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Abstract

Conventional zero-shot learning (ZSL) methods recognise an unseen instance by pro-
jecting its visual features to a semantic space that is shared by both seen and unseen
categories. However, we observe that such a one-way paradigm suffers from the visual-
semantic ambiguity problem. Namely, the semantic concepts (e.g. attributes) cannot
explicitly correspond to visual patterns, and vice versa. Such a problem can lead to a
huge variance in the visual features for each attribute. In this paper, we investigate how
to remove such semantic ambiguity based on the observed visual appearances. In par-
ticular, we propose (1) a novel latent attribute space to mitigate the gap between visual
appearances and semantic expressions; (2) a dual-graph regularised embedding algorithm
called Visual-Semantic Ambiguity Removal (VSAR) that can simultaneously extract the
shared components between visual and semantic information and mutually align the data
distribution based on the intrinsic local structures of both spaces; (3) a new zero-shot
recognition framework that can deal with both instance-level and category-level ZSL
tasks. We validate our method on two popular zero-shot learning datasets, AWA and
aPY. Extensive experiments demonstrate that our proposed approach significantly per-
forms the state-of-the-art methods.

1 Introduction

Zero-shot learning focuses on classification with no training data. The fundamental idea of
ZSL is to train a closed-set of human knowledge models that can generalise to an ever grow-
ing set of classes without collecting new training data. Such a scenario effectively alleviates
the cost of data collection and also provides a feasible solution for recognising inaccessible
objects, such as an ancient species that only has text records. Because of these attractive
properties, ZSL has aroused increasing research interests in the vision and learning commu-
nity [7, 21, 26].
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Conventional ZSL methods [4, 8, 15, 25, 26] rely on directly mapping the visual features
to a human-interpretable semantic space and the labels are inferred through human knowl-
edge. However, an inevitable issue of using semantic information is the ambiguity problem.
In linguistics, a concept is considered ambiguous if its extension is deemed lacking in clarity.
It is the uncertainty about which objects belong to the concept or which exhibit character-
istics that have this predicate. In the context of ZSL, Visual-Semantic Ambiguity refers
to the situation that a semantic concept (e.g. an attribute) cannot clearly correspond to a
certain pattern of visual data, and vice versa. Therefore, the paradox is how different of the
visual patterns can we tolerate for each semantic concept? Alternatively, should we split
the concept into sub-concepts to fit the visual data? This is known as the Sorites Paradox
that can lead to two extreme solutions. (1) We can accept all instances as if they have the
same attribute. Jayaraman and Grauman [10] also study this problem. They provide an ex-
treme example that the concept ‘bumpy’ is assigned to both ‘bumpy road’ and ‘bumpy rash’
which can lead to unreasonable classification results. Unfortunately, most of the existing
methods accept this solution. (2) We refuse any ambiguity and give every seen instance a
unique attribute. For example, compared to ‘smile’, ‘Mona Lisa’s smile’ is clearly referring
to a unique visual pattern with no ambiguity. However, it is infeasible to treat everything as
unique and assign a new concept to it.

Instead of debating on what is common or unique, in this paper, we propose a latent
attribute space to mitigate the visual-semantic ambiguity using a novel algorithm named
Visual-Semantic Ambiguity Removal (VSAR). We measure the visual-semantic ambiguity
by the reconstruction error and correct it in the latent attribute space. Intuitively, if a semantic
concept refers to multiple variations of visual features, it should be split into different regions
in the latent attribute space. In the visual aspect, if two close feature points are labelled by
different attributes, we should find lower-dimensional subspaces so that they can be discrim-
inated after embedding. Specifically, we develop a graph regularised embedding function
that can minimise the reconstruction errors in both visual and semantic spaces. Meanwhile,
the regularisation can preserve the discriminative information for recognising unseen cate-
gories. We illustrate this idea in Fig. 1. Our contribution is three-fold: (1) we propose a
novel VSAR algorithm that can simultaneously remove the ambiguity between visual and
semantic information; (2) our results suggest the important role of visual-semantic ambi-
guity to the performance improvement; (3) we introduce a unified framework that can deal
with both category-level (AwWA dataset) and instance-level (aPY dataset) zero-shot recogni-
tion tasks without adjusting the paradigm. To the best of our knowledge, the visual-semantic
ambiguity issue has not been well studied yet. Thus, in the following, we only review related
ZSL approaches.

