Hyaluronan is crucial for stem cell differentiation into smooth muscle lineage

Simpson, Russell M L, Hong, Xuechong, Wong, Mei Mei, Karamariti, Eirini, Bhaloo, Shirin Issa, Warren, Derek, Kong, Wei, Hu, Yanhua and Xu, Qingbo (2016) Hyaluronan is crucial for stem cell differentiation into smooth muscle lineage. Stem Cells, 34 (5). pp. 1225-1238. ISSN 1066-5099

[thumbnail of Simpson_et_al-2016-STEM_CELLS]
Preview
PDF (Simpson_et_al-2016-STEM_CELLS) - Published Version
Download (1MB) | Preview

Abstract

Deciphering the extracellular signals that regulate SMC differentiation from stem cells is vital to further our understanding of the pathogenesis of vascular disease and for development of cell-based therapies and tissue engineering. Hyaluronan (HA) has emerged as an important component of the stem cell niche, however its role during stem cell differentiation is a complicated and inadequately defined process. This study aimed to investigate the role of HA in embryonic stem cell (ESC) differentiation toward a SMC lineage. ESCs were seeded on collagen-IV in differentiation medium to generate ESC-derived SMCs (esSMCs). Differentiation coincided with increased HA synthase (HAS) 2 expression, accumulation of extracellular HA and its assembly into pericellular matrices. Inhibition of HA synthesis by 4-methylumbelliferone (4MU), removal of the HA coat by hyaluronidase (HYAL) or HAS2 knockdown led to abrogation of SMC gene expression. HA activates ERK1/2 and suppresses EGFR signaling pathways via its principle receptor, CD44. EGFR inactivation coincided with increased binding to CD44, which was further augmented by addition of high molecular weight (HMW)-HA either exogenously or via HAS2 overexpression through adenoviral gene transfer. HMW-HA-stimulated esSMCs displayed a functional role in vascular tissue engineering ex vivo, vasculogenesis in a matrigel plug model and SMC accumulation in neointimal lesions of vein grafts in mice. These findings demonstrate that HAS2-induced HA synthesis and organization drives ESC-SMC differentiation. Thus, remodeling of the HA microenvironment is a critical step in directing stem cell differentiation toward a vascular lineage, highlighting HA as a potential target for treatment of vascular diseases.

Item Type: Article
Additional Information: © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Uncontrolled Keywords: hyaluronan,neointima,smooth muscle cells,stem cells,vasculogenesis
Faculty \ School: Faculty of Science > School of Pharmacy
UEA Research Groups: Faculty of Science > Research Groups > Molecular and Tissue Pharmacology
Related URLs:
Depositing User: Pure Connector
Date Deposited: 23 Nov 2016 00:41
Last Modified: 22 Oct 2022 01:55
URI: https://ueaeprints.uea.ac.uk/id/eprint/61453
DOI: 10.1002/stem.2328

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item