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Abstract 49 

 50 

Visualisation of climate data plays an integral role in the communication of climate change 51 

findings to both expert and non-expert audiences. The cognitive and psychological sciences 52 

can provide valuable insights into how to improve visualisation of climate data based on 53 

knowledge of how the human brain processes visual and linguistic information. We review 54 

four key research areas to demonstrate their potential to make data more accessible to 55 

diverse audiences: directing visual attention; visual complexity; making inferences from 56 

visuals; and the mapping between visuals and language. We present evidence-informed 57 

guidelines to help climate scientists increase the accessibility of graphics to non-experts, and 58 

illustrate how the guidelines can work in practice in the context of IPCC graphics. 59 

 60 

 61 

 62 

  63 
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Limiting the risks of severe impacts from climate change will require substantial changes in 64 

society to mitigate greenhouse gas emissions and adapt to a changing world1. Scientific 65 

information is one factor among many that can influence decision-making to action change2,3 66 

and there is an increasing demand for accessible and relevant climate data by decision-67 

makers4. Global assessments of climate change by the Intergovernmental Panel on Climate 68 

Change (IPCC) provide important policy-relevant information. While summaries of these 69 

assessments are primarily aimed at experts working in government, they have been 70 

criticised for being inaccessible to non-experts, with particular focus on the complexity of 71 

language used in Summaries for Policy Makers (SPMs)5,6,7. However, figures within SPMs 72 

(i.e. graphics of scientific information in the form of graphs, diagrams, thematic maps and 73 

other visuals), may also be inaccessible to non-experts (Fig. 1).  74 

For example, viewers looking at graphics of climate model projections can confuse scenario 75 

uncertainty (i.e. unknown future societal choices) with model uncertainty8. There are 76 

challenges in visually synthesizing and representing uncertainty in climate knowledge, and 77 

diversity in normative judgements about the implications of such uncertainties9. Climate 78 

scientists may use different strategies to create meaning from climate science graphics than 79 

non-experts10. Furthermore, graphics of the same data represented in various styles have 80 

been shown to differentially influence judgements about future climate11.  81 

 82 

[insert Figure 1] 83 

Figure 1. a. An example of a scientifically rigorous, policy-relevant IPCC graphic (caption 84 

below)99. b. Aspects that might limit the accessibility of the graphic to non-expert audiences. 85 

IPCC, AR5, Working Group 1, Figure SPM.5. Radiative forcing estimates in 2011 relative to 1750 and 86 
aggregated uncertainties for the main drivers of climate change. Values are global average radiative forcing 87 
(RF14), partitioned according to the emitted compounds or processes that result in a combination of drivers. The 88 
best estimates of the net radiative forcing are shown as black diamonds with corresponding uncertainty intervals; 89 
the numerical values are provided on the right of the figure, together with the confidence level in the net forcing 90 
(VH – very high, H – high, M – medium, L – low, VL – very low). Albedo forcing due to black carbon on snow and 91 
ice is included in the black carbon aerosol bar. Small forcings due to contrails (0.05 W m–2, including contrail 92 
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induced cirrus), and HFCs, PFCs and SF6 (total 0.03 W m–2) are not shown. Concentration-based RFs for gases 93 
can be obtained by summing the like-coloured bars. Volcanic forcing is not included as its episodic nature makes 94 
is difficult to compare to other forcing mechanisms. Total anthropogenic radiative forcing is provided for three 95 
different years relative to 1750.  96 

  97 

Visually representing climate data to inform decision-making can be challenging due to the 98 

multi-dimensionality of data, the diversity in users’ needs across different stakeholder 99 

groups, and challenges and limitations in the use of software and tools to create graphics12. 100 

However, graphics can, in principle, support thinking13 and support narratives when 101 

communicating with stakeholders14. Creating graphics of climate change data that overcome 102 

comprehension difficulties and avoid misconceptions has the potential to enhance climate 103 

change communications. 104 

How can scientific graphics about climate change be made more accessible, while retaining 105 

their scientific integrity? This question has been posed by the IPCC as they look ahead to 106 

the Sixth IPCC Assessment Report15. In this review we consider research from the cognitive 107 

and psychological sciences to help answer this question. One of the goals of these 108 

disciplines is to understand how people comprehend written and visual information. We 109 

provide an overview of how people create meaning from graphical representations of data 110 

and highlight that intuitive design may not always correspond to best practice informed by 111 

evidence. We then consider four key areas: directing visual attention; reducing visual 112 

complexity; supporting inference-making; and integrating text with graphics. We present 113 

evidence-informed guidelines to support climate scientists in developing more accessible 114 

graphics, show how the guidelines can be applied in practice, and provide recommendations 115 

on how the IPCC might utilise these guidelines in the development of future reports.  116 

