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Structure-Preserving Binary Representations
for RGB-D Action Recognition

Mengyang Yu, Student Member, IEEE, Li Liu, and Ling Shao, Senior Member, IEEE

Abstract—In this paper, we propose a novel binary local representation for RGB-D video data fusion with a structure-preserving
projection. Our contribution consists of two aspects. Toacquire a general feature for the video data, we convert the problem to describing
the gradient fields of RGB and depth information of video sequences. With the local fluxes of the gradient fields, which include the
orientation and the magnitude of the neighborhood of each point, a new kind of continuous local descriptor called Local Flux Feature(LFF)
is obtained. Then the LFFs from RGB and depth channels are fused into a Hamming space via the Structure Preserving Projection (SPP).
Specifically, an orthogonal projection matrix is applied to preserve the pairwise structure with a shape constraint to avoid the collapse of
data structure in the projected space. Furthermore, a bipartite graph structure of data is taken into consideration, which is regarded as a
higher level connection between samples and classes than the pairwise structure of local features. Theextensive experiments show not
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only the high efficiency of binary codes and the effectiveness of combining LFFs from RGB-D channels via SPP on various action
recognition benchmarks of RGB-D data, but also the potential power of LFF for general action recognition.

Index Terms—RGB-D fusion, flux, binary, structure-preserving, dimensionality reduction, local feature

1 INTRODUCTION

RGB—D sensors such as Kinect receive increasing attention
in the computer vision community [1]. They have been
widely applied to many areas such as: human activity rec-
ognition [2], robot path planning [3], object detection [4],
scene labeling [5], interactive gaming [6], and 3D mapping
[7]. The combination of RGB and depth information enables
enhanced capabilities of computer vision algorithms. It also
provides an alternative way to learn features from video
data for action recognition, especially through learning
fused RGB-D representations.

To gain a more robust and accurate representation of
samples, local feature descriptors such as: SIFT [8],
HOG3D [9], HOG [10], HOF [11] and MBH [12] have been
proposed and achieved notable success in classification
and recognition. Based on these local features, the Bag-of-
Words (BoW) model [13] and the Sparse Coding (SC) algo-
rithm [14] have shown their effectiveness for both image
classification and action recognition. During the last
decade, extensive efforts have been put on the improve-
ment of BoW and SC. However, in most situations, there
are millions of local features with hundreds or even thou-
sands of dimensions in vision-based tasks, which poses a
severe restriction on the computational efficiency of simi-
larity search in recognition algorithms. It is, therefore,
highly desirable to find a compact and efficient but dis-
criminative representation for local features.
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The fast bitwise operations in Hamming space motivate
us to propose a local binary representation for RGB-D video
data. In this way, the similarity search is simply computing
Hamming distances which are conducted by the XOR oper-
ation rather than computing Euclidean distances by the
addition and multiplication in real numbers. Then the effi-
ciency of classification and recognition algorithms will be
significantly improved. Our proposed scheme is two-fold.

First, towards constructing a common representation
applicable for both RGB and depth data, we view a video
sequence in either RGB or depth as a scalar field in R? with
the frame coordinate (z,y) and the temporal axis ¢ (for RGB
data, we can use the three channels of red, green, and blue to
form three scalar fields in R? separately. In the experiments,
to alleviate the computational complexity, we only use the
gray-scale information). To describe this scalar field, we com-
pute the local flux of its gradient field and obtain a feature
vector called Local Flux Feature (LFF) for each pixel. Gener-
ally speaking, the local flux f,.(P) at point P is defined as the
rate of the gradient field (flow) passing through a sphere sur-
face with radius r centered at P. In other words, the local flux
at point P captures the information of the orientation and the
magnitude of the gradient field over a neighborhood of P,
and f,(P), as a continuous function, represents an average
quantity of the flow over this neighborhood. Many gradient-
based features have been successfully applied to practical sit-
uations, since the gradient field represents the direction of
the greatest change of a function. Theoretically, the Helm-
holtz theorem [15] in fluid mechanics states that we only
need to know the divergence and curl of a twice continuously
differentiable vector field to determine it. Given a C*-smooth
function V(z,y,t) : R® — R, its gradient VV satisfies

VxVV
= (VyV = ViV, ViV = Vi, V, V.V =V, V)
=0,

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/


mailto:
mailto:

1652
-1, 1) 1,1
X3
X3
([ ]
) g
I /0 x2
negelltive Encode n'eggtilve
v
| V
*@ —negative —>® X1 J‘ [
X1 X2 (-1,-1) (1,-1)
Original space Hamming space
“ LD (a1
* X3 * [ ]
I I
neg%tive Encode :
with angle-preserving
b —negative —>0 X1 % —— — =0 X2
X1 X2 (-1,-1) 1,-1)

Original space Hamming space

Fig. 1. Basic principle of the projection with angle-preserving in a two-
dimensional example. The distances of two negative pairs ||x; — x2|| and
|Ix1 — x3|| are expected to be maximized after the projection. The shape
of (x1,x2,x3) has collapsed in the Hamming space without angle-
preserving, therefore, lost the discriminative ability.

which means curl(VV) = 0, showing that the divergence of
VV provides the vital information for the gradient field.
Fortunately, the divergence theorem converts computing
the flux f,.(P) through a closed sphere to computing the vol-
ume integral of the divergence inside the sphere. Obviously,
computing f.(P) for every pixel is time-consuming and
unnecessary. Thus we only calculate the local fluxes for the
regions around the interest points or the points selected by
dense sampling in RGB data and the corresponding pixels
in depth data.

Second, we fuse the LFFs from RGB and depth channels
of points into Hamming space. To make the above features
more discriminative and meaningful in Hamming space,
we propose a Structure Preserving Projection (SPP) method.
Generally speaking, SPP preserves two levels of data struc-
ture. In terms of low-level features, we consider the relation-
ship among local feature descriptors, i.e., their pairwise
structure, which is maintained in the binary representation
learning to embed high dimensional feature descriptors into
a lower-dimensional structure-preserved Hamming space.
In the learning phase, each pair of local features is given a
weak label related to their Euclidean distance. Specifically,
a positive pair is a pair of local features, if one feature of the
pair is within the k& nearest neighbors of the other; other-
wise, it is a negative pair.

