of [, the a- and b-degree of v;_1 must satisfy a;_1 —b;_1 >
2. Hence a; cannot be equal to 1 either.

Hence v is reducible.

4.5 New irreducible monomials of w,

A consequence of the previous result is that we can only build irreducible monomials from
elements of i-degree at least -2, and they must have j-degree at least -2 as well.

Lemma 4.5.1. The monomial basis elements of HTd(g)Sl of i-degree at least -2 and
j-degree at least -2 from which x& cannot be non-trivially factored are given below

(87 17 17 07 _17 07 p+ 1- S) =es® e;+175

(s, 0, 1, 0, 0, 0, s+1)

(s, 0, 0, 0, 0, 0, s)

(s, 0, 0, 1, 0, 0, s+2)

(s, 0, —1, 1, 0, 0, s+1)

(s, 0, =2, 2, 0, 0, s+2)
p—1, -1, 1, 0, 1, 0, 2)

(s, —1, 1, 0, 0, 1, p+1—y3)

(p, =1, 0, 0, 1, 0, 2)
(p—1, -1, 0, 0, 1, 0, 1)

(p, -1, —1, 0, 1, 0, 1)
p—1, -1, -1, 1, 1, 0, 2)

(p, -1, =2, 1, 1, 0, 2)
p—1, -1, =2, 1, 1, 0, 1)

(s, =2, 0, 0, 1, 1, s)

(3, =2, =2, 1, 2, 0, 1)

€s§€s+1
€s

esréesyo

€sTEst]

2
esT es42

ep—1§ ® Eea
e ® £€p+173
ep @ e
ep—1§ @ eq

ep X el

ep—1§ @ xea Eep_17 ® Eea
ep @ ey
ep—1T X €1

eswWeg

=esR@rE@el( if p=23).

Proof. Let v be such a monomial basis element of HTg(u)=!. Then its i-degree 4, satisfies

—2 <, < 1. Let us study these four different cases.

(i, =1) If i, = 1, then v is an element of H(u) and so is of the form v = (s,1,1,0,—1,0,p +
1 —s) =es®e,,y_5. Note that it is irreducible.

(i, = 0) If iy = 0, then v is an element of d, so it is of the form

(s,0,—(t —s) + 2u, (t —s) — u,0,0,t),
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with ¢ — s > 0. The element v has at least j-degree -2 if and only if
—(t—s)+2u>-2
i.e. if and only if
t—s <2+ 2u.

If uw = 0, we then have

o t—s=0,and v = (s,0,0,0,0,0,s) = eg;
ot—s=1,and v = (s,0,—1,1,0,0,5s + 1) = esxesyi1;
ot—s=2and v =(s,0,-2,2,0,0,5+2) = e;xeso.

If w =1, in particular ¢t — s > 0 by definition of type 1 elements, and we have

ot—s=1,and v = (s,0,1,0,0,0,5 + 1) = es€esy1;

o t—s=2,and v = (s,0,0,1,0,0,s + 2) = esx€esyio;

o t—s=3, andv—( 5,0,—1,2,0,0, s + 3) = egr’feqys;
(s,

ot—s=4,and v = -2,3,0,0,s+4) = estesiy.

By Proposition we know that we must eliminate esz%¢e,,3 and e,z>Eeqqq from
that list of possibilities. The elements of i-degree 0 satisfying the required conditions
are

(s,
(5,0 1,1,0 0 8+1) = esxes+1
(s, 0 ~2,2,0,0,5+2) = esxes 0
(5,0,1,0,0,0,s + 1) = es€est1
(5,0,0,1,0,0,s 4+ 2) = eszéesyo.

If i, = —1, then v is an element of H(u™!) and so is of the form
(s,-1,—p—(t—s)+2u,p—1+(t—s) —u,1,0,t),
or
(p_ 17_17170717072)7

or
(s,—1,1,0,0,1,p+ 1 — s),

with 1 < s < p — 2 in the last case.

The last two possibilities satisfy the conditions required and so are on the list. We
need to study the first possibility more carefully. Recall that 1 < s,¢ < p, so that
1—p<t—s<p-—1. The element v has at least j-degree -2 if and only if

—p—(t—s)+2u>-2

which writes equivalently
t—s<242u—np.

Ifu=0,thenl—p<t—s<2—p, sowe have

ot—s=1—-p,andv=(p,—1,-1,0,1,0,1) = e, @ ey;
o t—s=2—p,and
* v=(p,—1,-2,1,1,0,2) = e, ® wey;
xorv=(p—1,-1,-2,1,1,0,1) = ep_1x ® e;.
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If u =1, then t — s > 2 — p by definition of type 1 elements asu=1and a —b=1,
hence 2 — p <t —s <4 — p, and we have

o t—s=2—p,and
* v=(p,—1,0,0,1,0,2) = e, ® en;
* orv=(p—1,-1,0,0,1,0,1) = e,_1£ R ey;

o t—s=3—p,and
* v=(p,—1,—-1,1,1,0,3) = e, @ zes;
xorv=(p—1,-1,-1,1,1,0,2) = €p_1& ® zea = ep_12 ® Ee;
xorv=(p—2,-1,-1,1,1,0,1) = ep_22& ® ey;

ot—s=4—p, and
* v=(p,—1,-2,2,1,0,4) = ¢, ®x2§e4;
xorv=(p—1,-1,-2,2,1,0,3) = e, 1£ @ 2%e3 X e, 17 @ 2€es;
x orv=(p—2,-1,-2,2,1,0,2) = ep_22f ® veg = ep_2x2 ® €ea;
xorv=(p—3,—-1,-2210,1) = e, 32% Dey.

By Proposition [£.4.1] s and ¢ must satisfy s > p—2 and ¢ < 3, so we must eliminate

all the elements of case u = 1 and t—s = 4—p, and elements e, ® ez and e,_21{Xe;
ofcasscu=1landt—s=3—p.

The elements of i-degree -1 satisfying the required conditions are

(p,—1,-1,0,1,0,1) = e, ® €1

(p,—1,-2,1,1,0,2) = e, ® wes

(p—l,—l, —2,1,1,0,1) = e 12 @ €1

(p, — 1,0,0,1,0,2)fep e

(p—1,-1,0,0,1,0, 1)—6p 1€ Rep
(p—1,-1,-1,1,1,0,2) = ep_1{ @ wea = ep_17 ® e
(p—1,-1,1,0,1,0,2) = e,_1& ® &eo
(5,—1,1,0,0,1,p+1—s) = €& ® Eepyi—s.

If i, = —2, then v is an element of H(u?) and so is of the form
(s,—2,—(t —s) +2u, (t —s) —u,1,1,t),
andt—s >0, or
(s,—2,=2p—(t —s) 4+ 2u,2(p— 1)+ (t — 5) — u,2,0,1).
Consider the j-degree in the latter case:
—2p—(t—s)+2u> -2

is equivalent to
t—s<2(14+u-—p),

but since 1 < s,t <p, 1 —p <t —s, and we have
1-p<2(1+u—p)

or equivalently
p <1+ 2u.
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If u = 0, then we obtain a contradiction, sou =1and p=3. Weget 1l —p=—-2<
t—s<-2=2(14+1-3),s0s=1t+2 and it satisfies 1 <t+2 < 3,ie. s=3 and
t = 1. The corresponding element is v = (3,-2,—-2,1,2,0,1) = e3 @ € @ €.
For the first possibility, by Lemma [£.4.12] we must have s = ¢ in order not to get
any splitting. The corresponding element is v = (s,—2,0,0,1,1, s) = eswes.

The elements of i-degree -2 satisfying the required conditions are

(s,—2,0,0,1,1,s) = eswes
(3,-2,-2,1,2,0,1) = es @ z€ @ ey ( if p = 3).

O

Corollary 4.5.2. The element in first position of an irreducible monomial v1 can be one
of

(37 0, L, 0, 0, O, 5+1) :€3£€S+1

(s, 0, 0, 0, 0, 0, s) = eg

(s, 0, 0, 1, 0, 0, s+2) =esxlesio

(s, 0, =1, 1, 0, 0, s+1) =esresi

(5, 0, =2, 2, 0, 0, 5s+2) =esres s

Since we want to understand the new arrows of w,, we can assume v; is not an
idempotent of d.

4.5.1 Irreducible monomials starting with &, z¢ or z°

Proposition 4.5.3 (Irreducible monomials starting with §). Let v = v1 ® ... ® vy be an
irreducible monomial of wy such that vi = es,§es,+1 for some 1 < sy <p—1. Then v is
of the form

es;€esi+1 ® (652 ® 6;-1-1—32) ®...Q (esq ® €;+1—sq> .

Proof. If v; = e, €es,+1, it has j-degree 1, hence only elements of type 3 can follow and
these elements are irreducible. We saw that only e;{es and e,_1{e, are not always irre-
ducible (cf Remark . However, being in first position, they could only be obtained
as a product of two elements of d and we saw they are irreducible in HTg (u_l), hence the
result. O

Proposition 4.5.4 (Irreducible monomials starting with z€). Let v = v ® ... ® v, be an
irreducible monomial of wy such that vi = es, x€es, 2 for some 1 < s1 <p—2. Then v is
of the form

€5, 28es, 42 D €5y @ ... B €,

such that (s2,...,sq) ¢ {(1,...,1),(p,...,p)}.

Proof. If vi = eg x€es, 42, it has j-degree 0, hence an element of d must follow. By
Corollary |4.4.13| and since v is irreducible, v; = e,, for all 2 <1 < ¢. Note that vy is not
irreducible: v] = e, xes, 41 - €5, 4+18€5,42 = €5,£€5,41 * €5,41T€5, +2. SUPPOSe we can write

es,wées 12 D €5, @ ... D e,
€51 TEs 41 D V2 @ ... R Yy

* *
es;+1&€s,42 @ (et2 ® ep+1—t2) ®X...Q (etq ® €p+1—tq)

or
€5, 28€s, 42 Q €5y @ ... B €,

5185141 ® (€p+1—52 ® 6:2) ®...0 (ep+1—sq ® e;)
€s;+1L€5142 ® V9 R...Q TN)q
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then in both cases we see that 9; must have j-degree -1 for all 2 <[ < ¢q. By Table
the only way to obtain a type 1 element of the form 1 -3 or 3 -1 is if the idempotents of
the type 1 element satisfy ¢t = 1 or s = p (in particular, the element of type 3 is e; ® ¢;)).
Hence, the first decomposition is possible if and only if e, = ¢, for all 2 <[ < ¢, and the
second is possible if and only if e;, = e; for all 2 <1 <gq. O

Proposition 4.5.5 (Irreducible monomials starting with 2). Let v =1 ®...® vg be an
irreducible monomial of wg such that vy = 631$2631+2 for some 1 < sy <p—2. Then v is
of the form

651I2651+2 X EsoWesy D gy O ... &Y €sqs

such that
e if so =1, there exists 3 <1 < q such that s; # 1;

o if s9 =p, there exists 3 <1 < q such that s; # p.
Proof. If v1 = 651$2651+2, it has j-degree -2, hence by Lemma vy is one of
(s,—2,0,0,0,0,s) = eswes
(3,-2,-2,1,2,0,1) = e3@zé®e; (ifp=23).
Assume p = 3 and vy = e3 @ € ® e1. Since it has j-degree -2, vs has i-degree -2. We can

write the following decomposition:

651$2651+2 ®(e3RrERe) Uz R ... QY
= €52, 41®(3RT)QU3IR ... Q U,
€51 4+1T€5,42 @ (f & 61) Rep®...0 €t,

since ez ® r€ ® e is the product of j-degree -2 element es ®  with j-degree 0 element
§ & eq.

Therefore v must be of the form ez, weg, for v to be irreducible. By Corollary
vp, = e, for all 3 <n < g and v is of the form

eslx2esl+2 Q) 5, WEsy K €5y ... R €sq-

By Remark [4.2.10] we know that eswes is not irreducible if and only if s =1 or s = p,

in which case it can be more conveniently written
eqwe; = 1€ ®E R eq,
and
epwe, = —ep ® E ® Eep,.
We can write the following decompositions if so =1
651$2€51+2 @ es,Wes, W esy Q... Q e,
= e5,Te541® (16 @ Eep) ® (e, ®en ) 4) ® ... ® (esq ® e;;H,Sq)
€si+1%€5,42 @ (p @ e1) ®V3® ... ® Yq
and we can write the following decomposition if so = p
651$2681+2 @ s, Wes, B es3 B ... Q0 e,
= 681$651+1®(€p®61)®f}3®...®’l~}q
€51 +1T€5,+2 & (615 X €ep) X (ep+1733 & 6:3) ®...Q (€p+lfsq ® 6;)

where, for all 3 < n < g, (esn ® e;_H_Sn) Uy = €5, if sS9=1o0r 0y (epH,sn ® e:n) = e, if
s9 = p. By Table we know that type 1 elements of the form 3 -1 or 1-3 must satisfy
spn=11if s9 =1, or s, = p if so = p. Thus, if there exists 3 < n < g such that s, # 1 if
so = 1, that decomposition fails and v is irreducible. Similarly, if there exists 3 <1 < ¢
such s, # p if sy = p, v is irreducible. O
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4.5.2 Irreducible monomials starting with =

We will now give a few results concerning the irreducible monomials starting with z. By

Lemma we know vy is one of

(p - 17 _17 17 07 17 07 2) = ep—lé- ® 562
(s, —1, 1, 0, 0, 1, p+1—5) =e®@Eepti—s
(p7 _17 Oa 07 17 07 2) =€p ® 562
(p - 17 _17 05 07 17 07 1) = ep—lg & €1
(p7 _17 _1a 07 17 07 1) :€p®€1
(p—1, -1, -1, 1, 1, 0, 2) =ep— 1§ @zer Zep_12 ® Eea
(p, -1, =2, 1, 1, 0, 2) =e, ® zey
(p—1, -1, =2, 1, 1, 0, 1) = ep_1T R eq.

We study the different possibilities below.

Lemma 4.5.6 (Elements starting with z® (,—1£®&2)). Let v = v1®...®v, be a monomial
of wg such that vi = es, xeg, 1 for some 1 < sy <p—1, and vy = e,_1§ ® Eea. Then v is
reducible.

Proof. If v1 = e, xes, 41 for some 1 < 51 < p—2, and v = e,_1§ ® ey, then v is of the
form

€5, Tes 41 @ (ep—1€ ® Eea) ® (653 ® e;‘,+1_s3) Q... (esq ® eZH_Sq)
since vo has j-degree 1. Note that we can write vy as the product of j-degree 1 element
ep—18ep by j-degree 0 element e, ® ea. That gives us the following decomposition
s, T€s,4+1 ® (ep_1€ @ Eea) @ (€5, @ €;+1—33) ®... (esq ® €;+1—sq>

* *
= e5 Qep_16ep ® (633 ® ep+1_83) ... (esq ® €p+1—sq>
s, Tesy 11 @ (ep ®Ee2) D epi1-s3 @ ... pr1s,.

Hence v is reducible. O

Lemma 4.5.7 (Elements starting with 2 ® (£ ®¢)). Let v =11 ®... ® vy be a monomial
of wq such that vi = eg xes, 41 for some 1 < 51 < p—1, and v2 = €5,§ @ Eepr1—s, for
some 1 < sg < p—2. Then v is irreducible.

Proof. If vi = es,wes, 41 for some 1 < 51 < p—1, and v = €5,§ ® £epr1—s,, then v is of
the form

€s1T€s14+1 & (6525 ® £€p+1—82) ® (683 ® e;JrlfsS) @... (esq ® 6;+1fsq> :

By Proposition Proposition and Remark the only possibly non irre-
ducible component is v; if s; =1 or s = p — 1. However, since v is in first position, it
can only be obtained as a product of elements of d and it is irreducible in HTq(u™!) by
Proposition Hence v, is irreducible for all 1 < n < ¢ and v is irreducible. O

Lemma 4.5.8 (Elements starting with z® (e, ®¢)). Let v =11 ®...®v, be an irreducible
monomial of wg such that v1 = e xes, 11 for some 1 < 51 < p—1, and va = e, @ Ees.
Then v is of the form

s T€s1+1 @ (€p @ Ee2) ®es; ®... R e,

such that there exists 3 < n < q satisfying s, # p.
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Proof. Since e, ® ey has j-degree 0, by Corollary we know that v, = e, for all
3 < n < q. Hence, v is of the form

s, Tes 41 ® (€p ®Eez) ®eg; ® ... Ve,

However, e, ® {e2 can be decomposed as the product of j-degree -1 element e, ® e; by
j-degree 1 element e;€es. So we could write the following decomposition

es;Tes 41 @ (€p ®Eez) ®es; ®... Ve,
= e5Te4+1®(6p®e)VU3® ... QY

€s;+1 ® 61562 & (€p+1753 ® 623) ®...Q <6p+178q & e:q)

if and only if e5, = vy, - (6p+1,sn ® e:n) for all 3 < n < gq. From Table we see that the
only idempotent which can be written as a product of type 1-3 is e,. Thus v is irreducible
if there exists 3 < n < ¢ such that s, # p. O

Lemma 4.5.9 (Elements starting with ® ({®e1)). Let v = v1 ®...®v, be an irreducible
monomial of wy such that vi = es,xes, 41 for some 1 < sy <p—1, and v = e,_1{ D e1.
Then v is of the form

€51 T€s+1 @ (ep-1§ Ve1) ®Wes; @ ... ® ey,
such that there exists 3 < n < q satisfying s, # 1.

