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In this Supplemental Material we derive the topologically
distinct line defects in the biaxial nematic spin-2 BEC,
and discuss experimental preparation of a state with or-
thogonal, noncommuting vortices. We also provide addi-
tional details regarding the ground-state phase diagram,
the orientation-dependent instability of a singular vortex
with cyclic core, and the construction of a point defect
as the termination of a vortex line.

CLASSIFICATION OF VORTICES IN THE

BIAXIAL NEMATIC PHASE

Here we formally derive the topologically distinct vortex
classes in the BN phase of the spin-2 BEC, using the
homotopy theory of defects [1] and following the deriva-
tion for liquid crystals [2] and applying the formalism
and methods of Ref. [3]. In the atomic spin-2 BEC, the
presence of a condensate phase must also be taken into
account, and leads to vortices with fractionally quantized
superfluid circulation.
A representative BN spinor is
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where the spinor components correspond to the spin
projection onto the z axis. The biaxial symmetry can
most easily be seen by representing the order param-
eter as a linear combination of spherical harmonics [4]

Z(θ, ϕ) =
∑+2

m=−2 Y2,m(θ, ϕ)ζm. Inserting ζBN, we find

ZBN =
√

15/16π sin2θ cos(2ϕ), shown in Fig. S1.
For the purposes of classifying topological defects, it is

easier to work in the Cartesian representation, where the
spin-2 order parameter is a symmetric, traceless rank-2
tensor with components [3, 4]:
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where we have used the normalization

1

2
Tr(χ†χ) = 1. (S3)

For the BN spinor (S1), the tensor order parameter takes
the simple form

χBN =





1 0 0
0 −1 0
0 0 0



 . (S4)

The full set of energetically degenerate BN states can
be found by applying SO(3) rotations, represented by
orthogonal 3 × 3 matrices R, and a U(1) phase eiτ . An
arbitrary BN order parameter can then be written on the
form χ = eiτRχBNRT .
The group of transformations formed from all possible

combinations of τ and R is U(1)× SO(3). We now need
to find those elements that leave χBN invariant. It is
immediately obvious from Fig. S1, and easily verified,
that χBN is invariant under the identity transformation
and the three diagonal SO(3) matrices that correspond to
rotations by π around the x, y, and z axes, respectively:
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−1 0 0
0 −1 0
0 0 1
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The element

C =





0 1 0
−1 0 0
0 0 1



 (S6)

in SO(3) represents the π/2 counter-clockwise rotation
around the z axis, which takes x → y and y → −x
and thus permutes the nonzero diagonal elements of χBN.
The order parameter is invariant under C in combination
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FIG. S1. Spherical-harmonics representation, ZBN =∑
+2

m=−2
Y2,mζBN

m , of the representative BN order parameter

ζBN in Eq. (S1). Color represents the complex phase.
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with a π rotation of the U(1) phase, χBN = eiπCχBNCT .

This transformation forms the element C̃ = (eiπ, C) in
U(1) × SO(3). In the same way, we can construct all
remaining transformations that leave χBN unchanged as
products of Ix,y,z and C̃ (corresponding to π rotations

around (x̂ ± ŷ)/
√
2 and the clockwise rotation by π/2

around ẑ). We conclude that χBN is invariant under the
eight-element group

D̃4 = {1, Ix, Iy, Iz, C̃, IxC̃, IyC̃, Iz C̃}, (S7)

formed by the dihedral-4 group D4 in combination with
the element exp(iπ) ∈ U(1). Hence the order-parameter
space for the BN phase is

M =
U(1)× SO(3)

D̃4

. (S8)

To classify the vortices in the BN phase, we must now
find the first homotopy group π1(M). To this end, we
find a simply connected covering group by lifting SO(3)
to SU(2), using the quaternion representation, where the
elements of SU(2) are 2×2 matricesQ = e01+ie·σ, given
by four Euler parameters (e0, e) and the Pauli matrices
σx,y,z [5].
As we lift SO(3), the group D4 lifts into the 16-element

subgroup D⋆
4 of SU(2) according to

1 → ±1

Ix,y,z → ±iσx,y,z

C → ± 1√
2
(1+ iσz) ≡ ±σ,

(S9)

and combinations of these. Hence D̃4 lifts to the 16-
element group

D̃⋆
4 = {±1,±iσx,±iσy,±iσz,±σ̃,±iσxσ̃,±iσyσ̃,±iσzσ̃},

(S10)
where σ̃ includes the exp(iπ) phase in analogy with the

definition of C̃. The full subgroup of U(1) × SU(3) that
leaves the order parameter invariant is thus

