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ABSTRACT
Toxoplasma gondii is a ubiquitous parasite and a prevalent food-borne parasitic pathogen.
Infection of the host occurs principally through oral consumption of contaminated food and
water with the gastrointestinal tract being the primary route for entry into the host. To
promote infection, T. gondii has evolved highly specialized strategies for rapid traversal of the
single cell thick intestinal epithelial barrier. Parasite transmigration via the paracellular
pathway between adjacent cells enables parasite dissemination to secondary sites of infection
where chronic infection of muscle and brain tissue is established. It has recently been
proposed that parasite interactions with the integral tight junction (TJ) protein occludin
influences parasite transmigration of the intestinal epithelium. We review here the emerging
mechanisms of T. gondii transmigration of the small intestinal epithelium alongside the
developing role played in modulating the wider TJ-associated proteome to rewire host cell
regulatory systems for the benefit of the parasite.
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Introduction

Toxoplasma gondii, first isolated in 1908 from theAfrican
rodentCtenodactylus gundi, is a protozoan obligate intra-
cellular parasite of the phylum Apicomplexa that infects
virtually all warm-blooded animals.1 It is recognized as a
prevalent human pathogen, being one of themost signifi-
cant sources of food-borne disease worldwide2 with
infection commonly acquired by oral ingestion of under-
cooked meat or contaminated unwashed vegetables and
water supplies.3-6 T. gondii infection is widespread
throughout the world and in the United States and the
United Kingdom it is estimated that 16–40% of the popu-
lation have been infected by T. gondii, whereas in Central
and South America and continental Europe, estimates of
infection range from 50–80%.7,8 Although the incidence
of T. gondii infection is high, with the exception of the
immunocompromised and pregnant women, individuals
usually present no signs of clinical infection other than
mild flu-like symptoms with 80–90% of infections going
unrecognised.9 T. gondii also has a considerable eco-
nomic veterinary impact being a major cause of abortion
and stillbirth in livestock.10-12

Following ingestion, T. gondii encounters the semi-
permeable barrier of the single layer of intestinal epi-
thelial cells,13 restricted by junctional complexes
which occlude the paracellular space between neigh-
boring cells.14-16 It is unclear currently, how T. gondii
transmigrate the intestinal epithelium though it is
essential for understanding disease pathogenesis. This
review aims to build an understanding of how the suc-
cess of T. gondii in global pathogenesis is linked with
its ability to rapidly cross the epithelial barrier of the
small intestine (SI), and to provide insights into how
technological advances have enabled in-depth exami-
nation of how T. gondii interacts with the host cell,
potentiating the design of novel intervention and pro-
tection strategies.

Small intestinal epithelial barrier

The continuous ring of the epithelial junctional com-
plex comprises 3 distinct morphological structures:
the apical sealing TJ, adhesive adherens junction (AJ)
and desmosomes that maintain cell-cell contacts.17-19
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Apical TJs function both as a molecular “fence” divid-
ing the epithelial cell plasma membrane into apical
and basolateral domains and limiting the lateral diffu-
sion of lipids and integral proteins between these
domains and as a “gate” or barrier between the inside
of the body and the external environment.20 This
semi-permeable diffusion barrier permits the size and
charge-selective transport of ions, solutes and water
across the epithelium and is regulated by a continuous
cycle of assembly and disassembly of the integral
transmembrane proteins including occludin, junc-
tional adhesion molecules (JAMs) and the claudin
family members.

Now, 50 y since its discovery, the TJ is known to be
more dynamic than the original perception as a static,
rigid structure that simply sealed the paracellular
space with considerable progress being made in the
understanding of TJ structure, function and regula-
tion. Dynamic interactions between the integral trans-
membrane proteins and the cytoplasmic plaque of
peripheral adaptor, scaffold and signaling proteins
also link the junctional membrane to the actomyosin
cytoskeleton.21 Furthermore, bidirectional signaling to
and from the cell interior regulates cellular differentia-
tion, proliferation, migration and survival although
the complex interplay between TJ molecular structure
and function is only beginning to be understood.22-26

It is probable that the current list of known TJ compo-
nents is incomplete as the molecular architecture of
the TJ and functional interactions of the TJ proteins
are still to be fully defined.

