1 Cognitive and psychological science insights to improve

2 climate change data visualisation

3

4 Author information

- 5 Jordan Harold*
- 6 School of Psychology and Tyndall Centre for Climate Change Research, University of East
- 7 Anglia, Norwich, NR4 7TJ, UK.
- 8 Jordan.Harold@uea.ac.uk
- 9
- 10 Irene Lorenzoni
- 11 School of Environmental Sciences, Tyndall Centre for Climate Change Research, and
- 12 Science, Society and Sustainability (3S) Research Group, University of East Anglia,
- 13 Norwich, NR4 7TJ, UK.
- 14 I.Lorenzoni@uea.ac.uk
- 15
- 16 Thomas F. Shipley
- 17 Department of Psychology, Temple University, Philadelphia PA 19122, USA.
- 18 tshipley@temple.edu
- 19
- 20 Kenny R. Coventry*
- 21 School of Psychology, University of East Anglia, Norwich, NR4 7TJ, UK.
- 22 k.coventry@uea.ac.uk
- 23
- 24
- 25

26

27 Corresponding author

- 28 Correspondence to: Jordan Harold or Kenny R. Coventry
- 29

30 Acknowledgements

- 31 This work was supported by a PhD Studentship from the School of Psychology, University of
- 32 East Anglia (UEA) to J.H. and support from the Spatial Intelligence & Learning Centre
- 33 (SILC), Temple University (SBE-1041707 from the National Science Foundation) including a
- 34 travel grant to J.H. We would like to thank members of the Cognition Action Perception
- 35 research group in the School of Psychology, UEA for their participation in a workshop to
- 36 explore the scope of the review, and members of the Tyndall Centre for Climate Change
- 37 Research, UEA for their feedback on how the presented guidelines could work in practice.

38

39 Contributions

- 40 J.H. and K.R.C. outlined the scope of the review with input from T.F.S. and I.L. The
- 41 manuscript was drafted and prepared by J.H. with critical feedback from K.R.C., I.L. and
- 42 T.F.S. All authors contributed to editing of the final manuscript.

43

44 Competing financial interests

45 The authors declare no competing financial interests.

46

47

49 Abstract

50

51	Visualisation of climate data plays an integral role in the communication of climate change
52	findings to both expert and non-expert audiences. The cognitive and psychological sciences
53	can provide valuable insights into how to improve visualisation of climate data based on
54	knowledge of how the human brain processes visual and linguistic information. We review
55	four key research areas to demonstrate their potential to make data more accessible to
56	diverse audiences: directing visual attention; visual complexity; making inferences from
57	visuals; and the mapping between visuals and language. We present evidence-informed
58	guidelines to help climate scientists increase the accessibility of graphics to non-experts, and
59	illustrate how the guidelines can work in practice in the context of IPCC graphics.
60	
61	
62	

Limiting the risks of severe impacts from climate change will require substantial changes in 64 65 society to mitigate greenhouse gas emissions and adapt to a changing world¹. Scientific information is one factor among many that can influence decision-making to action change^{2,3} 66 67 and there is an increasing demand for accessible and relevant climate data by decision-68 makers⁴. Global assessments of climate change by the Intergovernmental Panel on Climate 69 Change (IPCC) provide important policy-relevant information. While summaries of these 70 assessments are primarily aimed at experts working in government, they have been 71 criticised for being inaccessible to non-experts, with particular focus on the complexity of language used in Summaries for Policy Makers (SPMs)^{5,6,7}. However, figures within SPMs 72 73 (i.e. graphics of scientific information in the form of graphs, diagrams, thematic maps and 74 other visuals), may also be inaccessible to non-experts (Fig. 1).

For example, viewers looking at graphics of climate model projections can confuse scenario uncertainty (i.e. unknown future societal choices) with model uncertainty⁸. There are challenges in visually synthesizing and representing uncertainty in climate knowledge, and diversity in normative judgements about the implications of such uncertainties⁹. Climate scientists may use different strategies to create meaning from climate science graphics than non-experts¹⁰. Furthermore, graphics of the same data represented in various styles have been shown to differentially influence judgements about future climate¹¹.

82

83 [insert Figure 1]

Figure 1. a. An example of a scientifically rigorous, policy-relevant IPCC graphic (caption

⁸⁵ below)⁹⁹. **b**. Aspects that might limit the accessibility of the graphic to non-expert audiences.

86 IPCC, AR5, Working Group 1, Figure SPM.5. Radiative forcing estimates in 2011 relative to 1750 and 87 aggregated uncertainties for the main drivers of climate change. Values are global average radiative forcing 88 (RF^{14}), partitioned according to the emitted compounds or processes that result in a combination of drivers. The 89 best estimates of the net radiative forcing are shown as black diamonds with corresponding uncertainty intervals; 90 the numerical values are provided on the right of the figure, together with the confidence level in the net forcing 91 (VH – *very high*, H – *high*, M – *medium*, L – *low*, VL – *very low*). Albedo forcing due to black carbon on snow and 92 ice is included in the black carbon aerosol bar. Small forcings due to contrails (0.05 W m⁻², including contrail

Page 4 of 35

93 induced cirrus), and HFCs, PFCs and SF₆ (total 0.03 W m⁻²) are not shown. Concentration-based RFs for gases 94 can be obtained by summing the like-coloured bars. Volcanic forcing is not included as its episodic nature makes 95 is difficult to compare to other forcing mechanisms. Total anthropogenic radiative forcing is provided for three 96 different years relative to 1750.

97

Visually representing climate data to inform decision-making can be challenging due to the
multi-dimensionality of data, the diversity in users' needs across different stakeholder
groups, and challenges and limitations in the use of software and tools to create graphics¹².
However, graphics can, in principle, support thinking¹³ and support narratives when
communicating with stakeholders¹⁴. Creating graphics of climate change data that overcome
comprehension difficulties and avoid misconceptions has the potential to enhance climate
change communications.

105 How can scientific graphics about climate change be made more accessible, while retaining 106 their scientific integrity? This guestion has been posed by the IPCC as they look ahead to 107 the Sixth IPCC Assessment Report¹⁵. In this review we consider research from the cognitive 108 and psychological sciences to help answer this guestion. One of the goals of these 109 disciplines is to understand how people comprehend written and visual information. We 110 provide an overview of how people create meaning from graphical representations of data 111 and highlight that intuitive design may not always correspond to best practice informed by 112 evidence. We then consider four key areas: directing visual attention; reducing visual 113 complexity; supporting inference-making; and integrating text with graphics. We present 114 evidence-informed guidelines to support climate scientists in developing more accessible 115 graphics, show how the guidelines can be applied in practice, and provide recommendations 116 on how the IPCC might utilise these guidelines in the development of future reports. 117 We argue that improving accessibility to graphics of climate change data does not 118 necessitate reducing or simplifying the *content* of the graphics per se (which might come

119 with a risk of diluting the science), but can be achieved by supporting cognitive processing of

the visual information.

121 Creating meaning from a scientific graphic

Graphics are often an effective way to communicate climate data - not only can they store and organise data efficiently, but they enable us to think about the data using visual perception¹³. Representing data visually can create patterns that the human visual system can easily process (e.g. the iconic 'hockey-stick' graph). However, graphics are not direct representations of reality; the meaning of the data they represent must be interpreted by the viewer. Therefore, prior to identifying how graphics of climate data might be made more accessible, we outline how the human brain creates meaning from a graphic.

