Accepted Manuscript

The methodological and reporting quality of systematic reviews from China and the USA are similar

Jinhui Tian, PhD, Jun Zhang, MD, Long Ge, MD, Kehu Yang, MD, Fujian Song, PhD

PII: S0895-4356(16)30816-2

DOI: 10.1016/j.jclinepi.2016.12.004

Reference: JCE 9290

To appear in: Journal of Clinical Epidemiology

Received Date: 30 June 2016

Revised Date: 29 November 2016

Accepted Date: 9 December 2016

Please cite this article as: Tian J, Zhang J, Ge L, Yang K, Song F, The methodological and reporting quality of systematic reviews from China and the USA are similar, *Journal of Clinical Epidemiology* (2017), doi: 10.1016/j.jclinepi.2016.12.004.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

	ACCEPTED MANUSCRIPT
1	
2	The methodological and reporting quality of systematic reviews from China and
3	the USA are similar
4	
5	Jinhui Tian ^{1,2} , PhD; Jun Zhang ³ , MD; Long Ge ^{1,2} , MD; Kehu Yang ^{1,2*} , MD; Fujian Song ^{4*} , PhD.
6 7	1. Evidence-based Medicine Center of Lanzhou University, Lanzhou, China
8	2. Key Laboratory of Evidence-based Medicine and Knowledge Translation of Gansu
9	Province, Lanzhou, China
10	3. School of Nursing, Gansu University of Chinese Medicine, Lanzhou, China.
11	4. Norwich Medical School, University of East Anglia, Norwich, U.K.
12	
13 14	* Correspondence to:
15	Fujian Song, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ,
16	U.K. Email: <u>Fujian.song@uea.ac.uk</u>
17	Kehu Yang, Evidence-Based Medicine Center, Lanzhou University, 199 Donggang West
18	Road, 730000 Lanzhou, Gansu, P.R. China. E-mail: yangkh@lzu.edu.cn
19	
20	Word count for text: 3728
21	Word count for abstract: 197

- 1 Abstract
- 2 **Objective**: To compare the methodological and reporting quality of systematic reviews by authors
- 3 from China and those from the United States (the USA).
- 4 Study Design: From systematic reviews of randomised trials published in 2014 in English, we
- 5 randomly selected 100 from China and 100 from the USA. The methodological quality was
- 6 assessed using the AMSTAR tool, and reporting quality assessed using the PRISMA tool.
- 7 **Results**: Compared with systematic reviews from the USA, those from China were more likely to
- 8 be a meta-analysis, published in low impact journals, and a non-Cochrane review. The mean

9 summary AMSTAR score was 6.7 (95% confidence interval: 6.5 to 7.0) for reviews from China

- 10 and 6.6 (6.1 to 7.1) for reviews from the USA, and the mean summary PRISMA score was 21.2
- 11 (20.7 to 21.6) for reviews from China and 20.6 (19.9 to 21.3) for reviews from the USA. The
- 12 differences in summary quality scores between China and the USA were statistically non-
- 13 significant after adjusting for multiple review factors.
- 14 **Conclusions**: The overall methodological and reporting quality of systematic reviews by authors
- 15 from China are similar to those from the USA, although the quality of systematic reviews from
- 16 both countries could be further improved.
- 17
- 18 Keywords: systematic review; methodological quality; reporting quality; risk of bias; validity;
- 19 evidence based medicine
- 20

1	What i	s new?
2		Key findings: The overall methodological and reporting quality of systematic reviews of
3		randomised trials by authors from China were similar to those from the USA. The
4		differences and similarities in specific quality items between China and the USA were
5		identified.
6	•	What this adds to what is known: This is the first study to compare the reporting and
7		methodological quality of systematic reviews of randomised trials by authors from China
8		(a developing country) and the USA (a developed country).
9	•	What is the implication, what should change now: Considering the usefulness of
10	:	systematic reviews in evidence based practice and the development of primary research,
11		the systematic reviewing capacity should be strengthened in China. Identified
12	:	shortcomings in methodological and reporting quality of published systematic reviews
13	:	should be considered in further training of authors of systematic reviews in the relevant
14		countries.
15		
15		
16		

A COPDERD MANUCODID

1 Background

Well conducted systematic reviews and meta-analyses of randomized controlled trials (RCTs)
provide the most valid research evidence on effects of healthcare interventions [1,2]. Systematic
review methods (with or without meta-analysis) have been used in medicine and health research
since later 1980s in developed countries [3]. The Cochrane Collaboration and other evidence-based
health programmes have promoted the use of systematic reviewing methods globally [4], including
China [5].

8 It has been anticipated that systematic reviews would help address challenges due to rapid 9 increase in clinical literature [6,7]. However, the successful production of systematic reviews 10 during past decades has raised concerns about whether the exponential increase in published 11 systematic reviews might have actually exacerbated information overload [7-11]. Particularly, the 12 increased production of systematic reviews by authors from China has been considered at least 13 partly responsible for the rapid increase in systematic reviews globally [12,13]. For example, a search of PubMed on January 8th 2016 (see Supplementary file-1 for the search strategy) found that 14 the number of published systematic reviews by authors from China was increased exponentially 15 16 from only 19 in 2005 to 1073 in 2014. During the same time period, the production of systematic 17 reviews by authors from the United States (USA) was only moderately increased from 500 in 2005 18 to 796 in 2014.