Proof. The proof is very similar to that of Lemma [4.5.8 Since e, 1€ ® e; has j-degree 0,
by Corollary we know that v, = eg, for all 3 <n < ¢. Hence, v is of the form

€5, Tes 41 @ (ep-1§Ve1) e, ® ... D es,.

However, e,_1{ ® e1 can be decomposed as the product of j-degree 1 element e,_1{e, by
j-degree -1 element e, ® e1. So we could write the following decomposition

s Tes 41 ® (€p ®Eez) ®esy ®... Ve,
= e, ®ep 186, (s Qepyy ) ©...® (esq ® e;;ﬂ,sq)
€s1 s 41 X (p R e) VU3 R ... R Yy

if and only if e,, = (esn ® e;+1_8n) -9y, for all 3 <n < ¢q. From Table we see that the
only idempotent which can be written as a product of type 3-1 is e;. Thus v is irreducible
if there exists 3 < n < ¢ such that s, # 1. O

Lemma 4.5.10 (Elements starting with z® ((§ ®z)). Let v =11 ®...®v, be a monomial
of wq such that vi = eg, xes, 41 for some 1 < s;1 <p—1, and vo = ep—1£ R xea. Then v is
reducible.

Proof. The element vy = e,_1§ ® xea has j-degree -1, hence vz has i-degree -1. Note that
vy can be decomposed as the product of j-degree 0 element e,_1§ ® e, by j-degree -1
element ejxes. We then have the following decomposition

€5, Tes;+1 ® (ep_1§ @ xe2) AUz ® ... ® 1y
= e5Tes 11 Q@ (1l ®er) Ve, ®...Qes,
€s1+1 K e1xre2 QU3 Q... Q vq.

Therefore, v is reducible. ]
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Lemma 4.5.11 (Elements starting with 2 ® (e, ®z) or z® (z®e1)). Let v =11 ®...Qvq
be an irreducible monomial of wg such that vi = es, xegs, 1 for some 1 < s1 <p—1, and
Vg = ep_1T @ ey or Vg = e, @ xea. Then v is of the form

€5, TEs1 41 QU2 B e Wegy Wegy &... K €sq>
such that
o if s3 =1, there exists 4 <1 < q such that s; # 1;
e if s3 =p, there exists 4 <1 < q such that s; # p.

Proof. If vog = ep,—12 ® €1 or v2 = e, ® wea, we see that it can be decomposed into two
parts of j-degree -1:
ep—1T @ e] = ep_12€p - (€p @ e€1)
or
ep ® xex = (ep ®eq) - e1xen.
Note also that vy has j-degree -2, hence by Lemma |4.5.1} v3 is one of
(s,—2,0,0,0,0,5) = eswes
(3,-2,-2,1,2,0,1) = e3@a{®e; (if p=23).
Assume p = 3 and v3 = e3 ® £ ® e1. Since it has j-degree -2, vy has i-degree -2. If
v = ep_17 ® e1, we can write the following decomposition

€505 +1 D ep 120 e Q(e3DTER ) DUy ® ... Qg
= €5, ®ep_ 176, R (3R T) QUL ® ... Dy
esTes 11 X (epRe1) ®((®er)Vey ®...Q e,
since e3 ® € ® ey is the product of j-degree -2 element es ® x with j-degree 0 element

E®ey.
If vy = e, ® zez, we can write the following decomposition

€51 L5 +1 D ep 120 €1 Q(e3RTER ) DUy R ... R g
- 681x€81+1®(6p®61)®(63®€)®654®...®65q
es; 41 @e1zer® (2 ®er) DUy ® ... ® Y

since e3 ® x€ ® e is the product of j-degree 0 element e3 ® £ with j-degree -2 element
T e;r.
Therefore v3 must be of the form eg,weg, for v to be irreducible. By Corollary 4.4.13

vy, = eg, for all 4 < n < q and v is of the form
€5, TEs514+1 Q V2 B e Wes, Wegy &...& €5y

By Remark [4.2.10] we know that esweg is not irreducible if and only if s =1 or s = p,

in which case it can be more conveniently written
eqwe; = 1€ ®E R eq,

and
epwep = —ep @ § @ §ep.

We will ignore the sign of e,we, for convenience. Assume that s3 = 1. Then, if vo =
ep—12 ® e1, we can write the following decomposition

5175141 @ (€p_17 ® e1) ® esywes; Desy, ... D e,
€s ®ep1ey @ (16 ® Eep) ® (€5, ®ef ) () ® ... ® (esq ® ezﬂ,sq)
es,Ts, 41 @ (epRe1) R (epRer) R ® ... R Vg
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and if v = e, ® wea, we can write the following decomposition

s, Ts; 11 ® (€p ® Tea) ® egywes;, Ve, @ ... R e,
= e 1 @ (@) B (€ D) @ (0, @ epp1_y,) @@ (60, @iy, )
esi+1 Verzes® (ep®er) U ® ... Q Ugy.

Assume now that s3 = p. If v2 = e,_17 ® e1, we can write the following decomposition

s T€s+1 @ (€p_17 ® e1) ® e wes; Deg, ... Q e,
s, ®ep_12ep @ (ep R e1) U Q... ® Uq

€s %5, 41 ® (€p ®€1) ® (€16 D Eep) @ (ep+1—84 ® 624) Q...® <€p+1—5q ® eiq)
and if v2 = e, ® xea, we can write the following decomposition

s, T€s+1 @ (€p ® Te2) ® egywes; Ve, @ ... X eg,
€s1 %541 ® (ep ®e1) ® (ep @ e1) WU & ... ® g

€s,+1 Q@ e1zes ® (e1€ ® Eep) ® (ep+1_54 ® 6:4) ®R...0 <6p+1_sq ® e’s‘q) )
These decompositions are possible if and only if for all 4 <n < g, (esn ®epiq Sn) “Up, = €,
if sg=1o0r v, (epH,Sn ® e:n) = eg, if s3 = p. By Table we know that type 1 elements
of the form 3 -1 or 1 -3 must satisfy s,, = 1if s3 =1, or s, = p if s3 = p. Thus, if there
exists 4 < n < g such that s, # 1 if s3 = 1, that decomposition fails and v is irreducible.
Similarly, if there exists 4 <1 < ¢ such s, # p if s3 = p, v is irreducible. O

All the previous results can be summarised in the proposition below.

Proposition 4.5.12 (Irreducible monomials starting with x). Let v =v; ®...®v, be an
irreducible monomial of wy such that vi = es xegs, 1 for some 1 < s1 <p—1. Then v is

108



4.5. New irreducible monomials of Wy

of the form

q
* 0 S n S q— 27
TR (6P ® 61)®n ® (65n+2£ ® é-6p+1*5n+2) ® ® (€3l ® 6p+1—sl) 1<s < p— 2:
I=n+3 = ont2 = ’

T ® (ep ®ep)®r?

q 0 <n< q— 3a
2@ (epee)*" @ (E@e)® (X) e I>3+n
1=3+n s.t. s # 1,
q 0 S n S q— 35
z®(ep®e)”" ® (e ®E) ® ®€sl d>3+n
1=3+n s.t. sy # p;

q
0<n<qg—3
T (ep (=) 61)®n (=) (1‘ & 61) & €53, Wesg,,, & ® €s, e ’
I—dtn S34n 7& ]-7p7
q 0<n< q— 45
2@ (ep®e))*" @ (z@er) @erwe; ® (X) e, A >4+n
l=4+n s.t. sy £ 1;
q 0 S n S q— 45
2@ (ep®e)*" @ (z@e1) ®epwe, @ (X) ey, JN>4+n
I=4+n s.t. sy # p;

q
0<n<qg—3
x ® (ep ® 61)®n ® (ep ® x) ® €S3+nw€sg+n ® ® eSl - B ’
I—din S3+4+n 7& 17p7
q 0 S n S q— 45
T® (ep@e1)®" @ (ep ® T) @ e, wey @ ® es, A>4+4n
I=d+n s.t.os; # 1
q 0<n<q—4,
z® (ep®e1)?" @ (e, ®T) ® e5,wep @ ® es, A>4+n
I=4+n s.t. s #p.

Proof. For v; = es,wes,+1 with 1 < s < p —1, an element of i-degree -1 must follow. So
by Lemma [£.5.1 we know vg is one of

(p_ 17 _17 1a 07 17 0, 2) = €p71£®§€2
(s, =1, 1, 0, 0, 1, p+1—35) =es{f@Eepti—s
(p, =1, 0, 0, 1, 0, 2) = e, ® ey
(p -1, -1, 0, 0, 1, 0, 1) = ep_1§ ® eq
(», -1, —1, 0, 1, 0, 1) —e,®e;
(p—-1, -1, -1, 1, 1, 0, 2) =ep-1{ @ xex Zep_17 @ Eea
(p, -1, =2, 1, 1, 0, 2) =e, ® zey
p—-1, -1, =2, 1, 1, 0, 1) =ep_1T ® eq.

By Lemma §5§|, vy cannot be e,_1§ ® {ea as v would then be reducible.
By Lemma E.5.7L vg can be €4, ® epy1—s, for 1 < sp < p —2, and v is of the form

€s1 85141 ® (€5,€ ® Lepr1—s;) ® (€53 D €py1 ;) B ... (€5, @ e;Jrl—sq)'
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4.5. New irreducible monomials of Wy

By Lemma [4.5.8] v3 can be e, ® e as long as there exists 3 <1 < g such that v; # ep;
v is then of the form

517511 @ (€p @ Ee2) ®es; ®... Ve,

By Lemma vg can be e, 1§ ® e1 as long as there exists 3 < [ < ¢ such that
vy # e1; v is then of the form

€5, s 11 @ (€p 1§ ®e1) ®eg; ... R e,

By Lemma [£.5.8 vy cannot be e, 1§ @ xes = e, 12 ®Eez as v would then be reducible.
By Lemma [4.5.11}, vo can be e, ® zez or e,_17 ® e; as long as there exists 4 <[ < ¢
such that v; # ey if s3 = 1, and such that v; # e, if s3 = p; v is then of the form

€5, TEs141 Q V2 W e, Wes, Wegy &...K €sq-

Finally, we need to address the case when vy = e, ® e;. Assume it is the case. Since
that element has j-degree -1, by Lemma [4.5.1| again, we know that v3 must be one of

(p—1, -1, 1, 0, 1, 0, 2) =e,—1E ® e
(87 -1, 1, 0, 0, 1, p+1_8) :€s§®€€p+1_s
(p, =1, 0, 0, 1, 0, 2) = e, ® fes
(p_17 _17 Oa 07 17 07 1) :€p715®€1
(p, —1, -1, 0, 1, 0, 1) = e, ®e1
(p—1, -1, -1, 1, 1, 0, 2) = ep_1€ D wer X ep 17 ® Lo
(p, -1, -2, 1, 1, 0, 2) = e, ® veo
-1, -1, -2, 1, 1, 0, 1) = ep 1T @ el

Considering all the decompositions provided in the previous proofs of the results concerning
irreducible monomials starting with x, we see that they all are of the same form, namely

€5 TEs1+1 XV R U3 ... D Vg
= €Slx€sl+1®f12®l~)g®...®’5q
€s1+1 QD2 RV3 R ... ® Uy

or
€5, T 11 V2 X VU3 RV ... 0 Vg
= 651®f}2®f)3®...®f)q
651I651+1®1§2®’(~)3®...®1}q

such that 7y is an element of d, and @ is an element of H(u™!). Informally, we could
append the element e, ® e1 in position 2 and still obtain a valid decomposition, namely

€5, e +1 X (epRe1) Vv VU3 ® ... Dy,
= 651x631+1®(ep®e1)®52®@3®...®f}q
esl+1®e1®f}2®{;3®...®ﬁq

or
€5, e +1 R (epRe1) Aua W U3 ® ... Dy,

= €, Qep R RI3D...0 b,
CoegTes 41 ®(epRe1) VU D V3R ...V Ty

as ep ® eq has j-degree -1.

Furthermore, we see that we can append as many e, ® e;’s as we want (as long as we
are still in the bounds regarding the length of the element), and the decompositions and
results will go through. One just needs to adjust the indices upon which the results rely.
Hence, if v; = e, ® 1 for all 2 <1 <n+ 1, we have
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4.6. The quiver of w,

e by Lemma Upt2 cannot be e, 1£ ® ey as v would then be reducible;

e by Lemma Un+2 can be e, & ® eppi_g,., for 1 < sp40 < p—2, and v is of
the form

eslxesl+1®(ep ® 61)®n®(€sn+2§ ® gep+1—5n+2)®(€5n+3®€;+1*5n+3)®' e (65q®€;+1*84);

e by Lemma[4.5.8] v,42 can be e, ® ey as long as there exists n+3 <1 < ¢ such that
U] # ep; v is then of the form

€s,TEs;+1 & (ep ® 61)®n X (ep ® 562) ® €sni3 ®...® €sqs

e by Lemma Un42 can be e, 1§ ® e1 as long as there exists n + 3 <[ < ¢ such
that v; # e1; v is then of the form

s Tes+1® (e ®e1)®" @ (ep_1£ ®e1) @ es, s @ ... ® ey,

e by Lemma Up+2 cannot be e, 1§ @ xey = e,_12 @ Eeg as v would then be
reducible;

e by Lemma Un42 can be e, ® wea or e,_1x ® e as long as there exists n +4 <
[ < g such that v; # ey if 5,43 = 1, and such that v; # e, if 5,43 = p; v is then of
the form

XN
s T€s+1 @ (€p®e1)”" @Unta ® €s,,,Wes, 5 s,y @ ... D es,.

Finally, since e, ® e; is irreducible, we see that
681x681+1 ® (ep & el) X...x0 (ep & el)

is irreducible. The description is now complete. ]

4.6 The quiver of w,

4.6.1 Description of V,

We now gather all the results obtained so far.
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4.6. The quiver of w,

q
es;6es;+1 ® ® (es, ® e;+175l)

=2

q

€s;Tes;+1 ® (6P ® 61)®n & (esn,+2€ &® £eP+1—Sn+2) & ® (eSl ® €;+1,Sl)

l=n+3

®qg—1
e zes 11 ® (ep ® 1)

es Tes;+1 @ (ep @€1)®" @ (E@er) ® €s,
=3+n
s Tes;+1® (ep ®e1)®" ® (ep ® ) ® ® €sy

1=3+n

®
€1 Z€s 11 @ (e, ®e1)”" @ (xR €1) ® €sy,, Wesy,,, @ ® es,
l=44+n

q
) (r®e1) ®erwer ® ® es,
l=44n

es,Tes;+1 ® (ep 1)

q
s, Tes;+1 @ (ep @ el)®n ® (z®e1) ®epwey, ® ® €s;

l=4+n

®
es; sy 11 ® (ep ®e1)”" ® (ep @ ) ® sy, Wess,,, ® ® es,
l=4+n

q
® (ep R ) @ erwer ® ® es,
l=44n

es;Tes;+1 @ (ep ® el)®n

q
" @ (ep @ T) ® epwe, @ ® es,
l=4+n

e @es 41 ® (e ® 1)

q
eswées 12 @ (R e,

=2

q
2
€5, T €5 42 ® €5, Wesy @ ® €s;
=3

q
2
€s, T €542 @ erwer ® ®€sl
=3

q
2
€5, T €542 @ epwep ® ® €s,
1=3

where 1 < s; < p (unless otherwise stated) and S = {(1,...
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Theorem 4.6.1. The new arrows for the quiver of wq are of the form

1<s1<p-—1;

1§51§p_17
0<n<qg—2,
1<spr2<p-—2;

1<si <p—1

1§51§p_17
0<n<qg-3,
A >3+n
s.t. s # 1;

1<s1<p—1,
Ogngq_37
HA>3+n
s.t. s # p;

1<s1<p—1,
Ogngq_37
s34n 7 1,p;

1< s SP_L
OSTLS!]—ZL,
A >44+n
s.t.osp # 1

1<s1<p-1,
Oﬁnﬁq_47
A >44+n
s.t. s # p;

1S51 Sp_:l?
Ogngq_&
834n 7 1, p;

1<s1<p-—1,
Oﬁnﬁq_47
A >4+n
s.t.osp # 1

1S81§p717
Ogngq_47
A >44n
s.t. 81 # p;

1<s1<p-2,
(5202 50) £ 5

1§31 Sp_27
2<s<p—1;

1<s1 <p-2
3l >3 s.t. s # 1

1<s1<p-2,
3l >3 s.t. s # p;

1), (p,--,p)}-



4.6. The quiver of w,

Remark 4.6.2 (On the value of g and irreducibility). Suppose ¢ = 2. Note that the element
2’ ®eqwer =1 ® (1€ ® Lep) - 7@ (ep ® e1)

is not irreducible, but the element
22 X esweg

is irreducible for all 2 < s < p —1. We see that going to ¢ = 3 and appending idempotent
e9 to the element 2 ® ejwe; makes the resulting element

x> X ejwe; ® ez
irreducible.

Corollary 4.6.3. The algebra w is generated in degrees 0, 1 and 2.

4.6.2 Quiver of w,

Similarly to the case p = 2, we can view V; as the quiver of w,. Since w, is the extension
algebra of the standard modules of an algebra of finite global dimension, it is finite-
dimensional. By definition of V;, we can write w, as the quotient of a tensor algebra by
some ideal, namely

Wq = TBV:] / I,
where the tensor product is taken over the semi-simple algebra B made up by the idem-
potents of wy,.

