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Abstract

Background: The emergence of resistance to anti-tuberculosis drugs is a serious and growing threat to public
health. Next-generation sequencing is rapidly gaining traction as a diagnostic tool for investigating drug resistance
in Mycobacterium tuberculosis to aid treatment decisions. However, there are few little data regarding the precision
of such sequencing for assigning resistance profiles.

Methods: We investigated two sequencing platforms (Illumina MiSeq, Ion Torrent PGM™) and two rapid analytic
pipelines (TBProfiler, Mykrobe predictor) using a well characterised reference strain (H37Rv) and clinical isolates from
patients with tuberculosis resistant to up to 13 drugs. Results were compared to phenotypic drug susceptibility
testing. To assess analytical robustness individual DNA samples were subjected to repeated sequencing.

Results: The MiSeq and Ion PGM systems accurately predicted drug-resistance profiles and there was high
reproducibility between biological and technical sample replicates. Estimated variant error rates were low (MiSeq 1
per 77 kbp, Ion PGM 1 per 41 kbp) and genomic coverage high (MiSeq 51-fold, Ion PGM 53-fold). MiSeq provided
superior coverage in GC-rich regions, which translated into incremental detection of putative genotypic drug-specific
resistance, including for resistance to para-aminosalicylic acid and pyrazinamide. The TBProfiler bioinformatics pipeline
was concordant with reported phenotypic susceptibility for all drugs tested except pyrazinamide and para-aminosalicylic
acid, with an overall concordance of 95.3%. When using the Mykrobe predictor concordance with phenotypic testing
was 73.6%.

Conclusions: We have demonstrated high comparative reproducibility of two sequencing platforms, and
high predictive ability of the TBProfiler mutation library and analytical pipeline, when profiling resistance to first- and
second-line anti-tuberculosis drugs. However, platform-specific variability in coverage of some genome regions may
have implications for predicting resistance to specific drugs. These findings may have implications for future clinical
practice and thus deserve further scrutiny, set within larger studies and using updated mutation libraries.
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Background
Mycobacterium tuberculosis, the bacterium that causes
tuberculosis disease (TB), has overtaken HIV as the
world’s major cause of death from an infectious agent
[1]. In recent years, control of the disease has been made
more difficult by the emergence of multidrug-resistant
tuberculosis (MDR-TB), which is resistant to at least ri-
fampicin and isoniazid, and extensively drug-resistant
(XDR-TB), which refers to additional resistance to the
fluoroquinolones and second-line injectable drugs
(amikacin, kanamycin and capreomycin) used to treat
MDR-TB [2]. Programmatically incurable TB with resist-
ance to up to 14 drugs has been reported in several parts
of the world, including countries with a high TB burden
such as India and South Africa [3, 4]. Phenotypic
methods of determining susceptibility to anti-TB drugs
take weeks or months, they are additively costly, and re-
quire culture and manipulation of large numbers of
highly infectious bacilli. Drug resistance in M. tubercu-
losis is almost exclusively due to mutations in the circu-
lar genome and so molecular determination of resistance
offers a rapid, potentially cost effective, and safer alter-
native. Commercially available molecular-based tests and
line probe assays cover a limited number of drugs but,
with the exception of rifampicin, they have relatively low
sensitivity for detecting all possible molecular targets for
resistance [5]. Due to the multiplicity of drugs used in
the treatment of TB, determining the full resistance pro-
file for a patient suspected of having drug-resistant dis-
ease requires the examination of many loci.
Next-generation whole genome sequencing offers an

attractive option as it simultaneously examines all loci
and provides information regarding both small and large
changes in the genome [5]. This option has been widely
reported as a means of identifying putative resistance-
causing mutations and more recently has been used in
the management of patients with drug-resistant TB to
guide selection of appropriate drug regimens [6–11].
This approach is significant because the current treat-
ment outcomes for MDR-TB are poor, largely due to
current molecular tests being unable to guide effective
individualised therapy. It also has public health implica-
tions because of prolonged patient infectiousness due to
suboptimal treatment.
The M. tuberculosis genome is challenging to sequence

due to its high GC content and repetitive nature. Sur-
prisingly, despite the serious consequences of misdiag-
nosis, there is a paucity of data regarding the reliability
of next-generation sequencing platforms or the analyt-
ical methodology used for assigning resistance [5]. To
address this issue we investigated the utility of two com-
mercial sequencing platforms for predicting resistance to
13 anti-TB drugs. We also examined analytical algo-
rithms and two rapid bioinformatics tools (TBProfiler,

Mykrobe predictor) for predicting resistance from raw se-
quence data. Testing was performed with a fully suscep-
tible reference strain (H37Rv) and ten clinical isolates
from patients with drug-resistant TB.

