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In this paper, we investigate the accuracy-enhancement for the discontinuous Galerkin (DG) method 
for solving one-dimensional nonlinear symmetric systems of hyperbolic conservation laws. For 
nonlinear equations, the divided difference estimate is an important tool that allows for 
superconvergence of the post-processed solutions in the local L2  norm. Therefore, we first prove that 
the L2  norm of the α-th order (1 ™ α ™ k + 1) divided difference of the DG error with upwind fluxes is 
of order k + 3 − α , provided that the flux Jacobian matrix, f r (u), is symmetric positive definite. 
Furthermore, using the duality argument, we are able to derive superconvergence estimates of order 
2k + 3 − α  for the negative-order norm, indicating that some particular compact kernels can be used to 
extract at least ( 3 k + 1)th order supercon- vergence for nonlinear systems of conservation laws. 
Numerical experiments are shown to demonstrate the theoretical results. 
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1. Introduction 

Smoothness-Increasing Accuracy-Conserving (SIAC) filtering allows for extracting a higher-order accu- 

rate solution from the discontinuous Galerkin (DG) approximation, which can aid in reducing approx- 

imation errors. The motivation for this study is that the accuracy enhancing capabilities of the SIAC 

filter (Ryan et al., 2005; Mirzaee et al., 2011) for the DG method requires establishing convergence 

characteristics for the divided difference of the errors; see Theorem 2.1 below. In Meng & Ryan 

(2017), this was done for nonlinear scalar hyperbolic conservation laws. However, extending these 

estimates  to nonlinear hyperbolic systems is more challenging. A nonlinear system of hyperbolic 

conservation laws is a more general model arising from fluid dynamics. One such model is the Euler 

equations in gas 
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dynamics. In this paper we concentrate on the theoretical and computational aspects of the 

accuracy- enhancement of DG methods for solving one-dimensional nonlinear systems of 

conservation laws of the form 

 

ut + f (u)x  = 0, (x, t) ∈ (a, b) × (0, T ], (1.1a) 

u(x, 0) = u0(x), x ∈ Ω = (a, b), (1.1b) 

where u0(x) is a given smooth initial function. Here u = (u1,..., um)T is the unknown vector-valued 
solution, and f (u) = ( f1(u),..., fm(u))T with fi(u) = fi(u1, . . . , um) (i = 1, . . . , m) is the given flux 
function. The nonlinear flux function  f (u) is assumed to be sufficiently smooth with respect to the  
the exact solution u, and u is a smooth function of x. In this paper, periodic boundary conditions are 
assumed, which, however, is not essential. We show that the L2 norm of the α-th order (1 ™ α ™ k + 1) 
divided difference of the DG error achieves (k + 3 − α )th order using upwind fluxes, provided that the 

2 2 

flux Jacobian matrix f r (u) := ∂ f /∂ u is positive definite. By a duality argument, a superconvergent 
negative-order norm estimate of order 2k + 3 − α is further obtained.  This allows for extracting   the 

2 2 

hidden accuracy of at least ( 3 k + 1)th order for nonlinear systems of conservation laws, indicating 
that it is possible to use a more compact kernel with fewer B-splines. 

The DG method has an inherent superconvergence property, which has attracted the attention 

of many researchers for solving the first-order hyperbolic equations (see, e.g., Adjerid et al., 2002; 

Adjerid & Massey, 2006; Adjerid & Weinhart, 2009, 2011; Cao et al., 2014; Cheng & Shu, 2010; 

Cockburn   et al., 2003; Guo et al., 2013; Ryan et al., 2005; Steffen et al., 2008; Yang & Shu, 2012), 

high order equations (see, e.g., Celiker & Cockburn, 2007; Ji et al., 2012; Hufford & Xing, 2014; Meng 

et al., 2012b) and elliptic problems (see, e.g., Adjerid & Baccouch, 2012; Cockburn et al., 2009).  One 

of  the superconvergence properties that allows for superconvergence extraction through SIAC 

filtering is the negative-order norm estimates. The post-processing technique makes use of 

information contained in the negative-order norm entailing that a special convolution kernel can be 

constructed to extract the hidden accuracy. This is performed only at the very end of the computation. 

Some superconvergent post- processing results of DG methods for hyperbolic equations are available 

in the literature. Motivated by the work of Bramble and Schatz for elliptic equations in Bramble & 

Schatz (1977), Cockburn et al. (2003) established the post-processing theory for DG methods for 

hyperbolic equations that expresses the post-processed solutions in the L2 norm in terms of the 

divided difference error estimates in the negative-order norm. Later, Ryan et al. investigated 

different aspects of the SIAC filters (see, e.g., Ryan & Shu, 2003; Curtis et al., 2007; Steffen et al., 

2008). 

From the post-processing theory in Bramble & Schatz (1977) and Cockburn et al. (2003), it is ev- 
ident that negative-order norm error estimates of the divided differences are essential tools that 

allow for extracting superconvergent estimates of the post-processed solutions in the L2 norm. We 
note that, unlike purely linear equations (Cockburn et al., 2003; Ji et al., 2012), superconvergent 
estimates about the post-processed solution for quasi-linear/nonlinear equations require 

establishing both the L2 norm and negative-order norm estimates of divided differences of the DG 
error. For example, for linear hyper- bolic equations with variable coefficient, negative-order norm 
error estimates of the divided differences are shown in Mirzaee et al. (2011), and the corresponding 

L2 norm estimates are provided in Meng & Ryan (2017). 

Let us now mention a particular work that investigates accuracy enhancement and divided 

difference error estimates of DG methods for scalar nonlinear hyperbolic conservation laws (Meng & 

Ryan, 2017). Specifically, the analysis starts from a superconvergence result of the DG solution 

towards a particular projection of the exact solution (supercloseness). Then, by establishing 

important relations between the 



 

 

 

 
spatial derivatives and time derivatives of a particular projection of divided differences of DG errors 

and further by analyzing L2 estimates of the time derivatives of the error, we were able to derive a 

useful  L2 norm error estimates for the divided difference. Next, superconvergent negative-order 
norm error estimates for the divided difference are obtained which depend on a suitable 
construction of the dual problem for the divided difference of the nonlinear scalar hyperbolic 
conservation laws. 

To set a solid theoretical foundation of the post-processing technique for more general problems 

that are useful in computational fluid dynamics, it is therefore necessary to study the accuracy 

enhancement of DG methods for nonlinear (symmetric) systems of hyperbolic conservation laws. 

The generalization from the scalar nonlinear case to systems of nonlinear conservation laws in this 

paper involves both similarities and further difficulties and thus some new techniques are needed. As 

for the similarities, we would like to mention that an energy analysis is used and Taylor expansion is 

employed to deal with the nonlinearity of the flux function. Another similarity is that the 

superconvergence analyses both indicate a possible link between supercloseness and negative-order 

norm estimates; see the detailed proof below and also in Meng & Ryan (2017). 
As indicated in Meng & Ryan (2017), the first main difficulty arising from L2 norm estimates of the 

divided difference of the particular projection of the DG error can be handled by establishing impor- 

tant relations between the spatial derivatives and time derivatives of a particular projection of 

divided differences of DG errors. However, another essential difficulty in this paper is treating 

estimates of the divided difference of the projection error as the projection for the nonlinear systems 

is no longer linear. Note that the projection for the system case is constructed based on the local 

characteristic decomposi- 

tion, and therefore, by Leibniz rule, the main difficulty is switched to estimating the divided 
difference of R, whose columns are the right eigenvectors of the flux Jacobian f r (u) linearized at the 
center of each cell. To this end, we propose to analyze the eigenstructures of f r (u) and find that R 
can be expressed in terms of the components of  f r (u) as well as its eigenvalues.  Further,    noting 
that the entries of  R 
are compositions of some smooth functions, and using the chain rule for divided differences (see, 

e.g., Floater & Lyche, 2007) as well as the chain rule for derivatives (Faà  di Bruno’s Formula), we 

conclude that the leading term of the divided difference of R is a constant matrix. This finding 

together with the fact that the divided difference of the projection error of the characteristic 

variable is in possession of optimal approximation error estimate leads to the desired results in 

Corollary 2.2 and Corollary 3.1. 

There are some other difficulties in deriving superconvergent error estimates of DG methods for 

nonlinear systems of conservation laws.  As mentioned before, a supercloseness result about a  

special 

projection of the DG error (denoted by ξ := Pu − uh = Pe) needs to be established, which is a starting 
point in advancing  L2  norm estimates for high order divided differences.      In order to do this, unlike 
Meng & Ryan (2017) or Meng et al. (2012a), we express the L2 norm of ξt in terms of the jump 
seminorm of ξ rather than the L2 norm of ξ ; see Lemma 3.3 below and Lemma 3.7 in Meng et al. 
(2012a). Additionally, to perform error estimates for a nonlinear system of hyperbolic conservation 
laws, the properties of the divided difference for composite functions and clear definitions of the 
special Gauss–Radau projection as well as the upwind numerical flux should also be illustrated. 
Finally, we would like to point out that it is not trivial for the two-dimensional extension, especially for 
establishing the relations between spatial derivatives and time derivatives of the errors that are used 
to derive a sharp bound for the L2 norm of divided differences of the DG error. 

This paper is organized as follows. In Section 2, we give the DG scheme for the divided differences 
of nonlinear systems of hyperbolic conservation laws, and present some preliminaries especially for 
the properties of divided differences as well as the DG spatial operator. In Section 3, we state and 

discuss the L2 norm error estimates for divided differences of nonlinear systems of hyperbolic 
conservation laws, and then display the main proofs for a supercloseness result and divided 
difference estimates.  Further, 
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superconvergent negative-order norm error estimates are given in Section 4. In Section 5, numerical 

experiments are shown to demonstrate the theoretical results. Concluding remarks and comments 

on future work are given in section 6. Finally, in the appendix we provide the proofs for some of the 

more technical lemmas. 