H = {(n,±1), (n,±iσx), (n,±iσy), (n,±iσz),

(n+ 1/2,±σ), (n+ 1/2,±iσx,y,zσ)},
(S11)

where each element is characterized by an integer n, cor-
responding to a 2πn transformation of the U(1) part, and

an element of D̃⋆
4, giving 16 elements for each n. Frac-

tional U(1) winding appears when n combines with the
U(1) part of σ̃. The group composition law is given by
(x, f)(y, g) = (x + y, fg). Note that the group is non-
Abelian, since in general fg 6= gf . It is also a discrete
group, and it follows immediately [1] that π1(M) = H.

Topologically distinct vortices correspond to the con-
jugacy classes of π1(M), which, since H is non-Abelian,
may contain more than a single element. The conjugacy
classes are determined by the SU(2) part of the elements
of H. For each n ∈ Z we can then directly calculate six

conjugacy classes of π1(M):

(i) {(n,1)}
(ii) {(n,−1)}
(iii) {(n,±iσx), (n,±iσy), (n,±iσz)}
(iv) {(n+ 1/2, σ), (n+ 1/2,−iσzσ)}
(v) {(n+ 1/2,−σ), (n+ 1/2, iσzσ)}
(vi) {(n+ 1/2,±iσxσ), (n+ 1/2,±iσyσ)}

(S12)

Recalling the rotations of the BN order parameter cor-
responding to each element of D̃⋆

4, we then identify the
following distinct types of vortices for the case n = 0: (i)
the trivial element, (ii) singly quantized spin vortex, (iii)
half-quantum spin vortex, (iv) half-quantum vortex with
π/2 spin rotation, (v) half-quantum vortex with 3π/2
spin rotation, and (vi) half-quantum vortex with π spin
rotation. For n 6= 0 we correspondingly get three types
of integer vortex, involving 0, 2π and π spin rotations, re-
spectively. In addition we get three types of half-integer
vortices with π/2, −π/2 and π spin rotations.

VORTEX PREPARATION AND TIME

EVOLUTION

Here we consider construction of a wave function rep-
resenting a pair of noncommuting vortices, and show how
such a state could be prepared in experiment. Specifically
we construct the wave function of coexisiting (1/2, σ) and
(1/2, iσxσ) vortices whose reconnection is shown in the
main text.
Vortex lines with (1/2, σ) and (1/2, iσxσ) charges ori-

ented along the z axis can be separately constructed by
applying the corresponding condensate-phase and spin
rotations to Eq. (S1) as

ζ1/2,σ = eiφ/2e−iFzφ/4ζBN =
1√
2
(1, 0, 0, 0, eiφ)T (S13)

and
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respectively, where φ is the azimuthal angle. Note how
in the latter case, the spin transformation rotates the
order parameter about the (x̂+ ŷ)/

√
2 as represented in

Fig. S1.
To construct wave function simultaneously represent-

ing both vortices, we start from Eq. (S13), containing
the (1/2, σ) vortex, and then add the (1/2, iσxσ) vortex.
In this case, however, the order parameter in which the
(1/2, iσxσ) is to be added is not spatially uniform. The



3

axis for the spin rotation corresponding to the iσxσ SU(2)
charge is therefore no longer constant, but depends on the
position relative to the (1/2, σ) vortex. We denote the
azimuthal angle around the (1/2, σ) vortex by φ1, and
choose coordinates such that the new vortex line is some
distance away in the φ1 = π direction (for simplicity we
first assume the vortex lines to be parallel). Denoting
the azimuthal angle relative to the added (1/2, iσxσ) by
φ2 = 0, we can find the two-vortex wave function as

ζpair = eiφ2/2e−in̂(φ1)·F̂φ2/2ζ1/2,σ

=
i

2
√
2
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Here F̂ is the vector of spin-2 Pauli matrices. For parallel
vortex lines, the solution is exact. However, we are ulti-
mately interested in nonparallel vortex lines that exhibit
reconnection. Rotating the direction of the (1/2, iσxσ)
vortex line (correspondingly rotating the axis defining
φ2), Eq. (S15) becomes approximate, corresponding to a
rapidly relaxing excitation. Equation (S15) for perpen-
dicular vortex lines forms the initial state for the non-
Abelian reconnection shown in Fig. 2 of the main text.
Vortex lines in the individual components of a spinor