129 First, sensory processes direct the eyes to specific features of the graphic. Visual attention 130 determines which features of the graphic the viewer looks at. Features that are visually 131 salient (e.g. by virtue of their colour, shape, size) can draw the attention of the viewer -132 known as *bottom-up* visual processing. Conversely, the viewer's expectations, driven by 133 prior knowledge (their previous experience of the world, and their goal or reason for looking at the graphic), can also direct visual attention – top-down visual processing (Fig. 2a)¹⁶. As 134 135 visual information is perceived from the features of the graphic, a mental representation of 136 the information is created in memory. The nature of the mental representation is influenced 137 by prior knowledge and goals and is constantly updated as the viewer visually explores the graphic¹³. 138

These cognitive processes are cyclical in nature; perceived and mentally represented information acts on expectations, which in turn direct further exploration of the graphic¹⁷. The human brain is thought to support cognition by constantly trying to match incoming sensory information against predictions of what to expect¹⁸. When perceived information matches our expectations, then comprehension is easy. Accessibility of a graphic can therefore be improved by matching visual features and prior knowledge (Fig. 2b).

145

146

Page 6 of 35

- 147 [insert Figure 2]
- Figure 2: Conceptual overview of the process of graphic comprehension and approaches toimproving accessibility.
- 150

151 Intuitive design ≠ improved accessibility

Advances in computing and software technologies have enabled climate scientists to create a wide-range of visual representations of scientific data¹². In addition, such representations may offer the viewer flexibility in how the data are displayed via interaction with the graphic. Such advances offer the potential to better match graphic parameters to viewer parameters to improve accessibility. However, these advances also place demands on creators and viewers of graphics in terms of their competence in selecting effective visual representations of the data for the task at hand¹⁹.

159 Evidence suggests there may be limits to experts' self-awareness (metacognition) for 160 creating or choosing effective visual representations of data. For example, some experts, as 161 well as non-experts, show preferences for graphic features that can actually impair comprehension, such as realistic features²⁰, 3D features²¹ and extraneous variables in 162 data²². Consequently, intuitions about good design practices may not always match best 163 164 practice informed by cognitive principles, and viewer preferences may not always be 165 predictive of ease of comprehension. Conversely, designing graphics with cognitive 166 principles in mind, and testing them with viewers, offers an empirical approach to improving 167 the visual communication of climate science data.

168

169

171 Accessibility ≠ loss of scientific rigour

172 The role of visual attention

173 To understand the details of a graphic we use our central vision, afforded by the fovea 174 centralis, which provides greater acuity than our peripheral vision. The visual field of the fovea centralis is approximately two degrees of visual angle in diameter²³, meaning that 175 176 when viewing an image from a distance of 60 cm (such as on a computer screen at about 177 arm's length), our central vision covers an area approximately 2 cm wide. At any one 178 moment in time our central vision can only focus on a limited area of a graphic. Therefore, 179 we move our eye gaze to sample information from different spatial locations (Fig. 3a), and to 180 build a detailed representation of the graphic as a whole we encode and retain information 181 from these different spatial locations in memory.

182 Limited cognitive resources mean that only a fraction of the rich visual information entering

the eyes at any given point in time is meaningfully processed and encoded to our internal

representation in memory 24 . Where to look, and what information to process, is directed by

visual attention. Consequently, if important details in a graphic are not captured by our

attention, they will not be processed by the brain and will not be drawn on to help

187 comprehend and interpret the data in the graphic (Fig. 3b). Directing visual attention to

important details can therefore make graphics more accessible by supporting viewers to look

at aspects of the graphic that afford understanding.

190

191 [insert Figure 3]

Figure 3. Example of visual attention for an IPCC figure for a non-expert viewer trying to interpret the graphic (measured using eye tracking: first 15 seconds of data shown). a: eye gaze shown as individual fixations and connections between fixations; b: areas receiving visual attention; computed from the locations of the fixations, weighted by the duration of each fixation. If visual features are not visually salient, they may not be attended to. In this example, the graphic's legend receives little visual attention and some parts of the legendreceive no visual attention at all.

Figure shown is IPCC, AR5, Working Group 1, Figure SPM.6.⁹⁹ Comparison of observed and simulated climate 199 200 change based on three large-scale indicators in the atmosphere, the cryosphere and the ocean: change in 201 continental land surface air temperatures (yellow panels), Arctic and Antarctic September sea ice extent (white 202 panels), and upper ocean heat content in the major ocean basins (blue panels). Global average changes are also 203 given. Anomalies are given relative to 1880–1919 for surface temperatures, 1960–1980 for ocean heat content 204 and 1979-1999 for sea ice. All time-series are decadal averages, plotted at the centre of the decade. For 205 temperature panels, observations are dashed lines if the spatial coverage of areas being examined is below 50%. 206 For ocean heat content and sea ice panels the solid line is where the coverage of data is good and higher in 207 quality, and the dashed line is where the data coverage is only adequate, and thus, uncertainty is larger. Model 208 results shown are Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble ranges, with 209 shaded bands indicating the 5 to 95% confidence intervals.

210

211 Directing attention by visual design

212 Visual properties that can capture attention by acting on bottom-up perceptual processing

include colour, motion, orientation and size²⁵. In addition, there are well-documented

214 'Gestalt' principles governing how individual elements in a graphic are grouped together

psychologically into meaningful entities²⁶. When elements of a graphic show a large degree

of contrast in these properties, the contrasting visual information is automatically captured by

attention and appears to 'pop-out' from the display (Fig. 4b-4d).

Another way to direct attention is through the use of arrows. Arrows are the symbolic visual

equivalent of pointing gestures, which have a widely accepted meaning of 'look here' and

are thought to direct attention automatically²⁷. They can therefore be particularly efficient

visual cues to establish joint attention between the author and the viewer for specific

features in a graphic (Fig. 4e). Of course arrows also have other uses – such as denoting

223 motion or temporal change – and one has to be careful not to use arrows to denote different

224 operations within the same graphic.

225 Using these properties in the visual design of climate science graphics can therefore help 226 guide attention. Particular visual properties (or combinations of these properties) to direct 227 attention may be more suited than others, depending on the context in which they are used. 228 Informed by human behaviour and neuroscience, computational models of 'bottom-up' visual 229 attention have been able to accurately predict which features of an image are most likely to be attended to²⁸. Such models provide immediate assessments of visually salient features of 230 a graphic, and might be useful to inform the design process²⁹. To check viewers' actual 231 232 visual attention for a graphic, eye-tracking can provide empirical evidence to inform visual 233 design. For example, eye tracking has been used to observe differences in the eye 234 movements of individuals who were successful or unsuccessful in solving a problem 235 scenario depicted in a graphic; visual elements that supported problem solving could then be made more visually salient³⁰. 236

237

238 [insert Figure 4]

Figure 4. Schematic of properties known to direct visual attention that can be used in the design ofgraphics to help direct viewers' attention to important information.

