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Abstract 
 

Using a series of standardised sampling plots within forest ecosystems in remote 

oceanic islands, we reveal fundamental differences between the structuring of 

aboveground and belowground arthropod biodiversity that are likely due to large-scale 

species introductions by humans. Species of beetle and spider were sampled almost 

exclusively from single islands, while soil dwelling Collembola exhibited more than 

tenfold higher species sharing among islands. Comparison of Collembola mitochondrial 

metagenomic data to a database of more than 80,000 Collembola barcode sequences 

revealed almost 30% of sampled island species are genetically identical, or near 

identical, to individuals sampled from often very distant geographic regions of the 

world. Patterns of mtDNA relatedness among Collembola implicate human-mediated 

species introductions, with minimum estimates for the proportion of introduced species 

on the sampled islands ranging from 45-88%. Our results call for more attention to soil 

mesofauna to understand the global extent and ecological consequences of species 

introductions. 

 

Introduction 

 

To understand soil ecosystem functioning, with reference to phenomena that extend 

beyond soil itself, such as potential cascading effects across trophic levels or the impact 

of introduced and potentially invasive non-native species on ecosystem processes (e.g. 

Ehrenfeld 2010; Wardle et al. 2004; Yang et al. 2009), advances are needed to bridge 

the gap between belowground and aboveground terrestrial systems. However, such 

advances are limited by the paucity of biodiversity data for soil, which has been referred 

to as the “third biotic frontier”, along with tropical forest canopies and ocean abysses 

(André et al. 1994). Forest soils are especially challenging, as a single square metre of 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

temperate forest soil may contain more than 1000 species of invertebrates, most of 

which are less than 2mm in length (Schaefer & Schauermann 1990). Much of the 

invertebrate species diversity of soil remains uncatalogued, meaning that there is 

probably no soil where we are able to identify, or even quantify all resident 

invertebrates (Decaëns 2010; Wall et al. 2005). This lack of primary data on species 

identity complicates the study and measurement of soil invertebrate biodiversity, which 

is critically needed as the taxonomic composition of an ecosystem determines the 

diversity of forms and functions. This functional component of biodiversity, which acts 

as a key driver of ecosystem functioning (Violle et al. 2015), and this is likely to be of 

great importance in soil ecosystems (Bardgett & Van der Putten 2014; Dominati et al. 

2010; Heemsbergen et al. 2004; Lavelle et al. 2006). 

For more than a decade, it has been recognised that DNA sequence analysis can 

provide some relief to the taxonomic impediment – the limitation to science imposed by 

the difficulty in identifying living species, most of which remain undescribed (Gaston 

1991; Lomolino et al. 2010). The original methods for DNA barcoding (Hebert et al. 

2003) have been developed into powerful and effective metabarcoding protocols that 

are particularly well-suited for analysing species-rich assemblages of taxa like 

invertebrates (e.g. Ramírez-González et al. 2013; Yu et al. 2012). More recently, shotgun 

metagenomic sequencing of mixed insect species templates, with a particular focus on 

beetle phylogenetics, has yielded numerous reads corresponding to the mitochondrial 

DNA (mtDNA) genome that can be assembled into full or partial mitogenomes (Andújar 

et al. 2015; Crampton-Platt et al. 2015; Gillett et al. 2014; Gómez-Rodríguez et al. 2015; 

Tang et al. 2014). It has been pointed out that, in addition to phylogenetic 

reconstruction, such extensive mtDNA genome data also offer great potential for 

understanding how community assembly and structure influence functioning in 

ecosystems by providing a powerful way to reveal biodiversity that was previously 

“invisible” (Andújar et al. 2015).  

Here we employ mitochondrial metagenomics to compare soil-dwelling and 

aboveground arthropod communities sampled across three remote oceanic 

archipelagos, two of which are located in the northern Atlantic (Canary Islands and 

Azores) and the third (Mascarene Islands) being located in the southwestern Indian 

Ocean. For soil-dwelling arthropods we focus on the ubiquitous and dominant soil 

mesofaunal taxon Collembola. Species identification of Collembola is complicated by (i) 
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small adult size that can typically range between 0.2 - 2 mm (Decaëns 2010), (ii) 

pervasive cryptic species (Emerson et al. 2011) that can result in underestimates of 

morphologically-derived species richness by more than an order of magnitude 

(Cicconardi et al. 2013; Cicconardi et al. 2010), and (iii) changes in adult morphology 

attributable to ecomorphosis, epitoky and cyclomorphosis (Hopkin 1997).  