19 With the rapid increase in the number of systematic reviews by authors from China, their 20 reporting and methodological quality have been scrutinized in previous studies [12,14-18]. These 21 studies usually suggested that the reporting and methodological quality of systematic reviews from 22 China were poor and needed to be much improved. However, it is unclear about the quality of 23 systematic reviews by authors from China relative to those from other countries. There was only 24 one previous study that compared meta-analyses of genetic associations by authors from China and 25 those from the USA [10,12]. According to our knowledge, there were no published studies that systematically compared quality of systematic reviews of RCTS of healthcare interventions by 26 27 authors from China and those by authors from other countries.

Identification of differences in methodological and reporting quality of systematic reviews by 1 2 authors from China and developed countries may help appropriately interpret findings from 3 systematic reviews, and set priorities in training of systematic reviewers. Specifically, we consider 4 it appropriate to compare systematic reviews by authors from China and those from the USA for 5 the following reasons: Authors from the USA, along with authors from other high-income nations, 6 have been traditionally the main producer of systematic reviews, and a previous study had 7 compared genetic association meta-analyses by authors from China and the USA [12]. Therefore, 8 the aim of the current study is to compare the main characteristics, methodological and reporting 9 quality of systematic reviews of healthcare interventions between China and the USA. Although 10 the reporting quality was assessed, the focus of the current study was on the methodological quality 11 regarding the validity in the process and results of a systematic review.

12 Methods:

13 Identification and selection of systematic reviews

One reviewer (FS) searched PubMed on January 8th 2016 to identify relevant systematic reviews 14 (see Supplementary file-1 for the search strategy). Citations of all identified systematic reviews 15 16 were downloaded to an EndNote database, and then exported to a Microsoft Excel spreadsheet. 17 Each of the originally identified records by country was assigned a random number from 0 to 1 18 (generated by Excel). Then the records were ordered from the smallest to the largest by assigned 19 random numbers, and the first 100 eligible systematic reviews from each country were selected. If 20 a selected systematic review was not eligible, a successive record was used to replace it until the 21 total number of included systematic reviews was 100 for each country. Included systematic reviews 22 met the following criteria: (1) It was a review article and explicitly stated as a systematic review or meta-analysis, with a formal (comprehensive or not) literature search, (2) was fully published in 23 24 English in 2014, (3) included only RCTs, and (4) had a corresponding author with an affiliation in 25 mainland China or in the USA. We did not formally calculate the number of systematic reviews 26 required, because of no information on what would be clinically meaningful differences in quality 27 of systematic reviews between countries.

1 **Ouality assessment and data extraction**

2 All authors involved in this study had previous experience of assessing quality of published 3 systematic reviews. Using a data extraction sheet (Supplementary file-1), one reviewer (IZ, LG, or 4 JHT) extracted and a second reviewer (JHT or FS) checked data on the main characteristics from 5 included systematic reviews. Any disagreements were resolved by discussion. Data extracted from 6 systematic reviews included: the journal in which a systematic review was published, type of 7 systematic reviews (narrative or meta-analysis), the number of authors, countries which co-authors 8 came from, whether the review protocol was registered, diseases of interest, interventions 9 evaluated, primary outcome measures, the number of RCTs included, the number of total 10 participants, and conclusions of the systematic reviews. Impact factors of journals in which systematic reviews were published were retrieved by searching 2014 Journal Citation Reports® 11 12 (Thomson Reuters, 2016) in Web of Science.

13 The methodological quality of a systematic review reflects risk of bias or validity in its process 14 and results. Previous studies found that the AMSTAR (Assessing the Methodological Quality of 15 Systematic Reviews) tool is reliable and valid [19-21]. Therefore, we used AMSTAR tool to assess 16 the methodological quality of the included systematic reviews. The reporting quality of a 17 systematic review refers to the clarity and transparency of its reporting, and poor reporting reduces 18 the value and usefulness of systematic reviews [22]. We used the PRISMA (Preferred Reporting 19 Items for Systematic Reviews and Meta-analyses) checklist to assess the reporting quality of the 20 included systematic reviews [23]. The methodological quality assessment using the AMSTAR tool 21 was conducted by two independent reviewers (JHT and FS), and the reporting quality assessment 22 using the PRISMA tool was conducted by one reviewer (JZ or LG) and checked by a second 23 reviewer (JHT or FS). Any disagreements between reviewers were resolved by discussion or the 24 involvement of a third reviewer.

25 To examine the agreement between the two independent reviewers in the assessment of 26 methodological quality of systematic reviews, we calculated the agreement proportion and Cohen's 27 kappa value for each of the 11 AMSTAR items.