Considering the shape of the data distribution, the pair-
wise structure also includes the angles between each pair of
local feature descriptors. Taking two negative pairs (x;,X2)
and (x;,x3) as an example (since the majority of pairs are
negative), they are encoded to the pairs which have large dis-
tances in the Hamming space. Nevertheless, an over-fitting
condition is that pair (xa,X3) is possibly mapped to the pair
with a small distance as shown in Fig. 1. Therefore, preserv-
ing the angles can be regarded as a shape constraint for the
structure of pairwise Euclidean distances. It ensures that the
shape of data in the original space would not collapse in the
Hamming space while pairwise distances are preserved.
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Furthermore, in respect of high-level connection, we also
want to establish links between samples and classes. The
bipartite graph (a.k.a. bigraph) consisting of samples and
classes, shows the relationship between samples and classes.
To quantize the edges, we use the image-to-class (12C) dis-
tance, which was first introduced in the naive Bayes nearest
neighbor (NBNN) classifier [16] and was also proven to be
an optimal distance for classification in [16]. It represents
the sum of all distances from the local features of an image
to their corresponding nearest neighbors in each class.
Although it was proposed for image classification, it can be
applied to any kind of samples represented by local feature
descriptors. 12C distances can effectively avoid the quantiza-
tion error in the bag-of-features model. Our algorithm
shows that the performance can be enhanced by combining
the sample-to-class structure (bigraph regularization) and
the pairwise geometrical structure. It is worthwhile to high-
light several properties of the proposed scheme:

e LFFis a continuous feature descriptor without loss of
orientations and magnitudes of the gradient field,
which makes it more suitable for the discretization
of the final binary representation since every discre-
tization will bring the deviation into results.

e SPP simultaneously preserves two independent
aspects of geometrical structure: Euclidean distances
and angles, which could balance each other and
avoid over-fitting.

e SPP considers two levels of the relationship of data
structure based on local feature descriptors. Preserv-
ing the local structure and the global structure in the
original feature space makes local feature descriptors
more discriminative in the lower-dimensional space.

e Our scheme fuses RGB and depth information. The
fused local feature descriptors have learned the com-
plementary nature of RGB and depth information.

e Our representation is linear and binary. This makes
it extremely fast and useful for many practical
applications.

2 RELATED WORK

Feature extraction from RGB video data has been well
explored [17], [18], [19], [20]. Detectors such as Spatio-
Temporal Interest Points (STIP) [21] and Dollar’s [22] are
usually used to locate interest points before feature
extraction. Many video descriptors are extended from
their counterparts in the image domain [8], [9], [12], [23],
[24]. As 3D versions of SURF [25], SIFT [8] and HOF [11],
3D speeded up robust features (SURF3D) [26], 3D scale
invariant feature transforms (3D-SIFT) [27] and 3D motion
features [28], [29] have been proposed for action recogni-
tion respectively. The Histogram of Oriented Gradients
(HOG) is widely used in the above schemes, which discre-
tizes the gradient orientations. In our work, however, dis-
cretization only performs in the pixel computation. Fathi
and Mori [30] developed a method to extract mid-level
motion features by using the low-level optical flow for
action recognition. Recently, the dense trajectories [31]
gained high accuracies in most action recognition data-
sets. However, this method suffers from extremely high
computational complexity. More feature extraction
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methods for action recognition could be found in a survey
provided by Poppe [32].

Compared to the conventional RGB cameras, the depth
cameras are relatively new. The existing features are specifi-
cally extracted for the depth information, since characteris-
tics such as color and texture on depth data are far less than
on the RGB data. Motion History Image (MHI) [33] is a typi-
cal template matching method for the analysis of depth
information and the applications of human motion recogni-
tion [34]. Using the depth information only, Shotton et al.
[35] proposed a method for human body joints analysis
which is the core component of the Kinect gaming system.
Nevertheless, more feature extraction methods are for the
fusion with RGB information. Based on HOG, Spinello and
Arras [4] proposed a method called Histogram of Oriented
Depths (HOD) for depth description and probabilistically
combined HOD and HOG into a Combo-HOD to detect
people in urban environments. Methods in [36] and [37]
simply optimize all available information in their algo-
rithms for object detection and recognition respectively.
Similarly, Ni et al. [38] designed two color-depth fusion
schemes for human activity recognition. Using the depth
and skeleton information of actions, Wang et al. [2] pro-
posed a new feature called Local Occupancy Pattern (LOP)
and an actionlet ensemble model which indicates a struc-
ture of features. Recently, the HON4D descriptor [39] was
proposed to build the histogram of the normal unit vectors
from the depth channel for activity recognition.

Apart from feature extraction, there are also many
approaches to analyze actions with a temporal model. A
typical one is dynamic time warping (DTW) [40], which
was proposed for speech processing first. Due to the time-
sequential property, DTW was also widely used as a mea-
surement method in human action recognition for both
depth data [41] and body joints of skeletons [42].

The above works are specifically designed for either RGB
or depth data. In our work, LFF is a general descriptor
which is suitable for both RGB and depth data. Besides, by
calculating the local flux of the continuous gradient vector
field, there are no bins and histograms in the computation
of LFF, which can avoid the quantization error in most his-
togram-based methods. The Gradient Vector Flow (GVF)
[43] has been successfully used in active contour alignments
by solving the PDEs for an energy minimization problem.
Engel and Curio [44] calculated the flux flow on the GVF
and adopted it for pedestrian detection. Based on the 3D
vector field, a rotation invariant descriptor called 3D-Div
[45] was proposed for 3D object recognition by computing
the divergence of the vector field. Nonetheless, the point-
wise divergence in [45] cannot capture the neighborhood
information of each point. In our work, we focus on the dis-
criminative ability of the local flux and its advantage in
RGB-D action recognition.

Preserving the intrinsic manifold/subspace structure is
also involved in our algorithm to seek a more discriminative
representation of local features. Manifold learning methods
such as ISOMAP [46], Laplacian Eigenmap (LE) [47] and
Locally Linear Embedding (LLE) [48], were designed to pre-
serve the manifold structure of data in the original space. A
unified review and other manifold learning algorithms can
be seen in [49]. Normally, linear methods possess high
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efficiency. Locality Preserving Projection (LPP) [50] is the
first linear projection preserving algorithm that preserves
the high-dimensional local structure. Neighborhood Pre-
serving Embedding (NPE) [51] also tries to preserve the
local representation of data. Capturing the intrinsic geomet-
rical structure of data, Sparse Concept Coding (SCC) [52],
which is a matrix factorization method, provides a sparse
representation of the image space. For pairwise structure
preserving, a related work for fast vision applications [53]
represents each image using a binary vector calculated via
boosted coding. In contrast, few works have attempted
angle preserving in dimensionality reduction. Caseiro et al.
[54] applied rolling map to the classification problem.
Although the angles measured by geodesics in the original
manifold are equal to the ones in the mapped manifold, the
algorithm is not linear.