Metabarcoding has previously been used to suggest that a substantial proportion 

of the Collembola fauna of the Canary Island of Tenerife is of recent origin (Ramírez-

González et al. 2013). However, the limited mtDNA sequence length of 220bp obtained 

by Ramírez-González et al. (2013) resulted in taxonomic uncertainty for many 

sequences, rendering quantitative comparisons of taxonomic relatedness unreliable. We 

address this limitation by using a mitochondrial metagenomic approach to first robustly 

assign DNA sequences to the class Collembola by means of phylogenetic analysis, and 

then evaluate their distribution limits beyond the island where they were sampled. We 

sample soil Collembola communities from forest ecosystems on the islands of Tenerife 

(Canary Islands), Terceira (Azores) and Réunion (Mascarene Islands). We first compare 

sharing of Collembola species among islands, placing our results into context by also 

sampling and comparing aboveground arthropod communities of beetle and spider 

species from the same sampling sites. We then use a publicly available database of more 

than 80,000 geographically referenced Collembola barcode sequences to quantify the 

proportion of Collembola taxa exhibiting high mtDNA genome identity to individuals 

sampled from regions beyond the three sampled islands. Our study provides significant 

and novel insight into how biogeographical patterns of species diversity can be 

influenced by human activities at a very large-scale in the soil biome, while subaerial 

biomes remain largely unaffected.  

 

Materials and methods 

 

Sampling 

Ten sampling plots measuring 50m x 50m were established in forest habitat on each of 

the islands of Tenerife in the Canary Islands (laurel forest), Terceira in the Azores (elfin 

cloud forest) and Réunion in the Mascarene Islands (lowland rainforest) (Fig. 1). The 30 

plots were subjected to a standardised sampling protocol for beetles and spiders, using 

a modification of the protocols of Cardoso et al. (2008a; 2009; 2008b). In each of the 30 
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sites 10 cylindrical soil cores of 8 cm width and approximately 10 cm depth (depending 

upon soil depth) were randomly sampled, with a minimum distance of 5 m between 

cores, to obtain between 4-5 litres of soil. Cores were mixed and 3.6 litres of soil was 

distributed across 3 Tullgren funnels and extracted into ethanol over a period of 7 days 

under a 40W incandescent light. Collembola were then separated from soil and other 

organic matter and stored at 4°C prior to DNA extraction. 

 

DNA extraction, library preparation and sequencing 

All sampled Collembola from a given sampling plot were combined for a single DNA 

extraction, performed using the DNeasy blood and tissue extraction kit (Qiagen). 

Illumina TruSeq libraries were constructed for each community extract for sequencing 

on the MiSeq platform (600-cycle 2x300 bp) using the DNA sequencing service of the 

Department of Biochemistry at the University of Cambridge. The 30 TruSeq libraries 

were divided into two groups of 15, and each group sequenced on a single Illumina 

MiSeq run. 

 

Mitogenomic assembly pipeline 

Raw paired-end reads were quality filtered using TRIMMOMATIC V.0.32 (Bolger et al. 

2014) without trimming (Settings: WINDOWS=30, QUAL=10, MINLEN=300), and used 

directly to generate the assembly. The iterative de Bruijn Graph metagenome assembler 

IDBA-UD V.1.1.1 (Peng et al. 2012) was used to assemble reads, without precorrection, 

using a range of k-mers (23-123), a step of 10, a similarity threshold of 0.99, and a max 

mismatch of error correction of 0 (default options were used for all other assembler 

parameters). The resulting metagenome was filtered to retain only scaffolds with a 

length between 1 and 19 kbp. A mitochondrial nucleotide (nt) BLAST database (DB) 

was constructed using all complete arthropod mtDNA, extracted from the METAMIGA 

database (Feijão et al. 2006), and all Collembola mitochondrial gene sequences from 

GenBank (Benson et al. 2015), for a total alignment of 20,984 nts. This DB was used as a 

reference for a BLASTN (Camacho et al. 2013) search in order to filter for mtDNA 

scaffolds from the dataset (e-value ≤ 1•10-10). As there are only 12 complete mtDNA 

genome sequences for Collembola, misidentification of scaffolds may arise from missing 

references. To address this and increase the sensitivity of our analysis, we undertook an 
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iterative search, adding scaffolds hits to the reference DB until no new putative mtDNA 

scaffolds were recovered. 

