Mechanisms driving variability in the ocean forcing of Pine Island Glacier

Webber, Benjamin G M, Heywood, Karen J, Stevens, David P, Dutrieux, Pierre, Abrahamsen, E Povl, Jenkins, Adrian, Jacobs, Stanley S, Ha, Ho Kyung, Lee, Sang Hoon and Kim, Tae Wan (2017) Mechanisms driving variability in the ocean forcing of Pine Island Glacier. Nature Communications, 8. ISSN 2041-1723

[img]
Preview
PDF (Published manuscript) - Published Version
Available under License Creative Commons Attribution.

Download (6MB) | Preview

    Abstract

    Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS.

    Item Type: Article
    Faculty \ School: Faculty of Science > School of Environmental Sciences
    Faculty of Science
    Faculty of Science > School of Mathematics
    Depositing User: Pure Connector
    Date Deposited: 02 Mar 2017 01:42
    Last Modified: 09 Apr 2019 11:59
    URI: https://ueaeprints.uea.ac.uk/id/eprint/62820
    DOI: 10.1038/ncomms14507

    Actions (login required)

    View Item