Now, Vj is a (finite) subset of monomial basis elements of w, which is a multiplicative
basis for w,. Since w, is multigraded, Z must be homogeneous with respect to that
(4,7, k, a,b)?-grading. Since an element z € V; is uniquely determined by its (4, j, k, a, b)?-
degree (together with idempotents on the left and on the right), we obtain that Z cannot
contain any element of V;: let vi + ... 4+ v, € Z, with v;’s words in elements of V,; then
all v;’s have the same (3, j, k, a, b)?-degree since 7 is homogeneous. In particular, at most
one v; is in V. This is a contradiction as we would obtain a linear relation between
basis elements of w,. Therefore, all v;’s are words in at least two elements of Vg, i.e.
T C V,®p V4. In addition, since wy, is finite-dimensional, there cannot be words in V;, of
infinite length. Thus, there exists N > 2 such that

‘/;@BNCIC‘/;I@BVZJ’

so that Z is admissible.
We can therefore interpret V; as the quiver of w,. We see that the vertices are given
by the simples of w, and the set of arrows of the quiver corresponds to V.

Ezxample 4.6.4. To illustrate that section, we give the quiver of wo for p = 3 in Figure[4.1
The labels correspond to the following irreducible monomials of wa:

a; = e; ®efer
b; = e;®exdes
i = elea® (eq4—; ®ej)
di = exe3®(e4—; ® 6:)
o, = e Kejxes
Bi = e ®eaxes
M = ezer ® (e1€ ® Ees)
v3 = e1xes @ (e3®eq)
01 = eare3® (e3®eq)
(53 = exe3® (615 &® 563)
p = ei1xéez ® ey
v = 61x263 X eswes.
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4.6. The quiver of w,

9

> > A

s /<
/ /]DT \\ \

<\7 <\5 <

CS 73
53

Figure 4.1: Quiver of wo for p =3
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Chapter 5

A -algebras

This chapter relies on [Kel99], [Lef03] and [Amol2].

5.1 First definitions

5.1.1 Motivations

Let F' be a field. The following problem constitute a motivation for the study of the
A -algebra structure of the extension algebra of Weyl modules of the principal block of
rational representations of GLa(TF).

Let A be an associative unital F-algebra and let A1, As, ..., A, be A-modules. Denote
by F(A) the full subcategory of the category of left A-modules whose objects admit finite
filtrations with subquotients among the A;. We can describe that category as the closure
under extensions of the A;’s. One can ask if F(A) is determined by the extension algebra

EXtZ(A, A),Where A= ®1§i§nAi-

In particular, how can one reconstruct the category of iterated extensions of A;’s from
Ext (A, A)?

In [Kel99], Keller shows that one can do so if the A-structure on the extension algebra
is known.

5.1.2 Definition of an A_-algebra
Definition 5.1.1. [Kel99] Let F' be a field. An Ay -algebra over F is the datum of a
Z-graded vector space

A= ar

PEL

together with graded maps (i.e. homogeneous F-linear maps)
mp : A" — An > 1,

of degree 2 — n satisfying the following relation for all n > 1

n n—s

DD )T, (19 @ my @ 19777) = 0,
s=1r=0

We call these relations Stasheff identities of order n.



5.1. First definitions

Remark 5.1.2 (About signs). In the definition, the sign convention adopted by Getzler-
Jones |GJT90] is used. In addition, note that when formulae are applied to elements,
additional signs appear because of the Koszul sign rule:

(feg)(zoy) =1 f@) o gy),

and
(foghek)=(1"lfonagok,

if f,g,h,k are homogeneous F-linear maps and x,y homogeneous elements whose degree
is denoted between vertical bars, e.g. | f| for the degree of f.

For small values of n > 1, the Stasheff identities give:
e For n = 1, we have m;m; = 0, which means that (A, m;) is a differential complex;

e For n =2, we have
mime =ma2(m; ®1+1®my)

so my is a graded derivation with respect to the multiplication my. We have indeed:

mime(r®y) = mae(m ®@1+1@m)(z®y)
= mi(x) @y + ()™ @ m (y)

and since [m1| = 1, the map m; is then the usual differential on the tensor product;
e For n = 3, we have
ma(l@ma—me®1) =mimz+m3(mMm1®1+10m @1+11®m),
so that me is associative up to a homotopy given by ms.
The definition yields three immediate consequences:

(i) In general, an A..-algebra is not associative, but its homology with respect to my,
H*(A), is an associative graded algebra for the multiplication induced by ms.

(ii) If A" = 0 for all I # 0, then A is concentrated in degree 0 and is an ordinary
associative algebra. Indeed, since m,, is of degree 2 — n, all m,, other than msy have
to vanish.

(iii) If m,, vanishes for all n > 3, then A is an associative differential Z-graded algebra
(or dg-algebra) and conversely, each dg-algebra yields an A,-algebra with m,, = 0
for all n > 3.

5.1.3 Morphisms of A _-algebras

Definition 5.1.3. [Kel99] A morphism of Ax-algebras f : A — B is a family
fn:A®" = B

of graded maps of degree n — 1 such that for all n > 1

(_1)#fn78+1(1®1’®ms®1®n—r—5) = Z Z (_1)*m7“(fi1 ® ®flr)7

s=1r=0 r=1414+...+i,=n

r—1
where # =r +s(n —r —s) and * = Z(fr — (i —1).
=1
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5.2. Minimal models and formality

As for the multiplication maps in the definition of an A,.-algebra, we write down the
relations defining morphisms of A-algebras for small values of n > 1:

e For n =1, we have fiymi = mq f1, namely f; is morphism of complexes;

e For n =2, we have
fima =ma(fi @ fi) +mife+ fa(m1 @1 +1®@my)
so fi1 commutes with the multiplication msg up to a homotopy given by fs.

Definition 5.1.4. We define the composition of two morphisms f : B — C andg: A — B
by

(fogn=D_ >, (~1)frolgy® - Dg),

r=141+...+i-=n
r—1

where * = Z(r =Dy —1).

=1

Definition 5.1.5. We say that a morphism f = (fy)n>1 is:
1. a quasi-isomorphism if fi is a quasi-isomorphism;

2. strict if f; = 0 for all ¢ # 1.

5.2 Minimal models and formality

We now give an important result in the field of A,-algebras which is important for our
task of computing an A-algebra structure.

Theorem 5.2.1 (Kadeishvili [Kad80],[Kel99],[Lef03] ). Let A be an As-algebra. Then
the homology H* A has an A-algebra structure such that

1. we have m; = 0 and mq is induced by m‘24;

2. there is a quasi-isomorphism of Asc-algebras H*A — A lifting the identity of H*A.
Moreover, this structure is unique up to (non unique) isomorphism of Aso-algebras.
Proof. See in [Kad80| for instance. O
Definition 5.2.2. An A-algebra such that m; is identically zero is called minimal.

In the context of Theorem we say that H*A is a minimal model for the A..-
algebra A.

Definition 5.2.3. An A..-algebra whose minimal model can be chosen such that all
higher multiplications vanish, namely m,lf " =0 for all n > 3 is called formal.
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5.3. Multi-graded A .-algebras

5.3 Multi-graded A .-algebras

Our task at hand relies on several multi-graded algebras and we see that we can easily ex-
tend the definitions of A,.-algebras and morphims to a multi-graded setting. Furthermore,
we also have an equivalent of Kadeishvili’s Theorem in that setting.

Let F be a field. Let A be an (di,da,...,dy, k)-graded dg-algebra, whose differen-
tial graded structure is taken with respect to the k-grading. We want to prove that its
homology H*A carries an A,.-structure with respect to the k-grading and which is also
(di,da,...,dn,k)-graded. Let us make this statement more precise:

Definition 5.3.1. A (dy,da, . ..,dn, k)-graded Ao -algebra A is the datum of an (i1, 9, . . ., iy, k)-
graded F-vector space together with graded maps

my, : A" — A

of degree (0,0,...,0,2 —n) satisfying Stasheff multiplication identities:

SI(n) D (1) m, (1%7 @ my © 1) = 0,

for all n > 1, where the sum runs over decompositions n = r+ s+t and we let u = r+14+,
where r,t > 0 and s > 1.

Note that the identity SI(n) has homogeneous degree (0,...,0,3 —n).
Similarly, we can extend the definition of A,-morphisms:

Definition 5.3.2. A morphism of (dy,ds,...,dN,k)-graded Ax-algebras f: A — B is a
family
fn: A®" - B

of (i1,12,...,in, k)-graded graded maps of degree (0,0, ...,0,1—n) such that for alln > 1

(_1)#fnfs+1(1®r®m8®1®n_r_8) = Z Z (_1)*mT(fi1 ® "'®fir)7

s=1r=0 r=141+...4+1i=n

r—1
where # =r+s(n —r —s) and * = Z(r — (@i —1).
=1

Theorem 5.3.3 (Kadeishvili’'s Theorem analogue). Let A be an (dy,da,...,dN,k)-graded
dg-algebra, whose differential graded structure is taken with respect to the k-grading. There
18 an Aso-algebra structure on its homology H*A with m1 = 0 and mo induced by the
multiplication on A, such that there is a quasi-isomorphism of As-algebras H*A — A

lifting the identity of H*A.

Proof. We follow in essence the proof provided by Kadeishvili in [Kad80] and show it is
compatible with the additional gradings.

We denote by § the differential on A; it is in particular a graded F-linear map of degree
(0,...,0,1). We let m? denote the multiplication map in A; it is a graded bilinear map
of degree (0,...,0,0).

We need to construct graded higher multiplications m,, on H*A satisfying the Stasheff
identities and a graded Ao-morphism f = (f,), between H*A and A which lifts the
identity of H*A such that the gradings (di,...,dy) are preserved by both the higher
multiplications and the As-morphism, by which we mean that they are of (di,...,dy)-
degree (0,...,0).
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5.3. Multi-graded A .-algebras

We will do this inductively. Let ¢ = 1. We take m; = 0 of k-degree 1 and, since we are
working over a field, we can define f; : H*A — A to be an embedding of the homology
into A, i.e. df;1 =0 and it has k-degree 0. In particular,

mimiy = 0,

and
Jimi1 =0=0fi,

hence the A,.-relations for multiplications and for morphisms are satisfied, and by defi-
nition, they preserve the gradings (di,...,dy) and are of the right k-degree. In addition,
f1 lifts the identity of H* A.

Suppose that m,, and f, are constructed for n <14 — 1 in such a way that they satisfy
the A-relations. Let

n—1

Un = Z(_l)il_lmﬁ(fh ® fn—il)
i1=1
n—1ln—s
+ Z Z(_l)#Jrlfn—s—‘rl(l@T Q@ ms ® 1n77’75)
s=2 r=0

where # = r 4+ s(n — r — s). This is well defined as U,, only involves maps m; and f;
such that | < n <17 —1, and they exist by assumption. In particular, U,, preserves the
(di,...,dyn) grading.
The defining relations for morphisms of multi-graded A.-algebras in Definition [5.3.2

write

Ofn = fimpn — Uy,
or equivalently

Un = flmn — 5fn
Applying §, we see

0Up =4 fimp — 60 fu,

and by definition of a differential and by definition of fi, we know that 62> = 0 and
0f1 = 0, so that U, = 0. This means that U,(a1 ® ... ® ay) is a cycle in A, so we can
define my (a1 ® ... ® ay) to be the class of Uy (a1 ® ... ® a,); we have

flmn(al ®...®an) == Un(al ®...®an)

as f1 is an embedding of the homology into A. In addition, we see that m,, preserves the
(di,...,dn) grading and is of k-degree 2 — n.

Finally, we can define f,(a; ®...® ay) to be an element of A which is a boundary for
the difference fim, — U,, and assuming ay,...,a, are generators of H*A, we can extend
fn linearly for it to be a well-defined graded map. Again, defining f, in such a way means
that it is a (di,...,dn, k)-degree (0,...,0,1 — n) map, and the maps m,, and f, satisfy
the relations for f to be a morphism of multi-graded A,.-algebras.

We still need to check that the higher multiplications satisfy the Stasheff identity
SI(n+ 1), i.e. the relation

n n

|
5

(—1)T+(n+1_r_t)tmr+1+t(1®r ® Myt1—r—t ® 1%%) = 0.
r=01

I
o

Note that this is the first relation in which m,, appears; in SI(n), the terms containing
n—1
my, are mim,, and Z mp (19" @ my ® 177177 and since we chose m1 to be identically

r=1
zero, these terms vanish.
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5.4. Tensor product of A..-algebras

Due to the complexity of the formulas, we will show that ms satisfies SI(4); the
general case follows in the same manner after very lengthy computations using the different
Stasheff identities for higher multiplications and morphisms of A..-algebras. Note that
these relations preserve the (d, ..., dy)-grading.

Assume n = 3, the higher multiplication mg writes

m3 =ma(fi® fo— fo® f1) + (1 @m2 —ma®1),
and SI(4) is the relation

ma(me @192 —1@my ® 1+ 192 @ my)
—ma(m3 ® 1 +1® m3)
= 0.

We will call the first line of SI(4) expression A, and the second expression B. We have

A= ma(fim2® f —fa(me ®1)® f1) +fa(ma @ mo —ma(me ®1) ® 1)
—ma(fi ® fama ®1) —fo(1®@m2)® fi) —fo(1@me(ma®1) —ma(l®@mg)® 1)
+ma(fi @ f2(1®@ma) —fa® fima) +f2(1 @ ma(l®@ma) —mo @ ms)

= ma(f2(1 ®@ma —mz ® 1) ® f1) +ma(f1® f2(1®@mz —ma®1))
+ma(fima ® f2) —ma(f2 ® fima)
and
B = —ma(ma(f1® fo —fo®@f1)®1) +fo(l®@me —my®1)®1
—ma(l@ma(fi® fo —f2® f1) +1® fo(l@my —ma®1))

so that, cancelling elements with opposite signs, A + B gives

A+ B= ma(fima® fo— fo® fima
—ma(m2(fi® fa— fo® f1) @1 +1@ma(fi® fa — f2 @ f1))

Recalling the A,.-morphism relations for n = 2, which, since m; = 0, is

fima = ma(f1 ® f1)
we have

A+B= ma(ma(f1® f1) ® fo— fo@ma(fi ® f1)
—ma(m2(f1® fa— f2® f1) @1+ 1@ ma(f1 ® f2 — fa® f1))
= me(me®1—-10m2)(1i®fi’dfo+ i@ fi+ fo® fi® fi)

and by SI(3), we have
MQ(TTL2®1—1®7TL2) =0,

which means A + B = 0 and SI(4) holds for ms.

5.4 Tensor product of A -algebras

5.4.1 A naive approach

Since the extension algebra we are interested in appears as a subalgebra in the tensor
product of HTq4(u) with itself, it is natural to ask if the A,.-structure of this tensor
product can be described in terms of the A -structure of the tensorands.
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5.4. Tensor product of A..-algebras

Considering that dg-algebras are a subclass of A-algebras and that it is well-known
how to tensor two such algebras, it looks like there is a natural way to define the tensor
product of two A.-algebras.

Let (A,m2) and (B, m?) be two A-algebras. Naively attempting to define an A.-
structure on A ® B by setting the multiplication maps to be

A®B B

—m ®m,,

does not work since the degree of me‘@B is equal to 2 —n+ 2 —n = 2(2 —n), and unless

n = 0, we see that it differs from the requested degree of higher multiplications in the
definition of an A,-algebra. Therefore, it is not possible to tensor A,.-algebras in the
same naive way as to tensor dg-algebras.

5.4.2 The solution

The right way to define such an A ,-algebra structure on the tensor product of two A.-
algebras is a lot more involved as we can see in Chapter 2 of [Amol2|]. Let us introduce
some of the notation used in the theorem of interest to us.

Let G, be the set of planar rooted trees with n leaves satisfying the following conditions:
if we denote by wval(v) the number of incoming edges of a vertex v, then val(v) > 2 for
each internal vertex v, by which we mean any vertex that is not one of the leaves or the
root.

Denote by Gﬁf“ C G, the subset of binary trees, i.e. those trees such that all internal
vertices have valency 2. There is a natural partial order on the set Gzin which is generated
by the relation on the following picture:

N

Given T € G, we define a binary tree Ty ax € Gbm as the maximal (with respect to
the partial order) binary tree that resolves 7', by which we mean that 7" can be obtained
by collapsing several edges in Ti,.x. For instance

T Tm ax

We denote by ¢, € G,, the tree with only one internal vertex and call it the n-corolla.
Finally, let L,, be the subset of G, of trees obtained by grafting corollas together but
avoiding the last leaf.

Let V € L, be a tree with k internal edges. There is a natural correspondence between
internal edges of V' and right leaning edges of Viyax. Denote by R(B) the set of right leaning
edges of a binary tree B and by |R(B)| the order of this set. We can define some map
t: L, — k[G,] which assigns a formal sum of trees of G,, to a tree of L,,, more precisely
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tV)y= > S/R(S),
S € GPinn
S Z Vmax
|R(S)| =k

where S/R(S) is the tree obtained by collapsing all the edges of S in R(S). For

D

Let (A, m;) be an A -algebra. Let T € G,,. Then we can produce a map
AL A% 5 4

by assigning m,,(,) to each vertex and using 7' as a flow chart. For example, the map
corresponding to the tree in Figure is ma(ms3 ® 1) where 1 denotes the identity map.

