
Domain-based Simulation Modelling to Enable
Continuous Testing for Software Development in
the Chemical Industry
Adam Ziolkowski1 and Joost Noppen2

1 School of Computing Sciences
University of East Anglia
Norwich, United Kingdom a.ziolkowski@uea.ac.uk

2 School of Computing Sciences
University of East Anglia
Norwich, United Kingdom j.noppen@uea.ac.uk

Abstract
It is widely considered that the adoption of iterative software engineering methodologies and in

particular continuous testing helps ensure high quality software and reduce bugs. The successful
application of continuous testing however rests on the assumptions that testing is cheap, fast and
easily repeatable. Software development for control systems in the chemical production domain
generally cannot satisfy that constraint as evaluating the correctness of a recipe program requires
its execution on a live production environment which can take multiple days to complete, usually
comes at great expense in raw materials and can sometimes create a reliance on safety systems
to manage risk. As a result testing in the chemical domain becomes a bottleneck that prevents
true iterative cycles taking place. This in turn leads to a linear waterfall-like process with all its
inherent problems and limitations.

To help resolve this problem, we propose a generic simulation framework, based on a domain
model of core components of chemical productions plants. This simulation can be used in place of
the live plant during a first phase of testing. Only once an engineer is satisfied that the software
is performing as expected on the simulation, will that live plant hardware need to be involved.
This will help greatly in reducing the bottleneck in the testing phase by allowing this to be quick
and automated while reducing the risk and cost involved.

1998 ACM Subject Classification B.3.3 Performance Analysis and Design Aids

Keywords and phrases Continuous Testing, Industrial Automation, Domain Modelling, Simula-
tion, Testing

1 Introduction and Problem Statement

One of the major cornerstones of modern day software engineering is the use of iterative
software methodologies incorporating continuous testing. The ability to have short cycles
that allow for continuous feedback on development has lead to software systems with less
bugs, lowered costs and more predictable delivery [8]. Of particular importance in this
context is the use of automated testing practices which effectively allows this continuous
testing with minimal impact from a time and monetary point of view after the initial testing
rules and conditions have been defined.

However the effective application of continuous testing during software development
assumes the ability to perform, execute and evaluate test scenarios at minimal costs, a
condition that cannot be fulfilled in some industrial settings such as the aviation, chemical
production or nuclear energy domains. In these instances, testing is often challenging and

© Adam Ziolkowski and Joost Noppen;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Enabling Continuous Testing for Software Development in the Chemical Industry

time consuming involving analogue and digital hardware paired with software and often has
further safety implications. While this can be considered a broad problem, this paper will
focus on introducing continuous testing to the chemical production industry.

Chemical production plants are typically composed of a complex array of analogue and
digital computerised systems that interact with each other to control the production process
of chemicals. As shown in Figure 1, these plants typically include a form of low level software,
running on a real time processor and directly influencing the plant hardware. These systems
can be thought of as a combination of plant elements such as container vessels, actuators for
mixing chemicals, temperature and pressure sensors, etc. This is paired with one or more
layers of higher level control software which can include human machine interfaces, allowing
operators insight and control of the production processes.

Figure 1 An abstract overview of a typical chemical plant architecture.

In modern chemical plants the production process of a chemical is defined using a so-called
recipe program, consisting of varying steps, such as moving a chemical into a vessel followed
by raising its temperature as shown in Figure 2. This is defined in a software development
environment tailored to the plant configuration and control infrastructure. The development
of a recipe program fundamentally follows the traditional phases of software development
and many of its best practice principles can be observed.

Figure 2 An representation of a recipie program.

However a divergence can be observed between iterative development practice and the
development of recipe programs in testing. As recipe programs will be executed on plant
control systems, currently the only way to assess their suitability and correctness is to perform
live tests on the plant using actual chemicals. The chemical process and work flow then need
to be observed and evaluated, after which the results can be fed back into the recipe program
development cycle. Such live tests typically take multiple days to complete, during which



A. Ziolkowski and J. Noppen 3

time the plant cannot be used for actual production. In addition raw materials are used as
part of testing driving up the cost even further. Such testing regimes are thus extremely
expensive, require downtime to the plant and if unsuccessful can cause further downtime, a
loss of product or unnecessary reliance on safety systems to mitigate risk. These issues are
also noted by Ljungkrantz et al. in their work [9].

Figure 3 Live testing as a bottleneck in the recipe program development process.