However, these works mainly focused on the global rep-
resentations rather than preserving both pairwise structure
of local feature descriptors and bipartite graph structure
between samples and classes in the original space for
designing efficient binary codes in Hamming space.

In the aspect of hash/binary code learning [55], one classi-
cal method is Locality-Sensitive Hashing (LSH) [56]. Another
popular technique called Spectral Hashing (SpH) [57] was
also proposed to preserve the locality information of data.
Recently, a supervised method called Kernel-Based Super-
vised Hashing (KSH) [58] has shown good discriminative
ability of binary codes and outperformed other supervised
methods such as Linear Discriminant Analysis Hashing
(LDAH) [59], Binary Reconstructive Embeddings (BRE) [60]
and Minimal Loss Hashing (MLH) [61]. The above works
mainly focus on preserving the pairwise distance, which is
one part of SPP. To avoid overfitting as shown in Fig. 1, SPP
also takes the pairwise angle into account. Towards local
descriptors, Hamming Embedding (HE) [62] was proposed
to map real-valued local features to binary codes. SPP con-
tains a sample-to-class relationship [63] when each sample is
represented by a set of local descriptors, since most visual
tasks are sample-oriented. Experimental results show that
these three terms, i.e., the pairwise distance, the pairwise
angle and the sample-to-class relationship, all contribute to
the outstanding performance of the proposed method.

3 LocAL FLux FEATURE

Local features extracted from local regions in an image or a
video sequence are used to describe the local structure of a
sample. Usually, local regions are the neighborhoods of
points which are determined by using an interest point
detector or by dense sampling of the image plane or video
volume. And then, a feature vector is computed for each
local region by characterizing its properties. In our algo-
rithm, we compute the new Local Flux Features (LFFs) from
the RGB-D video data and then combine the local feature
xpgp from RGB information with the local feature Xpep
from depth information to obtain a concatenated feature
vector X € R”.

3.1 Flux Computation

The concept of flux has been studied deeply in applied phys-
ics, especially in fluid mechanics and electromagnetic
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Local flux feature

Fig. 2. lllustration of the computation of local fluxes in the gradient field. The output LFF is regarded as a foundation for learning binary codes.

theory. The flux of a vector field over a simply-connected
closed district (a sphere in this paper) is defined as the quan-
tity of this vector field passing through the district. This
quantity includes the information of the orientation and the
magnitude of the vector field over the district. It is used for a
description of the vector field. To describe a video sequence
which is regarded as a scalar field, we consider its gradient
field and compute the local flux of the gradient field.

Given a video sequence V(z,y, t) in either RGB' or depth,
it can be seen as a function V : R? — R. We assume V is a
C?%-smooth function, i.e., V € C?(Q), where ( is the district
of the video sequence, usually an L x W x H cuboid. In
fact, in discrete condition, derivative computation can be
regarded as an approximation by a convolution operation
of matrices. Then for scalar field V(x,y,t), we consider its
gradient field VV(z,y,t) = (V,V,V,V,V,V). To describe
the gradient field VV, we assign an [ x w x h cuboid cen-
tered at each candidate point (interest points or dense sam-
ples) and compute the local flux of every pixel (or lattice
point if we regard the coordinates of a pixel as integers) in
the cuboid. To be specific, denote Bp(r) = {(2/,y/,t)|(z’ —
o)+ — )’ + (' — 1) <12} as the sphere with the center
P = (z,y,t) and radius r, the local flux at the point P over
the sphere dBp(r) is calculated as

£(P) = j[ vV ds, (1)
aBp(r)

where dS represents the directed area unit of the boundary
surface dBp(r). However, computing on the lattice points
on the boundary dBp(r) is difficult and inaccurate. Accord-
ing to the divergence theorem, we have

j{ VvV .dS = V- VV dBp(r), (2
aBp(r) Bp(r)

i.e., we only need to compute for the points inside the
sphere Bp(r). Note that in the light of the Helmholtz theo-
rem [15] in fluid mechanics, we only need to know the
divergence and the curl of a twice continuously differentia-
ble vector field to determine it. Hence, the fact that
curl(VV) = V x VV = 0 implies that the divergence of VV'
provides the vital information, which is captured by the
local flux f,(P). For realistic computation, we adopt the
numerical approximation for the discrete condition of
pixels:

1. In fact, we only need the gray-scale information in our algorithm.

f,(P):/B()AVdBp(r)z dAv(E@),  ®

QeBp(r)nz3

where A is the Laplace operator. Suppose there are D/2 pix-
elsinan/ x w x h cuboid, then we compute D/2 local fluxes
in a specific order? and obtain an LFF vector x = (x1,...,
zp)2) € RP/2 Fig. 2 illustrates the outline of the computation
of local fluxes. Having computed the LFF xzcp from the
RGB channel and Xp., in the corresponding point from the
depth channel, we concatenate their normalizations and
obtain the new feature

T
X X
_ |: RGB Depth :| GRD. (4)
xran

| ’ HxDepthH

The combined LFF is regarded as the basic feature for the
later learning of binary codes in our algorithm.

4 STRUCTURE PRESERVING PROJECTION

In this section, we introduce our Structure Preserving Pro-
jection (SPP) algorithm. SPP simultaneously preserves the
local structure and the integrated shape of local features. In
addition, SPP also considers a higher level relationship
among local features, i.e., the bipartite graph consisting of
samples and classes. SPP aims to seek a specific matrix
0 € RP*?(d < D) to construct a binary function

H(X) = sgn(0"X), (5)

such that their discriminative ability for action recognition
is improved. For computational convenience, we choose
{—1,+1} rather than {0, 1} to represent binary codes in our
algorithm.

4.1 Pairwise Structure Preserving

We denote the set composed of all local features by
F ={Xi1,...,Xn}, where N is the number of local features
in training data. As mentioned above, we aim to seek the
binary representations with discriminative ability in the
lower-dimensional space. We are concerned about the rela-
tionship between every two local features in the high-
dimensional space, which should also be retained in the
lower-dimensional space.