Related work. Since learning visual attributes [5] is proposed, extensive studies [12, 15,
21, 25] have been conducted on how to use attributes as an intermediate representation for
ZSL tasks. One interesting direction is to investigate the properties of attributes, such as
the label co-occurrence property [20], the relativeness [22], the unreliability [10], and the
correlation problem [11] of human-nameable attributes. All of these are semantic properties
and therefore suffer from the semantic-visual ambiguity problem. Due to this problem, some
work turns to abandon human-nameable attributes and discovers data-driven attributes [14,
26]. However, for ZSL, these methods cannot exploit existing attribute ontologies. Hence,
the applicable area is limited. Another trend is based on the embedding framework [1, 2,
3, 17, 19, 23, 28]. All these methods follow the restricted one-way paradigm that suffers
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Visual Feature Space Latent Attribute Space Semantic Space
Figure 1: An intuitive illustration of VSAR (best viewed in colour). Visual Ambiguity (in
blue oval): the image of a carriage is taken with a building background. It cannot recover
the semantic distance (blue question mark) to the building category. Semantic Ambiguity (in
red oval): the cup printed with a wolf and the cup-like building share the same semantic ex-
pression which can lead to a large visual variance (the red question mark). After embedding
to the latent attribute space using VSAR, such ambiguity is mitigated.

from the ambiguity between low-level instances and high-level semantic concepts and labels.
Recently, a new direction of ZSL is using the transductive model [6, 7, 9, 13, 16, 18, 24, 27].
Unlabelled target domain data is collected for learning a transfer function. However, this
setting slightly differs from the original ZSL purpose because the target domain may be
strictly inaccessible. In contrast, our method can exploit the extensive existing attribute
ontology while also stressing the existence of visual-semantic ambiguity and removing it
through a learning process.

2 Visual-Semantic Ambiguity Removal

Problem setup: The training data is in N 3-tuples of ‘seen’ samples, attributes, and cate-
gory labels: (x1,a1,y1),-.., (xn,an,yn) C X5 x Ay x Vs, where X is a D-dimensional feature
space X; = [xz,] € RP*N, A is a M-dimensional attribute space Ay = @] € RV, and
yn € {1,...,C} consists of C discrete categories. The Calligraphic typeface indicates a space.
We use subscript u to denote information of ‘unseen’ space and hat denotes ‘unseen’ sam-
ples. During testing, the preliminary knowledge is in C pairs of ‘unseen’ category-level
attributes and labels: (d1,1), ..., (4¢,3¢) C Au X Vs YNV = D, Ay = [ame] € RM*C. The
goal is to learn a classifier, f : X, — ),, where the samples in X, are completely unavailable
during training. Such a problem is known as zero-shot learning.

Latent Attribute Embedding: We aim to discover a latent attribute embedding space V
shared by both visual and semantic spaces X and .4 to mitigate the visual-semantic ambigu-
ity. During testing, both X, and .4, can be embedded into V.

Zero-shot Recognition: Instead of typical two-step prediction X, — A, — ), our embed-
ding is two-way from X}, and 4,,. Because attribute space .4, and label space )), are in pairs,
we can firstly embed the known A, to V as a knowledge domain. During testing, an unseen
image £ is also embedded to V so that we can compute the index, i.e., X, = V < A, < V.
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2.1 Latent Attribute Embedding

This is the core component to deal with the visual-semantic ambiguity. We require X; and
Aj to compute V. In the following, we drop the subscript s for convenience, i.e. we replace
{Xs, As, Vs } by {X, A, V}. Typically, each dimension a,, denotes a human-nameable con-
cept, where M < D. The attribute notions here are instance-level. For the category-level,
we can simply set the same attribute vectors to the instances within the same class. For em-
bedding, many previous works are based on a forward matrix transformation, i.e. X to A.
However, because of the visual-semantic ambiguity, the variance in X is large. Therefore,
the forward embedding is difficult to be reconstructed by a backward inverse matrix trans-
formation from 4. Therefore, we insert an intermediate latent attribute space ) between X
and A, where V = [v},,] € RE*N, K is the dimension of the embedding space. A straightfor-
ward setting is M < K < A. However, we stress that K can be any positive whole number.
Specifically, we introduce our loss function as:

J=|X-UV|;+al A=V, (0

where ||.||r is the Frobenius norm of a matrix, which estimates the Euclidean distance be-
tween two matrices. The shared embedding space V is decomposed from both X" and A,
where Uy = [uy,] € RP*K and U, = [uy,, ] € RM*K are the basis matrices of the visual fea-
ture and attribute space, respectively.

mk ]

Using Eq. 1, it becomes easier to understand the properties of the latent attribute space
and how it could mitigate the visual-semantic ambiguity. Optimising Eq. 1 aims to minimise
the reconstruction errors that are from V to X’ and from V to A, respectively. To achieve the
optimal solution, U; and U, should preserve the principal components between X and A.
This differs from unsupervised methods, such as PCA, that only analyse the data structure in
a single domain. Our Eq. 1 can reduce the variance of the embedded data that comes from
both visual and semantic domains. & is a reliability parameter that can balance the strengths
of the two terms. In practice, if the attribute space is known as unreliable in prior, e.g.
extended from category-level attributes, we can reduce o so that the proposed embedding
can focus more on the visual feature space and remove more ambiguity from the attribute
space.