 

Annotation and sequence alignment 

All putative mtDNA scaffolds from the previous step were submitted to a modified 

version of MITOS WEBSERVER (Bernt et al. 2013), that accepts multifasta input files. The 

MITOS pipeline is designed to compute a de novo annotation of mitogenomic sequences, 

searching for amino acid (aa) homology to REFSEQ sequences, discriminating for gene 

duplication, and also annotating non-coding RNA sequences. Since mtDNA genes do not 

undergo splicing, have very short or no intergenic regions, and have a very conserved 

orientation and order, a pipeline was created to increase sensitivity and specificity by 

discriminating between false positive and true positive mtDNA scaffolds. The pipeline 

filters out scaffolds when the ratio between transcribed and non-transcribed regions, 

gene orientation or gene order are different from parameters found in known 

Collembola mtDNA. To align protein-coding sequences we used MACSE V.1.01B (Ranwez 

et al. 2011), a multiple alignment tool for coding sequences that uses translated aa 

sequences, while for non-coding sequences we used CLUSTAL W V.2 (Larkin et al. 2007). 

In order to reduce long gaps in the alignment due to incomplete gene sequences, an 

iterative alignment was carried out to remove sequences shorter than the 33% and 

75% of the overall alignment, for coding and non-coding nt sequences respectively, 

realigning sequences after the short sequences were discarded. Gene alignments (nt 

and aa) were then concatenated. Scripts are available in the Github repository 

(https://github.com/francicco/IslandBiogeography). 

 

Phylogenetic analysis 

The concatenated alignment was partitioned according to codon positions when 

applicable using PARTITIONFINDER V.1.1.1_MAC (Lanfear et al. 2014), adopting the greedy 

search algorithm to select the partitioning scheme and the best model of evolution 

under the corrected Akaike Information Criterion (AICC). The proportion of invariant 

sites (Ι) was excluded from all models to avoid overfitting of the data (Cicconardi et al. 

2013). To identify sequences of non-Collembola origin, we performed a phylogenetic 

analysis, extending the scaffold alignment with 17 known mtDNA genomes, including all 

12 available for Collembola, three orders of Insecta (KF163965 [Lepidoptera: Agrotis 
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ipsilon], NC_000857 [Diptera: Ceratitus capitata], NC_003081 [Coleoptera: Tribolium 

castaneum]) and two classes of Myriapoda (HQ457012 [Pauropoda: Pauropus 

longiramus], NC_008453 [Sympyla: Scutigerella causeyae]). Phylogenetic analysis was 

carried out using Maximum Likelihood (ML), as implemented in RAXML V.8.1.20 

(Stamatakis 2014), running 20 independent searches, using the rapid hill-climbing 

algorithm (-f d), and a rapid bootstrap analysis (settings: -f a, -# autoMRE, MRE-based 

bootstopping criterion), with an accuracy of 0.1 log likelihood units. By default, the 

bootstrap searches used the CAT approximation, while the search for the ML tree used 

the GTRGAMMA model for nucleotides. 

 

Scaffold assignment to sampling site and genome geographic range analysis 

To assign scaffolds to their sampling sites, raw reads from each sampling site were 

aligned back to scaffolds using Bowtie 2 v.2.2.4 (Misale 2014), using the local alignment 

‘very sensitive’ setting. To assess the genomic similarity of scaffolds to Collembola 

sampled from geographic regions other than the three islands included in the present 

study, an alignment was produced for the 658bp barcode region from all scaffolds 

containing this region, retaining sequences with the complete, or almost complete 

(>80%) barcoding region. The alignment was then submitted to the Barcode of Life 

(BOLD) specimen identification database. 

