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Abstract 

The study of signed languages allows the dissociation of 

sensorimotor and cognitive neural components of the language 

signal. Here we investigated the neurocognitive processes under- 

lying the monitoring of two phonological parameters of sign 

languages: handshape and location. Our goal was to determine 

if brain regions processing sensorimotor characteristics of dif- 

ferent phonological parameters of sign languages were also 

involved in phonological processing, with their activity being 

modulated by the linguistic content of manual actions. We con- 

ducted an fMRI experiment using manual actions varying in 

phonological structure and semantics: (1) signs of a familiar sign 

language (British Sign Language), (2) signs of an unfamiliar sign 

language (Swedish Sign Language), and (3) invented nonsigns 

that violate the phonological rules of British Sign Language and 

Swedish Sign Language or consist of nonoccurring combinations 

of phonological parameters. Three groups of participants were 

 

 
tested: deaf native signers, deaf nonsigners, and hearing non- 

signers. Results show that the linguistic processing of different 

phonological parameters of sign language is independent of the 

sensorimotor characteristics of the language signal. Handshape 

and location were processed by different perceptual and task- 

related brain networks but recruited the same language areas. 

The semantic content of the stimuli did not influence this pro- 

cess, but phonological structure did, with nonsigns being asso- 

ciated with longer RTs and stronger activations in an action 

observation network in all participants and in the supramarginal 

gyrus exclusively in deaf signers. These results suggest higher 

processing demands for stimuli that contravene the phonological 

rules of a signed language, independently of previous knowledge 

of signed languages. We suggest that the phonological charac- 

teristics of a language may arise as a consequence of more effi- 

cient neural processing for its perception and production. 

 
 

 

INTRODUCTION 

Valuable insights into the neuroanatomy of language and 

cognition can be gained from the study of signed lan- 

guages. Signed languages differ dramatically from spoken 

languages with respect both to the articulators (the 

hands vs. the vocal tract) and to the perceptual system 

supporting comprehension (vision vs. audition). However, 

linguistically (Sutton-Spence & Woll, 1999), cognitively 

(Rudner, Andin, & Rönnberg, 2009), and neurobiologically 

(Corina, Lawyer, & Cates, 2012; MacSweeney, Capek, 

Campbell, & Woll, 2008; Söderfeldt, Rönnberg, & Risberg, 

1994), there are striking similarities. Thus, studying signed 

languages allows sensorimotor mechanisms to be disso- 

ciated from cognitive mechanisms, both behaviorally and 

neurobiologically. 

In this study, we investigated the neural networks under- 

lying monitoring of the handshape and location (two 

phonological components of sign languages) of manual 

actions that varied in phonological structure and semantic 

 

content. Our main goal was to determine if brain regions 

involved in processing sensorimotor characteristics of the 

language signal were also involved in phonological process- 

ing, with their activity being modulated by the linguistic 

content of manual actions. 

The semantic purpose of language—the sharing of 

meaning—is similar across signed and spoken languages. 

However, the phonological level of language processing 

may be specifically related to the sensorimotor character- 

istics of the language signal. Spoken language phonology 

relates to sound patterning in the sublexical structure of 

words. Sign language phonology relates to the sublexical 

structure of signs and in particular the patterning of 

handshape, hand location in relation to the body, and hand 

movement (Emmorey, 2002). Phonology is generally con- 

sidered to be arbitrarily related to semantics. In signed 

languages, however, phonology is not always indepen- 

dent of meaning (for an overview, see Gutiérrez, Williams, 

Grosvald, & Corina, 2012), and this relation seems to influ- 

   ence language processing (Grosvald, Lachaud, & Corina, 
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2012; Thompson, Vinson, & Vigliocco, 2010) and its neural 

underpinning (Rudner, Karlsson, Gunnarsson, & Rönnberg, 

2013; Gutiérrez, Müller, Baus, & Carreiras, 2012). 
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Speech-based phonological processing skill relies on 

mechanisms whose neural substrate is located in the 

posterior portion of the left inferior frontal gyrus (IFG) 

and the ventral premotor cortex (see Price, 2012, for a 

review). The posterior parts of the junction of the parie- 

tal and temporal lobes bilaterally (Hickok & Poeppel, 

2007), particularly the left and right supramarginal gyri 

(SMG), are also involved in speech-based phonology, 

activating when participants make decisions about the 

sounds of words (i.e., their phonology) in contrast to 

decisions about their meanings (i.e., their semantics; 

Hartwigsen et al., 2010; Devlin, Matthews, & Rushworth, 

2003; McDermott, Petersen, Watson, & Ojemann, 2003; 

Price, Moore, Humphreys, & Wise, 1997). 

The phonology of sign language is processed by left- 

lateralized neural networks similar to those that support 

speech phonology (MacSweeney, Waters, Brammer, 

Woll, & Goswami, 2008; Emmorey, Mehta, & Grabowski, 

2007), although activations in the left IFG are more ante- 

rior for sign language (Rudner et al., 2013; MacSweeney, 

Brammer, Waters, & Goswami, 2009; MacSweeney, 

Waters, et al., 2008). Despite these similarities, it is not 

clear to what extent the processing of the specific phono- 

logical parameters of sign languages, such as handshape, 

location, and movement, recruits functionally different 

neural networks. Investigation of the mechanisms of sign 

phonology have often focused separately on sign hand- 

shape (Andin, Rönnberg, & Rudner, 2014; Andin et al., 

2013; Grosvald et al., 2012; Wilson & Emmorey, 1997) 

and sign location (Colin, Zuinen, Bayard, & Leybaert, 

2013; MacSweeney, Waters, et al., 2008). Studies that have 

compared these two phonological parameters identified 

differences in comprehension and production psycho- 

linguistically (e.g., Orfanidou, Adam, McQueen, & Morgan, 

2009; Carreiras, Gutiérrez-Sigut, Baquero, & Corina, 2008; 

Dye & Shih, 2006; Emmorey, McCullough, & Brentari, 

2003), developmentally (e.g., Morgan, Barrett-Jones, & 

Stoneham, 2007; Karnopp, 2002; Siedlecki & Bonvillian, 

1993), and neuropsychologically (Corina, 2000). In particu- 

lar, the neural signature of handshape and location-based 

primes has been found to differ between signs and non- 

signs and further interact with the semantic properties of 

signs (Grosvald et al., 2012; Gutiérrez, Müller, et al., 2012). 

However, no study to date has investigated the differences 

in neural networks underlying monitoring of handshape 

and location. 

Handshape and location can be conceptualized dif- 

ferently in terms of their perceptual and linguistic prop- 

erties. In linguistic (phonological) terms, location refers to 

the position of the signing hand in relation to the body. 

The initial location has been referred to as the equivalent 

of syllable onset in spoken languages (Brentari, 2002), with 

electrophysiological evidence suggesting that location 

triggers the activation of lexical candidates in signed lan- 

guages, indicating a function similar to that of the onset 

in spoken word recognition (Gutiérrez, Müller, et al., 

2012; Gutiérrez, Williams, et al., 2012). Perceptually, mon- 

itoring of location relates to the tracking of visual objects 

in space and in relation to equivalent positions relative to 

the viewer’s body. As such, it is expected that extraction of 

the feature of location will recruit dorsal visual areas, 

which are involved in visuospatial processing and visuo- 

motor transformations (Ungerleider & Haxby, 1994; Milner 

& Goodale, 1993), and resolve spatial location of objects. 

Parietal areas involved in the identification of others’ 

body parts (Felician et al., 2009) and those involved in 

self-reference, such as medial prefrontal, anterior cingulate, 

and precuneus, could also be involved in the extraction of 

this feature (Northoff & Bermpohl, 2004). 