BEC can be prepared using Raman transitions [6], where
the singular phase profile of the Raman laser is trans-
ferred to the condensate. However, Eq. (S15) is not ex-
pressed in terms of simple quantized vortex lines in the
spinor components and is therefore not directly amenable
to imprinting using the Raman process. To find an im-
printing scheme, we first note as a general property of
the point-group symmetry that the order-parameter ro-
tations that make up a vortex have simplified represen-
tations when the spinor is expressed in the basis of spin
quantization along the axis of spin rotation. Accordingly
applying the corresponding spinor-basis transformation
to Eq. (S14), the (1/2, iσxσ) vortex is expressed as

ζ̃1/2,iσxσ = e
−i

Fx−Fy√
2

π
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Here, we have introduced ζ̃ for the spinor represented in
the rotated basis. Similarly transforming Eq. (S15), we
find that close to φ1 = π it is well approximated by

ζ̃pair
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∣

∣
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exhibiting a singly quantized vortex line only in ζ̃−1, cor-
responding to the (1/2, iσxσ) vortex. This suggests a

two-step imprinting scheme where first the (1/2, σ) vor-
tex is prepared according to Eq. (S13). The effective
magnetic field, corresponding to the Zeeman shift, is ro-
tated by π/2, changing the spinor basis. The (1/2, iσxσ)
vortex is then added by additionally preparing a vortex
line in ζ̃−1. This can proceed via population transfer to
an intermediate level and then back, using the appropri-
ate laser configuration to imprint the vortex line. In the
basis corresponding to the final direction of the magnetic
field, the two-vortex wave function is then approximated
by the imprinted state

ζ̃pair ≈ ζ̃ imp =
1

4
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In regions away from φ1 ≃ π this wave function leaves
the BN phase, corresponding to an excitation that relaxes
under dissipation. In the two-step protocol, each vortex
can be prepared using the Raman process. By imprinting
vortex lines along the z axis of the changing spinor ba-
sis, perpendicular vortex lines that exhibit non-Abelian
reconnection may be prepared.
In order to show the non-Abelian reconnection of vor-

tices with noncommuting charges, we follow the time evo-
lution of the state with two orthogonal vortices described
by Eq. (S15). We numerically propagate the coupled
Gross-Pitaevskii equations derived from the Hamiltonian
density using a split-operator method. In doing so, we
include a weak phenomenological dissipation by taking
the time t → (1− iη)t [7]. Here we choose η = 10−3.

INTERACTIONS AND STEADY-STATE

SOLUTIONS IN THE SPIN-2 BEC

Here we give details of the interaction terms in the
Gross-Pitaevskii mean-field Hamiltonian and provide ex-
plicit definitions of the steady-state solutions that appear
as ground states in addition to the BN in the phase di-
agram [Fig. 1(a) of the main text] for quadratic Zeeman
shift q < 0. A full derivation of all steady-state solutions
of the uniform spin-2 BEC (including those that do not
form the ground state for any parameter range) can be
found in Ref. [4].
The Hamiltonian density is given by Eq. (1) in the

main text. The strengths c0,2,4 of the three nonlinear
interaction terms are derived from the s-wave scatter-
ing lengths a0,2,4 that correspond to the three scattering
channels of colliding spin-2 atoms, as c0 = 4π~2(3a4 +
4a2)/7m, c2 = 4π~2(a4 − a2)/7m, and c4 = 4π~2(3a4 −
10a2 +7a0)/7m, where m is the atomic mass. For q < 0,
the BN state forms the ground state of the uniform sys-
tem when c2 > c4/20 and c4 < 10|q|/n, where n is
the atomic density. This is the case for the most com-
monly used atoms for spinor-BEC experiments: Measure-
ments in the spin-2 manifold of 87Rb give a2 − a0 =
(3.51± 0.54)aB and a4−a2 = (6.95± 0.35)aB (where aB
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is the Bohr radius) [8], such that c4/c2 ≃ −0.54. Also
the spin-2 manifold of 23Na is predicted to exhibit the
same ground state with a0 = 34.9± 1.0, a2 = 45.8± 1.1,
and a4 = 64.5± 1.3 [4], giving c4/c2 ≃ −1.1.

