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This study introduces, analyses and implements space-time discretizations of two-dimensional active 

dissipative partial differential equations such as the Topper–Kawahara equation; this is the two- 

dimensional extension of the dispersively modified Kuramoto–Sivashinsky equation found in falling 

film hydrodynamics. The spatially periodic initial value problem is considered as the size of the peri- 

odic box increases. The schemes utilized are implicit–explicit multistep (BDF) in time and spectral in 

space. Numerical analysis of these schemes is carried out and error estimates, in both time and space, 

are derived. Preliminary numerical experiments provided strong evidence of analyticity, thus yielding   

a practical rule-of-thumb that determines the size of the truncation in Fourier space. The accuracy of  

the BDF schemes (of order 1–6) is confirmed through computations. Extensive computations into the 

strongly chaotic regime (as the domain size increases), provided an optimal estimate of the size of the 

absorbing ball as a function of the size of the domain; this estimate is found to be proportional to the 

area of the periodic box. Numerical experiments were also carried out in the presence of dispersion. It is 

observed that sufficient amounts of dispersion reduce the complexity of the chaotic dynamics, and can 

organize solution into nonlinear travelling wave pulses of permanent form. 

Keywords: Topper–Kawahara equation; linearly implicit schemes; implicit–explicit BDF schemes; 

spectral methods; error estimates; dynamical systems. 

 

 

 

1. Introduction 

In this study, we develop and implement numerical schemes to solve classes of multidimensional active- 

dissipative partial differential equations (PDEs) in the presence of dispersion. Of particular interest are 

two-dimensional Kuramoto–Sivashinsky type equations arising in the hydrodynamic stability of viscous 
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liquid films falling down inclined flat plates or vertical cylinders. In the case of falling film flows down a 

plate inclined at an angle θ to the horizontal, Topper & Kawahara (1978) derived the following evolution 

equation for the shape η(ξ , ζ , τ) of the liquid interface 
 

2R̃ F2 R̃ R̃ W̃ 
2

 

ητ + 2Fηηξ + ηξξ − Δη + FΔηξ + Δ η 0 (1.1) 
3 

 

with Δ = ∂ 2/∂ξ 2 + ∂ 2/∂ζ 2 being the Laplacian in ξ and ζ . The dimensionless parameters appearing in 

(1.1) are the Froude number F = ρgL2 sin θ/μU0, the Reynolds number R̃ = ρU0L/μ and the inverse 

Weber number W̃  = σ/ρU 2L. Here g is the acceleration due to gravity, L is a typical length (e.g., the 
average film thickness), U0 is a typical flow velocity, ρ is the fluid density, μ is its viscosity and σ   is 

the coefficient of surface tension. Clearly, R̃ and W̃ are non-negative, but F can take any real value (it 

is negative for films wetting the underside of the inclined plate). By utilizing the transformations 
 

 
(ξ , ζ) = 

. 
  5W̃  

.1/2 
2 F2 

 
(X , Y), τ =   75 W̃  

T , η
 

2 
21/2R̃ |F2 5/2 3/2 

H , 

| − 5/2| 4R̃ |F2 − 5/2| 15(5W̃ )1/2F 
 

equation (1.1) can be rescaled into the following canonical form: 

 

HT + HHX ± HXX − αHYY + δΔHX + Δ2H = 0, (1.2) 
 

where the parameters α and δ are given by 

 
5 

α = 
2 F2

 

 

 
, δ = 

 

3
√

5F 
  . (1.3) 

1  2
,

 
| − 5/2| R̃ |F2 − 5/2| /     2W̃ 

 

The plus sign in the third term of (1.2) corresponds to flows above critical, i.e., F2 > 5 , while the minus 

sign to sub-critical flows F2 < 5 . The latter are trivial in the sense that the system is now stable to all 

perturbations, and it is easy to show that solutions decay exponentially to uniform trivial steady states 

in this case. In what follows, therefore, we consider the case F2 > 5 . 

We will consider the periodic initial value problem for (1.2), with the solution H being periodic both 

in X and Y , with periods L1 and L2, respectively, i.e., 

 

H(X + L1, Y , T) = H(X , Y + L2, T) = H(X , Y , T). (1.4) 

 

The parameters L1 and L2 play an important role in the dynamics and, as they increase, they introduce 

more unstable modes and hence more complex dynamics. 

The derivation in Topper & Kawahara (1978) assumes angles θ away from vertical. More recently, 
it has been shown in Frenkel & Indireshkumar (1999) that, when the plate is vertical, the resulting 

equation is identical to (1.2) but with α = 0. This case is more interesting since α> 0 introduces addi- 
tional dissipation and potentially reduces the complexity of the dynamics. We also note that Indireshku- 

mar & Frenkel (1997) present some numerical experiments having α = 0, that indicate the presence of 
attractors with complex chaotic dynamics in two dimensions. 

= 
− 
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Pinto (1999, 2001) studied analytically the periodic initial value problem of a special version of 

(1.2) that does not contain dispersion, namely, 

HT + HHX + HXX + Δ2H = 0. 

In these papers, he proved global existence of solutions, the existence of a global attractor (i.e., a com- 
pact attracting set), and analyticity of solutions. In addition, he obtained an estimate for the radius of 

the global attractor in the case L1 = L2 = 2L; in particular, he showed that for large L 

lim sup "H(·, ·, T)"L2 ™ c1L12  ln L. (1.5) 
T →∞ 

Such estimates can be far from optimal, and one of the objectives of the present work is to use numerical 

computations to conjecture optimal bounds for both the radius of the absorbing set, as well as the band 

of analyticity of the solutions as L increases. Our extensive numerical experiments indicate that 

lim sup "H(·, ·, T)"L2 ™ c2L. (1.6) 
T →∞ 

It is usual in the literature to extend the one-dimensional Kuramoto–Sivashinsky equation in the 

form 

υt + 1 |∇ υ|2 + Δυ + Δ2υ = 0, (1.7) 

to be solved on periodic domains as in (1.4). This equation is mathematically interesting but, as far as we 

are aware, it does not arise from a concrete physical problem (equation (1.7) has been suggested as an 

empirical model for the process of ion-beam erosion in nanostructuring processing of materials by Frost 

& Rauschenbach, 2003). Analytical studies were carried out by Sell & Taboada (1992) and Molinet 

(2000), where the existence of global attractors is proved for periodic solutions in thin domains, i.e., L1 

or L2 being small. The methods presented here can be readily extended to (1.7) and a detailed study is 

currently under way. 