241

242 Directing attention by informing expectation

243 The details that are looked at within a graphic can also be directed by expectations about the 244 task at hand. For example, patterns of eye gaze are different when viewers search a graphic for a specific feature, compared to when they try to memorise the graphic as a whole³¹, or 245 when a map is studied to learn routes as opposed to the overall layout³². Explicitly stating 246 247 the intended task for which the graphic was created can help guide viewers' visual attention 248 to appropriate information. Furthermore, prior knowledge about the data, and prior 249 knowledge about the format or type of graphic chosen to represent the data, can also influence a viewer's cognition 33,34 . 250

Page 10 of 35

Research on the comprehension of meteorological charts has shown that providing viewers with relevant knowledge can support attention by directing it towards task-relevant features and away from task-irrelevant features³⁵. Furthermore, making task-relevant features visually salient by adapting visual design may enhance performance once appropriate knowledge is provided³⁵. Hence the interaction between bottom-up perceptual processing and top-down attentional control should be considered when designing graphics, with particular consideration given to what knowledge the viewer needs to correctly interpret the data.

258

259 Handling complexity

260 Some climate science graphics are more visually complex than others. For example, 261 ensemble datasets of climate models can be particularly complex and challenging to visualise³⁶. What is visual complexity, and how can complexity be handled to enable 262 263 graphics to be more accessible? Possible components that might contribute towards defining 264 and measuring visual complexity include the number of variables and/or data points in a graphic³⁷, the degree of uniformity of relationships represented by the data³³, or the degree 265 to which the data are organised to make relevant relationships in the data easier to identify³⁸. 266 267 However, while these components might be informative for simple graphics, they may not be 268 easily applied across the diverse types of graphics used to communicate climate science, 269 and may not always be predictive of comprehension. For example, in some instances an 270 increasing number of data points might make patterns in the data more obvious.

An alternative proxy for visual complexity is 'visual clutter', where excess visual information, or a lack of organisation of that information, impairs cognition³⁹. Excess visual clutter can increase the time it takes to search for an item⁴⁰, increase errors in judgments⁴¹ and impair processing of language accompanying a graphic⁴². Computer models, based on principles of human cognition, can assess graphics for visual clutter and have been validated against viewers' actual performance when undertaking simple tasks with graphics, such as

Page 11 of 35

searching for a specific feature³⁹. Although such models have yet to be established as
offering diagnostic value in identifying comprehension problems with graphics, they can be
useful to inform the design process by comparing different design options for a given
graphic²⁹.

281 One approach to avoid unnecessary visual complexity is to only include information in a graphic that is absolutely needed for the intended purpose⁴³. However, climate science 282 283 graphics may need to contain a certain level of detail or information to maintain scientific 284 integrity (i.e. to accurately represent the extent of, or limits to, scientific knowledge). Such 285 graphics may still be visually complex in spite of only showing important information. While 286 experts can integrate complex visual features into meaningful units of information 287 (perceptual 'chunks'), non-experts may lack such skills⁴⁴. Hence, segmenting information 288 into chunks of appropriate size and difficulty, and guiding viewers' attention to connections between these components could make comprehension of the data easier⁴⁵. However, such 289 290 an approach should be taken with care. If the task expected of the viewer is to compare or 291 contrast data represented in a graphic (known as 'integrative tasks'), then this may be more 292 easily performed when the data to be compared share representational similarities, such as close spatial proximity, or the same colour⁴⁶. 293

294

295 Supporting inference-making

296 Comprehension of a graphic of climate data goes beyond just perceptual processing of 297 visual features. For example, enabling viewers to make relevant and scientifically robust 298 inferences from data might be preferable to merely stating intended inferences in the 299 accompanying text of a graphic. Furthermore, graphics are not only used to impart 300 information, they can also be used to support sense-making and guide decision-making. In 301 the context of the science-policy interface, this is indeed one of the goals of science communication and aligns with the IPCC's remit of being policy-relevant and not policy
 prescriptive⁴⁷.

Improving accessibility to climate science graphics therefore involves supporting viewers to
 make appropriate inferences. Symbolic elements in diagrams, such as lines, boxes, crosses
 and circles can support inference-making about relationships in the data, based on their
 geometric properties⁴⁸. For example, lines indicate connections, while arrows can indicate
 dynamic, causal or functional information⁴⁹.

309 Inferences may also relate to the mappings between the visual features of the graphic and 310 the data that they represent. Much of our cognition of conceptual ideas is thought to be metaphorical in nature⁵⁰. For example, *more* of something is conceptualised in mind as *up*, 311 312 and so temperature is said to be *rising*; similarly, financial concepts are used metaphorically 313 in speech with regards to limiting carbon emissions, i.e. having a carbon budget. Using mappings that match natural or cultural metaphors can therefore aid cognition⁵⁰. For 314 315 example, colour contains symbolic meaning, with red usually associated with 'warm' and blue with 'cold'⁵¹, and indeed these colour choices are often used to represent temperature 316 values in meteorological graphics. Metaphors often differ between cultures⁵² and so choice 317 318 of metaphors should be informed by the target audience (see section below on tailoring 319 graphics to different audiences).

320 How data are structured in a graphic can influence the type of information extracted, and in turn, what inferences are made about the data⁵³. For example, global climate projections are 321 322 typically plotted as line graphs with time on the x-axis and the variable of interest (e.g. 323 temperature anomaly) on the y-axis, which may direct viewers to consider given points in 324 time and their associated temperature projections. Conversely, plotting temperature 325 anomalies on the x-axis and time on the y-axis frames the data in terms of a projection of time for a given temperature threshold⁵⁴. Although in both cases the data are the same, the 326 327 alternative graphical representations may result in viewers drawing different inferences.

328 Sometimes the viewer of a graphic may need to make inferences about the data that are not 329 explicitly represented in the graphic. Examples include making inferences about the uncertainty of the data⁵⁵, relationships across multiple graphics⁵⁶, and relationships between 330 a theory and data in a graphic⁵⁷. Such tasks involve spatial reasoning, i.e. the viewer must 331 332 mentally infer information through spatial transformations⁵⁸. In such cases, inferences can be 333 supported either by explicitly showing the inferences in the graphic (and so removing the 334 need for spatial reasoning), or by supporting viewers' spatial reasoning, for example by 335 using text accompanying the graphic (see section below).

336

337 Using text to support cognition

Graphics of climate data are rarely used in isolation of accompanying text - text labels
typically indicate the referents of the data, such as what the axes and data points represent.
In accordance with norms of scientific reporting, captions provide contextual information and
are placed under graphics, while the relevance of the graphic and inferences that can be
drawn from it are placed in the body text, sometimes spatially distant from the graphic.