1 Data analysis methods

2 The main characteristics and quality of systematic reviews from China versus those from the USA 3 were tabulated. We compared the quality of systematic reviews between China and the USA by 4 individual items of the AMSTAR and PRISMA instrument. We calculated a summary AMSTAR 5 score for each systematic review according to the method used by Shea and colleagues [20]: For each of the 11 items of the AMSTAR checklist, it was scored '1' if the answer was 'Yes', and '0' if 6 7 the answer was 'No' or 'Can't tell'. Some items may be relevant mainly to meta-analysis, such as 8 the use of funnel plot and related statistical test for assessing publication bias. It was scored '1' if a 9 narrative discussion of risk of publication bias was available in systematic reviews when the use of 10 funnel plot was impossible or inappropriate. The summary AMSTAR score for a systematic review 11 was calculated by counting the number of 'Yes' answers, with a possible maximum score of 11. 12 For the assessment of reporting quality of systematic reviews, each of the 27 PRISMA items was 13 scored '1' for full compliance, '0.5' for partial compliance, and '0' for non-compliance [15]. The 14 summary PRISMA score for a systematic review was calculated by adding up scores assigned to 15 each item, with a maximum score of 27.

16 Chi-squared test was used for differences in proportions (or Fisher's exact test if a contingency 17 table contained a cell with 5 or fewer events). Two sample Wilcoxon rank-sum test or Student t test 18 were used for differences in continuously distributed variables. The summary AMSTAR scores and the summary PRISMA scores were ranked into three groups: low (up to the 25th percentile), 19 moderate (the inter-quartile range), and high (the 75th percentile and above). The association 20 21 between the summary quality scores and country was calculated in either bivariate or multiple 22 variable linear regression analyses after adjusting for factors with imbalanced distribution between 23 China and the USA. Analyses were conducted by using data from all included systematic reviews 24 and using data from only non-Cochrane systematic reviews. Statistical significance was defined as two sided P<0.05. We used Stata/IC[®] version 14.1 for statistical analyses. 25

1 Results

2	The search of PubMed on January 8 th 2016 identified 1073 records of systematic reviews published
3	in 2014 from China and 796 from the USA. The references and main characteristics of the
4	randomly selected systematic reviews are available in Supplementary file-2.
5	Characteristics of included systematic reviews
6	The main characteristics of the included systematic reviews are summarised in Table 1. Compared
7	with systematic reviews from the USA, those from China were more likely to contain a quantitative
8	meta-analysis, less likely to be a Cochrane systematic review, and tended to be published in
9	journals with lower impact factors. Systematic reviews from China were more likely to have four
10	or more co-authors, but much less likely to include co-authors from other countries. The proportion
11	of systematic reviews with a registered review protocol was lower for systematic reviews from
12	China, although the difference was no longer significant after excluding Cochrane systematic
13	reviews.
14	
15	>> insert Table 1. The main characteristics of the included systematic reviews<<
16	
17	There were statistically significant differences in disease conditions investigated. Compared with

18 reviews from the USA, reviews from China were more likely to investigate cancer or tumour

19 diseases, and less likely to study mental or behavioural disorders. In terms of interventions

20 evaluated, systematic reviews from China focused less on pharmacological interventions, and more

- 21 on surgical interventions and alternative medicine. Systematic reviews from China provided
- 22 somewhat more significant or positive conclusions and less uncertain conclusions, although the
- 23 overall difference was statistically non-significant.
- 24 Results of methodological quality

25 Two reviewers independently assessed the methodological quality and proportions of agreement on

- 26 the initial AMSTAR assessment were greater than 65% for ten of the 11 AMSTAR items (see
- 27 supplementary file-3). The low agreement (28.5%) on the score for conflict of interests was mainly