Handshape refers to contrastive configurations of the 

fingers (Sandler & Lillo-Martin, 2006). It has been shown 

that deaf signers are faster and more accurate than hear- 

ing nonsigners at identifying handshape during a moni- 

toring task and that lexicalized signs are more easily 

identified than nonlexicalized signs (Grosvald et al., 

2012). In terms of lexical retrieval, handshape seems to 

play a greater role in later stages than location (Gutiérrez, 

Müller, et al., 2012), possibly by constraining the set of 

activated lexical items. From a perceptual point of view, 

monitoring of handshape is likely to recruit ventral visual 

and parietal areas involved in the processing of object 

categories and forms—in particular regions that respond 

more to hand stimuli than to other body parts or objects, 

such as the left lateral occipitotemporal cortex, the extra- 

striate body area, the fusiform body area, the superior 

parietal lobule, and the intraparietal sulcus (Bracci, 

Ietswaart, Peelen, & Cavina-Pratesi, 2010; Op de Beeck, 

Brants, Baeck, & Wagemans, 2010; Vingerhoets, de Lange, 

Vandemaele, Deblaere, & Achten, 2002; Jordan, Heinze, 

Lutz, Kanowski, & Jancke, 2001; Alivesatos & Petrides, 

1997; Ungerleider & Haxby, 1994; Milner & Goodale, 1993). 

Motor areas processing specific muscle–skeletal config- 

urations are also likely to be recruited (Hamilton & 

Grafton, 2009; Gentilucci & Dalla Volta, 2008). Thus, it 

is likely that different networks will be recruited for the 

perceptual and motoric processing of these phonologi- 

cal components. Evidence showing that phonological 

priming of location and handshape modulates compo- 

nents of the ERP signal differently for signs and non- 

signs and for native and non-native signers suggests 

that these networks may be modulated by the semantic 

content of the signs as well as the sign language experience 

of the participants (Gutiérrez, Müller, et al., 2012). 

In this study, we used a sign language equivalent of 

a phoneme-monitoring task (Grosvald et al., 2012) to 

investigate the neural networks underlying processing 

of two phonological components (handshape and loca- 

tion). Participants were instructed to press a button 

when they saw a sign that was produced in a cued loca- 

tion or that contained a cued handshape. Although our 

monitoring task taps into processes underlying sign lan- 

guage comprehension, it can be performed by both sign- 

ers and nonsigners. Our stimuli varied in phonological 

structure and semantic content and included (1) signs 
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of a familiar sign language (British Sign Language, BSL), 

which deliver semantic and phonological information; 

(2) signs of an unfamiliar sign language (Swedish Sign 

Language, SSL), chosen to be phonologically possible 

but nonlexicalized for BSL signers, delivering mainly 

phonological information, and thus equivalent to pseudo- 

signs; and (3) invented nonsigns, which violate the phono- 

logical rules of BSL and SSL or contain nonoccurring 

combinations of phonological parameters in order to 

minimize the amount of phonological information that 

can be extracted from the stimuli. By testing different 

groups of participants (deaf native signers, deaf non- 

signers, and hearing nonsigners), we were able to disso- 

ciate the influence of hearing status and sign language 

experience. This design allows us to contrast extraction 

of handshape and location in a range of linguistic contexts, 

with and without sign language knowledge and with and 

without auditory deprivation. Thus, it enables us to deter- 

mine whether neural networks are sensitive to the phono- 

logical structure of natural language even when that 

structure has no linguistic significance. This cannot easily 

be achieved merely by studying language in the spoken 

domain, as all hearing individuals with typical development 

use a speech-based language sharing at least some phono- 

logical structure with other spoken languages. 

We hypothesize that different perceptual and motor 

brain regions will be recruited for the processing of hand- 

shape and location, and this will be observed in all groups 

of participants, independently of their hearing status and 

sign language knowledge. Regarding visual processing 

networks, we expect dorsal visual areas to be more active 

during the monitoring of location and ventral visual areas 

to be more active while monitoring handshape (effect of 

task). If visual processing mechanisms are recruited for 

phonological processing, different patterns of activation 

will be found for deaf signers (compared to nonsigners) 

in ventral and dorsal visual areas for the handshape and 

location task (respectively). On the other hand, if phono- 

logical processing is independent of the sensorimotor 

characteristics of the language signal, the handshape 

and location tasks will not recruit ventral and dorsal visual 

areas differently in signers and nonsigners (Group × 

Task interaction). We also hypothesize that the semantic 

and phonological structure of signs will modulate neuro- 

cognitive mechanisms underpinning phoneme monitoring, 

with effects seen behaviorally and in the neuroimaging 

data. Specifically, we expect meaningful signs to differ- 

entially recruit regions from a large-scale semantic network 

including the posterior inferior parietal cortex, STS, para- 

hippocampal cortex, posterior cingulate, and pFC (includ- 

ing IFG; Binder, Desai, Graves, & Conant, 2009). We also 

hypothesize that stimuli varying in phonological structure 

will differentially recruit regions involved in phonological 

processing, such as the left IFG, the ventral premotor cor- 

tex, and the posterior parts of the junction of the parietal 

and temporal lobes, including the SMG (Group × Stimulus 

type interaction). 

METHODS 

This study is part of a larger study involving cross-linguistic 

comparisons and assessments of cross-modal plasticity in 

signers and nonsigners. Some results of this larger study 

have been published (Cardin et al., 2013), and others will 

be published elsewhere. 

 

 

Participants 

There were three groups of participants: 

(A) Deaf signers: Congenitally severely-to-profoundly 

deaf individuals who have deaf parents and are native 

signers of BSL. n = 15; age = 38.37 ± 3.22 years; 

gender = 6 male, 9 female; better-ear pure tone 

average (1 kHz, 2 kHz, 4 kHz; maximum output of 

equipment = 100 dB) = 98.2 ± 2.4 dB; non-verbal 

IQ, as measured with the blocks design subtest of 

the Wechsler Abbreviated Scale of Intelligence 

(WASI) = 62.67 ± 1.5. Participants in this group were 

not familiar with SSL. 

(B) Deaf nonsigners: Congenitally or early (before 3 years) 

severely-to-profoundly deaf individuals with hearing 

parents, who are native speakers of English acces- 

sing language through speechreading, and who have 

never learned a sign language. n= 10; age = 49.8 ± 

1.7 years; gender = 6 male, 4 female; pure tone aver- 

age = 95.2 ± 2.6 dB; WASI = 64.8 ± 1.8. 

(C) Hearing nonsigners: Participants with normal hear- 

ing who are native speakers of English with no 

knowledge of a sign language. n  = 18; age = 

37.55 ± 2.3 years; gender = 9 male, 9 female. WASI = 

60.93 ± 2.1. 

Participants in the deaf signers and hearing nonsigners 

groups were recruited from local databases. Most of the 

participants in the deaf nonsigners group were recruited 

through an association of former students of a local oral 

education school for deaf children. Sign language knowl- 

edge was an exclusion criterion for the deaf nonsigners 

and hearing nonsigner groups. Because of changing atti- 

tudes toward sign language, deaf people are now more 

likely to be interested in learning to sign as young adults, 

even if they were raised in a completely oral environment 

and developed a spoken language successfully. For this 

reason, all the participants in the deaf nonsigners were 

more than 40 years. The average age of this group was 

significantly different from that of the deaf signers ( p = 

.019) and the hearing nonsigners ( p = .0012). The 

number of male and female participants was also different 

across groups. For this reason, age and gender were 

entered as covariates in all our analyses. No other param- 

eter was significantly different across groups. 

All participants gave their written informed consent. 

This study was approved by the UCL Ethical Committee. 