We now briefly define the remaining steady-state so-
lutions and detail when they form the ground state in
the q < 0 phase diagram. The spin-2 FM state is
the ground state when c2 < c4/20 for c4 < 10|q|/n,
and when c2 < |q|/(2n) otherwise. The spinor wave
function is then ζFM = (eiχ+2 , 0, 0, 0, 0)T [or ζFM =
(0, 0, 0, 0, eiχ−2)T , which has the same energy for p = 0].

In this state, |〈F̂〉| = 2, and the energy per particle is
ǫ = c0n/2 + 2c2n+ 4q.
When c4n ≥ 10|q| and c2 > |q|/(2n), two additional

steady-state solutions appear [4]. The first is

ζC =

(

eiχ+2

√

1 + fz
3
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√

2− fz
3

, 0

)T

(S19)

[or ζC = (0, eiχ+1

√
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with |〈F̂〉| = |fz| = |q/(c2n)| and energy ǫ = c0n/2+2q−
q2/(2c2n). The other is
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2
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2
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, (S20)

with |〈F̂〉| = 0 and energy ǫ = c0n/2 + 2q − 10q2/(c4n).
The C (C′) steady-state solution is the ground state when
c2 < c4/20 (c2 > c4/20). Both spinors continuously ap-
proach (different representations of) the cyclic order pa-
rameter as q → 0−.

ORIENTATION-DEPENDENT INSTABILITY OF

(1/2, σ) VORTEX WITH CYCLIC CORE

Here we study the orientation-dependent instability of
the (1/2, σ) vortex with the cyclic (β) core that follows
from the breakdown of the smooth connection of the dif-
ferent point-group symmetries of the vortex core and the
bulk superfluid. The cyclic core breaks axial symmetry
as a result of the incommensurate spin symmetries [9],
so that its spatial symmetry reflects the threefold dis-
crete spin symmetry of the cyclic order parameter. The
left panels of Fig. S2 show the order parameter in the
spherical-harmonics representation along with |A30| for
the stable vortex with the cyclic (β) core.
The orientation of the BN and cyclic order parame-

ters is fixed by the quadratic Zeeman shift, which cor-
responds to a magnetic field along the z axis. We have
taken this to coincide with the trap rotation axis, but
this need not in general be the case. In the middle panel
of Fig. S2, the rotation axis has been tilted with respect
to the effective field. The vortex-core shape remains ro-
bust through a wide range of tilt angles, consistent with
the topological origin of the deformation. However, when
the tilt angle approaches π/2, the system can no longer
form the continuous connection of the two point-group
symmetries, resulting in a destabilization of the vortex
structure. The (1/2, σ) vortex then gives way to a singly
quantized (1, 0) vortex shown in the right-hand panels of
Fig. S2. The core of the vortex exhibits a highly complex
mixing of cyclic, UN, and BN phases, indicated by |A30|
in Fig. S2. At the center of the region, the UN phase
appears. This is surrounded by two cyclic and to BN
regions, corresponding to the local maxima and minima,

FIG. S2. Relaxed state of an initial (1/2, σ) vortex when the
quadratic Zeeman shift corresponds to magnetic field making
an angle 0 (Left), π/4 (Middle), and π/2 (Right) with the trap
rotation axis. (Top) Spherical harmonics representation of the
relaxed vortex state. (Bottom) |A30| showing the structure
and shape of the core. The triangular shape of the cyclic (β)
core remains unchanged until a very large angle renders the
(1/2, σ) vortex unstable, in favor of a singly quantized vortex
with a core exhibiting mixing of cyclic, UN and BN phases.
Nc0 = 5000~ωℓ3, Nc2 = −Nc4 = 1000~ωℓ3, q = −0.05~ω,
and Ω = 0.17ω.

respectively.

CONSTRUCTION OF POINT DEFECT AS THE

TERMINATION OF A VORTEX LINE

In the main text we presented the simplest way of con-
structing a point-defect texture of the BN order param-
eter, resulting in an associated spin-vortex line along the
z axis. In this construction, one of the principal axes of
the BN order parameter (cf. Fig. S1) is aligned with the
radius vector. Through a more elaborate construction,
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we can avoid the line defect on the positive z axis, illus-
trated in Fig. 3(c) of the main text. The point defect
is still formed by aligning a principal axis with the ra-
dius vector. However, by including a local spin rotation
about r̂, the BN order parameter can remain nonsingu-
lar in the entire upper hemisphere. The point defect then
forms the termination point of a spin-vortex line. Energy
relaxation in this case leads to the complicated structure
of interlocking spin vortex rings shown in Fig. 3(d).
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