We argue that improving accessibility to graphics of climate change data does not 117 

necessitate reducing or simplifying the content of the graphics per se (which might come 118 

with a risk of diluting the science), but can be achieved by supporting cognitive processing of 119 

the visual information. 120 
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Creating meaning from a scientific graphic 121 

Graphics are often an effective way to communicate climate data - not only can they store 122 

and organise data efficiently, but they enable us to think about the data using visual 123 

perception13. Representing data visually can create patterns that the human visual system 124 

can easily process (e.g. the iconic ‘hockey-stick’ graph). However, graphics are not direct 125 

representations of reality; the meaning of the data they represent must be interpreted by the 126 

viewer. Therefore, prior to identifying how graphics of climate data might be made more 127 

accessible, we outline how the human brain creates meaning from a graphic. 128 

First, sensory processes direct the eyes to specific features of the graphic. Visual attention 129 

determines which features of the graphic the viewer looks at. Features that are visually 130 

salient (e.g. by virtue of their colour, shape, size) can draw the attention of the viewer – 131 

known as bottom-up visual processing. Conversely, the viewer’s expectations, driven by 132 

prior knowledge (their previous experience of the world, and their goal or reason for looking 133 

at the graphic), can also direct visual attention – top-down visual processing (Fig. 2a)16. As 134 

visual information is perceived from the features of the graphic, a mental representation of 135 

the information is created in memory. The nature of the mental representation is influenced 136 

by prior knowledge and goals and is constantly updated as the viewer visually explores the 137 

graphic13.  138 

These cognitive processes are cyclical in nature; perceived and mentally represented 139 

information acts on expectations, which in turn direct further exploration of the graphic17.  140 

The human brain is thought to support cognition by constantly trying to match incoming 141 

sensory information against predictions of what to expect18. When perceived information 142 

matches our expectations, then comprehension is easy. Accessibility of a graphic can 143 

therefore be improved by matching visual features and prior knowledge (Fig. 2b). 144 

 145 

 146 
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[insert Figure 2] 147 

Figure 2: Conceptual overview of the process of graphic comprehension and approaches to 148 

improving accessibility. 149 

 150 

Intuitive design ≠ improved accessibility 151 

Advances in computing and software technologies have enabled climate scientists to create 152 

a wide-range of visual representations of scientific data12. In addition, such representations 153 

may offer the viewer flexibility in how the data are displayed via interaction with the graphic. 154 

Such advances offer the potential to better match graphic parameters to viewer parameters 155 

to improve accessibility. However, these advances also place demands on creators and 156 

viewers of graphics in terms of their competence in selecting effective visual representations 157 

of the data for the task at hand19.  158 

Evidence suggests there may be limits to experts’ self-awareness (metacognition) for 159 

creating or choosing effective visual representations of data. For example, some experts, as 160 

well as non-experts, show preferences for graphic features that can actually impair 161 

comprehension, such as realistic features20, 3D features21 and extraneous variables in 162 

data22. Consequently, intuitions about good design practices may not always match best 163 

practice informed by cognitive principles, and viewer preferences may not always be 164 

predictive of ease of comprehension. Conversely, designing graphics with cognitive 165 

principles in mind, and testing them with viewers, offers an empirical approach to improving 166 

the visual communication of climate science data.  167 

 168 

 169 

 170 
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Accessibility ≠ loss of scientific rigour 171 

The role of visual attention 172 

To understand the details of a graphic we use our central vision, afforded by the fovea 173 

centralis, which provides greater acuity than our peripheral vision. The visual field of the 174 

fovea centralis is approximately two degrees of visual angle in diameter23, meaning that 175 

when viewing an image from a distance of 60 cm (such as on a computer screen at about 176 

arm’s length), our central vision covers an area approximately 2 cm wide. At any one 177 

moment in time our central vision can only focus on a limited area of a graphic. Therefore, 178 

we move our eye gaze to sample information from different spatial locations (Fig. 3a), and to 179 

build a detailed representation of the graphic as a whole we encode and retain information 180 

from these different spatial locations in memory.  181 

Limited cognitive resources mean that only a fraction of the rich visual information entering 182 