1	ACCEPTED MANUSCRIPT due to different understanding of definition for this item. All disagreements were resolved by
2	discussion, and results of the assessment of the methodological quality are shown in Table 2.
3	Differences between systematic reviews from China and the USA were statistically significant
4	for seven of the 11 AMSTAR items. The methodological quality of systematic reviews from one
5	country was not consistently lower or higher than another country for all AMSTAR items.
6	Compared with systematic reviews from the USA, the methodological quality of reviews from
7	China was relatively poor in terms of a priori design, comprehensive literature search, listing both
8	included and excluded studies, and stating sources of support in both the review and included
9	primary studies. On the contrary, systematic reviews from China showed better quality in terms of
10	duplicate study selection, duplicate data extraction, the assessment of scientific quality, and using
11	scientific quality in formulating conclusions. After excluding Cochrane systematic reviews,
12	differences in the methodological quality remained unchanged in general (Table 2).
13	
14	>> insert Table 2. The methodological quality of systematic reviews by country – results of
14 15	>> insert Table 2. The methodological quality of systematic reviews by country – results of the AMSTAR checklist assessment<<
15	
15 16	the AMSTAR checklist assessment<<
15 16 17	the AMSTAR checklist assessment<< The difference in the mean summary AMSTAR score between China and the USA was
15 16 17 18	the AMSTAR checklist assessment << The difference in the mean summary AMSTAR score between China and the USA was statistically non-significant using data from all included reviews, but statistically significant after
15 16 17 18 19	the AMSTAR checklist assessment<< The difference in the mean summary AMSTAR score between China and the USA was statistically non-significant using data from all included reviews, but statistically significant after excluding Cochrane reviews (Table 3). The included reviews were ranked into three groups
15 16 17 18 19 20	the AMSTAR checklist assessment<< The difference in the mean summary AMSTAR score between China and the USA was statistically non-significant using data from all included reviews, but statistically significant after excluding Cochrane reviews (Table 3). The included reviews were ranked into three groups according to summary AMSTAR scores (low, moderate or high), and the proportions of systematic
15 16 17 18 19 20 21	the AMSTAR checklist assessment << The difference in the mean summary AMSTAR score between China and the USA was statistically non-significant using data from all included reviews, but statistically significant after excluding Cochrane reviews (Table 3). The included reviews were ranked into three groups according to summary AMSTAR scores (low, moderate or high), and the proportions of systematic reviews belonging to each of the groups are shown in Figure 1. The difference in proportions
15 16 17 18 19 20 21 22	the AMSTAR checklist assessment << The difference in the mean summary AMSTAR score between China and the USA was statistically non-significant using data from all included reviews, but statistically significant after excluding Cochrane reviews (Table 3). The included reviews were ranked into three groups according to summary AMSTAR scores (low, moderate or high), and the proportions of systematic reviews belonging to each of the groups are shown in Figure 1. The difference in proportions between the two countries was statistically significant. Compared with systematic reviews from the
 15 16 17 18 19 20 21 22 23 	the AMSTAR checklist assessment << The difference in the mean summary AMSTAR score between China and the USA was statistically non-significant using data from all included reviews, but statistically significant after excluding Cochrane reviews (Table 3). The included reviews were ranked into three groups according to summary AMSTAR scores (low, moderate or high), and the proportions of systematic reviews belonging to each of the groups are shown in Figure 1. The difference in proportions between the two countries was statistically significant. Compared with systematic reviews from the USA, those from China were less likely to have a low summary AMSTAR score and more likely to
 15 16 17 18 19 20 21 22 23 24 	the AMSTAR checklist assessment << The difference in the mean summary AMSTAR score between China and the USA was statistically non-significant using data from all included reviews, but statistically significant after excluding Cochrane reviews (Table 3). The included reviews were ranked into three groups according to summary AMSTAR scores (low, moderate or high), and the proportions of systematic reviews belonging to each of the groups are shown in Figure 1. The difference in proportions between the two countries was statistically significant. Compared with systematic reviews from the USA, those from China were less likely to have a low summary AMSTAR score and more likely to have a moderate summary AMSTAR score. Reviews from China were less likely to have a high

2 >> insert Figure 1. The summary AMSTAR score by country <<

3

1

4 Results of reporting quality

5 Table 4 shows proportions of systematic reviews with total compliance for each of the 27 PRISMA 6 items. Considering all the included systematic reviews, the differences between China and the USA 7 were statistically significant for 11 of the 27 PRISMA items. Compared with systematic reviews 8 from the USA, those from China had a lower total compliance in reporting of review protocols, 9 study selection methods, additional analysis methods, and funding sources. On the contrary, 10 systematic reviews from China had a higher proportion of total compliance in reporting of titles, 11 eligibility criteria, methods for assessing risk of bias within studies, results of risk of bias within 12 studies, results of individual studies, results of evidence synthesis, and discussion of conclusions. 13 After excluding Cochrane reviews, differences in reporting of titles and protocol registration 14 between countries were no longer statistically significant, while differences in structured abstract 15 and reporting of risk of bias across studies became statistically significant (Table 4).

16

17 >>insert Table 4. The reporting quality of systematic reviews by country – results of the
 18 PRISMA checklist assessment<<

19

20 The difference in the mean summary PRISMA score was non-significant using data from all 21 included reviews, and was statistically significant after excluding Cochrane reviews (Table 3). 22 Figure 2 shows the proportions of systematic reviews stratified into three groups according to 23 summary PRISMA scores (low, moderate or high). Using data from all included systematic 24 reviews, the difference in the proportion between the two countries was statistically non-25 significant. After excluding Cochrane reviews, the overall difference was statistically significant, 26 indicating that systematic reviews from China were less likely to have a low PRISMA score, and 27 more likely to have a high PRISMA score, compared with those form the USA (Figure 2).

2

3 **Results of regression analyses**

4 Using data from all included systematic reviews, the summary AMSTAR scores were not 5 statistically significantly associated with country in either bivariate or multiple variable linear 6 regression analyses after adjusting for factors with imbalanced distribution between China and the 7 USA (Supplementary file-4). After excluding Cochrane reviews, the summary AMSTAR scores 8 were statistically significantly associated with country in bivariate analysis, although it was no 9 longer significant after adjusting for other factors. Similarly, the summary PRISMA scores were 10 not significantly associated with country when all systematic reviews were included in regression 11 analyses. For non-Cochrane reviews, the association between the summary PRISMA score and 12 country was statistically significant in bivariate analysis, and the association became statistically 13 non-significant in multiple variable analysis (Supplementary file-4).

14 **Discussion**

There were significant differences in characteristics of systematic reviews between the two countries, regarding the use of meta-analysis, being a Cochrane review, impact factor of journals in which they were published, and co-authors from multiple countries. The overall differences in the methodological and reporting quality of systematic reviews between China and the USA were not statistically significant after adjusting for multiple review characteristics.

Of the included systematic reviews, eight from China and 26 from the USA were Cochrane systematic reviews. The quality of Cochrane systematic reviews was better than that of non-Cochrane reviews in the current study, which is consistent with findings from previous studies [13,24]. Cochrane systematic reviews do not use 'systematic review' or meta-analysis' terms in titles, and all are required to register their protocols. After excluding Cochrane reviews, differences between the two countries in the reporting of titles and pre-defined protocols were no long statistically significant.