343 Separating text from graphics comes with a cognitive cost, known as the spatial contiguity $effect^{69}$. When there is distance between the spatial locations of the text and corresponding 344 345 graphic, attention must be split between the two. The viewer must visually search for the 346 corresponding elements (i.e. moving from text to graphic, or vice versa) and then integrate 347 both sources of information. Viewers may not exert effort to do this and instead may simply 348 treat text and graphics as independent units of information and read them independently of one another⁶⁰. However, when the distance between text and graphic is reduced, less 349 350 searching is required, and connections can be more easily made, resulting in improved 351 comprehension⁶¹. Tightly integrating text and graphic has been advocated as good design 352 practice to support comprehension, i.e. embedding text within a graphic (Fig. 4f), or even embedding small graphics within text⁶². 353

354 Furthermore, language that accompanies a graphic has the potential not only to provide 355 context, but also to influence thought about the spatial relationships of the properties of the 356 graphic. Tasks involving spatial relationships might include comparisons of temperature 357 anomalies at different spatial locations on a map, inferring trends in data from observed 358 time-series data (which spatially plot x-y relationships), or comparing uncertainty ranges for 359 future projections of climate under different scenarios. These tasks all involve spatial 360 cognition, i.e. thinking about spatial relationships. Attending to linguistic information while 361 looking at visual information is known to influence spatial cognition, such as supporting spatial reasoning⁶³. For example, a short sentence asking viewers to ignore extreme data 362 363 points when looking at graphics of time series data results in participants attending to trends 364 during encoding⁶⁴. Language can also influence the extent to which a static visual is mentally 365 animated and the manner in which it is animated⁶⁵, which again might help with spatial 366 reasoning. Accompanying text can therefore support viewers in making appropriate spatial 367 inferences from a graphic.

368

369 Tailoring graphics to different audiences

We have so far considered insights drawn from *general* principles of human cognition to help inform improved visual communication of climate science data. However, it is important to acknowledge that certain cognitive factors may differ between audience groups, and between individuals within those groups.

Colour is one area where there is marked individual and cultural variation. People who

375 experience colour-blindness perceive colours differently from the general population and so

- colour choices for scientific graphics should be carefully chosen to avoid perceptual
- difficulties⁶⁶. The native language one speaks can also influence colour perception the
- number of colour terms available in a language can influence colour discrimination⁶⁷, which
- 379 might result in perceptual differences in the boundaries of colour-mapped data. Such

problems can be avoided by using achromatic (e.g. greyscale) colour mappings in which
 data values are mapped to luminance rather than hue⁶⁸, or by using colour scales that
 enable easy differentiation of colour.⁶⁹

As well as perceptual differences, there are also group differences in higher-level cognitive skills, such as spatial reasoning. Experts often have strong spatial reasoning skills, as has been shown in the geosciences⁷⁰, whereas spatial reasoning by non-experts may depend on their general visuospatial abilities⁷¹. Moreover, how attention is directed across a page exhibits marked cultural variations, with reading direction in a language (e.g. English – left to right; Arabic – right to left) associated with the direction of attention in visuospatial tasks⁷².

389 Other differences are more tied to an individual's personal knowledge and experience. For 390 example, prior experience can lead to a knowledge of 'where to look' and so can limit visual attention to specific spatial locations⁷³. Similarly, the extent of prior knowledge about the 391 392 data being visualised and prior experience using specific graphical formats can influence the ease with which inferences can be drawn from data⁷⁴. There can be trade-offs between 393 394 using an unfamiliar graphical format that may be difficult to initially interpret but which 395 efficiently represents a set of data, and a more familiar format whose structure can easily be grasped but which may provide an inefficient representation of the data³⁴. Individuals may 396 hold different and sometimes inaccurate mental models about complex scientific systems⁷⁵, 397 such as the underlying physical principles of climate change⁷⁶. Understanding a viewer's 398 399 existing mental model about the data and the systems from which the data originate can 400 inform how they can best be supported to make scientifically robust inferences.

While comprehension of a graphic can be dependent on such factors outlined above, the
underlying mechanisms responsible for human cognition are shared by everyone. Hence,
general principles drawn from human cognition can inform approaches to improve the
accessibility of graphics, but the specific way in which they are applied needs to be tailored.
Consequently, testing of graphics is important to ensure they are comprehensible to achieve
the desired communication goals^{8,13}.

Page 16 of 35

407 Gaps in current knowledge

408 Despite advances in our understanding of the comprehension of graphics, there are 409 important gaps in current knowledge that are of direct relevance to visualising climate data. Uncertainties of data can be difficult to communicate^{77,78}. Although general principles have 410 411 been proposed for visually communicating probabilistic uncertainty, the deep uncertainties of 412 climate change, in which knowledge and values are often disputed and outcomes are dependent on human behaviour, may not easily translate into visual representations⁷⁹. 413 414 Further research is needed on how different visual representations of uncertainty might support or hinder decision-making⁸⁰ and the cognitive processes involved in such tasks. 415 416 To provide decision-makers with access to data tailored to their needs, researchers and 417 climate service providers are exploring the use of interactive web-based graphics, such as The Climate Explorer (part of the U.S. Climate Resilience Toolkit)⁸¹ and The IMPACT2C 418 web-atlas⁸². Interaction, such as filtering or highlighting task-relevant information⁸³ has the 419 420 potential to support comprehension. However, there can be large individual differences in 421 the degree to which people use interactive functions and the extent to which they use these functions effectively⁸⁴; viewers require competence in meta-representational skills to make 422 appropriate interactions¹⁹. Consequently, unless viewers have the required skills, there may 423 424 be limits to how useful interactive graphics are to support comprehension and accessibility.

425 Both interactive graphics and animated graphics have been suggested to support the outreach of future IPCC assessments¹⁵. Research comparing static graphics with animated 426 427 graphics is often confounded by additional information being provided in animated graphics; hence observed benefits of animation in some tasks may not be due to animation per se⁸⁵. 428 In some cases animation may impair comprehension⁸⁶. Viewers may extract perceptually 429 salient information rather than task-relevant information from animations^{87,88} and cognitive 430 431 processing of the visual information may not be able to keep up with the pace of the animation^{87,89}. Animating graphics might be beneficial in specific situations if cognitive 432 demands of processing the information are factored into the design of such graphics⁹⁰. 433

Page 17 of 35

- 434 Providing an element of user-control offers the potential to overcome some of these
- 435 information processing limitations⁹¹. The decision to use an animated or interactive graphic
- 436 over a static graphic should be informed by cognitive demands and task requirements, be
- designed taking cognitive principles into account, and be tested with viewers to check
- 438 comprehension⁹².

440 Evidence-informed guidelines

- 441 Here we summarise the psychological insights considered by this review and provide
- 442 associated guidelines that can help to improve accessibility of graphics of climate science
- 443 (Table 1).
- 444
- Table 1. Evidence-informed guidelines to improve accessibility of scientific graphics of
- 446 climate science.

Psychological insights	Associated guidelines to improve			
	accessibility			
1. Intuitions about effective graphics do	Use cognitive and psychological principles to inform			
not always correspond to evidence-	the design of graphics; test graphics during their			
informed best practice for increasing	development to understand viewers'			
accessibility ^{20,21,22}	comprehension of them ^{8,13}			
Direct visual attention				
2. Visual attention is limited and	Present only the visual information that is required			
selective – visual information in a	for the communication goal at hand ⁴³			
graphic may or may not be looked at	Direct viewers' visual attention to visual features of			
and/or processed by viewers ²⁴	the graphic that support inferences about the data ⁹⁷			

 Salient visual features (where there is contrast in size, shape, colour or motion) can attract visual attention^{25,26} 	Make important visual features of the graphic perceptually salient so that they 'capture' the attention of the viewer ⁹⁷
 Prior experience and knowledge can direct visual attention^{34,35} 	Choose and design graphics informed by viewers' familiarity and knowledge of using graphics and their knowledge of the domain, i.e. knowledge about what the data represents ⁴³ Provide knowledge to viewers about which features of the graphic are important to look at, e.g. in text positioned close to the graphic (see Guideline 10)
Reduce complexity	
5. An excess of visual information can create visual clutter and impair comprehension ^{40,41,42}	Only include information that is needed for the intended purpose of the graphic ⁴³ ; break down the graphic into visual 'chunks', each of which should contain enough information for the intended task or message ³⁸