the eyes at any given point in time is meaningfully processed and encoded to our internal 183 

representation in memory24. Where to look, and what information to process, is directed by 184 

visual attention. Consequently, if important details in a graphic are not captured by our 185 

attention, they will not be processed by the brain and will not be drawn on to help 186 

comprehend and interpret the data in the graphic (Fig. 3b). Directing visual attention to 187 

important details can therefore make graphics more accessible by supporting viewers to look 188 

at aspects of the graphic that afford understanding.  189 

 190 

[insert Figure 3] 191 

Figure 3. Example of visual attention for an IPCC figure for a non-expert viewer trying to 192 

interpret the graphic (measured using eye tracking: first 15 seconds of data shown).  a: eye 193 

gaze shown as individual fixations and connections between fixations; b: areas receiving 194 

visual attention; computed from the locations of the fixations, weighted by the duration of 195 

each fixation. If visual features are not visually salient, they may not be attended to. In this 196 
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example, the graphic’s legend receives little visual attention and some parts of the legend 197 

receive no visual attention at all. 198 

Figure shown is IPCC, AR5, Working Group 1, Figure SPM.6.99 Comparison of observed and simulated climate 199 
change based on three large-scale indicators in the atmosphere, the cryosphere and the ocean: change in 200 
continental land surface air temperatures (yellow panels), Arctic and Antarctic September sea ice extent (white 201 
panels), and upper ocean heat content in the major ocean basins (blue panels). Global average changes are also 202 
given. Anomalies are given relative to 1880–1919 for surface temperatures, 1960–1980 for ocean heat content 203 
and 1979–1999 for sea ice. All time-series are decadal averages, plotted at the centre of the decade. For 204 
temperature panels, observations are dashed lines if the spatial coverage of areas being examined is below 50%. 205 
For ocean heat content and sea ice panels the solid line is where the coverage of data is good and higher in 206 
quality, and the dashed line is where the data coverage is only adequate, and thus, uncertainty is larger. Model 207 
results shown are Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble ranges, with 208 
shaded bands indicating the 5 to 95% confidence intervals.  209 

 210 

Directing attention by visual design   211 

Visual properties that can capture attention by acting on bottom-up perceptual processing 212 

include colour, motion, orientation and size25. In addition, there are well-documented 213 

‘Gestalt’ principles governing how individual elements in a graphic are grouped together 214 

psychologically into meaningful entities26. When elements of a graphic show a large degree 215 

of contrast in these properties, the contrasting visual information is automatically captured by 216 

attention and appears to ‘pop-out’ from the display (Fig. 4b-4d).  217 

Another way to direct attention is through the use of arrows. Arrows are the symbolic visual 218 

equivalent of pointing gestures, which have a widely accepted meaning of ‘look here’ and 219 

are thought to direct attention automatically27. They can therefore be particularly efficient 220 

visual cues to establish joint attention between the author and the viewer for specific 221 

features in a graphic (Fig. 4e). Of course arrows also have other uses – such as denoting 222 

motion or temporal change – and one has to be careful not to use arrows to denote different 223 

operations within the same graphic.  224 
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Using these properties in the visual design of climate science graphics can therefore help 225 

guide attention. Particular visual properties (or combinations of these properties) to direct 226 

attention may be more suited than others, depending on the context in which they are used. 227 

Informed by human behaviour and neuroscience, computational models of ‘bottom-up’ visual 228 

attention have been able to accurately predict which features of an image are most likely to 229 

be attended to28. Such models provide immediate assessments of visually salient features of 230 

a graphic, and might be useful to inform the design process29. To check viewers’ actual 231 

visual attention for a graphic, eye-tracking can provide empirical evidence to inform visual 232 

design. For example, eye tracking has been used to observe differences in the eye 233 

movements of individuals who were successful or unsuccessful in solving a problem 234 

scenario depicted in a graphic; visual elements that supported problem solving could then be 235 

made more visually salient30. 236 

 237 

[insert Figure 4] 238 

Figure 4. Schematic of properties known to direct visual attention that can be used in the design of 239 

graphics to help direct viewers’ attention to important information.  240 

 241 

Directing attention by informing expectation   242 

The details that are looked at within a graphic can also be directed by expectations about the 243 

task at hand. For example, patterns of eye gaze are different when viewers search a graphic 244 

for a specific feature, compared to when they try to memorise the graphic as a whole31, or 245 