 

 

Results 

 

Sampling 

A total of 10,273 Collembola individuals were sampled across all 30 sampling sites (Fig. 

1). Mean sample sizes per sampling site within each of the three islands were 105, 206 

and 716 individuals for Terceira, Réunion and Tenerife respectively. Sampling of beetle 

and spider species from the same 30 sites yielded a total of 303 beetle species, of which 

two (0.6%) were found on more than one island (Anaspis proteus and Ocypus aethiops, 

sampled on both Tenerife and Terceira), and 175 spider species, of which three (1.7%) 

were found on more than one island (Lathys dentichelis, Microlinyphia johnsoni and 

Steatoda grossa, all three sampled on both Tenerife and Terceira).  
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Mitogenome assembly 

Illumina MiSeq sequencing (300 bp, paired-ends) yielded 26 Gb of raw data from all 30 

sampling sites. Low quality data was filtered out, and the remaining reads (70±2%, 

19Gb) (Fig. 2a) used to build a de novo meta-assembly. A 1.1Gb metagenome was built 

(scaffolds length ≥ 1kb; N50: 3,011; N90: 1,344), comprised of 395,153 scaffolds. The 

iterative BLAST search gave a metagenome of 303 scaffolds (1.7Mb), with a mean of 

5,555 bp and a maximum length of 29,645 bp (N50: 11,312; N90: 2,193). All 303 

scaffolds were then annotated for coding and non-coding mitochondrial genes prior to 

filtering out scaffolds not consistent with Collembola mtDNA genomes based on the 

orientation and order of Collembola mitochondrial genes, reducing the scaffold number 

to 185.  

 

Phylogenetic analysis 

Following gene concatenation and alignment, a total of 36 partitions were found. Thirty-

one partitions included only one codon, while five were described by two codons, for a 

total of 36 models. The GTR+Γ model was the most commonly represented, selected for 

21 of the 36 partitions (See Table S1 in Supporting Information). Within the full ML 

phylogeny of all 185 scaffolds and complete mtDNA reference genomes, the two 

Myriapoda mtDNA genomes clustered together as a monophyletic (bs:93) sister clade to 

the Hexapoda (bs:93). The three Insecta mtDNA genomes clustered with two non-

Collembola scaffolds forming a monophyletic (bs:100) sister clade to the other 

monophyletic clade (bs:96) comprised of all 12 Collembola mtDNA genomes and the 

remaining 183 putative Collembola scaffolds (Fig. 3). The two non-Collembola scaffolds 

clustered together with the Diptera and Lepidoptera reference genomes (bs:100). The 

more divergent of the two scaffolds contained the barcode region and all top hits to the 

BOLD specimen identification database were assigned to the family Chironomidae. Both 

scaffolds were sampled from Tenerife. The length distribution of the final assembly was 

skewed for short (< 5,000nt) and long scaffolds (> 10,000nt) (Fig. 2b), with 17 scaffolds 

containing only a single non-tRNA gene, 37 scaffolds contained all 13 protein coding 

genes (PCGs), and 13 scaffolds contained all 37 mitochondrial genes (Fig. 2c). 
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Scaffold assignment to sampling site 

Through read mapping we were able to assign scaffolds to each of the 30 localities from 

where they were sampled. Tenerife and Terceira island yielded similar scaffold counts 

with 73 and 75 scaffolds respectively, while Réunion presented 101, with an average of 

34 scaffolds per sampling site. Mapping scaffolds to sampling sites revealed a number of 

instances where multiple incomplete scaffolds had identical or near identical 

distributions and similar abundance patterns across sampling sites, often with very high 

abundances. We interpret these as scaffolds belonging to the same mtDNA lineage 

where intraspecific variation, or genomes from closely related species, are expected to 

complicate genome assembly (Nagarajan & Pop 2013). Limiting subsequent analyses to 

scaffolds no less than half the maximum scaffold size obtained (16,411 nts) guarantees 

that no two scaffolds belong to the same mtDNA lineage. We were able to extend this 

minimum threshold of 8,205 nts to 5,285 nts, as no scaffolds between 5,285 and 8,205 

were found to share distribution and abundance patterns. This yielded a total of 68 

scaffolds ranging from 5,285 nts to 16,411 nts inferred to belong to different presumed 

biological species. 