Support inference-making	
 6. Some inferences may require mental spatial transformations of the data⁵⁸; experts may have strong spatial reasoning skills⁷⁰, non-experts may not⁷¹ 	Remove or reduce the need for spatial reasoning skills by showing inferences directly in the graphic ⁵⁶ , and/or Support viewers in spatial reasoning, e.g. by providing guidance in text ⁶⁴ (see Guideline 10)
 The visual structure and layout of the data influences inferences drawn about the data⁵³ 	Identify the most important relationships in the data that are to be communicated; consider different ways of structuring the data that enable the viewer to quickly identify these relationships ⁴³
8. Animating a graphic may help or hinder comprehension ^{85,86}	Decisions to create animated graphics should be informed by cognitive principles ⁹² ; consider providing user-control over the playback and speed of the animation ⁹¹
9. Conceptual thought often makes use of cultural metaphors ⁵⁰	Match the visual representation of data to metaphors that aid conceptual thinking, e.g. 'up' is associated with 'good' and 'down' is associated with 'bad', ⁵⁰ data with negative connotations may be easiest to understand if presented in a downwards direction ⁹⁸

Integrate text with graphics	
10. When the graphic and the associated text are spatially distant, attention is split ^{59,60}	Keep the graphic and accompanying text close together ⁶² , e.g. use text within a graphic and locate the graphic next to the accompanying body text
11. Language can influence thought about the graphic ^{64,65}	Use text to help direct viewers' comprehension of the graphic, i.e. by providing key knowledge needed to interpret the graphic ⁴³

449 **Guidelines in practice**

450 To demonstrate how the guidelines can be applied in practice, we selected an IPCC SPM

- 451 graphic (Fig. 1a) identified by IPCC authors (personal communication) as potentially
- 452 challenging for comprehension. We first identified aspects that might hinder comprehension,
- 453 especially when interpreted by non-experts (Fig. 1b). Drawing on the guidelines we then
- 454 created a cognitively inspired version of the graphic, with the aim of making the data more
- 455 widely accessible while retaining scientific integrity (Fig. 5 and Box 1).

456

457 [insert Figure 5]

Figure 5. | A cognitively inspired version of IPCC AR5 WG1 SPM Figure SPM.6⁹⁹, using the
guidelines in Table 1 to increase accessibility while maintaining scientific rigour (see also
Box 1).

461

Box 1 | Guidelines used in the cognitively inspired version of IPCC AR5 WG1 SPM

463 Figure SPM.6.

464 The cognitively inspired version provides knowledge of the meaning of all abbreviations (guideline 465 11); breaks down information into 'chunks' to reduce complexity and clutter (guideline 5); uses larger 466 font size for headings, relative to other text, to attract attention (guideline 2 and 3); uses contrast in 467 colour to encourage attention of the distinction between human and natural radiative forcings 468 (guideline 3); shows the relationship between the 2011 total and the contributions to the total 469 (guideline 7); integrates the caption text within the graphic to reduce the need for splitting attention 470 (guideline 10); plots only point estimates and uncertainty ranges, i.e. removes bars, to reduce clutter 471 and encourage thinking about the best estimate and uncertainty (guidelines 3 and 5); removes the 472 need for multiple colours to represent each compound to reduce clutter (guideline 5); and uses text, 473 and colour as a metaphor, to support understanding of link between the data and surface 474 warming/cooling (guidelines 4,9,11).

We tested the alternative version of the graphic (Fig. 5) and the original (Fig. 1a) on a sample of experts (ten climate change researchers) and non-experts (ten psychology researchers). Eighty percent of participants indicated a preference for the cognitively inspired version, significantly more than expected by chance against the null hypothesis of there being no difference in preferences, exact binomial p = .012 (two-tailed). Such usertesting can help inform the development of graphics as part of an iterative design cycle.

482

483

484 **Creating accessible graphics**

There is the potential to develop improved scientific graphics of climate change data that are cognitively-inspired and easier to comprehend. This goal in particular aligns with the IPCC's desire to make outputs of future reports more accessible and user-friendly to diverse audiences⁹³.

489 In addition, the ease of accessibility of graphics of climate science also has implications for 490 how society might make best use of scientific knowledge. There have been calls for climate 491 scientists to take participatory roles in co-productive frameworks alongside stakeholders to help inform societal decision-making⁹⁴. Graphics of climate data that are accessible to all 492 493 parties involved could support improved engagement, dialogue and decision-making 494 between scientists, policy-makers, practitioners, communities and publics. Climate service 495 providers (who supply tailored climate knowledge to decision-makers) often use graphics to 496 communicate findings, and although the communication goals and intended audience may 497 be much more specific in these contexts than the global assessments made by the IPCC, data visualisation challenges remain⁹⁵. 498

499 While the science underpinning graphic comprehension is still developing, the guidelines

500 presented in this review provide a useful reference for climate scientists to apply

501 psychological and cognitive insights when creating graphics of data. However, as individuals

and groups can differ, there is no substitute for empirically testing graphics with the target
audience. Such testing need not be costly or time-consuming. Asking people to look at and
interpret drafts of graphics can indicate if graphics are broadly understandable or not.
Furthermore, rich diagnostic evidence afforded by eye tracking can indicate the efficiency of
comprehension and can identify reasons why comprehension is impaired, such as assessing
whether task-relevant information is visually salient or not. Informed by such evidence,
appropriate adjustments to graphics can be made and then they can be re-tested.

509 Greater collaboration between the climate change research community, the psychology and 510 cognitive science community and those working in associated disciplines, could help to 511 realise such an approach. For example, as the IPCC looks ahead to their Sixth Assessment 512 Report, there is an opportunity for the IPCC to open up the review process and ask these 513 communities for feedback on drafts of SPM graphics. Climate scientists and psychologists 514 could also jointly develop cognitively-inspired graphics of climate data, which are both 515 accessible and scientifically robust, for use in outputs outside of the formal IPCC process 516 (so-called 'derivative products'). Similar collaborations between research communities have led to improved communication in related fields such as cartography⁹⁶ and geoscience⁷⁰. 517 518 Graphics of climate data are integral to scientific assessments of climate change, but only 519 support communication and decision-making if they are understood. Empirically testing 520 graphics and applying insights from the science of human cognition to help overcome 521 comprehension problems, offers the potential to make climate science knowledge more 522 accessible to decision-makers in society, while also retaining the integrity of the scientific

523 data and evidence on which they are based.