The structure of the paper is as follows. In Section 2, we carry out a numerical analysis of our 

schemes; these are implicit–explicit multistep schemes, that include the backward difference formu- 

lae (BDF), in time and spectral in space. In Section 3, we describe our implementation and carry out 

numerical experiments. Section 4 is devoted to conclusions and further discussion. 

 
2. Linearly implicit spectral schemes 

We find it convenient to have the same period in both variables, say 2π . To this end, we use the change 

of variables 
2π 

x := 
1 

2π 
X , y := 

2 

Y , u : 
L1 

H , t : 

= 
2π 

= 

. 
2π 
.2 

T 
L1 

in (1.2). Subsequently, after appropriately rescaling (1.2), we write it in the form 
 

ν2 1/2 

.
 

ν2 

. ν 2 

ut + uux + uxx − δ1 
1 

uyy + δ2ν1 uxxx + 
1 

uxyy + ν1uxxxx + 2ν2uxxyy + 
1 

uyyyy = 0, (2.1) 

 

with positive constants δ1, δ2, ν1 = (2π /L1)2 and ν2 = (2π /L2)2. In (2.1), x is in the direction of the 
flow, while y is the transverse coordinate. 
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The time discretization of the Topper–Kawahara (TK) equation by linearly implicit multistep 

schemes was recently analysed in Akrivis & Smyrlis (2011). Here, we consider fully discrete schemes, 

namely the combination of linearly implicit multistep schemes with spectral methods for the space 

discretization. We put particular emphasis on the numerical study of various physically relevant 

phenomena. 

 

Remark 2.1 (Nondispersive TK equation)  The third-order term 
 

ν2 

xxx + 
1 

 

uxyy, 

 

in (2.1) is a dispersion term. If u is a solution of the nondispersive TK equation, i.e., for vanishing δ2, it 

is easily seen that 

υ(x, y, t) := −u(−x, −y, t), 

is also a solution. Thus, if the periodic initial value is odd, then u(·, ·, t) is also odd, for all t “ 0, i.e., 

u(−x, −y, t) = −u(x, y, t). 

 
2.1 Preliminaries 

We will rewrite the TK equation (2.1) in an appropriate form that will allow us to analyse its time 

discretization by linearly implicit schemes. 

With the self-adjoint operator A, 
 

ν2 ν2 
υ ν1υxxxx ν2υxxyy υyyyy     υxx    δ1 

ν1 ν1 
υyy + cυ, 

 

and the nonlinear operator B, 
 

B(υ) : δ ν
1/2 

.

 
ν2 

υxxx + 
1 

. 

υxyy − υυx + cυ, 

 

where c is a positive constant, which will be determined later on, equation (2.1) can be written in the 

form 

ut + Au = B(u). (2.2) 

 
For a positive T , we will consider the discretization of a periodic initial value problem for (2.2), namely 

 

⎧ 
ut + Au = B(u), (x, y, t) ∈ R × R × (0, T), 

⎩ u(0) = u0, 

 

(2.3) 

 

with a given periodic initial value u0. 



 

ν 

A  , − | |2 + 2   | |2 +  2 | | + 

2 

ν 

2 

ν |  | 

 

Let us first show that the operator A is positive definite, when the constant c is sufficiently large. We 

denote by υ̂jζ the Fourier coefficients of a 2π -periodic function υ of two variables, 

υ(x, y) = 
. 

υ̂jζ e
i(jx+ζy). (2.4) 

j,ζ∈Z 

Then, for s ∈ R, we denote by Hs the periodic Sobolev space of order s in two dimensions (of period 
2π in x and y) with norm1

 

⎛ ⎞1/2 

"υ"H s := ⎝
.

(1 + j2 + ζ2)s|υ̂jζ|2⎠ . 

j,ζ∈Z 

Clearly, Hs is a Hilbert space, for every s ∈ R. Let H := H 0 = L2. Then the norm of H , which we shall 

be denoting by |· |, is induced by the inner product 

1 
(u, υ) = 

4π 2
 

¸ 2π ¸ 2π  

u(x, y)ῡ  (x, y) dx dy = 
. 

û jζυ̂̄jζ. 
0 0 

 

For υ ∈ H 4, we have by periodicity 

ν2 

j,ζ∈Z 

 

 
ν2 

 

 
Obviously, 

(Aυ, υ) = ν1|υxx|2 + 2ν2|υxy|2 + 2 |υyy|2 − |υx|2 + δ1 

1 

|υy|2 + c|υ|2. (2.5) 
1 

|υ|2 = 
. 

|υ̂jζ|2, |υx|2 = 
. 

j2|υ̂jζ|2, |υy|2 = 
. 

ζ2|υ̂jζ|2, 
j,ζ∈Z j,ζ∈Z j,ζ∈Z 

|υxx|2 = 
. 

j4|υ̂jζ|2, |υxy|2 = 
. 

j2ζ2|υ̂jζ|2, |υyy|2 = 
. 

ζ4|υ̂jζ|2, 

j,ζ∈Z 

and using the obvious estimate 

 

 
we derive the inequality 

j,ζ∈Z 

 
 

j2 ™ 
1 

4ε 

 

 
εj4, 

j,ζ∈Z 

|υx|2 ™ 
1 

|υ|2 + ε|υxx|
2, (2.6) 

valid for every positive ε. Hence, from (2.5) we obtain 

ν2 2 

(  υ υ) “ (ν1   ε) υxx ν2 υxy υyy δ1 

ν1 

 

ν2 

. 

|υy|  +  c − 
1 

 

1 
. 

υ 2. 
4ε 

 
 

1 Note that, if s is a non-negative integer, then "· "Hs is equivalent to the norm defined by 
1/2 ⎛ 

"u"s = ⎝ 
.

 

¸ 2π ̧  2π 
⎞ 

|Dαu(x, y)|  dx dy⎠ . 

|α|™s   0 0 

+ 

4ε 



 

1 

υ 
t 

™ 

ν 

2 ˜  

™ 1 

+ " " 
2 

ν 

 

Choosing here, for instance, 
ν1 1 

ε := 
2 

and    c := 1 + 
2ν 

, 

we easily see that A is positive definite, 

2 4 

with a positive constant σ . 

