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Abstract. We consider simple modules for a Hecke algebra with a parameter of quantum
characteristic e. Equivalently, we consider simple modules Dλ, labelled by e-restricted
partitions λ of n, for a cyclotomic KLR algebra RΛ0

n over a field of characteristic p > 0,
with mild restrictions on p. If all parts of λ are at most 2, we identify a set DStde,p(λ) of

standard λ-tableaux, which is defined combinatorially and naturally labels a basis of Dλ.
In particular, we prove that the q-character of Dλ can be described in terms of DStde,p(λ).

We show that a certain natural approach to constructing a basis of an arbitrary Dλ does
not work in general, giving a counterexample to a conjecture of Mathas.

1. Introduction

Let K be a field with a Hecke parameter 0 6= ξ ∈ K of quantum characteristic
e ∈ Z>2. We consider the Iwahori–Hecke K-algebra Hn(ξ). An important special
case occurs when ξ = 1 and K has characteristic e, which implies that Hn(ξ) =
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KSn is the group algebra of a symmetric group.
The Specht Hn(ξ)-modules SλH, parameterised by partitions λ of n, play an

important role in the representation theory of Hn(ξ). In particular, if λ is an e-
restricted partition, then SλH has a simple head Dλ, and all simple Hn(ξ)-modules
occur in this way. The Specht module SλH has a Murphy basis indexed by the set
Std(λ) of all standard λ-tableaux. In this paper, we investigate whether there is a
subset of Std(λ) that naturally labels a basis of Dλ.

This question can be made much more precise via the language of Khovanov–
Lauda–Rouquier (KLR) algebras [18, 24], which is used throughout the paper.
Given an arbitrary commutative ring O, we consider the cyclotomic KLR O-

algebra RΛ0

n,O of type A
(1)
e−1, which has a natural Z-grading, see §2.2. Brundan

and Kleshchev [3] and Rouquier [24] proved that RΛ0

n,K is isomorphic to Hn(ξ).

Further, Kleshchev, Mathas and Ram [19] constructed a universal Specht RΛ0

n,O-

module SλO by explicit generators and relations such that, in particular, SλK is
isomorphic to the Hn(ξ)-module SλH. We denote by Dλ

K the (simple) head of SλK
if the partition λ is e-restricted and set Dλ

K := 0 otherwise.
The algebra RΛ0

n,O is equipped with an orthogonal family of idempotents {1i |
i ∈ In}, where I := Z/eZ. The q-character of a finite-dimensional RΛ0

n,O-module
M is defined by

chqM :=
∑
i∈In

dimq(1iM) · i ∈ 〈In〉, (1.1)

where 〈In〉 is the free Z[q, q−1]-module with basis In and dimq(1iM) ∈ Z[q, q−1]
is the graded dimension of 1iM , see §2.1.

Let λ be a partition of n. To each standard tableau t ∈ Std(λ) one attaches
its residue sequence it ∈ In and degree deg(t) ∈ Z, which are both defined
combinatorially, see [5] or §2.3. Then the Specht module SλO has an O-basis
{vt | t ∈ Std(λ)} such that 1iv

t = δi,itv
t for any i ∈ In and vt is homogeneous of

degree deg(t) for each t. In particular, defining the q-character of any finite set
T of standard tableaux by

chq T :=
∑
t∈T

qdeg(t) · it, (1.2)

we have
chq S

λ
K = chq Std(λ). (1.3)

Therefore, it is reasonable to require that a desired subset of Std(λ) corresponding
to a basis of Dλ

K should have q-character equal to chqD
λ
K . Our main results give

a combinatorial construction of such a subset of Std(λ) for an arbitrary field K
(as above) when λ = (λ1, . . . , λl) satisfies λ1 6 2; we refer to such partitions λ as
2-column partitions. We refer the reader to [14, §3.3] for a further discussion of
the problem in general.

In §3.3, we give a combinatorial definition of a subset DStde(λ) of Std(λ)
for every 2-column partition λ. In order to describe DStde(λ), we represent
standard tableaux as paths in a weight space of Dynkin type A1 and construct a
regularisation map rege on standard tableaux, which plays a key role throughout.
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The following theorem shows that, when charK = 0, the set DStde(λ) labels
a basis of Dλ

K and, moreover, the composition series of SλK can be lifted to an
arbitrary commutative ring O in an explicit way.

Theorem 1.1. Let λ be a 2-column partition of n.

(i) The O-span UλO of {vt | t ∈ Std(λ) \ DStde(λ)} is an RΛ0

n,O-submodule of

SλO.
(ii) If charK = 0 then there is an isomorphism SλK/U

λ
K
∼= Dλ

K of graded
RΛ0

n,K-modules. In particular, chqD
λ
K = chq DStde(λ).

(iii) Set D̃λ
O := SλO/U

λ
O. Let λ = (2x, 1y) with y ≡ −j − 1 (mod e) for some

0 6 j < e. There is an isomorphism of graded RΛ0

n,O-modules

UλO
∼=

{
D̃µ
O〈1〉 if j 6= 0 and x > j;

0 otherwise,

where µ = (2x−j , 1y+2j) and D̃µ
O〈1〉 denotes D̃µ

O with the grading shifted
by 1.

Remarkably, the aforementioned construction of DStde(λ) also leads to a combi-
natorial description of the q-character of Dλ

K when K has positive characteristic.
Indeed, given a prime p and a 2-column partition λ, define

DStde,p(λ) :=
⋂

z∈Z>0

DStdepz (λ).

Theorem 1.2. If charK = p > 0 then chqD
λ
K = chq DStde,p(λ) for every 2-

column partition λ.

Now suppose that charK = p > 0 and let λ be a 2-column partition. James [15],
[16] and Donkin [7] determined the ungraded composition multiplicities of SλK .
In particular, each Dµ

K appears as a composition factor of SλK with multiplicity
at most 1. Moreover, in the case when p = e (i.e., that of symmetric groups),
Erdmann [9] has given a more direct description of the dimensions of simple
modules labelled by e-restricted 2-column partitions: she proved that these dimen-
sions are coefficients in certain explicitly determined generating functions.

Theorem 4.10 extends the results of James and Donkin to give graded decomposi-
tion numbers. Thus, whenever Dµ

K appears as an (ungraded) composition factor of
SλK , there is an explicitly described integer re,p,λ,µ ∈ {0, 1} such that Dµ

K〈re,p,λ,µ〉
is a graded composition factor of SλK . Combining this fact with Theorems 1.1(ii)
and 1.2, we obtain the character identity

chq S
λ =

∑
µ

qre,p,λ,µ chq DStde,p(µ), (1.4)

where the sum is over 2-column partitions µ such that Dµ
K is a composition factor

of SλK , and where we set DStde,0(µ) := DStde(µ). In Section 4, for any 2-column
partitions λ, µ, we identify an explicit subset Stde,p,µ(λ) of Std(λ), which may



M. DE BOECK, A. EVSEEV, S. LYLE, L. SPEYER

be seen to correspond to the composition factors Dµ
K in SλK . More precisely,

Stde,p,µ(λ) 6= ∅ if and only if Dµ
K is a composition factor of SλK , and if this is the

case, then
chq Stde,p,µ(λ) = qre,p,λ,µ chq DStde,p(µ), (1.5)

see Theorem 4.22. The identity (1.5) is proved via an explicit bijection

reg′e,p,λ,µ : Stde,p,µ(λ)
∼→ DStde,p(µ).

Furthermore, there is a decomposition

Std(λ) =
⊔
µ

Stde,p,µ(λ),

which may be viewed as a combinatorial lifting of the identity (1.4).
The sets Stde,p,µ(λ) are defined in terms of a map rege,p from the set of 2-column

standard tableaux to itself, which generalises the aforementioned regularisation
map rege. In fact, graded decomposition numbers for 2-column partitions can also
be described in terms of rege,p, see Theorem 4.2. The simple module Dλ

K is self-

dual, which implies that chqD
λ
K = chq DStde,p(λ) is invariant under the involution

given by q 7→ q−1. A combinatorial proof of this fact is given in Remark 4.24.

The paper is organised as follows. In Section 2, we review cyclotomic KLR
algebras, their Specht modules and the connection with representations of Hecke
algebras. In Section 3, we associate a path in a weight space of type Ak−1 with
every standard tableau whose shape is a k-column partition (for k ∈ Z>2) and
describe the degrees of standard tableaux in the language of paths. We define the
aforementioned regularisation map rege on Std(λ) and the set DStde(λ) when λ
has at most 2 columns.

Section 4 is combinatorial: we prove Theorem 1.2 and the results outlined after
the statement of that theorem. The order in which the results are proved is different
from the one above. In particular, Theorem 1.2 is obtained as a consequence of
the identities (1.4) and (1.5).

In Section 5, we consider homomorphisms between 2-column Specht modules.
Using a row removal result from [10], we construct a homomorphism from SµO to
SλO, where λ and µ are as in Theorem 1.1(iii), and we describe explicitly the kernel
and image of this homomorphism, see Theorems 5.6 and 5.14. This leads to a proof
of Theorem 1.1. We also construct exact sequences of homomorphisms between
2-column Specht modules, see Corollary 5.17.

Finally, in Section 6, we remove the condition that λ1 6 2 and consider a natural
approach to extending the definition of the set DStde(λ) to an arbitrary partition λ
of n, based on the structure of SλQ and its radical radSλQ, in the spirit of [14, §3.3].
We give an example showing that in some cases the resulting set DStde(λ) is ‘too
big’, which yields a counterexample to a conjecture of Mathas [23].

Throughout, given a, b ∈ Z, we write [a, b] := {c ∈ Z | a 6 c 6 b}. If b > 0,
we often abbreviate a, . . . , a (with b entries) as ab. If X is a collection of elements
of an O-module, we denote the O-span of X by 〈X〉O. The Z-rank of a free Z-
module U of finite rank is denoted by dimZ U . If 1 6 r < n are integers, we set
sr := (r, r+ 1) to be the corresponding elementary transposition in the symmetric
group Sn.
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2. KLR algebras and Specht modules

Fix an integer e > 2 throughout the paper. We set I = Z/eZ = {0, 1, . . . , e−1},
abbreviating i + eZ as i (for 0 6 i < e) when there is no possibility of confusion.
For any n ∈ Z>0, we write In = I × · · · × I. We define 〈In〉 to be the free
Z[q, q−1]-module with basis In. The symmetric group Sn acts on the left on In

by place permutations. An element of In denoted by i is assumed to be equal to
(i1, . . . , in); we adopt a similar convention for other bold symbols.

2.1. Graded algebras and modules

By a graded module (over any ring) we mean a Z-graded one. If V is a graded
module and m ∈ Z, we denote the m-th graded component of V by Vm. The
graded dimension of a finite-dimensional graded vector space V is dimq V :=∑
m∈Z(dimVm)qm ∈ Z[q, q−1].
LetA be a gradedO-algebra, whereO is a commutative ring. IfM =

⊕
m∈ZMm

is a graded A-module then, for any k ∈ Z, we write M〈k〉 to denote the graded
shift of M by k, which has the same structure as M as an A-module and grading
given by M〈k〉m = Mm−k for all m ∈ Z. If M and N are graded A-modules,
then HomA(M,N) denotes the O-module of A-homomorphisms from M to N as
ungraded modules. Moreover, if M is finitely generated as an A-module, then
HomA(M,N) is graded by the following rule: given ϕ ∈ HomA(M,N) and m ∈ Z,
ϕ ∈ HomA(M,N)m if and only if ϕ(Mk) ⊆ Nk+m for all k ∈ Z. If O is a field, then
by a composition factor of a finite-dimensional A-moduleM we mean a composition
factor of M as an ungraded module, unless we explicitly specify otherwise.

For every f = f(q) ∈ Z[q, q−1], we write f̄(q) := f(q−1). This yields an
involution

¯ : 〈In〉 → 〈In〉,
∑
i∈In

fi · i 7→
∑
i∈In

f̄i · i. (2.1)

2.2. KLR algebras

Consider the quiver Γ that has vertex set I, an arrow i← i+ 1 for each i ∈ I and
no other arrows. We write i → j and j ← i if there is an arrow from i to j but
not from j to i, and we write i � j if there are arrows between i and j in both
directions (which only happens for e = 2). Further, we write i /− j if i 6= j and
there is no arrow between i and j in either direction. The quiver Γ corresponds to

the Cartan matrix C = (cij)i,j∈I of the affine type sfA
(1)
e−1, given by

cij =


2 if i = j;

−1 if i→ j or j → i;

−2 if i� j;

0 if i /− j.