All participants traveled to Birkbeck-UCL Centre of Neuro- 

imaging in London to take part in the study and were paid 



 

Table 1. Stimuli—BSL, Cognates, and SSL 

BSL Cognates SSL 
 

 

Sign Type Parts  Sign Type Parts  Sign English Name Type Parts 

afternoon 1L 1  alarm 2AS 1  äcklig disgusting 1L 1 

amazed 2S 1  announce 2S 1  afton evening 1L 1 

argue 2S 1  Belgium 1L 1  ambitiös ambitious 2S 1 

bedroom 1L 1  belt 2S 1  anka duck 2S 1 

believe 1L/2AS 2  bicycle 2S 1  anställd employee 2S 1 

biscuit 1L 1  bomb 2S 1  april April 1L 1 

can’t-be-bothered 1L 1  can’t-believe 1L/2AS 2  avundssjuk envious 1L 1 

castle 2S 1  cards 2AS 1  bakelse fancy pastry 2AS 1 

cheese 2AS 1  clock 2AS 1  bättre better 1L 1 

cherry 1L 1  clothes-peg 2AS 1  bedrägeri fraud 1L 1 

chocolate 1L 1  digital 2S/2S 2  beröm praise 1L/2AS 2 

church 2S 1  dive 2S 1  bevara keep 2S 1 

cook 2S 1  dream 1L 1  billig cheap 10 1 

copy 2AS 1  Europe 10 1  blyg shy 1L 1 

cruel 1L 1  gossip 10 1  böter fine 2AS 1 

decide 1L/2AS 2  hearing-aid 1L 1  bräk trouble 2S 1 

dog 10 1  Holland 2S 1  broms brake 2S 1 

drill 2AS 1  Japan 2S 1  cognac brandy 10 1 

DVD 2AS 1  letter 2AS 1  ekorre squirrel 1L 1 

easy 1L 1  light-bulb 1L 1  farfar grandfather 1L 1 

evening 1L 1  meet 2S 1  filt rug 2AS 2 

February 2S/2S 2  monkey 2S 1  final final 2AS 1 

finally 2S 1  new 2AS 1  historia history 10 1 

finish 2S 1  Norway 10 1  Indien India 1L 2 

fire 2S 1  paint 2S 1  kakao cocoa 1L/10 2 

flower 1L 2  Paris 2S 1  kalkon turkey (bird) 1L 1 

give-it-a-try 1L 1  perfume 1L 2  kalsong underpants 1L 1 

helicopter 2AS 1  pool 2AS 1  korv sausage 2AS 1 

horrible 1L 1  protect 2AS 1  kväll evening 2AS 1 

house 2S 2  Scotland 1L 1  lördag Saturday 10 1 

ice-skate 2S 1  shampoo 2S 1  modig brave 2S 1 

live 1L 1  sick 1L 1  modig brave 1L 2 

luck 1L 1  sign-language 2S 1  partner partner 2S 1 

navy 2S 2  ski 2S 1  pommes frites French fries 2S 1 

silver 2S 1  slap 10 1  rektor headmaster 1L 2 

sing 2S 1  smile 1L 1  rövare robber 2AS 1 

soldier 1L 2  stir 2AS 1  sambo cohabitant 1L/2AS 2 

strawberry 1L 1  stomach-ache 2S 1  service service 2AS 1 



 

Table 1. (continued ) 
 

 BSL    Cognates    SSL  

Sign Type Parts  Sign Type Parts  Sign English Name Type Parts 

strict 1L 1  summarise 2S 1  soldat soldier 2S 1 

theatre 2AS 1  swallow 1L 1  strut cone 2AS 1 

Thursday 2AS 2  Switzerland 1L 2  svamp mushroom 2AS 1 

toilet 1L 1  tie 2AS 1  sylt jam 1L 1 

tree 2AS 1  tomato 2AS 1  tända ignite 2AS 1 

trophy 2S 1  translate 2AS 1  välling gruel 1L 1 

wait 2S 1  trousers 2S 1  varmare hotter 1L 1 

Wales 10 1  violin 2AS 1  verkstad workshop 10/2AS 2 

work 2AS 1  weight 2S 1  yngre younger 1L 1 

worried 2S 1  yesterday 1L 1  yoghurt yoghurt 1L 1 

The table lists the signs used in this study, including the number of component parts and the type of sign. BSL = BSL signs not lexicalized in SSL; 
Cognates = signs with identical form and meaning in BSL and SSL; SSL = SSL signs not lexicalized in BSL. Types of sign: 10, one-handed sign not 
in contact with the body; 1L, one-handed sign in contact with the body (including the nondominant arm); 2S, symmetrical two-handed sign, both 
hands active and with the same handshape; 2AS, asymmetrical two-handed sign, one hand acts on the other hand; handshapes may be the same or 
different. Parts: 1 = 1-part/1 syllable; 2 = 2-part/2 syllables. 

 

 
a small fee for their time and compensated for their travel 

and  accommodation expenses. 

 

Stimuli 

Our experiment was designed with four types of stimuli 

(Tables 1 and 2): BSL-only signs (i.e., not lexicalized in 

SSL), SSL-only signs (i.e., not lexicalized in BSL), cognates 

(i.e., signs with identical form and meaning in BSL and 

SSL), and nonsigns (i.e., sign-like items that are neither 

signs of BSL nor SSL and made by specifically violating 

phonotactic rules or including highly unusual or nonoccur- 

ring combinations of phonological parameters). 

Forty-eight video clips (2–3 sec each) of individual 

signs were selected for each type of stimulus where the 

sets were matched for age of acquisition (AoA), familiarity, 

iconicity, and complexity as explained below. BSL-only 

signs and cognates were initially drawn from Vinson, 

Cormier, Denmark, Schembri, and Vigliocco (2008), who 

provide a catalogue of BSL signs ranked by 30 deaf signers 

with respect to AoA, familiarity, and iconicity. A set of SSL 

signs was selected from the SSL Dictionary (Hedberg 

et al., 2005), where all phonologically contrasting hand- 

shapes were included in the sample. All of the SSL signs 

were possible signs in BSL, but none were existing BSL 

lexical signs. Nonsigns were created by deaf native signers 

using a range of handshapes, locations, and movement 

patterns. Most of these nonsigns had previously been 

used in behavioral studies (Orfanidou, Adam, Morgan, & 

McQueen, 2010; Orfanidou et al., 2009); an additional set 

was created specifically for the current study. All nonsigns 

violated phonotactic rules of BSL and SSL or were made of 

nonoccurring combinations of parameters, including (a) 

two active hands performing symmetrical movements but 

with different handshapes; (b) compound-type nonsigns 

having two locations on the body but with movement from 

the lower location to the higher location (instead of going 

from the higher to the lower location1); (c) nonoccurring or 

unusual points of contact on the signer’s body (e.g., occlud- 

ing the signer’s eye or the inner side of the upper arm); (d) 