Figure 5.2: Example of a tree of G, with vertices labeled by m,4(,)

Theorem 5.4.1 (Theorem 2.21, [Amol2]). Let A and B be (unital) Ax-algebras. Then
the tensor product A @~ B is quasi-isomorphic to the As-algebra {A ® B,m%} given by

m? =mi @id +id @ m?P,

m§:m§®m§,
®—ZUA®IS B forn > 3.
U€EL,

For example, we can write the map m? explicitly:

AN TN

which we interpret as the map
m? = (m?(m2 ® lA)) ® m3 + m3 ® (m2 (lB ® mQB)) )

Lemma 5.4.2. Let (A, m?) and (B, m?) be two formal As-algebras. Their tensor product
(A® B,m®) is formal. In particular, any finite tensor product of formal A -algebras is
formal.
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Proof. Let n > 3. Suppose that given U € L,, U has, or all the trees of ¢(U) have, a
vertex of valency greater or equal to 3. Then the map U* or the maps t(U )B are zero by
formality of A or B. If this is true for all U € L,,, we obtain that mS is zero.

Let U € L,. We then want to show that U has a vertex of valency greater or equal
to 3 or all the trees of ¢t(U) have a vertex of valency greater or equal to 3. Suppose U
does not have a vertex of valency greater or equal to 3. That means that all the internal
vertices v and the root of U satisfy val(v) = 2, i.e. U is a binary tree. In particular, U
has n — 2 internal edges. Indeed, let us prove that by induction on the number of leaves
n. If n = 2, then the edges linking the root to the leaves are not internal, namely there
are no internal edge. Suppose that a binary tree with n leaves has n — 2 internal edges.
To obtain a binary tree with n + 1 leaves, we would need to connect an additional leaf to
the binary tree with n leaves, and to respect the fact that it is a binary tree, we cannot
link the additional leaf to any internal vertex nor to the root of the tree. The only thing
we can do to create an internal vertex of valency 2 is to connect the additional leaf to a
non-internal edge. In doing so, we create an internal edge. Hence the number of internal
edges become n —2+1=(n+1) —2.

Now, recall the expression of t(U):

tU) = > S/R(S).
S eGP
S > Umax
[R(S)|=n—2

Since U is binary, we have that U = Upax. Besides, there is only one binary tree S
with n leaves and n — 2 right leaning edges. As a result, the corresponding tree obtained
by collapsing right leaning edges S/R(S) is an n-corolla. In particular, the unique vertex
of t(U) has valency n, which is greater or equal to 3 by assumption. O

5.5 Examples

5.5.1 The A -structure of Ext(A, A) for cy(ca, to)
5.5.1.1 Computation of Ext(A,A) for ca(ca,t2)

Recall that we obtained the following decomposition of cg(ca,t2) into indecomposable
projective modules P(i), i = 1,2,3,4 (cf. Figure[5.3).

10 20
2! 3! 10 30
1! / 42 S 1! ?;1 4! - 10 49
32 2! 1! 3! 20 30
12 2! 1! 10
(a) P(1) (b) P(2) (c) P(3) (d) P(4)

Figure 5.3: Projective modules

It is easily seen that the standard module A(7) corresponds to the 0-d-degree part of
the projective module P (i) (cf. Figure [5.4)).
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3
[
2 1
[ [
1 1 2
(a) A1) (b) A(2) (c) A3)

Figure 5.4: Standard modules

To compute Exte,(c, t,)(A; A) where A = @11 A(3), we need to find projective reso-

lutions of the standard modules and then use that

Eth (Cz,tz)(A7 A) = Home(c2(c27t2))(P, P[TLD,

Cc2

where P is a projective resolution of A and P[n] is the complex P shifted n times to the

left (n € N). We have:

2
4 3 1 3 2
4 1 4 1
P: 0 —- 3 = - 3 P - 1
3 2 3 2
1 1 1 1 3
2
4 431
P 0 — 3 — —
1 3 2
1
4
Ps 0 — 3 —
3
1
Py 0 —

and P = @?:1]31.

5.5.1.1.1 Ext(A(1),A) We will only need to go through the cases i = 0. ..

the projective resolutions have length up to 4.
e i = 0: In this case, Ext®(A(1),A) = Hom(A(1),A). So we have:

1 2
1

1— ® &) ©®

N = W
=W

We get three different generators:

e1 = iday € Hom(A(1), A(1))
a € Hom(A(1), A(2))
d € Hom(A(1), A(4)).
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e ¢ = 1: We need to understand the non null-homotopic maps between the two com-

plexes:
2 1
3 3
141 ! 41 203
— 3 9 — 3 @ 3 9 - 1 ) 4 1
1 ; 1 3 1 2
1 1
2 1 2
1 . 3 . . 3 L4 2 3 1 . 3 L4
- 3@, , @, , ®3 5> 1 4 le3e, , o3
1 . . 1 32 1 . 1
2 1 2
We get three different generators:
o € Ext'(A(1),A(2))
oy € Extt(A(1),A(3))
as € Extt(A(1), A(4)).

e ¢ = 2: We need to understand the non null-homotopic maps between the two com-

plexes:
4 3 ? 3
0— 3 — 4 ! - 3@ 4 1—»
b 3 2 b 3 2
1 1 1 1
2
1 1
2 1 2
3 3 3
1 A 1 A _— 2’% 1 4 . 4
- 3 @ D . o3 — 1 4 136 o 3
3 2 3 2 3 2
1 1 1 1 3 2 1 1 1
2 1 2

We get two different generators:

as € Ext?(A(1), A(3))
oy € Ext?(A(1), A(4)).

e = 3: We need to understand the non null-homotopic maps between the two com-

plexes:
3
4 4 1
0 — 3 —
| 32
1
{ 1
2 1 2
1 3 3 4 2 3 1 3 4
4 1 | 4 1
- 3@ @ ®3 - 1 4 1&3a @ 3
32 32 32
1 . . 1 3 2 1 ) 1
2 1 2

We get one generator:
as € Ext3(A(1), A(4)).

5.5.1.1.2 Computing Ext'(A(2),A) We will only need to go through the cases i =
0,...,2 since the projective resolution of A(2) has length up to 3.

e i =0: In this case, Ext®(A(2),A) = Hom(A(2),A). So we have:
2 1 2 3 4
1 = e 1 &1 @& 3.
2 1
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We get two different generators:

ey = idA(g) € HOIH(A(Q), A(Q))
b € Hom(A(2),A(3)).

e i = 1. We need to understand the non null-homotopic maps between the two com-

plexes:
2
4 3 1
4 1
0— 3 — - 3
3 2
1 1 1
2
4 4
2 1 2
1 3 3 4 2 3 1 3 4
4 1 4 1 4 1
- 3 & @ ® 3 - 1 4 1 ¢ 3 @ o 3
3 2 3 2 3 2
1 1 1 1 3 2 1 1 1
2 1 2

We get two different generators:

B € Ext'(A(2), A(3))
B1 € BExt!(A(2), A(4)).

e i = 2: We need to understand the non null-homotopic maps between the two com-
plexes:

)
1
- mwae
1
{

We get one generator:
By € Ext?(A(2), A(4)).

5.5.1.1.3 Computing Ext'(A(3),A) We will only need to go through the cases i =
0, 1 since the projective resolution of A(3) has length up to 2.

e i =0: In this case, Ext®(A(3),A) = Hom(A(3),A). So we have:

3 1 2 3 4
1 = e 1 &1 @& 3.
2 2 1

We get two different generators:

es3 = idA(g) € Hom(A(S), A(3))
¢ € Hom(A(3),A(4)).

e ; = 1: We need to understand the non null-homotopic maps between the two com-

plexes:
3
0 — ﬁ — 4 1
| 32
1
1 1
2 1 2
1 3 3 4 2 3 1 3 4
41 4 1 4 1
—>3683 9 693 9 @3 = 1 4 1&13@3 9 @ 3
1 . ) 1 3 2 1 ) 1
2 1 2
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We get one generator:

v € Bxt!(A(3), A(4)).

5.5.1.1.4 Computing Ext’(A(4),A) We will only need to go through the cases i = 0
since the projective resolution of A(3) has length up to 1.

e i = 0: In this case, Ext’(A(4),A) = Hom(A(4),A). So we have:

1 2
1

%) %) 2]

— O
N = W
=S ITAN

We get one generator:

€4 = idA(4) S Hom(A(?)), A(3))

5.5.1.1.5 A basis for Ext(A,A) Composing the different maps found above, we see
that a minimal generating set is given by:

e1 € Hom(A(1), A(1));
ea € Hom(A(2),A(2));
es € Hom(A(3), A(3));
eq € Hom(A(4), A(4));
a € Hom(A(1),A(2));
b € Hom(A(2),A(3));
¢ € Hom(A(3),A(4));
d € Hom(A(1),A(4));
a € Ext}(A(1), A(2));
5 € Ext' (A(2), A(3));
v € Bxt} (A(3), A(4));

and that they satisfy the following relations:
boa=cob=cofBoa—~vyofoa=boa=vyo0b=0.

Since we want the ca(ca, t2)-action on A to match (hence the redundant notation for
the e;’s), we will actually consider Ext(A, A)°P, so that for instance:

b € Hom(A(2),A(3)) = Hom(Aey, Aes) = e Hom(A, A)es,

where b = esbes, which is the same as eg3 o bo es.
We can finally represent Ext(A, A)°? as the path algebra of the following quiver:

(0%
1< 72
\_/

modulo relations (ab, be, afBc — afy, ab,by). It is an 18-dimensional k-algebra, with
basis:
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Degree 0:

Degree 1:
a € Ext' (A1), A(2
Ba € Ext'(A(1), A(
cBa € Ext'(A(1), A(
B € Ext'(A(2), )
cB € BExt'(A(2),
)

Degree 2:

Degree 3:
vBa € Ext3(A(1), A(4)).

5.5.1.2 Computation of the A -structure

We can now compute the A.-structure of this algebra (which exists by Kadeishvili’s
theorem, Ext(A,A)° being the homology of the dg-algebra A = Hom(P, P)°?). We
follow a recipe found in [Mad02] or in [Kel99]. We want to construct the compositions
m; : H*(A)®" — H*(A) and a quasi-isomorphism of A,-algebras f : H*(A) — A. Since
A is a dg-algebra, we have:

— mf': A — Ais the differential of A;
~ m4§ : A® A — A is the multiplication;
— m: A®" — A vanishes for all i > 3.

Since H*(A) is the homology of A, we can choose the differential m; : H*(A) — H*(A)
to be zero. We choose the map of complexes f; : (H*(A),0) — (A, m{) such that Hf; is
the identity. Considering how we computed H*(A), it is quite obvious how to define it.

Next, we need to consider @9 = f1mo —m‘;( f1® f1). This expression is going to be zero
when we evaluate it on pairs of basis elements of H*(A) if and only if their multiplication
was already zero or it becomes zero in homology. Therefore, we only need to check on the
relations of length two to find pairs of basis elements which will yield non-zero ®3 when
evaluating.

It turns out that there are only two pairs with non-zero ®o:

Dr(a®@b) = —q1

where g1 is the following map of complexes:
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P4) - PB)®ePH4) — PR2)eP3)ePB)ePH4) — P(l)eP2)eP(3)® P4)
b o lo |o
P4) - PB)®ePH4) — PR2)ePB3)ePB)ePH4) — P(l)eP2)@P(3)® P4)
which sends the top of P(1) to the socle of P(3), and
Po(a®b) = —g2

where g¢s is the following map of complexes:
P4) - PB)aPH4) — P2)oPB)®PB)®P4) — PQL)eP2)d P(3)d P4)
N e
P4) —» PB)aPH4) — P2)oPB)aPB)®P4) — PQL)aP(2)d P(3)d P4)

which sends the top of P(2) to the composition factor 2 of P(3).

It is now possible to choose fo : H* (A)®2 — A as a morphism of complexes of degree
-1 so that mq fo = ®3. We may choose fo(x ® y) =0 for all x ® y € H*(A) ® H*(A) such
that ®9(z @ y) =0, and for a ® b and o ® b, we choose:

f2la®b) = —g3
where g3 is the following map of complexes:

P4) - PB)ePH4) — P2)ePB)®aP3)®eP4) — PQL)eP2)se P3)d P4)

%% //93/

P4) - PB)ePH4) — PR2)ePB)ePB)ePH4) — Pl)eP2)@P(3)s P4)
which sends the top of P(1) to the socle of P(4), and
fola®b) = —g4

where g4 is the following map of complexes:
P(4) —- PB)®P4) — PR2)aePB3)ePB)®PH4) — P(l)eP(2)®P(3)® P(4)
b o lo |
P(4) - PB)®P4) — PR2)aoPB)aoPB)®PH4) — P(l)®P(2)@P(3)® P(4)

which sends the top of P(1) to the composition factor 1 of d-degree 0 of P(3).

Since we have found non-zero fy, we continue the construction. Consider ®3 :=
m124(f1 ® fo— fa® f1) + f2(L ® mg —ma ® 1) and let us evaluate it for triple x ® y ® 2z of
basis elements of H*(A). It turns out it is non-zero for a ® b® v and a ® b ® ¢, and

P3(a@b®y) =P3(a®@b®c) =d.
We must choose maps ms and f3 such that:
fimg = mi f5 + ®3.

Taking f3 to be identically zero, mg(a®b®vy) = m3(a®@b®c) =d and mg(z@y®2) =0
otherwise, the required relation is satisfied on H* (A)®3. Since f3 is identically zero, the
construction finishes and all other m;’s are zero for i > 4.
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5.5.2 A partial A_-structure on HT4(u)

We want to compute a partial Aoo-structure on HTg4(u); more specifically, we are interested
in knowing m3 : d ® H(u) ® d — HTq4(u), and we need to build a quasi-isomorphism:

f:HT4(u) = Ta(u) — Tre) (K(t)) .

To compute ms, we have the following formula derived from the relations defining an
A -structure:

fimz=mifs +ma(fi® fo— fa® f1) + f2(1 @ m2 —m2 ® 1),
s0 we need to know the following maps:
o fi:d— T (K(t));
o fi:H(u) = i) (K(F));
e fr:d@Hu) = Ty (KE);

my :d ® H(u) — HTg(u);
e my: H(u) ®d — HTq(u);

mo : T’C(C) (IC(E)) ® T’C(C) (IC(E)) — T’C(C) (IC(E))

) (K

f22 ()®d—>T;C (IC )
(
(

5.5.2.1 Making fi’s explicit
From [MT13], we have:

o fi:d% K(c);

o fi:H(u) % K(t).

We want to make those two maps explicit.
Recall (M) = Homa(P,A) ®4 M ®4 P = Homu (P, M) ®4 P. In particular, K(c) =
End¢(P), where P is a projective resolution of the standard modules of c:

9 1
P: 0 — - 2 = 1
1
1
2 2
P O—>1—>1

We have the following:
End.(P) = Hom (cea — ¢,ces — c).
It is a chain complex with differential:
A=) =d"(F(=) + (=D f(d"(-)),

which decomposes as
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1 1 1 9 9 1
End.(P) = Hom?| 2, 2 ® Homl [ 2, ® Hom! , 2
1 1
1 1 1 1
2 2 2 2 L 2
&) Homg , @ Homg , @© Homg L o2,
171 171 1 1
2 2 2 L 2 2
® Homg' , @© Hom, , 2 @© Hom} ,
171 1 1 171

where the superscripts on the Hom’s indicate the degree of the maps. We obtain 10 basis
elements:

Ende(P) = (1 epe1—=Ba0) & (a1—8)" & (e —a)
® (€5 — e3)° & (e »edh @ (e B!
@ (eél — eé)fl P (eﬁ — a>1 @ <e§ — eél>1.

For these to appear in homology, they must vanish under the differential; this exactly
means that they must be maps of chain complexes, i.e. commute with the differential of
the complex P. We see that they are the following maps:

Hom{y, (P, P): 2 ) ) (e1 > €1)?, (2 — €2)°
1 2\ & 1 (e1 — B, (eg a)o
1 (e1 +— Ba)?
2 1 2
1 2 & 1
1
Hom e (P, P) : @ 1 2 (e2 = e2)!
1 2 o 1 (eg — a)l
1
2 1 2
1 2 o 1
1

In particular, the homology is positively graded. Therefore, it comes that:
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Extd(A,A): 2 @ @ (e e1)? = idp,
1——2\ o 1 (e1—=B): PL— Pye1 = 8
1 <62 — 62>0 = idp2
2 1 2

1
EXté(A,A) : @ 1 2 <€2 — 62)1 P — Pye — 62[1}
1 2 6 1
1
2 1 2
1 2 ¢ 1

—_

We conclude that f; : d — Endc(P)°P is given by

er — (er+ €1> + (eh — e5)°

ey > < II >0

§ = (61'—>5> P1—>P2761'—>/3

x = (ea 62> P — Py, 62 — 651[1]

where eé , resp. eél , refers to the basis element at the top of the second projective module
in the first, resp. second, projective resolution.
This map induces the identity in homology and it satisfies

m1fi = fimi : d — End¢(P),

which rewrites as m1fi = 0, because the differential m; : d — d is the zero map. This
equation means that all lifts of elements of d are mapped to elements in the kernel of the
differential on Endc(P), which is true because those elements appear in homology (and
are NON-zero).

We now want the map f : H(u) — K(t) to be explicit. We work with a (¢, ¢)-bimodule
resolution t of t which is projective both on the left and on the right:

0—>ci> ce| ®eic — t — 0
1 — eg®@pfat+a®pf—pLa®e;

We would like to express K(t) in the form of a complex and compute its differentials,
so that we may then compute its homology. It writes:

,C(E) = Hom¢ <C€2 3 c,C i) cer ® elc) Re (ce2 it C) .