Let O be a commutative ring and let n ∈ Z>0. The KLR algebra Rn = Rn,O is
the O-algebra generated by the elements

{1i | i ∈ In} ∪ {ψr | 1 6 r < n} ∪ {yr | 1 6 r 6 n}
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subject only to the following relations:

1i1j = δi,j1i,
∑
i∈In

1i = 1, (2.2)

yr1i = 1iyr, (2.3)

ψr1i = 1sriψr, (2.4)

yrys = ysyr, (2.5)

ψryr+11i = (yrψr + δir,ir+1)1i, (2.6)

yr+1ψr1i = (ψryr + δir,ir+1)1i, (2.7)

ψrys = ysψr if s 6= r, r + 1, (2.8)

ψrψs = ψsψr if |r − s| > 1, (2.9)

ψ2
r1i =



0 if ir = ir+1;

1i if ir /− ir+1;

(yr+1 − yr)1i if ir → ir+1;

(yr − yr+1)1i if ir ← ir+1;

(yr+1 − yr)(yr − yr+1)1i if ir � ir+1,

(2.10)

(ψrψr+1ψr − ψr+1ψrψr+1)1i

=


1i if ir+2 = ir → ir+1;

−1i if ir+2 = ir ← ir+1;

(−2yr+1 + yr + yr+2)1i if ir+2 = ir � ir+1;

0 otherwise

(2.11)

for all i ∈ In and all admissible r, s (see [18], [24]).
Consider a root system with Cartan matrix C, with simple coroots {β∨0 , . . .

. . . , β∨e−1}, see [17]. To each fundamental dominant weight Λ of this root system,
one attaches a cyclotomic quotient RΛ

n of Rn. In this paper, we will only consider
the cyclotomic KLR algebra RΛ0

n , where Λ0 is a (level 1) weight satisfying 〈Λ0, β
∨
i 〉=

δi,0 for all i ∈ I. The algebra RΛ0
n = RΛ0

n,O is defined as the quotient of Rn by the
2-sided ideal that is generated by the set

{1i | i ∈ In, i1 6= 0} ∪ {y1}.

The algebras Rn and RΛ0
n are both Z-graded with

deg(1i) = 0, deg(yr) = 2, deg(ψr1i) = −cirir+1

for all i ∈ In and all admissible r.
We fix a reduced expression for every w ∈ Sn, i.e., a decomposition w =

sr1 . . . srm as a product of elementary transpositions with m as small as possible.
Define

ψw := ψr1 . . . ψrm ∈ Rn, (2.12)

noting that (in general) ψw depends on the choice of a reduced expression for w.
By definition, the length of w is `(w) := m.
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2.3. Partitions, tableaux and Specht modules

A partition is a non-increasing sequence λ = (λ1, . . . , λl) of positive integers. As
usual, we write |λ| =

∑
j λj and say that λ is a partition of n := |λ|. The unique

partition of 0 will be denoted by ∅. We always set λr := 0 for all r > l. We
say that λ is e-restricted if λr − λr+1 < e for all r ∈ Z>0. We denote the set of
partitions of n by Par(n) and the set of e-restricted partitions of n by RPare(n).
Given k ∈ Z>0, define

Par6k(n) := {λ ∈ Par(n) | λ1 6 k} and RPare,6k(n) := RPare(n) ∩ Par6k(n).

The dominance partial order P on Par(n) is defined as follows: for any λ, µ ∈
Par(n), we set µ P λ if

∑r
j=1 µj 6

∑r
j=1 λj for all r ∈ Z>0.

The Young diagram of λ is the subset JλK = {(a, b) | 1 6 a 6 l, 1 6 b 6 λa} of
Z>0×Z>0. When drawing diagrams, we represent a node (a, b) as the intersection
of row a and column b, with the rows numbered from the top down and the columns
from left to right.

A standard tableau of size n ∈ Z>0 is an injective map t : {1, . . . , n} → Z>0×Z>0

such that

(i) the image of t is the Young diagram of some partition λ of n; and
(ii) the entries of t are increasing along rows and down columns, i.e., whenever

(a, b), (c, d) ∈ JλK are such that a 6 c and b 6 d, we have t−1(a, b) 6
t−1(c, d).

In this situation, we refer to t as a standard tableau of shape λ and write λ =
Shape(t). If 0 6 m 6 n, we denote by t↓m the restriction of t to {1, . . . ,m}. The
set of all standard tableaux of shape λ is denoted by Std(λ). For any k ∈ Z>0, we
set Std6k(n) :=

⋃
λ∈Par6k(n) Std(λ). If t, s ∈ Std(λ), we write t Q s and say that

t dominates s if Shape(t↓m) Q Shape(s↓m) for all 0 6 m 6 n. We define tλ as
the standard λ-tableau obtained by filling each row successively, going from the
top down, so that tλ(λ1 + · · · + λa−1 + b) = (a, b) for all (a, b) ∈ JλK. Similarly,
tλ ∈ Std(λ) is obtained by successively filling each column, going from left to
right, so tλ(λ′1 + · · ·+ λ′b−1 + a) = (a, b), where λ′j := #{r ∈ [1, l] | λr > j} for all
j ∈ Z>0.

The symmetric group Sn acts on the set of all bijections t : {1, . . . , n} → JλK
as follows: (gt)(r) = t(g−1r) for all g ∈ Sn and 1 6 r 6 n. For every t ∈ Std(λ),
let d(t) ∈ Sn be the unique element such that d(t)tλ = t.

By a column tableau of size n we mean an injective map t : {1, . . . , n} → Z>0×
Z>0 such that, whenever (a, b) ∈ t({1, . . . , n}) and a > 1, we have (a − 1, b) ∈
t({1, . . . , n}) and t−1(a − 1, b) < t−1(a, b). (That is, in particular, t is required
to increase down columns.) For any k ∈ Z>0, we denote by CT6k(n) the set of
column tableaux t of size n such that the image of t is contained in Z>0×{1, . . . , k}
(i.e., the entries of t all belong to the first k columns). Note that Std6k(n) ⊆
CT6k(n).

The residue of a node (a, b) ∈ Z>0×Z>0 is defined as res(a, b) = b−a+eZ ∈ I.
We refer to a node of residue i as an i-node. The residue sequence of a column
tableau t is

it :=
(
res
(
t(1)

)
, . . . , res

(
t(n)

))
∈ In.
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The set of all standard λ-tableaux with a given residue sequence i ∈ In is denoted
by Std(λ, i).

For each standard tableau t ∈ Std(λ), the degree dege(t) of t is defined in [5] as
follows. A node (a, b) ∈ Z>0 is said to be addable for λ if (a, b) /∈ λ and JλK∪{(a, b)}
is the Young diagram of a partition. We say that (a, b) is a removable node of λ if
(a, b) ∈ JλK and JλK \ {(a, b)} is the Young diagram of a partition. A node (a, b) is
said to be below a node (a′, b′) if a > a′. If (a, b) is a removable i-node of λ, define

d(a,b)(λ) := #{addable i-nodes for λ below (a, b)}
−#{removable i-nodes of λ below (a, b)}.

Finally, we define the degree of the unique ∅-tableau to be 0 and define recursively

dege(t) := dt(n)(λ) + dege(t↓n−1)

for t ∈ Std(λ).
If t ∈ Std(λ) and 1 6 r 6 s 6 n, we write r →t s if t(r) and t(s) are in the

same row of JλK. We also write iλ := it
λ

.
Let O be a commutative ring. We refer the reader to [19, Section 5] for the

definition of a Garnir node A ∈ JλK and the corresponding Garnir element gA ∈
Rn = Rn,O. The universal row Specht module Sλ = SλO is defined in [19] as the
left Rn-module generated by a single generator vλ subject only to the relations

1iv
λ = δi,iλv

λ, (2.13)

ψrv
λ = 0 if r →tλ r + 1, (2.14)

yrv
λ = 0, (2.15)

gAvλ = 0 for all Garnir nodes A of JλK, (2.16)

for all i ∈ In and all admissible r ∈ {1, . . . , n}. By [19, Cor. 6.26], the action
of Rn on Sλ factors through RΛ0

n , so Sλ is naturally an RΛ0
n -module. For each

t ∈ Std(λ), we set
vt := ψd(t)v

λ,

noting that in general vt depends on the choice of the reduced expression for d(t)

made in (2.12). In particular, vt
λ

= vλ.

Proposition 2.1 ([19, Prop. 5.14 and Cor. 6.24]). Let λ ∈ Par(n). The Specht
module Sλ is free as an O-module, with basis {vt | t ∈ Std(λ)}. Moreover, Sλ is
a graded RΛ0

n -module, with each vt homogeneous of degree dege(t).

Corollary 2.2. Let λ ∈ Par(n). The graded RΛ0

n,Z-module SλZ is isomorphic to the

Z-span of {vt ⊗ 1 | t ∈ Std(λ)} in the RΛ0

n,Z-module SλZ ⊗Z Q.

2.4. Hecke algebras at roots of unity, a cellular basis and simple modules

Let F be a field such that—setting p := charF—we have that p = 0, p = e
or p is coprime to e. Let the field K be an extension of F , and assume that
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ξ ∈ K \ {0} has quantum characteristic e, i.e., e is the smallest positive integer
such that 1 + ξ + · · ·+ ξe−1 = 0.

The Iwahori–Hecke algebra Hn(ξ) is the K-algebra generated by

T1, . . . , Tn−1

subject only to the relations

(Tr − ξ)(Tr + 1) = 0,

TrTr+1Tr = Tr+1TrTr+1,

TrTs = TsTr if |r − s| > 1

for all admissible r and s. The algebra Hn(ξ) is cellular, with cell modules SλH
parameterised by the partitions λ of n; see [22].

By the following fundamental results, much of the modular representation theo-
ry of Iwahori–Hecke algebras at roots of unity can be phrased in terms of questions
about KLR algebras and their universal row Specht modules.

Theorem 2.3 ([3, Thm. 1.1], [19, Thm. 6.23]). Let K be a field of characteristic
p, and suppose that ξ ∈ K\{0} has quantum characteristic e, where either p = e or
p is coprime to e if p 6= 0, e. There is an algebra isomorphism θ : Hn(ξ)

∼→ RΛ0

n,K

such that if Hn(ξ) is identified with RΛ0

n,K via θ, then the RΛ0

n,K-module SλH is

isomorphic to SλK .

We remark that graded modules over RΛ0

n,K which can be identified with the

modules SλH were originally constructed in [5] and that the proof of the identifica-
tion of Specht modules in Theorem 2.3 uses results from [5].

Simple Hn(ξ)-modules were classified in [6], and a corresponding classification
of graded simple modules RΛ0

n,K -modules up to isomorphism and grading shift is
given by [4, Thm. 4.11]. For our purposes, it is convenient to use the description of
simple RΛ0

n,F -modules resulting from the graded cellular basis of RΛ0

n,F constructed

by Hu and Mathas [13], which we now review. Let λ ∈ Par(n) and define Y λ :=
{r ∈ [1, n] | tλ(r) ∈ Z × eZ}. Set yλ :=

∏
r∈Y λ yr ∈ RΛ0

n,F . There is an anti-

automorphism ∗ of RΛ0

n,F defined on the standard generators by

1∗i = 1i, ψ∗r = ψr, y∗r = yr.

For s, t ∈ Std(λ), set
ψst := ψd(s)1iλy

λψ∗d(t) ∈ R
Λ0

n,F .

Then ψ∗st = ψts.

Theorem 2.4 ([13, Thm. 5.8]). The algebra RΛ0

n,F is a graded cellular algebra with
weight poset (Par(n),Q) and cellular basis {ψst | s, t ∈ Std(λ), λ ∈ Par(n)}.

Let λ ∈ Par(n). The cell module corresponding to λ in the graded cellular
structure of Theorem 2.4 is isomorphic to SλF as a graded RΛ0

n,F -module: this
follows from [13, Cor. 5.10] and the proof of [19, Thm. 6.23]. In the sequel, we
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identify SλF with the corresponding graded cell module. The cellular structure of
Theorem 2.4 yields a symmetric bilinear form 〈· , ·〉 on SλF . This form is determined
by the equation

〈vt, vs〉vt
λ

= ψtλtv
s = 1iλy

λψ∗d(t)ψd(s)v
tλ (t, s ∈ Std(λ)), (2.17)

cf. [23, (3.7.2)]. The form 〈· , ·〉 is homogeneous of degree 0 and satisfies 〈xu, v〉 =
〈u, xv〉 for all x ∈ RΛ0

n,F and u, v ∈ SλF , see [13, §2.2].

The radical of 〈· , ·〉 is the RΛ0

n,F -submodule

radSλF := {u ∈ SλF | 〈u, v〉 = 0 for all v ∈ SλF }.

Define
Dλ
F := SλF / radSλF .