when a map is studied to learn routes as opposed to the overall layout32. Explicitly stating 246 

the intended task for which the graphic was created can help guide viewers’ visual attention 247 

to appropriate information. Furthermore, prior knowledge about the data, and prior 248 

knowledge about the format or type of graphic chosen to represent the data, can also 249 

influence a viewer’s cognition33,34.  250 
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Research on the comprehension of meteorological charts has shown that providing viewers 251 

with relevant knowledge can support attention by directing it towards task-relevant features 252 

and away from task-irrelevant features35. Furthermore, making task-relevant features visually 253 

salient by adapting visual design may enhance performance once appropriate knowledge is 254 

provided35. Hence the interaction between bottom-up perceptual processing and top-down 255 

attentional control should be considered when designing graphics, with particular 256 

consideration given to what knowledge the viewer needs to correctly interpret the data. 257 

 258 

Handling complexity 259 

Some climate science graphics are more visually complex than others. For example, 260 

ensemble datasets of climate models can be particularly complex and challenging to 261 

visualise36. What is visual complexity, and how can complexity be handled to enable 262 

graphics to be more accessible? Possible components that might contribute towards defining 263 

and measuring visual complexity include the number of variables and/or data points in a 264 

graphic37, the degree of uniformity of relationships represented by the data33, or the degree 265 

to which the data are organised to make relevant relationships in the data easier to identify38. 266 

However, while these components might be informative for simple graphics, they may not be 267 

easily applied across the diverse types of graphics used to communicate climate science, 268 

and may not always be predictive of comprehension. For example, in some instances an 269 

increasing number of data points might make patterns in the data more obvious. 270 

An alternative proxy for visual complexity is ‘visual clutter’, where excess visual information, 271 

or a lack of organisation of that information, impairs cognition39.  Excess visual clutter can 272 

increase the time it takes to search for an item40, increase errors in judgments41 and impair 273 

processing of language accompanying a graphic42. Computer models, based on principles of 274 

human cognition, can assess graphics for visual clutter and have been validated against 275 

viewers’ actual performance when undertaking simple tasks with graphics, such as 276 
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searching for a specific feature39. Although such models have yet to be established as 277 

offering diagnostic value in identifying comprehension problems with graphics, they can be 278 

useful to inform the design process by comparing different design options for a given 279 

graphic29. 280 

One approach to avoid unnecessary visual complexity is to only include information in a 281 

graphic that is absolutely needed for the intended purpose43. However, climate science 282 

graphics may need to contain a certain level of detail or information to maintain scientific 283 

integrity (i.e. to accurately represent the extent of, or limits to, scientific knowledge). Such 284 

graphics may still be visually complex in spite of only showing important information. While 285 

experts can integrate complex visual features into meaningful units of information 286 

(perceptual ‘chunks’), non-experts may lack such skills44. Hence, segmenting information 287 

into chunks of appropriate size and difficulty, and guiding viewers’ attention to connections 288 

between these components could make comprehension of the data easier45. However, such 289 

an approach should be taken with care. If the task expected of the viewer is to compare or 290 

contrast data represented in a graphic (known as ‘integrative tasks’), then this may be more 291 

easily performed when the data to be compared share representational similarities, such as 292 

close spatial proximity, or the same colour46.  293 

 294 

Supporting inference-making 295 

Comprehension of a graphic of climate data goes beyond just perceptual processing of 296 

visual features. For example, enabling viewers to make relevant and scientifically robust 297 

inferences from data might be preferable to merely stating intended inferences in the 298 

accompanying text of a graphic. Furthermore, graphics are not only used to impart 299 

information, they can also be used to support sense-making and guide decision-making. In 300 

the context of the science-policy interface, this is indeed one of the goals of science 301 
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communication and aligns with the IPCC’s remit of being policy-relevant and not policy 302 

prescriptive47. 303 

Improving accessibility to climate science graphics therefore involves supporting viewers to 304 

make appropriate inferences. Symbolic elements in diagrams, such as lines, boxes, crosses 305 

and circles can support inference-making about relationships in the data, based on their 306 

geometric properties48. For example, lines indicate connections, while arrows can indicate 307 

dynamic, causal or functional information49.  308 

Inferences may also relate to the mappings between the visual features of the graphic and 309 

the data that they represent. Much of our cognition of conceptual ideas is thought to be 310 

metaphorical in nature50. For example, more of something is conceptualised in mind as up, 311 