 
2. The DG scheme and preliminaries 

2.1 The DG scheme 

In this section, we follow Cockburn et al. (1989), Meng & Ryan (2017) and present the DG scheme for 

divided differences of nonlinear system of hyperbolic conservation laws (1.1). 
The standard notation of the DG method is used here.   We  use the mesh a = x 1   < x 3         < · · · < 

2 2 

xN+ 1  = b to cover the domain Ω = (a, b), and set x j = (x j− 1 + x j+ 1 )/2. To facilitate analysis of divided 
2 2 2 

difference estimates, we introduce two overlapping uniform meshes for Ω , denoted by Ij = (x j− 1 , x j+ 1 ) 
2 2 

and Ij+ 1  = (x j, x j+1) with mesh size h = x j+ 1  − x j− 1 . Associated with these meshes, the following 
2 2 2 

discontinuous finite element space are defined 

Vα,k A 

h = {v ∈ L2(Ωα ) : v|I   ∈ Pk(Ijr ), ∀ jr = j +  , A = α mod 2, j = 1, . . . , N}, 
2 

where L2(Ωα ) := [L2(Ωα )]m with Ωα  = (a + A h, b + A h), Pk(Ijr ) := [Pk(Ijr )]m, and Pk(Ijr ) is the space 
2 2 

of polynomials of degree at most k on the cell Ijr := (x jr− 1 , x jr + 1 ). Here and in what follows, α denotes 
2 2 

the α-th order divided difference of a smooth or piecewise function, that is 

 1   γ 
∂ γ i

.
γ 
.   . . γ .  . 

h w(x) =  γ ∑(−1) 
i=0 

w   x + 
i 2 

− i h 
. (2.1) 

In particular, if α  is even, we set V
α,k 

= Vk. Noting that functions in V
α,k  

are allowed to have discon- 
h h h 

tinuities across cell interfaces, we use w− and w+ to represent the left and right limits of w(x) at the 
i i 

discontinuity point xi. Furthermore, at each element boundary point, the jump and the mean of w(x) are 
denoted by [ w] = w+ − w− and {w } = 1 (w+ + w−), respectively. 

The α-th order divided difference of the nonlinear systems of conservation laws (1.1) is 

∂α  α α 

h  ut + ∂h   f (u)x = 0, (x, t) ∈ Ω   × (0, T ], (2.2a) 
∂α  α α 

h  u(x, 0) = ∂h  u0(x), x ∈ Ω . (2.2b) 

We are now ready to define the DG scheme for (2.2). That is, find ∂α uh ∈ V
α,k 

such that the following 
h h 

weak formulation .
(∂α uh) , vh

.  
= H r (∂α f (uh), vh) (2.3) 

h t jr j h 

is satisfied for all vh ∈ V
α,k 

and j = 1, . . . , N, where H j  (·, ·) represents the DG spatial discretization 
h 

operator defined on each cell Ijr , i.e., 
H jr (w, v) = (vx, w) jr − 

.
(v−) 

r 

 
ŵ 

.
 
 

+ 
.
(v 

 

)  ŵ 
. 

. 
T 

jr + 1 

+ T 

jr− 1 

As usual, (·, ·) j   denotes the standard inner product in L2(Ijr ), i.e., (w, v) j  = 
¸
 wT v dx. 
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Similar to the scalar nonlinear conservation laws in Meng & Ryan (2017), the numerical flux f̂  jr + 1 

is chosen to be an upwind flux. For completeness, in what follows we shall present the detailed 
definition 
of upwind flux for (2.3). The idea is based on the local characteristic decomposition. Following Cock- 
burn et al. (1989) and Zhang & Shu (2006), consider the Jacobian flux f r (ujr +1/2) := f r (u)|u=ujr +1/2 

. 
The corresponding eigenvalues, left and right eigenvectors are denoted by λi, Ai, ri (i = 1, . . . , m), nor- 
malized so that Am rn  = δm,n.  Further, at each cell boundary point x jr + 1 , the numerical flux  f̂  jr + 1  = 
ˆf 

.
(uh)−

 
2 
, (uh)+

 
2 

2 2 . 
is determined by the following procedure. 

 

1. Transform f (u±) to the eigenspace of  f r (ujr +1/2), i.e., 
 

i   = Ai f (uh ),  i = 1, . . . , m. 
v± ± 

 

2. Apply the scalar upwind setting to v± in the ith characteristic field (i = 1, . . . , m), and the numer- 
ical flux v̂ i  depends on the sign of λi, i.e., 

.
v−, if λi  “ 0, 

v̂ i  = 
i 

i  , if λi < 0. 

 

3. The result is transformed back to the physical field to get f̂  jr + 1 , namely 
 

m 

f̂ jr + 1   = ∑ v̂ i ri. 
2 

i=1 

 

Moreover, analysis of L2 norm error estimates of divided differences requires that the flux 
Jacobian matrix f r (u) is positive definite. That is, eigenvalues of f r (ujr +1/2) are all positive. It follows 
from the 
above procedure that f̂  jr + 1   = f 

.
(uh)−

 
.
. Consequently, 

2 jr + 1 

 
T   −

. .   
+  T   −

. 

H jr (w, v) = (vx, w) jr − 
.
(v−) w 

jr + 1  + (v  ) w jr− 2 (2.4a) 
= − (v, wx) jr − 

.
(v ) [ w] 

. 
jr 1 . (2.4b) 

+ T 

− 2 

 

For periodic boundary conditions, the removal of jr in H jr denotes the sum of all Ijr , i.e., 
 

N 

H(w, v) = (vx, w)+ ∑
.
[ v] T w−

.
 

j=1 

N 

 
jr + 1 

 
(2.5a) 

= − (v, wx) − ∑
.
(v+)T[ w] 

.
 

j=1 

jr− 1 , (2.5b) 

 

where (v, w) = ∑N
 (v, w) jr denotes the inner product in L2(Ωα ).  Here and below, in order to   distin 

guish two overlapping meshes the summation is calculated with respect to j rather than jr . 
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2.2 Preliminaries 

In this section, we introduce the necessary norms, projections and inequalities that will be useful in 

our analysis. We begin by noting that C is used to denote a generic positive constant which is 

independent of h but may depend on the exact solution u as well as its time and spatial derivatives. 

Moreover, we denote by C> a nonnegative constant that depends on higher order (at least second 

order) derivatives of 

f (u). 

 
2.2.1 Sobolev spaces and norms.   For systems of conservation laws discussed in this paper, we would 
like to use "·"M  to represent the 2-norm (length) of a vector, or the spectral norm of a real matrix, 

      
. 

respectively. Specifically, "v"M = ∑m    v2 for any vector v = (v1, v2, . . . , vm)T, and "A"  = ρ(AT A) 
i=1  i M 

for any real matrix A, i.e., "A"M  is the square root of the largest eigenvalue of the positive-semidefinite 

matrix AT A. Furthermore, if A is symmetric, then "A"M  = ρ(A). For any matrix-valued function A and 
vector-valued functions w, v, the following Cauchy–Schwarz inequality is helpful in our analysis 

|wT AAvv| ™ "A"M"w"M"v"M . (2.6) 

The Sobolev spaces can be easily defined for the vector-valued function space.     To  be more spe- 

cific, for any integer s “ 0, we use Ws,p(D) := [Ws,p(D)]m to denote the vector-valued Sobolev space 
on subdomain D ⊂ Ω with the norm "·"s,p,D. In particular, if p = 2, we set Ws,p(D) = Hs(D), and 

"·"s,p,D  = "·"s,D, and further if s = 0, we set "·"s,D  = "·"D  with "v"D = 

. 
¸  

"v"M dx. If p = ∞, s = 0, 

we set Ws,p(D) = L∞(D), and "·"s,p,D = "·"∞,D with "v"∞,D = esssupx  D "v(x)"M . For simplicity, when 
D = Ω , we will omit the index D. The norms of matrix-valued Sobolev space can be defined in the same 
way. Moreover, we use Ωh to denote the union of all elements, i.e., Ωh = {D}, and the norm of broken 
Sobolev spaces Ws,p(Ωh) := {v ∈ L2(Ω ) : v|D ∈ Ws,p(D), ∀D ⊂ Ωh} can be easily defined, which is a 
formal sum of the contribution to each element D.   Besides,  for  v ∈ H1(Ωh), the  L2       norm at cell 
boundaries and the jump seminorm are defined as follows 

 

. 
N .  

+ 2 2    

. . 
N 

2 

. 

"v"Γh  
= ∑ 

j=1 

"v jr−1/2"
M 

+ "v jr +1/2"
M , |[v]| = ∑"[ v] jr−1/2"

M 
. 

j=1 

Finally, the negative-order norm is defined as 

"v"−A,Ω  = sup 

 

 
(v, Φ ) 

 

 
. (2.7) 

Φ∈C∞(Ω ) "Φ"A 

Negative-order norms can be used to detect the oscillations of a function around zero; for more 

details, see Cockburn et al. (2003). 

 
2.2.2 Local focus shifting (linearization).         Since the linearization technique is repeatedly used in 

analysis for nonlinear problems, we present the following inequality regarding local focus shifting (lin- 
earization) for nonlinear systems. Let B be a matrix-valued function, for example B = f r (u), or ∂t f r (u), 
which is assumed to be smooth enough with respect to u. Then their focus shifting (i.e., change of the 

vector at which the function is evaluated) satisfies the following Lipschitz continuity 

"B(w) − B(v)"M  ™ C>"w− v"M (2.8) 

. 

1 
2 



 

 

x ∂ γ 

h 

k−1 
1 

2 

 
 

 
 

due to the well-known Wielandt–Hoffman Theorem (Golub & Van Loan, 2012), where w and v are two 

local focuses. Note that (2.8) will be useful in our later analysis, especially for the estimates to the 

projection errors. 