If Dλ
F 6= 0, then Dλ

F is an irreducible graded RΛ0

n,F -module. Moreover, by [6] and

[13, Cor. 5.11], Dλ
F 6= 0 if and only if λ is e-restricted. Hence, by [13, Thm. 2.10],

we have:

Theorem 2.5. The family
{
Dλ
F | λ ∈ RPare(n)

}
is a complete set of graded simple

RΛ0

n,F -modules up to isomorphism and grading shift.

Let M be a finite-dimensional graded RΛ0

n,F -module. Given µ ∈ RPare(n), the

graded composition multiplicity of Dµ
F in M is

[M : Dµ
F ]q :=

∑
k∈Z

akq
k ∈ Z[q, q−1],

where ak is the multiplicity of Dµ
F 〈k〉 in a graded composition series of M , see [4,

§2.4]. Since the algebra RΛ0

n,F is cellular, it is split, so

[SλF : Dµ
F ]q = [SλK : Dµ

K ]q (λ ∈ Par(n), µ ∈ RPare(n)). (2.18)

It is well known that [SλF : Dµ
F ]q = 0 unless µ P λ, see, e.g., [22, Cor. 2.17].

Remark 2.6. Li [20] proved that RΛ0

n,O is cellular for any commutative ring O,
generalising Theorem 2.4. Both of these results hold with Λ0 replaced by an
arbitrary dominant integral weight Λ, as do the aforementioned results from [3–5,
19].

3. Standard tableaux and paths in the weight space

In this section we fix an integer k > 2. In §3.1–3.2, we attach to each standard
tableau t with at most k columns a path πt in a weight space for the Lie algebra
slk. We show that the degree of t can be non-recursively described in terms of
interactions of πt with certain hyperplanes in that weight space (Lemma 3.3) and
that the residue sequence of a tableau is invariant under certain reflections of the
corresponding path (Lemma 3.2). In §3.3, we specialise to the case k = 2, which
is the only one used in the rest of the paper, and define a regularisation map on
paths, which plays a key role in the sequel.
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3.1. The affine Weyl group

Let A = (aij)16i,j6k−1 be the Cartan matrix of finite type Ak−1, so that

aij =


2 if i = j;

−1 if j = i± 1;

0 otherwise.

Let Φ be the root system of the Lie algebra slk(C) with respect to the Cartan
subalgebra h of diagonal matrices in slk(C), with {α1, . . . , αk−1} being a set of
simple roots. We consider the (real) weight space V := RΦ = h∗R, where hR is the
set of matrices in h with real entries. For each i = 1, . . . , k, let εi ∈ V be the weight
sending a diagonal matrix diag(t1, . . . , tk) ∈ hR to ti. Then ε1 + · · ·+ εk = 0, and
we may assume that αi = εi− εi+1 for i = 1, . . . , k− 1. The set of integral weights
is the Z-span VZ of ε1, . . . , εk. The set of positive roots is Φ+ = {εi − εj | 1 6 i <
j 6 k}. Let (·, ·) be the symmetric bilinear form V determined by (αi, αj) = aij
for i, j ∈ {1, . . . , k − 1}. Note that

(εi, εr − εt) =


1 if i = r;

−1 if i = t;

0 otherwise

(3.1)

for all 1 6 i 6 k and 1 6 r < t 6 k. The Weyl group W ∼= Sk of Φ is the subgroup
of GL(V ) generated by the simple reflections sα for α ∈ Φ, where sαv = v−(α, v)α
for all v ∈ V . The Z-submodule ZΦ ⊂ V is W -invariant, and the corresponding
affine Weyl group is Waff := W nZΦ. The group W also acts on the set {1, . . . , k}
in the natural way.

Let ρ =
∑k−1
i=1 (k − i)εi, so that (αi, ρ) = 1 for all i = 1, . . . , k − 1. There is a

faithful action of Waff on V defined by

w · v := w(v + ρ)− ρ, β · v := v + eβ (w ∈W, β ∈ ZΦ, v ∈ V ).

If α ∈ Φ and m ∈ Z, consider the hyperplane

Hα,m := {v ∈ V | (v + ρ, α) = me} ⊂ V.

We refer to Hα,m as an α-wall or simply a wall. For each α ∈ Φ and m ∈ Z there
exists (unique) sα,m ∈Waff such that sα,m acts on V by reflection with respect to
Hα,m, i.e.,

sα,m · v = v −
(
(v + ρ, α)−me

)
α (3.2)

for all v ∈ V . We consider the set

C := {v ∈ V | (v + ρ, αi) > 0 for 1 6 i < k},

which may be viewed as the dominant chamber of the Coxeter complex correspond-
ing to Φ. Using (3.1), we see that

C={c1ε1+ · · ·+ckεk∈V | c1, . . . , ck∈R, cj>cj+1−1 for all j=1, . . . , k−1}. (3.3)
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3.2. Paths

Let r, s ∈ Z. Recall that [r, s] := {t ∈ Z | r 6 t 6 s}. We define P[r,s] to be
the set of all maps π : [r, s] → VZ such that π(a + 1) − π(a) ∈ {ε1, . . . , εk} for all
a ∈ [r, s− 1]. Further, set

P+
[r,s] := {π ∈ P[r,s] | π(a) ∈ C for all a ∈ [r, s]}.

Let n ∈ Z>0. We define

Pn := {π ∈ P[0,n] | π(0) = 0} and P+
n := Pn ∩ P+

[0,n],

so that P+
n is the set of all maps π : [0, n] → VZ ∩ C such that π(0) = 0 and

π(a+ 1)− π(a) ∈ {ε1, . . . , εk} for all a ∈ [0, n− 1].
Given t ∈ CT6k(n), for any 0 6 a 6 n and 1 6 j 6 k, set

ca,j(t) := |t({1, . . . , a}) ∩ (Z>0 × {j})|,

i.e., ca,j(t) is the number of elements of t({1, . . . , a}) in the jth column. Define
πt ∈ Pn by

πt(a) := ca,1(t)ε1 + · · ·+ ca,k(t)εk (a = 0, . . . , n).

Note that the end-point πt(n) of the path πt depends only on the image of t

(i.e., only on the shape of t in the case when t is a standard tableau).

Lemma 3.1. The assignment t 7→ πt is a bijection from CT6k(n) onto Pn and
restricts to a bijection from Std6k(n) onto P+

n .

Proof. The first assertion of the lemma is clear from the definitions. For the second
assertion, let t ∈ CT6k(n) and observe that t is a standard tableau if and only if
ca,j(t) > ca,j+1(t) for all a = 1, . . . , n and all j = 1, . . . , k− 1. The lemma follows
by (3.3). �

Let π ∈ Pn and suppose that π(a) ∈ Hα,m for some α ∈ Φ+ and m ∈ Z. We
define the path saα,m · π ∈ Pn by setting

(saα,m · π)(b) :=

{
π(b) for 0 6 b 6 a;

sα,m · π(b) for a < b 6 n.

That is, saα,m · π is obtained by reflecting a ‘tail’ of π with respect to Hα,m.

The residue sequence it of t ∈ CT6k(n) may be described as follows: if we have
1 6 a 6 n, then

ita = j − ca,j(t) + eZ, (3.4)

where j ∈ {1, . . . , k} is determined by the condition that t(a) is in the jth column.
The following lemma shows that reflecting a tail of a path as above does not change
the residue sequence of the corresponding tableau.
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Lemma 3.2. Let α ∈ Φ+, m ∈ Z and a ∈ [0, n]. Suppose that t ∈ CT6k(n) and
πt(a) ∈ Hα,m. If s ∈ CT6k(n) is determined by πs = saα,m · πt, then is = it.

Proof. Let 1 6 r < t 6 k be such that α = εr − εt. Since πt(a) ∈ Hα,m, we have
ca,r(t) − ca,t(t) = r − t + me. Clearly, isb = itb for 1 6 b 6 a. Let b ∈ [a + 1, n].
For any j ∈ {1, . . . , k}, we have

cb,j(s) =


cb,j(t) if j /∈ {r, t};
cb,t(t)− ca,t(t) + ca,r(t) = cb,t(t) + r − t+me if j = r;

cb,r(t)− ca,r(t) + ca,t(t) = cb,r(t) + t− r −me if j = t.

Now, if j ∈ {1, . . . , k} is determined by the condition that t(b) is in the jth column,
then s(b) is in the (sαj)th column, and it follows using (3.4) that isb = itb in all
cases. �

Let u, v ∈ VZ ∩ C be such that v − u = εi for some i ∈ {1, . . . , k}. For every
α ∈ Φ+, set

dege,α(u, v) :=


1 if u ∈ Hα,m and (v + ρ, α) < me for some m ∈ Z>0;

−1 if v ∈ Hα,m and (u+ ρ, α) > me for some m ∈ Z>0;

0 otherwise.

(3.5)

Write dege(u, v) :=
∑
α∈Φ+ dege,α(u, v), and for every π ∈ P+

[r,s] define

dege(π) :=
s−1∑
a=r

dege
(
π(a), π(a+ 1)

)
. (3.6)

Lemma 3.3. For every t ∈ Std6k(n), we have dege(πt) = dege(t).

Proof. Let λ be the shape of t. Arguing by induction on n, we see that it is enough
to show that dt(n)(λ) = dege(πt(n − 1), πt(n)) when n > 0. For j = 1, . . . , k, let
cj be the size of the jth column of JλK, i.e., cj = cn,j(t). Let t be such that
t(n) = (ct, t). Then i := t − ct + eZ ∈ I is the residue of t(n). It is easy to see
using the definitions and (3.4) that

dt(n)(λ) = #{j ∈ [1, t−1] | j− cj +eZ = i+1}−#{j ∈ [1, t−1] | j− cj +eZ = i}.

Since πt(n) = πt(n− 1) + εt, we have dege,α(πt(n− 1), πt(n)) = 0 for all α ∈ Φ+

such that α 6= εj − εt for any j = 1, . . . , t − 1. Moreover, using (3.1) we see that
for each j = 1, . . . , t− 1,

dege, εj−εt(πt(n− 1), πt(n)) =


1 if cj − ct + t− j ≡ −1 mod e;

−1 if cj − ct + t− j ≡ 0 mod e;

0 otherwise.

Since t−ct+eZ = i, we deduce that dt(n)(λ) = dege(πt(n−1), πt(n)), as required.
�
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Remark 3.4. The correspondence between standard tableaux and paths, as above,
is considered in [12, Sec. 5]. The degree function (3.6) is similar to the one defined
in [2, Def. 1.4] in a somewhat different context. Also, consider a path π ∈ P+

n such
that π(n) does not belong to any wall Hα,m and π(a) /∈ Hα,m ∩ Hα′,m′ for any
distinct walls Hα,m and Hα′,m′ whenever 0 6 a < n. Then one can associate with
π a Bruhat stroll as defined in [8, §2.4], and dege(π) is precisely the defect of the
corresponding Bruhat stroll.

3.3. Two-column tableaux

In this subsection, we assume that k = 2, and we again fix n ∈ Z>0. Then
Φ+ = {α1}, and we write α = α1. We identify V with R by sending ε1 to 1 and ε2

to −1. Then ρ = 1, and a wall Hα,m is the singleton set {me− 1}. Furthermore,
C = R>(−1) and

P+
n = {π : [0, n]→ Z>0 | π(0) = 0 and π(a+ 1) = π(a)± 1 for all 0 6 a < n}.

We write sm, s
a
m, Hm instead of sα,m, s

a
α,m, Hα,m respectively.

Let
H =

⋃
m∈Z>0

Hm = {me− 1 | m ∈ Z>0}. (3.7)

We define a map rege : P+
n → P+

n as follows. Given π ∈ P+
n , we set rege(π) = π

if π(a) /∈ H for all a ∈ {0, . . . , n}. Otherwise, let a ∈ {0, . . . , n} be maximal such
that π(a) ∈ H and, if m ∈ Z>0 is given by the condition that π(a) ∈ Hm, define

rege(π) :=

{
π if π(n) > me− 1;

sam · π if π(n) < me− 1.

Less formally, we consider the last point at which the path π meets a wall Hm (if
such a point exists) and, if this point is greater than the endpoint of π, we get
rege(π) by reflecting the corresponding ‘tail’ of π with respect to Hm. Further, we
set

re(π) :=

{
0 if rege(π) = π;

1 if rege(π) 6= π.

The following is clear from the definitions:

Lemma 3.5. We have dege(rege(π)) = dege(π)− re(π) for all π ∈ P+
n .

By Lemma 3.1, there is a well-defined map rege : Std62(n) → Std62(n) deter-
mined by the condition that πrege(t)

= rege(πt) for all t ∈ Std62(n). We also have
a map re : Std62(n)→ {0, 1} defined by re(t) := re(πt).