2. In the experiments, we obtain the LFF by listing the correspond-
ing local flux values in the following pixel order: (1,1,1),...,
(1,1,1),(1,2,1),...,(,2,1),...,(Lw,1),...,(l,w,h). In fact, the order
has no effect on the final recognition results. The only requirement is
the consistency of order in a vision task.



YU ETAL.: STRUCTURE-PRESERVING BINARY REPRESENTATIONS FOR RGB-D ACTION RECOGNITION

4.1.1 Pairwise Label

First, we assign a weak label for each pair of local features.
With the pairwise labels, acquiring the class information of
each local feature is unnecessary. Besides, similar local fea-
tures with small Euclidean distances may appear in samples
from many different classes. Motivated by the binary prop-
erty of H(X), we employ the pairwise label {—1, +1} to rep-
resent the relationship between two local features based on
the pairwise distance between them. Thus we have the pair-
wise label

+1,
&;j = { 1

where N (X) is the set of k nearest neighbors of X. To main-
tain the local structure, we make the product of each com-
ponent in H(X;) and H(X;) consistent with their pairwise
label ¢, ie, H(X;),, - H(Xj),, =4j Ym. We denote
P = {(i,5)|X;, X; € F}. Therefore, we need to minimize the
following function

X; € Nu(X;) or X; € Ni(X,)

otherwise ’

D

Z Z(&]*H(XJmH(X])m)Q

(i,5)ePm=1
Z Z 2€Z]H ),yLH(Xj)er)
(i,j)eP m= (6)

=y (QD QElJZH ,,LH(Xj)m>

(i,j)eP m=1
(i.))€P

Then equivalently, we only need to maximize

3" G (H(X), H(X)). M)

(i,)eP

The above function reaches its maximum value when
£;;5¢n (07 X;) and sgn(®” X ) are similarly sorted due to the
rearrangement inequality [64]. In other words, if ¢;; = 1, X;
and X are then similarly encoded and vice versa.

C0n51der1ng the effect of noise, we additionally assign a
pairwise weight Wf; to the local feature pair (¢, j) to avoid
the disturbance:

W = exp(=1]| X; = X;]1%). ®)
Then the objective function for pairwise labels becomes

Z Wt

(i,)€P

Xi), H(X;))- )

4.1.2 Pairwise Angle

In addition to the distance factor, we are also concerned
about the shape of the entire set of local features, which is
regarded as a constraint for preserving the pairwise Euclid-
ean distances. The shape constraint firms the data structure
in the projected space and avoids some certain errors
caused by the pairwise labels. We denote the angle between
two local features X; and X; by 6,;. Note that angle 6;; is
with the vertex at coordinate origin. Thus, the local features
should be centralized before the further learning process.
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Orthogonal transformation (d=D and 070 = 00" =1)
preserves the lengths of local features and the angles
between them since we have (0" X;, 07 X;) = X700" X, =
XTX; = (X;,X;),Vi,j. Whend < D, however, this property
does not hold in orthogonal projection. We hope the angle

@-J- in the projected space’ is (approximately) equal to 6;;.

Note that the distances are irrelevant with the angles, i.e.,
the pair of local features with a long distance can have a
small angle and the pair with a short distance may have a
large angle. Thus it is desirable to retain the angles of all
pairs. We define our optimization problem for angle pre-
serving in the low dimensional space:

argmax »_ (X;, X;)- (07 X;,07X)).
®  (iger

(10)

Although it is the optimization for preserving the inner
product, the following proposition shows that the optimal
O preserves the pairwise angles.

Proposition 1. Suppose O is the optimal solution of the optimi-
zation problem (10), then for any 1 <4, j < N, the projection
O preserves the angle between the local features X; and X ;.

Proof. According to the Cauchy-Schwarz inequality, we have

> (X, X)) (07X,07X))
(i,))€P
1 1

2 2
< ( > (Xan)Z) ( > (@)TXiv@TXﬁQ) ;
(i,j)eP (i,4)eP

and the equality holds if and only if (X;, X;) ((7,7) € P)
and (0" X;, 0" X;) ((i,4) € P) are collinear. We can first
set a norm constraint Z“"j)ep(@TXi,(@TXj)Z =1 for O.
Then the objective function in Eq. (10) is smaller than a
constant. If ®" is the optimal solution of the optimization
problem (10), the left-hand-side of the above inequality
reaches its maximum value at ®". Then there exists a con-
stant A € R such that

(07)"X;, (07)"X;)
(Xi, X;)
Since for i = j, we have ||(@")" X;|| = A||X;|, then X > 0.
Therefore, for the projected angle /057;]-, it satisfies
(©)"X:, (") X))
1(©) X107 X
(0 X:, (0)7 X))
VIO X, (0 X)/(0)7X,, (0" X))
_ X, X5) _ (X3, X;)
VAL Xi) VX X)X X V(X X)
<X777Xj>
= ————— = cos0;;,
[ X111 !

which implies that the projection matrix ®” is an angle-
preserving projection. O

=\, V(i,j) € P.

cos0;; =

3. Since Hamming space is a discrete space, we first consider the
angles in the linear subspace before taking the sign function.
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4.2 Bigraph Regularization

Not only the pairwise structure of local features, but also
the connection between samples and classes, which is
regarded as a higher level relationship among local fea-
tures, is considered in our algorithm. We use the image-
to-class (I2C) distance to measure the bipartite graph (a.k.
a. bigraph) that consists of video samples and classes.
Although the I2C distance was first introduced to measure
the distances between images and classes, it can also be
applied to all kinds of samples that are represented by
local features. Our goal is to preserve the I12C distances in
the lower-dimensional space. Given the set of local fea-
tures of a sample X; = {Xj1,..., Xy, }, which contains all
local features of sample 4, the distance between sample ¢
and class c is defined as

= X - NN(X)|P,

XeX;

1n

where NN¢(X) is the nearest neighbor (NN) of the local fea-
ture X in class cand || - || is the Lo-norm.

However, the complexity of NN-search linearly depends
on the number of local features, which renders the nearest
neighbor search in such a large-scale space of local features
of each class will still cost much time. Hence, we first imple-
ment a K-means clustering algorithm for each class. In other
words, we first find K centroids for each set |J o _.Xi,
c=1,...,C, where C is the number of classes “and
C() e { 1, ..., C} is the label information function that rep-
resents the class label of the input. In this way, the searching
range of nearest neighbors is reduced to the set of cluster
centers, which has a much smaller size than the original
space, ie, forc=1,...,C, we set

NN¢(X) € Centroids {S5,...,Sk} of U X;.