 
2.2.3 Properties for the divided differences. As indicated in Meng & Ryan (2017), one of the most 

important tools in deriving L2 and negative-order norm error estimates of the divided difference for 

nonlinear equations is the properties of divided differences. Note that it is straightforward to extend 

the properties of divided differences from the scalar case to the vector/matrix case. In what follows, 

we only list these properties without proof and refer the readers to Meng & Ryan (2017) for more 

details. Specifically, we would like to list the Leibniz rule and the relation between divided 

differences and derivatives. 

For any vector-valued functions w and v, the following Leibniz rule holds 

γ    .γ 
. 

. 
γ − i 

.
 

γ   i   
. 

i  
. 

∂ γ i −    

h (w(x)v(x)) = ∑ 
i=0 i   

∂hw  x + 
2   

h   ∂h      v x−  
2 

h 
. (2.9) 

Note that (2.9) is still valid even if w and v are piecewise functions with possible discontinuities at 
cell interfaces or they are composite functions. If w is the composition of a smooth matrix-valued 
function G and a smooth vector-valued function u, i.e., w(x) := G(u(x)), we can prove the following 
property 

h G(u(x)) = ∂ γ G(u(x))+ Cγ  hΨγ (x), (2.10) 

where Cγ is a positive constant and Ψγ is a smooth matrix-valued function. This is because the divided 

difference of a matrix-valued function is a matrix resulting from applying the divided difference 
operator to its each component, and the scalar/componentwise version of (2.10) has already been 
proved in Meng & Ryan (2017). We would like to remark that the property (2.10) is very useful in 
proving Corollary 2.1. 

 

2.2.4 Projections and interpolation properties. Prior to giving the definition of Gauss–Radau pro- 
jections for the system case, let us recall two kinds of scalar Gauss–Radau projections into V

α ,k 
= {v ∈ 

L2(Ωα ) : v|I    ∈ Pk(I r ), ∀ jr = j + A , A = α mod 2, j = 1, . . . , N}.  That is, for q ∈ H1(Ω ), the local 
jr j 2 h 

Gauss–Radau projection of q is the unique function in Pk(Ijr ) such that, for each jr 

.
q− P−q, zh

. 
jr = 0, ∀zh ∈ P (Ijr ), (q− P−

 q)− = 0; (2.11a) 
j + 

.
q− P+q, zh

.
 

r 

= 0, ∀z  ∈ Pk−1(I r ), (q− P+q)+
 

2 

= 0. (2.11b) 
jr h j jr− 1 

 

To define the projection for the system case, we consider the Jacobian matrix f r (ujr ) := f r (u)|u=ujr 

with u jr = u(xjr , t). The corresponding eigenvalues, left and right eigenvectors are denoted by λi, Ai, ri (i 
= 1, . . . , m), normalized so that Am rn = δm,n. Thus, on each cell Ijr , the Gauss–Radau projection of a 
vector-valued function u, denoted by Pu, is the unique function in Pk(Ijr ) determined by the following 
procedure. 

1. Transform u to the eigenspace of f r (ujr ), i.e., 

vi = Ai u, i = 1, . . . , m. 



 

 

r jr + 1 

h 

h 

h 

h 

h 

. 

 
 

 
 

 
2. Apply the scalar Gauss–Radau projection (2.11) to vi in the ith characteristic field (i = 1, . . . , m), 

and the projection Pvi  depends on the sign of λi, i.e., 
.

P−vi, if λi  “ 0, 

Pvi = P+vi, if λi < 0. 
 

3.The result is transformed back to the physical field to get  Pu: 

m 

Pu = ∑Pvi ri. 
i=1 

Note that the above Gauss–Radau projection has been used to derive optimal convergence results of 

the fully-discrete DG scheme for nonlinear systems of conservation laws, when the upwind flux is 

considered; see Luo et al. (2015). 
In particular, if the flux Jacobian matrix f r (u) is always positive definite for u and x, then Pu = R Pv 

with R = (r1,· · · , rm) and Pv = P−v = (P−v1,..., P−vm)T. Further, denoting by ηv = v − Pv and ηu = u − 
Pu, we have that ηu = R ηv, since u = R v. Note that R is a constant matrix in each element Ijr due to 
the local linearization f r (ujr ), we conclude, by the definition of scalar Gauss–Radau projection P− in 
(2.11a), that for each jr , 

(u− Pu, zh) j   = 0, ∀zh ∈ Pk−1
 (Ijr ), (u− Pu)− = 0. (2.12) 

2 

Moreover, for u ∈ Wk+1,∞(Ωh), by a standard scaling argument (Ciarlet, 1978; Brenner & Scott, 2007), 
we have 

"ηu" + h"(ηu)x" + h1/2"ηu"Γ  ™ Chk+1"u"k+1, (2.13a) 

"ηu"∞ ™ Chk+1"u"k+1,∞, (2.13b) 

where C is independent of h. 

Finally, we list some inverse properties of the finite element space V
α,k 

for the one-
dimensional case. For any q ∈ V

α,k
, there exists a positive inverse constant C independent of q and 

h, such that 
 

1 1 

(i) "∂xq" ™ Ch−1"q"; (ii) "q"Γ  ™ Ch− 2 "q"; (iii) "q"∞ ™ Ch− 2 "q". 

2.2.5 Properties of the DG discretization operator. The following properties of the DG discretization 
operator are useful in the proof of L2 norm divided difference estimates. 

LEMMA 2.1(Meng & Ryan, 2017) Suppose that the matrix-valued function  G(u(x, t)) (G = f r (u), ∂t f r (u) 

etc) is smooth with respect to each variable.  Then, for any w, v ∈ V
α,k

, there holds the following   in- 
equality 

H(GGww, v) ™ C> 

.
 

 
1 

w" + "wx" + h− 2  [w] 
 

v , (2.14a) 
" | |  " " 

and in particular, if G = f r (u) is real positive definite (and thus, G “ δ I with δ > 0 being the smallest 
eigenvalue of G and I the identity matrix), there holds 

2 δ 2 

H(GGww, w) ™ C>"w"  − 
2 

|[w]| . (2.14b) 



 

 

2 

2 2 

. 

h 

h 

− 2 

jr 

 
 

 
 

 
Proof. The proof of (2.14a) follows by considering the equivalent strong form of H, (2.5b). To prove 
(2.14b), we apply integration by parts to each diagonal and non-diagonal term of the quadratic form 
(wx, GGww) to get the following compact form 

 

1 N 
T

 

H(GGww, w) = −  (w, ∂x G w) + ∑ 
.
[ w] 

j=1 

G (w− − {w })
. 

jr   1 

1 1 N 
T 

= −  (w, ∂x G w) − ∑ 
.
[ w] 

j=1 

G [ w] 
. 

1 

− 2 

2 δ 2 

™ C>"w" − 
2 

|[w]| , 

where we have also used the Cauchy–Schwarz inequality (2.6) in the last step. Q 

COROLLARY 2.1(Meng & Ryan, 2017) Under the same conditions as in Lemma 2.1, we have, for 

small enough h, 
 

H((∂α  G)w, v) ™ C> 

. 
w  + w + h− 2 [w] v , 1 " " x" α “ 0. (2.15) 

h " | |  " "  ∀ 
 

Proof.  The proof follows by combining the relation (2.10) and (2.14a) in Lemma 2.1. Q 

LEMMA 2.2Suppose that the matrix-valued function G(u(x, t)) (G = f r (u), ∂t f r (u) etc) is smooth with 
respect to each variable. Then, for any u ∈ Hk+1(Ωh) and z ∈ V

α,k 
there holds 

H(G(u− Pu), z) ™ C>hk+2"zx", (2.16a) 

H(G(u− Pu), z) ™ C>hk+1"z". (2.16b) 

Proof. We need only to prove (2.16a), since, by inverse inequality (i), (2.16b) is a direct consequence. 
Using the exact collocation property of the projection P in (2.12), we have 

H(G(u− Pu), z) = (zx, G(u− Pu)) . 

Next, on each cell Ijr , we use the local linearization approach to rewrite G(u(x, t)) as G(u) = G(ujr )+ 
.
G(u) − G(ujr )

. 
with u jr = u(xjr , t). Clearly, on each element Ijr , by (2.8), we have "G(u) − G(ujr )"∞ = 

esssupx∈Ω "G(u) − G(ujr )"M  ™ C>h due to the smoothness of G and u.  Using the orthogonality prop- 
erty of the projections P and P, (2.12), we arrive at 

H(G(u− Pu), z) = 
.
zx, (G(u) − G(ujr ))(u− Pu)

.
 

™ "G(u) − G(ujr )"∞"zx""u− Pu" 

™ C>hk+2"zx", 

where we have used the Cauchy–Schwarz inequality (2.6) and the approximation property (2.13a). Q 

COROLLARY 2.2Under the same conditions as in Lemma 2.2, we have, for small enough  h, 

H(∂ α (G(u − Pu)), z) ™ C>hk+1"z",  ∀α “ 0. (2.17) 



 

 

h 

h 
− 

h 
− − 

h 

h 

h 

2 

− 

q 

 
 

 
 

Proof. The case α = 0 has been proved in Lemma 2.2. For α  “ 1,  by the Leibniz rule (2.9) and  using 
the fact that u − Pu = R(v − P−v) with R being the matrix composed of the right eigenvectors of f r (ujr 

) and that both the divided difference operator and the projection operator P− are linear, we rewrite 
∂α (G(u− Pu)) as 

 

α  .α
. 

. 
α − A 

.
 . 

A  
. 