524

525

526

- 1 IPCC *Climate Change 2014: Synthesis Report* (eds Pachauri, R. K. *et al.*) (Cambridge Univ. Press, 2014).
- 2 Clayton, S. *et al.* Psychological research and global climate change. *Nature Clim. Change* **5**, 640-646 (2015).
- 3 Dilling, L. & Lemos, M. C. Creating usable science: Opportunities and constraints for climate knowledge use and their implications for science policy. *Glob. Environ. Change* 21, 680-689 (2011).
- 4 Overpeck, J. T., Meehl, G. A., Bony, S. & Easterling D. R. Climate data challenges in the 21st century. *Science* **331**, 700-702 (2011).
- 5 Barkemeyer, R., Dessai, S., Monge-Sanz, B., Renzi, B. G. & Napolitano, G. Linguistic analysis of IPCC summaries for policymakers and associated coverage. *Nature Clim. Change* 6, 311-317 (2016).
- 6 Hollin, G. J. S. & Pearce, W. Tension between scientific certainty and meaning complicates communication of IPCC reports. *Nature Clim. Change* **5**, 753-756 (2015).
- 7 Budescu, D. V., Por, H. H., Broomell, S. B. & Smithson, M. The interpretation of IPCC probabilistic statements around the world. *Nature Clim. Change* **4**, 508-512 (2014).
- 8 McMahon, R., Stauffacher, M. & Knutti, R. The unseen uncertainties in climate change: reviewing comprehension of an IPCC scenario graph. *Clim. Change* **133**, 141-154 (2015).
- 9 Mahony, M. & Hulme, M. The colour of risk: An exploration of the IPCC's "burning embers" diagram. Spontaneous Generations: Journal for the History and Philosophy of Science
 6, 75-89 (2012).

- 10 Stofer, K. & Che, X. Comparing experts and novices on scaffolded data visualizations using eye-tracking. *J. Eye Mov. Res.* **7**(5), 2 (2014).
- 11 Daron, J. D., Lorenz, S., Wolski, P., Blamey, R. C. & Jack, C. Interpreting climate data visualisations to inform adaptation decisions. *Clim. Risk Manage.* **10**, 17-26 (2015).
- 12 Nocke, T., Sterzel, T., Böttinger, M. & Wrobel, M. (2008) in *Digital Earth Summit on Geoinformatics 2008: Tools for Global Change Research*. (eds Ehlers M. *et al.*) 226-232 (Wichmann, 2008).
- 13 Hegarty, M. The cognitive science of visual-spatial displays: Implications for design. *Top. Cogn. Sci.* **3**, 446-474 (2011).
- 14 O'Neill, S., Williams, H. T. P., Kurz, T., Wiersma, B. & Boykoff, M. Dominant frames in legacy and social media coverage of the IPCC Fifth Assessment Report. *Nature Clim. Change* 5, 380-385 (2015).
- 15 IPCC Expert Meeting on Communication Meeting Report (eds Lynn, J. et al.) (World Meteorological Organization, 2016).
- 16 Pinker, S. in Artificial Intelligence and the Future of Testing (ed Freedle, R.) 73-126 (Lawrence Erlbaum Associates, 1990).
- 17 Neisser, U. Cognition and Reality: Principles and Implications of Cognitive Psychology.(W. H. Freeman & Company, 1976).
- 18 Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. *Behav. Brain Sci.* **36**, 181-204 (2013).
- 19 diSessa, A. A. Metarepresentation: Native competence and targets for instruction. *Cognition Instruct.* **22**, 293-331 (2004).
- 20 Smallman, H. S. & St. John, M. Naïve realism: Misplaced faith in realistic displays. *Ergon. Des.* **13**, 6-13 (2005).

- 21 Zacks, J., Levy, E., Tversky, B. & Schiano, D. J. Reading bar graphs: Effects of extraneous depth cues and graphical context. *J. Exp. Psychol. Appl.* **4**, 119-138 (1998).
- 22 Hegarty, M., Smallman, H. S., Stull, A. T. & Canham, M. S. Naïve cartography: How intuitions about display configuration can hurt performance. *Cartographica* 44, 171-186 (2009).
- 23 Rayner, K. Eye movements and attention in reading, scene perception, and visual search. *Q. J. Exp. Psychol.* **62**, 1457-1506 (2009).
- 24 Simons, D. J. & Chabris, C. F. Gorillas in our midst: Sustained inattentional blindness for dynamic events. *Perception* **28**, 1059-1074 (1999).
- 25 Wolfe, J. M. & Horowitz, T. S. What attributes guide the deployment of visual attention and how do they do it? *Nature Rev. Neurosci.* **5**, 495-501 (2004).
- 26 Bruce, V., Green, P. R., & Georgeson, M. A. Visual Perception: Physiology, Psychology, & Ecology. (Psychology Press, 2003).
- 27 Hommel, B., Pratt, J., Colzato, L. & Godijn, R. Symbolic control of visual attention. *Psychol. Sci.* **12**, 360-365 (2001).
- 28 Itti, L. & Koch, C. Computational modelling of visual attention. *Nature Rev. Neurosci.* 2, 194-203 (2001).
- 29 Rosenholtz, R., Dorai, A. & Freeman, R. Do predictions of visual perception aid design? *ACM Trans. Appl. Percep. (TAP)* **8**, 12 (2011).
- 30 Grant, E. R. & Spivey, M. J. Eye movements and problem solving: Guiding attention guides thought. *Psychol. Sci.* **14**, 462-466 (2003).
- 31 Henderson, J. M., Weeks, P. A. & Hollingworth, A. The effects of semantic consistency on eye movements during complex scene viewing. *J. Exp. Psychol. Hum. Percept. Perform.* 25, 210–228 (1999).

- 32 Brunyé, T. T. & Taylor, H. A. When goals constrain: Eye movements and memory for goal-oriented map study. *Appl. Cognitive Psych.* **23**, 772-787 (2009).
- 33 Carpenter, P. A. & Shah, P. A model of the perceptual and conceptual processes in graph comprehension. *J. Exp. Psychol. Appl.* **4**, 75-100 (1998).
- 34 Peebles, D. & Cheng, P. C. H. Modeling the effect of task and graphical representation on response latency in a graph reading task. *Hum. Factors* **45**, 28-46 (2003).
- 35 Hegarty, M., Canham, M. S. & Fabrikant, S. I. Thinking about the weather: How display salience and knowledge affect performance in a graphic inference task. *J. Exp. Psychol. Learn. Mem. Cogn.* **36**, 37-53 (2010).
- 36 Potter, K. *et al.* Ensemble-vis: A framework for the statistical visualization of ensemble data. *IEEE International Conference on Data Mining Workshops*, 233-240 (2009).
- 37 Meyer, J., Shinar, D. & Leiser, D. Multiple factors that determine performance with tables and graphs. *Hum. Factors* **39**, 268-286 (1997).
- 38 Shah P., Mayer, R. E. & Hegarty, M. Graphs as aids to knowledge construction: Signaling techniques for guiding the process of graph comprehension. *J. Educ. Psychol.* **91**, 690-702 (1999).
- 39 Rosenholtz, R., Li, Y. & Nakano, L. Measuring visual clutter. J. Vision 7, 17 (2007).
- 40 Neider, M. B. & Zelinsky, G. J. Cutting through the clutter: Searching for targets in evolving complex scenes. *J. Vision* **11**, 7 (2011).
- 41 Baldassi, S., Megna, N. & Burr, D. C. Visual clutter causes high-magnitude errors. *PLoS Biol.* 4, e56 (2006).
- 42 Coco, M. I. & Keller, F. in *Proceedings of the 31st Annual Conference of the Cognitive Science Society* (eds Taatgen, N. & van Rijn, H.) 274-279 (Cognitive Science Society, 2009).