Using the AMSTAR and PRISMA criteria as the "gold standard", systematic reviews from 1 2 either China or the USA need to be further improved, as systematic reviews from any other 3 countries. For example, systematic reviews from different countries published in 2014 often failed 4 to provide important aspects of review methods, did not search for unpublished studies, and used 5 inappropriate statistical methods [13]. The current study found that systematic reviews from China 6 had poor methodological quality in terms of a priori design, listing of excluded studies, and stating sources of support in both the review and included primary studies. Only 5.4% of non-Cochrane 7 8 systematic reviews from China (versus 14.9% from the USA) adequately assessed the conflict of 9 interests in primary studies included.

10 Compared with systematic reviews from the USA, those from China had relatively better 11 methodological quality in duplicate study selection and in duplicate data extraction. The number of 12 authors of systematic reviews from China was on average larger than that from the USA, and the 13 sufficient manpower is necessary to carry out duplicate study selection and data extraction. In 14 addition, systematic reviews from China had better quality in terms of the assessment of scientific 15 quality of studies, use of quality assessment in formulating conclusions, and assessment of 16 publication bias. However, there are still considerable rooms for further improvement by authors from China in these items. For example, 20.6% of the included systematic reviews from China did 17 18 not appropriately incorporate the scientific quality of the included studies in formulating 19 conclusions, and 37.0% did not assess the risk of publication bias. Even there were no significant 20 differences between the two countries, further improvement is also required. For example, 21 literature search was not sufficiently comprehensive in 23.9%, and the status of publication (such 22 as grey literature) was not used as an inclusion criterion in as high as 79.3% of systematic reviews 23 from China.

Therefore, appropriate training should be provided to authors of systematic reviews in China to avoid or reduce the methodological shortcomings identified in this study. It should be emphasized that the improvement in methodological quality is also relevant to authors from the USA, and likely to be relevant to systematic reviews by authors from any countries [13].

28 The validity and quality of findings from primary research conducted in China have been

29 assessed in some previous studies. For example, controlled trials of acupuncture in China reported

more positive results than those from England, possibly due to publication bias [25]. Another study 1 2 found that the reporting quality and validity of RCTs in China was low, compared with "gold 3 standard" trials reported in European and North American journals [26]. More recently, Yao and 4 colleagues reported that quality of evidence included in meta-analyses published in Chinese 5 language was lower than that in Cochrane systematic reviews [18]. However, it is important to 6 distinguish the conceptual difference between the quality of primary research and the quality of 7 systematic reviews. Irrespective of quality of primary research studies, high quality systematic 8 reviews can be conducted to correctly indicate the credibility of the available evidence.

9 Primary research in China, as in other low and middle income countries (LMICs), has been 10 rather limited in quantity and quality. For example, 78% of RCTs of interventions for major NCDs 11 recruited patients in high-income countries, and risk of bias was higher in RCTs from LMICs [27]. 12 Clinical and public health practice in China (as in other LMICs) will currently have to be based on 13 research evidence mainly from high income countries. Evidence based health policy and clinical 14 guidelines in China need sufficient capacity of systematic reviewing to borrow research evidence from other countries. In addition, the improved capacity in conducting systematic reviews may also 15 16 facilitate more relevant and valid primary research in China [28]. Therefore, we should celebrate the success of international Cochrane Collaboration and other evidence-based medicine efforts to 17 18 increase the number and to improve the quality of systematic reviews globally during the past two 19 decades. The concern recently raised about the redundant publication of systematic reviews [11,29,30] should be resolved by rigorous peer reviewing and editorial process [8,31]. 20

21 Strengths and limitations

According to our knowledge, this is the first study to compare the methodological and reporting quality of systematic reviews from China and the USA. Recent systematic reviews of RCTs on health care interventions from the two countries were randomly selected without restriction about medical field or type of interventions, so that the results would be widely generalizable and reflecting the present circumstances. Consequently, the included systematic reviews were diverse in terms of disease conditions, interventions evaluated, and other review characteristics. Studies in future may consider to compare the quality of reviews from different countries on the same topic in

terms of patients and interventions evaluated. We used regression analyses to adjust for multiple review characteristics in the comparison of the quality of systematic reviews between the two countries. The results of multiple variable analyses should be interpreted with caution because of the possible multi-collinearity between independent variables.

5 Only the assessment of methodological quality using the AMSTAR checklist was conducted by 6 two independent reviewers in this study, and the assessment of PRISMA reporting quality was 7 conducted by one reviewer and checked by a second reviewer. In addition, the assessment of 8 methodological quality of systematic reviews was based on what was reported by authors, and the 9 actual conduct might be different. We reported results of the methodological and reporting quality 10 of systematic reviews by checklist items, and as the summary quality scores. Although the use of 11 the summary AMSTAR score for assessing the methodological quality of systematic reviews was 12 validated in previous studies [20], the PRISMA checklist was not originally designed as a scored 13 instrument [23], and further studies are required to assess the validity of the summary PRISMA 14 score for the reporting quality of published systematic reviews. As in a previous study [20], we 15 calculated and presented the mean AMSTAR and PRISMA summary scores in the current study. 16 However, further studies are required to explore the appropriate statistical methods for estimating an average value of the quality scores of multiple systematic reviews. 17