Methods
Samples
M. tuberculosis clinical isolates were sourced from ten
patients with known drug-resistant TB admitted to four
different hospitals in Lisbon between 2007 and 2013.
These samples were not part of a transmission chain
and there is no epidemiological link between the pa-
tients. All clinical samples and the reference strain
H37Rv (ATCC 25618D-9, Lot # 60986340) were pre-
pared by inoculating a single colony into Middlebrook
7H9 broth supplemented with 10% OADC (Becton
Dickinson) (see Table 1 for list). Susceptibility testing for
the first-line anti-TB drugs rifampicin (RIF), isoniazid
(INH), ethambutol (ETB), pyrazinamide (PZA) and
streptomycin (STR) and the second-line drugs rifabutin
(RFB), amikacin (AMK), capreomycin (CAP), ofloxacin
(OFX), moxifloxacin (MOX), ethionamide (ETH), para-
aminosalicylic acid (PAS) and linezolid (LZ) was per-
formed on all strains with the MGIT960 system (Becton
Dickinson), according to the manufacturer’s instructions.
Quantitative drug susceptibility testing (qDST) for both
first- and second-line drugs was conducted using a com-
bination of the MGIT960 system and the Epicenter
V5.80A software equipped with the TB eXIST module
(Becton Dickinson) [12, 13].
DNA was extracted and purified from the liquid cul-

tures using a cetyltrimethylammonium bromide (CTAB)
method [14]. The quality was assessed by fluorometric
quantification, Qubit™ 3.0 Fluorometer with a dsDNA
Broad Range Assay Kit (Thermo Fisher Scientific) and
agarose gel electrophoresis. Triplicate DNA samples
from each clinical isolate were prepared (biological repli-
cates) and individual DNA extracts were subjected to re-
peated sequencing (technical replicates).

Library preparation and sequencing
For MiSeq sequencing, ~200 ng of genomic DNA was
sheared to an average size of 500 bp by ultrasonication
(Covaris S220). Sheared DNA was purified/concentrated
on MinElute Spin Columns (Qiagen). DNA concentra-
tions were measured on a Nanodrop UV spectrophotom-
eter and the sheared samples diluted to 5–12.5 ng/μl.
Library constructions were performed using the
Ovation Rapid DR Multiplex System (NuGen) accord-
ing to the manufacturer’s instructions. Purified libraries
were amplified in emulsion PCR, size selected (500–
700 bp) by preparative electrophoresis on composite
gels (1.2% LMP-Agarose/0.8% Synergel) and then puri-
fied on MinElute Columns. Libraries were sequenced
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with an Illumina MiSeq V3 and 300-bp paired-end
reads with samples randomised across two runs
(each ~24 h in duration).
Ion Torrent library preparation and sequencing was

performed at Thermo Fisher Scientific, UK. Sequencing
was carried out with the Ion Torrent PGM™ system (Ion
PGM). Libraries were constructed with the Ion Xpress™
Plus Fragment Library Kit as per the manufacturer’s in-
structions (MAN0009847 Revision C.0), using 100 ng of
genomic DNA which was sheared with the provided Ion
Shear™ Plus Reagents to an average size of 350 bp, size
selection using an E-Gel® SizeSelect™ 2% Agarose Gel, and
purification with Agencourt® AMPure® XP Reagent. Fi-
nally, the libraries were quantified on the StepOnePlus™
System using the Ion Library Quantitation Kit, then
diluted to 100 pM and pooled in equal volume. Purified
libraries were sequenced with an Ion 318™ v2 chip (400-bp
kit) and the Ion PGM™ HiQ™ Chef Kit as stated in the
manual (MAN0010919, revision A.0). The runtime
was ~3 h per sample. The software used on both Ion
PGM™ and the Ion Chef™ System was Torrent Suite™
Software version 4.6.