nonoccurring or unusual points of contact between the 

signer’s hand and the location (e.g., handshape with the 

index and middle finger extended, but contact only 

between the middle finger and the body); nonoccurring 

handshapes. For BSL-only signs and cognates, AoA, famil- 

iarity, and iconicity ratings were obtained from Vinson 

et al. (2008). Complexity ratings were obtained from two 

deaf native BSL signers. For SSL stimuli, two deaf native 

signers of SSL ranked all items for AoA, familiarity, iconicity, 

and complexity according to the standards used for the 

BSL sign rankings. For nonsigns, complexity ratings were 

obtained from deaf native BSL signers and deaf native SSL 

signers. For each video clip showing a single sign, partici- 

pants were instructed to “Concentrate on the hand move- 

ments of the person in the video. For each video clip you 

should rate the sign on a scale of 0–4 as being simple or 

complex, where 0 = simple and 4 = complex. Each video 

clip will appear twice. You are supposed to make an in- 

stant judgment on whether the sign you are viewing seems 

simple or complex to YOU. Reply with your first impres- 

sion. Do not spend more time on any one sign. Rate your 

responses on the sheet provided. Circle the figure YOU 

think best describes the sign in the video.” There were 

no significant differences between any two sets with 

https://www.researchgate.net/publication/24043598_Making_sense_of_nonsense_in_British_Sign_Language_BSL_The_contribution_of_different_phonological_parameters_to_sign_recognition?el=1_x_8&amp;enrichId=rgreq-c3ba5542-7883-49b0-8eb5-7a236fa35965&amp;enrichSource=Y292ZXJQYWdlOzI4MTYzNDg5NDtBUzoyNzg5Njk0MTM4NDkwOTZAMTQ0MzUyMjg5OTczMQ%3D%3D
https://www.researchgate.net/publication/23465882_The_British_Sign_Language_BSL_norms_for_age_of_acquisition_familiarity_and_iconicity_Behavioral_Research_Methods_40_1079-1087?el=1_x_8&amp;enrichId=rgreq-c3ba5542-7883-49b0-8eb5-7a236fa35965&amp;enrichSource=Y292ZXJQYWdlOzI4MTYzNDg5NDtBUzoyNzg5Njk0MTM4NDkwOTZAMTQ0MzUyMjg5OTczMQ%3D%3D
https://www.researchgate.net/publication/23465882_The_British_Sign_Language_BSL_norms_for_age_of_acquisition_familiarity_and_iconicity_Behavioral_Research_Methods_40_1079-1087?el=1_x_8&amp;enrichId=rgreq-c3ba5542-7883-49b0-8eb5-7a236fa35965&amp;enrichSource=Y292ZXJQYWdlOzI4MTYzNDg5NDtBUzoyNzg5Njk0MTM4NDkwOTZAMTQ0MzUyMjg5OTczMQ%3D%3D


 

Table 2. Nonsigns Table 2. (continued ) 

ID Type Parts Odd Feature(s)  ID Type Parts Odd Feature(s) 

1 2AS 1 point of contact  73 1L 2 point of contact 

2 10 2 handshape change +  75 1L 1 handshape 

   orientation change 
79 1L 1 point of contact 

4 1L 2 handshape change + 
81 1L 1 point of contact 

higher second location 
 

5 2AS 1 location 

6 2S 1 2 different handshapes 

7 2AS 1 point of contact 

8 2S 1 orientation 

9 2AS 1 location 

12 2S 1 location 

13 2S 1 handshape 

14 1L 1 point of contact 

15 2AS 1 handshape 

17 1L 1 handshape, location + 

upward movement 

 
83 1L 1 handshape change 

85 1L 1 movement 

89 2S 2 location change + 

upward movement 

90 2S 2 location change 

93 2S 1 change to different handshapes 

96 2S 2 location change 

98 1L 2 2 handshape changes 

99 1L 2 handshape change + 

location change 

102 1L 2 location change + 

upward movement 

 

 

 
 

 
 

with the body; 1L, one-handed sign in contact with the body (including 
 

active and with the same handshape; 2AS, asymmetrical two-handed 

 

 

 
 

 

exception: Iconicity and familiarity of cognates were higher 

 
 

 
point of contact 

through a common linguistic ancestor, with the exception 
 

 
the signs JAPAN in BSL and SSL are borrowed from the 

 

 
 

 

 
point of contact 

62 10 1 movement 

64 2AS 1 point of contact 

68 1L 2 handshape change 

25.2 msec; nonsigns = 2700 ± 27.3 msec. There were no 

 
to duration ( p > .05 in all cases). 

Participants performed monitoring tasks in which cer- 

tain handshapes and locations were cued (see below). 

There were six different handshape cues and six different 

location cues (see Figure 1, bottom). Some handshape 

cues were constituted by collapsing across phonetically 

21 1L 1 point of contact 103 1L 2 location change + 

handshape change 
23 1L 1 orientation change    

27 2S 1 location change The table describes the composition of the nonsigns used in this study, 

    including their component parts and type of sign. Nonsigns: sign-like 

34 2AS 1 point of contact + items that are neither signs of BSL nor SSL and violate phonotactic rules 

2 different handshapes of both languages. Types of sign: 10, one-handed sign not in contact 

36 1L 1 contralateral location on head the non-dominant arm); 2S, symmetrical two-handed sign, both hands 

37 2AS 1 point of contact sign, one hand acts on the other hand; handshapes may be same or 
different. Parts: 1 = 1-part/1 syllable; 2 = 2-part/2 syllables. 

39 1L 1 contralateral location on shoulder + 

   orientation change     

41 1L 1 location + handshape change respect to any of these features based on the average of the 

43 1L 1 
location change 

obtained ratings ( p > .05 in all cases) with a single 

44 2S 2 orientation change + than that of BSL-only and SSL signs. This, however, is 
   handshape change expected, because the term “cognate” is used here to refer 

47 1L 1 point of contact to signs that share a common visual motivation (i.e., ico- 

51 1L 1 
nicity) and not to those signs that are historically related 

52 1L 2 location + handshape change of country names. This group consists of signs that are 

53 1L 1 upward movement known to be borrowed from their country of origin (i.e., 

55 2S 1 point of contact Japanese Sign Language). Mean duration of videos for 

56 2S 2 two different handshapes each category was as follows (mean ± SEM ): cognates = 

58 1L 1 point of contact 2723 ± 24.0 msec; BSL = 2662 ± 30.6 msec; SSL = 2683 ± 

61 2S 1 two different handshapes + significant differences between any two sets with respect 
 



 

different handshapes, which were allophones of a single 

handshape (i.e., without a change in meaning in either 

BSL or SSL). Location cues were selected to reflect the 

natural distribution of signs across signing space: Chin, 

cheek, and neck are small areas but are close to the focus 

of gaze during reception of signing and were thus used as 

separate target positions; waist and chest are larger areas 

and farther from the focus of gaze. All cue pictures were 

still images extracted from video recordings made with 

the same parameters as the stimulus videos. Each hand- 

shape and location cue was used once for each stimulus 

type. Signs were chosen ensuring that all targets were 

present the same number of times for each stimulus type. 

One of our main aims during the design of the stimuli 

was to avoid possible effects of familiarity with unknown 

signs due to repeated presentation of the stimuli set, 

hence the large number (48) of video clips per stimulus 

type. To achieve enough experimental power, each video 

clip had to be repeated once (it was not possible to 

enlarge the stimulus set while still controlling for AoA, 

familiarity, iconicity, complexity, number and type of 

targets in each stimulus type). To prevent possible effects 

of familiarity with the stimuli on task performance, stimulus 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 
Figure 1. Stimuli and experimental design. Top: Diagrammatic 

representation of the experiment. Bottom: Cues: handshape (left) 

and location (right). 

was ordered such that no repetitions occurred across the 

different task types. The association between stimulus and 

tasks was counterbalanced across  participants. 

All stimulus items were recorded in a studio environ- 

ment against a plain blue background using a digital 

high-definition camera. To ensure that any differences 

in activation between stimulus types were not driven by 

differences in sign production of a native versus foreign 

sign language (e.g., “accent”), signs were performed by 

a native user of German Sign Language, unfamiliar with 

either BSL or SSL. All items were signed with comparable 

ease, speed, and fluency and executed from a rest posi- 

tion to a rest position; signs were produced without any 

accompanying mouthing. Videos were edited with iMovieHD 

6.0.3 and converted with AnyVideoConverter 3.0.3 to meet 

the constraints posed by the stimulus presentation soft- 

ware Cogent (www.vislab.ucl.ac.uk/cogent.php). 

Stimuli were presented using Matlab 7.10 (The Math- 

Works, Inc., Natick, MA) with Cogent. All videos and 

images were presented at 480 × 360 pixels against a blue 

background. All stimuli were projected onto a screen 

hung in front of the magnet’s bore; participants watched 

it through a mirror mounted on the headcoil. 

 

Tasks and Experimental Design 

Throughout the experiment, participants were asked to 

perform either a handshape or a location monitoring task. 