∂α  A α−A    

h (G(u− Pu)) = ∑ 
A=0 A  

∂h G   x + 
2   

h   ∂h (u− Pu) x−  
2 

h 

α   .α
. α−A .α − A

. 
ˇ  ̌

 

¾ ∑ 
A=0 

∑ 
γ =0 γ 

GR(v̌ − P− v̌) 

with 
 

. . . 

 

. . . 

Ǧ  = ∂ A G 
α    A 

x + h 
2 

, Ř  = ∂ 
γ 

R 
α    2A   γ 

x + h 
2 

, v̌ = ∂
α−A−γ 

v x 
A + γ 

h .
 

2 
 

Note that we have a uniform mesh as these operators don’t commute for a nonuniform mesh. Note 
also that R is a piecewise constant matrix in each Ijr that depends on f r (ujr ). Thus, 

 

H(∂α (G(u− Pu)), z) = α   .α
. α−A .α − A

. H
.

Ǧ Ř (v̌ − Pv̌),  
.
  . (2.18) 

h ∑ 
A=0 

∑ 
γ =0 

Clearly,  by (2.10),  Ǧ 
 

is also a smooth matrix-valued function with respect to each variable with the 
leading term ∂ A G 

.
x + α−A h

.
.  Moreover, the properties (2.12) and (2.13a) are still valid for v̌ − P− v̌, 

x 2 

since it can be regarded as the projection error of the function v̌.  However, obtaining a sharp 
estimate to the term ∂ 

γ 
R involved in Ř  is intractable, which requires a deeper analysis.  Otherwise, 

by directly using the definition of the divided difference (2.1), ∂ 
γ 
R would be of order h−γ , which would 

inhibit any 
superconvergence results. Indeed, by considering eigenstructures of the matrix G and the 
smoothness of f r (u), we are able to prove, after careful analysis, that 

lim ∂ 
γ 

R(x) = ∂ γ R(u(xj )), (2.19) 
h→0   h

 x
 

and thus the leading term of Ř  is a constant matrix, which is of order h0.  To clearly display the proof 
∂ fp 

of (2.19), let us consider the 2 × 2 (m = 2) matrix G = f r (u), whose entries gp,q = ∂u   are also smooth 
scalar functions due to the smoothness of f . It follows from the construction of the projection P that 
R is the matrix whose columns are the right eigenvectors of f r (ujr ), which can be expressed in terms 
of gp,q(ujr ) and the corresponding eigenvalues. Specifically, 

. 
g1,2 λ2 − g2,2

. 

, R = 
λ1 − g1,1 g2,1 

 
(1) (2) 

where λ1,2 = λ     ±λ       with  
λ (1) = g1,1 + g2,2, 

. 

(g1,1 + g2,2)2 − 4(g1,1g2,2 − g1,2g2,1). 

z 

λ (2) = 

A 

A γ 

r 



 

 

h 

λ1,2  = λ 
 

h 

h 

r 

r 

r 

 
 

 
 

 
Therefore, in order to analyze ∂ 

γ 
R, it is sufficient to consider ∂ 

γ 
gp,q and ∂ 

γ 
λ1,2. By (2.10), we have that 

h h h 

lim ∂ 
γ 
gp,q(uj ) = ∂ γ gp,q(uj ), p, q = 1, 2, (2.20a) 

h→0   
h x

 

lim ∂ 
γ 
λ (1)(u j ) = ∂ γ (g1,1 + g2,2)(uj ). (2.20b) 

h→0   h
 x

 

It remains to consider ∂ 
γ 

λ (2)  if the term inside the square root of λ (2)  is always positive.   Otherwise, 
(1) 

2    .  Note that  λ 
(2) can be expressed in terms of the composition of three smooth functions, 

namely, λ (2) = z(w(u(x))) with z(w) = 
√

w (w > 0), w(u) = (g1,1(u)+ g2,2(u))2 − 4(g1,1(u)g2,2(u) − 

g1,2(u)g2,1(u)) and u = u(x). Thus, by (2.10), 

lim ∂ 
γ 
λ (2)(u j ) = ∂ γ z(w(u(xj ))). (2.20c) 

h→0   h
 x

 

The property (2.19) follows by collecting the results in (2.20a)–(2.20c). Finally, to complete the proof 
of this Corollary, we need only to apply the same procedure as that in the proof of Lemma 2.2 to 
each H term on the right side of (2.18). Q 

 

2.2.6 Smoothness-Increasing Accuracy-Conserving (SIAC) filters. SIAC filters represent a family of 

filters designed to at least conserve the order of accuracy of the DG solution and is performed 

through a post-processing procedure. For the symmetric SIAC filter, the post-processing procedure 

for scalar equations was given, for example, in Cockburn et al. (2003); Mirzaee et al. (2012); Meng & 

Ryan (2017). Here, we concentrate on the symmetric filter. To apply the SIAC filter to systems of 

conser- vation laws, we need only to apply the filter corresponding to the scalar case to each 

component of the approximation vector. 

The following theorem shows the relation between negative-order norm error estimates for 

divided differences and L2  norm of the post-processed error. 

THEOREM 2.1(Bramble & Schatz, 1977) For 0 < T < T>, where T> is the maximal time of ex- 
istence of the smooth solution, let u ∈ L∞([0, T ]; Hν (Ω )) be the exact solution of (1.1).  Let Ω0 + 

2supp(K
ν,k+1

(x)) « Ω and U is any approximation to u, then 

"u(T ) − K
ν,k+1 

> U" hν 
™ C1|u|ν + C1C2  ∑ "∂α  (u−U )" −(k+1),Ω , 

h Ω0 ν! α™k+1 

where C1 and C2 depend on Ω0, k, but is independent of h. 

As we can see from the above theorem, in order to have the ability to extract a superconvergent 

approximation using the B-spline convolution filter, we must be able to demonstrate that higher 

order convergence exists in the negative-order norm for not only the solution, but the divided 

differences as well. Since the duality argument is an important tool in deriving superconvergent 

negative-order norm estimates and the dual problem for nonlinear systems is a variable coefficient 

problem, in what follows we recall a regularity result. 
 

LEMMA 2.3(H  örmander, 1997; Ji et al., 2013) Consider the variable coefficient system of conservation 
laws with a periodic boundary condition for all t ∈ [0, T ] 

ϕt (x, t)+ A(x, t)ϕx(x, t) = 0, (2.21a) 

ϕ (x, 0) = ϕ 0(x), (2.21b) 

r 

r 

r 



 

 

h 

h 

h 

h |[∂ α ξ ]| 

h 

∂α 

¸ 

 
 

 
 

where A(x, t) is a given smooth matrix-valued periodic function. For any A “ 0, fixed time t and A(x, t) ∈ L∞([0, 
T ]; W 2A+1,∞(Ω )), then the solution of (2.21) satisfies the following regularity property 

"ϕ (x, t)"A ™ C"ϕ (x, 0)"A, 

where C is a constant depending on "A"L∞([0,T ];W 2A+1,∞(Ω )). 

 
3. L2  norm estimates for divided differences 

In this section, we provide an analysis to the L2 norm estimates for the divided differences of the DG 

error, which is useful to derive superconvergent negative-order norm estimates. 

 
3.1 The main results in the L2 norm 

As usual, we split the DG error e = u − uh  into two parts, namely e = η + ξ  with η = u − Pu  being 
the projection error and ξ  = Pu − uh  := Pe ∈ V

α,k
.  Here the projection P is defined on each cell Ij 
h r 

corresponding to the sign variation of the eigenvalues of f r (u); specifically, for any t ∈ [0, T ] and x ∈ Ω , 
assuming that  f r (u) is positive definite,  then on each element Ijr ,  we choose Pu = R P−v, and  thus 

η = R ηv with ηv  = v− P−v and v = R−1(ujr ) u. 

We are now ready to state the main theorem for the L2  norm error estimates. 

THEOREM 3.1For any 0 ™ α ™ k + 1, let ∂α u be the exact solution of equation (2.2), which is assumed to 
be sufficiently smooth with bounded derivatives, and assume that f r (u) is positive definite. Let ∂α uh 
be the numerical solution of scheme (2.3) with initial condition ∂α uh(0) = P(∂α u0) when the upwind 

h h 

flux is used. For a uniform mesh of Ω = (a, b), if the finite element space V
α,k 

of piecewise polynomials 
with arbitrary degree k “ 1 is used, then for small enough h and any T > 0 there holds the 
following error estimate 

T 

"∂α ξ (T )"
2 

+ 
0 

2 
dt ™ C>h2k+3−α, (3.1) 

where the positive constant C> depends on u, T and f , but is independent of h. 

COROLLARY 3.1Under the same conditions as in Theorem 3.1, if in addition α “ 1 we have 
the following error estimates: 

3    α 

"∂α (u− uh)(T )" ™ C>hk+ 2 − 2 . (3.2) 

Proof.  Using similar argument in Corollary 2.2, we have that 

α  .α
. 

ˇ
 

h  η = ∑ 
A=0 

R(v̌ − P−
 v̌) 

where v̌ = ∂ α−A v 
.
x − A h

. 
and Ř  = ∂ A R 

.
x + α−A h

.
, and thus 

h 2 h 2 

"∂α η" ™ Chk+1"∂α u" (3.3) 
h h k+1 

by the interpolation error estimate (2.13a) and the fact that the leading term of Ř  is a constant matrix 
(2.19), due to the smoothness of f r (u). To complete the proof, we need only to combine (3.1) and 
(3.3) and use the triangle inequality. Q 

h 

A 



 

 

h 

2 3 

2 

1 

2 

1 

h 

h 

 
 
 

 
REMARK 3.1We speculate that a rough estimate of the error for the divided differences over a un- 

structured mesh may be obtained if we combine the error estimates from this paper with the typi-      

cal divided differences for unstructured meshes.  Indeed, for linear equations, Cockburn et al.    