Focusing on the first tensorand, we have the following:
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Q
Hom, (ceg —c,c l) cer ® elc)

()’

= Hom, (c, C i> cer ® 61c> Hom, <ce2, C i> cer ® €1C>

= Home (c, c) . Hom, (ces, c)

| 1. oy |

Home (c,ce; ® eic) Hom, (ceg, ce; ® ejc)

This can be considered trivially as a double complex, and using the sign trick [Wei95,
p. 8], we take the total complex:

Hom, <C62 “ c,c i> cel ® elc) =

)
—fs (Fe,(-0)")

Home(c, c) — * Home(cez, c) @ Home(c,ce; ® e1c) ~ = " Home(ceg, ce; ® erc)

It is now possible to include the second tensorand, and K(t) becomes:

< (a)*®1
et (/o ®1,(a) 1)
Home(c, ¢) ®c ceg ——— Home/(cez, ¢) ®c cea @ Home(c, ce; ® ejc) @ cea ————— Home(cez, cep @ e1¢) @ cea

1®(.r¥)l ( (:?**511 ) l( IQZ)O(IQ) 1®0(-a) )

(fol(a)®l
Home(c, ¢) ®c ¢ Home(cez, ¢) ®c ¢ & Home(c, ce; ® e1¢) ®c ¢ ——— Home(ces, ce; ® e1¢) ®c ¢

1® (-a)

This is a double complex, and taking the total complex yields the following complex:

)
Home(c, ¢) @, cea RGN Home(ceg, €) ®c ce2 @ Home(c, ce; ® e1¢) ®c cea @ Home(c, €) ®c ¢
02

——— Home(cez, ¢) ®c ¢ @ Home(c, cer ® e1¢) ®c ¢ ® Home(ces, cer ® e1¢) @ cea

Home(cea, ce1 ® e1¢) @ ¢

where
(a) @1
03 = —fi®1
-1® (‘o)
1® () 0 (a)"®1
0y = 0 1® (Oz) —f®1
i1l (a)®l 0
0 = (21, ()*®1,-1® ()
We can simplify the complex by means of classical isomorphisms, and we obtain:
63 52 8~1

Cey — ea9Cey P cep ®ejces P e — eacP ce; ®ejc D eace; Qejcey — eace; X eqc
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where
~ a'
03 = ( —(a®pB) )
—(-a)
3 o 0 -
Oy = 0 ‘a (fa®e —a®f —e ® Pa)
a®f o 0
51 = (-(61®Ba+a®ﬁ—ﬁa®el), a-, —(Oé))
Let us compute the homology of this complex. We know that ces = (eg, 5), and we
have:
ave ~ .
83(62) = —a® ﬂ )
-
} 0
%(B) = —Ba®p |,
—Ba
. . 0 0
and hence we see that Kerd3 = 0 and Im d3 = < —a®p |,| -pfaxp >
-« —fPa
We know that escey = (e3), so:
B €9 [0
82 0 - 0 )
0 a®p
and ce; ® ejces = (€1 ® B, a® B, fa® ), so:
. 0 0
02 e1® = e1® fa |,
0 a®p
3 0 0
0o a®p = a® Pa |,
0 0
) 0 0
%)) pa® p = fa® pa |,
0 0

((3) - ()
((E) - ()

) o((3) - ()
((8) - ()
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0 0
and we see that Ker 9y = < a®pf |,| far s > and
« Ba

« « 0
Imé? = << 0 )7(60“86161@60‘)7(61@505)7
a® 0 a®p
0 0 0 0
(a@ﬁa),(ﬁa@ﬁa),(—a@ﬁ),<—ﬂa®ﬁ)>.
0 0 0 0

We know that eac = (e2, @), so:

((5) -
((5) -

We also know that ce; ® ejc = (61 ®ej,a®e;, fa®er, e ®[,a® B, fa® B,e1  Ba,
a® Pa, fa ® Ba), so:

0 0
31(<€1®€1)) = a®e, 51((61@95)) = a®p,
0 0

Il
o
S:n
-~
/-~
)
o}

S g
)
~_
~_
|
vCD

)
)
)
)

. 0
o1 a® Ba = 0,
0
0
0 Ba ® pa = 0,
0
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Hence
R o —e9 0 0 0
Kero, = < 0 N er®s || ee®@Ba |, | a®er |, | a®B |,
a®f 0 a® 0 0
0 0 0 0
605@61 5 BO‘®5 5 a®ﬁo¢ ’ BO(@,BO& >
0 0 0 0

and Imd; = (a ®e1,a ® B, a @ Ba).
We can compute homology; to sum up we have:

Kerdy = = H3K())=0
3 0
Im 83 = — ® ,8 s _BO‘ ® B >
e ~ H2AK®E) =0
Kerdy, = < a®ﬁ | Ba®p >
pa )
~ « « )
Imag = <( d&®€1€1®ﬁa>7<61®/5a>
a® B 0 a® B
(a@ﬁa),(7@@@’30),(—@@07) (—504@@[7) _
. A = H'(K()) = (v1,v2)
Keral = <( 0 ),<c1®2;?),<61®;9a>,( ),(a@f)
a®p 0 a®p
0 0
Ba ® e ) , ( Ba® B ) , ( a® Pa ) R ( Ba ® Ba )
0 0
€9 0
where v; = —e1®p and vy = | a®e;
0 0
There is one non-zero homology group, and there is a natural d-d-bimodule structure
€2
on it, e.g. there is a left action of e; on | —e; ® § |, since using the map f; : d — K(c),
0
we know that:
€9 €2
er-| —aa®p = (e e))’+ (b ed)’) | —e1®p
0 0

(e5 > e5)"(e2)
= (e1 > e1)(—e1 ® B)
0
e
= —e1 ®f
0

The only part of d acting non trivially on both sides is the semi-simple top, thus this
homology group really is a d°-d°-bimodule.
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5.5. Examples

Recall that the homology of u := d ®%o d* is given by H(u) = (e; ® €3, e2 ® e7), which
is isomorphic to 7(d®). We can thus define the following map:

fi:Hu) — K(t)

e1 ey —e1®0
ea®e] a® ey

In addition, if we want homological degrees to match, we can shift the complex C(t).

5.5.2.2 Making my’s explicit
We are now concerned with the following maps:
e my:d®H(u) — HTq(u);
e my:H(u)®d— HTq(u);
o m: T (K(B) @ Trre) (K(E) = Trge) (K(E)).

The first two consist in concatenating the tensors and using the multiplication in d.
The third multiplication map comes from the natural multiplication in the tensor
algebra, that is the multiplication that arises from the K(c)-bimodule structure on KC(t).

It is given in figures and

(e es’) =vea, (e » o)t =20

(e1 = B) "t =8, (el s ely?

Sy irez
cey eacey P ce; ® ey
; .
€2 €2 /
B
o T a
g
€1, e 4
B,
........................................................................... Bo

Red: (-1)-degree map
Blue: 0-degree map
Green: 1-degree map

Figure 5.5: Right action of K(c) on K(t)
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€1, €2
B o
62 Sor.
€00, O e e PUS
‘ ‘ « e
ceg N » €2C€E9 &) ce; ®ejcey D -
. . L e B €
,,,,,,,,,,,,,,,,, eo / B, a a B
— €2
- Bex:
Spes T
gl o
4« 4

[ €9

o _— B

Red: (-1)-degree map

Blue: 0-degree map

Green: 1-degree map

Figure 5.6: Left action of K(c) on K(t)

5.5.2.3 Making f5’s explicit

We can now tackle the description of the maps:
e fo:d ®H(u) — TIC(C) (]C(E)),
° f2 : H(u) Rd— TIC(C) (K(E))

To achieve this, we need to evaluate the following expression ®o, derived from the
A o-structure relations, on d ® H(u) and H(u) ® d, and then find preimages of non-zero
elements under the differential:

Oy = fimao —ma(f1 ® f1).

Note that we do not need to pay attention to hypothetical signs coming from the
Koszul sign rule when evaluating ®5: the maps f; and mso are both of degree 0.
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d ® H(u) ma | fima [® A L ma(fi® f1) 02
! €9 €2 ! €2
. ‘ ((e1— e1) ‘
e1®(e1®e3) || e1®ej i ( *610®5 ) +<e§ N 6£>0) ® ( *610®5 ) i ( *610®ﬁ ) 0
: 1 (e > e1) "
e1® (e2 ®@e}) 0 i 0 el s D)) ® a%el i 0 0
l e l
er ® (e1 @ €3) 0 0 (el —elVe | —e128 | 0 0
I 0 I
| 0 0 | 0
e2®(e2®e]) || e2@eT | a®e; (el o | a®e : a® e 0
I 0 0 I 0
l e l
£@ (a1 ®e3) 0o ! 0 =B le| —aop } 0 0
I 0 I
| 0 | 0 0
E® (e2®e]) 0 : 0 (e1 — B | a®e : Ba® ey —Ba ® e1
| 0 I 0 0
1 €2 1
r® (e ®e}) 0o ! 0 (el—edVo| -0 } 0 0
| 0 |
‘ 0 1
z® (e2 @ e€]) 0 | 0 (dsedo| ave | a®e; —a®e;
| 0 |
We have:
€9 0
my | —e1®f = —fa® e
—e1 0
0
mi —e1 ®ey = —a®e
0
Therefore, we choose:
€2
foll@(e2®e])) = | —e1®p
0
folz @ (e2®e])) = —e1 @ eq
0
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5.5. Examples

H(w) ®d mg | Jfimg f1® fi L me(f1 ® f1) D,
[ [l
‘ 2 ((ex —e)? !
: 0 0 - ! 0 0
(e1®e3) @er : 610® B ) ® +(ed s ed)0) |
! 0 0 0 0
| |
(e2@e])@er ||ea®e] ! | a®er a®e | ® (<6}H€}>0 L | a®ea 0
! +{eg > e3)”)
| 0 0 | 0
: es €2 : ()
(e1®e3)®es || 1 ® e | —aes —e1®8 | ® (el — !0 | —ea®s 0
| 0 0 | 0
| 0 |
(e2®e€7) @ eg U 0 a®e | ® (e%l — e§1>0 | 0 0
| 0 !
} e |
(e1@es)@e | 0 0 —a®f | ®@—p)° ! 0 0
I 0 I
; 0 | 0 0
(e2®e])®E o 0 a®e | ®(er B)° | a®p —a®p
| 0 ! 0 0
; €9 ;
(e1®@e3) @ 0o 0 —e1®f | @ (es—e3")! | 0 0
| 0 !
; 0 1
(e2®e]) @ 0 0 a®e | ®@(h—e) 0 0
[ 0 ‘
We have:
0
mi = —a® 6
0
Therefore, we choose:
0
fal(e2®e1) @) = 0
€2

5.5.2.4 Computing ms3

As stated in the introduction, to compute m3 on d ® H(u) ® d, we have the following
formula derived from the relations defining an A,-structure:

which means we must consider:

O3 :=ma(fi® fo— fo® f1) + fo(1@ma —ma®1).

fimz=mifs+ma(fi® fo— f2® f1) + fo(L@ma —ma ® 1),

Let us evaluate it on d ® H(u) ® d. Note that we need to be careful with signs:

(1@ f)@ey) = (D)2l @) e fa().

Instead of writing all basis elements, we shall only write those which yield non-trivial

results:
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deHu) od f1®f2 | ~-L®fh L ma(f1® fa— f2® 1) L2l ®@ma —ma®1) @3
i ) (er > e1) i —e s
E@(e2®@e]) ®e 0 i - *571333 ® +(e§ ) i elf B fa(§ @ (e2®e])) = *571;@3 0
Y e i ) 0 ((er = er)° i 0 - Ny 0
@ (ea®e]) @eq 0 : - —110@@1 ® +<e§>—>e§)“) : nlwﬁ;cl folz@(ea®el)) = —1310@%(31 0
| 2 |
@ (e2®e]) ®er 0 | 7(7612@3)@(651»—%51)0 | 0 0 0
| —e |
: 0 :
@ (e2®€}) e 0 . —(—el®el>®(e§’we§’)0 . 0 0 0
! 0 !
0 ! ! 0 0
2@ (ea®e})®E (c£1>—>6£1>0®< 0 ) | 0 | ( 0 ) fz(—(ﬁz®c{)®£):—< 0 ) 0
€2 : : €2 €2
0 : es : 0
(@ (e2®@e])®E ler=pe| 0 [ =l KR C e ) 0 |]=0 0 0
€ | —eq i 20
0\ 0 L[ e 0 e
@ (ea®e}) @€ || —(ed el el 0 |1 —| —a®@e | @B 0 |+ e®s 0 e ®B
e ) | 0 P\ o 0 0
| €2 | —ey —ey
£ (e2ee) e 0 b= —aes |aE—sdah)t @8 0 e ®p
| —e | 0 0
\ 0 \
@ (e2@e]) @ 0 - ( —e1 ®e1 ) ®(eh s ell)l 1 0 0 0
| 0 |
In a nutshell, we find:
0
P3(E®@(e2@e]) ®E) = 0 = 0 since chark = 2,
2p
—eo
* *
Pi(r@(2@e])®E) = | ea®@B | = fi(~e1®ed)
0
—e9
* *
P3@(e2@e) @) = | e1®PB | = fi(—e1®e3)
0

We then choose:

m3(z® (e2®e]) RE) =m3(E R (ea®e]) ®x) = —e1 ®eh € H(u),

and take f3 to be the zero map. The construction therefore finishes.
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Chapter 6

Formality Result for p =2

6.1 Non-trivial A -structure on Ext(A, A) and wy

We recall the Aoc-structure obtained on Exte,(c,t,)(A,A) in Example We can
represent Ext(A, A)%? = wy as the path algebra of the following quiver:

(0%
1< 72
\_/

!

47 =3
Y

modulo relations (ab, be, affc — afy, ab, by).
We showed that the only non-zero higher multiplication is m3, and the only non-zero
terms are
m3(a®@b®y) =m3(a®b®c)=d. (6.1)

Now, we can replace a, b, v, , ¢, and d by their expression in terms of z’s and &’s thanks
to Chapter [3] We obtained

e1 ®§
= e1Qx
= {®(e2®¢€))
ea ®¢&
e R
£® (e ®ey).

QU2 o =R 2
Il

Rewriting Equation (6.1)), we see

m3((e1 @& @ (@ (e2®e])) ®(e2®@x)) = (@ (e1®e3))
m3((e1®@2) ® (@ (e2®e])) ®(e2®E)) = (@ (e1®e3)).

A possible interpretation is that it encodes the fact that acting on u on the left or on
the right is not trivial.

6.2 Computation of an A_-structure on HT4(u )

We need to restrict the scope of our computation to HTq (ufl) in order to apply Kadeishvili’s
theorem and use the recipe to construct an A,-structure (as can be seen in [Mad02, Ap-
pendix B.] or Keller in [Kel99]). Indeed, we saw in Chapter [2] that Tq(u) is not an algebra,



6.2. Computation of an A,-structure on HTg(u™')

and it is enough to consider the subspace HTg (g)Sl in homology to obtain the alternative

description of w,. Thus, we will focus on the subspace Tq(u™!) of Tq(u) which is an
algebra and such that its homology is a subspace of the necessary part to construct wy.
We can decompose this vector space according to the k-grading:

Ta(u™') =@ Ta(u™)*.

keZ

As mentioned in Chapter on each u™, there is a differential §; of k-degree 1 obtained
by internal multiplication by some elements (cf. [MT13]), and therefore, Tq(u™') can be
turned into a differential complex. We denote by m; : Tq(u™') — Tgq(u™ ') the differential
obtained in this way. As a consequence, ’]I‘d(u_l) is a dg-algebra, and by Kadeishvili’s
theorem, its homology H(Tq(u™!)) carries an A,-structure. We now wish to make it
explicit and will use the recipe mentioned previously.

We assume that the characteristic p is equal to 2 in the rest of this section. In [MT13]
pp. 188-189], the homology H(u™") of u™* has been computed and using the same notation,
we have H(u™%) = V;, for i > 0, and H(d) = d since §y = 0 (recall that d = Exte, (A, A)).
Finally, we know that H(u) = (d°)°.

It is then possible to represent basis elements of H(u™) in the form:

5@ @ ¥ @ €], (6.2)

with e, € {0,1}, m,l € Ny, and such that e + m + 1+ n = i + 1, and its k-degree is
1 — e —m —mn. This description is also valid if i = 0. As expressions involving tensors will

get bigger, we will more often than not notationally simplify those by omitting the tensor

product symbol; e.g. expression is equivalent to egfmxldf.

1. Let my : H(Tg(u™!)) = H(Tq(u™)) be zero.

We need to choose f; as a morphism of complexes (H('H‘d(u_l)), 0) — (Ta (u™), 61)
such that Hf; identifies with the identity of H(Tgq(u™')). There is an obvious choice
by taking lifts of basis elements of H(Tq(u™')) in Tq(u™).

2. Let my : H(Tg(u™1)) @ H(Tg(u™')) — H(Tq(u™')) be the multiplication map in-
duced from the multiplication of Tgq(u™!).

Then, by definition, the morphisms ma(f1 ® f1) and fime are homotopic as mor-
phisms of complexes from H(Tq(u™!)) ® H(Tq(u™!)) to Tq(u™t).

We need to choose fo : H(Tg(u™!)) @ H(Tg(u™')) — Tq(u™') as a graded map of
degree -1 such that
fima = my fo +ma(f1 ® f1).