 

Analyses of genome geographic range  

Of the 68 scaffolds inferred to belong to different presumed biological species, 19 (28%) 

were sampled from more than one island. Seven were sampled on both Terceira and 

Tenerife, two on Terceira and Réunion, four on Tenerife and Réunion, and six were 

sampled on all three islands. From the 94 cox1 (partial and complete) sequences, 70 

have full (658bp) or near full length (>80%) barcode region sequences. These were 

submitted to the BOLD specimen identification database, with 21 (30%) having 99% or 

higher similarity to Collembola sampled from other geographic areas, of which 18 

(26%) were a 100% match (Tables 1 & 2, Fig. 4). The mean matching of the remaining 

49 sequences was 86.6%, with a standard deviation (SD) of 4.9%. The mean genetic p-

distance among the 70 barcode sequences was 24%, with a SD of 4.5% and a smallest p-

distance between barcode sequences of 3.2%. As it is possible that closely related 

barcode sequences could be representative of the same biological species, we repeated 

the analysis collapsing sequences with a p-distance divergence from each other of less 

than 10%. This resulted in the collapsing of five pairwise comparisons reducing data to 
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65 barcode sequences, yielding 20 matches of 99% similarity or higher to Collembola 

sampled from other geographic areas. 

 

 

Discussion 

 

To preserve and maintain fundamental soil ecosystem processes, it is essential to 

understand the vulnerability of soil communities under ongoing global change 

(Bardgett 2005; Wall & Nielsen 2012), something that first requires the characterisation 

of community composition and structure. This poses an immense challenge because of 

the inherent difficulties associated with mesofaunal species identification. In general, 

studies of the diversity of soil mesofauna based on morphology have frequently 

documented species with broad geographic distributions (Decaëns 2010), a pattern 

similar to that described for microbial communities (e.g. Chu et al. 2010). However, 

recent molecular studies have revealed high levels of phylogenetic and spatial 

structuring within traditionally recognised morphological species, indicating a high 

proportion of cryptic diversity with limited dispersal over deep evolutionary timescales. 

This is particularly true within the Collembola (Cicconardi et al. 2013; Cicconardi et al. 

2010; Emerson et al. 2011; Garrick et al. 2008; Garrick et al. 2007; Porco et al. 2012; 

Stevens et al. 2006; Timmermans et al. 2005; Torricelli et al. 2009), where widely 

distributed morphospecies may thus represent one of two possibilities: (i) single 

species with broad geographic ranges, (ii) a complex of cryptic species, each with a 

more restricted geographic range.  

Here we have taken a mitochondrial metagenomic approach to compare 

communities of Collembola from the mesofaunal component of the soil biome with 

aboveground arthropod communities, between which the nature of linkages remain 

poorly understood. Our bioinformatic pipeline recovered 185 mitochondrial scaffolds, 

of which 183 were confirmed to be of Collembola origin through phylogenetic analysis. 

The two non-Collembola scaffolds were inferred to be of dipteran origin through 

phylogenetic clustering, and taxonomic assignment through the BOLD specimen 

identification database. Because both dipteran scaffolds occurred at high frequency 

within single sites on Tenerife, they are most plausibly explained by sorting error when 

Collembola were separated from soil and other organic matter after Tullgren extraction. 
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Contrasting patterns of community similarity between aboveground and belowground 

arthropods 

Of the 183 Collembola scaffolds, 68 could be unambiguously inferred to belong to 

different biological species. While many of the remaining 115 scaffolds may also belong 

to different biological species, assembly limitations associated with intraspecific 

variation, or genomes from closely related species, limit robust inferences concerning 

these. Of the 68 scaffolds, 21 were sampled on more than one island, six of which were 

sampled on all three archipelagos, and eight of which were shared between one island 

of Macaronesia and Réunion (see Fig. S1). This high community similarity at a large 

spatial scale within the soil mesofauna, with 31% of Collembola species shared among 

islands, contrasts dramatically with beetle and spider species, for which only 1% of 

species are found on more than one island, with no species sharing between the islands 

of Macaronesia and Mascarenes. The high similarity among soil mesofaunal 

communities implicates the dispersal of Collembola over large geographic distances, 

which is in contrast to recent molecular results that demonstrate dispersal limitation 

for Collembola species (Cicconardi et al. 2013; Cicconardi et al. 2010; Emerson et al. 