For any λ ∈ Par62(n), set

DStde(λ) := {t ∈ Std(λ) | rege(t) = t}.

We refer to the elements of DStde(λ) as e-regular standard tableaux. The following
is easily seen:
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Lemma 3.6. Let µ = (2x, 1y) ∈ Par62(n) and s ∈ Std(µ). Write y = me− 1 + j,
where m ∈ Z>0 and 0 6 j < e. If y > e − 1, let a ∈ {0, . . . , n} be maximal such
that πs(a) = me− 1, and let t be the standard tableau determined by the condition
that πt = sam · πs. Then

reg−1
e (s) =


∅ if s /∈ DStde(µ);

{s} if s ∈ DStde(µ) and either y < e or j = 0;

{s, t} if s ∈ DStde(µ), y > e and j > 0.

Moreover, if y > e− 1 then Shape(t) = (2x+j , 1me−1−j).

Example 3.7. Let e = 4. A path π ∈ P+
19 and the path reg4(π) are depicted below

on the left and right, respectively. The weight space V = R is identified with a
horizontal line, but—for presentation purposes—the height at which π(a) is drawn
gradually increases as a = 0, . . . , n increases. (We use this convention throughout
the paper.) The vertical lines indicate the walls Hm = {4m − 1}, m ∈ Z>0. In
each picture, the steps from π(a) to π(a + 1) for which deg4(π(a), π(a + 1)) is 1
or −1 are marked by + or −, respectively; these steps are highlighted for clarity.
The degree of any unmarked step is 0.

−1 0 1 2 3 4 5 6 7 8 9 10 11

−

+

+ −

deg4(π) = 0, r4(π) = 1

−1 0 1 2 3 4 5 6 7 8 9 10 11

−

+

−

deg4(reg4(π)) = −1, r4(reg4(π)) = 0

The standard tableau t such that π = πt and the tableau reg4(t) are the transposes
of

1 2 3 4 6 7 8 9 12 13 14 19

5 10 11 15 16 17 18
and

1 2 3 4 6 7 8 9 12 13 14 16 17 18

5 10 11 15 19

respectively.
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4. Characters and graded decomposition numbers for
2-column partitions

Let F be a field of characteristic p > 0. We assume that p = 0, p = e or p is
coprime to e, cf. §2.4. We fix n ∈ Z>0 and use the notation of §3.3 throughout the
section. In particular, P+

n is a set of paths in a weight space of type A1, and there
is a bijection Std62(n)

∼→ P+
n given by t 7→ πt, see Lemma 3.1.

4.1. (e, p)-regularisation

We now define the (e, p)-regularisation map rege,p : P+
n → P+

n , which is needed to
state the main results of this section. If p = 0, then set rege,p := rege. If p > 0,
then rege,p is defined recursively, as follows. For all π ∈ P+

n :

(1) If regepz (π) = π for all z ∈ Z>0, then set rege,p(π) := π.
(2) Otherwise, rege,p(π) := rege,p(regepz (π)), where z is the largest non-nega-

tive integer such that regepz (π) 6= π.

Note that the recursion always terminates because any map regm either fixes a
path or increases its end-point. We also have a map

rege,p : Std62(n)→ Std62(n)

determined by the identity rege,p(πt) = πrege,p(t) for all t ∈ Std62(n).

Given π ∈ P+
n , we have

rege,p(π) = regepzh (. . . regepz2 (regepz1 (π)) . . .) (4.1)

where, for each r = 1, . . . , h, the integer zr > 0 is maximal such that the path
regepzr−1 (. . . regepz1 (π) . . .) is not an epzr -regular path. Note that z1 > · · · > zh.
When p = 0, we use the convention that ep0 = e; in this case, 0 6 h 6 1. We refer
to (4.1) as the regularisation equation and to Z = {z1, . . . , zh} as the regularisation
set of π. If t ∈ Std62(n), then the regularisation set of t is defined to be that of
πt, and the regularisation equation of t is also defined to be that of πt, with πt
replaced by t on both sides.

For any λ ∈ Par62(n), we set DStde,0(λ) := DStde(λ) and, if p > 0,

DStde,p(λ) :=
⋂
z>0

DStdepz (λ) = {t ∈ Std(λ) | rege,p(t) = t}.

Example 4.1. Suppose that e = p = 2 and λ = (2, 2, 1, 1). Then Std(λ) =
{t1, . . . , t9}, where

πt1 =

0 1 2 3 4 5

, πt2 =

0 1 2 3 4 5

, πt3 =

0 1 2 3 4 5

,

πt4
=

0 1 2 3 4 5

, πt5
=

0 1 2 3 4 5

, πt6
=

0 1 2 3 4 5

,

πt7
=

0 1 2 3 4 5

, πt8 =

0 1 2 3 4 5

, πt9
=

0 1 2 3 4 5

.
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Here and in the sequel, the thicker the wall Hm = {em − 1} is in the diagrams,
the greater the p-adic valuation of m; if this valuation is 0, the wall is dashed.

We have DStd2,2(λ) = {t1, t2, t3, t4}. So Theorem 1.2 implies, in particular,
that dimDλ = 4. The regularisation equation of πt9

is

reg2,2(πt9) = reg2(reg4(πt9)),

with

reg4(πt9
) =

0 1 2 3 4 5 6
and reg2,2(πt9

) =
0 1 2 3 4 5 6

.

Finally, the tableaux t5, t6, t7, t8 all have regularisation set {0}, and the images
of these tableaux under reg2,2 have shape (2, 14).

One of the main results of §4 is the following theorem, which gives a combinatori-
al description of the graded decomposition numbers [Sλ : Dµ]q (when λ∈Par62(n))
in terms of the map rege,p.

Theorem 4.2. Let λ ∈ Par62(n), µ ∈ RPar62(n), and suppose that either p = e
or p is coprime to e if p 6= 0, e. If s ∈ DStde,p(µ), then

[SλF : Dµ
F ]q =

∑
t∈Std(λ)

rege,p(t)=s

qre(t).

In particular, the right-hand side does not depend on the choice of s.

As we will see, the sum on the right-hand side always contains at most one
non-zero term.

In §4.2, we give a description of graded decomposition numbers for 2-column
partitions that does not use the map rege,p and refines a known result on ungraded
decomposition numbers, see Theorem 4.10. In §4.3, we use this description to prove
Theorem 4.2.

Given λ, µ ∈ Std62(n), define the set

Stde,p,µ(λ) := {t ∈ Std(λ) | rege,p(t) has shape µ}. (4.2)

In §4.4 we show that the subsets Stde,p,µ(λ) satisfy the properties stated in §1 and
use these properties to prove Theorem 1.2.

4.2. Decomposition numbers

Set
Dp(q) := ([SλF : Dµ

F ]q)λ∈Par62(n), µ∈RPare,62(n),

so that Dp(q) is the submatrix of the graded decomposition matrix of RΛ0

n,F corres-
ponding to partitions in Par62(n). Let Dp = Dp(q)|q=1 denote the corresponding
ungraded submatrix of the decomposition matrix.

In this subsection, we prove a formula for the entries of Dp(q). Recall that for
p > 0, there is a unique square matrix Ap—known as an adjustment matrix—
such that Dp = D0Ap. Similarly, there is a unique graded adjustment matrix
Ap(q) such that Dp(q) = D0(q)Ap(q), see [22, Thm. 6.35], [4, Thm. 5.17]. Write
Ap(q) = (aλµ(q))λ,µ∈RPare,62(n). The following is a special case of [4, Thm. 5.17]:
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Theorem 4.3. For every λ ∈ Par62(n) and µ ∈ RPare,62(n), we have āλµ(q) =
aλµ(q).

Our strategy is as follows. The ungraded decomposition matrices Dp for all p >
0 are known by the work of James [15,16] and Donkin [7]; the graded decomposition
matrices D0(q)—and hence the ungraded decomposition matrices D0—are given
in [21]. As we see below, all entries in the former matrices are either 0 or 1,
so it follows by Theorem 4.3 that Ap(q) = Ap, i.e., every entry of Ap(q) is a
constant (Laurent) polynomial. Hence we are able to compute the matrix Dp(q) =
D0(q)Ap(q).

We begin with some notation. Given a, b ∈ Z>0 and assuming that p > 0, we
say that a contains b to base p and write b �p a if, writing

a = a0 + a1p+ a2p
2 + · · · and b = b0 + b1p+ b2p

2 + · · ·

(with 0 6 ai, bi < p for all i), for each i > 0 either bi = 0 or bi = ai. We write
b �0 a whenever a > 0 and b = 0.

For any integer s > 0, let se denote the integer part of s/e. For p > 0 and
non-negative integers s and l, define

fe,p(l, s) :=

{
1 if se �p (l + 1)e, and either e | s or e | l + 1− s;
0 otherwise.

(4.3)

We also define a graded version of these numbers:

fqe,p(l, s) :=


1 if se �p (l + 1)e and e | s;
q if se �p (l + 1)e, e | l + 1− s and e - s;
0 otherwise.

(4.4)

Note that fqe,p(l, s)|q=1 = fe,p(l, s) and fqe,p(l, 0) = 1. The ungraded decomposi-
tion numbers when p > 0 are given by the following theorem. This theorem
was proved by James in the case when p = e (see [15, Thm. 24.15]) and—under
certain additional conditions—when p 6= e (see [16, Thm. 20.6]). The result for
p 6= e in full generality follows from a theorem of Donkin [7, Thm. 4.4(6)] together
with (2.18). We follow the statement given by Mathas in [22, p. 127].

Theorem 4.4. Assume that p > 0 and either p = e or p is coprime to e. Suppose
that λ = (2u, 1v) ∈ Par62(n) and µ = (2x, 1y) ∈ RPare,62(n), with u > x. Then

[SλF : Dµ
F ] = fe,p(y, u− x).

Our aim is to prove that [SλF : Dλ
F ]q = fqe,p(y, u − x) under the hypotheses of

Theorem 4.4. We do so with the aid of alternative descriptions of fqe,p(y, u − x),
which are given by Lemmas 4.6 and 4.7 (for p > 0 and p = 0 respectively) and are
used in the rest of the paper. First, we note the following elementary fact:
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Lemma 4.5. Assume that p > 0. Let a0, . . . , as, l ∈ Z>0 for some s ∈ Z>0 satisfy
0 6 ai < p for i = 0, . . . , s and 0 6 l < e. If δ0, . . . , δs+1, δ

′
0, . . . , δ

′
s+1 ∈ {0, 1} and

( s∑
i=0

(−1)δi+1aip
i
)
e+ (−1)δ0 l =

( s∑
i=0

(−1)δ
′
i+1aip

i
)
e+ (−1)δ

′
0 l, (4.5)

then

(i) δi+1 = δ′i+1 whenever 0 6 i 6 s and ai 6= 0;

(ii) δ0 = δ′0 if l 6= 0.

Proof. Assume that (i) is false, and let i be the largest index such that δi+1 6= δ′i+1

and ai > 0. Without loss of generality, δi+1 = 0 and δ′i+1 = 1, and hence the
difference between the left-hand and the right-hand sides of (4.5) is at least

2aip
ie−

i−1∑
j=0

2ajp
je− 2l > 2epi − 2e(p− 1)

i−1∑
j=0

pj − 2(e− 1) > 0.

This contradiction proves (i), and (ii) follows immediately. �

Definition. Let y ∈ Z>0. If p > 0, then we define the (e, p)-expansion of y to be
the expression

y = (asp
s + as−1p

s−1 + · · ·+ a1p+ a0)e+ l − 1,

where 0 6 l < e, 0 6 ai < p for all i, and if y > e− 1 then as > 0 (cf. [7, §3.4]).

Lemma 4.6. Assume that p > 0. Let µ = (2x, 1y) ∈ RPare,62(n) and λ =
(2u, 1v) ∈ Par62(n). Suppose that

y = (asp
s + as−1p

s−1 + · · ·+ a1p+ a0)e+ l − 1

is the (e, p)-expansion of y. Then fqe,p(y, u− x) 6= 0 if and only if v is of the form

v = (asp
s ± as−1p

s−1 ± · · · ± a1p± a0)e± l − 1

for some choice of signs. Moreover, in this case

fqe,p(y, u−x) =


1 if l=0;

1 if 0<l<e and v=(asp
s±as−1p

s−1±· · ·±a0)e+l−1;

q if 0<l<e and v=(asp
s±as−1p

s−1±· · ·±a0)e−l−1.