Let @3 = fima —ma(f1 ® f1). We need to compute the image of each basis elements
of H(Tq(u™)) @ H(Tg(u™!)) under ®,.
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6.2. Computation of an A,-structure on HTg(u™')

We have:

Oy (eglfmlmlle’fl , e§2§m2x12671’2)
= fi(my (e§1§m1$l167171, 6§2§m2$1267172))
—ma((f1 ® f1) (eglfmlxlleql,e§2£m2ml2e?2))
= f1((1 = by ) (—1) 21 eg gmH Mgt 2 )
—ma( (e? gmigheM eP¢m2ylz e?2>)
= (1 =0pe) ((—1)m2lle§1§m1+m2xll+l267172 — eglfmlxllmexbe?Q) i

To choose fa, we need a good understanding of the image of u™* under the differential
;. For i = 0,1, they are defined as follows ([MT13]):

S_1iu—u,  a®be (=) (az @ b+ af @ xb)
dp:d —d, a®b—0
Si:utsul, a®be (=) (az @ €b + af @ xb)

and more generally, we have:

Lemma 6.2.1. Fori>1,6:u’'—>u'sendsa1 ®...® ai+1 to

[
l )
Szl (L gar@tan®.. . @al@Tam ©..).
=1

Idea of proof. Recall the description of u™ =u™! ®q ... ®q u™! and use induction
on ¢ > 1 together with the usual way to define a differential on the tensor product
of two complexes. O

For i > 1 and 1 <1 <14, we define 6;; (a1 ® ... ® a;41) as:

! .
(—1)Za‘:1 i (..Oaqrefam®...+...q{@ra 1 ...).

It turns out that 6;; (a1 ® ... ® a;+1) # 0 if and only if a; = e; and a;41 = ey; this
comes from the multiplication rule in d.

The following comes rather immediately:

Lemma 6.2.2. The map fs : H'H‘d(u_l)®2 — Tq(u™t) defined by:
me I

f2 (e;ﬁmlxhe?l ® e§2§m2x1267172> = Z Z(_1)11l1e§1€m1+z171wll7126162:6127167712711%1267172’
i1=112=1

if 1 # €2, and zero otherwise, is a graded map of k-degree -1 such that mi fo = ®s.

Proof. Let egt¢™alie™ e¢m2 a2 € HTg(u™!). Their tensor product is of k-
degree I1 + I3 and all elements in the sum are of the form

€1 ¢emi+ii—1, 11 —io io—1¢emo—iy Ll M2
€5'& x er1eox? & z?e]
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6.2. Computation of an A,-structure on HTg(u™')

and these have k-degree [y —i9 +io — 14+ 1o =11 + 15 — 1, so fo is a graded map of
k-degree -1. Let us now compute m; fo (621 gmighel @ e2eme gl 772)

ma
zlem—‘ri—ll—i io—1¢mo—iy, o N2
(E E 11621§ ta=lph=20, 00 002 g 2 1:(}261)

zl 1io=1
ma
— E E ’Lll1 (631&-ml-‘rll—ll,ll—126162$12—1£m2—21$1267172)
= 112 1
m2
_ 1111+11*1'2 €1 ¢emyi+i1—1,.01—i2 io—1¢emo—iy 0o M2
= g g esté T (x€+Ex)x*? ¢ z'2e]
1= 112 1
ma
_ Z1l1+l1—i2 €1 emi+ii—1, 01 —io+1¢, io—1emo—iq 02 72
= g g ey'é x Ex'?E x?ey
11=112=1
mo 11
_|_§ E (_1)Z1l1+l1—12eglgmﬁ-u—lxh—l2£$12£m2—11xl2€;}2
1= 112 1
m2
_ Z111-1—11—1'2 €1 emi+ir—1 li—io+1¢, ia—1emo—iy o 72
= E E e5'& x Ex'?E e
11=112=1
meo l1+1
+§ E (_1)z1ll+l1712+1€§1§m1+z1flxh712+1§x12—1§m2711m1267172
i1=112=2
ma
— E (_1)21l1+l1—le§1§m1+11—1$l1§m2—11+1x1267172
7,1—1
+ E 2111€§1£m1+21x11£m2—21xl26?2
i1=1
m2
— E (—1)“l1+l1_1631§m1+ll_1$l1§m2_“+1x1267172
11=1
mo—+1
+ E (_1)11l1—l1egl§m1+11—1$l1§m2—11+1xl2671]2
i1=2

_ €1 ¢mi 1 emo o M2 moly €1 ¢mi+mo l1+1lo N2
_625 1$1£ 2x2€1 +(_1) 21625 1 2561 261 ,
which is exactly expression ®5 if we assume 1y # es. O

Remark 6.2.3. When working with specific examples, one really sees that this for-
mula encodes how to ’entangle’ the configuration e5'¢™* ghgmz gl ef? to our chosen
representation of elements e5' €™ M2t e,

. Let us move on to the next step of the construction: we try to determine the higher
multiplication ms : HTq(u 1)® — HTq(u™!). We consider the following expres-
sion, which comes from the relations defining A ..-morphisms:

mifs —ma(fi ® fo— fo® f1) = fimz — f2(1 ®@ma —ma ® 1),

bearing in mind that this equality is an equality as graded maps from HTd(u*1)®3 —
Tq(u™!); we use the same notation for higher multiplications of HTq(u™!) and those
of Tg(u™!). We define

Q3 :=ma(f1® fa— f2® f1) + fa(L@m2 —ma ® 1),

so that we have the equality: ®3 = —m f3+ fims. We evaluate ®3 on basis elements
of HTd(ufl)@)?’. Note that since fo is of k-degree -1, the Koszul sign rule will apply.

145



6.2. Computation of an A,-structure on HTg(u™')

We have:
@y (e emale] @ epemal el @ ePem el ) = A+ B+ C + D,
where
e A=mo(f1® fo) <€§1§m1$l167171 ® e2E™ el @ €€5§m3$l3€7173)7
e B=—may(fa® f1) <e§1§mlaclle7171 ® e2eMa2el? ® e§3§m3xl3e7173),
e U= fo(1® fo) (eglﬁmlxll " @ ePemzl2el ® e€3§m3xl3e’173),
e D=—fo(ma®1) (e?{"” el @ e2em2al2el? @ e§3§m3ml3e’173>.

Let us write down those expressions explicitly. We assume that 11 # €2 and 12 # 3.

A = m2((—1)11f1( SeMahe) @ foleReM2a2el? @ efPemeal3e)) [Koszul sign rule]
m3
= Z Z 1112*11eglgml$l1§m2+i1*1‘%12*1'26162xi2*1€m3*i1xl3€7173
i1=112=1
B= B @ PO ) 8 APE )
ma
- Z Z Z1ll+1€§1§m1+l1flxh7226162$1271§m2711xlzgm:awlse?lm
i1=112=1
C = f2( 1§m1 L 7]1®(_1)mslze§2§m2+m3xlz+l3e7l73))
ma+ms3
— Z Z le1+m312e;l§m1+i1—13311—izeleQxi2—1§m2+m3—i1xl2+l367173
11=1 1ig9=1
D = _fQ((_l)mﬂle;1§m1+m2xll+l267172®€§35m3xl367173))
mz l1+l2 4 ' ' ' 4
_ Z Z(_1)%1(l1+l2)+m2l1+1€§1€m1+m2+11—1xl1+l2—12€1€2x12—1§m3—%1xl3e7173
11=1 i9=1

We see that there are some cancellations appearing between C' and D:

5

E (—1)(mztma)litmsls e§ gmitmatms—lyh 2= 1+l Hs 13

C 11 =mg+mg 2eie9x

i9=1

I+l

E (_1)m3(l1+l2)+m211+1€§1 §m1+m2+m3—1$l1+l2—i26162xi2—1+l3 67173

_ (_1)m3(11+12)+m2l1+1e§1§m1+m2+m3*1m11*126162x

ig—1+l2+l3 67173

They have opposite signs and cancel each other. Therefore, there is still one sum-
mand of D corresponding to i1 = ms, however, is runs between 1 and [s.

The task is to try and find a preimage under the differential of ®3. It can be achieved
in the following way.

146



6.2. Computation of an A,-structure on HTg(u™')

Lemma 6.2.4. There is a map f3: H?I‘d(ufl)®3 — Tg(u™t) defined by:

fs (€€1£m1 U 771 ®€62 m2 pl2 772 ®€63§m3$l367173) —

m3 m2+11—
§ § § E 2112+lsl1711€§1€M1+13*1$l1*l4elele4*1§m2+21*1713 L
i1=1dp=1 i3=1 i4=1 . . .
xl2—126162$%2—1§m3—11xl367173,

if m # €2 and ny # €3, and zero otherwise. Moreover, it is a graded map of k-
degree -2 such that —mqfs = ®3. In particular, the higher multiplication ms
HTq(u 1% — HTq(u™!) can be chosen as identically zero.

Proof. Similarly to the proof of Lemma [6.2.2] we count the number of z’s in the
expression to compute the k-degree. The argument has k-degree [y + Iy + I3, and
elements in the expression have k-degree I} —t4 +i4 — 1+ 1lo —io+ 192 — 1+ 13 =
l1 + lo + I3 — 2. Therefore, the map f3 has k-degree -2. We apply the differential to
f3 and we obtain:

—mlfs (6§1§m1 5 m ® egzgmz l2 n2 ® e€3§m3zl3e7173)
m3z s m2+zl—1 11

§ E E E lll2+l3ll—l1eglgmﬁ-m—lxll—l46162x14—1£m2+11—1—13 o
7,4—

7,1—1 7,2— 23—
Lzl T2 eqeqn I gl e]?)
ms lo mo+i;—1

Z Z Z Z 11l2+i3l17l1+1+l17i46§1§m1+i371xl17i4 (fEf + é‘x)xi4*1§m2+’i1*1*i3 o

11=112=1 i3=1 ig=1

) mlg—zgelezng—lgmg—zl :L,ls 67173

m3  la mo+ii—1
+ E E E E 1112+i311*ll+1+11*i4+i4*1+12*i2egl§m1+i3*1xll*i46162xi4*1€m2+i1*1*i3 o

11=11i2=1 i3=1 d4=1 X . .
xlz—zz (mg_’_gx)xzz—lgmg—nxlg,e?l?g
ms lo mo+i1—1

1)irtetish+1=ia ger gmitia—1yh —istlgyis—1gmatin—1-ig
g E E E esré 't ExmE

i1=1i2=1 iz3=1 d4=1
a2 etz ieme iy ls el
m3  la mo+ii—1
+ Z Z Z Z 11l2+i3l1+1—i4e;1€m1+i3—1xl1—i4§xi4€m2+i1—1—i3 .
11=1i2=1 i3=1 d4=1
xl2Ti2e epptr T gma Tl gla gl

ms  la motii—1

+ E E § § 1152+i3l1+l27i2egl£m1+i3*1xll*i46162$i4*1£m2+i1*1*i3 o

11—1 12— 23— 14 1
mlz—zz-‘rlgxzz—lfms—zlxl367173

ms3 lo mo+i1—1
+ E E § E 1112+i311+12*i26;1£m1+i3*1zl1*i46162xi4*1§m2+i1*1*i3 L

Zl—l 12— ’L'; 1 ’L4—
i xlg—lgé-xlzgmg—ll l,lg e;}s

Cancellations occur in this sum of sums. In the second sum, make the change of
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6.2. Computation of an A,-structure on HTg(u™')

variable i4 = iy — 1, and in the last sum, make the change of variable iy = 5 — 1:

ms3 lo mo+i1—1

Zl+il+1—i €1 ¢mi+izg—1 _l1—i4+1¢ ia—1¢mo+ii—1—1
Zz § § 1l24i3l1 46215 1=l ph—iatl e pia—lematin 3

i1=1ldp=1 iz=1 is4=1 ) ) )
$l27226162x1271§m3711w13 67173

m3  lo mo+ii—111+1

+ E E E E 11l2+i3l1+17ia+1e§1fml+i371xl17ii+1€xi271§m2+i17171'3 o

i1=11i2=1 i3=1 14
xl2—22€162x12—1§m3—11$l3 6?3

ms3 lo mo+i1—1
E E E E l lotisli+la—ia €1 ¢gma+iz—1, 11 —1 ta—1 ¢mo+ip—1—1:
+ 162 31 2 26215 1 3 xl 46162$4 é' 2 1 3"'
i1=1142=1 i3=1 i4=1 . .
l,l277,2+1£x7,271§m3

—11 .’L‘lS 67173

m3 lo+1mo+i1—1
+ Z Z Z Z 1112+2'311+l2*i'2+16§1§M1+i3*1$11*i4€1€2xi4*1§m2+i1*171'3 o
i1=1 12_2 i3=1 i4=1
xlg—i'2+1§xi'2—1£m3—i1ml3 67173

We see that the first two sums have opposite signs and yield one term when iy = 1
and another one when i) = [ + 1; similarly, the last two sums have opposite signs
and yield one term when iy = 1 and another one when i, = Iy + 1:

ma+i;—1

ms3 2
Z Z Z 21l2+13l1 61§m1+23 1 l1§m2+11—l3

11=1122=1 13=1 . . .
$l271261€2$1271€m37“$l3 67173

m2+11—

mg
+ E E E 1112+z311+1+l1 61§m1+13x11£m2+11* —i3

i1=142=1 i3=1 . . .
ZClQ_Zz ele2x22—1§m3—11 ZL’lS 6'173
ms3 mo+i;—1

l i3l1+1lo—1 € i3—1 _11—1 a—1 i1—1—1
+ Z Z Z Z1 2+igli+l2 621£m1+13 2 e oo £m2+11 i3

i1=1 iz=1 iyu=1 .
1.12 é‘m?ﬁn +1x13 67173

ms3 mo+i1—1

+ E E E 1112+Z3l1e§1€m1+l3*1xll*146162$14*1€m2+11*l3 o
i1=

= i3=1 i4=1 .
l’lQ £m3—11 l,lg 67173

Further cancellations occur. In the second sum, we make the change of variable
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6.2. Computation of an A,-structure on HTg(u™')

i3 = i3 — 1; in the last sum, set i; =4} — 1:

m3  lo mao+ii—

Z Z Z Z1l2+23l1 €1£m1+23 1 l1£m2+11—23

i1=112=1 i3=1
. xlrl’?elegwir%m?’*il371367173
ms3 ma+iy
+ Z Z Z zllg+igll+1e§1§m1+ig—1mll§m2+i1—if3 o
11=112=1 137
le—iz 6162$i2—1§m3—i1 .Z’l3 67173
ms3 mo+i;—1

’Ll+il+l—16 mi+iz—1,_.11—1 tg—1¢emo+ii—1—1
+§ E E 1la+igli+l2 621§ iis—lphi—iag oy gia—lgmetiy 3
i1=1 iz=1 iy=1 .
:Elz&m?ﬁh +1..03 67173
m3+1m2+11 2
Zl—i—il—l €1 ¢mi+is—1 11— ia—1gmo+it —1—i
_|_§ E E 2+igly 26215 itis=lphi—iag op pia—lgmatiy 3
11_2 i3=1 i4=1
:_A/
...a:l2§m3 11+1$l3€?3

We see that the first two sums have opposite signs and yield one term when i3 = 1
and another one when i = mgy +4;. Although the last two sums have opposite signs
as well, we must be more careful: in the third one, we have 1 < ig < mo + i1 — 1,
while in the fourth we have 1 < i3 < mo + 77 — 2. Therefore, three sums will be
produced: one corresponding to i; = 1, another corresponding to i} = mg + 1, and
one last corresponding to i3 = mg + i3 — 1 (where 2 < iy < mg):

m3 2
§ § (_1)2112-&-1165157711xh§m2+11—1x12—226162xl2—1€m3—11xl3671]3

i1=112= 1
m3

+ E E Z112+(m2+i1)11+1e§1§m1+m2+i1*1x11+12*i26162$i2*1€m3*i1$13€7173
i1=1 22 1
ma

+ § § l2+’L3ll +l2—1€§1 é-ml +23—1xl1—146162$24—1§m2—13 $l2§m3$l3 67173
i3=114=1

ma+mz—1 1
ma+1)la+isli—l2 €1 ¢mai+iz—1, 11 —1 ig—1 +ms3—isz, 2, .13 M3
+ § E (_1)( 3+1)l2+i3ly 2621§ itis=lyph—iag o) gia—lematms l3x2x3€1
i3= 1 i4=1
m3
+ § § z1l2+(m2+i171)l1+1271€§1§m1+m2+i172xl17i461€2xi471+l2§m3711+1xl367173
11=214=1

We perform some changes of variable and some relabellings:

- in the third sum, relabel i3 by i1, relabel ¢4 by i9;
- in the fourth sum, relabel ig by i; and i4 by is;

- in the last sum, make the change of variable ¢; = z’l + 1 and i4 = i3 — Io.
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6.2. Computation of an A,-structure on HTg(u™')

After simplifying the exponents governing the sign, we obtain:

mg
_ zl+lemlm+i—1l—i io—1¢ms—iy, 3 N3
— E E 1l2 1621§ 1$1§ etii—lplo—ing oo g2 5 3 1$3€1
i1=11i2=1
m3 2
+§ § 21 (Li+l2)+mali+1 61£m1+m2+21—1 li+la— 226162xl2 1§m3 i1 13671)3
7,17112 1
m2
+§ : E : lel+1e;1é‘ml‘i’ll*1‘,1:11*7/26162x12*1£m2*11xl2£m3xl3€7f3
i1=112=1
mo+mz—1 [
+ E E m312+l1l1egl{ml-‘rll—1$l1—22€1€2x12—1§m2+m3—nxlle3e7173
11=1 i0=1
m3—1 1+l
+ § E Z (li+l2)+mali—1 €1£m1+m2+zl 1 l1+12 126162"1322 lé'mg lelg 7173
’Ll—l 12 1+l2

We can see that:

- the first sum corresponds to term A in ®g;

- the third sum corresponds to term B;

- the fourth sum corresponds to term C;

- the second and fifth sums combined together give exactly term D.