They were instructed to press a button with their right 

index finger when a sign occurred in a cued location or 

when they spotted the cued handshape as a part of a stim- 

ulus. This is a phoneme monitoring task (cf. Grosvald 

et al., 2012) for signers but can be performed as a purely 

perceptual matching task by nonsigners. Performance in the 

task was evaluated by calculating an adapted d0. Participants 

only pressed a button to indicate a positive answer (i.e., 

the presence of a particular handshape or a sign produced 

in the cued location). Therefore, we calculated hits and 

false positives from the instances in which the button 

presses were correct and incorrect (respectively). We then 

equated instances in which participants did not press the 

button as “no” answers and calculated correct rejections 

and misses from the situations in which the lack of re- 

sponse was correct and incorrect (respectively). 

Stimuli of each type (BSL, cognates, SSL, and nonsigns) 

were presented in blocks. Prior to each block, a cue pic- 

ture showed which handshape or location to monitor 

(Figure 1, top). In total, there were 12 blocks per stimu- 

lus type presented in a randomized order. Each block 

contained eight videos of the same type of stimulus. 

Videos were separated by an intertrial interval where a 

blank screen was displayed for 2–6 sec (4.5 sec average). 

Prior to the onset of each video, a fixation cross in the 

same spatial location as the model’s chin was displayed 

for 500 msec. Participants were asked to fixate on the sign- 

er’s chin, given that the lower face area corresponds to 

the natural focus of gaze in sign language communication 

http://www.vislab.ucl.ac.uk/cogent.php)
https://www.researchgate.net/publication/229438667_Handshape_monitoring_Evaluation_of_linguistic_and_perceptual_factors_in_the_processing_of_American_Sign_Language?el=1_x_8&amp;enrichId=rgreq-c3ba5542-7883-49b0-8eb5-7a236fa35965&amp;enrichSource=Y292ZXJQYWdlOzI4MTYzNDg5NDtBUzoyNzg5Njk0MTM4NDkwOTZAMTQ0MzUyMjg5OTczMQ%3D%3D
https://www.researchgate.net/publication/229438667_Handshape_monitoring_Evaluation_of_linguistic_and_perceptual_factors_in_the_processing_of_American_Sign_Language?el=1_x_8&amp;enrichId=rgreq-c3ba5542-7883-49b0-8eb5-7a236fa35965&amp;enrichSource=Y292ZXJQYWdlOzI4MTYzNDg5NDtBUzoyNzg5Njk0MTM4NDkwOTZAMTQ0MzUyMjg5OTczMQ%3D%3D
xjy13hfu
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(Agrafiotis, Canagarajah, Bull, & Dye, 2003). Between 

blocks, participants were presented a 15-sec baseline 

video of the still model with a yellow fixation cross on 

the chin (Figure 1, top). They were instructed to press 

the button when the cross changed to red. This vigilance 

task has previously been used as a baseline condition in 

fMRI studies (e.g., Capek et al., 2008). In subsequent 

instances in the manuscript, the term “baseline” will refer 

to this 15-sec period while the model was in a static posi- 

tion. This baseline condition is different from blank periods 

of no visual stimulation, which were also present in be- 

tween blocks and videos, as described. 

Each participant performed four scanning runs, each 

consisting of 12 blocks. To make it easier for participants 

to focus on one of the two types of monitoring tasks, 

each participant performed either two runs consisting 

exclusively of location tasks followed by two runs consist- 

ing of handshape tasks or vice versa. The order of the 

tasks and stimulus types was counterbalanced across par- 

ticipants, with no participant in the same experimental 

group encountering the stimuli in the same order. 

 

 

Testing Procedure 

Before the experiment, the tasks were explained to the 

participants in their preferred language (BSL or English), 

and written instructions were also provided in English. A 

short practice session, using different video clips from 

those used in the main experiment, ensured that the par- 

ticipants were able to solve both tasks. 

During scanning, participants were given a button-box 

and instructed to press a button with their right index 

finger whenever they recognized a target during the 

monitoring tasks or when the baseline fixation cross 

changed color. There were two video cameras in the 

magnet’s bore. One was used to monitor the participant’s 

face and ensure they were relaxed and awake throughout 

scanning; the other monitored the participant’s left hand, 

which was used by deaf signers for manual communica- 

tion with the researchers between scans. A third video 

camera in the control room was used to relay signed in- 

structions to the participant via the screen. Researchers 

communicated with deaf nonsigner participants through 

written English displayed on the screen; deaf nonsigner 

participants responded using speech. An intercom was 

used for communication with hearing participants. All 

volunteers were given ear protection. 

After scanning, a recognition test was performed where 

all signed stimuli used in the experiment were presented 

outside the scanner to the deaf signers, and they were 

asked to indicate for each stimulus whether it was a famil- 

iar sign and, if so, to state its meaning. This procedure 

was used to ensure that all items were correctly catego- 

rized by each individual. Items not matching their as- 

signed stimulus type were excluded from subsequent 

analyses for that individual. 

Image Acquisition and Data  Analysis 

Images were acquired at the Birkbeck-UCL Centre for 

Neuroimaging, London, with a 1.5-T Siemens Avanto 

scanner and a 32-channel head coil. Functional imaging 

data were acquired using a gradient-echo EPI sequence 

(repetition time = 2975 msec, echo time = 50 msec, 

field of view = 192 × 192 mm) giving a notional resolu- 

tion of 3 × 3 × 3 mm. Thirty-five slices were acquired to 

obtain whole-brain coverage without the cerebellum. 

Each experimental run consisted of 348 volumes taking 

approximately 17 min to acquire. The first seven volumes 

of each run were discarded to allow for T1 equilibration 

effects. An automatic shimming algorithm was used to 

reduce magnetic field inhomogeneities. A high-resolution 

structural scan for anatomical localization purposes 

(magnetization-prepared rapid acquisition with gradient 

echo, repetition time = 2730 msec, echo time = 3.57 msec, 

1 mm3 resolution, 176 slices) was taken either at the end 

or in the middle of the session. 

Imaging data were analyzed using Matlab 7.10 and 

Statistical Parametric Mapping software (SPM8; Wellcome 

Trust Centre for Neuroimaging, London, UK). Images 

were realigned, coregistered, normalized, and smoothed 

(8 mm FWHM Gaussian kernel) following SPM8 standard 

preprocessing procedures. Analysis was conducted by fit- 

ting a general linear model with regressors representing 

each stimulus type, task, baseline, and cue periods. For 

every regressor, events were modeled as a boxcar of 

the adequate duration, convolved with SPM’s canonical 

hemodynamic response function and entered into a mul- 

tiple regression analysis to generate parameter estimates 

for each regressor at every voxel. Movement parameters 

were derived from the realignment of the images and 

included in the model as regressors of no interest. 

Contrasts for each experimental stimulus type and task 

(e.g., [BSL location > Baseline]) were defined individually 

for each participant and taken to a second-level analysis. To 

test for main effects and interactions, a full-factorial second- 

level whole-brain analysis was performed. The factors 

entered into the analysis were group (deaf signers, deaf 

nonsigners, hearing nonsigners), task (handshape, loca- 

tion), and stimulus type (BSL, SSL, cognates, nonsigns). 

Age and gender were included as covariates. Main effects 

and interactions were tested using specified t contrasts. 

Voxels are reported as x, y, z coordinates in accordance 

with standard brains from the Montreal Neurological Insti- 

tute (MNI). Activations are shown at p < .001 or p < .005 

uncorrected thresholds for display purposes, but they are 

only discussed if they reached a significance threshold of 

p < .05 (corrected) at peak or cluster level. Small volume 

corrections were applied if activations were found in regions 

where, given our literature review, we expected to find dif- 

ferences. If this correction was applied, we have specifically 

indicated it in the text. 

Cognates were included in the experiment for cross- 

linguistic comparisons between BSL and SSL signers in 



 

a different report, and their classification as such is not 

relevant here. The only difference between BSL-only 

and cognates is their degree of iconicity and familiarity. 