2.2 Dual-graph Regularisation

The above Eq. 1 can reduce the difference between the data structures of X' and .A. How-
ever, it cannot preserve the discriminative information. For instance, if the gap between x,
and a, is too large, their corresponding weights tend to be minimised to very small values.
As a result, the learnt latent attributes are the principal components that are shared by all of
the categories. For the purpose of zero-shot recognition, we have to preserve the intrinsic
geometrical structure so that the learnt representation is discriminative.

We achieve this goal by taking the local invariance assumption and model the problem
through a spectral graph approach named Dual-graph Regularisation. In particular, this is
a combination of two supervised graphs that model the relationship between X and )/, and
A and ). The main criteria is to preserve the local structures. Therefore, we need the two
graphs to simultaneously estimate the data structures of both spaces. Each graph has N ver-
tices that correspond to N data points in the training set. As mentioned earlier, our method
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can effectively handle ZSL tasks for both instance-level and category-level attribute scenar-
i0s. In particular, for instance-level attributes, we put an edge between each data point x,, or
a, and its p nearest neighbours. For each pair of the vertices s; and s; in the weight matrix,
w;; = 1 if and only if s; and s; are connected by an edge, otherwise, w;; = 0. As a result, we
can separately compute two weight matrices Wy and W 4.

It is noteworthy that for category-level attributes, W 4 is computed slightly different. Ev-
ery vertex in the same category are connected by a normalised edge, i.e. w;; = p/n, if and
only if a; and a; are from the same category c, where n. is the size of category c.

In the embedding space V, we expect that if the s; and s; in both graphs are connected,
each pair of embedded points v; and v; are also closed to each other. However, for the visual-
semantic ambiguity problem, Wy and W 4 usually give contradictory results. To compromise
such conflict, we use the same reliability parameter ¢ in Eq. 1 to linearly combine the two
graphs, i.e. W;; = Wx,; + a@W ;. The resulted regularisation is:

R_l i ||v-—v-||2w~
2i,j:ll S (2

= Tr(VDVT) = Tr(yWVT) = Tr(VLVT),

where D is the degree matrix of W, D;; = };w;;. L is known as graph Laplacian matrix
L=D—W and Tr(.) computes the trace of a matrix. We combine Eq. 1 and 2 using
a regularisation parameter A to control the balance between reconstruction error and local
structure preservation. The final goal is to optimise the following equation:

J=[|X=UV|;+al A= UV||E +ATrVLYT), 3)

2.3 Optimisation Strategy

Each term of the above Eq. 3 is convex, but the combined expression of U;,Us,V is non-
convex. To our best knowledge, there is no direct solution to find the global optima. Instead,
we adopt an alternating optimisation strategy to find the local minima for each term sep-
arately as a relaxed solution. Specifically, the whole task is in turn separated into three
sub-problems.

1. sub-problem U;: Suppose we compute the partial derivative of the overall loss function
J with respect to Uy, U and V are fixed as constants. It then becomes a standard least squares
problem. Let the partial derivative equal to zero, we have the closed form solution:

aJ

— = 22742 T =

3 V20,0V =0

u o= ") )

2. sub-problem U,: Similar to the sub-problem 1, we can fix U; and V, and compute the
partial derivative of J with respect to U,. The corresponding solution is:

Uy = AV (W)~ (5)
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Since we do not expect any prior bias from the unnormalised magnitudes of the training data,
the basis vectors in the matrices should be normalised to unit vectors via:

Uty ui
dk U — mk

Z Mz mk Z uz °
d * 1 M2k

3. sub-problem V: Fix U; and U,, we can then update V. Applying the matrix properties
Tr(AB) = Tr(BA) and Tr(AT) = Tr(A), and we set the partial derivative respect to V) to zero:

uldk<—

aJ
v = 2((Uf U1+ aU] U2) V+V(AL) — (U] X + aU] A)) =0. (6)
Since space Uj, U, and L are disjointed, this forms a typical Sylvester equation that has the
unique solution for V. We use the /yap() function in MATLAB to solve this problem.