2011; Garrick et al. 2008; Garrick et al. 2007; Stevens et al. 2006; Timmermans et al. 

2005; Torricelli et al. 2009). These studies have shown that even over very limited 

geographic distances, measured in tens of kilometres, dispersal limitation may have 

maintained distinct community assemblages over timescales extending into millions of 

years (Cicconardi et al. 2013; Cicconardi et al. 2010; Garrick et al. 2008; Garrick et al. 

2007). Our geographic analysis of barcode sequences also reveals that many species 

sampled from the three islands have large range sizes. Of the 70 complete or near 

complete barcode sequences, 30% were identical or near identical to individuals 

sampled from other geographic areas, often involving substantial geographical 

distances (Tables 1 & 2, Fig. 4).  

 

Biological invasions as drivers of the loss of uniqueness among soil communities  

Evidence for biological invasions by Collembola has been documented for several sub-

Antarctic Islands (e.g. Gabriel et al. 2001; Greenslade 2002a; Greenslade & Wise 1984), 

New Zealand (Salmon 1941), Australia (e.g. Greenslade 2002b; King et al. 1985), 

Tenerife (Ramírez-González et al. 2013) and North America (Porco et al. 2013). With 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

regard to North America, Porco et al. (2013) used mtDNA sequencing for 5 species of 

Collembola introduced from Europe to North America to reveal multiple and apparently 

recurrent introductions of species, involving large numbers of founding individuals. 

Pyrosequencing has revealed a recent origin for some Collembola species on the island 

of Tenerife (Ramírez-González et al. 2013), but limited power for taxonomic assignment 

precluded inferences about the relative contribution of non-native introduced species 

to this pattern, and their contribution to community assembly. Thus, while previous 

studies have demonstrated biological invasions by Collembola species, and in the case 

of Porco et al. (2013), the potentially high frequency of introductions well-beyond the 

native distribution range, they say little about the scale of introduction events and 

subsequent invasions themselves. 

By directly comparing belowground and aboveground insular forest arthropod 

communities we have been able to show that community similarity among Collembola, 

as measured by species sharing, is approximately 30x higher than that observed within 

aboveground arthropod communities. We also reveal that 30% of sampled Collembola 

species have mtDNA sequences that are identical, or near identical, to other regions of 

the world. The typically high genetic dissimilarity of the remaining species (Table 2: 

mean matching = 86.6%, SD = 4.9%) supports human-mediated introductions, as 

opposed to natural long distance dispersal, for species with identical, or near identical 

mtDNA sequences. This bimodal distribution of sequence similarities is consistent with 

high species establishment over an ecological time-scale (identical or near-identical 

mtDNA genomes) within a background of natural colonisation over an evolutionary 

time-scale (divergent mtDNA genomes).  

Of the 19 Collembola scaffolds that both (i) contain the barcode region, and (ii) 

were sampled from more than one island, 9 (47%) are identical or near identical to 

Collembola sampled from other geographic regions, consistent with the non-indigenous 

origin of species occurring on more than one island. Our data reveal that introduced 

non-native species can dominate soil mesofaunal communities in three remote oceanic 

archipelagos. Of the 70 complete or near complete barcode sequences, 44 were sampled 

on the island of Réunion, of which 20 (45%) are inferred to be non-native species (Table 

2). On the island of Terceira 17 of the 27 barcode sequences (63%) are consistent with a 

non-indigenous origin, while for Tenerife 22 of 25 (88%) are inferred to belong to non-

native species (Table 2). These can be considered minimum estimates, as it is plausible 
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that other barcode sequences may belong to exotic species, but that these are not 

represented on the BOLD database. 