The increased cost and time implications of testing and optimising the software on the
live plant can be seen as creating a direct bottleneck in the adoption of iterative processes,
as shown in Figure 3. This bottleneck encourages engineers to often adopt a rather more
linear process, where an attempt is made at implementing all needed functionality before
live testing is performed on a plant. The development process of recipe programs therefore
more closely resembles that of the waterfall method rather than embracing the principles of
iterative development methodologies. The fundamental reason for this development practice
occurring is the inability to evaluate recipe programs in a fast and cost-effective manner. An
accurate simulation of the behaviour of the plant and its control software would allow for
continuous testing and feedback at a much lower cost, however to this day this has not been
achieved. Due to the variety of configurations that can exist in production plants and their
pairing with control systems from a range of vendors, a bespoke simulation would need to be
created for every recipe program, thereby negating the cost gain from more in depth testing.

In this article we propose to address this problem by defining a simulation framework that
is vendor-independent and can be configured easily for specific production plant configurations.
Our proposed approach leverages the principles of domain modelling in software engineering
[11] to capture the core building blocks of production plants and enable the simulation of
their behaviour, given a recipe program, without involving the physical plant. The reduction
in cost and time will enable faster development cycles and continuous testing within the
chemical domain. The remainder of this paper is organised as follows: In Section 2 we present
our proposed approach. Section 3 highlights our current results as well as our research
method and in Section 4 we cover related work. Section 5 concludes.

2 Proposed Approach

Continuous testing is often not performed during the engineering of software for control
systems due to a lack of a flexible testing solution without the need for a physical plant
and real chemicals (hereafter referred to as off-line). This often leads to a reliance on live
plant testing which can be extremely expensive and long running, often spanning multiple
days. This research aims to explore if it is feasible to propose and implement an alternative
testing approach, which would aid in reducing this bottleneck and thus enabling an easier
and deeper adoption of continuous and automated processes.



4 Enabling Continuous Testing for Software Development in the Chemical Industry

This efficient off-line testing regime, where tests can be run faster and at less expense,
will need to account for the actual behaviour of a plant. As such it is proposed to introduce
a plant simulation framework to account for this behaviour. Simulation tools, such as SimSci
Pro/II [13], are already available to assist with the design and engineering of chemical product
facilities, however these are designed to perform studies of distinct plant areas, rather than
modelling the plant software as a whole.

By performing off-line testing, a more iterative development methodology, such as the one
represented in Figure 4 could be adopted. It is important to note that by using a simulation
such off-line testing can be performed at a far greater speed that live testing. This allows
for engineers to perform continuous off-line testing and tuning of complicated parameters
throughout development, only moving to more costly and time consuming step of on plant
testing once the software has been stabilised within the simulation environment.

Figure 4 The newly proposed testing regime, using a domain model based simulation.

The fundamental challenge that has to be overcome in constructing such a simulation, is
that each chemical plant has a different set of equipment, including but not restricted to
values, vessels, measurement instruments and actuators combined with differing software
and hardware control system architectures provided by different vendors. To overcome this,
a generic mechanism needs to be created, allowing every single plant configuration paired
with every kind of control infrastructure to be accounted for.

We therefore propose to create a domain model for the chemical industry that allows
modelling the different configurations and behaviours of both the plant equipment and
processes. This domain model, after having been instantiated with details of a plant, will
become an integral part of the simulation, as shown in Figure 5 a & 5 b.

To enable the instantiated simulation to be used in the course of testing control software,
the simulation will be executed using the control software (Figure 5 c) that is run on the
live control system. While the majority of languages used to write control software are
standardised by IEC 61131-3 [2], there remain implementation specific details specified by
the vendor of the control system. It is proposed that for the purposes of simulation, an
intermediate language is used to execute the simulation. A translation mechanism (Figure 5
d) will then be used to convert source code from a specific vendors implementation to this
language. Initial investigations suggest that XML interchange methods, proposed by the
PLCopen organisation [10], may prove helpful in doing this and merit further examination.

In addition to the execution instructions for the simulation, some other inputs need to be
defined by the engineer to allow the software to be properly executed and tested. One of
these is a set of ground truth values and rules for the simulation (Figure 5 e). These are
very similar to the assert statements used by testing frameworks such as JUnit [6]. These
will be defined using the expected set points and conditions that correspond to the correct
operation of the plant. The starting state of the simulation (Figure 5 f) also needs to be
introduced. This could for example define the starting level of a vessel or the raw materials
present in the system. Using the provided information, the simulation engine will be able



A. Ziolkowski and J. Noppen 5

Figure 5 Simulation architecture used for off-line testing.

to detect behaviour that is outside of the design parameters and in turn produce testing
metrics for the code base (Figure 5 g).

We hypothesize that by using the proposed simulation approach, integrated into a suitable
workflow such as the one proposed in Figure 5, a more iterative approach such as the one
shown in Figure 4 could be adopted. This approach promotes frequent testing, with the
simulation allowing for risk free and low cost testing and giving an initial platform to tune
complex system parameters. In addition, the basing of the simulation on a domain model
would considerably reduce the effort required to produce the simulation model. This could
be applied both for the development of software for a new plant, modifications to existing
software or to explore hardware changes.