We found no differences in neural activation due to dif- 

ferences in iconicity between BSL-only and cognates. 

Therefore, given that both sets of signs are part of the 

BSL lexicon, these types of stimuli were combined into 

a single class in the analyses and are referred to as BSL 

signs in the Results section. 

 

 
RESULTS 

Our study aimed to determine if neurocognitive mecha- 

nisms involved in processing sensorimotor characteristics 

of the sign language signal are differentially recruited for 

phonological processing and how these are modulated 

by the semantic and phonological structure of the stim- 

uli. For this purpose, we first report the behavioral perfor- 

mance in the handshape and location tasks, identifying 

differences between tasks and stimuli that could be re- 

flected in the neuroimaging results. We then show a 

conjunction of the neuroimaging results across all the 

groups, stimulus types, and tasks to identify the brain 

regions that were recruited for solving the tasks inde- 

pendently of stimulus properties, sign language knowl- 

edge, and hearing status. Group effects are reported 

after this to dissociate these from the subsequently re- 

ported main effects of task, stimulus types, and inter- 

actions that specifically test our hypotheses. 

 
 

Behavioral Results 

Behavioral performance was measured using d0 and RTs 

(Table 3). A repeated-measures ANOVA with adapted d0 

as the dependent variable and the factors group (deaf 

signers, deaf nonsigners, hearing nonsigners), task 

(handshape, location), and stimulus type (BSL, SSL and 

nonsigns) resulted in no significant main effects or inter- 

actions: stimulus type (F(2, 80) = 1.98, p = .14), task (F(1, 

40) = 1.72, p = .20), group (F < 1, p = .52), Stimulus type × 

Task (F(2, 80) < 1, p = .65), Stimulus type × Group (F(4, 

80) = 1.18, p = .32), Task × Group (F(2, 40) = 2.03, p = 

.14), three-way interaction (F(6, 120) = 1.20, p = .31). 

A similar repeated-measures ANOVA with RT as the 

dependent variable showed a significant main effect of 

stimulus type (F(2, 80) = 52.66, p < .001), a significant 

main effect of task (F(1, 40) = 64.44, p < .001), and a 

significant interaction of Stimulus type × Group (F(4, 80) = 

3.06, p = .021). The interaction of Stimulus type × Task 

(F(2, 80) = 2.74, p = .071) approached significance. 

There was no significant main effect of group (F(2, 40) = 

1.27, p = .29), no significant interaction of Task × Group 

(F(2, 40) < 1, p = .96), and no three-way interaction (F(4, 

80) = 1.55, p = .19). Pairwise comparisons between stim- 

ulus types revealed that participants were significantly 

slower judging nonsigns than BSL (t(42) = 7.67, p < 

.001) and SSL (t(42) = 9.44, p < .001), but no significant 

difference was found between BSL and SSL (t(42) = 0.82, 

p = .40). They also showed that participants are signifi- 

cantly faster in the location task compared to the hand- 

shape task (t(42) = 7.93, p < .001). Pairwise comparisons 

investigating the interaction between Stimulus type × 

Group are presented in Table 4. The deaf signers group 

was significantly faster ( p < .05, Bonferroni corrected) than 

the hearing nonsigners group for BSL and SSL, but not for 

nonsigns. It should be noticed that the deaf nonsigners 

group was faster than the hearing nonsigners group also 

for BSL and SSL, but these differences do not survive cor- 

rection for multiple comparisons. There was no significant 

difference in RT between the deaf signers and the deaf 

nonsigners groups. 

 

 

 
Table 3. Behavioral Performance for the Handshape and Location Tasks 

Deaf Signers Deaf Oral Hearing Nonsigners 
 

 RT SD d0 SD  RT SD d0 SD  RT SD d0 SD 

Handshape 

BSL 

 
 

1.43 

 
 

0.23 

 
 

2.70 

 
 

0.92 

 
 

1.48 

 
 

0.19 

 
 

2.61 

 
 

0.51 

 
 

1.59 

 
 

0.28 

 
 

2.59 

 
 

0.45 

SSL 1.43 0.29 2.60 0.69 1.42 0.22 2.61 0.68 1.58 0.30 2.57 0.68 

Nonsigns 1.69 0.31 2.54 0.64 1.60 0.17 2.62 0.60 1.63 0.25 2.38 0.67 

 

Location 

BSL 

 
 

1.17 

 
 

0.26 

 
 

2.83 

 
 

0.75 

 
 

1.19 

 
 

0.16 

 
 

2.38 

 
 

0.28 

 
 

1.29 

 
 

0.26 

 
 

2.87 

 
 

0.54 

SSL 1.23 0.26 3.03 0.79 1.23 0.14 2.48 0.71 1.34 0.27 2.82 0.63 

Nonsigns 1.44 0.20 2.80 0.63 1.36 0.10 2.51 0.32 1.51 0.22 2.54 0.65 

The table lists mean RTs and d0 for the handshape and location tasks, and each stimulus type, separately for each group. 



 

Table 4. Least Significant Difference Pairwise Comparisons for RT Results for the Interaction Stimulus Type × Group 
 

  BSL    SSL    Nonsigns  

t(42)  p  t(42)  p  t(42)  p 

Deaf signers–Deaf oral 0.61  .54  0.039  .97  1.58  .12 

Deaf  signers–Hearing nonsigners 3.12  .003*  2.94  .005*  0.13  .90 

Deaf  oral–Hearing nonsigners 2.13  .04  2.65  .01  1.86  .07 

Least significant difference pairwise comparisons for RT results. The table shows absolute t values. 

*Values surviving significance at p < .0055 (uncorrected), which is equivalent to p = .05 corrected for multiple comparisons (Bonferroni). 

 

 
 

fMRI Results 

Conjunction 

Figure 2 shows the areas that were recruited to perform 

both tasks in all groups, collapsing across stimulus type 

and task. Activations were observed bilaterally in middle 

occipital regions, extending anteriorly and ventrally to 

the inferior temporal cortex and the fusiform gyrus and 

dorsally toward superior occipital regions and the inferior 

parietal lobe. Activations were also observed in the mid- 

dle and superior temporal cortex, the superior parietal 

lobe (dorsal to the postcentral gyrus), and the IFG (pars 

opercularis). See Table 5. 

 
 

Effect of Group 

To evaluate the effects driven by sign language experi- 

ence and hearing status, which were independent of task 

and stimulus type, we collapsed results across all tasks 

and stimulus types and then compared the activations 

between groups. Figure 3A shows stronger bilateral acti- 

and deaf ) were using different strategies or relying differ- 

entially on perceptual processing, we conducted a series 

of comparisons to identify activations that were present 

exclusively in deaf nonsigners and hearing nonsigners 

(Table 6). Figure 3B shows that hearing nonsigners re- 

cruited occipital and superior parietal regions across 

tasks and stimulus types. This result is observed when 

hearing nonsigners are compared to both deaf signers 

and deaf nonsigners (using a conjunction analysis), dem- 

onstrating that this effect is driven by the difference in 

hearing status between the groups and not by a lack of 

sign language knowledge. Figure 3C shows a stronger 

focus of activity in the posterior middle temporal gyrus 

in the deaf nonsigners group. This effect was present 

bilaterally, but only the left hemisphere cluster was statis- 

tically significant ( p < .05 corrected at peak level). 

 

 
Table 5. Peak Coordinates for Conjunction Analysis 

Peak Voxel 

vations in STC in the group of deaf signers, compared to p Z 

 
 
 
 
 
 
 
 

 
the experimental groups (deaf signers, deaf nonsigners, hearing    

nonsigners). The figure shows the significant activations ( p < .001, 

uncorrected) for the conjunction of the contrasts of each stimulus 

type and task against the baseline condition. 