43 Kosslyn, S. M. Graph design for the eye and mind. (OUP, 2006).

- 44 Chase, W. G. & Simon, H. A. Perception in chess. Cognitive Psychol. 4, 55-81 (1973).
- 45 Gobet, F. Chunking models of expertise: Implications for education. *Appl. Cognitive Psych.* **19**, 183-204 (2005).
- 46 Wickens, C. D. & Carswell, C. M. The proximity compatibility principle: Its psychological foundation and relevance to display design. *Hum. Factors* **37**, 473-494 (1995).
- 47 Decisions Taken with Respect to the Review of IPCC Processes and Procedures: Communications Strategy (IPCC, 2012);
 http://www.ipcc.ch/meetings/session35/IAC_CommunicationStrategy.pdf
- 48 Tversky, B. in *Handbook of Higher-Level Visuospatial Thinking* (eds Shah, P. & Miyake,A.) 1-34 (Cambridge Univ. Press, 2005).
- 49 Heiser, J. & Tversky, B. Arrows in comprehending and producing mechanical diagrams. *Cognitive Sci.* **30**, 581-592 (2006).
- 50 Lakoff, G. & Johnson, M. The metaphorical structure of the human conceptual system. *Cognitive Sci.* **4**, 195-208 (1980).
- 51 Ho, H. N., Van Doorn, G. H., Kawabe, T., Watanabe, J. & Spence, C. Colour-temperature correspondences: When reactions to thermal stimuli are influenced by colour. *PloS One* **9**, e91854 (2014).
- 52 Kövecses, Z. *Metaphor in culture: Universality and variation.* (Cambridge University Press, 2005).
- 53 Shah, P. & Carpenter, P. A. Conceptual limitations in comprehending line graphs. *J. Exp. Psychol. Gen.* **124**, 43-61 (1995).

- 54 Joshi, M., Hawkins, E., Sutton R., Lowe, J. & Frame, D. Projections of when temperature change will exceed 2 °C above pre-industrial levels. *Nature Clim. Change* 1, 407-412 (2011).
- 55 Trickett, S. B., Trafton, J. G., Saner, L. & Schunn, C. D. in *Thinking with Data* (eds Lovett, M. C. & Shah, P.) 65-85 (Psychology Press, 2007).
- 56 Trafton, J. G. *et al.* Turning pictures into numbers: Extracting and generating information from complex visualizations. *Int. J. Hum.-Comp. St.* **53**, 827-850 (2000).
- 57 Trafton, J. G., Trickett, S. B. & Mintz, F. E. Connecting internal and external representations: Spatial transformations of scientific visualizations. *Found. Sci.* 10, 89-106 (2005).
- 58 Trafton, J. G., Marshall, S., Mintz, F. & Trickett, S. B. in *Diagrammatic Representation and Inference, Volume 2317 Lecture Notes in Computer Science* (eds Hegarty, M., Meyer, B. & Narayanan, N. H.) 206-220. (Springer Berlin, 2002).
- 59 Mayer, R.E. Multimedia Learning (Cambridge Univ. Press, 2009).
- 60 Holsanova, J., Holmberg, N. & Holmqvist, K. Reading information graphics: The role of spatial contiguity and dual attentional guidance. *Appl. Cognitive Psychol.* 23, 1215-1226 (2009).
- 61 Ginns, P. Integrating information: A meta-analysis of the spatial contiguity and temporal contiguity effects. *Learn. Instr.* **16**, 511-525 (2006).
- 62 Tufte, E. R. Beautiful Evidence (Graphics Press, 2006).
- 63 Loewenstein, J. & Gentner, D. Relational language and the development of relational mapping. *Cognitive Psychol.* **50**, 315-353 (2005).

- 64 Harold, J., Coventry, K. R., Lorenzoni, I. & Shipley, T. F. in *Proceedings of the 37th Annual Meeting of the Cognitive Science Society* (eds Noelle, D. C. *et al.*) 872-877.
 (Cognitive Science Society, 2015).
- 65 Coventry, K. R., Christophel, T. B., Fehr, T., Valdés-Conroy, B. & Herrmann, M. Multiple routes to mental animation: Language and functional relations drive motion processing for static Images. *Psychol. Sci.* 24, 1379-1388 (2013).
- 66 Light, A. & Bartlein, P. J. The end of the rainbow? Color schemes for improved data graphics. *Eos* **85**, 385-391 (2004).
- 67 Thierry, G., Athanasopoulos, P., Wiggett, A., Dering, B. & Kuipers, J. R. Unconscious effects of language-specific terminology on preattentive color perception. *PNAS* 106, 4567-4570 (2009).
- 68 Moreland, K. in *Proceedings of the 5th International Symposium on Advances in Visual Computing: Part II* (eds Bebis, G. *et al.*) 92-103 (Springer-Verlag Berlin, 2009).
- 69 Harrower, M. & Brewer, C. A. ColorBrewer.org: An online tool for selecting colour schemes for maps. *Cartogr. J.* **40**, 27-37 (2003).
- 70 Shipley, T. F., Tikoff, B., Ormand, C. & Manduca, C. Structural geology practice and learning, from the perspective of cognitive science. *J. Struct. Geol.* **54**, 72-84 (2013).
- 71 Hambrick, D. Z. *et al.* A test of the circumvention-of-limits hypothesis in scientific problem solving: The case of geological bedrock mapping. *J. Exp. Psychol. Gen.* **141**, 397-403 (2012).
- 72 Shaki S., Fischer M. H. & Petrusic W. M. Reading habits for both words and numbers contribute to the SNARC effect. *Psychon. B. Rev.* **16**, 328–331 (2009).

- 73 Torralba, A., Oliva, A., Castelhano, M. S. & Henderson, J. M. Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. *Psychol. Rev.* **113**, 766-786 (2006).
- 74 Ratwani, R. M. & Trafton, J. G. (2008). Shedding light on the graph schema: Perceptual features versus invariant structure. *Psychon. B. Rev.* **15**, 757-762 (2008).
- 75 Gentner, D. & Gentner, D. R. in *Mental Models* (eds Gentner, D. & Stevens, A. L.) 99-129 (Lawrence Erlbaum Associates, 1983).
- 76 Sterman, J. D. & Sweeney, L. B. Understanding public complacency about climate change: Adults' mental models of climate change violate conservation of matter. *Clim. Change* 80, 213-238 (2007).
- 77 Gigerenzer, G., Hertwig, R., van den Broek, E., Fasolo, B. & Katsikopoulos, K. V. "A 30% chance of rain tomorrow": How does the public understand probabilistic weather forecasts? *Risk Anal.* 25, 623-629 (2005).
- 78 Budescu, D. V., Broomell, S. & Por, H. H. Improving communication of uncertainty in the reports of the Intergovernmental Panel on Climate Change. *Psychol. Sci.* 20, 299-308 (2009).
- 79 Spiegelhalter, D., Pearson, M. & Short, I. Visualizing uncertainty about the future. *Science* **333**, 1393-1400 (2011).
- 80 Andrienko, G. *et al.* Space, time and visual analytics. *Int. J. Geogr. Inf. Sci.* 24, 1577-1600 (2010).
- 81 U.S. Climate Resilience Toolkit, The Climate Explorer. https://toolkit.climate.gov/climateexplorer2/
- 82 IMPACT2C web-atlas. https://www.atlas.impact2c.eu/

