WCK 4234, a novel diazabicyclooctane potentiating carbapenems against Enterobacteriaceae, Pseudomonas and Acinetobacter with class A, C and D β-lactamases

Mushtaq, Shazad, Vickers, Anna, Woodford, Neil and Livermore, David M ORCID: https://orcid.org/0000-0002-9856-3703 (2017) WCK 4234, a novel diazabicyclooctane potentiating carbapenems against Enterobacteriaceae, Pseudomonas and Acinetobacter with class A, C and D β-lactamases. Journal of Antimicrobial Chemotherapy, 72 (6). pp. 1688-1695. ISSN 0305-7453

[thumbnail of Accepted manuscript]
Preview
PDF (Accepted manuscript) - Accepted Version
Download (720kB) | Preview

Abstract

Background: Several diazabicyclooctanes (DBOs) are under development as inhibitors of Class A and C -lactamases. Inhibition of OXA (Class D) carbapenemases is variable, with those of Acinetobacter spp. remaining notably resistant. We describe a novel DBO, WCK 4234 (Wockhardt), with distinctive activity against OXA carbapenemases.  Methods: MICs of imipenem and meropenem were determined by CLSI agar dilution with WCK 4234 added at 4 or 8 mg/L. Test organisms were clinical Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa with carbapenemases or carbapenem resistance via porin loss plus AmpC or ESBL activity. AmpC mutants were also tested.  Results: WCK 4234, which lacked direct antibacterial activity, strongly potentiated imipenem and meropenem against Enterobacteriaceae with OXA-48/181, KPC enzymes, or with combinations of impermeability and AmpC or ESBL activity, with MICs reduced to <2 mg/L in almost all cases. Carbapenems likewise were potentiated against P. aeruginosa (n=2) with OXA-181 enzyme, with MICs reduced from 64-128 mg/L to 2-8 mg/L and against A. baumannii with OXA carbapenemases, particularly OXA-23 or hyperproduced OXA-51, with MICs reduced to <2 mg/L for 9/10 acinetobacters with OXA-23 enzyme. Carbapenems were not potentiated against Enterobacteriaceae or non-fermenters with metallo--lactamases.   Conclusion: WCK 4234 distinctively overcame resistance mediated by OXA-type carbapenemases, including in A. baumannii. It behaved similarly to other DBOs against strains with KPC carbapenemases or combinations of impermeability and ESBL or AmpC activity.

Item Type: Article
Faculty \ School: Faculty of Medicine and Health Sciences > Norwich Medical School
UEA Research Groups: Faculty of Medicine and Health Sciences > Research Groups > Epidemiology and Public Health
Faculty of Medicine and Health Sciences > Research Groups > Public Health and Health Services Research
Depositing User: Pure Connector
Date Deposited: 26 Jan 2017 02:38
Last Modified: 22 Oct 2022 02:09
URI: https://ueaeprints.uea.ac.uk/id/eprint/62165
DOI: 10.1093/jac/dkx035

Actions (login required)

View Item View Item