Toxoplasma gondii host infection and
dissemination

T. gondii has a complex life cycle involving a sexual life
cycle that occurs only in the feline host with parasites ulti-
mately being released as oocytes into the environment
and an asexual lytic cycle of intracellular growth andmul-
tiplication within epithelial cells that occurs in all
infected, intermediate hosts. Once ingested from the con-
taminated environment by intermediate hosts such as
livestock, mice or humans the oocysts resist degradation
in the stomach and eventually rupture and release brady-
zoites into the intestinal lumen.27 After transmigration of
SI epithelial cells, parasites convert into proliferative,
motile tachyzoites, which undergo an asexual lytic cycle
of intracellular growth and multiplication by endodyog-
eny before cell rupture and release of tachyzoites into

both the intestinal lumen and underlying tissues of the
lamina propria, activating an acute immune response.28

The immune response promotes conversion from motile
tachyzoites to slow-replicating dormant bradyzoite cysts,
which persist for the life-time of the host, usually without
causing disease. In rare cases and in the event the host
becomes immunocompromised, the cysts rupture caus-
ing encephalitis and in very rare cases, death of the
host.28,29

The crucial step for T. gondii establishment of infec-
tion and subsequent parasite survival and proliferation is
parasite attachment to, and transmigration of the intesti-
nal epithelial barrier. The disease outcome of T. gondii
infection is therefore highly dependent on parasite viru-
lence, although surprisingly T. gondii population biology
has identified a limited number of dominant strains.
Serology samples from infected humans and domestic or
farm animals from North America and Europe were
used to group T. gondii serovars into clonal lineages I, II
and III,3031 and the recently discovered haplotype 12.32

Although closely related, these clonal types possess differ-
ent virulence both within and between host species.33,34

How these differences in parasite virulence are specifi-
cally linked to parasite transmigration of the host intesti-
nal epithelium remains to be answered.

In silico approaches are being increasingly used to
identify new genes of interest or genetic pathways. A
recent study using whole genome sequencing of 62
strains of T. gondii found both large regions of con-
served genes and specific regions showing enhanced
variation. These regions were associated with secretory
pathogenicity determinants (SPDs); genes encoding
secretory proteins from micronemes (MICs), dense
granules (GRA), rhoptries (ROPs) and the SAG-
1-related sequence (SRS) superfamily that are associ-
ated with host transmission and infection. Highly
diverse regions were particularly linked to GRA, ROP
and SAG genes such as ROP17, ROP5, GRA3 and
SAG3 and SAG2A, which have been previously impli-
cated in murine virulence differences between strains.
In contrast, parasite MICs which play a central role in
cellular attachment by binding to host receptors, were
found to be highly conserved, suggesting T. gondii
strains may utilize a conserved repertoire of these host
MIC receptors.35 Sequence variation in the conserved
MIC16 gene for instance has been examined in 12 T.
gondii strains covering the 3 major clonal lineages and
all isolates could be grouped into their respective gen-
otypes based on their MIC16 sequence.36 In addition,
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knockdown of surface antigen SAG3 resulted in 50%
reduction in attachment in vitro and virulence in
vivo.37

Parasite dissemination across distinct biologic bar-
riers requires control of the diverse cohort of surface
and secreted proteins. The transcellular or active pene-
tration invasion mechanism has been well described
for T. gondii tachyzoites, bradyzoites and sporozoites
using various molecular and imaging-based techni-
ques,38 summarised in Fig. 1. As T. gondii lacks cilia
or flagella, the early stages of host cell entry involves
an unusual form of gliding motility that was first
observed over 100 y ago [For a review see39]. Initial
contact with the host cell is then mediated by parasite
surface molecules and complementary host cell
ligands including parasite surface antigen-1 (SAG1)
binding to host laminin via the b1 integrin receptor,
first described over 20 y ago.40,41 Subsequently, differ-
ential SAG and SRS protein expression in T. gondii
types I, II and II has been directly linked to parasite
virulence.42,43 Although the functional significance of

this correlation is currently unknown, evidence sug-
gests T. gondii expression of surface antigens that
demonstrate crossover functions or redundancy may
account for the multitude of parasite-host interactions
and broad parasite host range.