(4.6)

We note that the last two cases in (4.6) cannot occur simultaneously by Lem-
ma 4.5.
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Proof. We may assume that u > x. If y < e, then fqe,p(y, u− x) = 0 unless u = x.
So we may assume that y > e. Writing

u− x = (bsp
s + bs−1p

s−1 + · · ·+ b1p+ b0)e+ k,

where 0 6 k < e and 0 6 bi < p for all i, we have

v = y−2(u−x) =
(
(as−2bs)p

s+(as−1−2bs−1)ps−1+· · ·+(a0−2b0)
)
e+(l−2k)−1.

Moreover,

(1) (u− x)e �p (y + 1)e if and only if bs = 0 and bi ∈ {0, ai} for all 0 6 i < s;
(2) e | u− x if and only if k = 0;
(3) e | y + 1− u+ x if and only if k = l.

The result now follows from (4.4). �

Lemma 4.7. Let λ = (2u, 1v) ∈ Par62(n) and µ = (2x, 1y) ∈ RPare,62(n), with
u > x.

(i) We have

fqe,0(y, u− x) =


1 if u− x = 0;

q if 0 < u− x < e 6 y + 1 and e | y + 1− u+ x;

0 otherwise.

(ii) The equality fqe,0(y, u − x) = q holds if and only if there exists an integer
m > 1 such that y = me+ j − 1 and v = me− j − 1 for some 1 6 j < e.

Proof. Part (i) follows from (4.4), and (ii) follows easily from (i) because e | y +
1− u+ x if and only if 2e | y + v + 2. �

If p=0, the 2-column graded decomposition numbers are given in [21, Thm. 3.1],
if that result is interpreted in view of [4, Cor. 5.15]:

Theorem 4.8. Suppose that p = 0. If λ = (2u, 1v) ∈ Par62(n) and µ = (2x, 1y) ∈
RPare,62(n) are such that u > x then

[Sλ : Dµ]q = fqe,0(y, u− x).

The notation in [21, Thm. 3.1] is different from that of Theorem 4.8 or Lem-
ma 4.7, but it is not difficult to see that the results are equivalent. Alternatively, a
direct proof of Theorem 4.8 can be easily obtained via the fact that the decomposi-
tion numbers [SλF : Dµ

F ]q are certain parabolic Kazhdan–Lusztig polynomials,
see [26] or [12, Thm. 5.3], together with Soergel’s algorithm [25] for computing
those polynomials.

For p > 0, define a matrix Ãp =
(
ãpλµ
)

with rows and columns indexed by
RPare,62(n) as follows. Let λ = (2u, 1v), µ = (2x, 1y) ∈ RPare,62(n) and let

y = (asp
s + as−1p

s−1 + · · ·+ a1p+ a0)e+ l − 1

be the (e, p)-expansion of y. Then we set

ãpλµ :=

{
1 if v=(asp

s±as−1p
s−1±· · ·±a1p±a0)e+l−1 for some choice of signs;

0 otherwise.



BASES OF SIMPLE MODULES

Lemma 4.9. Let p > 0 and B = (bλµ)λ∈Par62(n), µ∈RPare,62(n) = D0(q)Ãp. If λ =
(2u, 1v) ∈ Par62(n) and µ = (2x, 1y) ∈ RPare,62(n), with u > x, then

bλµ = fqe,p(y, u− x).

Proof. In view of Lemma 4.5, the result follows from Lemmas 4.6 and 4.7 together
with Theorem 4.8. �

Theorem 4.10. Suppose that either p = e or p is coprime to e if p 6= 0, e. If
λ = (2u, 1v) ∈ Par62(n) and µ = (2x, 1y) ∈ RPare,62(n) with u > x, then

[SλF : Dµ
F ]q = fqe,p(y, u− x).

Proof. If p = 0, then this is Theorem 4.8, so we assume that p > 0. Setting
q = 1 in Lemma 4.9, we have Dp = D0Ãp, so that Ãp = Ap is the RPare,62(n) ×
RPare,62(n)-submatrix of the ungraded adjustment matrix corresponding to 2-
column partitions. Since the entries of Ap are either 0 or 1, it follows from
Theorem 4.3 that Ãp = Ap = Ap(q), that is, Dp(q) = D0(q)Ãp. The result
then follows by another application of Lemma 4.9. �

Example 4.11. Suppose that e = p = 2 and λ = (2, 2, 1, 1). We have fq2,2(2, 0) =
fq2,2(6, 2) = 1 and fq2,2(4, 1) = q, so by Theorem 4.10 the composition factors of

Sλ are Dλ, D(2,14), D(16) and their graded composition multiplicities are 1, q, 1
respectively. The reader may wish to check, using Example 4.1, that Theorem 4.2
holds in this case.

4.3. Proof of Theorem 4.2

We fix a partition µ = (2x, 1y) ∈ RPare,62(n) and prove Theorem 4.2 for this fixed
µ. Recall the sets Stde,p,µ(λ) for λ ∈ Par62(n) defined by (4.2). If p = 0, then the
statement of Theorem 4.2 is an immediate consequence of Lemma 3.6, Lemma 4.7
and Theorem 4.8. If p > 0, then we set

y = (asp
s + as−1p

s−1 + · · ·+ a1p+ a0)e+ l − 1

to be the (e, p)-expansion of y.

Lemma 4.12. Assume that p > 0. Let λ = (2u, 1v) and let t ∈ Stde,p,µ(λ). If

rege,p(t) = regepzh (. . . regepz2 (regepz1 (t)) . . .)

is the regularisation equation of t, then azk > 0 for all 1 6 k 6 h and

v =
(
asp

s + (−1)δsas−1p
s−1 + · · ·+ (−1)δ2a1p+ (−1)δ1a0

)
e+ (−1)δ0 l − 1,

where δi = #{1 6 k 6 h | zk > i} for all 0 6 i 6 s.
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Proof. We use induction on h, the result being clear when h = 0. Assuming that
h > 0, set r = regepz1 (t) so that

rege,p(t) = regepzh (. . . regepz3 (regepz2 (r)) . . .)

is the regularisation equation of r, and set ν := Shape(r) =
(
2c, 1d

)
. By the

inductive hypothesis,

d =
(
asp

s + as−1p
s−1 + · · ·

+ az2p
z2 + (−1)εz2az2−1p

z2−1 + · · ·+ (−1)ε1a0

)
e+ (−1)ε0 l − 1,

where az2 , . . . , azh > 0 and εi = #{2 6 k 6 h | zk > i} for all 0 6 i 6 z2.
Let m = asp

s + · · ·+ az1p
z1 . Then d = me+ j − 1 for some 0 6 j < epz1 . Since

r = regepz1 (t) 6= t, we have

v = 2(me− 1)− d
=
(
asp

s + as−1p
s−1 + · · ·+ az1p

z1 − az1−1p
z1−1 − · · · − az2pz2

− (−1)εz2az2−1p
z2−1 − · · · − (−1)ε1a0

)
e− (−1)ε0 l − 1

by Lemma 3.6. Also, az1 > 0, for if az1 = 0 then either t /∈ DStdepz1+1(λ) or
t ∈ DStdepz1 (λ), contradicting the hypothesis on the regularisation equation of t.
The result follows. �

The following lemma is an easy consequence of the definitions in §3.3.

Lemma 4.13. Assume that p > 0 and let b ∈ Z>0.

(i) Let t ∈ Std62(λ) and s := regepb(t), and suppose that b is maximal such
that s = regepb(t). Let c > b be an integer. Then t is epc-regular if and
only if s is epc-regular.

(ii) Let t ∈ Std62(n). Suppose that s := regepb(t) 6= t and e - πt(n) + 1. Then
t is e-regular if and only if s is not e-regular.

Lemma 4.14. Let λ = (2u, 1v) ∈ Par62(n) be such that SλF has a composition
factor Dµ

F .

(i) If s ∈ DStde,p(µ) then there exists a unique t ∈ Std(λ) such that rege,p(t) =
s.

(ii) All elements of Stde,p,µ(λ) have the same regularisation set.

Proof. If p = 0, then the result holds by Lemma 3.6. So, assume that p > 0.
By Theorem 4.10 and Lemma 4.6,

v =
(
(−1)δs+1asp

s + (−1)δsas−1p
s−1 + · · ·+ (−1)δ1a0

)
e+ (−1)δ0 l − 1

for some δ0, . . . , δs+1 ∈ {0, 1} satisfying the following conditions:

(1) δs+1 = 0;
(2) δ0 = δ1 if l = 0, and δi+1 = δi+2 if ai = 0 and 0 6 i < s.
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By Lemma 4.5, such δ0, . . . , δs+1 are uniquely determined by v. Let

Z := {i ∈ [0, s] | δi 6= δi+1} = {z1 > · · · > zh}.

By Lemma 4.12, if t ∈ Stde,p,µ(λ), then the regularisation set of t is Z, proving
(ii).

To prove (i), we argue by induction on h. If h = 0, then λ = µ and there is
nothing to prove. So, assume that h > 0. Set

d =
(
asp

s + as−1p
s−1 + · · ·+ az1p

z1

− (−1)δz1az1−1p
z1−1 − · · · − (−1)δ2a1p− (−1)δ1a0

)
e− (−1)δ0 l − 1

and let ν :=
(
2c, 1d

)
∈ Par62(n), with c = (n − d)/2. By Lemma 4.6 and

Theorem 4.10, Dµ
F is a composition factor of SνF , so by the inductive hypothesis,

there is a unique r ∈ Std(ν) such that rege,p(r) = s. Moreover, by Lemmas 4.12
and 4.5,

rege,p(r) = regepzh (. . . regepz2 (r) . . . )

is the regularisation equation of r. In particular, regepz (r) = r for all z > z2. Let

m = asp
s−z1 + as−1p

s−1−z1 + · · ·+ az1 .

Since δz1 6= δz1+1 = δs+1 = 0, we have δz1 = 1 and so

mepz1 − 1 < d < (m+ 1)epz1 − 1.

By Lemma 3.6,
reg−1

epz1 (r) = {r, t} (4.7)

for a certain tableau t ∈ Std(λ). By Lemma 4.13(i), regepz (t) = t for all z > z1.
Hence, rege,p(t) = rege,p(r) = s.

To prove the uniqueness statement in (i), recall that any t′ ∈ Std(λ) such that
rege,p(t

′) = s has regularisation set Z. By the inductive hypothesis, this implies
that regepz1 (t′) = r, and by (4.7) we have t′ = t. �

Lemma 4.15. Let λ = (2u, 1v) be a partition of n such that Dµ
F is a composition

factor of SλF . If t ∈ Stde,p,µ(λ) then [SλF : Dµ
F ]q = qre(t).

Proof. If p = 0, then the result holds by Theorem 4.8 and Lemma 4.7, so we
assume that p > 0. Consider the regularisation equation of t:

s := rege,p(t) = regepzh (. . . regepz2 (regepz1 (t)) . . .).

By Lemma 4.12,

v =
(
asp

s + (−1)δsas−1p
s−1 + · · ·+ (−1)δ2a1p+ (−1)δ1a0

)
e+ (−1)δ0 l − 1,

where δi = #{1 6 k 6 h | zk > i} for 0 6 i 6 s. Noting that s ∈ DStde(µ) and
applying Lemma 4.13(ii) h times, we see that

re(t) =


0 if l = 0;

0 if l > 0 and h is even;

1 if l > 0 and h is odd.

Observe that δ0 = h. By Theorem 4.10 and Lemma 4.6, the result follows. �
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Proof of Theorem 4.2. By Theorem 4.10 and Lemmas 4.6 and 4.12 (or by Lem-
ma 3.6 and Theorem 4.8 in the case p = 0), if Stde,p,µ(λ) 6= ∅ then Dµ

F is a
composition factor of SλF . The converse also holds, by Lemma 4.14(i). Moreover,
that lemma asserts that, given s ∈ DStde,p(µ), there exists a unique t ∈ Std(λ)
such that rege,p(t) = s. Further, by Lemma 4.15, we have [SλF : Dµ

F ]q = qre(t) in
this case, completing the proof. �

4.4. Characters of simple modules

Recall the notation of §§3.2-3.3 applied to a weight space of type A1. Let u 6 r 6
s 6 v be integers and π ∈ P+

[u,v]. Denote the restriction of π to [r, s] by π[r, s], so

that π[r, s] ∈ P+
[r,s]. We refer to every such restriction π[r, s] as a segment of π.

The following is clear:

Lemma 4.16. If u = c1 6 · · · 6 cl = v are integers, then

dege(π) =
l−1∑
i=1

dege(π[ci, ci+1]).

Definition. Let r < s be integers. Let η ∈ P+
[r,s] be such that η(r) = η(s) = me−1

for some m ∈ Z>0, so that η(r) ∈ Hm.