3 Current Results and Research Agenda

Our current work has involved performing an in depth study of the chemical domain. This has
involved investigating associated software and control system architectures and has comprised
diverse plants at our industrial partner. This has allowed us to identify the elements that
are common between these systems and has given us the initial basis for a chemical domain
model. This initial work has additionally enabled us to assess the feasibility of being able to
make this domain model exhaustive.

A simplified overview of our domain model can seen in Figure 6. This shows various
elements that are comprised in the chemical domain such as vessels, pipes, actuators and
various sensors. In addition to these common plant and control system elements, it is
important to note that we believe it useful for the model to also consider control system
elements such as the input/output interfaces as this gives us further information for use in
the simulation. In addition to these structural elements, further behavioural models will
need to be introduced describing their functionality.

The future research efforts are envisaged to focus on the following areas:

With the goal of creating a first instance of a simulation, a subset of a real world chemical
plant will be chosen and a simulator constructed on top of the chemical domain model



6 Enabling Continuous Testing for Software Development in the Chemical Industry

Figure 6 Abstract overview of the chemical production industry domain model.

elements.
To establish the accuracy and relevance of current and future versions of our simulation, a
number of recipe programs that contain known behaviour, both wanted and unwanted, will
be defined. These will be divided into two sets, a training set against which the simulation
will be developed and an evaluation set that will be used to judge the performance of the
simulation. These recipe programs will be executed against the instantiated simulation
and the results compared to those expected.
The observed behaviour and outputs of our simulation will be compared to the actual
behaviour recorded by our industrial partner. The decades of output data relating to
plant state that our industrial partner has made available will also be used to evaluate
the performance and effectiveness of the simulation framework.
The simulations will be repeatedly instantiated with increasingly advanced plant processes
and configurations. This will allow for them to be extended beyond the scope of our
industrial partner, to cover the entire chemical domain. With every extension of the
domain model we also plan to evaluate the accuracy of the simulation by comparing it’s
behaviour and outputs to the historical data available from our industrial partner.
Our work will result in the creation of a tool to test plant software against an instantiated
simulation model. An initial evaluation will establish the accuracy against wanted and
unwanted behaviour, involving both experts at our industrial partner, in addition to the
comparison of outputs against a large quantity of data from their production plant.
We intend to perform a further in-depth study to generalise our findings within the wider
chemical domain and to help evaluate the effect that such a domain based simulation
framework has on the software engineering process. We intend to do this through
observations and interviews with software engineers developing chemical plant recipes.
In particular we aim to see whether what effect the introduction of a domain model for
simulation has on the efficiency and accuracy of the engineering process.



A. Ziolkowski and J. Noppen 7

4 Related Work

In existing work, there have already been efforts to attempt to analyse the software engineering
methodologies used, and the application of iterative so principles to industrial automation
applications such as those that we have been focusing on in the chemical industry.

An analysis of the methodology used in the development of industrial automation software
was performed by Dubey [4] who argues that the development processes of such software is
shown to proceed according to four phases. That representation shows progress is made in a
linear fashion through the phases and Dubey concludes that there is a strong coupling between
the phases resulting in an inability for changes to be introduced once the requirements have
been finalised. Our hypothesis is that one of the contributory reasons that Dubey observed a
linear process being followed was the bottleneck in testing software we described above.

Brusaferri et al. [1] explain that while the development of control software is not performed
on the live plant, testing of such software is often carried out on the actual plant. They
note that this is not desirable as it can lead to a substantial period of time before the plant
can resume operation and can cost a large amount. In addition, they make clear that such
practices may cause conditions in which the plant may sustain damage.

Work by Hametner et al. [5], notes that while the agile Test-driven Development
methodology is good for producing software that does not interact with external hardware
and processes, some adjustments are necessary for using such methodologies in the context of
industrial automation. Their work explored the use of different UML models to help model
industrial plants and processes and whether these would allow test cases to be automatically
produced. Their work did not however, consider how these tests could be executed off-line as
we have proposed above. Work by Ritala et al. [12] also investigated the suitability of using
UML to model industrial automation processes. They argue that previous version of the
language were not considered suitable for such modelling activities, but that new versions of
the language has recieved improvements and now offered potential for use in this area.

Some interest has been shown in the application of model driven engineering in the
chemical industry. An instance of this can be seen in the work by Kandare et al. [7].
They propose defining a model of a desired system using a modelling language known
as “ProcGraph”. They explain that code generation methods can then be used with the
constructed model to produce code targeted at a given vendors platform.