and so temperature is said to be rising; similarly, financial concepts are used metaphorically 312 

in speech with regards to limiting carbon emissions, i.e. having a carbon budget. Using 313 

mappings that match natural or cultural metaphors can therefore aid cognition50. For 314 

example, colour contains symbolic meaning, with red usually associated with ‘warm’ and 315 

blue with ‘cold’51, and indeed these colour choices are often used to represent temperature 316 

values in meteorological graphics. Metaphors often differ between cultures52 and so choice 317 

of metaphors should be informed by the target audience (see section below on tailoring 318 

graphics to different audiences).  319 

How data are structured in a graphic can influence the type of information extracted, and in 320 

turn, what inferences are made about the data53. For example, global climate projections are 321 

typically plotted as line graphs with time on the x-axis and the variable of interest (e.g. 322 

temperature anomaly) on the y-axis, which may direct viewers to consider given points in 323 

time and their associated temperature projections. Conversely, plotting temperature 324 

anomalies on the x-axis and time on the y-axis frames the data in terms of a projection of 325 

time for a given temperature threshold54. Although in both cases the data are the same, the 326 

alternative graphical representations may result in viewers drawing different inferences. 327 
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Sometimes the viewer of a graphic may need to make inferences about the data that are not 328 

explicitly represented in the graphic. Examples include making inferences about the 329 

uncertainty of the data55, relationships across multiple graphics56, and relationships between 330 

a theory and data in a graphic57. Such tasks involve spatial reasoning, i.e. the viewer must 331 

mentally infer information through spatial transformations58. In such cases, inferences can be 332 

supported either by explicitly showing the inferences in the graphic (and so removing the 333 

need for spatial reasoning), or by supporting viewers’ spatial reasoning, for example by 334 

using text accompanying the graphic (see section below). 335 

 336 

Using text to support cognition 337 

Graphics of climate data are rarely used in isolation of accompanying text - text labels 338 

typically indicate the referents of the data, such as what the axes and data points represent. 339 

In accordance with norms of scientific reporting, captions provide contextual information and 340 

are placed under graphics, while the relevance of the graphic and inferences that can be 341 

drawn from it are placed in the body text, sometimes spatially distant from the graphic.  342 

Separating text from graphics comes with a cognitive cost, known as the spatial contiguity 343 

effect59. When there is distance between the spatial locations of the text and corresponding 344 

graphic, attention must be split between the two. The viewer must visually search for the 345 

corresponding elements (i.e. moving from text to graphic, or vice versa) and then integrate 346 

both sources of information. Viewers may not exert effort to do this and instead may simply 347 

treat text and graphics as independent units of information and read them independently of 348 

one another60. However, when the distance between text and graphic is reduced, less 349 

searching is required, and connections can be more easily made, resulting in improved 350 

comprehension61. Tightly integrating text and graphic has been advocated as good design 351 

practice to support comprehension, i.e. embedding text within a graphic (Fig. 4f), or even 352 

embedding small graphics within text62. 353 



Page 15 of 35 
 

Furthermore, language that accompanies a graphic has the potential not only to provide 354 

context, but also to influence thought about the spatial relationships of the properties of the 355 

graphic. Tasks involving spatial relationships might include comparisons of temperature 356 

anomalies at different spatial locations on a map, inferring trends in data from observed 357 

time-series data (which spatially plot x-y relationships), or comparing uncertainty ranges for 358 

future projections of climate under different scenarios. These tasks all involve spatial 359 

cognition, i.e. thinking about spatial relationships. Attending to linguistic information while 360 

looking at visual information is known to influence spatial cognition, such as supporting 361 

spatial reasoning63. For example, a short sentence asking viewers to ignore extreme data 362 

points when looking at graphics of time series data results in participants attending to trends 363 

during encoding64. Language can also influence the extent to which a static visual is mentally 364 

animated and the manner in which it is animated65, which again might help with spatial 365 

reasoning. Accompanying text can therefore support viewers in making appropriate spatial 366 

inferences from a graphic.  367 

 368 

Tailoring graphics to different audiences 369 

We have so far considered insights drawn from general principles of human cognition to help 370 

inform improved visual communication of climate science data. However, it is important to 371 

acknowledge that certain cognitive factors may differ between audience groups, and 372 

between individuals within those groups. 373 

Colour is one area where there is marked individual and cultural variation. People who 374 

experience colour-blindness perceive colours differently from the general population and so 375 