The table shows the peak of activations for a conjunction analysis 
between groups, collapsing across tasks and stimulus type. L = left; 
R = right. Corr: p < .05, FWE. 

the groups of deaf nonsigners and hearing nonsigners Name (Corr) Score x y z 

       (Table 6; this result was previously published in Cardin 

et al., 2013). Figure 4 shows that all the stimulus types Middle occipital cortex L <.0001 >8.00 −27 −91 1 

and tasks activated the STC bilaterally over the baseline. R <.0001 >8.00 27 −91 10 

To determine if the two groups of nonsigners (hearing 
Calcarine sulcus

 L .0005 5.51 −15 −73 7 

 R .0010 5.38 12 −70 10 

Middle temporal gyrus L <.0001 >8.00 −45 −73 1 

 R <.0001 >8.00 51 −64 4 

Superior parietal lobule R .0039 5.10 21 −67 52 

Inferior parietal lobule L <.0001 6.55 −30 −43 43 

 R .0001 5.75 39 −40 55 

IFG (pars opercularis) L <.0001 6.48 −51 8 40 

 R .0009 5.39 48 11 22 

Figure 2. Conjunction of all tasks and all stimulus types in each of Insula R .0461 4.53 33 29 1 

 



 

 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

 

Figure 3. Effect of group. (A) Positive effect of deaf signers. The figure 

shows the conjunction of the contrasts [deaf signers > hearing 

nonsigners] and [deaf signers > hearing nonsigners]. This effect has 

been reported in Cardin et al. (2013). (B) Positive effect of hearing 

nonsigners. The figure shows the conjunction of the contrasts 

[hearing nonsigners > deaf signers] and [hearing nonsigners > deaf 

nonsigners]. (C) Positive effect of deaf nonsigners. The figure shows 

the conjunction of the contrasts [deaf nonsigners > deaf signers] 

and [deaf nonsigners > hearing nonsigners]. Activations are shown at 

p < .005 (uncorrected). DS = deaf signers group; HN = hearing 

nonsigners group; DN = deaf nonsigners group. 

 

 

Effect of Task 

We hypothesized that different perceptual and motor 

brain regions would be recruited for the processing of 

handshape and location independently of participants’ 

hearing status and sign language knowledge. Specifically, 

we expected dorsal visual areas, medial pFC, ACC, and 

the precuneus to be more active during the monitoring 

of location, and ventral visual areas, superior parietal lob- 

ule, the intraparietal sulcus, and motor and premotor re- 

gions to be more active while monitoring handshape. To 

test this, we compared the handshape task to the loca- 

tion task, collapsing across materials and groups. As can 

be seen in Figure 5 and Table 7, when evaluating the 

contrast [handshape > location], the handshape task acti- 

vated more strongly prestriate regions and visual ventral 

areas in the fusiform gyrus and the inferior temporal gyrus, 

but also parietal regions along the intraparietal sulcus, the 

IFG (anteriorly and dorsal to area 45), and the dorsal por- 

tion of area 44. In contrast, the comparison [location > 

handshape] shows that the location task recruited more 

strongly dorsal areas such as the angular gyrus and the pre- 

cuneus, in addition to the medial pFC, frontal pole, and 

middle frontal gyrus. 

To determine if phonological processing in sign lan- 

guage is specifically related to the sensorimotor charac- 

teristics of the language signal, we evaluated differential 

processing of these parameters in each of our groups 

using a Group × Task interaction. For example, if visual 

ventral areas are recruited differentially for the linguistic 

processing of handshape, we would expect to find dif- 

ferences in the activations between the handshape and 

location tasks in the deaf signers group that were not 

present in the other two groups. However, if phonolog- 

ical processing of handshape and location was indepen- 

dent of the sensorimotor characteristics of the input 

signal, we would expect each of them recruiting language 

processing areas (such as the STC) in the group of deaf 

signers, but not differentially. As shown in Figures 3A and 4, 

both handshape and location tasks activated more strongly 

bilateral STC regions in the deaf signers group than in the 

other two groups. However, a Group × Task interaction 

analysis ([deaf signers (handshape > location) ≠ deaf 

nonsigners (handshape > location)] & [deaf signers 

(handshape > location) ≠ hearing nonsigners (hand- 

shape > location)]) that specifically tested for differential 

 
 

Table 6. Group Effects  

     Peak Voxel   

Group Effect Name  p (Corr) Z Score x y z 

Deaf signers Superior temporal cortex R <.001 6.19 51 −25 1 

  L <.001 5.49 −60 −13 −2 

Hearing nonsigners Middle temporal gyrus L .001 5.37 −45 −67 16 

  R .038 4.58 48 −58 13 

 Middle occipital cortex L .004 5.11 −45 −79 19 

Deaf oral Middle temporal gyrus L .003 5.17 −57 −55 −2 

The table shows the peak of activations for the main effect of each group, collapsing across tasks and stimulus type. L = left; R = right. Corr: p < .05, FWE. 
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Figure 4. The superior 

temporal cortex in deaf signers 

is activated by potentially 

communicative manual actions, 

independently of meaning, 

phonological structure, or task. 

The bar plot shows the effect 

sizes, relative to baseline, for 

the peak voxels in the superior 

temporal cortex for the 

conjunction of the contrasts 

[deaf signers > hearing 

nonsigners] and [deaf signers > 

deaf nonsigners] across all 

stimulus types and tasks. Bar 

represents means ± SEM. 

 

 

 

 

handshape- or location-related activity in deaf signers re- 

sulted in no significantly active voxel at p < .05 corrected 

at peak or cluster level. 

 

Effect of Stimulus Type 

Semantics. To determine if the neural mechanisms 

underpinning phoneme monitoring are influenced by the 

participant’s ability to access the meaning of the monitored 

stimulus, we evaluated the differential effect of stimuli with 

similar phonology, but from a known (BSL) or unknown 

(SSL) language. We first evaluated the contrasts [BSL > 

SSL] and [SSL > BSL] in the groups of nonsigners to 

exclude any differences due to visuospatial characteristics 

of the stimuli, rather than linguistic ones. There was no 

significant effect of these two contrasts in either of the 

groups of nonsigners. The contrasts [BSL > SSL] and 

[SSL > BSL] also resulted in no significant ( p < .05 

corrected at peak or cluster level) effects in deaf signers. 

 
Phonological structure. To evaluate if the neural mech- 

anisms underpinning phoneme monitoring are influ- 

enced by the phonological structure of natural language 

even when that structure has no linguistic significance, 

Nonsigns were compared to all the other sign stimuli 

(BSL and SSL, which have phonologically acceptable 

structure). Given the lack of an effect of semantics, differ- 

ences across all sign stimuli will be driven by differences 

in phonological structure and not semantics. We favored 

a comparison of nonsigns to all the other stimulus types 

because an effect due to differences in phonological 

structure in the stimuli should distinguish the nonsigns 

also from BSL and not only from SSL. No significant ( p < 

.05 corrected at peak or cluster level) activations were 

found for the contrast [Signs > nonsigns]. However, there 

was a main effect of [nonsigns > signs] across groups and 

tasks (Figure 6A), indicating that this was a general effect 

in response to this type of stimuli and not a specific one 

related to linguistic processing (Table 8). Significant activa- 

tions ( p < .05 corrected at peak or cluster level) were ob- 

served in an action observation network including lateral 

occipital regions, intraparietal sulcus, superior parietal lobe, 

SMG, IFG (pars opercularis), and thalamus. 

To determine if there was any region that was recruited 

differentially in deaf signers, which would indicate mod- 

ulation of the phoneme monitoring task by phonological 

structure, we evaluated the interaction between groups 

and stimulus types [deaf signers (nonsigns > signs)] > 

[deaf nonsigners + hearing nonsigners (nonsigns > 

signs)]. Results from this interaction show significant ac- 

tivations ( p < .005, uncorrected) in bilateral SMG, ante- 

rior to parieto-temporal junction (Figure 6, bottom; 

 

 

 
Figure 5. Monitoring of 

phonological parameters 

in sign language recruits 

different perceptual networks, 

but the same linguistic network. 