• If me− 1 < η(c) < (m+ 1)e− 1 whenever r < c < s, then we call η a positive
arc.
• If (m−1)e−1 < η(c) < me−1 whenever r < c < s, then we call η a negative

arc.

If one of the above two statements holds, we say that η is an arc.

Let m ∈ Z>0 and π ∈ P+
[u,v]. Recall the reflections sm = sα,m from (3.2). We

define sm · π ∈ P[u,v] to be the path obtained by reflecting π with respect to the
wall Hm, so that

(sm · π)(a) = sm · (π(a)) (u 6 a 6 v).

Lemma 4.17. Let t ∈ Std62(n). Suppose that 0 6 r < s 6 n are integers and
πt[r, s] is an arc, with πt(r) = πt(s) = me− 1 where m ∈ Z>0. If s ∈ Std62(n) is
defined by the conditions that

πs[0, r] = πt[0, r], πs[r, s] = sm · πt[r, s], πs[s, n] = πt[s, n],

then is = it.

Proof. Since πs = ssm · srm · πt, the result follows from Lemma 3.2. �

If π ∈ P+
[u,v], we define A+(π) and A−(π) to be the sets of segments of π that

are positive and negative arcs, respectively. Recalling (3.7), let

B(π) = {b1 < · · · < bN} := {b ∈ [u, v] | π(b) ∈ H}. (4.8)

Then every element of A+(π)∪A−(π) is of the form π[bk, bk+1] for some 1 6 k < N .
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Lemma 4.18. Let π ∈ P+
[u,v] be such that π(u), π(v) ∈ H and let B(π) = {b1 <

· · · < bN}. Then:

(i) dege(π) = |A−(π)| − |A+(π)|.
(ii) If m ∈ Z>0 and sm · π ∈ P+

[u,v], then deg(sm · π) = − deg(π).

Proof. It is easy to see from (3.5) and (3.6) that, whenever 1 6 k < N ,

dege(π[bk, bk+1]) =


1 if π[bk, bk+1] is a negative arc;

−1 if π[bk, bk+1] is a positive arc;

0 if π(bk) 6= π(bk+1).

Part (i) follows by Lemma 4.16. Part (ii) follows from (i) because the reflection
sm transforms positive arcs into negative arcs and vice versa. �

The following result describes the degree of a path in terms of the number of
its positive and negative arcs.

Corollary 4.19. If π ∈ P+
n , then dege(π) = |A−(π)| − |A+(π)|+ re(π).

Proof. Let the integers 0 < b1 < · · · < bN 6 n be defined as in (4.8). Then
dege(π[0, b1]) = 0. Furthermore, dege(π[bN , n]) = re(π). The result follows from
Lemmas 4.16 and 4.18(i). �

Our next goal is to describe the effect of the map rege,p on the degree of a
standard tableau. If p > 0, then given η ∈ P+

n and a subset Z = {z1 > · · · > zh}
of Z>0, we define the tuple

w(Z, η) = (w1, . . . , wh) ∈ [0, n]h

by setting wi to be the maximal element of [0, n] such that η(wi) ∈
⋃
m∈Z>0

Hmpzi ,
for each i = 1, . . . , h, with wi = 0 if no such element exists.

Lemma 4.20. Assume that p > 0. Let π ∈ P+
n and η = rege,p(π). Suppose

that Z is the regularisation set of π and w(Z, η) = (w1, . . . , wh). Let w0 = 0 and
wh+1 ∈ [0, n] be maximal such that π(wh+1) ∈ H, with wh+1 = 0 if no such number
exists. Then

dege(η[wi, wi+1]) = (−1)i dege(π[wi, wi+1])

for all 0 6 i 6 h.

Proof. Let Z = {z1 > · · · > zh} and, for any 0 6 i 6 h, set

πi := regepzi (. . . (regepz1 (π)) . . . ),

so that π0 = π, π1, . . . , πh = η are the ‘intermediate steps’ in the calculation of
rege,p(π). Given 1 6 i 6 h, let mi ∈ pziZ>0 be defined by the condition that
πi−1(wi) = mie− 1. Then

η[wi, wi+1] = smi · . . . · sm1
· π[wi, wi+1]

whenever 0 6 i 6 h. Using Lemma 4.18(ii), we deduce the required identity. �
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Let Z = {z1 > · · · > zh} be a finite subset of Z>0. We define a map ρZ : P+
n →

P+
n as follows. If p = 0, we set ρZ to be the identity map. Assuming that p > 0 and

given η ∈ P+
n , let B(η) = {b1 < · · · < bN} and w(Z, η) = (w1, . . . , wh). Set w0 = 0

and wh+1 = bN (with bN := 0 if B(η) = ∅). Then we define ρZ(η) ∈ P+
n by the

conditions that ρZ(η)[0, b1] = η[0, b1], ρZ(η)[bN , n] = η[bN , n] and for 1 6 k < N ,

ρZ(η)[bk, bk+1] =


sm · η[bk, bk+1] if π(bk) = π(bk+1) ∈ Hm for some m ∈ Z>0

and [bk, bk+1] ⊆ [wi, wi+1] for some odd

i ∈ [1, h];

η[bk, bk+1] otherwise.

In other words, ρZ(η) is obtained from η by reflecting each arc that is a segment
of η[wi, wi+1] for odd i with respect to the wall where the arc begins and ends.

We consider the corresponding map

ρZ : Std62(n)→ Std62(n)

on standard tableaux, defined by the condition that ρZ(πt) = πρZ(t) for all t ∈
Std62(n). Since ρZ(η)(n) = η(n) for all η ∈ P+

n , the map ρZ leaves Std(µ)
invariant for each µ ∈ Par62(n). Moreover, ρZ leaves DStde,p(µ) invariant because
B(ρZ(η)) = B(η) and ρZ(η)(b) = η(b) for all η ∈ P+

n and b ∈ B(η).
Let λ ∈ Par62(n) and µ ∈ RPare,62(n) be such that Stde,p,µ(λ) 6= ∅. Define

re,p,λ,µ := re(t) ∈ {0, 1} (4.9)

for any t ∈ Stde,p,µ(λ). By Lemma 4.15, the right-hand side does not depend on
the choice of t and

qre,p,λ,µ = [SλF : Dµ
F ]q. (4.10)

Let Z be the regularisation set of any t ∈ Stde,p,µ(λ). Note that Z does not
depend on t by Lemma 4.14(ii). Define the map

reg′e,p,λ,µ : Stde,p,µ(λ)→ DStde,p(µ), t 7→ ρZ(rege,p(t)). (4.11)

If p = 0, then reg′e,p,λ,µ is simply the restriction of rege,0 = rege to Stde,p,µ(λ).

Lemma 4.21. Let λ ∈ Par62(n) and µ ∈ RPar62(n). If t ∈ Stde,p,µ(λ), then

dege
(

reg′e,p,λ,µ(t)
)

= dege(t)− re,p,λ,µ.

Proof. When p = 0, the result follows from Lemma 3.5, so we assume that p > 0.
Let s = rege,p(t) and Z be the regularisation set of t, so that reg′e,p,λ,µ(t) =
ρZ(s). Write w(Z, πt) = (w1, . . . , wh). Let wh+1 ∈ [0, n] be maximal such that
πt(wh+1) ∈ H, with wh+1 = 0 if no such number exists. By Lemma 4.18(ii), for
any 0 6 i 6 h we have

dege(πρZ(s)[wi, wi+1]) = (−1)i dege(πs[wi, wi+1]).
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Hence,

dege
(
πρZ(s)

)
=

h∑
i=0

(−1)i dege(πs[wi, wi+1]) =
h∑
i=0

dege(πt[wi, wi+1])

= dege(t)− re(t) = dege(t)− re,p,λ,µ,

where the second equality is due to Lemma 4.20 and we have used Lemma 4.16
for the first and third equalities. �

Recall the definitions (1.1) and (1.2) of q-characters.

Theorem 4.22. Let λ ∈ Par62(n) and µ ∈ RPar62(n) with Stde,p,µ(λ) 6= ∅.

(i) The map reg′e,p,λ,µ : Stde,p,µ(λ)→ DStde,p(µ) is a bijection.

(ii) For all t ∈ Stde,p,µ(λ), we have ireg′e,p,λ,µ(t) = it.
(iii) We have chq Stde,p,µ(λ) = qre,p,λ,µ chq DStde,p(µ).

Proof. By Lemma 4.14(i), rege,p restricts to a bijection from Stde,p,µ(λ) onto
DStde,p(µ). Clearly, ρZ restricts to an involution of DStde,p(µ) for any set Z
as in (4.11), and (i) follows. Part (ii) follows from Lemmas 3.2 and 4.17. Part (iii)
follows immediately from (i), (ii) and Lemma 4.21. �

Example 4.23. Let e = 3, p = 2, n = 29 and λ = (211, 17). Suppose that
t ∈ Std(λ) is determined from

πt =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

.

Then the regularisation set of t is Z = {2, 1, 0}. Further, w(Z, πt) = (w1, w2, w3)
with w1 =13, w2 =23 and w3 =28, and B(πt)={2, 5, 7, 10, 13, 16, 18, 21, 23, 26, 28}.
Thus,

η :=reg3,2(πt)=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

,

so that t ∈ Std3,2,µ(λ) where µ = (24, 121). (We use the same convention on
thickness of walls as in Example 4.1.) Further,

πreg′3,2,λ,µ(t) =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

.



M. DE BOECK, A. EVSEEV, S. LYLE, L. SPEYER

Here, πreg′3,2,λ,µ(t) is obtained from η by reflecting the arc η[16, 18] with respect to

the wall H5 = {14} and the arc η[21, 23] with respect to the wall H6 = {18}. We
have deg3(t) = 3, deg3(η) = −2 and deg3

(
reg′3,2,λ,µ(t)

)
= 2 = deg3(t) − r3,2,λ,µ,

cf. Lemma 4.21. Also, this example illustrates Lemma 4.20, as

deg(η[0, w1]) = −1 = deg(πt[0, w1]),

deg(η[w1, w2]) = −2 = − deg(πt[w1, w2]) and

deg(η[w2, w3]) = 1 = deg(πt[w2, w3]).

Proof of Theorem 1.2. We use induction on λ with respect to the dominance order
P, recalling that [SλF : Dµ

F ] = 0 unless µ P λ. Observe that if µ ∈ Par(n) and
µ P λ, then µ ∈ Par62(n). Then

chqD
λ
F = chq S

λ
F −

∑
µ/λ

[SλF : Dµ
F ]q chqD

µ
F

= chq Std(λ)−
∑
µ/λ

qre,p,λ,µ chq DStde,p(µ)

= chq Std(λ)−
∑
µ/λ

chq DStde,p,µ(λ)

= chq DStde,p(λ),

where the first and last equalities follow from the definitions, the second equality
is due to (1.3), (4.10) and the inductive hypothesis, and the third equality holds
by Theorem 4.22(iii). �

Remark 4.24. Recall the involution (2.1) on 〈In〉. Given λ ∈ Par62(n), the simple

RΛ0

n,F -module Dλ
F is self-dual by [4, Thms. 4.11, 5.13, 5.18], which implies that

chqDλ
F = chqD

λ
F . By Theorem 1.2 (and Theorem 1.1(ii)), it follows that

chq DStde,p(λ) = chq DStde,p(λ). (4.12)

The last identity can also be proved combinatorially via the involution ι : P+
n → P+

n

defined as follows. Given π ∈ P+
n , let B(π) = {b1 < · · · < bN} and define ι(π) ∈ P+

n

by the conditions that

ι(π)[0, b1]=π[0, b1], ι(π)[bN , n] = π[bN , n],

ι(π)[bi, bi+1]=

{
sm ·π[bi, bi+1] if π[bi, bi+1] is an arc, with π(bi)=π(bi+1)∈Hm;

π[bi, bi+1] otherwise

whenever 1 6 i < N . That is, ι(π) is obtained from π by reflecting all arcs. As
usual, this yields an involution ι : Std62(n) → Std62(n) determined by πι(t) =
ι(πt) for all t ∈ Std62(n). Then ι restricts to an involution on DStde,p(λ).
Moreover, by Lemmas 4.17 and 4.18(i), for all t ∈ DStde(λ) we have

iι(t) = it, deg(ι(t)) = − deg(t),
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which implies (4.12). Combining (4.12) with Theorem 4.22(iii), we obtain the
inequality ∑

t∈Std(λ,i)

deg(t) > 0 (4.13)

for any fixed i ∈ In. It is proved in [14, Cor. 3.16] via determinants of Gram
matrices for Specht modules that this inequality holds for an arbitrary (multi)parti-
tion λ, but in general no combinatorial proof is known (even when λ is an e-core,
in which case (4.13) becomes an equality).