(2003) 

suggest that the divided difference estimate for unstructured meshes is of order 2k + 1 + m − α  with 
m = (2k + 1)/(3k + 2). Moreover, numerical tests for linear hyperbolic equations and unstructured 
meshes were carried out in Mirzaee et al. (2013). 

To prove high order divided difference estimates in Theorem 3.1, we need first to establish a su- 
percloseness result with α = 0. The superconvergence result for ξ (zeroth order divided difference) is 
given in the following proposition, which generalizes the supercloseness result from the scalar 
nonlinear 

conservation laws in Meng et al. (2012a) to the system case. 

PROPOSITION 3.2Let   u be the exact solution of the system (1.1), which is assumed to be  sufficiently 
smooth with bounded derivatives, and assume that f r (u) is positive definite. Let uh be the numerical 
solution of scheme (2.3) (α = 0) with initial condition uh(0) = Pu0 when the upwind flux is used. For a 
quasi-uniform mesh of Ω = (a, b), if the finite element space Vk of piecewise polynomials with arbitrary 

degree k “ 1 is used, then for small enough h and any t ∈ (0, T ] there holds the following error estimates 
1 

"ξ" + .¸ t 

0 

. 
2

 

|[ξ (τ)]|  dτ ™ C>hk+ 2 , (3.4a) 

"ξx" ™ C>("ξt" + hk+1), (3.4b) 

"ξt" + .¸ t 

0 

. 
2

 

|[ξ t ]|  dτ 
1 
.¸ t 

™ Chk+1 + C>h− 2 

0 

. 
2

 

|[ξ (τ)]|  dτ 

 
, (3.4c) 

where C and C> depend on u, t and f , but is independent of h. 

The proof of this proposition is given in Section 3.3. 

 
3.2 The proof of Theorem 3.1 

As mentioned in the introduction, the main difficulties come from estimates of "∂α ξ" and "∂α η". 
h h 

Using an energy analysis together with the properties of the DG discretization operator established   in 
Section 2.2.5, we can see that the proof of Theorem 3.1 for the system case mainly follows along the 

same line as that for the scalar nonlinear case in Meng & Ryan (2017). Therefore, we omit detailed 

proofs and only point out the following two main differences 

1. Estimate of "∂α η".      For scalar nonlinear equations,  the estimate of "∂αη" is trivial,  as both 
h h 

the divided difference operator ∂h  and the projection operator P−  are linear and thus   commute 
with each other. However, for the system case, the projection P does not commute with ∂h. As 
discussed in Corollary 2.2, this difficulty can be addressed by analyzing the eigenstructures of 

f r (u) and by using the property of the divided difference for composite functions in (2.10). 
 

2. Taylor expansion. For nonlinear systems of conservation laws, in order to write out the 
nonlinear terms, namely f (u) − f (uh) and f (u) − f (u−), we need to use the following second 
order Taylor 
expansion  

f (u) − f (uh) = f r (u)ξ + f r (u)η − eTH e, (3.5a) 
T ˜ 

f (u) − f (u−) = f r (u)ξ
− 

+ f r (u)η− − (e−) H e−. (3.5b) 



 

 

h 

h 

2 

c. 

c 

∞ 
2 

2 

 
 

 
 

Here and below, eTH e := (eTH1 e, . . . , eTHm e)T with Hi being the Hessian matrix in the integral 
form of the remainders of the second order Taylor expansion, and the (p, q)-th entry of Hi  

given 2 s by (Hi)p,q = 
¸ 1 ∂  fi(u ) s −  T ˜ 

0 ∂up∂uq 
(1 − s) ds with u = u + s(uh − u). Likewise for (e ) H e−. We would like 

to emphasize that the various order spatial derivatives, time derivatives and divided  differences 
of each components of H and H̃ are all bounded uniformly due to the smoothness of  f  and   u. 

Without loss of generality, we take the first order divided difference estimate "∂hξ" for example. 
In order to obtain optimal (k + 1)th order, we need only to choose vh = ∂hξ in the error equation 
involving the first order divided differences and use properties of the DG discretization operator 

in Section 2.2.5 in combination with the superconvergence error estimates in Proposition 3.2. 

 
3.3 The proof of Proposition 3.2 

The original DG scheme with α = 0 is 

((uh)t, vh) j = H j ( f (uh), vh) , (3.6) 

which holds for all vh ∈ Vk and j = 1, . . . , N. For periodic boundary conditions under consideration in 
this paper, by Galerkin orthogonality and summing over all j, we get the error equation 

(et, vh) = H( f (u) − f (uh), vh) (3.7) 

for all vh ∈ Vk. Letting vh = ξ = Pu− uh, we arrive at the following identity 

LHS = RHS, (3.8) 

where 
 
 
 
 

Clearly, 

 

 
LHS = (et, ξ ) , (3.9a) 

RHS = H( f (u) − f (uh), ξ ) . (3.9b) 

LHS = 
1 d 

2 d
t 

"ξ" + (ηt, ξ ) . (3.10a) 

If we now denote by ξ
c 
=  1 

¸
 ξ dx the cell average of ξ on each element Ij , and further define piece- 

j h j   I j 
wise constant polynomial ξ

c 
whose restriction on Ij is ξ

c
, then we can easily obtain a bound for (η , ξ ), 

j t 

| (ηt, ξ ) | = | 
.
ηt, ξ − ξ | ™ Chk+2"ξx", (3.10b) 

since, by (2.12), η and thus ηt are orthogonal to piecewise constant functions, where in the last step 
we  have  also  used  the  approximation  error  estimates  (2.13a)  and  the  Poincaré–Wirtinger  
inequality 

"ξ − ξ " ™ Ch"ξx". 
In what follows, we shall estimate RHS, which is given in the following lemma. 

LEMMA 3.1Suppose that the interpolation property (2.13a) is satisfied. Then we have 

δ 
RHS ™ (C(e) + C>h−3"e"2 )"ξ "

2 
−   |[ξ ]|  + C>hk+2"ξ  " + Ch2k+3 (3.10c) 

x 
 

with C(e) = C + C>h−1"e"∞, where C and C> are independent of h and uh. 



 

 

i 2 

2 2 

2 

2 

 
 

 
 

Proof.  Using the second order Taylor expansion (3.5) 

f (u) − f (uh) = f r (u)ξ + f r (u)η − eTH e ¾ θ 1 + θ 2 + θ 3, (3.11a) 
T ˜ 

f (u) − f (u−) = f r (u)ξ
− 

+ f r (u)η− − (e−) H e− ¾ θ−  + θ−  + θ−, (3.11b) 
h 

we rewrite RHS as 

 
with Θi given by 

 
 

RHS = Θ 1 + Θ 2 + Θ 3 

1 2 3 

 
N 

Θ i  = H(θi, ξ ) = (ξx, θ i)+ ∑([ ξ ] T θ−) 

 

j+ 1 , (i = 1, 2, 3), 

 
which will be estimated one by one 
below. 

j=1 

By the same argument as that in the proof of (2.14b) in Lemma 2.1, we have that 

δ 

Θ 1  ™ C>"ξ "  − 
2 

|[ξ ]| . (3.12a) 

A direct application of (2.16a) in Lemma 2.2 leads to a bound for Θ 2 

Θ 2 ™ C>hk+2"ξx". (3.12b) 

It follows from the Cauchy–Schwarz inequality, the inverse properties (i) as well as (ii), and the approx- 

imation error estimate (2.13a), that 
. . 

Θ 3  ™ C>"e"∞     "e""ξ x" + "e"Γh 
"ξ "Γh

 

. 
1 

. 

™ C>h−1"e"∞ "ξ " + "η" + h 2 "η"Γh
 "ξ" 

™ C>h−1"e"∞"ξ"  + C>hk"e"∞"ξ" 
2 2 2k+3 

™ (C>h−1"e"∞ + C>h−3"e"∞)"ξ" + Ch , (3.12c) 

where Young’s inequality is used in the last step. To finish the proof of Lemma 3.1, we need only to 
combine (3.12a)–(3.12c). Q 

We now insert the estimates (3.10a)–(3.10c) into (3.8) to get 

1 d 2 δ 2 
 

3 2 2 
 

k+2 
 

2k+3 

2 dt 
"ξ "  +   |[ξ ]| ™ (C(e)+ C>h− "e"∞)"ξ" + C>h "ξx" + Ch . (3.13) 

To deal with the nonlinearity of f (u) we make an a priori assumption that, for small enough h 

"Pu− uh" ™ h2. (3.14) 

This a priori assumption can be verified by using the same argument as that in Meng et al. (2012a) 
for piecewise polynomials of degree k “ 1, and is useful to derive a crude bound for ξ , which is 
necessary in the proof of ξt in Lemma 3.2. 

COROLLARY 3.2Suppose that the interpolation property (2.13b) is satisfied, then the a priori assump- 

tion (3.14) implies that 
3 3 

"e"∞  ™ Ch 2 and "ξ"∞ ™ Ch 2 . (3.15) 



 

 

1 1 

2 

2 2 

2 2 

 
 

 
 

Proof. This follows from the inverse property (iii),  the interpolation property (2.13b)    and 
triangle inequality. Q 

COROLLARY 3.3Under the same conditions as in Lemma 3.1, if the a priori assumption (3.14) holds, we 

have the following error estimates 

"e" ™ Chk+1 and "ξ" ™ Chk+1. (3.16) 

Proof. We first apply inverse inequality (i) to (3.10b) and (3.12b) to obtain | (ηt, ξ ) | +Θ 2 ™ C>hk+1"ξ". 
Then, noting (3.13), the results in Corollary 3.3 follow by using (3.15) implied by the a priori assumption 

(3.14) and a simple application of Gronwall’s inequality together with the fact that ξ (·, 0) = 0 due  to 
the special choice of the initial condition. Q 

From (3.13), one can see that the supercloseness result of "ξ" depends heavily on the estimate   of 

"ξx" and further "ξt", which are given in the following two lemmas. 