Following host cell surface attachment, the parasite
undergoes a series of stages of reorientation and pene-
tration depicted in Fig. 1 that are highly dependent on
the differential expression of specialized polar organ-
elles and inclusion bodies. These include the outer pel-
licle membranes, apical microtubule-containing
conoid, secretory ROPs, MICs and GRAs and the plas-
tid-like apicoplast.44 Apical conoid extension is fol-
lowed by re-orientation, secretion of organelle
contents and moving junction (MJ) formation
between parasite surface proteins such as AMA145

and the host cell membrane. The parasite then actively
enters the cell through the MJ into the non-fusogenic
parasitophorous vacuole (PV) using its actomyosin
motor complex before separating from the host
plasma membrane and initiation of replication.46

T. gondii does not actively invade all cells it attaches
to. It has therefore been proposed that neighboring
cells are prepared for a later wave of transmigration or
invasion through organelle secretion of ROP and MIC
proteins.47-49

Despite its clinical importance, relatively few drugs
against T. gondii are currently available and only one
vaccine, Toxovax is available for use in sheep and
goats,50 but as it contains live attenuated tachyzoites,
it cannot be used in humans. Potential new vaccines
require careful selection of appropriate antigens to
induce protective immunity, with surface or secreted
antigens such as SAG, ROP, GRA and MIC associated
with the initial stages of infection presenting promis-
ing candidates.51 Screening for drugs that effectively
inhibit T. gondii attachment and invasion may also
provide a starting point for the discovery of novel
therapeutics; preliminary screening of a library of
1,120 compounds identified several encouraging tar-
gets. Pimozide, an inhibitor of dopamine signaling, for
instance reduced parasite invasion by »50% but cau-
tion should be taken to rule out any off-target effects.52

Transmigration of the small intestinal
epithelium

Paracellular transmigration of the SI epithelial barrier
presents a fast-track route of parasite dissemination to

Figure 1. Strategies and timing of T. gondii transcellular inva-
sion. (1) Initial attachment to the host cell surface via SAGs
precedes (2) conoid extension, release of MICs and apical
attachment. (3) Invasion is initiated by secretion of RONs and
association with microneme-derived AMA1, which forms the
ring-like MJ. (4) The parasite re-orientates and ROPs are dis-
charged from rhoptries into the host cytoplasm where they
associate with the developing PV or remain soluble. (5) The
parasite actively invades through the MJ, creating the invagi-
nated PV. (6) Once internalised, the PV is closed and 7) the
parasite separates from the host plasma membrane and
dense granules are released and associate with the PVM.
Steps 2–5 take only 15–20 seconds whereas the final steps
6–7 take 1–2 minutes. Magnified view of tachyzoite (inset).
Figure adapted from Carruthers and Boothroyd.46 © Elsevier.
Reproduced by permission of Elsevier. Permission to reuse
must be obtained from the rightsholder.
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underlying tissues, avoiding replication and cytolysis
that can lead to tissue injury and initiation of an acute
immune response. This initial transmigration process
is known to be rapid, taking only 20–40 seconds in
vitro.53,54 with further dissemination to all organs of
the body such as Peyers patches and lymph nodes

within 2 d post infection (p.i), within the ilium within
5 d p.i, and to the brain and heart by 10 d p.i in
vivo55,56

Exploitation of the paracellular pathway as a mech-
anism of infection and the role of TJ proteins, particu-
larly the transmembrane proteins, in infection is not a

Figure 2. Toxoplasma gondii clustering to intestinal epithelial cell junctions. A-C) SI IEC-6 cells cultured on PET inserts were infected with
T. gondii (green), fixed with PFA and stained for lateral membrane b-catenin (blue) and cell surface carbohydrates (red). (A) Image shows
parasite clustering at cellular junctions. (B–C) Image shows parasites within the paracellular space between cells. (D) The parasitopho-
rous vacuole is clearly visible as a white halo (white arrow) in cells cultured on glass coverslips after H&E staining.