5. Homomorphisms between 2-column Specht modules

Let O be an arbitrary (unital) commutative ring and n ∈ Z>0. We recall a row
removal result from [10] for homomorphisms between Specht modules, applied in
the special case of the algebra RΛ0

n := RΛ0

n,O.

Let λ, µ ∈ Par(n). Recall from Proposition 2.1 that SλO has a basis {vt | t ∈
Std(λ)}. Also, recall the tableaux tµ and tµ from §2.3. A standard tableau t ∈
Std(λ) is µ-row-dominated if, whenever t−1(a, b) = (tµ)−1(c, d) for some (a, b) ∈
JλK and (c, d) ∈ JµK, we have a 6 c. Denote the set of µ-row-dominated elements
of Std(λ) by Stdµ(λ). A homomorphism ϕ ∈ Hom

R
Λ0
n

(SµO, S
λ
O) is said to be (row-)

dominated if ϕ(vµ) ∈ 〈vt | t ∈ Stdµ(λ)〉O. We denote by DHom
R

Λ0
n

(SµO, S
λ
O) the

set of dominated homomorphisms lying in Hom
R

Λ0
n

(SµO, S
λ
O).

If λ = (λ1, . . . , λl) is a partition and t ∈ Std(λ), let λ̄ := (λ2, . . . , λl) and let
t̄ ∈ Std(λ̄) be the tableau obtained from t by removing the first row and decreasing
all entries by λ1.

Theorem 5.1 ([10, Thm. 4.1]). Let λ, µ ∈ Par(n) be such that λ1 = µ1. There is
an isomorphism

DHom
R

Λ0
n

(
SµO, S

λ
O
) ∼→ DHom

R
Λ0
n−λ1

(
Sµ̄O, S

λ̄
O
)
, ϕ 7→ ϕ̄

of graded O-modules. Moreover, if ϕ ∈ Hom
R

Λ0
n

(SµO, S
λ
O) is given by

ϕ(vµ) =
∑

t∈Std(λ)

atv
t

for some coefficients at ∈ O, then

ϕ̄(vµ̄) =
∑

t∈Std(λ)

atv
t̄.

Remark 5.2.
(i) This result is stated in [10] in terms of column Specht modules when O is a

field. However, the proof works for an arbitrary commutative ring O and can be
translated to the present set-up by transposing all partitions and tableaux. The
second assertion of Theorem 5.1 is clear from the proof of [10, Thm. 4.1].

(ii) By [10, Thm. 3.6], whenever e > 2, we have

DHom
R

Λ0
n

(SµO, D
λ
O) = Hom

R
Λ0
n

(SµO, S
λ
O) for all λ, µ ∈ Par(n).

Our next goal is to apply Theorem 5.1 to 2-column partitions.
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Lemma 5.3. Let λ ∈ Par62(n). Suppose that t, s ∈ Std(λ) satisfy s P t, and let
w ∈ Sn be determined from s = wt. Then `(d(s)) = `(d(t)) + `(w).

Proof. We may assume that s 6= t. Let r ∈ [1, n] be smallest such that s(r) 6= t(r).
Then s(r) = (a+1, 1) and t(r) = (b+1, 2) for some a, b ∈ Z>0. Let v = t−1(a+1, 1)
and u = sv−1t. Then `(d(u)) = `(d(t)) + 1. We claim that s P u. Indeed, for
j ∈ [1, n] \ {v− 1}, we have Shape(u↓j) = Shape(t↓j) Q Shape(s↓j). On the other
hand, the second column of Shape(s↓v−1) has size at most b + v − 1 − r, which
is equal to the size of the second column of Shape(u↓v−1). This proves the claim.
Arguing by induction, we may assume that the lemma holds with t replaced by u,
whence it follows that

`(d(s)) = `(d(u)) + `(wsv−1) = `(d(u)) + `(w)− 1 = `(d(t)) + `(w). �

Lemma 5.4. Let λ ∈ Par62(n) and t ∈ Std(λ).

(i) The element vt ∈ SλO does not depend on the choice of a reduced expression
for d(t) ∈ Sn.

(ii) Let s ∈ Std(λ) be such that s P t. If w ∈ Sn satisfies wt = s then
ψwv

t = vs.

Proof. By (2.9), in order to prove (i) it suffices to show that w := d(t) is fully
commutative, i.e., that every reduced expression for w can be obtained from any
other by using only relations of the form sisj = sjsi for i, j ∈ [1, n − 1] with
|i − j| > 1. By [1, Thm. 2.1], this is equivalent to showing that for no triple
1 6 i < j < k 6 n it is the case that wi > wj > wk. This last statement is
clear since two of i, j, k must lie in the same column of t. Part (ii) follows from (i)
because a reduced expression for d(s) can be obtained by concatenating reduced
expressions for d(t) and w, by Lemma 5.3. �

We note that the statements of Lemmas 5.3 and 5.4 are generally false for
partitions with arbitrarily many columns. An analogue of Lemma 5.4(i) for 2-row
partitions is [19, Lem. 3.17].

In the rest of the section, we assume that O = Z and write RΛ0
n := RΛ0

n,Z. The
results proved over Z below may be seen to hold over an arbitrary commutative
ring by extending scalars.

Lemma 5.5. Suppose that n ≡ j − 1 mod e with 1 6 j < e and n > j − 1. Let
µ = (1n) and λ = (2j , 1n−2j). Then there is a dominated RΛ0

n -homomorphism
ϕ : SµZ → SλZ given by vµ 7→ vtλ . Moreover, ϕ is homogeneous of degree 1.

Proof. By Theorem 4.8 and Lemma 4.7(ii), the RΛ0

n,Q-module SλQ has exactly two

graded composition factors, namely Dλ
Q and Dµ

Q〈1〉, so there is a non-zero homo-

morphism of degree 1 from SµQ to SλQ. It is easy to see that tλ is the only standard
λ-tableau with residue sequence iµ, so a scalar multiple of this homomorphism
sends vµ to vtλ . In view of Corollary 2.2, the lemma follows. �

Consider a partition λ = (2x, 1y) ∈ Par62(n) such that y ≡ −j−1 (mod e) and
x > j for some 1 6 j < e. We define Tλe to be the tableau obtained by putting
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t(2x−j) on top of the tableau t(2j ,1y), with all entries in the latter tableau increased
by 2(x− j). In other words, for all (a, b) ∈ JλK, we set

(Tλe )−1(a, b) :=


2(a− 1) + b if a 6 x− j;
x− j + a if a > x− j and b = 1;

x+ y + a if a > x− j and b = 2.

Theorem 5.6. Let λ = (2x, 1y) ∈ Par62(n). Suppose that y ≡ −j−1 (mod e) for
some 1 6 j < e and that x > j. Let µ = (2x−j , 1y+2j). Then there is a dominated
RΛ0
n -module homomorphism

ϕλ,µ : SµZ → SλZ , v
µ 7→ vT

λ
e ,

which is homogeneous of degree 1.

Proof. This follows from Lemma 5.5 and Theorem 5.1 applied x− j times. �

Remark 5.7. Up to scalar multiples, the only non-zero homomorphisms between
Specht modules SλQ and SµQ for distinct λ, µ ∈ Par62(n) are obtained from those
given by Theorem 5.6 by extending scalars. This follows from a consideration of
composition factors of these Specht modules given by Theorem 4.8.

The aim of the rest of this section is to describe the kernel and image of the
homomorphism ϕλ,µ from Theorem 5.6 in terms of e-regular tableaux.

Fix λ = (2x, 1y) and j ∈ [1, e − 1] satisfying the hypotheses of Theorem 5.6.
Let m ∈ Z>0 be such that y = me − j − 1. Recall the set H from (3.7). Given
0 6 r 6 x− j, set

Qr := {t ∈ Std(λ) | πt(2r +me− 1) ∈ Hm and

πt(a) /∈ H whenever 2r +me− 1 < a 6 n}.

That is, a standard λ-tableau t lies in Qr if and only if the path πt hits the wall
Hm at step 2r +me− 1 and does not hit any walls at later steps. Then

Std(λ) \ DStde(λ) =

x−j⊔
r=0

Qr. (5.1)

If e = 2, then j = 1 and Qr = ∅ for all r < x − j. If e > 2, then each set Qr on
the right-hand side of (5.1) is non-empty.

Lemma 5.8. Suppose that 0 6 r 6 x − j and that t, s ∈ Qr satisfy t↓2r+me−1=
s↓2r+me−1. If w ∈ Sn is such that s = wt, then vs = ψwv

t.

Proof. First, note that we can turn t into s by a series of elementary transpositions
of the form sa with 2r + me − 1 < a < n. Hence, it suffices to prove the lemma
when w = sa = (a, a+ 1) is an elementary transposition with a > 2r +me− 1.

If a + 1 lies in the first column of t and a lies in the second, then t . s, so
vs = ψav

t by Lemma 5.4(ii), as required. So we may assume that a lies in the
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second column of s, whence it follows that vt = ψav
s. Let k and l be determined

from s(a) = (k, 2) and s(a+ 1) = (l, 1), and set i := is. Then

(m− 1)e− 1 < πs(a) = l− k− 1 < πs(a+ 1) = l− k < πt(a) = l− k+ 1 < me− 1.

We have ia = 2− k + eZ and ia+1 = 1− l + eZ, so

ia − ia+1 = 1 + l − k + eZ /∈ {0, 1,−1}.

Hence, ψav
t = ψ2

av
s = vs by (2.10). �

Definition. Suppose that e > 2. For each r = 0, . . . , x − j, we define a special
element Tr ∈ Qr as follows:

(a) Tx−j := Tλe .
(b) Suppose that 0 6 r < x−j. Then we set νr := (2r, 1me−1) ∈ Par(2r+me−1)

and define Tr to be an arbitrary (fixed) element of Std(λ) satisfying the
following conditions:

(i) Tr↓2r+me−1= tν
r

;
(ii) 2r+me and 2r+me+1 are in the second column of Tr, and 2r+me+2

is in the first column;
(iii) whenever 2r+me+2 < a 6 n, we have (m−1)e−1 < πTr (a) < me−1

(or, equivalently, Tr ∈ Qr).
Further, for 0 6 r < x− j, define

Sr+1 := s2r+mes2r+me+1Tr ∈ Qr+1.

Example 5.9. Let e = 5 and λ = (25, 16). Then x − j = 2, and the paths πTr
and πSr (for a possible choice of T0 and T1) are as follows:

πT2 =

0 1 2 3 4 5 6 7 8 9

,
πS2 =

0 1 2 3 4 5 6 7 8 9 10

,

πT1
=

0 1 2 3 4 5 6 7 8 9

,
πS1 =

0 1 2 3 4 5 6 7 8 9 10

,

πT0
=

0 1 2 3 4 5 6 7 8 9

.

Lemma 5.10. Assume that e > 2. Suppose that 0 6 r 6 x − j and t ∈ Qr. If
t = wTr, where w ∈ Sn, then vt = ψwv

Tr .

Proof. Since t, Tr ∈ Qr, we can write w = w1w2, where w1 fixes the set [2r+me, n]
pointwise and w2 fixes [1, 2r + me − 1] pointwise. Set t1 := w1Tr. By definition
of Tr, we have Tr↓2r+me−1= tν

r

, where νr = (2r,me − 1). Hence, Tr Q t1, so by
Lemma 5.4(ii) we have ψw1

vTr = vt1 . Lemma 5.8 yields ψw2
vt1 = vt, whence the

result follows. �
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Lemma 5.11. If e > 2 and 0 6 r 6 x− j then ψ2r+mev
Tr = 0.

Proof. Let i = iTr and i′ = s2r+mei, so that (1− 1i′)ψ2r+mev
Tr = 0. It suffices to

show that {t ∈ Std(λ) | it = i′} = ∅, for then 1i′S
λ
Z = 0.

Suppose for contradiction that t ∈ Std(λ) has residue sequence i′. First, we
claim that t(a) = Tr(a) whenever 2r+me+ 2 6 a 6 n. Assuming the claim to be
false, we choose a to be maximal such that the equality fails. By maximality of a,

Shape(t↓a) = Shape(Tr↓a) =: (2c, 1d)

for some c, d ∈ Z>0. Since a lies in different columns in t and Tr and ita = iTra ,
the residues of the bottom nodes of the two columns of (2c, 1d) must be equal.
However, since (m − 1)e − 1 < πTr (a) < me − 1, we have d 6≡ −1 (mod e), from
which it follows that these two residues are not equal. This contradiction proves
the claim.

Using this claim, we obtain

Shape(t↓2r+me+1) = Shape(Tr↓2r+me+1) = (2r+me−1, 1r+2) =: γ.