LEMMA 3.2Under the same conditions as in Proposition 3.2, if, in addition, the a priori assumption 

(3.14) holds, we have 

"ξx" ™ C("ξt" + hk+1), (3.17) 

for any t ∈ [0, T ], where C is independent of h and uh. 

The proof of this lemma is postponed to Appendix A.1. 

LEMMA 3.3Under the same conditions as in Proposition 3.2, if, in addition, the a priori assumption 

(3.14) holds, we have 
 

"ξt" + .¸ t 

0 

. 
2

 

|[ξ t ]|  dτ 
1 
.¸ t 

™ Chk+1 + C>h− 2 

0 

. 
2

 

|[ξ (τ)]|  dτ 

 

, (3.18) 

for any t ∈ [0, T ], where C and C> are independent of h and uh. 

The proof of this lemma is deferred to Appendix A.2. It is worth pointing out that, unlike the scalar 
case, "ξt" is bounded by |[ξ ]| instead of "ξ" in Meng et al. (2012a). This enables us to fully make use 
of properties of the DG operator established in Section 2.2.5 to deal with the mixed integral term K1 

(see Appendix A.2), which simplifies the proof a lot, and the technique based on integration by parts 
with respect to time as that in Meng et al. (2012a) is no longer needed. 

Collecting the estimates (3.17) and (3.18) into (3.13) and using (3.15), we have 

1 d 2 δ
2 

2 
¸ t

 2 2k+3 

2 
dt 

"ξ" +   |[ξ ]| ™ C1"ξ" + C2 |[ξ (τ)]| 
0 

dτ + C3h , (3.19) 

where C1,C2 and C3 are positive constants independent of h. Note that there holds the following identity 

d 
¸ t   

ξ 2 ξ 2 

Then, (3.19) becomes 
dt   0  

|[ξ (τ)]|  dτ = |[ξ (t)]| . 

d 
. ¸ t 

dt 
"ξ (t)"  + δ 

0
 

. 

|[ξ (τ)]|  dτ ™ C0 

. 
2 

¸ t 

"ξ (t)" + δ 
0 

|[ξ (τ)]| 
. 

dτ    + Ch 

 

2k+3 
 
, (3.20) 

where C0 = max(2C1, 2C2/δ ), C = 2C3  are positive constants independent of h. 
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h 

h 

2 

"u− K
ν,k+1 

> uh" ™ Ch  k+1. (4.2) 

h 

 
 

 
 

 

An application of Gronwall’s inequality together with the fact that ξ (·, 0) = 0 gives us the desired 
result (3.4a), namely 

"ξ" + 
.¸ t 

0 

. 
2

 

|[ξ (τ)]|  dτ ™ C>hk+ 2 . (3.21) 

To complete the proof of Proposition 3.2, we need only to combine Lemma 3.2 and Lemma 3.3. 
 
 

4. Superconvergent error estimates 

Although a superconvergent result about the negative-order norm estimates for the DG error itself 

to the scalar nonlinear conservation laws has been given in Ji et al. (2013),  this paper goes further in  
that it addresses nonlinear systems and treats the estimates for both the equation itself and the 

divided differences of the equation. It is worth emphasizing that compared to Ji et al. (2013) the 
following superconvergent estimate about the negative-order norm of the divided differences of the 

DG error is more complicated and technical, as it not only needs to use the duality argument but also 

requires establishing the corresponding L2 norm error estimates of the divided difference as shown 

in Section 3. 

THEOREM 4.1For any 1 ™ α ™ k + 1, let ∂α u be the exact solution of the problem (2.2), which is 
assumed to be sufficiently smooth with bounded derivatives, and assume that f r (u) is positive 
definite. 
Let ∂α uh be the numerical solution of the scheme (2.3) with initial condition ∂α uh(0) = P(∂α u0) when 

h h h 

the upwind flux is used. For a uniform mesh of Ω = (a, b), if the finite element space V
α,k 

of piecewise 
polynomials with arbitrary degree k “ 1 is used, then for small enough h and any T > 0 there holds 
the following error estimate 

3 α 

"∂α (u− uh)(T )" −(k+1),Ω ™ Ch2k+ 2 − 2 , (4.1) 

where the positive constant C depends on u, δ and T , but is independent of h. 

The above negative-order norm error estimate together with Theorem 2.1 leads to a 

superconvergent result for the post-processed solution. 

COROLLARY 4.1Under the same conditions as in Theorem 4.1, if in addition K
ν,k+1 

is a convolu- 
tion kernel consisting of ν = 2k + 1 + ω (ω “ |−k |) B-splines of order k + 1 such that it reproduces 

polynomials of degree ν − 1, then we have 
 

3 
2 

h 

 

4.1   Proof of the main results in the negative-order norm 

As mentioned before, the negative-order norm estimates for the divided differences of the DG error 

depend on both the corresponding L2  norm estimates and the duality argument.  On the one hand, it    

is highly nontrivial to derive L2 norm error estimates of the divided differences from the standard L2 

error estimates (see, e.g., Zhang & Shu, 2010; Luo et al., 2015) and some delicate supercloseness 
results needs to be established; see Section 3. On the other hand, to perform the duality analysis, we 
follow the same line as that for the scalar case in Ji et al. (2013) and Meng & Ryan (2017). First, by 
(2.7), we need to concentrate on the estimate of 

(∂α  (u− uh)(T ), Φ ) (4.3) 



 

 

0 

h 

h 

h 

|G2| ™ Ch 2 − 2 "ϕ" 

h 

 
 

 

for Φ ∈ C∞(Ω ). Then, define the dual problem as: find a function ϕ such that ϕ (·, t) is periodic for all 

t ∈ [0, T ] and 
∂α  r α 

h  ϕt + f  (u)∂h  ϕx = 0, (x, t) ∈ Ω × [0, T ), (4.4a) 

ϕ (x, T ) = Φ (x), x ∈ Ω. (4.4b) 

A combination of (2.2a) and (4.4a) gives us 

d α 

dt 
(∂h  u, ϕ )+ F(u; ϕ ) = 0, (4.5) 

where F(u; ϕ ) = (−1)α 
. 

f r (u)u− f (u), ∂α ϕ  
. 

. Thus, 
h x 

¸ T 
(∂α u, ϕ )(T ) = (∂α u, ϕ )(0) − F(u; ϕ ) dt. (4.6) 

h h 
0 

Consequently, for any κ ∈ V
α,k

, we deduce that 
 

 
where 

(∂α (u− uh)(T ), Φ ) = G1 + G2 + G3, 

 
G1 = (∂α (u− uh), ϕ )(0), 

¸ T 
G2 = − 

.
((∂α  uh)t, ϕ − κ) − H(∂α  f (uh), ϕ − κ)

. 
dt, 

h h 
0 

¸ T 
G3 = − 

.
(∂α  uh, ϕ )+ H(∂α  f (uh), ϕ )+ F(u, ϕ )

. 
dt. 

h t h 
0 

The estimates to G1, G2, G3 can be obtained essentially following the same arguments as those 
for the scalar case in Meng & Ryan (2017). Thus, we will only present the results here and omit 
detailed proofs. 

LEMMA 4.1(Projection estimate) There exists a positive constant  C, independent of h, such that 

|G1| ™ Ch2k+1"∂α u0" "ϕ (0)" . (4.7) 
h k+1 k+1 

LEMMA 4.2(Residual) There exists a positive constant  C, independent of h, such that 
 

3    α 
2k+ 

L1([0,T ];Hk+1) 
. (4.8) 

LEMMA 4.3(Consistency) There exists a positive constant  C, independent of h, such that 
α 

|G3| ™ Ch2k+3− 2 "ϕ" L1([0,T ];Hk+1) . (4.9) 

Collecting the estimates in Lemmas 4.1–4.3 and using the regularity result in Lemma 2.3,   namely 

"ϕ"k+1 ™ C"Φ"k+1, we get a bound for 
.
∂α (u− uh)(T ), Φ 

.
 
3    α 

(∂α  (u− uh)(T ), Φ ) ™ Ch2k+ 2 − 2 "Φ" . 
h 

Thus, by (2.7), we have the bound for the negative-order 
norm 

k+1 

 
3    α 

"∂α (u− uh)(T )" ™ Ch2k+ 2 − 2 . 
h 

This finishes the proof of Theorem 4.1. 

−(k+1),Ω 
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5. Numerical examples 

The superconvergent result in Corollary 4.1 suggests that a more compact kernel with fewer B-
splines can achieve the theoretical superconvergence order, and the standard full kernel (a kernel 
function com- posed of a linear combination of 2k + 1 B-splines of order k + 1) is no longer necessary. 
Therefore, in 
this section, we show the effect of using different total number of B-splines (denoted by ν = 2k + 1 + ω 
with ω “ |−k |) of the kernel in our numerical experiments. To reduce time errors, we consider 
the 
third-order Runge–Kutta time discretization and choose a small time step. The numerical errors and 
convergence orders using P2 and P3 polynomials are given, and a specific value of ω = −2 is chosen to 
match the superconvergence order. It is worth pointing out that a quadruple precision package is 

used for the post-processing procedure for P3 polynomials in Example 5.1 and Example 5.2, which 

helps us to get rid of the effect of round off errors in our calculations. The numerical results are only 
shown for the density to save space. 

EXAMPLE 5.1Consider the one-dimensional Euler equations of compressible gas dynamics 
 

ut + f (u)x = 0 (5.1a) 
 

with  

ρ  
 

 
 

ρv 
 

u =  ρv  , f (u) =  
E 

ρv2 + p 
v(E + p) 

 , (5.1b) 

 

where E =   p    + 1 ρv2  and γ = 1.4 with periodic boundary conditions and the following initial condi- 
γ−1 2 

tions: ρ(x, 0) = 1 + 0.5 sin(x), v(x, 0) = 1, p(x, 0) = 1, x ∈ [0, 2π]. 