Batch sampling scheme: In practice, the computational complexity of solving the Eq. 6 is
O(N3). To improve the efficiency, we adopt a batch sampling scheme like the deep learning
strategy. The whole training set is divided into ¢ batches by randomly sampling training

instances from each categories. The size of each batch roughly equals to ¥ As a result,

the computational complexity is reduced to O (t (?)3), where (g)3 < N3. Each batch is in

turn used to optimise the loss function in Eq. 3. We turn to the next batch until it converges
on the previous batch. The whole learning procedure is summarised in Algorithm 1.

Algorithm 1 : Visual-Semantic Ambiguity Removal
Imput: {X, A, Y}, a, A, K, p, number of batch .
QOutput: V, Uy, and U,.
1: Initialisation: random batch sampling { Xy, A;, V1 }..{X;, A, Vi},
random initial matrix V.
2: for each batch do
3:  Compute the graph Laplacian matrix L using Eq. 2;
4:  while Eq. 3 is not converged do

5: Update U by Eq. 4, then normalise U by u;, <+ r ;
dk /Zd u%dk
6: Update U by Eq. 5, then normalise U, by up , < —

Vs,
7: Update V by Eq. 6;
8:  end while
9: end for

10: return V,U;, and Us;

2.4 Zero-shot Recognition

Once we obtain the latent attribute embedding V of the seen data, performing zero-shot
recognition is straightforward via least-square approximation between V and {A, X'}. Dur-
ing the test, the given informations are the unseen category names and their attributes in
pairs: {JV,,A,}. We firstly embed all unseen attributes .4, into the latent embedding space
as references: V, = VAT (AAT)‘IAH. Given a test unseen instance £, its embedded latent
attribute representation is: ¥ = VAT (X XT)~!%£. Finally, we adopt a simple NN classifier to



LONG, LIU, SHAO: ATTRIBUTE EMBEDDING WITH VSAR FOR ZERO-SHOT LEARNING 7

| Method || aPascal&aYahoo Animals with Attributes |

Farhadi et al. [4] 32.5 -

Mahajan et al. [19] 37.93 -

Akata et al. [1] - 43.5

Fuetal [11] - 47.1

Lampert et al. [15] 19.1 40.5

Jayaraman and Grauman [10] 26.02+0.05 43.014+0.07
Romera-Paredes and Torr [23] 27.27+1.62 49.30+£0.21

our VSAR 39.42+ 0.27 51.75+ 0.43

Table 1: Compare with the published state-of-the-art methods.
predict the category label ¢:

¢ = argmin |9 — v.||%, where v, € V. (7
c
3 Experiments

Datasets and Settings. We choose two of the most popular datasets for evaluating ZSL tasks.
(a) AWA dataset [15] is one of the earliest work that particularly proposed for ZSL tasks.
Many published results are based on this dataset. Each animal category in AwA is labelled
by an attribute signature. (b) aPY dataset [4] is an instance-level attribute dataset that each
image has a unique attribute signature. In contrast to AwA, aPY covers a more various
range of categories, including human, artificial objects, buildings, as well as animals. For
comparison reason, we adopt the base features that are provided by the datasets. We carefully
follow the standard settings on both of the datasets. In particular, the training/test splits are
40/10 and 20/12 on AwA and aPY dataset, respectively. The optimal reliability parameter
o for each dataset is selected from one of {0.1,...,0.5,...,0.9} with the step of 0.1 which
yields the best performance by 10-fold cross-validation on the training data. For A and p,
cross-validation is still deployed and finally fixed as A = 0.03 and p = 10.

3.1 Comparison with the state-of-the-arts

We summarise our comparison in Table 1, where the hyphen indicates the existing method
has not tested on the datasets in their original publication. Our method significantly outper-
forms the previous published results and can achieve state-of-the-art performance comparing
to most recent papers. From the confusion matrices in Fig. 2 we can see that the recognition
rate to each category tends to be averaged. Such a result indicates the performance of our
proposed method is stable and reliable. It is also worth noting that, due to the attributes of the
two datasets are not both category-level or instance-level, all of the compared methods have
to adjust the framework to fit such different settings. In comparison, our VSAR approach
can deal with both of the situations.

3.2 Algorithm analysis

Effects of terms in VSAR. To understand the success of our VSAR algorithm, the first im-
portant question is how does each terms in our VSAR algorithm work for ZSL. Thus, we
separately strip-down each term in Eq. 3 into three baseline models. The first model is
referred as X-fo-A, in which we remove the second term of Eq. 3 and let the visual space
X directly map to the semantic space, i.e. V = A. This is exactly a DAP procedure that,
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Figure 2: Confusion matrix of ZSL performance on aPY (left) and AWA (right).

during the test, the image is firstly mapped to the semantic space and then classified to the
label space. The second model is referred as A-to-X. This is an interesting scenario that in-
vestigates whether we could regenerate the original visual features given just the semantic
representations. Specifically, we train the model by setting VV = X and remove the first term
in Eq. 3. During the test, we firstly project all attributes of the unseen categories/instances
to X. A test image is then classified in this embedding space using Eq. 7. In the third model
that is denoted as No-Graph, we explore the importance of our dual-graph regularisations.
Specifically, we train the model by setting A = 0.