C(X;)=c

Having obtained I2C distances, we build a bigraph
G = (W1, Va, E), where V; and V5 are the node sets of samples
and classes respectively. G is a complete and weighted
bigraph. For each edge in E connecting sample i and class c,
it has the weight W2 determined by the I2C distance,
named the I2C similarity. By heat kernel, we define the 12C
similarity as follows:

WZ{?C:eXp(_([;,f/o), i=1,...,n, c=1,...,C, (12)

where o is the Gaussian smoothing parameter and n is the
number of training samples. Correspondingly, we have the
12C distance in the objective Hamming space:

= > [H(X

XeX;

— NN(H(X))|. (13)
With the above defined 12C similarity W/*“ and the pro-
jected 12C distance I ., we can define the following optimi-

zation problem to quantize the bigraph regularization, i.e.,
I2C structure in the low dimensional space:

arg min Z Z 1% Wilfc.

i=1 c=

(14)
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By minimizing the above equation, the sample which has a
small I2C distance to class ¢ in the high-dimensional space is
still close to class c in the low-dimensional space. According
to the rearrangement inequality [64], the above objective func-
tion reaches its minimum value if and only if {f}l} and {I4, }
are similarly sorted, which means the projected I2C distances
preserve the bigraph structure in the high dimensional space.

4.3 Objective Function and Optimization

In addition, to make the projected space more compact, we
set the orthogonality constraint on the projection matrix,
ie, ®'® = I. Combining the objective functions for the
pairwise structure and the bigraph regularizer, we obtain
our final optimization problem for SPP:

arg max Z WPE X)), H(X;))
oTo=1 (i,5)eP
+ X, X;) - (0'X;, 07 X;
7;’P 7 7 > (15)

n C

TC 12C
—,BE E:X,'VVH‘ )
i=1 c=1

where B is the regularization parameter.

Optimization. Considering the discreteness of the binary
function, we first use approximation sgn(z) =~ « to relax the
objective function in the optimization problem (15) into a
real-valued space. Then the objective function of the pair-
wise label part (see Eq. (9)) becomes

Z ngij<H(Xi)7 H(Xj)>

(i,))eP
= > Wlt(sen(07X;), sgn(07 X))

(i,5)eP

~ > WhE(eTX;, 07 X))

(i,5)eP

Z Wt (07 X;(07 X))
(1,5)eP

Z Wit X, XT0).

(i,9)eP

And for 12C distances, we denote NN“(X) = X°. Note that
after applying projection matrix 0, the nearest neighbors
may change. However, for the large-scale local feature space,
we approximately adopt the sum of the distances from ®” X
to the projected nearest neighbor ®” X¢. Then the projected
12C distance (see Eq. (13)) after applying matrix ® becomes

I~ > [|0"x - o' x|’
Xed;

= > 0T X - x|’
Xed;

m;

= Ztr(@
k=1
m;

= Ztr @1
m;

=3 (07AXG (AX5)"0),

k=1

Xy — X5) (07 (X — X5))7)

Xi) (Xa — X5)"0)
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where AXS = X;, — X5, k=1,...,m;. Thus, by simple
algebraic derivation, the optimization problem (15) is
reduced to

aurgrnaxtr(@TM@))7 (16)
ole=r1
where
M= 3" (Wt + (X, X)) XiX]
(i,5)eP
n C m an
=Y 3N wleax;ax
iml =1 j=1

Notice that W/t;; + (X;
we have

i Xj) =W, P + (X, Xi), Vi, j, then

M= " (Wity+ (X, X)) (X, X] + X;x7)

1<7‘<j<N

+3 (Whe + (X, X)) X. XT
i=1
n c  my
YD > WA, Ax],

i=1 c=1 j=1

Thus M is a real-valued symmetric matrix. It is clear that the
solution to the optimization problem (16) is the eigenvectors
corresponding to the largest d eigenvalues of M. We sum-
marize our algorithm in the following Algorithm 1.

Algorithm 1. Structure Preserving Projection for Local
Flux Feature

Input: Training video sequences Vi,...,V, in gray-scale and
V{,..., V. in depth, the radius r for the sphere Bp(r),
the parameter k for pairwise structure preserving, the
number of centroids K in K-means, the label informa-
tion function C(:)€{l,...,C}, the regularization
parameter 8 and the objective dimension d.

Output: The projection matrix ©.

1: Detect interest points (or densely sample) { P}, ...
from the i-th training video V;,i = 1,...,n;

2: Compute two LFFs for each point in gray—scale and depth
respectively by Eq. (3) and combine them by Eq. (4) to
obtain the local feature set of the ith training video

s P}

X; ={Xi,...,Xim,} and the whole local feature set
F=UxX ={X,.. X\}
3: Centralize X; «+ NZ 1 X5, Vi;

4: Construct local feature pairing set P = {(,j)|X;, X; € F}
and their corresponding pairwise labels ¢;; = {—1,+1},
where /(;; = +1 if X; € Ni(X;) or X; € Ni(X;), and ¢;; =
—1 otherwise;

5: Employ the K-means clustering algorithm on the set of local
features of each class U oy, Xi,c=1,...,C;

6: Compute pairwise welght f and 12C srmllarlty WEC by
Egs. (8) and (12);

7: Compute the matrix M by Eq. (17);

8: return the eigenvectors corresponding to the largest d eigen-

values of M.
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4.4 Complexity Analysis

In this section, we provide a time complexity analysis of our
algorithm. During the training phase, our algorithm mainly
consists of three parts. The first part is the computation of
LFFs. The derivative computation is actually the convolu-
tion of matrices which at most needs O(3DL,, log L,,) time
[65], where L,, = max{L, W, H}. The second part is the com-
putation of pairwise structure preserving. The k-NN algo-
rithm in the construction of pairwise labels and the
computation of pairwise angles cost O(kN?) and O(N?)
time, respectively. The last part is the construction of the
12C similarity matrix (W/*“). The time complexity of this
part is O(nCKDN). In total, the time complexity of the
training phase is at most O(3DL,, log L,;,) + O((k + 1)N?) +
O(nCKDN).