(Aυ, υ) “ σ "υ"2  for all υ ∈ H , (2.7) 

Let " · " denote the norm of the space V := D(A1/2) = H 2, defined by "υ" := |A1/2υ|. We identify 

H  with its dual, and denote by V r := H −2  the dual of V , again by (·, ·) the duality pairing between 

V r  and  V ,  and  by  " · "θ  the  dual  norm  on  V r,  "υ"θ := |A−1/2υ|.  Obviously,  "υ" = (Aυ, υ)1/2  and 

"υ"θ = (υ, A−1υ)1/2. 

Then, since A : V → V r, from (2.7) we obtain 

2 2 

(Aυ, υ) “ σ "υ"2   for all υ ∈ V = H . (2.8) 

Next, we will show that the operator B satisfies an appropriate local Lipschitz condition in the tube 

Tu around the solution u defined in terms of the L∞-norm, i.e., 

Tu := 
,

 

, 

∈ V : min "υ − u(t)"L∞ 1 

For convenience, we split B into two parts, B = B1 + B2, with 

1/2 

.
 

ν2 

. 

B1(υ) := −υυx + cυ and   B2(υ) := −δ2ν1 

Now, for υ, υ˜ , w ∈ V = H 2, we have 

υxxx + 
1 

υxyy   . 

(B1(υ) − B1(υ̃ ), w) = 1 (υ2 − υ2, wx) + c(υ − υ̃ , w) 

2 "υ + υ̃  "L∞|υ − υ̃  | |wx|+ c|υ − υ̃  | |w| 

™ 
. 

1
 2 2

.1/2 

4 "υ + υ̃  "L∞ + c |υ − υ̃  | "w"1, 

whence, since, according to (2.8), "w"1 ™ "w"2 ™ 1/
√

σ |A1/2w| = 1/
√

σ "w", we have 

"B1(υ) − B1(υ̃ )"θ ™ μ1|υ − υ̃ |   for all υ, υ̃ ∈ Tu, (2.9) 

with 

1 

μ1 = √
σ

 

 
.. .2 

1 max    u(t) L∞ 

0™t™T 

 
.1/2 

+ c . 

 

Furthermore, it is easily seen that 
 

 

 

1/2 

 

. 
ν2 

. √  
 

(B2(υ), w) ™ |δ2|ν1   max  1, 
1 

2|υx| "w"2, 

. 



 

1 

1 

√ 

1 

 

whence, in view of (2.8),  

 
2 1/2 

 

. 
ν2 

. 

(B2(υ), w) ™ √
σ 

|δ2|ν1   max   1, 
ν
 |υx| "w", 

 

i.e.,  
 

2 1/2 

 

. 
ν2 

. 

"B2(υ)"θ ™ √
σ 

|δ2|ν1    max   1, 
ν
 |υx|; 

 

using here (2.6) and the linearity of B2, we obtain 

 
 2 1/2 . 

ν2 

.. 
1 

. 

"B2(υ) − B2(υ̃ )"θ ™ √
σ 

|δ2|ν1    max    1, 
ν
 ε"υ − υ̃  "2 + 

4ε 
|υ − υ̃  | for all υ, υ̃   ∈ V , (2.10) 

 

for any positive ε. 

We  infer from (2.9) and (2.10) that B satisfies the local Lipschitz condition used in Akrivis           

et al. (1999) for any positive λ. Hence, all implicit–explicit  multistep  methods  considered  in  

Akrivis et al. (1999), and, indeed, the wider class of methods considered in Akrivis & Crouzeix  

(2004) are suitable for the discretization of the periodic initial value problem (2.3) for  the  TK 

equation. 

 
Remark 2.2  It follows immediately from (2.9) that it is possible for the TK equation as well to have   

a local Lipschitz condition with λ = 0. This can be done by considering B2 as a dispersive operator,   

D := B2, and, consequently, letting B := B1; see Akrivis & Smyrlis (2011), Remark 4.2. The advantage 
of this splitting is that we can get by with less stringent conditions on the starting approximations; 

see Akrivis & Crouzeix (2004), Remark 7.2, and Akrivis & Smyrlis (2011), Remarks 2.2 and 3.2. 

More precisely, the conditions (2.12) and (2.18) on the starting approximations, respectively, can be 

replaced by the corresponding ones without the second term on their left-hand sides. The drawback of 

this splitting, however, is that we have to confine ourselves to implicit–explicit multistep schemes of 

first or second order; see Akrivis & Smyrlis (2011). 

 

2.2 Time discretization 

We discuss here the discretization in time of the TK equation by implicit–explicit (α, β, γ )-schemes. 

Let (α, β) be a strongly A(0)-stable q-step scheme and (α, γ) an explicit q-step scheme, both of 

order p, characterized by the polynomials α, β and γ , 
 

q q q−1 

α(ζ ) = 
. 

αiζ i, β(ζ ) = 
. 

βiζ i, γ (ζ ) = 
. 

γiζ i. 
i=0 i=0 i=0 

 

We then combine the schemes (α, β) and (α, γ ), and construct an implicit–explicit (α, β, γ )-scheme 

for the discretization of the TK equation (2.1) written in the form (2.2). Let N ∈ N, k := T/N be the 

time step, tn := nk, n = 0, ... , N , and u the solution of (2.3). The linear part of the equation (2.2) is 
discretized by the implicit scheme (α, β) and the nonlinear part by the explicit scheme (α, γ ), i.e., we 

√ 

√ 
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j 

 

define approximations U n to the nodal values un := u(·, tn) by the (α, β, γ )-scheme 
 

q q−1 
.

(αiI + kβiA)U n+i = k 
. 

γiB(U n+i), (2.11) 

i=0 i=0 
 

for n = 0, ... , N − q, for given starting approximations U 0, ... , Uq−1. 

In particular, we are interested in the implicit–explicit BDF schemes: For q ∈ {1, 2, 3, 4, 5, 6}, let the 
polynomials α, β and γ be given by 

 

q 1    

α(ζ ) := 
. 