colour choices for scientific graphics should be carefully chosen to avoid perceptual 376 

difficulties66. The native language one speaks can also influence colour perception – the 377 

number of colour terms available in a language can influence colour discrimination67, which 378 

might result in perceptual differences in the boundaries of colour-mapped data. Such 379 
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problems can be avoided by using achromatic (e.g. greyscale) colour mappings in which 380 

data values are mapped to luminance rather than hue68, or by using colour scales that 381 

enable easy differentiation of colour.69 382 

As well as perceptual differences, there are also group differences in higher-level cognitive 383 

skills, such as spatial reasoning. Experts often have strong spatial reasoning skills, as has 384 

been shown in the geosciences70, whereas spatial reasoning by non-experts may depend on 385 

their general visuospatial abilities71. Moreover, how attention is directed across a page 386 

exhibits marked cultural variations, with reading direction in a language (e.g. English – left to 387 

right; Arabic – right to left) associated with the direction of attention in visuospatial tasks72. 388 

Other differences are more tied to an individual’s personal knowledge and experience. For 389 

example, prior experience can lead to a knowledge of ‘where to look’ and so can limit visual 390 

attention to specific spatial locations73. Similarly, the extent of prior knowledge about the 391 

data being visualised and prior experience using specific graphical formats can influence the 392 

ease with which inferences can be drawn from data74. There can be trade-offs between 393 

using an unfamiliar graphical format that may be difficult to initially interpret but which 394 

efficiently represents a set of data, and a more familiar format whose structure can easily be 395 

grasped but which may provide an inefficient representation of the data34. Individuals may 396 

hold different and sometimes inaccurate mental models about complex scientific systems75, 397 

such as the underlying physical principles of climate change76. Understanding a viewer’s 398 

existing mental model about the data and the systems from which the data originate can 399 

inform how they can best be supported to make scientifically robust inferences. 400 

While comprehension of a graphic can be dependent on such factors outlined above, the 401 

underlying mechanisms responsible for human cognition are shared by everyone. Hence, 402 

general principles drawn from human cognition can inform approaches to improve the 403 

accessibility of graphics, but the specific way in which they are applied needs to be tailored. 404 

Consequently, testing of graphics is important to ensure they are comprehensible to achieve 405 

the desired communication goals8,13. 406 



Page 17 of 35 
 

Gaps in current knowledge 407 

Despite advances in our understanding of the comprehension of graphics, there are 408 

important gaps in current knowledge that are of direct relevance to visualising climate data. 409 

Uncertainties of data can be difficult to communicate77,78. Although general principles have 410 

been proposed for visually communicating probabilistic uncertainty, the deep uncertainties of 411 

climate change, in which knowledge and values are often disputed and outcomes are 412 

dependent on human behaviour, may not easily translate into visual representations79. 413 

Further research is needed on how different visual representations of uncertainty might 414 

support or hinder decision-making80 and the cognitive processes involved in such tasks. 415 

To provide decision-makers with access to data tailored to their needs, researchers and 416 

climate service providers are exploring the use of interactive web-based graphics, such as 417 

The Climate Explorer (part of the U.S. Climate Resilience Toolkit)81 and The IMPACT2C 418 

web-atlas82. Interaction, such as filtering or highlighting task-relevant information83 has the 419 

potential to support comprehension. However, there can be large individual differences in 420 

the degree to which people use interactive functions and the extent to which they use these 421 

functions effectively84; viewers require competence in meta-representational skills to make 422 

appropriate interactions19. Consequently, unless viewers have the required skills, there may 423 

be limits to how useful interactive graphics are to support comprehension and accessibility. 424 

Both interactive graphics and animated graphics have been suggested to support the 425 

outreach of future IPCC assessments15. Research comparing static graphics with animated 426 

graphics is often confounded by additional information being provided in animated graphics; 427 

hence observed benefits of animation in some tasks may not be due to animation per se85. 428 

In some cases animation may impair comprehension86. Viewers may extract perceptually 429 

salient information rather than task-relevant information from animations87,88 and cognitive 430 

processing of the visual information may not be able to keep up with the pace of the 431 

animation87,89. Animating graphics might be beneficial in specific situations if cognitive 432 

demands of processing the information are factored into the design of such graphics90. 433 
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Providing an element of user-control offers the potential to overcome some of these 434 

information processing limitations91.  The decision to use an animated or interactive graphic 435 

over a static graphic should be informed by cognitive demands and task requirements, be 436 

designed taking cognitive principles into account, and be tested with viewers to check 437 

comprehension92. 438 

  439 
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Evidence-informed guidelines 440 