In the test phase, binary codes can significantly reduce
the runtime of the recognition algorithm since the distance
computation in Hamming space is simply based on the
XOR operation. Denote 7,, and txop as the time of one mul-
tiplication and one XOR operation, respectively. Then the
computational complexity of NBNN in the original space is
O(NyrainNiest D) T, where Nyi, and Ny, are the numbers
of local features in training and test sets respectively. With
the binary local features, the time complexity is reduced to
O(NtrainNtestd)Txor. In  general, we have d< D and
Txor < Tp,. Thereby, when Ny, and Ny.y are in the magni-
tude of millions or even greater, the hashing algorithm'’s
effect is self-evident. We will list the run-time in the follow-
ing section.

5 [EXPERIMENTS AND RESULTS

In this section, we systematically evaluate our proposed
method on three different RGB-D benchmarks: the SKIG
hand gesture dataset [66], the MSRDailyActivity3D dataset
[2] and the CAD-60 activity dataset [67]. Fig. 3 shows some
example frames of these three datasets. Details of the data-
sets are introduced in the following section.

5.1 Datasets and Settings
The SKIG dataset has 2,160 hand gesture sequences (1,080
RGB sequences and 1,080 depth sequences) collected from
six subjects. All these sequences are synchronously captured
with a Kinect sensor (including a RGB camera and a depth
camera). This dataset collects 10 categories of hand gestures
in total: circle (clockwise), triangle (anti-clockwise), up-down,
right-left, wave, “Z”, cross, comehere, turnaround and pat. In the
collection process, all these ten categories are performed
with three hand postures: fist, index and flat. To increase
the diversity, the sequences are recorded under 3 different
backgrounds (i.e., wooden board, white plain paper and
paper with characters) and 2 illumination conditions (.e.,
strong light and poor light). Consequently, for each subject,
there are 10(categories) x 3(poses) x 3(backgrounds) x
2(illumination) x 2(RGB and depth) = 360 gesture sequen-
ces. The training size for each category is varied as one of
{10, 20, 35,45,60,70} and the rest of the sequences are used
for testing.

The MSRDailyActivity3D dataset is a human activity
dataset captured with the RGB channel and the depth chan-
nel using the Kinect sensor. The total sequence number is



1658

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.38, NO.8, AUGUST 2016

Fig. 3. Example frames of the three RGB-D datasets we used in the experiments. From top to bottom: SKIG, MSRDailyActivity3D and CAD-60.

640 (i.e., 320 sequences for each channel) with 16 activities:
drink, eat, read book, call cellphone, write on a paper, use laptop,
use vacuum cleaner, cheer up, sit still, toss paper, play game, lie
down on sofa, walk, play guitar, stand up, sit down. There are 10
subjects in the dataset and each subject performs each activ-
ity twice, once in standing position, and once in sitting posi-
tion. The training size for each subject is chosen as one of
{5,10, 15,20, 25} and the rest is used for testing.

The Cornell Activity dataset (CAD-60) contains 60 RGB-
depth sequences acted by four subjects and captured with a
Kinect camera. The actions in this dataset are categorized
into five different environments: office, kitchen, bedroom,
bathroom, and living room. Three or four common activities
were identified for each environment, giving a total of
twelve unique actions: rinsing mouth, brushing teeth, wear-
ing contact lens, drinking water, opening pill container,
cooking (chopping), cooking (stirring), talking on couch,
relaxing on couch, talking on the phone, writing on white-
board, working on computer. The training size for each
action is assigned as one of {1,2,3,4} and remaining

All the training samples are selected randomly from
every class in each dataset and all the procedures are
repeated five times. We report the averages as the final
results.

For the experimental settings, we fix the size of the
cuboid [ x w x h in the computation of LFF as 7 x 7 x 9. We
set r = 4,4, 5 in each dataset respectively due to the compar-
ison results with different radii  in Table 1. If the radius  is
too small, the LFF degenerates to the second order deriva-
tive, and if r is too big, LFFs are almost the same for adjacent
pixels, which tends to be less discriminative. We always set
k = 15 for the pairwise data structure. Actually, we utilize
the training data as the cross-validation set in SPP. The
parameter K of the K-means is selected from one of
{100,200, ...,1,000} with the step of 100, which yields the
best performance by 10-fold cross-validation. The optimal
parameter f is selected from {0.1,0.2,...,1.0} with the step
of 0.1 by 10-fold cross-validation on the cross-validation set,
as well. In particular, the nested cross-validation strategy is
applied to these two parameters, i.e., K and B. We always

sequences are adopted for testing. first fix the value of K as one of {100,200,...,1,000} and
TABLE 1
Performance Comparison (%) of NBNN with the LFFs Computed on Detected Points with Different Radii
r=1 r=2 r=3 r=4 r=>5 r==06 r=7 r=38 r=9 r =10
SKIG 88.5 90.3 92.4 93.7 93.1 92.5 91.6 91.2 90.7 88.4
MSRDailyActivity3D 85.7 86.2 88.7 89.8 88.9 88.1 87.6 87.5 86.7 85.2
CAD-60 93.2 94.1 94.9 95.2 95.7 94.8 94.1 93.5 92.2 90.8

The training sizes are 70, 25 and 4 in each class for SKIG, MSRDailyActivity3D and CAD-60, respectively. All the code lengths are 96-bit.
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TABLE 2
Performance Comparison (%) of Different Variants of LFF+SPP
to Prove the Effectiveness of the Improvement on RGB-D Fusion

Datasets SKIG MSRDaily CAD-60
Methods Activity3D
LFF+SPP! 85.1 82.4 90.4
LFF+SPP? 89.6 83.1 93.5
LFF+SPP? 91.2 85.8 94.2
LFF+SPP 93.7 89.8 95.7

All the code lengths are 96-bit. The bold numbers represent the best performance
for each dataset.(SPP is the original SPP without the bigraph reqularization;
SPP? denotes the original SPP without the pairwise label preserving term;
SPP? represents the original SPP without the pairwise angle preserving term.)

select the best parameter g from {0.1,0.2,...,1.0}, and then
assign another value to K and select the best parameter
from {0.1,0.2,...,1.0} again. In this way, the optimal pair
of parameters K and B can be obtained under the nested
cross-validation strategy.

Since the acceleration of NBNN is quite conspicuous
using the Hamming distance instead of the Ly-norm in the
NN-search and NBNN classifier always outperforms the
BoW model, we mainly use NBNN to evaluate our recogni-
tion precision.