ζ q−j(ζ − 1)j, β(ζ ) := ζ q  and  γ (ζ ) := ζ q − (ζ − 1)q. 

j=1 

 

The corresponding (α, β)-scheme is the q-step BDF scheme; its order is p = q. These schemes are 
strongly A(0)-stable. For a given α, the scheme (α, γ) is the unique explicit q-step scheme of order     

p = q; the order of all other explicit q-step schemes (α, γ̃  ) is at most q − 1. In this particular case, the 
general scheme (2.11) reduces to 

 

q q−1 
. 

αiU
n+i + kAU n+q = k 

. 
γiB(Un+i), n = 0, . . .  , N − q. 

i=0 i=0 
 

According to Akrivis & Crouzeix (2004), Theorem 4.1, we have the following error estimate: 
 

Proposition 2.3 (Error estimate) Let the solution u of (2.3) be sufficiently smooth. Assume we are 

given starting approximations U 0, U 1, ... , Uq−1 ∈ V ∩ Tu to u0, ... , uq−1 such that 
 

max   ("u(·, tj) − U j"L2 + k1/2"u(·, tj) − U j"H 2 ) ™ Ckp. (2.12) 
0™j™q−1 

 

Let Un ∈ V , n = q, . . .  , N , be recursively defined by (2.11). Then, there exists a constant C, independent 
of k, such that, for k sufficiently small, i.e., for N sufficiently large, 

 

max  "u(·, tn) − U n"L2 ™ Ckp. 
0™n™N 

 

2.3 Discretization in space and fully discrete schemes 

Let M ∈ N and SM := span{ϕjζ : −M + 1 ™ j, ζ ™ M }, with ϕjζ(x, y) := ei(jx+ζy). 

Let PM : V r → SM denote the orthogonal L2-projection operator onto SM , i.e., (υ − PMυ, χ) = 0, for 

all χ ∈ SM . Obviously, PMυ corresponds to the partial sum 
 

 

PMυ = 

M 
. 

 

j,ζ=−M +1 

 

υ̂j,ζϕj,ζ 

 

of the Fourier series (2.4) of υ. Since differentiation commutes with PM , we have PMA = APM . 

Furthermore, we define the discrete nonlinear operator BM : H 2 → SM by BM := PMB. 



 

M 

M 

max  "EM(t)"H   2  ™ C(u)M 

 

In the semidiscrete problem corresponding to the periodic initial value problem (2.3), we seek a 

function uM  such that uM(·, t) ∈ SM , satisfying 
.

∂tuM(·, t) + AuM (·, t) = BM(uM(·, t)), 0 < t < T , 

 

 

with u0
 

uM(·, 0) = u0 , 

∈ SM a given approximation to u0. 

(2.13) 

To construct implementable, fully discrete schemes, we discretize the initial value problem (2.13) 

for a system of o.d.e.’s in time by the implicit–explicit (α, β, γ )-scheme, i.e., we recursively define a 

sequence of approximations Uζ ∈ SM  to u(·, tζ) by 

q q−1 
.

(αiI + kβiA)U n+i = k 
. 

γiBM(U n+i), (2.14) 

i=0 i=0 

n = 0, ... , N − q, for given starting approximations U 0, ... , Uq−1 ∈ SM . 

 
2.4 Error estimates 

The projection PM : V r → SM has the following approximation property: For m ∈ N, there exists a con- 

stant c, independent of υ and M , such that, for υ ∈ Hm and ζ = 0, ... , m, 

"υ − PMυ"Hζ ™ cM ζ−m"υ"Hm ; (2.15) 

see, e.g., Canuto et al. (1988), (9.7.4). 

Let W(·, t) ∈ SM  denote the L2−projection of u(·, t) in SM , 

W(·, t) = PM u(·, t), t ∈ [0, T ]. 

Let EM(t) ∈ SM denote the consistency error of the semidiscrete equation (2.13) for W , 

EM(t) := Wt(·, t) + AW (·, t) − BM(W(·, t)), t ∈ [0, T ]. (2.16) 

Now, using the linearity of B2 and the fact that PM commutes with differentiation, we obtain 

EM(t) = PM [ut(·, t) + Au(·, t) − B2(u(·, t)) − B1(W(·, t))], 

and thus, in view of (2.2), 

EM(t) = PM [B1(u(·, t)) − B1(W(·, t))]. 

Now, as a consequence of (2.15), W(·, t) ∈ Tu, for t ∈ [0, T ], and thus in view of (2.9) and (2.15), for 

u(·, t) ∈ Hm, t ∈ [0, T ], we easily obtain the following optimal order estimate for the consistency error 
EM , 

−m 
− 

0™t™T 
 

We can now derive an optimal order error estimate. 

. (2.17) 



 

4 

t H 
0    t   T 

4 

 

Theorem 2.4 (Error estimate)  Assume that U 0, U 1, ... , Uq−1 ∈ SM  are starting approximations  to 

u(·, t0), . . . , u(·, tq−1) such that 

max   ("u(·, tj) − U j"L2 + k1/2"u(·, tj) − U j"H 2 ) ™ c(kp + M −m). (2.18) 
0™j™q−1 

Let Un ∈ SM , n = q, . . .  , N , be recursively defined by (2.14). Then, if the solution u of (2.3) is sufficiently 
smooth, there exists a constant C, independent of k and M , such that, for k sufficiently small and M 4mk 

sufficiently large, 

max  "u(·, tn) − U n"L2 ™ C(kp + M −m). (2.19) 
0™n™N 

 

Proof.  First of all, in view of the approximation property (2.15), we have 
 

max 
0™n™N 

 

and, also, for M sufficiently large, 

"u(·, tn) − W(·, tn)"L2 ™ cM −m (2.20) 

 

max 
0™n™N 

"u(·, tn) − W(·, tn)"L∞ ™ 1 . (2.21) 
 

We next let starting values W̃ j := W(·, tj), j = 0, . . . , q − 1, and define W̃ n ∈ SM , n = q, . . . , N , by apply- 
ing the implicit–explicit time stepping scheme (α, β, γ) to equation (2.16), i.e., by 

 

q q−1 
.

(αiI + kβiA)W̃ n+i = k 
. 