This shows that —mqf3 = ®3 and mg : ]H["]I“d(ufl)®3 — HTd(ufl) can thus be
chosen to be identically zero. O

Remark 6.2.5. We have constructed f3 in the following manner. Consider expression
Ain (I)gi

A = m2(( D fi(eg €™ altel") @ fo(eg?e™a"el @ ey €mialel?))
m3
— Z Z lez—lle§1 gmlxll §m2+il_l$l2_i26162xi2_15m3_i1.Tl3 6?3
11=112=1

and ’entangle’ the first occurrence of z%¢” using fa:

m3
zlflem Iy, m €2 ¢#mo+i1—1\ lo—1 io—1¢ems—iy I3 M3
E E 1l2 16215 lf (1,‘161 ®€2f 2+11 ).7;2 2eie91"? 53 15E3€1

i1=112=1

We obtain:

mo+i1—1 [

m3 2
E E § E i1lo—1l1+13l1 €1 ¢#mi+izs—1 11—1 ig—1emo+ir—1—1
(_1)12 1 316215 1 3 ‘,1;.1 46162564 f 2 1 3‘.'

i1=1142=1 i3=1 i4=1 ) ) )
x12—1261€2x22—1£ﬂ13—21xl3 6?3

which is exactly fs.

We want to generalise this construction for f,, n > 3. Let n > 3. We make the fol-
lowing assumption: for all 2 < r < n, the higher multiplication m,. : H']I‘d(ufl)@" —
HTq(u™ ') can be chosen to be identically zero. Note that we also have that m; :
HTq(u™ ') — HT4(u™') is the zero map. Under this hypothesis, we can write down
the n-analogue ®,, of ®3:

n—2 n—1
O = (1) 1A% @ me @ 19772 13 (1) ma(fi ® fame),
s=1 t=1
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6.3. A formal subalgebra of w,

so that ®,, satisfies ®,, = —m1 f, + fim,. We want to show that m,, can be chosen
Zero.

Proposition 6.2.6. Under the assumption that for all 2 < r < n, the higher multi-
plication m, : HTg(u™1)®" — HTgq(u™!) can be chosen to be identically zero, there

is a map f HTd(u_1)®n — Tq(u™') defined by:

fn (equlxlle?lh ®...Q® e%"fm”xl"eah) =

M lne1 My 1409 (n—(j4+1))—1—1 L mj+igm—j)—1—1 lj—1 mation—5—1 Iy
i=liz=l fa(n—j)—1=1 f2(n—)=1 B2(n—(j-1)-1=1 f2(n—(-1)) =1 f2n—3=1 ian—2=1

N
(1) e+ 25

)lnfkegl é‘m1+i2n73_1xl1_i2n72 61621;7:271,72_1§m2+i2n75_1_i2n73

$l2*7f'2n7461egxi2n74*1§m3+i2n77*1*i2n75 L
.. 2l 20=5) eg gz 2n—n) LM 2 (1) -1 T T2 -1

i2_1£mn_il$ln eﬁn

) ‘gmn71+21—1—23$ln71—12 .

€1€2T

if i # €41 for all 1 < i <n—1, and zero otherwise. Moreover, it is a graded map

of k-degree 1 — n such that —m1 f, = ®,. In particular, the higher multiplication
n HTq(u™)®" — HTg(u™b) can be chosen as identically zero.

Proof. Counting the number of ’s in the expression gives us the k-degree; it is given
n .

by Z ;=1 +1y ijl l; +1 —n. Hence, f, is of k-degree 1 —n. Although

very smnlar to the computation for f3, the one leading to the result is given in

Appendix [A] because of its length. O

Corollary 6.2.7. The algebra HTg(u™?) is formal.

6.3 A formal subalgebra of w,

6.3.1 Existence of w,

Since Tq(u) is not an algebra, we cannot use Kadeishvili’s recipe. Therefore, we restrict
ourselves to the subspace Tq(u™ '), which is a dg-algebra.

By Corollary we know that H']I'd(u_l) is formal. In addition, by Lemma
we obtain that HTgq(u 1)®?"! is formal since it is a finite tensor product of formal A .-
algebras. Finally, since d is a dg-algebra with O-differential, it is formal and the tensor
product d ® HTq(u 1)®77! is as well.

We know that w, is a subspace of d ® (HTq(u)=!)®?"!, so we can consider its inter-
section with d @ HTq(u™")®47 1. Since d ® HTq(u™)®?! is formal, the subalgebra of w,
generated by basis elements in d ® HTgq(u™")®9"! is formal. This shows:

Proposition 6.3.1. Let p = 2. There is a large subalgebra of w, which is formal. We
denote it by wy.

In particular, those basis elements cannot ”involve u”, in a sense that needs to be
made precise. Recall that H(u) is the i-degree 1 part of HT g (u)<?

Definition 6.3.2. Let v = v; ® ... ® vy be a monomial basis element of w,. We say that
v involves u if there exists an index 1 <[ < ¢ such that v; has i-degree 1.
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6.3. A formal subalgebra of w,

By [BLM13|, Lemma 11], all the elements v = v; ® ... ® v, of wy of type 1h231-h-1
for 1 < h < q—2, or of type 1"397" for 1 < h < ¢ — 1 satisfy that their last component
vg is of type 3, namely v, has i-degree 1 and it is of the form

*
€sq D3, -

Thus v is in the formal subalgebra wy, if it is of type 17 or 19712,

6.3.2 Quiver of w,

In Chapter |§|7 we determined the quiver of w, for any value of the parameter ¢g. To obtain
the arrows of wgy, we now need to remove all the arrows involving u.

Lemma 6.3.3. Let v € V. Then v involves u if it is of the form
s ®...Q€s, ®ER (€5, ®€3_4 ) ...® (€5, ®e€3_, ),
with | < gq.

In particular, amongst the arrows involving &, we only keep those of the form
s ®...Qes,_, DE.

However, that means that some new elements might be irreducible. Indeed, we must
trace back in the proofs determining the irreducible monomials of w, which elements were
decomposed using an element of the form described in Lemma In fact, we only need
to consider the Corollary describing the irreducible arrows of w, starting with :

Corollary (Corollary [3.3.9). Let a1 ®...® aq be an irreducible monomial of wq such that
ar =x. Then a1 ® ... ® aq has one of the following forms:

—rR(e2®e1)®...Q (ea®e1);

—rR(e2®e)®...Q0(2®e1)R(ERer) Ve, ey, @...e, if there exists 1 <i<s
such that l; =2 (s > 1);

TR (e2®e)®...Q(e2®e)®(e2®E) Ve Ve, @ ...e, if there exists 1 < i <r
such that l; =1 (r > 1).

To obtain the condition on

rTR(e2®e)®..Q(e2Re)® ({Re) Ve, Ve, @ ...€

s

and on
r®(2®e€1)R...Q0(2R0€1)® (208 Ve, Ve R...e,

we tried to factor an element of the form
e, Re,®...0€¢, QER(1Re;)®...R (61 ®ej).

However, that element does not appear in our subalgebra, so these decompositions do not
happen there. Hence we must add the missing arrows

€, ®...0€5, 2R (2R€1)R...0(2Re€1)® ({Re€1)RVe1R...Q e

and
€, ®...Q€5, QTR (2®€1)V... 0 (2R€1)® (208 Vea®...Q ea.
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6.3. A formal subalgebra of w,

Note that since the element
es; ®...®es,_; ®E,
still features in wy, it is easily seen that the elements
€, @...Q0€5, TR (20€1)R...0(e2®e€1) R (EReq)

and
€y ®... Qe TR (20e1)®... 0 (ea®er) ® (€2 ®E)

are still reducible.
We have proved the following

Proposition 6.3.4. Let v =11 ®...®v4 be an irreducible monomial of wq. Then it is of
the form

e ®...Qes,;

0 ®... Ve, DE;

0, R..Qe;, TR (e2®e€1)®...Q (62 R eq);

0, ®.. 06, TR (2®e1)®...Q(20e)R(ERe) Ve, Ve, ... e, s> 1;
0 e, ®..0€6, 2R (20€])®...Q0(20e€1)R(2®) Ve, Ve @...e, r>1.

We can compare the quiver obtained in Chapter |3| for wi, wy and w3 and the one for
w1, we and ws below.

Ezample 6.3.5. 1. The quiver of w; = d and wy are given in Figure [6.1
T T
177 172
N N
3 3
W1 w1

Figure 6.1: Comparison between the quiver of wy and that of w;

2. The quiver of wy and wo are given in Figure [6.2

(6% 8]
17 o 17 o
e S
a a
d b B B
v v
47 73 47 73
C C
Wo w2

Figure 6.2: Comparison between the quiver of wo and that of wo
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6.3. A formal subalgebra of w,

Recall that the label of the arrows correspond to the following elements of V5:

= e ®¢
e1®x
E® (e2®e7)
T® (e2®e1)
= e®¢§
e R T
= {®(e1®ey)

QU2 o0 D=L 2
|

so we see that we need to remove arrows b and d, and there aren’t any arrows to
add.

3. The quiver of w3 and ws are given in Figure

A N
o VAR
LN [N
WYERY. “

3e—m—6

N 4 l

&/

W3

Figure 6.3: Comparison between the quiver of ws and that of w3

Recall that the label of the arrows correspond to the following elements of Vj:

a; = e ®E
a = 60e1r
bi = € ®E{® (e2®e])
Bi = QxR (e2®eq)

G = e®e®E
Vi = € R0ex
di = el®£®(el®e§)

I = (@ (e2®e]) ®(e2®e])
A= 2@ (e2®e1) ®(e2®er)
m = {®(e2®e]) @ (e1®ep)
p = 2@ (ERe) e
v = ®(e2®&) ey
n = (a1 ®e) @ (e2®e7)
0 = ER(e1®e;) ®(e1 ®ey)

where 7 € {1,2}. Hence we need to remove by, by, d1,d2,l,m,n,o and we must add
T=z® ({®e)RQe, p=28 (20&) R ea.
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6.3. A formal subalgebra of w,

6.3.3 Properties of w,

We first recall a few definitions and explain why some of these properties might be expected
for wy.

Definition (Definition 1.2.1 [Bei96]). A Koszul algebra is a positively graded algebra
A = @j>0A; such that

1. Ag is semisimple;
2. Considering Ay as a graded left A-module, it admits a graded projective resolution
.= P2 Pl P4
such that P’ is generated by its component of degree j, i.e. P/ = APJ:" .

In particular, Koszul algebras are quadratic algebras (cf. Proposition 1.2.3 in [Bei96]),
which means A is generated by A; over Ag with relations of degree 2. They can be
represented as the quotient of the tensor algebra

A =Ty, (A1)/I

by some homogeneous ideal I C A1 ®4, A1.
In the setting of graded A-modules, we consider graded extensions and denote by
ext o(M, N) the graded extension algebra of M by N. We have the following result:

Proposition (Proposition 2.1.3, [Bei96]). Let A = ®;>04; be a positively graded algebra
and suppose Ag is semisimple. The following conditions are equivalent

1. A is Koszul;
3. exty (A, Aog(n)) = 0 unless i = n.

This result means in particular that A is Koszul if and only if ext 4 (Ag, Ag) = ext% (Ag, Ap)
is concentrated in degree 0, i.e. if and only if Ext4(Ap, Ao) is concentrated in degree 0 as
a graded A-module. Thus, we have the following

Proposition 6.3.6. Let A = ©;>0A; be a positively graded algebra and suppose Ag is
semisimple. The following conditions are equivalent

1. A is Koszul;
2. Exta(Ao, Ao) is formal.

Due to Koszul duality, there exists a Koszul algebra B such that
EXtB(B(), B())Op ~A

and in fact,
B = EXtA(AQ, Ao)OP = E(A),

so that A= F(FE(A)). The algebra B is called the Koszul dual of A.

Since we found a formal subalgebra of w, the extension algebra of Weyl modules of
the principal block of rational representations of G Ly(F2), one could hope that wq would
have some nice properties such as Koszulity.

As for wy, the algebra w, contains two copies of the previous iteration w,_1, which
are both subalgebras.
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6.3. A formal subalgebra of w,

Let us write down the Loewy structure of ws (cf. Figure . We do not provide a
list of relations between the generators as it is straightforward knowing the expression of
the generators under x and £ form.

The algebra w, is not quadratic since w3 is a non-quadratic subalgebra; we have the
following relation oy 31c1 = a1817y1, which is of length 3. In particular, w, is not Koszul.

Since it is not Koszul, we could look at some generalisation of Koszulity such as N-
Koszulity:

Definition ([GMMVZ04]). Let A = @;>0A; be a positively graded algebra such that A
is a semisimple algebra and A; is finite-dimensional, and denote by P*® is a minimal graded
A-projective resolution of Ag. Then A is called a d-Koszul algebra if for each n > 0, the
n-th term P" of P*® is generated in exactly one degree §(n), where

n . .
Ed if n is even,

d(n) =

<”;1d) +1 ifnis odd.

Note that if d = 2, then we recover the definition of a Koszul algebra.

Looking at the projective resolutions of the simples, we see that w, is not d-Koszul
for any d > 3. Indeed, simple 1 up to simple 6 have the first projective in the resolution
generated in degree 1, and the second projective in the resolution (if any) is generated in
degree 3. However, the 7th simple has its second projective in the resolution generated in
degree 2. Hence we cannot find a suitable d > 3 for w, to be d-Koszul.

We have shown:

Proposition 6.3.7. The algebra w, is not d-Koszul for any d > 2.

6.3.4 The case p > 2

For p > 2, the complexity of the formulae increases dramatically when computing an A -
structure on H’]Td(u_l) and it looks very difficult to apply the same method as before to
obtain a similar result concerning the formality of HTgq(u™!) for p = 2.
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6.3. A formal subalgebra of w,

3 4 5
A v\ N
2 3 3 1 4
a1, N\ B | B | SV RNG
1 1 2 2 3 3
R S NG A | P
1 1 1 2

2
RN
1 1 1

6 7
PN v\
2 \5 5 3 6
aN Y AN N a8
1 1 4 4 1 2 5 5
NN asN T AN
3 3 3 1 1 1 4 4 1
31‘ 51‘ c1/ \chl/ \Wl
2 2 3 3 3
NG L VN L NG B1 | B1 | B |
1 1 1 1 2 2 2
asNLe N\ N\
1 1 1 1
8
2R
v 7 v 7

3/3}6/ \[326

W 3
Bl‘m&
9 2 5>5 5

ZBREZN via AN AN
1 1 1 1 4 4 1 4 1
v N Yy Ny X
3 3 3
B1 | B1 | B | B |
2 2 2 2
NN N N
1 1 1 1 1

Figure 6.4: Loewy structure of the left projectives of ws
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Appendix A

Computation for the proof of
Proposition 6.2.6

The following completes the proof of Proposition Let us compute —mq fi,:

—myfp (e3¢ al el © ... @ ey Emratrel™)

My In—1 Mjt1+ig(n—(j+1)—1—1 lj Mj+ig(n—jy—1—1 lj—1 motizn-s5—1 [y
=-mi| D> > > ) )DEENEED DD S
t1=1iz=1 lo(n—j)—1=1 ta(n—j)=1 G2(n—(j-1))-1=1 la(n—(j-1)) =1 tan—3=1  d2p—2=1

n—1

—_1k . . . . .
(71) k=1 (iQk—l‘FM)ln—kegl§m1+22n73711,ll712717261621,1217,7271£m2+22n7571712n73

xBT2emen eg epxizn- Tlemititiam- Gy 1Tl T mog 1

o gmn,l—&-il—1—i3$ln,1—izelezxig—1£m,n,—i1xln e7l7n

n—1

= Z Z(_l)ZLL;l(i2k71+%)ln%+l+zi;i(la—1)+lj—i2("7j)
= 6;1 §m1+i2n7371wl177;211.72ele2xi2n7271€m2+i2n75717i2n73 o
e e O N B e e e e e e
L gmn,1+i17172’3zln,17i26162$i271§mn7i1xln 671771

_ rf Z(_1)22;1(i2k71+w)ln%+l+2ﬂ;i(la—1)+lj—i2<n_j)
=t €§1€m1+i2n—3*1x11*i2n—2ele2xi2n—2*1€m2+i2n—5*1*i2n—3 L
CoxBTReenFlexlzemop T lgmini e 1 T
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For 1 < j <n —1, we perform the change of variable iy, _;) = ié(nfj) — 1 in the second sum:
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Since they those two expressions have opposite signs, they cancel out, except for ig,,_j =1
and iy, = l; + 1. We have:
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Let us write down the neighbourhoods of the boxes; to do so, we need to consider the cases
j = 1,n — 1 separately:
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We make the changes of variable ig,_3 = i5,, 3 — 1 in the second sum, is(,_j)_1 = i’Q(n_j)_l -1
in the fourth sum, and i; = i] — 1 in the sixth sum so that:
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Rearranging the exponents of the signs and of the £’s in the boxes, we obtain:
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Similarly to the proof of Lemmal6.2.4] these three pairs of sums have opposite signs and a lot of
care must be taken when simplifying them. The first two sums give two sums, one if we set i, _3 = 1
in the first, and one if 99,3 = mg + i, _5 in the second. The other two pairs will give three sums
each: set iy(,_j)—1 = 1 in the third sum, set iz, j)—1 = Mj+1+42(n—(j+1))—1 in the fourth and set
12(n—(j—1))-1 = mj—|—i2(n,j),1—1 in the third sum (where 2 < 12(n—j)—1 < Mjt1 +i2(n7(j+1))71_1)~
Finally, in the fifth sum set ¢y = 1 and in the sixth sum set iy = m,, + 1, and set i3 = m,_1+1i; — 1
in the fifth sum (where 2 <i; < m,,).
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Considering the neighbouring terms of the boxes and simplifying the exponents of the signs,
we obtain:
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Similarly to the proof of Lemma we perform some relabellings and some changes of
variable:

- in the third sum, relabel iy, _)—1 by i,2(j—k)—1 and relabel i, _y by i;(j_k) forall1 <k <
j—1.