Bioinformatic pipeline
For the bioinformatic analysis we used a previously re-
ported pipeline [10, 15, 16]. Unless stated otherwise,
software was run at default settings. Reads were trimmed
by Trimmomatic using a PHRED quality of 20 as the
cutoff. Trimmed reads were then mapped against H37Rv
(GCA_000195955.2) with BWA-mem v0.7.12 [17]. SNP
and insertion and deletion (indel) variants were called
with Samtools 0.1.19 [18] and GATK v3.6 [19]. We

compared the variants called by both algorithms, but
also report results of the conservative and typical ap-
proach of retaining the consensus polymorphisms across
both methods. The genotypes of SNPs were called when
an alternative allele was found in 20% of the mapped
reads at a particular position. A default minimum depth
of ten reads was required to call SNP genotypes, other-
wise genotypes were denoted as missing data. This cutoff
has been applied widely [15, 16, 20]. The robustness of
the genotype calls was assessed across a range of depths
of coverage of the reference and alternative alleles (depth
5–20, major allelic frequency >0.5 and >0.7). The refer-
ence genome was partitioned into overlapping 300-bp
sequences allowing the uniqueness of genomic regions
to be determined using gem-mappability [21]. Only 1.5%
of the genome was estimated to be non-unique, and
variants within these regions were discarded, leaving a
set of high quality SNPs and indels. All 36 candidate
drug-resistance genes [5] were found to be unique, thus
removing the risk of false calling of SNPs due to inappro-
priate mapping to an analogous region. A summary of the
pipeline is presented in Additional file 1: Figure S1.

In silico profiling of M. tuberculosis resistance phenotypes
We compared two informatics tools for assigning resist-
ance from sequence data. Drug-resistance status across 14
drugs was called in silico from raw sequence data using
the web-based TBProfiler tool (http://tbdr.lshtm.ac.uk/)
[5]). This tool also generates lists of mutations in candi-
date loci, and these formed the basis of identifying any
additional putative novel polymorphisms. All mutations
were checked by analysis of alignments and de novo

Table 1 Study samples (DNA extracted from culture isolates) and their susceptibility to anti-tuberculosis drugs

Sample Yeara Lineage Spoligo.
family

Drug susceptibility test phenotype

INH RIF STR ETB PZA RFB ETH AMK CAP OFX MOX PAS LZ KANb Resistance phenotype

POR1 2007 4.3.4.2 LAM4 R R R R R R R R R R R R S R XDR-TB

POR2 2007 4.1.1.1 X2 R R S S S R R S S S S S S - MDR-TB

POR3 2007 4.3.4.2 LAM1 R R R R R R R R R R R S S R XDR-TB

POR4 2007 4.3.4.2 LAM1 R R R R R R R R S R R S S R XDR-TB

POR5 2007 4.3.4.2 LAM4 R R R R R R R S S S S S S - MDR-TB

POR6 2008 4.3.4.2 LAM4 R R R R R R R R R R R S S R XDR-TB

POR7 2009 4.3.4.2 LAM4 R R R R R R R R R R R S S R XDR-TB

POR8 2012 4.3.4.2 LAM4 R R R R R R R R R R R S S R XDR-TB

POR9 2011 4.3.4.2 LAM4 R R R R R R R R R R R R S R XDR-TB

POR10 2013 4.2.1 Ural H3/4 R R R R R R R S S S S S S R MDR-TB

H37Rv - 4.9 H37RV S S S S S S S S S S S S S - Pan-susceptible

MDR-TBmultidrug-resistant TB, XDR-TB extensively drug-resistant TB, INH isoniazid, RIF rifampicin, STR streptomycin, ETB ethambutol, PZA pyrazinamide, RFB rifabutin,
ETH ethionamide, AMK amikacin, CAP capreomycin, OFX ofloxacin, MOX moxifloxacin, PAS para-aminosalicylic acid, LZ linezolid, KAN kanamycin, S “susceptible”,
R “resistant”
Bold indicates discrepant calls by Mykrobe Predictor, underlining indicates discrepant calls by TBProfiler
aYear of collection
bDrug susceptibility test not performed, with status inferred by the TBProfiler library
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assembly, as well as confirmed by alternative sequencing
methods (see the next section, “Confirmation of muta-
tions detected by whole genome sequencing”). Resistance
profiles were also generated with the Mykrobe predictor
tool (version July 2016) [22].

Confirmation of mutations detected by whole genome
sequencing
Genomic DNA was extracted as described above and
used for PCR amplification prior to examination by line
probe assay and/or DNA sequencing. The Genotype
MTBDRplus (Hain Lifescience) investigates the rpoB
and katG genes and inhA regulatory region and Geno-
type MTBDRsl (version 1, Hain Lifescience) investigates
rrs, gyrA and embB. Both kits were used according to
the manufacturer’s instructions. As the line probe assays
encompass a limited number of loci, we also performed
Sanger sequencing for inhA, katG, tlyA, eis, gidB, pncA,
gyrA, ethA, embB, embC-embA, rpsL, folC and thyX
genes (see Additional file 2: Table S1 for the primers
used). PCR products were purified and both strands se-
quenced at StabVida (Portugal). All sequences were edi-
ted and analysed with ChromasPro 2.0.0 (Technelysium,
Australia), compared to the sequences of M. tuberculosis
H37Rv reference strain (GenBank AL123456.2) and
aligned with Clustal Omega [23].