γi

.
BM(W̃ n+i) + EM(tn+i)

.
. (2.22) 

i=0 i=0 

Then, according to Akrivis & Crouzeix (2004), Theorem 4.1, see in particular the stability estimate (4.6) 

there, under the assumption 

 

 

 
for a constant C, we have 

max  "∂
j
u(·, t)"  2 ™ C, j = 1, . . . , p + 1, 

™ ™ 

 
n "W(·, tn) − W̃ n"L2 + k 
. 

"W(·, t  ) − W̃  "H 2 ™ Ck , 
2 

 

ζ=0 

n n   2 2p 

n = q, ... , N . Therefore, in particular, we infer that 

 

 
 

and, for k sufficiently small, 

max 
0™n™N 

 

 
max 

0™n™N 

"W(·, tn) − W̃ n"L2 ™ Ckp (2.23) 

 
"W(·, tn) − W̃ n"L∞ ™ 1 . (2.24) 

In view of (2.20) and (2.23), it remains to estimate ϑ n := W̃ n − U n. Subtracting (2.14) from (2.22), we 
obtain 

q q−1 q−1 .
(αiI + kβiA)ϑ n+i = k 

. 
γi[BM(W̃ n+i) − BM(U n+i)] + k 

. 
γiEM(tn+i). 

i=0 i=0 i=0 



 

θ 

ϑ 

2 

∞ 

 

Now, using the stability estimate Akrivis & Crouzeix (2004), (5.16), we obtain 

 
n 2 ζ  2 

⎧
q−1 

cμ2tn 
⎨ 

j  2 

 

n−q j   2 

⎫ 
ζ    2  

⎬
 

"ϑn"L2 + k 
. 

"ϑ "H 2 ™ Ce  
. .

"ϑ "L2 + k"ϑ "H 2 

. 
+ k 
. 

"EM(t )"H , (2.25) 

ζ=0 
⎩ 

j=0 ζ=0 
⎭

 

provided that U 0, ... , Un−1 ∈ Tu, with an appropriate constant μ; see (2.9) and (2.10). According to 
(2.18) and (2.17), there exists a constant Cθ such that 

⎧
q−1 

C ecμ2T 
⎨. . 

j   2 

 
N −q 

j  2 
.

 
⎫ 

ζ    2   
⎬ 

2   p 

 

−m  2 

⎩ 
j=0 

"ϑ "L2 + k"ϑ "H 2 

. 
+ k  

ζ=0 

"EM(t )"H −2 

⎭ 
™ Cθ(k  + M ) . (2.26) 

We will use induction to prove (2.25). 

We start with a preparatory statement. Assume, for the time being, that 
 2 j   2 2     p −m  2 

"ϑj"L2 + k"ϑ "H 2 ™ C (k  + M ) . (2.27) 

Then, using the well-known interpolation inequality 
 2 j j 

"ϑj"L  ™ K"ϑ "L2 "ϑ "H 2 , 

see, e.g. (Adams & Fournier, 2003, p. 140, relation (12)), we obtain 
 

j   2 

"  "L∞ ™ C(1 + k 
−1/2 )(kp

 + M −m)2; 

therefore, for k sufficiently small and M 4mk sufficiently large, we have 

"ϑj"L∞ ™ 1 . (2.28) 

From (2.21), (2.24) and (2.28), we obtain 

"u(·, tj) − U j"L∞ ™ 1 

and infer that Uj ∈ Tu. 

According to (2.18), the estimate (2.27) is valid for j = 0, . . .  , q − 1, and hence U 0, . . .  , Uq−1 ∈ Tu. 

Consequently, the estimate (2.25) is valid for n = 0, . . .  , q. Assuming that it holds for 0, . . .  , n − 1 with 

q < n ™ N , and using (2.26), we see that (2.27) is valid for j = 0, . . .  , n − 1, and infer, as before, that 

U 0, . . .  , Un−1 ∈ Tu. Thus, (2.25) holds for n as well and the induction proof is complete. 
From (2.25) and (2.26), we easily conclude, for k sufficiently small and M 4mk sufficiently large, 

max  "W̃ n − U n"L2 ™ C(kp + M −m). (2.29) 
0™n™N 

From (2.20), (2.23) and (2.29), the desired estimate (2.19) follows and the proof is complete. Q 

Remark 2.5 Here, we briefly discuss two issues, the computation of starting approximations satisfying 

(2.18) as well as the extension of our results to more general time-stepping schemes. The computation 

of appropriate starting approximations in the general case of abstract parabolic equations when the 

discretization in space is based on the finite element method, is discussed in detail in section 6 of 

Akrivis & Crouzeix (2004); the ideas presented there can be adapted to the present case of the TK 

−2 



 

ˆ jζ 

ζ = j4 + 2   j2   2 +   2     − j + 

ν 

ν 

 

equation with space discretization based on the spectral method, and lead to starting   approximations 

U 0, ... , Uq−1 ∈ SM satisfying (2.18). 

To summarize, in this section we established error estimates for fully discrete schemes for the peri- 

odic initial value problem (2.3) for the TK equation. These schemes result by combining implicit– 

explicit multistep schemes for the time discretization with spectral methods for the discretization in 

space—see Theorem 2.4. Analogous results for fully discrete methods for (2.3), that use time-stepping 

under the wider class of linearly implicit schemes considered in Akrivis & Crouzeix (2004), can also be 

easily derived. This is not pursued in any more detail due to space constraints. 

 
3. Numerical experiments 

3.1 Implementation 

We use the implicit–explicit BDF schemes (2.14) of order q = 1, . . .  , 6, to compute solutions of equation 
(2.2) analysed in Section 2; a list of these six schemes may be found in the appendix of Akrivis et al. 
(2011). Alternative schemes are available—for a comparative review as well as a new scheme for stiff 
PDEs, the reader is referred to Kassam & Trefethen (2005). 

We consider doubly periodic initial conditions, hence the solution takes the form 

u(x, y, t) = 
. 

û jζ(t) ei(jx+ζy), (3.1) 

j,ζ∈Z 

with û jζ(t) to be computed. Note that the mean 

1 ū = 
(2π)2 

¸ 2π ¸ 2π  
u(x, y, t) dx dy 

0 0 

of solutions to (2.2) is constant, and hence without loss of generality we take ū = 0. (Note that if ū =| 0, 

then u(x − ū t, y, t) − ū is also a solution and has zero mean.) Hence, û 00(t) in (3.1) is zero. 
Substitution of (3.1) into (2.2) provides the following infinite-dimensional dynamical system for the 

Fourier coefficients û jζ: 

 

 

where 

du 

dt   
+ αjζû jζ = βjζû jζ − (̂uux)jζ, (3.2) 

ν2   
4 2 ν2 

αj ν1 ν2  ζ ζ δ1 

ν1 ν1 
ζ2 + c, 

1/2 

.
 