- 83 Crampton, J. W. Interactivity types in geographic visualization. *Cartogr. Geogr. Inf. Sci.* **29**, 85-98 (2002).
- 84 Cohen, C. A. & Hegarty, M. Individual differences in use of external visualisations to perform an internal visualisation task. *Appl. Cognitive Psych.* **21**, 701-711 (2007).
- 85 Tversky, B., Morrison, J. B. & Betrancourt, M. Animation: can it facilitate? *Int. J. Hum.-Comput. St.* 57, 247-262 (2002).
- 86 Mayer, R. E., Hegarty, M., Mayer, S. & Campbell, J. When static media promote active learning: Annotated illustrations versus narrated animations in multimedia instruction. *J. Exp. Psychol. Appl.* **11**, 256-265 (2005).
- 87 Lowe, R. K. Extracting information from an animation during complex visual learning. *Eur. J. Psychol. Educ.* 14, 225-244 (1999).
- 88 Lowe, R. K. Animation and learning: Selective processing of information in dynamic graphics. *Learn. Instr.* **13**, 157-176 (2003).
- 89 Hegarty, M., Kriz, S. & Cate, C. The roles of mental animations and external animations in understanding mechanical systems. *Cognition Instruct.* **21**, 325-360 (2003).
- 90 Griffin, A. L., MacEachren, A. M., Hardisty, F., Steiner, E. & Li, B. A comparison of animated maps with static small-multiple maps for visually identifying space-time clusters. *Ann. Assoc. Am. Geogr.* **96**, 740-753 (2006).
- 91 Betrancourt, M. in *The Cambridge Handbook of Multimedia Learning* (ed Mayer, R. E.) 287-296 (Cambridge Univ. Press, 2005).
- 92 Shipley, T. F., Fabrikant, S. I. & Lautenschütz, A. K. in *Cognitive and Linguistic Aspects of Geographic Space* (eds Raubal, M., Mark, D. M. & Frank, A. U.) 259-270 (Springer-Verlag Berlin, 2013).

- 93 Report of the 41st Session of the IPCC. (IPCC, 2015); http://ipcc.ch/meetings/session41/final_report_p41.pdf
- 94 Rapley, C. G., et al. Time for Change? Climate Science Reconsidered, Report of the UCL Policy Commission on Communicating Climate Science (2014).
- 95 Davis, M., Lowe, R., Steffen, S., Doblas-Reyes, F. & Rodó, X. in *Communicating Climate-Change and Natural Hazard Risk and Cultivating Resilience* (eds Drake, J. L., Kontar, Y. Y., Eichelberger, J. C., Rupp, T. S. & Taylor, K. M.) 95-113 (Springer International Publishing, 2016).
- 96 Fabrikant, S. I., Hespanha, S. R. & Hegarty, M. Cognitively inspired and perceptually salient graphic displays for efficient spatial inference making. *Ann. Assoc. Am. Geogr.* **100**, 13-29 (2010).
- 97 Kosslyn, S. M. Understanding charts and graphs. *Appl. Cognitive Psych.* **3**, 185-225 (1989).
- 98 Meier, B. P. & Robinson, M. D. Why the sunny side is up: Associations between affect and vertical position. *Psychol. Sci.* **15**, 243-247 (2004).
- 99 IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. et al.) (Cambridge Univ. Press, 2013).

b.

Figure caption that explains abbreviations is spatially distant from the graphic, requiring attention to be split.

Overall size of bars may be more visually salient than point estimates and lower and upper bounds.

Visual clutter may be created by multiple colours in each bar.

Concept of radiative forcing may be unfamiliar – the link between the data and surface warming/cooling might not be easily made.

Figure 1.

a. Comprehension of graphics

Comprehension involves direction of visual attention, which can be driven by the visual features of the graphic and by the viewer's expectations from their prior knowledge.

Comprehension of attended information takes place in the context of prior knowledge using working memory, and enables inferences to be drawn from the data, creating new knowledge in long-term memory.

b. Improving accessibility

Graphics can be made more accessible and more easily understood by matching graphic parameters with parameters that influence or make up prior knowledge of the viewer.

Figure 2.

b. Areas receiving visual attention

Key: Visual attention (weighted by fixation duration)

Figure 3.

Figure 4.

Key information

Net radiative forcing best estimate and corresponding uncertainty interval

0.57 [0.29, 0.85] Plotted values and qualitative degree of confidence in Medium confidence the net radiative forcing (based on the type, amount, quality, and consistency of evidence)

Human activities: total radiative forcing for 1950, 1980 and 2011 (all relative to 1750)

Contributions to the total radiative forcing caused by human activities for 2011 (relative to 1750)

Radiative forcing							
	Surface cooling	Surface warming		For e are th	ach emitted compo ne component atmo	und (left), below spheric drivers	
Emitted compounds of well mixed greenhouse gases	-1 () 1 2	2	that o (in Wa	contribute to the net atts per square metre)	radiative forcing.	
Carbon dioxide (CO ₂)		~~	1.68 [1.33, 2.03] Very high confidence		CO2	1.68	
Methane (CH4)		~~	0.97 [0.74, 1.20] High confidence		CO ₂ H ₂ Ostr O ₃ CH4	0.02 0.07 0.24 0.64	
Halocarbons		~	0.18 [0.01, 0.35] High confidence		O3 CFCs HCFCs	-0.15 0.28 0.05	
Nitrous oxide (N ₂ O)		\$	0.17 [0.13, 0.21] Very high confidence		N20	0.17	
Emitted compounds of shor lived gases and aerosols	t						
Carbon monoxide (CO)		\$	0.23 [0.16, 0.30] Medium confidence		CO ₂ CH4 O3	0.09 0.07 0.08	
Non-methane volatile organic compounds		¢	0.10 [0.05, 0.15] Medium confidence		CO ₂ CH4 O3	0.03 0.03 0.04	
Nitrogen oxides (NO _X)	~		-0.15 [-0.34, 0.03] Medium confidence		Nitrate CH4 O3	-0.04 -0.25 0.14	
Aerosols and precursors (mineral dust, sulphar dioxide, amonia, organic carbon, black carbon)		-	-0.27 [-0.77, 0.23] High confidence		Mineral dust Sulphate Nitrate Organic carbon Black carbon	-0.10 -0.40 -0.07 -0.29 0.60	
Cloud changes due to aerosols			-0.55 [-1.33, -0.06] Low confidence	Notes: A	Albedo forcing due to	black carbon on	
Land use changes				precurs	ors estimate. Small fo	rcings due to	
Changes in reflected energy	\$		-0.15 [-0.25, -0.05] Medium confidence	contrail contrail	induced cirrus), and H	are metre, including IFCs, PFCs and	
				shown. Concentration-based radiative forcing: for gases can be obtained by summing components in the right-hand table above.		radiative forcings summing table above.	
Natural causes: radiative forcing for 2011 (relative to 1750)							
Changes in solar irradiance 0.05 [0.00, 0.10] Medium confidence					Notes: Volcanic forcing is not shown as its episodic nature makes it difficult to compare to other forcing mechanisms.		

episodic nature makes it difficult to compare to other forcing mechanisms.

Figure 5.