18 The current study included only systematic reviews from China and the USA, and assessed only 19 systematic reviews of RCTs and published in English. Further studies are required to compare the 20 quality of systematic reviews between other countries, published in different languages, and 21 included observational studies. Another limitation of the current study is that the representativeness 22 of the randomly selected systematic reviews was not assessed. The number of the included 23 systematic reviews was based on the available time and other resources, and sample size required 24 was not formally calculated because of no information on the meaningful difference in reporting or 25 methodological quality of systematic reviews between countries. It may be interesting to note that 26 the current study included a total of 100 systematic reviews from each of the two countries, twice 27 more than the number of meta-analyses (n=50) from each of the two countries included in a 28 previous study [12].

1 Conclusions

The overall methodological and reporting quality of systematic reviews by authors from China were similar to those from the USA, although the quality of systematic reviews from both countries could be further improved. Identified shortcomings in methodological and reporting quality of published systematic reviews should be taken into consideration in further training of authors of systematic reviews in the relevant countries.

7 8

9 Acknowledgement

- 10 Authors' contribution: KHY and FS conceived initial concept. FS and JHT developed review
- 11 protocol. FS conducted literature and study selection. JHT, JZ, LG, and FS extracted and checked
- 12 data from the included systematic reviews, and assessed reporting and methodological quality of
- 13 systematic reviews. FS performed data analysis and drafted the manuscript. All authors commented
- 14 on the manuscript.
- 15 Funding: There was no specific funding for this study.
- 16 **Conflict of interest**: None to declare.

References

2	1	Cook DJ, Mulrow CD, Haynes RB. Systematic reviews: synthesis of best evidence for
3		clinical decisions. Ann Intern Med 1997; 126:376-380.
4	2	Murad MH, Montori VM, Ioannidis JP, Jaeschke R, Devereaux PJ, et al. How to read a
5		systematic review and meta-analysis and apply the results to patient care: users' guides to
6		the medical literature. JAMA 2014; 312:171-179.
7	3	Chalmers I, Hedges LV, Cooper H. A brief history of research synthesis. Eval Health Prof
8		2002; 25:12-37.
9	4	Summerskill W. Cochrane Collaboration and the evolution of evidence. Lancet 2005;
10		366:1760.
11	5	Zhang M, Li Y. Cochrane Collaboration in China 1996-2013. J Evid Based Med 2014;
12		7:22-25.
13	6	Mallett S, Clarke M. How many Cochrane reviews are needed to cover existing evidence
14		on the effects of health care interventions? ACP J Club 2003; 139:A11.
15	7	Bastian H, Glasziou P, Chalmers I. Seventy-five trials and eleven systematic reviews a day:
16		how will we ever keep up? PLoS Med 2010; 7:e1000326.
17	8	Fuhr U, Hellmich M. Channeling the flood of meta-analyses. Eur J Clin Pharmacol 2015;
18		71:645-647.
19	9	Tebala GD. What is the future of biomedical research? <i>Med Hypotheses</i> 2015; 85:488-490.
20	10	Ioannidis JP. Can too many systematic reviews and meta-analyses do harm? Plenary II:
21		Information overload: Are we part of the problem or part of the solution? . The 24th
22		Cochrane Colloquium. Vienna, 5th Oct 2015
23	11	Riaz IB, Khan MS, Riaz H, Goldberg RJ. Disorganized Systematic Reviews and Meta-
24		analyses: Time to Systematize the Conduct and Publication of These Study Overviews? Am
25		<i>J Med</i> 2016; 129:339 e311-338.

1	12	Ioannidis JP, Chang CQ, Lam TK, Schully SD, Khoury MJ. The geometric increase in
2		meta-analyses from China in the genomic era. PLoS One 2013; 8:e65602.
3	13	Page MJ, Shamseer L, Altman DG, Tetzlaff J, Sampson M, et al. Epidemiology and
4		Reporting Characteristics of Systematic Reviews of Biomedical Research: A Cross-
5		Sectional Study. PLoS Med 2016; 13:e1002028.
6	14	Jin YH, Ma ET, Gao WJ, Hua W, Dou HY. Reporting and methodological quality of
7		systematic reviews or meta-analyses in nursing field in China. Int J Nurs Pract 2014;
8		20:70-78.
9	15	Li JL, Ge L, Ma JC, Zeng QL, Yao L, et al. Quality of reporting of systematic reviews
10		published in "evidence-based" Chinese journals. Syst Rev 2014; 3:58.
11	16	Ma B, Guo J, Qi G, Li H, Peng J, et al. Epidemiology, quality and reporting characteristics
12		of systematic reviews of traditional Chinese medicine interventions published in Chinese
13		journals. PLoS One 2011; 6:e20185.
14	17	Ma B, Qi GQ, Lin XT, Wang T, Chen ZM, et al. Epidemiology, quality, and reporting
15		characteristics of systematic reviews of acupuncture interventions published in Chinese
16		journals. J Altern Complement Med 2012; 18:813-817.
17	18	Yao L, Sun R, Chen YL, Wang Q, Wei D, et al. The quality of evidence in Chinese meta-
18		analyses needs to be improved. J Clin Epidemiol 2016; 74:73-79.
19	19	Shea BJ, Grimshaw JM, Wells GA, Boers M, Andersson N, et al. Development of
20		AMSTAR: a measurement tool to assess the methodological quality of systematic reviews.
21		BMC Med Res Methodol 2007; 7:10.
22	20	Shea BJ, Hamel C, Wells GA, Bouter LM, Kristjansson E, et al. AMSTAR is a reliable and
23		valid measurement tool to assess the methodological quality of systematic reviews. J Clin
24		Epidemiol 2009; 62:1013-1020.
25	21	Pieper D, Buechter RB, Li L, Prediger B, Eikermann M. Systematic review found
26		AMSTAR, but not R(evised)-AMSTAR, to have good measurement properties. J Clin
27		<i>Epidemiol</i> 2015; 68:574-583.