Results
Coverage
Triplicate “extraction” DNA samples from ten clinical
isolates and a single H37Rv sample were sequenced on
the MiSeq platform. Four DNA samples (from POR5, 6
and 7 and H37Rv) were each sequenced six times (“tech-
nical” replicates). Duplicate DNA samples from three
clinical isolates (POR1, 2 and 6) were also sequenced on
the Ion PGM. Summaries of the sequence data obtained
for each platform are presented in Additional file 3:
Table S2. With MiSeq sequencing the number of paired
reads varied across samples (median 1.2 million, range
0.4 to 3.2 million), and on average 99% of reads mapped
to the H37Rv reference, giving a median depth of cover-
age of 51-fold (across sample range 18- to 79-fold). The
majority of the genome (>96%) was covered to at least
tenfold depth.
In contrast, for the Ion PGM platform the median

number of reads was 990,854 (range 928,006–1,124,215)
translating into a median of 53-fold (range 48- to 59-
fold) genomic coverage. A large proportion of the
genome (~25%) had low coverage and was attributed to
regions with high GC content (Fig. 1). Whilst high
coverage (100- to 200-fold) was attained for regions with
GC content up to 69%, above this level coverage drops
below tenfold, which was the cutoff used for calling vari-
ants. For MiSeq sequence data, this drop only occurs

when the GC content reaches 75% or above. Many re-
gions in the M. tuberculosis genome, especially the pe/
ppe genes [24], are high in GC content (median 69%,
range 47–87%) and therefore potentially difficult to
characterise. The coverage across the 36 drug-resistance
candidate genes was high for MiSeq (mean ~90-fold)
and exceeded the tenfold cutoff, except in the thyA gene
in the three POR1 replicates (Fig. 2). These XDR-TB
replicates contained double dfrA-thyA deletions, thought
to be responsible for para-aminosalicylic acid (PAS) re-
sistance [25]. A direct comparison of the POR1, 2 and 6
sample coverage across platforms highlighted greater
variability in candidate genes in Ion PGM due to differ-
ential GC content. Whilst there was platform-wide de-
tection of the deletion-driven lower coverage in thyA in
POR1 (Fig. 3; Additional file 4: Figure S2), the variable
coverage in the neighbouring regions for Ion PGM could
lead to less certainty in detection.

SNP variants and error rates
We estimated the variant error rates (measured as the
number of sites which were discordant among repli-
cates) to be low for both platforms (MiSeq 1 per 77 kbp,
Ion PGM 1 per 41 kbp). Across comparable samples, the
number of high quality SNPs detected using MiSeq data
was higher than from Ion PGM, mostly due to low
coverage in the alignments generated from the Ion PGM
(Additional file 3: Table S2). We sought to investigate
the effects of variant calling algorithms on the numbers
of SNPs detected in unique genomic regions. From the
MiSeq H37Rv data, similar numbers of SNPs were de-
tected across replicates (Samtools 64–69 SNPs and
GATK 69–79 SNPs, overlap 69 SNPs), supporting the
existence of those variants and high sequence reproduci-
bility (Additional file 5: Table S3). Across clinical isolate
replicates the number of SNPs identified was similar and
the overlap between variant calling algorithms was high
(>90%; Additional file 5: Table S3). This observation was
supported by the Ion PGM data but, due to uneven
coverage, at least 120 SNPs fewer were identified when
compared to matching MiSeq samples. Within platforms
and calling algorithms there was variation between repli-
cates in the indels detected, but there was high overlap
between algorithms (>90%; Additional file 5: Table S3).
Compared to SNPs the breakpoints for these variants
are more difficult to characterise from alignments.
For the MiSeq platform data we assessed the num-