 

 

Conclusion 

 

Our findings reveal an unprecedented contribution of introduced non-native species to 

the Collembola component of soil mesofauna, greatly in excess of that observed for 

arthropods in adjacent subaerial biomes. These results suggest that it may be difficult to 

infer the integrity of soil mesofaunal communities by simple extrapolation from 

subaerial arthropod community patterns. It remains unknown to what extent 

ecosystem function may be compromised by introduced species and species invasion in 

the soil biome, and to address this we call for more attention on soil mesofaunal 

diversity and its spatial structure. Our comparison of mtDNA genome similarity to a 

global database of barcode sequences revealed many insular species are also found in 

multiple disparate geographic locations, consistent with intra and intercontinental 

introductions as well as those to remote oceanic islands. To understand the broader 

extent of introductions to soil mesofaunal community composition requires extending 

taxonomic sampling to other mesofaunal groups, such as Acari and Nematoda, and the 

analysis of other geographic regions and ecosystems. 
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Figure 1. Map of sampling sites within the oceanic islands of Terceira (Azores 

archipelago), Tenerife (Canary Islands) and Réunion (Mascarene Islands). Sampling 

sites are numbered 1-10 within each island. 

 

Figure 2. Raw data, scaffolds and annotation statistics. (a) Histogram showing the 

number of raw and quality filtered reads for each sampling site. (b) Distribution of the 

frequency of lengths for the assembled mtDNA scaffolds. (c) The frequency of protein 

coding genes (PCGs) per scaffold. The highest frequencies are represented by 43 

scaffolds having two PCGs and 37 scaffolds with all 13 PCGs.  

 

Figure 3. Maximum likelihood phylogeny of the 185 mtDNA scaffolds with the 17 

reference mtDNA genomes (12 Collembola, 3 Insecta and 2 Myriapoda). Scaffolds 

matching barcode sequences (99% or higher similarity) are also shown with the 

affiliated species name or family, when known. Bootstrap support values are shown on 

branches, with values below 75 not shown. Bootstrap values are also represented by 

branch colour and width (see legend). For scaffolds longer than 5,200nt a heat map 

shows the occurrence of the scaffold on each of the thirty sampling sites (blue shading), 

while its length with a histogram (red shading). 

 

Figure 4. Diagram showing species sharing among sampled islands and ecoregions for 

21 Collembola mtDNA scaffolds with 99% or higher matching to the BOLD database. 

Each coloured ribbon shows the presence of a species on the three focal islands and 

ecoregions of the world. Ribbon width is proportional to numbers of localities within 

ecoregions.  
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Table 1. Scaffolds matching to barcodes in Barcode Of Life Database (BOLD). For each match the island occurrence of the scaffold 
and the ecoregion location of the reference barcoded sample are listed. Ne: Nearctic; Pa: Palearctic; At: Afrotropical; Im: Indo-
Malayan; Oc: Oceania; Au: Australasia; Nt: Neotropical. 

 

 
Sample sites 

   
Number of localities per ecoregion 

Scaffold Terceira Tenerife Réunion Sp. Id. (%) Order Species Ne Pa At Im Oc Au Nt 

6241 0 1 0 100 Poduromorpha Gen. sp.   
 

1 
   

  

6287 2 6 0 100 Poduromorpha Ceratophysella gibbosa   1 
   

1   

12586 3 7 1 100 Poduromorpha Gen. sp.   2 
    

  

7124 3 0 0 99 Poduromorpha Gen. sp.   1 1 
   

  

62376 2 6 0 100 Poduromorpha Mesaphorura sp. 1 2 
   

1   

6379 0 0 9 100 Poduromorpha Gen. sp.   1 1 1 
  

  

6532 0 0 9 100 Poduromorpha Gen. sp.   2 
   

1   

6543 0 0 2 100 Poduromorpha Gen. sp. 2 
     

  

6480 0 4 0 100 Poduromorpha Deuteraphorura sp.   
     