1	22	ACCEPTED MANUSCRIPT Moher D, Tetzlaff J, Tricco AC, Sampson M, Altman DG. Epidemiology and reporting
2		characteristics of systematic reviews. PLoS Med 2007; 4:e78.
3	23	Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, et al. The PRISMA statement
4		for reporting systematic reviews and meta-analyses of studies that evaluate health care
5		interventions: explanation and elaboration. J Clin Epidemiol 2009; 62:e1-34.
6	24	Petticrew M, Wilson P, Wright K, Song F. Quality of Cochrane reviews. Quality of
7		Cochrane reviews is better than that of non-Cochrane reviews. BMJ 2002; 324:545.
8	25	Vickers A, Goyal N, Harland R, Rees R. Do certain countries produce only positive
9		results? A systematic review of controlled trials. Control Clin Trials 1998; 19:159-166.
10	26	Zhang D, Freemantle N, Cheng KK. Are randomized trials conducted in China or India
11		biased? A comparative empirical analysis. J Clin Epidemiol 2011; 64:90-95.
12	27	Fan H, Song F. An assessment of randomized controlled trials (RCTs) for non-
13		communicable diseases (NCDs): more and higher quality research is required in less
14		developed countries. Sci Rep 2015; 5:13221.
15	28	Chalmers I, Bracken MB, Djulbegovic B, Garattini S, Grant J, et al. How to increase value
16		and reduce waste when research priorities are set. Lancet 2014; 383:156-165.
17	29	Bolland MJ, Grey A. A case study of discordant overlapping meta-analyses: vitamin d
18		supplements and fracture. PLoS One 2014; 9:e115934.
19	30	Helfer B, Prosser A, Samara MT, Geddes JR, Cipriani A, et al. Recent meta-analyses
20		neglect previous systematic reviews and meta-analyses about the same topic: a systematic
21		examination. BMC Med 2015; 13:82.
22	31	D'Agostino RB, Jr. Editorial Commentary: Meta-analyses Are on the Rise, but Are We
23		Learning More? Arthroscopy 2016; 32:538-539.
24		

- 1: Outline protocol
- 2: Table -Included systematic reviews and main characteristics
- 3: Agreement between reviewers in the AMSTAR assessment
- 4: Results of linear regression analyses

Table 1. Dependence of the statistical significance on sample size (n_1 , n_2) with a
constant effect difference of 15-10=5 score points.

Verum			Placeb	0		Boren-	SMD			t-test
VAS Difference		VAS D	iffere	nce	stein's					
n ₁	m ₁	S ₁	n ₂	m ₂	S ₂	J	SMD	95%	CI	p
10	15	10	10	10	10	0.9577	0.479	-0.434	1.392	0.285
20	15	10	20	10	10	0.9801	0.490	-0.147	1.127	0.128
30	15	10	30	10	10	0.9870	0.494	-0.024	1.011	0.061
32	15	10	32	10	10	0.9879	0.494	-0.007	0.995	0.053
33	15	10	33	10	10	0.9882	0.494	0.001	0.987	<0.050
34	15	10	34	10	10	0.9886	0.494	0.008	0.980	0.046
50	15	10	50	10	10	0.9923	0.496	0.096	0.896	0.016
100	15	10	100	10	10	0.9962	0.498	0.216	0.780	0.001

Legend: VAS: visual analogue scale of pain (scale: 0-100 score points), difference between baseline and follow-up, n=sample size, m=mean, s=standard deviation, J=correction factor by Borenstein, SMD=standardized mean difference, 95% CI: 95% confidence interval, p=statistical significance (type I error) that SMD is different from zero.

Table 2. Data from the evaluation study (11): knee osteoarthritis before

inpatient rehabilitation (baseline) and 3 months later (follow-up) on the WOMAC

nain	coolo	
pam	scale	

All: baseline score

Transition item	w	OMAC pain: di	fference
	ba	aseline to follo	w-up
Pain at follow-up was:	n	m	S
much better	19	31.58	17.63
slightly better	49	13.51	21.58
about the same	62	4.77	15.62
slightly worse	44	-1.32	20.81
much worse	16	-3.50	17.03
All: score difference	190	7.60	21.13

190

Legend: n=number of subjects, m=mean, s=standard deviation, both for the score differences (baseline to follow-up). WOMAC pain scaling: 0=maximal pain, 100=no pain. A positive difference reflects pain relief and vice versa; m=mean, s=standard deviation.