The numerical errors and orders at T = 1 are given in Table 5.1. From the table, we can see that  
the standard full kernel (ω = 0) could yield at least (2k + 1)th order superconvergence, which is similar 
to the results for linear hyperbolic systems in Cockburn et al. (2003).  For the compact kernel 
with 

ω = −2, superconvergence of order 2k can be observed. The pointwise errors are plotted in Figure 5.1, 
which show that the post-processed filter with the standard or the more compact kernel can both 
remove 
oscillations in the errors. 

 
Table 5.1. L2- and L∞ errors for Example 5.1 (Euler equation with smooth solution). Before post-processing (left), after post- 
processing (middle) and post-processing with the more compact kernel (right). T = 1. 

 
Before post-processing Post-processed (ω = 0) Post-processed (ω = −2) 

Mesh L2 error Order L∞ error Order L2 error Order L∞ error Order L2 error Order L∞ error Order 
 

20 5.35E-05 – 1.83E-04 – 1.28E-06 – 1.82E-06 – 6.58E-05 – 9.30E-05 – 
2 40 6.69E-06 3.00 2.31E-05 2.99 2.24E-08 5.83 3.19E-08 5.83 4.14E-06 3.99 5.86E-06 3.99 

P 
80 8.36E-07 3.00 2.89E-06 3.00 4.24E-10 5.73 6.02E-10 5.73 2.59E-07 4.00 3.67E-07 4.00 

160 1.04E-07 3.00 3.61E-07 3.00 8.91E-12 5.57 1.26E-11 5.57 1.62E-08 4.00 2.29E-08 4.00 

20 1.03E-06 – 2.74E-06 – 4.94E-08 – 6.98E-08 – 1.82E-06 – 2.57E-06 – 
3 40 6.52E-08 3.99 1.93E-07 3.82 2.54E-10 7.60 3.60E-10 7.60 2.88E-08 5.98 4.07E-08 5.98 

P 
80 4.03E-09 4.01 1.19E-08 4.02 1.45E-12 7.45 2.06E-12 7.45 4.50E-10 6.00 6.37E-10 6.00 

160 2.52E-10 4.00 7.43E-10 4.00 9.25E-15 7.30 1.31E-14 7.30 7.04E-12 6.00 9.95E-12 6.00 

EXAMPLE 5.2Consider the Euler equation with a source term 

ut + f (u)x = g(x, t) 
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FIG. 5.1. The errors in absolute value and in logarithmic scale for P2 (top) and P3 (bottom) polynomials with N = 20, 40, 80 and 
160 elements for Example 5.1 (Euler equation with smooth solution). Before post-processing (left), after post-processing 
(middle) and post-processing with the more compact kernel (right). T = 1. 
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with periodic boundary conditions and the following initial condition: ρ(x, 0) = 2 + 0.5 sin(x), v(x, 0) = 1 − 
0.1 cos(x), p(x, 0) = 1. Here, u and f (u) has been given in (5.1b), and g(x, t) is suitably chosen such that 
the exact solution is ρ(x, t) = 2 + 0.5 sin(x + t), v(x, t) = 1 − 0.1 cos(x + t), p(x, t) = 1. 

The numerical errors and orders at T = 1 are given in Table 5.2. From the table, we can see that 
the orders of convergence for the standard kernel (ω = 0) and the more compact kernel (ω = −2) are 2k 
+ 1 
and 2k, respectively. The pointwise errors are plotted in Figure 5.2, which show that the post-

processed errors with both kernels are less oscillatory and much smaller in magnitude, and that the 

errors of our more compact kernel are less oscillatory than that for the standard kernel. This 

example demonstrates that the SIAC filter is also effective for nonlinear systems of conservation laws 

with source terms. 

 
Table 5.2. L2- and L∞ errors for Example 5.2 (Euler equation with source terms). Before post-processing (left), after post- 
processing (middle) and post-processing with the more compact kernel (right). T = 1. 

 
Before post-processing Post-processed (ω = 0) Post-processed (ω = −2) 

Mesh L2 error Order L∞ error Order L2 error Order L∞ error Order L2 error Order L∞ error Order 
 

20 5.37E-05 – 1.79E-04 – 1.16E-06 – 1.80E-06 – 6.56E-05 – 9.28E-05 – 
2 40 6.71E-06 3.00 2.40E-05 2.90 1.92E-08 5.92 3.29E-08 5.78 4.14E-06 3.99 5.85E-06 3.99 

P 
80 8.34E-07 3.01 3.16E-06 2.93 3.35E-10 5.84 5.69E-10 5.85 2.59E-07 4.00 3.66E-07 4.00 

160 1.04E-07 3.00 3.87E-07 3.03 6.63E-12 5.66 1.26E-11 5.50 1.62E-08 4.00 2.29E-08 4.00 

20 1.10E-06 – 3.90E-06 – 9.16E-08 – 1.41E-07 – 1.80E-06 – 2.57E-06 – 
3 40 6.56E-08 4.07 2.30E-07 4.08 6.79E-10 7.08 1.06E-09 7.05 2.86E-08 5.98 4.06E-08 5.98 

P 
80 4.03E-09 4.03 1.31E-08 4.13 5.24E-12 7.02 8.41E-12 6.98 4.49E-10 5.99 6.37E-10 6.00 

160 2.52E-10 4.00 8.05E-10 4.03 4.10E-14 7.00 6.63E-14 6.99 7.03E-12 6.00 9.95E-12 6.00 

DG Error Post-processed (ω = 0) 
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FIG. 5.2. The errors in absolute value and in logarithmic scale for P2 (top) and P3 (bottom) polynomials with N = 20, 40, 80 and 
160 elements for Example 5.2 (Euler equation with source terms). Before post-processing (left), after post-processing (middle) 
and post-processing with the more compact kernel (right). T = 1. 
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EXAMPLE 5.3In this example we consider the Sod problem, namely the system (5.1) with the following 
initial condition: ρ(x, 0) = 1, v(x, 0) = 0, p(x, 0) = 1 for x ™ 0 and ρ(x, 0) = 0.125, v(x, 0) = 0, p(x, 0) = 

0.1 for x > 0, x ∈ [−5, 5]. 

We test the Example 5.3 at T = 2, when the solution contains shock and rarefaction. We measure 
the errors on the smooth region, [−5, −2.6] ∪ [4, 5]. The orders of convergence with different kernels 
are listed in Table 5.3 and pointwise errors are plotted in Figure 5.3. We can see that the post-

processed errors are smaller in magnitude for most of elements. This example demonstrates that the 

accuracy en- hancement technique is also useful for nonlinear systems of hyperbolic conservation 

laws with complex discontinuous solutions. 
 

Table 5.3. L2- and L∞ errors in smooth regions for Example 5.3 (Sod problem with complex discontinuous solution). Before 
post-processing (left), after post-processing (middle) and post-processing with the more compact kernel (right). T = 2. 

 
Before post-processing Post-processed (ω = 0) Post-processed (ω = −2) 

Mesh L2 error Order L∞ error Order L2 error Order L∞ error Order L2 error Order L∞ error Order 
 

50 1.12E-03 – 8.75E-03 – 9.06E-04 – 6.84E-03 – 8.59E-04 – 6.54E-03 – 
2 100 3.13E-04 1.84 3.29E-03 1.41 2.35E-04 1.95 1.90E-03 1.85 1.89E-04 2.19 1.52E-03 2.11 

P 
200 3.91E-05 3.00 3.60E-04 3.19 2.50E-05 3.23 2.41E-04 2.98 1.97E-05 3.26 1.94E-04 2.96 

400 1.28E-06 4.93 2.70E-05 3.74 9.89E-07 4.66 1.61E-05 3.91 8.01E-07 4.62 1.27E-05 3.93 

50 6.14E-04 – 3.47E-03 – 2.56E-04 – 2.16E-03 – 2.66E-04 – 2.46E-03 – 
3 100 1.32E-04 2.22 1.44E-03 1.27 1.84E-05 3.80 1.58E-04 3.78 1.08E-05 4.62 1.59E-04 3.95 

P 
200 1.47E-05 3.16 2.37E-04 2.60 6.81E-07 4.76 1.17E-05 3.75 5.84E-07 4.21 9.57E-06 4.05 

400 3.32E-07 5.47 5.43E-06 5.45 1.25E-08 5.77 2.64E-07 5.47 1.18E-08 5.63 2.54E-07 5.23 
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FIG. 5.3. The errors in absolute value and in logarithmic scale for P2 (top) and P3 (bottom) polynomials with N = 50, 100, 200 
and 400 elements for Example 5.3 (Sod problem with discontinuous solution). Before post-processing (left), after post-
processing (middle) and post-processing with the more compact kernel (right). T = 2. 
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6. Concluding remarks 

In this paper, we investigate divided difference estimates and accuracy enhancement of DG methods 
for nonlinear symmetric systems of hyperbolic conservation laws. These estimates are essential for 

theoretically proving that it is possible to draw out extra orders of accuracy using a SIAC filter. The main 
technical difficulties come from the estimates to the divided difference of the projection error as well 

as the supercloseness property. By using properties of the DG discretization operator and properties 

of the divided differences, we are able to prove that the L2 norm of the α-th order divided difference 

of the DG 
error achieves (k + 3 − α )th order when upwind fluxes are used, under the condition that flux Jacobian 

2 2 
matrix f r (u) is positive definite. The L2 norm estimates together with a duality argument produce 
superconvergent negative-order norm estimates of order 2k + 3 − α , allowing for that the post-processed 2 2 

solution to be of at least ( 3 k + 1)th order superconvergent to the exact solution in the L2 norm. Thus, 
some computationally efficient more compact kernels can be used to match the proved 
superconvergence 

order in practice. A series of numerical experiments are given, showing that oscillations can be 

removed a lot using our more compact kernels and that the accuracy enhancement holds true for 

general nonlinear systems of conservation laws with different initial conditions and complex structure 

of solutions. 