ber of SNP genotypes called across a range of cover-
age depths of the reference and alternative alleles
(total depth 5- to 20-fold; major allelic frequency >0.5
and >0.7). The number of SNPs decreased pseudo-
linearly with decreasing minimum read depth for H37Rv
(87 to 67 SNPs; Additional file 6: Figure S3) and the ten
clinical isolates (2290 to 2097 SNPs; Additional file 7:
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Figure S4). In general, differences in the number of SNPs
between the Samtools and GATK algorithms decreased as
the depth of coverage and allelic frequency thresholds in-
creased. For H37Rv, read depths in excess of 20-fold had
no impact on variants detected. Across clinical isolates,
the highest possible stringency tested consisted of
using a minimum coverage of 20 and an allelic fre-
quency of 0.7 and led to near identical numbers of
total SNPs called by the two variant calling algorithms
(Samtools 1943, GATK 1990, either 2097, both 1840
SNPs; Additional file 7: Figure S4). Much of the dis-
cordance in the number of SNPs within replicate
groups is due to differences in coverage leading to
some polymorphisms not passing quality control fil-
ters. Using SNPs for which all replicates have non-
missing genotypes, all replicates had identical numbers
of SNPs except POR3C, which differed by two SNPs
between POR3A and POR3B. Overall, the analyses in-
dicated no major differences in SNPs detected between
the two calling algorithms, and this supported the use
of consensus variants for downstream analysis. For ex-
ample, the set of common SNP variants were used to clus-
ter all samples within a phylogenetic tree using FastTree
v2.1.7 [26] (Additional file 8: Figure S5). Perfect clustering

was observed amongst isolates and their replicates. At a
finer resolution, we analysed the SNP differences between
the replicates, and none were identified.

Calling in silico resistance phenotypes
When the MiSeq raw sequence data were subjected to
analysis using TBProfiler, agreement with phenotypic
susceptibility testing was high (95.3%, 82/86; Table 1).
Discrepant results were recorded for PZA (×2) and PAS
(×2) where phenotypically resistant isolates not identi-
fied by TBProfiler were found to have novel mutations
in known candidate genes (Additional file 9: Table S4).
The novel polymorphisms included a deletion in pncA
of 20 bp (nucleotides 437–449) and a nucleotide inser-
tion (GG) between codons 130 and 131. PAS-resistant
isolates had a folC S98G mutation and a thyX G-4A,
thyX I161T, dfrA-thyA deletion. Phenotypic testing of
kanamycin drug susceptibility was not performed, but
mutations associated with its resistance were detected in
all eight isolates (Table 1; Additional file 9: Table S4). All
mutations were confirmed using independent Sanger
capillary sequencing and/or the line probe assays
Genotype MTBDRplus and Genotype MTBDRsl (Hain).

Fig. 1 The dependence of coverage on GC content. The coverage across regions of the genome with differing GC content compared using two
different sequencing technologies; the Ion PGM and the Illumina MiSeq. The dashed blue line represents the cutoff used when calling variants.
Any position which had a coverage <10 was marked as missing. The dashed red line shows at which GC% the median coverage across the
window falls below the cutoff
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Phenotypic resistance profiles were confirmed and
quantified by the qDST method for the MGIT960
system [12, 13].
The Mykrobe predictor tool was also applied to in

silico call resistance. This approach looks for mutations
associated with resistance to first-line drugs (rifampicin,
isoniazid, ethambutol) and second-line drugs (strepto-
mycin, ciprofloxacin, ofloxacin, moxifloxacin, amikacin,
kanamycin, capreomycin). Of the 72 resistance calls
made, 19 (26.4%) were incorrectly called “susceptible”.

False negative calls were made for isoniazid (×1), etham-
butol (×2), streptomycin (×4), amikacin (×4), and
capreomycin (×3). Additionally there was a disagreement
between TBprofiler and Mykrobe predictor with four
samples for kanamycin, the latter program calling them
as “susceptible” (Table 1).
For Ion PGM, when predicting individual drug-

resistance profiles in the three isolates, in one isolate the
gyrA D94A mutation associated with fluoroquinolone re-
sistance could not be detected due to lack of coverage

Fig. 2 Coverage across drug-resistance genes. The coverage across the drug-resistance genes in POR1, 2 and 6 samples sequenced using both
the a Ion PGM and b Illumina MiSeq. The dashed red line represents the cutoff used when calling variants. Any position with less than tenfold
coverage was marked as missing. The low coverage in thyA is due to a deletion polymorphism
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(Additional file 5: Table S3). However, the mutation was
recovered if the coverage threshold was relaxed from
ten- to fourfold.