βjζ = iδ2ν1 
ν2 

. 
−j3 + jζ2   

 
1 

+ c. 

In the computations that follow ν1 = ν2 (this corresponding to square boxes in the unscaled domain), 

we truncate system (3.2) to a finite number of modes N in each spatial dimension. For efficiency, the 
nonlinear term on the right-hand side of (3.2) is calculated using fast Fourier transforms, and care   
was taken to remove any aliasing errors—we employed the classical two-thirds rule extended to two- 

dimensional arrays, Boyd (2001). Preliminary numerical experiments showed an exponential decay of 

the Fourier coefficients for |j|+ |ζ| sufficiently large—see Section 3.2 for details; this in turn guided us 
in the efficient choice of N , namely N ∼ ν

−1/2
 −1/2 = . We note that even in the presence of dispersion, 

1 2 



 

 

 

 

Fig. 1. Neutral stability curves for the eigenvalues λ given by (3.3) for different values of ν indicated. As ν decreases, so does the 

size of the unstable region. 

 

 

δ2 =| 0, all our schemes (q = 1, . . . , 6) are stable since the dispersive terms are of lower order than the 
fourth order self-adjoint operator A. 

Before proceeding to numerical experiments, we consider the linear properties of the equation. 

Linearization of (3.2) and looking for solutions of the form û jl ∼ eλt  yields the eigenvalues (selecting ν1 

= ν2 = ν and δ1 = δ2 = 0) 

λ = j2 − ν(j4 + 2j2ζ2 + ζ4). (3.3) 

Even though λ is defined for integer values j, ζ, it is useful to consider its values as j, ζ take on any 
positive value in order to obtain instability regions, and it is understood that only integer pairs (j, ζ) 

within such regions are admissible unstable modes. Inspection of (3.3) shows that when ζ = 0 there isa  
band of unstable modes 0 < j < 1/

√
ν, and this is the familiar result for the one-dimensional Kuramoto– 

Sivashinsky equation. Depending on the value of ν, unstable modes exist in the y-direction also, and 

we illustrate this in Fig. 1 that plots the neutral curves λ = 0 for ν = 0.1, 0.05 and 0.01 (with solid, 
long-dashed and dashed curves, respectively). 

The flow is unstable below the curves and stable above them, consistent with the underlying long 

wave instability. Using elementary methods, we can find the maximum point of the neutral curves to 
be (1/2

√
ν, 1/2

√
ν). This establishes that there are order ν−1/2 unstable modes in either direction   and, 

in fact, an upper bound of the total number of unstable modes is given by the area A under the neutral 

curves, i.e., the area of 
 

{(x, y) ∈ R2 : x, y “ 0    and    x4 + 2x2y2 + y4 − x2/ν ™ 0}. 

In fact, this area can be found using elementary methods and the result is A = π/8
√

ν. We can con- 
clude, therefore, that as ν decreases we expect to find complex dynamics in both directions, and in the 
remainder of this study we consider these cases. 



 

 
 

 
 

Fig. 2. log Mn versus n showing decay of Fourier modes. 

 

Table 1   Decay rates and band of analyticity 
 

ν 0.1 0.08 0.05 0.04 0.03 0.02 0.01 

βν 0.986 0.888 0.729 0.617 0.553 0.433 0.314 

βν ν−1/2 3.118 3.140 3.260 3.085 3.192 3.062 3.140 

 

3.2 Decay of Fourier coefficients and analyticity estimates 

Extensive computations were carried out as ν1 > 0 and ν2 > 0 decrease, in order to establish numerically 

the exponential decay of the Fourier coefficients, and hence surmise analyticity of solutions. In the 

computations that follow, we take δ1 = δ2 = 0 and ν1 = ν2 = ν. Note that allowing ν1, ν2 to decrease 

at the same rate, provides the same number of unstable modes in each direction, and hence enables 
the development of equally complex dynamics in x and y. At small values of ν, the solution typically 
exhibits complex chaotic dynamics, and we monitor the size of the nth order Fourier coefficients (after 
sufficiently large times so that the solution enters an attractor) defined by 

 

Mn =  max 
|j|+|ζ|=n 

|û jζ|. 

The decay of Mn with n is shown in log-linear coordinates in Fig. 2 for 0.01 ™ ν ™ 0.1, and the results 
indicate that the decay is exponential; for sufficiently large n, we observe 

Mn = O(e−βνn), 

with βν increasing as ν decreases. The dependence of the decay rate βν on ν is analysed in Table 1 using 

least squares fits of the data of Fig. 2. The table shows the estimates of βν and βνν−1/2 as ν varies, and 

there is strong evidence to support the scaling β ≈ 3ν1/2. This in turn implies that the solution is analytic 

in a band of width of order ν1/2 as ν → 0; interestingly, this computational estimate is identical to that 
found (also numerically) in the one-dimensional Kuramoto–Sivashinsky equation—Akrivis et al. (2011, 

2012), Collet et al. (1993). Note that the available analytic estimates for βν in the one-dimensional case 

(Collet et al., 1993; Akrivis et al., 2013), underestimate the apparently optimal ν1/2 value determined 

numerically. The present results of the two-dimensional KS equation provide an optimal bound for βν 

which is guiding analytical studies under way in our group. 