In Fig. 3. it can be seen that our full model significantly outperforms all of the baseline
methods. In addition, we find the performance of the third model is roughly equal to random
guess. Such a failure case matches our previous expectation that, without regularisation,
Eq. 1 tend to discover the principle components rather than discriminating the categories. It
is also noticeable that the A-fo-X method gets better result on the aPY dataset than that on
AwA. We ascribe this to the instance-level attributes. Such a result implies that it is feasible
to generate visual features of each image from its semantic representations in future work.

Number of latent attributes. Another important issue is how many latent attributes K are
required for the embedding space. Does a larger number of K always give better results? To
investigate this question, we gradually increase K from 50, 85, 500, 1000, and 1000 per fur-
ther step. We show the result in Fig. 3 (left). Generally speaking, a larger K tends to benefit
the performance. However, we point out that there is an optimal K that gives the peak result.
After that, the performance gradually degrades while we further increase K. This problem is
severer on AwA than that on aPY. This is because when K goes too large, this can be viewed
as an spectral over-fitting problem [29]. Since the attributes of AWA is category-level, the
variance of its semantic space is much smaller than its visual space, which results in that the
model on the AwA is more likely to over-fitting. For the whole experiments, we fix K =
3000 and 4000 for aPY and AwA, respectively.

Efficiency Our implementation is conducted in Matlab 2014a environment that is installed
on a 12-core Linux system with 400G memory. The test time is done within a second. The
training process takes roughly half an hour (i.e. number of batches t = 15) to get a converged
model. Most of the time is used for solving the Eq. 6. We stress our contribution of using
the batch sampling scheme, whereas directly solving the Eq. 7 without the batch sampling
scheme can take up to 10 hours.
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Figure 3: Evaluating each term of the loss function in Eq. 3 (left) and the performance curve
respects to the dimension K of the latent attribute space (right).
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Figure 4: Examples of successful semantic ambiguity removal on aPY (left) and the visual
ambiguity removal on AwA (right).

3.3 Visual-semantic ambiguity removal

In this section, we investigate what kinds of visual-semantic ambiguity are removed using
our algorithm. This question can be considered from two aspects. Firstly, we consider the
semantic ambiguity between different categories. On aPY dataset, we find such a semantic
ambiguity problem is very severe. We use the provided “ground truth” attribute labels as
the representation for each image. We then search the nearest neighbour for each image like
an 1-NN classification. We find that only 67.17% of the nearest neighbours can match their
original categories. Such a result implies that even if the conventional attribute classifiers
can give perfect predictions, the overall recognition rate is only 67.17%. In Fig. 4 (left), we
show that our VSAR is able to remove some of the semantic ambiguities. For example, in the
second columns, the test image ‘donkey’ is misclassified as a ‘bag’ because the material and
the logo of the bag possesses the same attributes to the donkey. However, in the visual space,
such two instances are very distinctive. Therefore, using VSAR, our method successfully
removes the ambiguity and gives the correct nearest neighbour. On the AwA dataset, the
semantic ambiguity does not exist because all of the images in one category share the same
attributes. Therefore, we consider the problem of visual ambiguity, i.e. the extracted low-
level features from different categories are confused to each other. Specifically, we compare
our method with the DAP framework using the X-to-A model. In Fig. 4 (right), we show
some prediction errors in DAP can be corrected using VSAR. Such an ability contributes to
the remarkable performance improvement (39.42% to 51.75%) in Fig. 3.
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4 Conclusion and future work

We introduce that the visual-semantic ambiguity is a common issue in ZSL tasks. Our results
on both datasets support that ambiguity removal can significantly benefit the recognition per-
formance. The proposed VSAR is an unified framework that can deal with various semantic
inputs, such as category-level and instance-level attributes. Instead of treating ZSL as a
multi-label classification task, we adopt an embedding approach without struggling with the
effectiveness of each attribute concept. Due to this property, our method can be simply ap-
plied to various existing intermediate semantic representations, such as data-driven attribute
[26] or word-vector [25]. In the future, we plan to extend our visual-semantic constrains to
multilateral in order to simultaneously incorporate multiple types of visual, semantic, as well
as hierarchical label information.
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