A major area that currently appears to be lacking attention is the integration of modelling
techniques with reuse concepts. When exploring how the analysis of domains takes place,
Prieto-Diaz [11] notes that one of the major applications of domain analysis and modelling is
to help create reuse opportunities. This leads us to believe that the basing of our approach
on a domain model will aid in proposing a generic solution for the chemical domain.

Model checking and theorem proving tools, such as the Alloy [3] tool, are able to verify
systems based on a full formal model of a system. We believe however that in our instance,
where we are considering non uniform behaviour resulting from the interaction of analogue
elements with a digital control system, that our simulation approach will prove more flexible.

5 Conclusion

This paper has highlighted the difficulty in adopting iterative software engineering method-
ologies when developing software for chemical plant control systems. Specifically, the current
methods and tooling available to engineers do not provide the ability to perform effective
off-line testing of new or modified software. As such both testing and tuning of complex



8 Enabling Continuous Testing for Software Development in the Chemical Industry

parameters is often performed on a live chemical plant, which can introduce unnecessary risk,
take an extended period of time and can involve a large expense in wasted input materials.

We have proposed the creation of a generic simulation approach, based on a domain
model of core elements of chemical productions plants. This will allow engineers to effectively
and efficiently produce a model which, when execute with the control software, can then be
used for off-line testing of the plant software. Once the engineer has had the opportunity
to use the simulation to fix any unwanted behaviour and tune various parameters for best
performance, the software will then need to be tested on the live plant. This will allow a
truly iterative software engineering process to be adopted, as the bottleneck and cost of the
live testing stage will have been removed from the iterative cycle.

Finally we have detailed the methods through which we propose to evaluate the approach
proposed. In the first instance, we will use real world recipe programs paired with records of
previous behaviour and large amounts of plant state outputs. Further evaluation will aim to
gauge the effectiveness and efficiency of the approach using observations and interviews.

References
1 Alessandro Brusaferri, Andrea Ballarino, and Emanuele Carpanzano. Enabling agile man-

ufacturing through reconfigurable control solutions. In Emerging Technologies & Factory
Automation, 2009. ETFA 2009. IEEE Conference on, pages 1–8. IEEE, 2009.

2 International Electrotechnical Commission et al. Iec 61131-3. Programmable Controllers-
Part, 3, 1993.

3 Daniel Jackson. alloy: a language & tool for relational models. http://alloy.mit.edu/
alloy/index.html, 2015. Accessed: June 2016.

4 Alpana Dubey. Evaluating software engineering methods in the context of automation
applications. In 2011 9th IEEE International Conference on Industrial Informatics, 2011.

5 Reinhard Hametner, Dietmar Winkler, Thomas Östreicher, Stefan Biffl, and Alois Zoitl.
The adaptation of test-driven software processes to industrial automation engineering. In
Industrial Informatics (INDIN), 2010 8th IEEE International Conference on, pages 921–
927. IEEE, 2010.

6 JUnit. JUnit - Abou. http://junit.org/, 2016. Accessed: May 2016.
7 Gregor Kandare, Giovanni Godena, and Stanko Strmčnik. A new approach to plc software

design. ISA transactions, 42(2):279–288, 2003.
8 C. Larman and V. R. Basili. Iterative and incremental developments. a brief history. Com-

puter, 36(6):47–56, June 2003.
9 Oscar Ljungkrantz, Knut Åkesson, Martin Fabian, and Chengyin Yuan. Formal specifi-

cation and verification of industrial control logic components. Automation Science and
Engineering, IEEE Transactions on, 7(3):538–548, 2010.

10 PLCopen. PLCopen for efficiency in automation. http://www.plcopen.org/index.html,
2016. Accessed: May 2016.

11 Rubén Prieto-Díaz. Domain analysis: An introduction. ACM SIGSOFT Software Engi-
neering Notes, 15(2):47–54, 1990.

12 Tuukka Ritala and Seppo Kuikka. Uml automation profile: enhancing the efficiency of
software development in the automation industry. In Industrial Informatics, 2007 5th
IEEE International Conference on, volume 2, pages 885–890. IEEE, 2007.

13 Schneider Electric Software, LLC. SimSci PRO/II. http://software.
schneider-electric.com/products/simsci/design/pro-ii/, 2015. Accessed: June
2016.

http://alloy.mit.edu/alloy/index.html
http://alloy.mit.edu/alloy/index.html
http://junit.org/
http://www.plcopen.org/index.html
http://software.schneider-electric.com/products/simsci/design/pro-ii/
http://software.schneider-electric.com/products/simsci/design/pro-ii/

	Introduction and Problem Statement
	Proposed Approach
	Current Results and Research Agenda
	Related Work
	Conclusion