Discussion
Advances in next-generation sequencing technology
have expanded opportunities for genome analysis in the
clinical laboratory. Determining resistance to anti-TB
drugs by whole genome sequencing has been demon-
strated as feasible and is being implemented in some
specialist centres [6]. For acceptance as a diagnostic tool
to guide treatment of drug-resistant TB the sequencing
platforms and analytical tools employed must be robust
and reliable. Here we have investigated the performance
of two commercial ‘bench-top’ next generation sequen-
cing platforms and attempted to assess the robustness of
a bioinformatics analysis pipeline with respect to variant
calling, across sequencing replicates.
The MiSeq and Ion PGM both proved satisfactory for

determining drug-resistance profiles. Compared to Ion
PGM, MiSeq sequence coverage was more uniform and
was better represented in regions with high GC con-
tent. However, we did not investigate the impact of the
different library preparation methods used (mechanical
(MiSeq) and enzymatic (Ion PGM) processing). Sample
quality and the mode or preparation have been shown
to influence the depth of coverage in high GC regions
[27], and further work is required to investigate this.
The Ion PGM platform has previously been used to

characterise mutations in XDR-TB strains [6], but the
minimum read depth used to call alleles (fourfold) were
less stringent than the tenfold coverage threshold
adopted here.
Samtools and GATK when used to process the raw se-

quence data produced diverse outputs but filtering based
on coverage and allelic frequency led to almost complete
agreement on resistance causing SNPs. There was, how-
ever, lower concordance between the final sets of indels.
As previously reported, the false discovery rate for
Samtools is higher than for GATK and rises as coverage
increases [28]. A common strategy is to undertake dual
analysis and consider the intersection of the Samtools
and GATK derived SNPs but select only the GATK
indels [16]. The high reproducibility of sequence data
from replicate samples is reassuring as it affirms the
validity of next-generation sequencing as a tool for in-
vestigating transmission events.
Of the two rapid tools examined, the TBProfiler gave

100% concordance with phenotypic DST results for
INH, RIF, STR, ETB, ETH and the fluoroquinolones. Of
the nine PZA-resistant isolates, known resistance SNPs
were reported for seven isolates with an insertion and
deletion observed for the remaining two. Possible novel
resistance mutations were also observed for both the
PAS-resistant isolates. The Mykrobe predictor detected
resistance for nine drugs, of which eight had DST re-
sults. Concordance was 100% for RIF, OFX and MOX,
but resistance was missed for one or more isolates for

Fig. 3 Lack of genomic coverage in dfrA-thyA genes reveals deletions in the POR1A XDR isolate with PAS resistance. Uneven Ion PGM sequence
coverage is due to high GC content
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the remaining five drugs. Misclassification of resistance
of amikacin and capreomycin as susceptible has signifi-
cant clinical implications as patients may be assigned
treatment that is not effective for XDR-TB.
The identification of a PAS resistance-related dfrA-

thyA double deletion in an XDR-TB sample highlights
the need to look at non-SNP variants. Significantly, the
laboratory platform being used may impact the detection
of putative drug resistance. This is critical in XDR-TB
and resistance beyond XDR-TB where use of drugs like
PAS may make the difference in providing a life-saving
effective regimen of at least five drugs [29]. Large dele-
tions and other structural variants may be detected by
applying a combination of complementary approaches
(pair-end, split-read and depth of coverage) followed by
a validation process involving de novo assembly of bor-
dering reads and re-alignment to the reference genome
[10, 16, 24]. However, high genome-wide sequence
coverage is necessary to perform such analyses.
As expected the genotypic profiling was concordant

with the phenotypic determination of drug-resistance
levels confirming the reliability and robustness of the se-
lected genes and mutations as predictors of resistance
for almost all drugs tested; with discrepancies still being
noticed for PZA and PAS due to lack of enough infor-
mation on their mechanism of action [12, 30]. Surpris-
ingly, no discrepancies were found for EMB, a drug
known to have low correlation between the emb genes
and phenotypic resistance [12].

Conclusions
Sequencing platforms are becoming more accessible and
economical. Our work suggests that they are capable of de-
livering high quality data regarding resistance to anti-TB
drugs but do not all perform to the same standard and
quality monitoring is advisable. Further studies are needed
to evaluate these analytical tools, which as yet do not have
regulatory approval for clinical use. It is expected that drug-
resistance profiling using next-generation sequencing will
gain accuracy and reliability with the gathering of improved
knowledge of the drug-target genes and resistance-causing
mutations, including for the new drugs recently approved
for the treatment of MDR- and XDR-TB [29, 31]. Ultim-
ately, drug resistance profiling using next-generation se-
quencing offers rapid assessment of resistance-associated
mutations, thus accelerating access to effective treatment.
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