- in the fourth sum, relabel i(,,_r)—1 by 2(n—(k+1))—1 and relabel iz, _gy by io(n—(x41)) for
all k <j—1;

- in the fifth sum, make the change of variable ia(,,_jy_1 = t9(n—;)—1+1, and relabel ig(, _(;_1))
by i2(n—j)s t2(n—k)—1 DY ta(n—(k+1))—1 and ta(_g) BY do(n_(ry1)) forall 1 <k <j—2.

- in the sixth sum, relabel iy(,_1)_1 by to(n—(k+1))—1 and relabel ig(, 1) by ig(n—(k+1)) for all
1<k<n-2

- in the seventh sum, relabel is(, _x)—1 DY io(n—(x41))—1 and relabel iy, _g) by i2(n—(k41)) for
all k <n—2;

- in the eighth sum, make the change of variable i; = i1 + 1, relabel iy by i2, io(n—_x)—1 by
12(n—(k+1))—1 and 12(n—k) by 12(n—(k+1)) forall1 <k <n-—3.
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n—2 m; lj_1 matin; _5—1 Mn Mjt2—i2(n—(j+2))—1—1 lit1
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6162x12—1§mn—11xlne717n
n—2 my, ln-1 Lit1 mi+mjt1tian_(j+1)-1—2  lj-1
22 Z > > >
Jj=2i1=11i2=1 ia(n—(j+1))=1 ia(n—j)—1=1 io(n—j)=1
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Jj=211=1142=1 ia(n—j)—1=1 12(n—j)=1 12(n—(j—1))—1=1 Ia(n—(j—1))=1
ma+izn—7—1
§ E 05 651 €m1+12n7571‘rl171271,746162',1;742717471€m2+12n77717742n75 o
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) gmnfl“ril717i31:ln717i26162mi271§mn7ilxln6717n

My 1 ln_2 mj+ig(n—(j+2)—1—1 l; mao—igp_7—1

6+ > > ... > ooy

=1 ix=1 Zz(w—(;+1)>—1:1 ia(n—(j+1))=1 t2n—5=1
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where the exponents o; are given below (after applying the same changes):

— 1+ (—1)* 14 (—1)~1
S RV EIC LTS
k=1
n—2
. 1+ (—1)* . 14 (1)1
g2 = (ZZk—l + (2 ) )ln_k + 1+ (mz + top—5 + % — 1)[1
k=1
n—(j+1)
. 1+ 1)n—i+k
o3 = (lok—1 + ——5—— ( In—k + Z k-1 + = 2) ik
=1
j—1 _
1+ (—=1)"7
+> (o= 1)+ ( 5 ),
a=1
n—(j+1) k+1
. 1+ (— 1)k+
oy = Z (t2k—1 + (2 I + Z fok—1 + + (= 5 ) ———— k1
k=1 k=n—j
= 1+ (~1)n
+Z(la =)+ 1+ (mjr1 +i2(n—(iy1))-1 + 3 - 1)l;
a=1
n—j k n—2 k+1
. 1+ (-1 ] 14 (—1
05 = (t2k—1 + #)lnfk +1; + Z (tog—1 + %)lnfkfl
k=1 k=n—(j-1)
Jj—1
1+ (=1)"=0-b
4—}3 1) 4 + (mj + i) 14—444£4?}44440@;1
n—2
) 1+ 1 k+1
o6 = Z(Z2k—1+ (2) nk1+Zl—1
k=1
n—2 n— 2
. 1+ (=1)kt+t
o7 = Z(ZQk—l + %)ln—k—l + Z(la - 1) + 1+ mnln—l
k=1 a=1
n—2 n—2
. 1+ (—1)k+t .
og = Z('LQk—l + %)ln—k—l + (Zl + l)ln—l + Z(la - 1)

k=2 a=1
o1+ (Mp1 + 11+ 1)l

We need to pay close attention to those exponents governing the signs and transform them
appropriately. We will thus work in Z/27Z. We note that the following equality holds:

1+ (=1)F

5 =k + 1] mod 2],
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for all kK € Z. We have:

g1

09 =

03 =

n—2
1+ (=1)k 14 (=1)" !
> (k-1 + =) M-t + ( ) )
2 2

— 1+ (=1
S i+ k-2
k=1
n—2

. 1+ (-D* , L+ (=n)!
E:(Wk71+'44J%427ﬂn7k4_1+'On2+‘wn75+"“£§‘L‘*'_1ﬂ1
k=1
n—3

' 1+_1k ' 1+_1n—2
Z(l%ﬂ + #)lnfk + (on—5 + %)lz +1
k=1

] 1+ -1 n—1

+(ma + ton—5 + % -1i
n—3 ' 1+(_1)k ' .

(tok—1 + Vi + (lon—5 +n —1)lo + 14+ (ma +iop—5+n—2+1)}

2

k=1
n—3

. 1+ (-1)k .
Z(’% 1+ <2 ) Vo + (lon—s5 +n —1)(la +11) + maly +1
k=1
n—(j+1)

) 1+ 1)n—ith
Z (k-1 + ——5—— ( ln— k+z (i5k— 1+ = 2) ik

-1+ <¥>zj

nGtD 14 (—1)* !
Z (i2k—1 + #)ln—k + Z(iék—l tn—j+k+1)l
k=1 k=1
j-1
+) la =i+ 1+ (n—j+1)
a=1
n—(j+1) k j—1
. 1+ (-1 .
Z (f2k—1 + #)ln—k + Z(Zékfl +k+ 1)k
k=1 k=1
j—1 j—1
+Z(n—j)zj,k+21a —j+ 1+ -+
k=1 a=1
n—(j+1) E
. 1+ 1
Z (f2k—1 + ——5—— ( nk"‘Zle 1"‘ (2 ))ljk
k=1
j—1 j-1
+(n—j)Zlk+Zla—j+1+(n—j+1)lj
k=1 a=1
n—(j+1) k
) 1+ 1
Z (lop—1 + ———— ( nkJrZsz 1Jr ( ))lak
k=1
+(n—j+1)2lk—j+1
k=1
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n—(j+1)

. 1+ (- L+ (DM =
04 = Z (iok—1+ ——5—— ( Ly—i + Z log—1 + ————" ( ) Vp—g—1 + Z(la -1
a=1

2 2
k=1
1+ (—1)"?
F1+ (mjp1 +ign—(j+1))—1 + % =1l
n—(j+1) k n—2 j—1
. 14+ (-1 ) .
= > (it #)ln_k + 3 (o +h+Dlypr + Y e —j+1
k=1 k=n—j a=1
+]. + (mj+1 + ig(n_(j+1))_1 +n— ] + 1-— ].)ZJ
n—(j+1) 1+ (71);C n—2 n—2
= Z (t2k—1 + #)ln—k + Z (iok—1 + Ak + 1)1 + Z Ly—p—1
k=1 k=n—j k=n—j
J—1
+D o= J+ 1+ 1+ (mjp1 +ism-(ery-1 +n—J— 1+ 1)
a=1
n—(j+1)
. 1+ 1
— Y s et S (it e M1+zzk
k=1 k=n—j
-1
. ‘ 1)r-G+
+Zla =7+ 141+ (mjp1 +dan—(+1))-1 + %)lj
a=1
n—(j+2) k n—(j+1)
) 1+ (-1 ) + (=1)n=G+D
= z (2k—1 + #)ln—k + (l2(n—(j+1))-1 + f)(lj-u +15)
k=1
n—2 k
1+
+ ) (Ggka + 1) Vn—k 1+mj+1lj—]+2<1+21k>
k=n—j
n—(j+2) § 1
. 14 (-1 . 1+ (=1)n=G+D
= (fok—1 + (f))lnfk + (f2(n—(j+1))-1 + L)(lﬂl +15)
k=1
n—2 k
. 14 (-1 .
+ Z (tok—1+ #)ln—k—l +mjp1l; —
k=n—j
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=
Il
—

+I; + (mj + iz(n,j),l +
1+ (=1

3
d

(tok—1 +

>
Il

1

j—1

14+ (-1)
2

2

k

1+ (-1)n-G-D

: 2
k=n—(j—1)

5 )j-1

n—2
, 1+ 1’€+1
Mok +1i+ Y (iokr + ————— 1) ln—k— 1+Zl -1)

n—2 n—2

Vo +1; + Z (tok—1 +Ek+D)lp—1 + Z lp—p—1
k=n—(j—1) k=n—

(G-1

+3 la—j+ L+ 4 mlia (i1 + (R —j + 1) + 1l
n—j o=t k n—2 Jj—2 j—1

. 1+ (-1 .
Z(ZQk—l + #)ln—k +1;+ Z (tok—1 +k+ 1)lp—g—1 + Z I + Z la
k=1 k=n—(j—1) k=1  a=1
, , 14 (=1)n7
=+ 1+ + Lo +mylio 4 (lg—j)—1 + %)ljfl
n—(j+1) k —j
, 1+ (—1 , 14 (1)
Z (Gok—1 + #)lnfk + (f2(n—j)—1 + (f)

k=1

)l +1i-1)
j—2 j-1

+ Z (i2k71+k+1)ln7k71+Zlk+lj71+ljzla+lj_j+]_+mjlj71
k=n—(j-1) k=1 a=1
n—(j+1) k _;
. 1+ (-1 ) 1+ (-1)"~7
D> (i1 + 7(2 ) M-k + (i2n—j)-1 + Sl )y +1-1)

2
k=1
n—2

. 14 (—1) : .
+ Z (tok—1+ f)lnfkq +2 Zlk —j+1+myl
k=n—(j—1) k=1

n—(j+1) k —j
, 1+ (—1 , 14 (1)
Z (i2k—1 + #)lnfk + (f2(n—j)-1 + %

5 )l +1-1)
k=1

n—2

. 1+ (=1)F .
+ Z (t2k—1 + #)lnfkﬂ +mjli—1—(j—1)
k=n—(j—1)

n—2
' 1+( 1)k+1
06 = Z(lqu-i- nk1+zl_1

2
k=1
n—2 n— 2

= E (iog—1+ (K + 1)+ D)lp_p—1+ E lo —(n—2)
k=1 a=1
n—2

n n—2
= Z(iZk—l + (k + 1))ln—k—1 + Z ln—k—l + Z la - (’fl - 2)
k=1 a=1

k=1
n—2

n—2
= Z(izk_1 + (k+1)p—g—1+2 Z I —(n—2)
k=1 k=1

. 1+ (=1
= Z(lzk—l + #)ln%q —(n—2)
k=1
n—2 n—2

, 1+ (—1)F*!
or=Y (iak—1+ %)zn,k,1 ) (o= 1)+ 1+ mplyy
a=1

= ) ok +(k+ 1)+ Dlpgo1+ Y _la— (n—=2) + 1+ mply_

n—2 n—2 n—2

= ) a1+ (k+ D))k + Y Inke 1+Zl —(n—3) +mnly—

k=1 k=1 =
1)
n k— 1+22lk_ n—3 +mnln—1

1+ (="
2
(=D*
2
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n—2 1 + (71)k+1 n—2
g = Z(iQk—l + 7)ln—k—l + (Zl + 1)ln—1 + Z(la - 1) + ln—l + (mn—l + Z.1 + l)ln—Q

k=2 2 a=1
n—2 n—2
= Z(i%—l +(k+1)+Dlpp—1 +i1ln—1 + 11+ Z lo—(n—2)+ Lo +mp_1l,—2
k=2 a=1
Firlp—o +1ln_2
n—2 n—2 n—2
= i1l +lno2) + Y ok + B+ D)lnep1+ 3 lnke1 + o1+ Y la— (n—2)
k=2 k=2 a=1
+ln72 + lnfl + mnflln72
n—2 n—3 n—2
= i1(lp=1 +ln—2) + Z(i2k—1 + (k+1)p—g—1 + Z e+l + 11+ Z lo +1ln—1
k=2 k=1 a=1
—(n — 2) + mn_1ln_2
n—2 1+ (71)k n—1
= i1(lp—1 +ln—2) + Z(izk—l + 5 Mn—k—1+2 Z Ik
k=2 k=1
+mn—1ln—2 - (n - 2)
n—2
. . 14 (—1)*
= i1(lnor +lno) + > (ize—1 + #)lan + Mp_1lp—2 — (n—2)
k=2

Let us now analyse the following situations:

- Compare o4 with iy,—jy—1 = mj + mjy1 + la(n—(j+1))—1 — 1 and o5 with iy, =
M1+ lon—(j+1))-1 — 15

- Compare o7 with i, = m,_1 + m, and og with i; = m,,.

n—(j+2)

. 1+ (-1)* . 1+ (—1)n=G+D
o= Y, (k- (2 : Vot + (la(n—(+1))-1 + hal ) i )i +15)
k=1
, 14 (—1)n7
+(mj +mjp1 +igm—(iy1))-1 — 1+ %)l;‘—l
n—2
. 1+ (=1)* .
+ Z (tok—1 + #)Zn—k—l +mjpil; —
k:)nf(jfl)
n—(+1 k n—(j+1)
: 1+ (-1 . 14 (=1 J
= Y (i + #)ln—k + (la(n—(41)) -1 + %)b
k=1
+(mj 4+ mjp1 +igp—(j+1)-1 — 1+n—J+ 1)l
n—2
. 1+ (—=1)k .
+ Z (iok—1 + %)Zn—k—l +mjipal; — 7
k:)nf(jfl)
n—(+1 k n—(j+1)
: 1+ (-1 . 14 (=1 J
= Z (i2k—1 + #)ln—k + (i2(n—(j+1))-1 + %)G
k=1
. 1+ (=1)»=G+D
+(mj +mj1 +ian—(j+1)-1 + %ﬂj*l
n—2
. 14 (=1)F ‘
+ Z (tok—1 + #)ln—k—l +mjpal; — 7
k=n—(j—1)
n—(+1) k n—(j+1)
: 14+ (-1 . 14 (=G
= Z (iok—1 + #)ln—k + (l2(n—(j+1))-1 + %)(lj +1j-1)
k=1
n—2
. 1+ (=1)k .
+ (tok—1 + #)Zn—k—l + (mj +mjp1)lj—1 +mjpl; — 3
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n—(+1)

. 1+ (=1)k ) 1+ (=1)7J
05 = Z (dok—1 + #)ln% + (mj41 +iom—(+1))-1 — 1+ %)(lj +1-1)
k=1
n—2
. 1+ (-1)k ,
+ ) (a1t #)ln,k,l +myly—(j—1)
k=n—(j—1)
n—(j+1) .

. 14 (-1 , ‘
37 (iak1 + #)ln_k + (g ey -1 — 1+ — G+ 1)l + 1)
k=1

= 1+ (=1)*
+ D (i + k1 myia(ly + oy) Fmylio = (G- 1)
k=n—(j—1)
n—(j+1) k
) 14+ (-1 )
= Z (ZQk—l + #)ln—k + (Zz(n,(jJrl)),l +
k=1

—1)n—G+D)
%)(lj +1;_1)

= 1+ (—1)k
+ Z (igk_1 + #)ln—k—l + mj+1(lj + lj_l) + mjlj_l — (] — 1)
k=n—(j-1)

One sees that 04 and o5 in that case are opposite of each other.

n—2
: 1+ (—1)*
o7 = Z(Z%—l + #)ln—k—l —(n—=3)+mply—1
k=1
n—2
‘ 1+ (—1)*
= (mn—l + mn)ln—Q + Z(@k—l + ( ) )ln—k—l — (n — 3) + mpln—1
k=2
n—2
: 1+ (—=1)k
= Z(lefl + #)lnfkfl(mnfl + mn)ln72 + mnlnfl — (n — 3)
k=2
n—2 1 + (_1)k
og = i1(ln-1+1ln—2)+ Z(i2k—1 + #)ln—k—l +Mmp_1lp_o — (n —2)
k=2
n—2
. 1+ (=1)*
= m"(l”_l + l"_2) + (ZQk—l + #)ln—k—l +Mmp_1lp_2 — (n - 2)
= 1+ (—Ii:’f
= Z(i2k—1 + #)ln—k—l + mn(ln—l + ln—Q) + mn—lln—Q - (n — 2)
k=2

One sees that o7 and og in that case are opposite of each other.

This means we can add two sums of opposite signs between the fourth and the fifth sums, and
between the seventh and eighth sums:
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For us to recognise ®,,, we need to consider expressions (4'). for index j — 1 and (5). for index
J- We make the change of variable ia(,,_j) = ia(,—j)

‘ ;) — l; in expression (5'). Note that this change
of variable does not affect o5. The expressions write:
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If 04(j — 1) is the same as o5(j), we see that these two sums complement each other
- in (4)., we have 1 < ig(,—j) < lj;

- in (5)., we have 1 +1; < iog_jy < i1 +1;

Let us compare c4(j — 1) with o5(j).
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In addition, expression (4) at j = n — 2 complements expression (8') after having made the

change of variable io = i3 — [,,_1 in (8'), and expression (5') at j = 2 complements expression (2).
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Let us review each sum separately, and insert back the o;’s
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