 

ν 

ν   

2 

160 

 

Table 2   Error "U(·, nk) − u(·, nk)"L2 for ν = 0.8 at T = 1 
 

k q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 
 1 −1 −2 −3 −4 −5 −6 

10 3.51 × 10 3.48 × 10 3.24 × 10 3.63 × 10 2.71 × 10 3.13 × 10 
 1 −1 −3 −4 −5 −6 −8 

20 1.88 × 10 7.80 × 10 4.60 × 10 2.05 × 10 1.10 × 10 4.87 × 10 
 1 −2 −3 −5 −6 −8 −10 

40 9.73 × 10 1.83 × 10 6.05 × 10 1.17 × 10 3.72 × 10 7.63 × 10 
 1 −2 −4 −6 −8 −9 −11 

80 4.94 × 10 4.43 × 10 7.74 × 10 6.97 × 10 1.20 × 10 1.10 × 10 
  1 −2 −4 −7 −9 −11 −13 

160 2.49 × 10 1.09 × 10 9.78 × 10 4.24 × 10 3.82 × 10 2.70 × 10 
  1 −2 −5 −7 −10 −12 −13 

320 1.25 × 10 2.69 × 10 1.23 × 10 2.61 × 10 1.19 × 10 9.60 × 10 
 

 

3.3 Accuracy tests for the six BDF schemes 

In what follows, we verify the accuracy of the schemes (2.14) for q = 1, ... , 6 and in the absence of 

dispersion (δ2 = 0). To achieve this, we solve the inhomogeneous equation 

2 

ut + uux + uxx + ν1uxxxx + 2ν2uxxyy +  2 
uyyyy = g(x, y, t), (3.4) 
1 

where the function g(x, y, t) is selected so that 
 

u(x, y, t) = cos(x + y) + cos(t) cos(2x − y) 

solves (3.4) exactly. In all computations presented, we used ν1 = ν2 = ν = 0.8 and calculated the L2-

norm of the error (E = "U n − un"L ) between the exact and numerical solutions at time T = 1—the 
quadrature is performed with spectral accuracy in order to isolate time-stepping errors. In addition, to 

maintain accuracy any required starting values were found using the exact solution. The largest   time 
step used is k = 1  and this is halved five times to provide the smallest time step k = 1  . The results are 

10 320 

summarized in Table 2 and the theoretical accuracy of the schemes is seen to be fully supported by the 

computations—the error decreases by a factor 2q every time the time step is halved. We note that for   

q = 6 the error reaches machine accuracy (double precision computations were used) when k = 1 , and 
hence the geometric decrease is halted and the error remains at machine precision levels. The depen- 

dence of the error on the time step k for each scheme q = 1, . . .  , 6, was also considered and plotted on 

logarithmic scales; the slopes of the lines increase from 1 for the first-order schemes q = 1, to 6 for the 

sixth-order schemes q = 6 (results not shown for brevity). 

A second test was undertaken for the unforced equation (3.4) (g = 0) with ν1 = ν2 = ν = 0.5. In par- 
ticular, we choose to numerically evaluate the theoretical accuracy characteristics of our BDF schemes 

on a quantitative feature of the solution such as the L2-norm. The large time solution at this value of ν is 
a non-uniform steady state with constant energy. The convergence of the six BDF schemes to this solu- 
tion as the time-step k decreases, is shown in Table 3. Results are obtained by integrating the equation 

from random initial conditions (these are fixed for the different runs) up to a final time T = 50—this  
is chosen empirically to ensure that the solution has entered the attractor. It can be seen that for the 

schemes of order q =3, 4, 5 and 6 (note that these schemes are not unconditionally stable), as soon as 
a time step is small enough for the scheme to be stable (e.g., for q = 5 this value is k ≈ 0.0128), con- 

vergence is achieved within machine accuracy. As expected, scheme q = 1 does not perform as well as 



 

 

Table 3 Energy for ν = 0.5 at T = 50 (random initial conditions with coefficients fixed in all runs) 
 

k q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 

0.0512 13.603226 13.602399 13.602466 13.602466 — — 
0.0256 13.602807 13.602449 13.602466 13.602466 — — 
0.0128 13.602626 13.602462 13.602466 13.602466 13.602466 — 
0.0064 13.602544 13.602465 13.602466 13.602466 13.602466 — 
0.0032 13.602504 13.602466 13.602466 13.602466 13.602466 13.602466 
0.0016 13.602485 13.602466 13.602466 13.602466 13.602466 13.602466 
0.0008 13.602475 13.602466 13.602466 13.602466 13.602466 13.602466 
0.0004 13.602471 13.602466 13.602466 13.602466 13.602466 13.602466 
0.0002 13.602468 13.602466 13.602466 13.602466 13.602466 13.602466 
0.0001 13.602467 13.602466 13.602466 13.602466 13.602466 13.602466 
0.00005 13.602467 13.602466 13.602466 13.602466 13.602466 13.602466 

 
 

higher order schemes—indeed convergence is not seen for the smallest time-step k = 5 × 10−5, whereas 

convergence is achieved for the q = 2 scheme for time-steps smaller than k ≈ 0.0001. The reason for 
this follows from the respective errors of these schemes being of order k and k2, respectively. 

 

3.4 Computational estimate of the size of the absorbing ball 

In Sections 3.2–3.3, we presented numerical tests which illustrate the analyticity of solutions and the 

accuracy and convergence of our numerical schemes. In what follows, we carry out extensive numerical 

experiments to obtain quantitative aspects of solutions and their absorbing set. 

The first set of results is aimed at identifying numerically L2-bounds of the size of the absorbing 

ball, and evaluating theoretical bounds such as those of Pinto (1999, 2001)—see (1.5). Rigorous bounds 

typically overestimate the radius of the absorbing ball. It is customary to present such results as the 

size of the domain L1 × L2 increases; we will consider L1 = L2 = 2L and allow L to increase—this is 

equivalent to ν1 = ν2 = ν decreasing in (2.1). Thus, we present numerical solutions of 

.
Ut + UUx + Uxx + Δ2U = 0, 

U(x + 2L, y, t) = U(x, y, t), U(x, y + 2L, t) = U(x, y, t), 
(3.5) 

 

subject to initial conditions U(x, y, 0) = U0(x, y). Equation (3.5) is the unscaled version of (2.1) with 

δ1 = δ2 = 0. As L increases, the number of unstable linear modes scales with L2. This follows from the 
area of the unstable regions in Fig. 1 which was shown to be of order 1/ν; the result follows by noting 

that ν = (π/L)2. 
To obtain a computational estimate of the size of the absorbing ball in L2 as the domain size L 

increases, the initial condition U0(x, y) is taken to consist of a large range of linearly unstable Fourier 

modes with random amplitudes. Typically, the attractor becomes chaotic for L sufficiently large and we 

calculate the time average of the energy (L2-norm) of the solution as follows: 
 

Ē (L) := 
T

 1 
¸ T2

 

T E(L, t) dt, where E(L, t) = 

¸ 2L ̧  2L  

U 2(x, y, t) dx dy. (3.6) 
2 −  1     T1 0 0 



 

 

  
 

 

 

 

 

 
 

 

 
 

Fig. 3. Log–log plot of the time average of L2-norms against L. The slope is estimated to be equal to 2. 