Future work consists of the study of accuracy enhancement of the DG method for nonlinear 

scalar and systems of conservation laws in multi-dimensional cases on structured as well as 

unstructured meshes. Investigation of some suitable numerical examples will also be carried out. 
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A. Appendix: Proof of several lemmas 

In this appendix, we give the proofs for some of the more technical lemmas. 

 
A.1 The proof of Lemma 3.2 

Let us prove the relation between "ξx" and "ξt" in Lemma 3.2. Consider the error equation (3.7), 
namely 

(et, vh) = H( f (u) − f (uh), vh) (A.1) 

which holds for all vh ∈ Vk. To deal with the nonlinearity of the flux function f (u), we use the second 
order Taylor expansion (3.11a) and (3.11b) to rewrite (A.1) as 

 

(et, vh) = Θ 1 + Θ 2 + Θ 3 (A.2) 

with Θi given by 
 

N 

Θ i  = H(θ i, vh) = ((vh)x, θ i)+ ∑ 
.
[ vh] T θ−.

 
j=1 

 

j+ 1 

 

, (i = 1, 2, 3), 

 

which will be estimated one by one below. 

First consider Θ 1. We begin by using the strong form of H, (2.5b), to get 
 

N 

Θ 1 = H
. 

f r (u)ξ, vh

. 
= − 

.
vh, ∂x( f r (u)ξ )

. 
− ∑ 

.
(v+)T f r (u)[ ξ ] 

.
 

j=1 
j− 1 . 

 

Next, let Lk  be the standard Legendre polynomial of degree k in [−1, 1], so Lk(−1) = (−1)k, and Lk 

is orthogonal to any polynomials of degree at most k − 1.  If we now let  vh  = ξx − dLk(s) with  d  = 
2(x−xj ) 

(−1)k(ξx)
+

 
2 

being a constant vector and s = h j
 ∈ [−1, 1], we obtain 

 

 
since (vh)+

 
j− 1 

Θ 1 = − 
.
vh, ∂x f r (u)ξ 

. 
− 

.
ξx − dLk(s), f r (u)ξx

. 
¾ −W − Z, (A.3) 

= 0. On each element Ij , by the linearization f r (u) = f r (uj )+( f r (u)− f r (uj )) and noting 

.
dLk, f r (uj )ξx

. 
j = 0, we arrive at an equivalent form of Z 

Z = Z1 + Z2, (A.4) 
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h 

 
 

 
where  

Z1 = 
.
ξx, f r (uj )ξx

. 
, 

Z2 = 
.
ξx − dLk, ( f r (u) − f r (uj  ))ξx

. 
. 

By the inverse property (ii), it is easy to show, for vh = ξx − dLk(s), that 

"vh" ™ C"ξx". 

Inserting the above results into (A.2) and using the assumption that f r (u) is positive definite (and thus 

f r (u) “ δ I), we obtain 

δ"ξx" ™ Z1 = Θ 2 + Θ 3 −W − Z2 − (et, ξx  − dLk) . (A.5) 

We will estimate the terms on the right side of (A.5) one by one below. 

A direct application of (2.16b) in Lemma 2.2 leads to a bound for Θ 2 

|Θ 2| ™ C>hk+1"ξx". (A.6a) 

By an analysis similar to that in the proof of (3.12c), we get 

|Θ 3| ™ C>h−1"e"∞    "ξ" + hk+1    "ξx", (A.6b) 

where we have also used the approximation error estimate (2.13a). By the Cauchy–Schwarz 

inequality, we have 

|W| ™ C>"ξ""ξx". (A.6c) 

Using the Cauchy–Schwarz inequality as well as the inverse property (i), and taking into account the 
fact that " f r (u) − f r (uj )"M ™ C>h on each element Ij , we obtain 

|Z2| ™ C>"ξ""ξx". (A.6d) 

The triangle inequality and the approximation error estimate (2.13a) yield 

| (et, vh) | ™ C("ξt" + hk+1)"ξx". (A.6e) 

Finally, the error estimate (3.17) follows by collecting the estimates (A.6a)–(A.6e) into (A.5) and by 

using the estimates (3.15) and (3.16) in Corollary 3.2 and Corollary 3.3, respectively. This finishes the 

proof of Lemma 3.2. 

 
A.2 The proof of Lemma 3.3 

Let us first prove the initial error estimate for "ξt (0)". We start by noting that the error equation (3.7) 
still holds at t = 0 for any vh ∈ Vk. Since ξ (·, 0) = 0, the nonlinear terms in (3.11a) and (3.11b) on the 
right-hand side of (3.7) reduce to 

f (u) − f (uh) = f r (u)η − ηTH η, (A.7a) 
T ˜ 

f (u) − f (u−) = f r (u)η− − (η−) H η−. (A.7b) 
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By an analysis similar to that in the proof of Lemma 3.1, we can easily get a bound for the right-hand 
side of (3.7) at t = 0, denoted by RHS; it reads 

RHS ™ C>(hk+1 + hk"η(·, 0)"∞)"vh", (A.8) 

which holds for any vh ∈ Vk. If we now let vh = ξ (·, 0) in (3.7) as well as in (A.8), we get that 
h t 

"ξt (·, 0)" ™ "ηt (·, 0)" + C>(hk+1 + hk"η(·, 0)"∞) ™ Chk+1, (A.9) 

by the interpolation properties (2.13a) and (2.13b). 

We then move on to the estimate of "ξt (·, t)" for t > 0. To do that, we proceed as follows. We take 

the time derivative of the error equation (3.7) and let vh = ξt to get 

(ett, ξt ) = H(( f (u) − f (uh))t, ξt ) . (A.10) 

To estimate the right-hand side of (A.10), we use the Taylor expansion (3.11) to split the nonlinear 

terms as follows 

( f (u) − f (uh))t = ∂t f r (u)ξ + f r (u)ξt + ∂t f r (u)η + f r (u)ηt − eT∂t H e− 2eTH ∂t e 

¾ ρ1 + · · · + ρ6, (A.11a) 
( f (u) − f (u−))t  = ∂t f r (u)ξ

− 
+ f r (u)ξ

− 
+ ∂t f r (u)η−

 
h t 

T T ˜ 
+ f r (u)η− − (e−)  ∂t H̃ e− − 2(e−)  H ∂t e−

 

¾ ρ− + · · · + ρ−, (A.11b) 
1 6 

since H and H̃  are symmetric matrices.  Therefore, the right-hand side of (A.10), denoted by ϒ , can be 
formulated as 

ϒ = K1 + · · · + K6 (A.12) 

with Ki = H(ρi, ξt ) (i = 1, . . . , 6). Consequently, (A.10) can be represented by 

1 d 2 k+1 

2 dt 
"ξt" ™ ϒ + "ηtt""ξt" ™ ϒ + Ch "ξt", (A.13) 

by the interpolation error estimate (2.13a). 
We estimate the term K1  first.  A simple application of (2.14a) in Lemma 2.1 gives us a bound  for 

K1; it reads 

K1 ™ C> 

.
 ξ" + "ξ 

 
1 

" + h− 2 [ξ ] ξ 
" x |   |  " t" 

™ C> 

.
 ξ " + hk+1 + h− 2 [ξ ] 

. 
ξ 

" t |   |  " t" 

™ C>"ξ t "  + h−1|[ξ ]|  + Ch2k+2, (A.14a) 

where we have used (3.16) and (3.17) in the second step and Young’s inequality in the last step. Next, 
a direct application of (2.14b) in Lemma 2.1 leads to a bound for K2 

 

2 δ 2 

K2  ™ C>"ξ t "  − 
2 

|[ξ t ]| , (A.14b) 



 

 

2 

2 

1 1 

2 2 

 
 

 
 

where we have used the assumption that f r (u) is positive definite with the smallest eigenvalue δ . To 
estimate K3 and K4, we need only to employ the property (2.16b) in Lemma 2.2, which is given as 
follows 

K3 + K4 ™ C>hk+1"ξt", (A.14c) 

where we have also used the fact that P is a linear operator with respect to t, namely (Pu)t = P(ut ), 
and thus "(u− Pu)t" ™ Chk+1"ut"k+1  by the approximation error estimate (2.13a).  It is easy to show,  
for 
high order terms K5  and K6, that 

K5 ™ C>h−1"e"∞("ξ" + hk+1)"ξt" ™ C>hk+1"ξt", (A.14d) 

K6 ™ C>h−1"e"∞("ξt" + hk+1)"ξt" ™ C>"ξt" + Chk+1"ξt", (A.14e) 

where we have also employed (3.15) and (3.16) in Corollary 3.2 and Corollary 3.3 in the last inequality. 

Therefore, by collecting the estimates (A.14a)–(A.14e) into (A.12) and (A.13), we get, after a simple 

application of Young’s inequality, that 
 

1 d 2 δ 2 2 1 2 2k+2 

2 dt 
"ξ t "  +   |[ξ t ]| 

™ C>"ξ t "  + h−  |[ξ ]| + Ch , (A.15) 

where C and C> are positive constants independent of h. Finally, a direct application of Gronwall’s 
inequality together with the initial error estimate (A.9) leads to the desired result 

"ξt" + 
.¸ t 

0 

. 
2

 

|[ξ t ]|  dτ 
1 
.¸ t 

™ Chk+1 + C>h− 2 

0 

. 
2

 

|[ξ (τ)]|  dτ . 

 

This completes the proof of Lemma 3.3. 