Hence,

i′2r+me+1 = i2r+me = res
(
Tr(2r +me)

)
= res(r + 1, 2) = 1− r + eZ.

Therefore, res
(
t(2r+me+ 1)

)
= 1− r+ eZ. However, t(2r+me+ 1) must be the

bottom entry of either the first or the second column of γ, and these two entries
have residues 2− r + eZ and −r + eZ respectively, a contradiction. �

Lemma 5.12. If e > 2 and 0 6 r < x− j, then vTr = −ψ2r+me+1v
Sr+1 .

Proof. It is easy to see that Sr+1 / Tr. So, by Lemma 5.4(ii), we have vSr+1 =
ψ2r+meψ2r+me+1v

Tr . Further, note that

res
(
Tr(2r+me)

)
= res

(
Tr(2r+me+2)

)
= res

(
Tr(2r+me+1)

)
+1 = −r+1+eZ.

Hence,

−ψ2r+me+1v
Sr+1 = −ψ2r+me+1ψ2r+meψ2r+me+1v

Tr

= −(ψ2r+meψ2r+me+1ψ2r+me − 1)vTr

= vTr ,

where we have used (2.11) for the second equality and Lemma 5.11 for the third
equality. �

Proposition 5.13. If t ∈ Std(λ) \DStde(λ) then vt lies in the RΛ0
n -submodule of

SλZ generated by vT
λ
e .

Proof. If e = 2, then Tλe dominates every element of Qx−j = Std(λ) \ DStde(λ)
(cf. the proof of Lemma 5.10), so the result follows from Lemma 5.4(ii).

Assume that e > 2. Let U be the submodule in the statement of the proposition.
By Lemma 5.10, it is enough to show that vTr ∈ U for all 0 6 r 6 x− j. We use

backward induction on r and note that vTx−j = vT
λ
e ∈ U , so we may assume that

r < x − j and vTr+1 ∈ U . By the inductive hypothesis and Lemma 5.10 applied
again, Sr+1 ∈ U . Hence, vTr ∈ U by Lemma 5.12. �

The hypotheses of the following theorem are the same as in Theorem 5.6.



M. DE BOECK, A. EVSEEV, S. LYLE, L. SPEYER

Theorem 5.14. Let λ = (2x, 1y) ∈ Par62(n). Suppose that y ≡ −j − 1 (mod e)
for some 1 6 j < e and that x > j. Let µ = (2x−j , 1y+2j) and let ϕλ,µ : SµZ → SλZ
be as in Theorem 5.6. Then

ker(ϕλ,µ) = 〈vt | t ∈ Std(µ) \ DStde(µ)〉Z and

ϕλ,µ(SµZ ) = 〈vs | s ∈ Std(λ) \ DStde(λ)〉Z.

Proof. We use backward induction on y. Note that the kernel and image of ϕλ,µ
are free Z-modules by Proposition 2.1. By Proposition 5.13,

ϕλ,µ(SµZ ) ⊇ 〈vs | s ∈ Std(λ) \ DStde(λ)〉Z. (5.2)

Hence,

dimZ ker(ϕλ,µ) = | Std(µ)| − dimZ(ϕλ,µ(SµZ ))

6 | Std(µ)| − | Std(λ) \ DStde(λ)|
= | Std(µ)| − |DStde(µ)| = | Std(µ) \ DStde(µ)|,

(5.3)

where the penultimate equality holds because, by Lemma 3.6, the map rege rest-
ricts to a bijection Std(λ) \ DStde(λ)

∼→ DStde(µ).
We claim that

ker(ϕλ,µ) ⊇ 〈vt | t ∈ Std(µ) \ DStde(µ)〉Z. (5.4)

Let m ∈ Z>0 be such that y = me − j − 1. If x < e, then for all t ∈ Std(µ)
and 0 6 a 6 n we have πt(a) /∈ Hm+1, from which it follows that t ∈ DStde(µ)
and (5.4) holds trivially, as its right-hand side is 0. So, suppose that x > e and
let ν := (2x−e, 1y+2e), noting that y + 2e is the image of y + 2j under reflection
with respect to Hm+1. By the inductive hypothesis, the right-hand side of (5.4)
is exactly the image of ϕµ,ν . Now ϕλ,µϕµ,ν = 0 because, by Theorem 4.8, SλQ and
SνQ have no composition factors in common. Thus, the claim follows.

Using (5.3) and (5.4), we obtain the first equality in the theorem. Also, (5.3) is
an exact equality, so the two sides of (5.2) have the same Z-rank. This completes
the proof since the right-hand side of (5.2) is a pure Z-submodule of SλZ . �

Remark 5.15. Let λ ∈ Par62(n). It is not difficult to show that if t ∈ DStde(λ)
and s ∈ Std(λ) \DStde(λ) then it 6= is (cf. the claim in the proof of Lemma 5.11).
This leads to a more direct proof of the first equality in Theorem 5.14.

Proof of Theorem 1.1. Let λ = (2x, 1y), where y = me− 1− j for some m ∈ Z>0

and 0 6 j < e. If j = 0 or x < j, then DStde(λ) = Std(λ) and parts (i) and (iii) of
the theorem hold. Also, in this case SλK = Dλ

K by Theorem 4.8 and Lemma 4.7,
so (ii) holds as well.

On the other hand, if j 6= 0 and x > j, then (i) and (iii) follow from Theorems 5.6
and 5.14, and (ii) again follows from Theorem 4.8. �

Remark 5.16. Theorem 1.1(ii) is true with K replaced by any field of characteristic
0.

Recall the reflections sm from §3.3: we have sm · (me− 1 + j) = me− 1− j for
all m ∈ Z>0 and j ∈ Z.
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Corollary 5.17. Let λ1 = (2x1 , 1y1) ∈ Par62(n). Suppose that y1 = me − 1 + j
for some m ∈ Z>0 and 1 6 j < e, and that x1 < e − j. For k = 1, . . . ,m, let
yk = sm−k · . . . · sm · y1 and λk = (2xk , 1yk) ∈ Par62(n), where xk = (n − yk)/2.
Then the following is an exact sequence of RΛ0

n -homomorphisms:

0→ Sλ
1

Z
ϕλ2,λ1

−−−−→ Sλ
2

Z
ϕλ3,λ2

−−−−→ Sλ
3

Z → · · · → Sλ
m

Z .

Proof. The hypothesis ensures that DStde(λ
1) = Std(λ1), whence the result follows

from Theorems 5.6 and 5.14. �

6. Partitions with more than two columns

In this section, we outline a natural approach to extending the definition of
DStde(λ) to the case when a partition λ has more than two columns and give
an example showing that this approach does not always work. For simplicity, we
consider algebras over Q only, though all statements below are true with Q replaced
by any field of characteristic 0.

Fix n ∈ Z>0 and λ ∈ Par(n). Given t ∈ Std(λ) and u ∈ SλQ, we say that u is a
t-element if

u = vt +
∑

s∈Std(λ)
s.t

asv
s

for some coefficients as ∈ Q. It is important to note that, whereas the elements
vt depend on certain choices of reduced expressions, the set of all t-elements on
SλQ does not depend on such choices. This is the case because if one changes
the reduced expression for d(t), causing vt to be replaced by vt1, then vt1 = vt +∑

s∈Std(λ), s.t asv
s for some coefficients as ∈ Q (by [5, Prop. 4.7]).

Recall from §2.4 the bilinear form 〈· , ·〉 on SλQ and its radical radSλQ. Note
that, by the properties of the form stated after (2.17), for any t, s ∈ Std(λ), we
have 〈vt, vs〉 = 0 unless deg(t) + deg(s) = 0 and it = is. These facts are used
repeatedly in the sequel. Define

IStde(λ) := {t ∈ Std(λ) | radSλQ contains at least one t-element}.

For each t ∈ IStde(λ), choose a t-element wt ∈ radSλQ. The set {wt | t ∈ IStde(λ)}
is always linearly independent over Q. In the sequel, we call the partition λ e-
agreeable if {wt | t ∈ IStde(λ)} is a basis of radSλQ or, equivalently, if | IStde(λ)| =
dim(radSλQ). Whether or not {wt | t ∈ IStde(λ)} spans radSλQ does not depend
on the choice of the elements wt. Note that for each t ∈ Std(λ) one can choose
wt in such a way that wt is homogeneous of degree dege(t) and 1itw

t = wt.

Whenever λ is e-agreeable, it is reasonable to define DStde(λ) as the complement
Std(λ) \ IStde(λ). Then chq DStde(λ) = chqD

λ
Q thanks to the last observation in

the previous paragraph. Theorem 1.1 shows that, if λ ∈ Par62(n), then λ is e-
agreeable and the definition of DStde(λ) just given agrees with the combinatorial
one in §3.3.
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Remark 6.1. If we replaced the dominance order by an arbitrary total order on
Std(λ) in the definition of a t-element, then {wt | t ∈ IStde(λ)} would automatical-
ly be a basis of radSλQ by elementary linear algebra. This construction is discussed
in [14, §3.3].

Hu and Mathas [14, Sec. 6] construct a distinguished homogeneous cellular basis⊔
µ∈Par(n)

{Bst | s, t ∈ Std(µ)}

of RΛ0

n,Q, which does not depend on any choices of reduced expressions. This new

cellular structure yields a basis {Bt | t ∈ Std(λ)} of SλQ. It follows from [14,
Prop. 6.7] that Bt is a t-element for each t ∈ Std(λ).

A conjecture of Mathas [23, Conj. 4.4.1] implies, in particular, that for every
λ ∈ Par(n) there is a subset Tλ of Std(λ) such that {Bt | t ∈ Tλ} is a basis of
radSλQ. Since each Bt is a t-element, this in turn implies (via elementary linear
algebra) that every partition λ is e-agreeable. However, Example 6.2 below shows
that (for e = 3) not all partitions are e-agreeable. Hence, there is a counterexample
to [23, Conj. 4.4.1].

The following example was discovered using a GAP [11] program for calculating
Gram matrices of Specht modules. The program uses results from [14], especially
a certain seminormal basis, and is available on the fourth author’s website.2 Below
we give a self-contained and computer-independent verification.

Example 6.2. Let e = 3, n = 8 and λ = (4, 3, 1). Consider the tuple i =
(0, 1, 2, 2, 0, 1, 0, 1) ∈ I8. The set Std(λ, i) has exactly two elements of degree 2,
namely

t1 =

1 2 3 5

4 7 8

6

and t2 =

1 2 3 7

4 5 6

8

.

Further, Std(λ, i) has exactly one element of degree −2, namely

s =

1 2 4 7

3 5 8

6

.

Note that yλ = y3y7. We use the reduced expressions

d(t1) = s6s7s4, d(t2) = s6s5s4, d(s) = s6s7s5s3s4.

Using (2.17), we compute (cf. [23, Example 3.7.9]):

〈vt1 , vs〉vt
λ

= 1iλy3y7ψ4ψ7ψ
2
6ψ7ψ5ψ3ψ4v

tλ

= y3y7ψ4ψ7(y6 − y7)ψ7ψ5ψ3ψ4v
tλ

2http://www.people.virginia.edu/∼ls2zz/papers.html
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= −y3y7ψ4ψ7y7ψ7ψ5ψ3ψ4v
tλ

= y3y7ψ4ψ7ψ5ψ3ψ4v
tλ

= −y3ψ4ψ5ψ3ψ4v
tλ

= ψ4ψ5ψ4v
tλ

= (ψ5ψ4ψ5 + 1)vt
λ

= vt
λ

,

where we have repeatedly used the relations (2.13)–(2.15), and moreover we have
used (2.10) for the second equality, (2.8) and (2.10) for the third equality, (2.5)–
(2.8) for the fourth, fifth and sixth equalities and (2.11) for the seventh equality.
Further,

〈vt2 , vs〉vt
λ

= 1iλy3y7ψ4ψ5ψ
2
6ψ7ψ5ψ3ψ4v

tλ

= y3y7ψ4ψ5(y6 − y7)ψ7ψ5ψ3ψ4v
tλ

= y3y7ψ4ψ5y6ψ7ψ5ψ3ψ4v
tλ

= y3y7ψ4ψ5ψ7ψ3ψ4v
tλ

= vt
λ

,

where we have used (2.10) for the second equality, (2.8), (2.9) and (2.10) for the
third equality, (2.5)–(2.8) for the fourth equality, and the final equality repeats the
end of the previous computation.

Hence, 〈vt1 , vs〉=1=〈vt2 , vs〉. Therefore, the degree 2 component of 1i(radSλQ)
is 1-dimensional and is spanned by vt1 − vt2 . However, since neither of t1 and t2

dominates the other, neither of these two tableaux belongs to IStde(λ). Hence, λ
is not e-agreeable.
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