  

36935 0 4 0 100 Poduromorpha Protaphorura sp.   2 
    

  

6653 7 0 1 100 Entomobryomorpha Gen. sp.   1 
    

  

7289 0 0 4 100 Entomobryomorpha Desoria sp. 1 
 

1 
   

  

8783 4 10 1 100 Entomobryomorpha Parisotoma notabilis 1 10 
    

  

5537 7 2 0 100 Entomobryomorpha Parisotoma notabilis L2 2 8 
    

  

112296 3 1 0 100 Entomobryomorpha Tomocerus minor 1 1 
    

  

6464 1 1 0 100 Entomobryomorpha Lepidocyrtus curvicollis   2 
    

  

6802 0 0 6 100 Entomobryomorpha Gen. sp.   
   

1 
 

  

35470 0 0 6 100 Entomobryomorpha Gen. sp.   
 

1 
  

1   

19920 0 0 4 99 Entomobryomorpha Paronellinae sp.   
  

2 
  

  

7305 0 8 0 100 Neelipleona Gen. sp.   
 

1 
   

  

6565 1 8 2 99 Neelipleona Megalothorax minimus   2 1 
   

1 
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Table 2. Summary of the island occurrence and matching to barcodes in Barcode Of Life 

Database (BOLD) for the 70 scaffolds with full (658bp) or near full length (>80%) 

barcode region sequences. Light shading indicates scaffolds inferred to be from non-

native species either because (i) they are sampled on more than one island, (ii) match to 

geographically distant samples from BOLD, or both. Dark shading indicates scaffolds 

that are not inferred to be from non-native species. 

 
scaffold Terceira Tenerife Réunion Highest BOLD match 
5537 1 1 0 100 
6053 0 0 1 85.11 
6208 1 0 0 86.09 
6241 0 1 0 100 
6245 1 1 1 84.25 
6287 1 1 0 100 
6379 0 0 1 100 
6463 1 0 1 86.85 
6464 1 1 0 100 
6480 0 1 0 100 
6483 1 0 0 85.63 
6513 1 0 0 94.8 
6532 0 0 1 100 
6543 0 0 1 100 
6565 1 1 1 99.69 
6593 0 0 1 91.07 
6641 0 1 0 98.93 
6653 1 0 1 100 
6702 0 0 1 85.79 
6800 1 0 0 84.05 

6802 0 0 1 100 

6817 0 0 1 82.8 
6864 0 1 1 86.53 
7003 1 1 1 82.97 
7032 0 0 1 85.83 
7088 0 0 1 81.64 
7124 1 0 0 99.36 
7194 0 0 1 81.36 
7289 0 0 1 100 
7305 0 1 0 100 
7540 1 0 0 86.85 
7544 0 0 1 84.52 
7582 0 0 1 83.79 
7942 0 1 1 86.43 
8054 0 0 1 85.39 
8612 0 1 0 87.85 
8783 1 1 1 100 
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9320 0 0 1 82.39 
9391 0 1 1 81.11 
9749 0 0 1 82.8 
12586 1 1 1 100 
12624 1 1 0 85.3 
13090 0 0 1 88.74 
15103 0 1 1 86.04 

16605 1 1 1 96.86 
17413 0 0 1 88.16 
19920 0 0 1 99.08 
22943 1 1 0 92.66 
23520 0 0 1 88.15 
30106 0 0 1 85.19 
35470 0 0 1 100 
35676 0 0 1 85.66 
36935 0 1 0 100 
41303 0 0 1 80.21 
42411 1 0 0 80.95 
48363 0 0 1 81.66 
52670 1 0 0 93.43 
62376 1 1 0 100 
69515 0 0 1 85.57 
73182 0 0 1 83.94 
76953 1 0 0 86.55 
83813 0 0 1 85.13 
104491 0 0 1 86.11 
104533 0 0 1 85.71 
112296 1 1 0 100 
113570 1 0 0 83.93 
121342 1 0 0 95.7 
153098 0 0 1 85.71 

167705 0 1 0 91.06 
212789 1 1 0 97.86 

 

        

Total 27 25 44 70 
Matches to BOLD 11 (41%) 12 (48%) 11 (25%) 21 (30%) 
Multi-island 14 (52%) 18 (72%) 19 (43%) 20 (29%) 

Presumed introductions 17 (63%) 22 (88%) 20 (45%) 32 (46%) 
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