Here we summarise the psychological insights considered by this review and provide 441 

associated guidelines that can help to improve accessibility of graphics of climate science 442 

(Table 1). 443 

 444 

Table 1. Evidence-informed guidelines to improve accessibility of scientific graphics of 445 

climate science.  446 

Psychological insights Associated guidelines to improve 

accessibility 

 

1. Intuitions about effective graphics do 

not always correspond to evidence-

informed best practice for increasing 

accessibility20,21,22 

 

Use cognitive and psychological principles to inform 

the design of graphics; test graphics during their 

development to understand viewers’ 

comprehension of them8,13 

 

Direct visual attention 

 

 

2. Visual attention is limited and 

selective – visual information in a 

graphic may or may not be looked at 

and/or processed by viewers24 

 

Present only the visual information that is required 

for the communication goal at hand43 

Direct viewers’ visual attention to visual features of 

the graphic that support inferences about the data97  
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3. Salient visual features (where there is 

contrast in size, shape, colour or 

motion) can attract visual 

attention25,26 

 

Make important visual features of the graphic 

perceptually salient so that they ‘capture’ the 

attention of the viewer97  

 

4. Prior experience and knowledge can 

direct visual attention34,35 

 

Choose and design graphics informed by viewers’

familiarity and knowledge of using graphics and 

their knowledge of the domain, i.e. knowledge 

about what the data represents43 

Provide knowledge to viewers about which features 

of the graphic are important to look at, e.g. in text 

positioned close to the graphic (see Guideline 10) 

 

Reduce complexity 

 

 

5. An excess of visual information can 

create visual clutter and impair 

comprehension40,41,42 

 

Only include information that is needed for the 

intended purpose of the graphic43; break down the 

graphic into visual ‘chunks’, each of which should 

contain enough information for the intended task 

or message38 
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Support inference-making 

 

6. Some inferences may require mental 

spatial transformations of the data58; 

experts may have strong spatial 

reasoning skills70, non-experts may 

not71 

 

Remove or reduce the need for spatial reasoning 

skills by showing inferences directly in the graphic56, 

and/or 

Support viewers in spatial reasoning, e.g. by 

providing guidance in text64 (see Guideline 10) 

 

 

7. The visual structure and layout of the 

data influences inferences drawn 

about the data53 

 

Identify the most important relationships in the 

data that are to be communicated; consider 

different ways of structuring the data that enable 

the viewer to quickly identify these relationships43 

 

8. Animating a graphic may help or 

hinder comprehension85,86 

 

Decisions to create animated graphics should be 

informed by cognitive principles92; consider 

providing user-control over the playback and speed 

of the animation91 

9. Conceptual thought often makes use 

of cultural metaphors50 

 

Match the visual representation of data to 

metaphors that aid conceptual thinking, e.g. ‘up’ is 

associated with ‘good’ and ‘down’ is associated with 

‘bad’;50 data with negative connotations may be 

easiest to understand if presented in a downwards 

direction98  
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Integrate text with graphics 

 

10. When the graphic and the associated 

text are spatially distant, attention is 

split59,60 

 

Keep the graphic and accompanying text close 

together62, e.g. use text within a graphic and locate 

the graphic next to the accompanying body text  

 

 

11. Language can influence thought about 

the graphic64,65 

 

Use text to help direct viewers’ comprehension of 

the graphic, i.e. by providing key knowledge needed 

to interpret the graphic43 

 

 447 

  448 
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Guidelines in practice  449 

To demonstrate how the guidelines can be applied in practice, we selected an IPCC SPM 450 

graphic (Fig. 1a) identified by IPCC authors (personal communication) as potentially 451 

challenging for comprehension. We first identified aspects that might hinder comprehension, 452 

especially when interpreted by non-experts (Fig. 1b). Drawing on the guidelines we then 453 

created a cognitively inspired version of the graphic, with the aim of making the data more 454 

widely accessible while retaining scientific integrity (Fig. 5 and Box 1). 455 

 456 

[insert Figure 5] 457 

Figure 5. | A cognitively inspired version of IPCC AR5 WG1 SPM Figure SPM.699, using the 458 

guidelines in Table 1 to increase accessibility while maintaining scientific rigour (see also 459 