Figure 3. Toxoplasma paracellular infection. IEC-6 stained with CellTrackerTM red (red) were apically infected with T. gondii (green)
before 2-photon microscope live imaging. (A-C) 3D reconstruction of a transmigrating parasite (white arrow) targeting the epithelial cel-
lular junction. Following initial localization to the cellular junction (A), the parasite re-orientates (B) and transmigrates the epithelium
and disseminates from the SI (C). (D–F) Schematic representation of this proposed paracellular route of infection. Images are representa-
tive of those obtained from 2 experiments with replicates. Images were acquired using a LaVision BioTec TriM Scope II 2-photon micro-
scope (Bielefeld) based on a Nikon Eclipse Ti optical inverted microscope. Z-stacks were separated by 1 mm. Images were analyzed with
the Fiji/ImageJ package.

e1273865-4 E. J. JONES ET AL.



new concept. In 2002, Barragan and Sibley first sug-
gested this early wave of rapidly migrating parasites
may be particularly important to ensure dissemination
before activation of the immune system.57 These
authors later described a significant proportion of
tachyzoites clustering within 5mm of an intercellular
junction during early infection and between host cells,
adjacent to TJs. This implies parasites utilize the para-
cellular route to actively cross the epithelial barrier
and avoiding damage to the epithelium and bypassing
intracellular replication.57 Our own studies have con-
firmed the original observation made by Barragan and
colleagues that tachyzoites cluster to cellular junctions
(Fig. 2) and transmigrate through the SI epithelial bar-
rier without altering barrier function. Fig. 3 shows
T. gondii tachyzoites located in close contact with the
apical cellular junction of cultured intestinal epithelial
cells in the clear non-stained region between host cells.
The parasite subsequently re-orientates and rapidly
transmigrates through the paracellular space between
host cells within 52 seconds, comparable with previ-
ous studies.

Following transmigration of the SI epithelium,
T. gondii is known to exploit the motility of infiltrating
SI immune cells in a Trojan Horse-like mechanism to
spread throughout the body to secondary sites of
infection, such as the muscle tissues or brain.58,59

We identified a role for intestinal epithelial lym-
phocytes (iIELs), which intimately associate with SI
epithelial cells, in T. gondii infection.60 Increased sus-
ceptibility to infection and a striking in vivo change in
occludin localization to the apical TJ was identified in
mice lacking a specific gdT-cellpopulation of iIELs
whereas in gdiIEL knockout mice no such redistribu-
tion occurred implying that gdiIEL interaction with SI
epithelial cells played a central role in maintaining TJ
integrity and barrier function in response to T. gondii
infection.60 The leaky epithelium in gdiIEL-deficient
mice was attributed to an absence of occludin phos-
phorylation and loss of claudin-3 and ZO-1 from the
TJ complex. The possibility that T. gondii take advan-
tage of a breach in the epithelial barrier provided in
the absence of functional IELs was enhanced by a
recent report using both gdT-cell deficient mice and
those expressing migration-deficient, occludin-defi-
cient, gdT-cells. Compared to WT mice, both KO
models infected orally with T. gondii demonstrated
increased translocation of parasites into the lamina
propria.61

The role of the tight junction in t. gondii
transmigration

During natural infection the capacity for T. gondii to
cross the barriers of the SI epithelium, placenta,
blood-brain and blood-retina crucially enable para-
sites to breach host immune defenses and reach
deeper muscle tissues. It is therefore somewhat sur-
prising that little is known about the interactions
between T. gondii and these host cellular junctions. In
2011, parasite infection of murine skeletal muscle cells
(SkMC) demonstrated loss of the AJ protein cadherin
and disruption of cell-cell contacts.62 Similarly,
insights into the progression of ocular toxoplasmosis
were recently provided by the discovery that parasite
infection caused a breakdown in the retinal pigment
epithelial cell (RPE) TJ complex with reduced TJ-
associated occludin and increasing loss of cell-cell
contacts with the progression of infection.63 Although
these few studies provide limited insight into the effect
of T. gondii on cellular junctions of various tissues, the
role of the host TJ-associated network of proteins is
still not well established.