5.2 Compared Results

First of all, we illustrate the effectiveness of all the three
terms used in SPP, i.e., the pairwise label preserving term,
the pairwise angle preserving term and the bigraph regulari-
zation. We remove one of them and keep the other two
terms, and optimize the problem in (15). The results are
listed in Table 2, from which we can observe that the bigraph
regularization contributes the most to the accuracies.

Next, for all three datasets, we apply three different
schemes to achieve RGB-D video classification: 1) Detected
interest points* + LFF + SPP; 2) Dense sampling’ + LFF +
SPP; 3) Detected interest points + LFF + SPP + Bag-of-
Words. For (1) and (2), we adopt NBNN as the classifier and
the linear SVM is applied for the third scheme for classifica-
tion. The codebook lengths of BoW for each dataset are cho-
sen as one of {500, 1,000,1,500,2,000} and the best results
are reported.

For each scheme, we apply SPP on LFFs from RGB and
depth information. According to all the possible combina-
tions, we evaluate four different kind of local binary codes
on three datasets: LFF(RGB-D)+SPP denotes our full algo-
rithm; LFF(RGB)+SPP only uses RGB information to com-
pute LFFs and then apply SPP; LFF(D)+SPP only uses depth
information to compute LFFs and then apply SPP; LFF+SPP
(RGB-D) concatenates LFF(RGB)+SPP and LFF(D)+SPP.

From Figs. 4, 5, and 6, we can observe that the perfor-
mance of our full algorithm is consistently higher than
that of other versions on the three datasets. And dense sam-
pling generally outperforms interest points detection due to
the large amount of local feature descriptors. Another

4. Dollar’s interest points detector [22] is used in our experiments.
We only detect the interest points on the RGB data and find the corre-
sponding locations on the depth video as the detected points for depth
data.

5. We set the distance between adjacent pixels as 5.
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observation is that LFF(RGB-D)+SPP always outperforms
LFF+SPP(RGB-D), since the former outputs the fused binary
representation with the consideration of the structures of
RGB-D features. In contrast, LFF+SPP(RGB-D) outputs
binary codes separately for RGB and depth features, there-
fore, loses the connection between RGB and depth features.

In Fig. 7, we also compare the performance of our algo-
rithm with different code lengths by using different point
selection methods, i.e., interest points detection (Dollar’s
detector and STIP) and dense sampling, on the three data-
sets. It is noticeable that, on the CAD-60 dataset, the accu-
racy of dense sampling is slightly lower than that of interest
points detection because the noise of the background has a
negative effect on the dense sampling when the code length
increases. In this situation, the detection method is more
effective than dense sampling.

Finally, Fig. 8 shows the average runtime comparison.
Our learned binary codes show a significant advantage
compared to the original LFF consisting of real numbers
since NBNN largely depends on NN-search. All the experi-
ments are conducted using Matlab 2013a on a server config-
ured with a 12-core processor and 128G of RAM running
the Linux OS.

5.3 Comparison with Other Methods

In Table 3, we first compare the proposed LFF descriptor
with state-of-the-art video descriptors (i.e., HOG, HOF,
MBH, HON4D and HOG3D) for RGB-D action recognition.
All the methods are computed on the interest points from
the RGB channel detected by Dollar’s detector and the cor-
responding points from the depth channel. As we can see,
LFF outperforms HOG, HOF, MBH and HOG3D in the RGB
and depth channels and the RGB-D concatenation scheme.
Although HON4D, as a descriptor specifically designed for
depth sequences, achieves better performance in the depth
channel, it can only be extracted from depth data and the
recognition accuracies are relatively low. In contrast, our
LFF is considered to be a general feature descriptor for both
RGB and depth data and LFF in the RGB-D concatenation
scheme reaches the highest accuracy in the experiment of
feature comparison.

Since SPP is a projection for learning binary codes, we
can also compare our SPP algorithm with other hashing
methods. In our experiments, we compare the proposed
method against seven general hashing algorithms including
KSH [58], BRE [60], MLH [61], LSH [56], SpH [57], AGH
[68], PCAH [69], BSSC [53] and RBM [70]. All the above
methods are computed on the same extracted LFFs for a
unified standard. All the compared methods are then evalu-
ated on five different lengths of codes (32, 48, 64, 80, 96) and
their results at 96-bit, which appear to be the best, are
reported. Under the same experimental setting, all the
parameters used in the compared methods have been
strictly chosen according to their original papers. We list the
compared results in Table 3 where RGB channel and depth
channel represent only employing the methods in RGB and
depth respectively, RGB-D fusion is the procedure of our
algorithm and RGB-D cat is the concatenation of the fea-
tures gained in RGB channel and depth channel. The results
of the above mentioned other hashing methods in RGB-D
fusion are not consistently higher than that in RGB-D
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concatenation, since not all of them preserve data structure.  specified value 1, the statistic

The training sizes are 70, 25, and 4 for datasets SKIG, _
MSRDailyActivity3D and CAD-60, respectively. Table 3 PO o) ,
also reports the recognition accuracies of LFF and HOG3D s/v/m
using the improved Fisher vector (IFV) [71], for which 200
Gaussians are used in the GMM. The results show two phe-
nomena: 1) LFF as a continuous feature outperforms other
discrete histogram based features; 2) SPP outperforms other
hashing methods.

is used, where 7 is the sample mean, s is the sample stan-
dard deviation of the sample and m is the sample size. Then
the degree of freedom used in the test is m — 1. We set
m = 10 and code length d = 96 for this experiment. Table 4
lists the one-tail results of the t-test, which shows that the
improvements are statistically significant.