Box 1). 460 

 461 

Box 1 | Guidelines used in the cognitively inspired version of IPCC AR5 WG1 SPM 462 

Figure SPM.6. 463 

The cognitively inspired version provides knowledge of the meaning of all abbreviations (guideline 464 

11); breaks down information into ‘chunks’ to reduce complexity and clutter (guideline 5); uses larger 465 

font size for headings, relative to other text, to attract attention (guideline 2 and 3); uses contrast in 466 

colour to encourage attention of the distinction between human and natural radiative forcings 467 

(guideline 3); shows the relationship between the 2011 total and the contributions to the total 468 

(guideline 7); integrates the caption text within the graphic to reduce the need for splitting attention 469 

(guideline 10); plots only point estimates and uncertainty ranges, i.e. removes bars, to reduce clutter 470 

and encourage thinking about the best estimate and uncertainty (guidelines 3 and 5); removes the 471 

need for multiple colours to represent each compound to reduce clutter (guideline 5); and uses text, 472 

and colour as a metaphor, to support understanding of link between the data and surface 473 

warming/cooling (guidelines 4,9,11). 474 

 475 
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We tested the alternative version of the graphic (Fig. 5) and the original (Fig. 1a) on a 476 

sample of experts (ten climate change researchers) and non-experts (ten psychology 477 

researchers). Eighty percent of participants indicated a preference for the cognitively 478 

inspired version, significantly more than expected by chance against the null hypothesis of 479 

there being no difference in preferences, exact binomial p = .012 (two-tailed). Such user-480 

testing can help inform the development of graphics as part of an iterative design cycle. 481 

 482 

 483 

Creating accessible graphics  484 

There is the potential to develop improved scientific graphics of climate change data that are 485 

cognitively-inspired and easier to comprehend. This goal in particular aligns with the IPCC’s 486 

desire to make outputs of future reports more accessible and user-friendly to diverse 487 

audiences93.  488 

In addition, the ease of accessibility of graphics of climate science also has implications for 489 

how society might make best use of scientific knowledge. There have been calls for climate 490 

scientists to take participatory roles in co-productive frameworks alongside stakeholders to 491 

help inform societal decision-making94. Graphics of climate data that are accessible to all 492 

parties involved could support improved engagement, dialogue and decision-making 493 

between scientists, policy-makers, practitioners, communities and publics. Climate service 494 

providers (who supply tailored climate knowledge to decision-makers) often use graphics to 495 

communicate findings, and although the communication goals and intended audience may 496 

be much more specific in these contexts than the global assessments made by the IPCC, 497 

data visualisation challenges remain95.  498 

While the science underpinning graphic comprehension is still developing, the guidelines 499 

presented in this review provide a useful reference for climate scientists to apply 500 

psychological and cognitive insights when creating graphics of data. However, as individuals 501 
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and groups can differ, there is no substitute for empirically testing graphics with the target 502 

audience. Such testing need not be costly or time-consuming. Asking people to look at and 503 

interpret drafts of graphics can indicate if graphics are broadly understandable or not. 504 

Furthermore, rich diagnostic evidence afforded by eye tracking can indicate the efficiency of 505 

comprehension and can identify reasons why comprehension is impaired, such as assessing 506 

whether task-relevant information is visually salient or not. Informed by such evidence, 507 

appropriate adjustments to graphics can be made and then they can be re-tested.  508 

Greater collaboration between the climate change research community, the psychology and 509 

cognitive science community and those working in associated disciplines, could help to 510 

realise such an approach. For example, as the IPCC looks ahead to their Sixth Assessment 511 

Report, there is an opportunity for the IPCC to open up the review process and ask these 512 

communities for feedback on drafts of SPM graphics. Climate scientists and psychologists 513 

could also jointly develop cognitively-inspired graphics of climate data, which are both 514 

accessible and scientifically robust, for use in outputs outside of the formal IPCC process 515 

(so-called ‘derivative products’). Similar collaborations between research communities have 516 

led to improved communication in related fields such as cartography96 and geoscience70. 517 

Graphics of climate data are integral to scientific assessments of climate change, but only 518 

support communication and decision-making if they are understood. Empirically testing 519 

graphics and applying insights from the science of human cognition to help overcome 520 

comprehension problems, offers the potential to make climate science knowledge more 521 

accessible to decision-makers in society, while also retaining the integrity of the scientific 522 

data and evidence on which they are based. 523 

 524 

 525 

 526 

 527 
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