As the first point of contact between parasite and
host, the SI epithelial barrier has been more widely
studied. We recently confirmed a role for TJ-associ-
ated occludin in the T. gondii paracellular route of
infection using m-ICc12, an in vitro murine SI epithe-
lial cell line.64 T. gondii tachyzoites were shown to
both co-localize with TJ-associated occludin and cause
re-distribution of occludin from an apical TJ location
to the intracellular compartment; an effect more
recently observed using the colorectal adenocarci-
noma-derived Caco-2 cell line after 24 hours of infec-
tion.65 Using RNA interference (siRNA) to reduce
endogenous occludin expression, we showed that par-
asite transepithelial migration was significantly atten-
uated, providing the first insight into occludin playing
a key role in T. gondii paracellular transmigration of
the SI epithelium.66

With the knowledge that occludin is crucial for
transmigration, we also provided evidence for occlu-
din acting as a receptor during parasite paracellular
transmigration. Cell-free binding studies using recom-
binant TJ occludin proteins identified the potential
interaction between T. gondii and the extracellular
domains of occludin. This together with the recently
captured high-resolution 2-photon live-cell imaging
of in vitro paracellular transmigration of the SI
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epithelium, is consistent with T. gondii interacting
directly with these domains to initiate rapid paracellu-
lar transmigration of SI epithelium.66

The ability of T. gondii to attach and invade almost
any nucleated cell together with the expression of
occludin in a broad range of cell types including endo-
thelial cells of blood vessels and the blood-brain bar-
rier,67 indicates this novel interaction between
T. gondii and occludin may be a universal means of
parasite paracellular transmigration of host tissue bar-
riers including the SI epithelium. Further analysis of
T. gondii binding to, and the effect on the junctional
complex is required to reveal if drugs targeting this
interaction could be a therapeutic option to block the
early transmigration stage of infection and prevent
toxoplasmosis.

Modulation of tight junction-associated proteins

To investigate the involvement of host proteins during
T. gondii transmigration of the SI epithelium several
experimental approaches have been used. For instance
immunoprecipitation with a soluble ICAM-1 antibody
that identified T. gondii MIC2, a microneme adhesion
protein discharged to the parasite surface and involved
in parasite transmigration of the host epithelium.68

A number of groups have applied proteomics, the
large-scale analysis of protein expression, to investi-
gate host-parasite relationships. The entire T. gondii
proteome69-73 or proteome sub-sets restricted to para-
site excreted proteins74 or the rhoptry organelle have
been defined which has identified changes in protein
expression during T. gondii infection and novel poten-
tial host-parasite effector proteins including parasite-
derived kinases, phosphatases and proteases.75

Host-cell proteins involved in modulation of a net-
work of host processes such as the immune response,
metabolism, cell cycle and apoptosis as well as cyto-
skeleton and organelle reorganisation have also been
identified.76-79

It has to date been difficult to dissect the complex
interactions between parasites and host cells as both
share similar components such as actin cytoskeleton.
However, recent advances in proteomics promise to
provide new insights into the potential mechanisms of
host cell subversion. Identifying components of the TJ
protein complex modulated in response to T. gondii
represents an important step toward understanding
the molecular mechanisms of paracellular parasite

infection and may aid the development of therapeutic
strategies against T. gondii. However, this is compli-
cated by an incomplete understanding of TJ composi-
tion and architecture, and by additional constituents
yet to be identified.

Accordingly, we recently deployed a quantitative
stable isotope labeling with amino acids in cells culture
(SILAC) proteomics methodology to examine
the small intestinal epithelial (IEC-6) cell response to
T. gondii tachyzoite infection (unpublished observa-
tions). This methodology involves growing 2 popula-
tions of cells in culture media with either ‘light’
(normal) or ‘heavy’ (isotopically labeled) essential
amino acids that are incorporated into all newly syn-
thesized proteins. Here one cell population was
infected with T. gondii and the other served as a non-
infected control cell population. Post-infection, the
2 cell populations were mixed and the abundance of
cellular proteins quantified by mass spectrometry.
Using the known difference in molecular weight
between ‘heavy’ and ‘light’ labeled peptides, termed
the ‘mass shift’,80 enabled significant differences in
IEC-6 host protein abundance due to parasite infec-
tion to be identified.