5.4 Statistical Significance Test

To show the statistical significance of improvements, we 5.5 Results on RGB Video Dataset

conduct a t-test on the MAP improvements. In testing the To further illustrate the effectiveness of LFF, in this experi-
null hypothesis that the population mean is equal to a ment, we compare the RGB version of LFF with the state-of-

TABLE 3
Performance Comparison (%) of Our Algorithm and Other Coding Methods on Three Datasets

Methods SKIG MSRDaily Activity3D CAD-60

RGB Depth RGB-D RGB-D RGB Depth RGB-D RGB-D RGB Depth RGB-D RGB-D
Channel Channel Cat Fusion Channel Channel Cat Fusion Channel Channel Cat Fusion

HOG 81.4 72.7 82.9 - 76.4 62.3 79.2 - 78.4 60.3 79.6 -
HOF 79.0 71.2 80.6 - 75.6 62.2 78.9 - 77.0 58.5 77.8 -
MBH 82.1 74.7 83.2 - 76.7 63.1 80.1 - 79.5 61.2 81.8 -
HON4D - 80.1 - - - 78.4 - - - 69.2 - -
HOG3D 81.8 73.4 83.1 - 77.2 62.4 79.5 - 78.5 60.4 80.5 -
LFF 84.0 76.2 85.4 - 80.6 72.8 81.6 - 81.0 63.6 83.2 -
Action ensemble* - - - - - 87.6 - - - 91.8 - -
HOG3D+IFV 86.9 79.8 89.7 92.1 83.1 75.1 85.6 89.5 91.0 80.8 92.4 94.8
LFF+IFV 88.7 80.5 91.5 93.2 84.8 76.0 87.4 91.1 91.4 82.0 93.4 95.1
HOG3D+SPP 86.3 78.6 88.2 91.4 84.3 71.5 85.2 87.4 88.1 67.4 92.1 93.0
LFF+SPP 88.5 81.1 91.0 93.7 83.2 76.1 86.0 89.8 92.2 82.5 94.0 95.7
LFF+KSH 81.7 67.9 82.4 80.1 80.1 72.1 82.5 81.0 76.0 52.5 77.2 76.8
LFF+BRE 79.8 63.4 80.2 80.8 78.1 68.1 81.3 79.8 75.5 56.7 76.0 76.1
LFF+MLH 77.5 63.8 78.4 78.8 74.2 69.3 75.0 76.2 75.3 48.6 75.8 74.7
LFF+LSH 69.4 54.2 714 68.2 60.5 411 62.3 58.4 61.4 30.7 62.5 60.2
LFF+SpH 77.5 68.1 78.5 79.0 76.2 60.7 78.3 78.2 70.7 50.4 71.3 73.1
LFF+AGH 74.2 70.5 77.4 78.3 77.5 63.2 78.4 79.5 73.6 48.2 74.7 74.0
LFF+PCAH 68.0 60.2 68.3 60.4 61.3 48.7 63.0 62.1 65.3 41.0 67.9 60.1
LFF+BSSC 77.8 55.4 80.3 81.3 76.9 65.3 76.7 78.0 74.2 48.2 76.8 77.2
LFF+RBM 78.5 67.6 79.5 79.7 77.2 60.0 78.3 78.5 77.4 58.3 79.7 78.8

In the RGB-D fusion scheme, we first concatenate features in RGB and depth, then apply hashing methods. In the RGB-D concatenation (Cat) scheme, we first
apply hashing methods to features in RGB and depth separately, then concatenate them. The bold numbers represent the best performance for each dataset.

* The action ensemble method adopted the depth and skeleton information with real-valued features. The skeleton information is only available in MSRDailyActi-
vity3D and CAD-60.

All the results (except action ensemble, LFF+IFV and HOG3D+IFV) are calculated by the NBNN classifier. The linear SVM is applied to LFF+IFV and HOG3D
+IFV.
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TABLE 4
T-Test on Performance Improvements
Datasets LFF+SPP vs. LFF+SPP vs. LFF+SPP vs. LFF+SPP vs. LFF+SPP vs. LFF+SPP vs.
Methods LFF+KSH LFF+BRE LFF+MLH LFF+SpH LFF+LSH HOG3D+SPP
SKIG 9.97 x 10713 4.31 x 10712 1.52 x 10714 3.09 x 10712 1.45 x 10714 2.49 x 1077
MSRDailyActivity3D 3.98 x 10712 9.72 x 10712 3.26 x 10713 2.27 x 10712 5.78 x 10716 1.52 x 107¢
CAD-60 3.57 x 10713 8.58 x 1071 3.55 x 1071 8.88 x 1071 1.46 x 10717 2.34 x 1076

the-art feature: dense trajectory features on the UCF You-
Tube [72] and HMDB51 [73] datasets for action recognition.
The UCF YouTube dataset contains 1,168 video sequences
collected from 11 action categories. Most of them are sports
activities, which are drawn from existing YouTube videos;
therefore, the dataset contains large variations and approxi-
mates a real-world database. For this dataset, we deliber-
ately use the full-sized sequences without any bounding
boxes as the input to evaluate our method’s robustness
against complex and noisy backgrounds. We use the Leave-
One-Out setup, i.e., testing on each original sequence while
training on all the other sequences. The HMDB51 dataset
contains 6,849 realistic action sequences collected from a
variety of movies and online videos. Specifically, it has 51
action classes and each has at least 101 positive samples. We
adopt the official setting of [73] with three train/test splits.
Each split has 70 training and 30 testing clips for each class.
Table 5 illustrates that our proposed LFF (r = 5) can achieve
competitive results with dense trajectory feature (DTF)
which produces the state-of-the-art performance on recent
publications [31], [74]. Note that for fair comparison of fea-
ture descriptors, all the compared features are extracted
around the same points, i.e., the points on the trajectories.

6 CONCLUSION

The basic goal of this paper is to obtain a fused local binary
representation for RGB-D action recognition. To achieve
this goal, we first introduced a continuous local descriptor
called Local Flux Feature (LFF) based on the gradient field
of video data, which is more suitable for the discretization
of binary codes than histogram based local descriptors.
After acquiring LFFs from RGB and depth channels, we
applied the Structure Preserving Projection (SPP) to learn

TABLE 5
Recognition Accuracy (%) of LFF and Dense Trajectory
Features on the UCF YouTube and HMDB51 Datasets

Feature UCF YouTube HMDB51
Trajectory 67.5 28.0
HOG 72.6 27.9
HOF 70.0 31.5
MBH 80.6 43.2
Trajectory/HOG/HOEF/ 84.1 46.6
MBH combined

LFF(r=1) 79.6 415
LFF (r =3) 84.3 45.8
LFF (r=5) 85.2 46.9
LFF r=7) 84.7 46.0
LFF (r=9) 83.2 45.5

The LFF features are extracted along the same trajectories in the video sequen-
ces as the dense trajectory features.

discriminative local binary representations. SPP preserves
the characteristics in two levels including pairwise structure
of local features and the relationship between video samples
and classes at the same time without the collapse of data
structure. The systematical experiments have shown not
only the high efficiency of the proposed local binary repre-
sentations, but also its superior performance than other
local features and other hashing methods in terms of recog-
nition accuracy on three RGB-D datasets.
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