50.93

21.48

Method	Numerator	Denominator	MCID	95%	CI	р	Comment
							R
Jaeschke (8)	13.51	-	13.51	7.25	19.77	<0.001	Score difference of the "slightly better" group
Mean change meth.	13.51-4.77	-	8.74	1.73	15.74	0.015	Score difference of the "slightly better" group
Redelmeier (9)						5	minus that of the "about the same" group
% baseline score	8.74	50.93	17.15%	6.86%	27.39%	0.015	Mean change in % of the baseline score
% total score	8.74	100.00	8.74%	3.49%	13.95%	0.015	Mean change in % of the maximal score
ES, Kazis (17)	8.74	21.48	0.407	0.024	0.789	0.038	Mean change divided by the standard deviation
							of the group's baseline score
SRM, Liang (18)	8.74	21.13	0.413	0.031	0.796	0.035	Mean change divided by the standard deviation
							of the group's score differences
SMD, Borenstein (7)	8.74*0.993	18.48	0.469	0.092	0.847	0.016	Mean change*J divided by the pooled standard
							deviation of the two transition group's score
		<u>k</u>					differences

Table 3: MCID for improvement on the WOMAC pain scale: absolute, relative, and effect sizes

Legend: MCID: minimal clinically important difference scaled in score points (scale: 0-100), ES=effect size (according to Kazis), SRM=standardized response mean (according to Liang), SMD=standardized mean difference (according to Borenstein); ES, SRM, SMD: dimensionless (scaled by number of standard deviations). 95% CI: 95% confidence interval, p=type I error of the test that the MCID is different from zero.

CHR MAN

Method	Dependent	Independent	MCID	95% CI	р	Comment
	variable	variables			R	
ROC	transition	Δ pain	15.00	8.74 21.26	<0.001	Area under ROC:
						0.637 (95% CI: 0.528-0.747),
				5		sensitivity=0.531, specificity=0.871
Linear regression:	Δ pain	transition	8.74	1.73 15.74	0.015	same result as by the mean change
bivariate						method
Linear regression:	Δ pain	transition, sex, age,	7.09	0.93 13.25	0.024	adjusted for the added potential
mulitvariate		WOMAC pain				confounders (independent variables)
		baseline score				
Logistic	transition	Δ pain	OR: 1.026	1.004 1.049	0.018	Odds ratio: probability of being
regression:			(beta: 0.0261,			"slightly better" for 1.00 point pain
bivariate			se=0.0110)			relief
Logistic	transition	Δ pain, sex, age,	OR: 1.029	1.004 1.055	0.025	Odds ratio, adjusted for the added
regression:		WOMAC pain	(beta: 0.0286,			potential confounders (independent

Table 4: MCID for improvement on the WOMAC pain scale: ROC and regression methods

multivariate	baseline score	se=0.0128)	variables)
nuitivariate	baseline score	se=0.0128)	variables)

<u>Legend:</u> MCID: minimal clinically important difference scaled in score points (scale: 0-100), 95% CI: 95% confidence interval, p=type I error of the test that the MCID is larger than zero. ROC: receiver operation characteristic curve. Δ pain: WOMAC pain score difference baseline to follow-up. Transition item response: 0=about the same, 1=slightly better. Logistic regression: OR=odds ratio, beta=regression coefficient for Δ pain, se=standard error.

CERTER

WOMAC pain	Baseline			Follow-up		Difference	pooled
	n	m	S	m	S	m	S
Intervention	36	59.6	15.8	71.4	15.8	11.8	15.8
Placebo	35	60.2	17.0	60.4	21.6	0.2	19.4
total	71	59.9	16.4	66.0	18.9	6.1	17.7
		Δ	S	Parameter	95%	CI	р
Empiric SMD		(11.8-0.2)*0.989	17.7	0.649	0.168	1.129	0.008
MCID as SMD		8.74*0.989	17.7	0.489	0.013	0.964	0.044
MCID as SRM		8.74	17.7	0.494	0.013	0.975	0.044
MCID as ES		8.74	16.4	0.533	0.051	1.015	0.031
Logistic regr.		exp(0.0261*11.6)	(se=0.0110)	OR=1.354	1.049	1.746	0.021

Table 5. Application of an a priori evaluated MCID (11) to an RCT (19)

<u>Legend</u>: WOMAC pain: 0=maximal pain, 100=no pain. n=number of patients, m=mean, s=standard deviation, Δ : relevant difference of score differences, MCID: minimal clinically important difference (positively scaled to reflect improvement), ES: effect size according to

Kazis, SRM: standardized response mean according to Liang, SMD: standardized mean difference according to Borenstein, 95% CI: 95% confidence interval, p: type I error of the test that the effect size is different from zero. OR=odds ratio, se=standard error.

A CORTER MANUS

Figure 1. The summary AMSTAR score by country

Note to Figure 1: The difference in proportions between China and the USA was statistically significant (p=0.016 for all systematic reviews, and p=0.007 for non-Cochrane systematic reviews)

Figure 2. The summary PRISMA score by country

Note to Figure 2: The difference between China and the USA was statistically non-significant for all systematic reviews (p=0.089) and statistically significant for non-Cochrane reviews (p=0.029).