Subsequent comparison of the SILAC data set of
host-derived proteins with a compiled TJ protein
network, constructed by examination of current lit-
erature and integration of functional annotations,
protein-protein interactions and known signaling
pathways, identified 8 host TJ-associated proteins
that significantly changed in abundance in response
to parasite infection. Functional classification identi-
fied changes in catalytic, binding and structural pro-
teins as well as statistically significant enrichment of
differentially regulated proteins involved in cell
metabolism, glycolysis, organelle organization, cellu-
lar transport, cell cycle, transcription, cell structure
and the cellular stress response; analogous with
findings from previous studies. For example within
24 hours of infection, host Bcar1 (Breast cancer
anti-estrogen resistance-1, also known as p130CAS),
Ybx3 (Y box binding protein 3, also known as
ZONAB), Mras (Ras related protein) and Cstf2
(Cleavage stimulation factor 2, also known as Cstf-
64) increased in abundance. Whereas Akt (RAC
-a serine threonine protein kinase, also known as
protein kinase B, PKB), Arhgef11 (Rho guanine
nucleotide exchange factor (GEF) 11, also known as
PDZ-RhoGEF), Cldn15 (Claudin-15) and Prkci
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(Atypical protein kinase C i, also known as aPKCi)
all decreased in abundance.

By combining our current knowledge of how these
proteins regulate the function of the epithelial TJ,
either directly via integral transmembrane proteins or
indirectly through their downstream network of cyto-
plasmic plaque, scaffolding, adaptor and signaling
proteins enables the model shown in Fig. 4 to be gen-
erated. The wide range of proteins involved in these
signaling networks often exhibit multiple roles and
demonstrate extensive cross-talk, highlighting the
striking connections between the T. gondii modulated
TJ-associated proteins identified by the SILAC study.
Identification of the newly discovered T. gondii MIC
protein, claudin-like apicomplexan microneme pro-
tein (CLAMP), as showing structural similarity to
claudins -15 and -19, is particularly intriguing as
although the interaction between claudins and TJ
transmembrane proteins such as occludin is not fully
understood, claudins are known to interact in both cis
and trans at the TJ and the occludin-claudin interac-
tion may be important in regulation of the TJ barrier
[For a review seeref.81]. Discovery of a claudin-like
protein on the apical surface of T. gondii that shows
intimate interaction with the host cell during infection
therefore presents a promising candidate for interac-
tion with host TJs during the initial stages of infection.
Furthermore, disruption of the claudin-occludin com-
plex may induce or inhibit various downstream

signaling pathways such as programmed cell death,
termed apoptosis. Primarily initiated by the host-cell
to maintain the epithelial barrier by extruding dam-
aged cells, parasite triggering of host-cell apoptosis
may additionally allow parasite entry into the sub
-epithelial compartment by creating gaps in the epi-
thelial monolayer during acute infection. In contrast,
the well-documented anti-apoptotic effect of intracel-
lular, replicating parasites demonstrates the wide array
of strategies evolved by T. gondii to manipulate the
host cell and emphasizes the difficulties in unravelling
the complex mechanisms of host-cell subversion.

Further work is now needed to provide functional
studies corroborating these findings and answer a key
question arising from this study; the degree of conser-
vation of the hypothesized host-cell proteome
response in the broad range of host tissue barriers tar-
geted by T. gondii.

Conclusions

T. gondii infection following consumption of contami-
nated food and water presents a significant worldwide
health problem, potentiated by the parasites highly
specialized strategies for rapidly crossing the barrier of
intestinal epithelial cells that contributes to its success
in infecting a wide range of hosts. Our understanding
of T. gondii transmigration of the SI epithelium has
been progressed by recent advances in high resolution

Figure 4. Modulation of the host TJ proteome during T. gondii infection. Schematic representation of the IEC-6 derived TJ-associated
proteins modulated during infection and predicted downstream effector proteins and signaling pathways. Proteins demonstrating a sig-
nificant increase in abundance are highlighted in red and a significant decrease in green.
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microscopy and proteomics that have uncovered new
questions that need to be answered to achieve a mech-
anistic model of T. gondii transmigration of the SI epi-
thelium. Further in depth pathway reconstruction
maps and network analysis of the proteins involved in
signaling pathways downstream of the integral TJ pro-
teins is required to fully understand interactions
between the modulated host proteins and the impact
of changes in abundance or redistribution. Modeling
of the TJ signaling complex is challenging when con-
sidering TJ-associated protein-protein interactions
may be weak or transient and TJ assembly and disas-
sembly is highly dynamic occurring within seconds or
minutes. Elucidating how the modulation of these sig-
naling mechanisms contributes to T. gondii disease
development may hold the key to developing success-
ful future therapeutics.
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