 

 

The times T1, T2 are chosen so as the former is sufficiently large for the solution to be inside the attractor, 
and the latter sufficiently large to obtain convergence to a time-average value. The results of Ē (L) versus 
L are plotted using logarithmic scales in Fig. 3. The slope of Ē (L) provides an estimate for the energy 

norm of the solution as a function of L. Our results show conclusively that this relationship is of the 

form 

Ē (L) = c L2, L   1. (3.7) 

This estimate has been obtained using a least squares fit of the data presented in Fig. 3 to obtain a 

value of 1.9533. To visualize the fit, we also superimpose a line of slope 2 (i.e., a function proportional 

to L2). 

Note that if higher Sobolev norms, e.g., Hs, s = 1, 2, 3, are used in (3.6) instead of the L2-norm, the 
same large L behaviour shown in (3.7) is found, and in particular the slope 2 shown in Fig. 3 persists. 

These numerical results provide a strong indication that the two-dimensional KS equation studied here 

exhibits extensive dynamics analogous to the one-dimensional case (for the latter see Giacomelli & 

Otto, 2005; Wittenberg & Holmes, 1999, for example). 

 

3.5 Chaotic dynamics and the effect of dispersion 

In the previous sections, we carried out numerical convergence and accuracy studies of our schemes, 

and also established numerically a lower bound of the band of analyticity of solutions as the viscosity 

parameter ν (equivalently ν1  and ν2) decreases (see Section 3.2). The latter result furnishes us with     

a rule-of-thumb estimate for the number of modes retained in a computation as ν decreases—more 

precisely, this provides an estimate for the number of modes used in the two-thirds de-aliasing scheme. 

In what follows we utilize our own routines and algorithms to probe the nonlinear dynamics of the 

system at small values of ν, along with the effect of the dispersion parameter δ2. 
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Fig. 4. L2-norm and profile u(x, y) at t = 500 for ν = 0.05. (a and b) Chaotic solution for δ2 = 0. (c and d) Travelling wave solution 

for δ2 = 5. (Panels (b) and (d) color online, red high wave amplitudes, blue low wave amplitudes.) 

 

 
A general finding of our computations is that the dynamics become increasingly complex, and in 

fact fully two dimensional and chaotic. In addition, a sufficient amount of dispersion is found to regu- 

larize chaotic dynamics into either nonlinear stable steady-state travelling wave pulses (travelling in the 

x-direction) or time-periodic ones (i.e., the dimension of the attractor is drastically reduced). Note that 

such regularizing dispersive effects have also been found in the one-dimensional case (see Akrivis et al., 

2012, for example), and the associated reduction in dimension of the attractor as dispersion increases 

has not been explained analytically. 

Figure 4 presents typical results for ν = 0.05 in the absence of dispersion δ2 = 0, along with the 

dynamics for the same value of ν but with δ2 = 5. Figure 4(a) shows the evolution of the energy norm 

over a time interval 0 ™ t ™ 500, and in Figure 4(b) we present the corresponding solution at the final 

time t = 500. These results strongly suggest the presence of spatiotemporal chaos; numerical confirma- 
tion has been obtained by constructing return maps of the energy extrema, as described in detail for 

the one-dimensional KS equation in Akrivis et al. (2011). Figure 4(c,d) depicts analogous results cor- 

responding to ν = 0.05 but δ2 = 5. We observe that the dynamics initially enter a chaotic attractor for a 

time interval of ∼ 400 time units, but beyond this time the effects of dispersion are felt, and transform 
the solution into a nonlinear travelling wave composed of two pulses in the x-direction and three pulses 

(b) 

(d) 



 

2 

 

in the y-direction. We emphasize that the computed solution is stable at these values of δ2, but eventually 
loses stability at higher δ2. In a related study, Saprykin et al. (2005) construct travelling wave solutions 

by assuming solutions of permanent form, i.e., u(x, y, t) = u(x − ct, y), but do not provide information 
about their stability. Our computations (based on initial value problems) suggest that most of these trav- 

elling wave solutions are unstable in the sense that they do not emerge as large time solutions to the 

initial value problem. This facet of the two-dimensional problem is quite distinct from the behaviour in 

the one-dimensional case, where even moderate amounts of dispersion produce travelling wave pulses, 

see Akrivis et al. (2012). 

 

4. Conclusions 

In this study we introduced, analysed and implemented a class of space–time schemes to solve two- 

dimensional PDEs arising in viscous falling film flows. The equations (known as the Topper–Kawahara 

equations) contain nonlinear advection in the stream wise x-direction, negative diffusion terms due to 

inertial effects (we only consider situations above critical, F2 > 5 , where F is the Froude number), two- 

dimensional dispersive effects and two-dimensional dissipation due to the presence of surface tension. 

Global existence of solutions, the existence of a global attractor, and analyticity has been proven by 

Pinto (1999, 2001), who also provides a bound for the radius of the absorbing ball in the L2-norm. Such 

analytical bounds are far from optimal, and we have carried out accurate computations to numerically 

determine the absorbing ball radius as the system size L increases and the dynamics enter a strongly 

chaotic regime. Our results show that the radius of the global attractor has size L (see (1.6) and (3.7)), 

i.e., scales with the linear scale of the physical computational domain. Our computations also show that 

the solutions remain analytic in a band of width 1/L as L increases, and again this provides an optimal 

bound that can guide analytical studies. 

The overall features of the dynamics have been obtained, and it is established that two-dimensional 

spatio-temporal chaos persists as the system size L increases. It has also been illustrated that when dis- 

persion is present in the deeply chaotic regime, it acts to regularize the dynamics in the sense that it has 

a propensity to reduce the dimension of the global attractor, and to produce two-dimensional structures 

such as time-periodic travelling waves or nonlinear travelling waves of permanent form consisting of 

arrays of pulses—see Fig. 4(d) for an illustrative example. 
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