Top: The figure shows the 

results for the contrast 

[handshape > location] 

(top left) and [location > 

handshape] (top right) across 

all groups of participants. Bottom: The same contrasts are shown overlapped onto brain slices of SPM8’s MNI standard brain (bottom). 

All results at p < .005 (uncorrected). 



 

Table 7. Task Effects  

    Peak Voxel   

Name  p (Corr) Z Score x y z 

[Handshape > Location] 

Ventral  occipito-temporal cortex 

 
 

L 

 
 

<.0001 

 
 

>8.00 

 
 

−18 

 
 

−85 

 
 

−8 

Inferior occipital cortex L <.0001 >8.00 −15 −91 1 

 R <.0001 7.76 5 −75 4 

Inferior parietal lobule L <.0001 7.24 −48 −34 43 

Postcentral gyrus R <.0001 7.78 48 −28 49 

Precentral gyrus L <.0001 >8.00 −45 5 31 

 R <.0001 7.68 48 8 31 

Anterior IFG L <.0001 5.94 −39 35 16 

 R .0014 5.31 45 35 16 

Cerebellum R .0161 4.78 0 −70 −20 

 

[Location > Handshape] 

Angular gyrus 

 
 

L 

 
 

<.0001 

 
 

>8.00 

 
 

−42 

 
 

−76 

 
 

31 

 R <.0001 >8.00 48 −70 31 

Precuneus L .0001 5.80 −12 −58 19 

 R <.0001 7.68 9 −61 58 

 R <.0001 6.55 15 −58 22 

pFC R .0153 4.79 18 62 7 

Frontal pole R .0227 4.70 3 59 4 

Middle frontal gyrus R .0193 4.74 30 32 46 

The table shows the peak of activations for the main effect of each task, collapsing across groups and stimulus type. L = left; R = right. Corr: p < .05, FWE. 

 
 

 

Table 9). Because the SMG was one of the regions in 

which we predicted an effect in phonological processing, 

we applied a small volume (10 mm) correction to this ac- 

tivation, which resulted in significance at p < .05. Brain 

slices in Figure 6B show that uncorrected ( p < .005) ac- 

tivations in this region of the SMG are present only in the 

deaf signers group and not in either deaf nonsigners or 

hearing nonsigners groups. 

 

 

Interaction between Task and Stimulus Type 

It is possible that phonological processing in sign lan- 

guage is specifically related to the sensorimotor charac- 

teristics of the language signal only when participants 

can access meaning in the stimuli. To evaluate if hand- 

shape and location were processed differently for stimuli 

with different semantic and phonological structure, we 

assessed the interactions between task and stimulus type 

in the deaf signers group. No significant interactions were 

found ( p < .05 corrected at peak or cluster level). 

 

 

DISCUSSION 

Our study characterized the neural processing of phono- 

logical parameters in visual language stimuli with different 

levels of linguistic structure. Our aim was to determine if 

the neural processing of phonologically relevant param- 

eters is modulated by the sensorimotor characteristics 

of the language signal. Here we show that handshape 

and location are processed by different sensorimotor 

areas; however, when linguistic information is extracted, 

both these phonologically relevant parameters of SL are 

processed in the same language regions. Semantic con- 

tent does not seem to have an influence on phoneme 

monitoring in sign language, but phonological structure 

does. This was reflected by nonsigns causing a stronger 



 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

Figure 6. Nonsigns differentially activate action observation and phonological processing areas. Top: The figure shows the results of the contrast 

[nonsigns > (BSL + SSL)] in all groups of participants ( p < .005, uncorrected). The bar plot shows the effect sizes relative to baseline for the 

most significant clusters (inferior parietal sulcus, IPS). Bars represent means ± SEM. Bottom: Interaction effect. The figure shows the results of 

the Group × Stimulus type interaction, where the results of the [nonsigns > (BSL + SSL)] contrast in deaf signers are compared to those in 

the deaf nonsigners and hearing nonsigners ( p < .005, uncorrected). The contrast description is: [deaf signers (nonsigns > (BSL + SSL)) > 

(deaf nonsigners & hearing nonsigners) (nonsigns > (BSL + SSL))]. Bar plot showing effect sizes from the SMG (details as described above). 

The brain slices show the results for the contrast [nonsigns > (BSL + SSL)] in each of the experimental groups and the result of the Group × 

Stimulus type interaction. DS = deaf signers group; HN = hearing nonsigners group; DN = deaf nonsigners group. 

 

activation of the SMG, an area involved in phonological 

function, only in deaf signers; this suggests that neural 

demands for linguistic processing are higher when stimuli 

are less coherent or have a less familiar structure. Our 

results also show that the identity of the brain regions 

recruited for the processing of signed stimuli depends 

on participants’ hearing status and their sign language 

knowledge: Differential activations were observed in the 

superior temporal cortex for deaf signers, in posterior 

middle temporal gyrus for deaf nonsigners, and in oc- 

cipital and parietal regions for hearing nonsigners. Fur- 

thermore, nonsigns also activated more strongly an 

action observation network in all participants, indepen- 

dently of their knowledge of sign language, probably 

reflecting a general increase in processing demands on 

the system. 

 

The Superior Temporal Cortex Is Activated in Deaf 
Signers for the Monitoring of Handshape and 
Location, Independently of the Linguistic Content 
of  the Stimuli 

Monitoring handshape and location recruited bilateral 

STC in deaf signers, but not in either the hearing or deaf 
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Table 8. Peak Activations for the Contrast [Nonsigns > Signs] 
 

 Peak Voxel  

Name  p (Corr) Z Scores x y x 

Intraparietal  sulcus L <.001 6.01 −36 −43 46 

 R .003 5.12 36 −46 49 

SMG L .001 5.49 −51 −31 40 

 R .007 4.96 42 −37 49 

Superior parietal lobule L .031 4.63 −18 −67 52 

 R .002 5.21 21 −61 52 

Thalamus R .029 4.65 18 −28 1 

Middle occipital cortex L .002 5.19 −30 −82 22 

 R .044 4.60 39 −79 16 

IFG (pars opercularis) R .031 4.62 51 8 31 

The table shows the peak of activations for the contrast [Nonsigns > Signs], collapsing across groups and tasks. L = left; R = right. Corr: p < .05, FWE. 

 

nonsigners. In a previous report (Cardin et al., 2013), we 

showed that activations elicited by sign language stimuli 

in the left STC of congenitally deaf individuals have a 

linguistic origin and are shaped by sign language expe- 

rience, whereas, in contrast, the right STC shows activa- 

tions assigned to both linguistic and general visuospatial 

processing, the latter being an effect of life-long plastic 

reorganization due to sensory deprivation. Here we ex- 

tend these findings by showing that deaf native signers, 

but not the other groups, recruit the right and left STC 

for the processing of manual actions with potential com- 

municative content, independently of the lack of mean- 

ing or the violation of phonological rules. This is in 

agreement with previous literature showing that the left 

IFG and middle and superior temporal regions are acti- 

vated during observation of meaningless gestural strings 

(MacSweeney et al., 2004) or ASL pseudosigns (Emmorey, 

Xu, & Braun, 2011; Buchsbaum et al., 2005). The direct 

comparison of groups demonstrates that the effect in 

regions differentially recruited in deaf signers is due to 

sign language knowledge and not due to differences in 

hearing status. These results may seem at odds with 

MacSweeney et al. (2004), where similar neural responses 

were found for nonsigning groups in temporal cortices. 

 

Table 9. Peak Voxels for the Group × Stimulus Type 

Interaction 

Peak Voxel 
 

Name p (Unc) Z Score x y z 

SMG L .0002 3.47 −51 −34 25 

R .0012 3.03 54 −28 22 

This table shows results from the contrast [deaf signers (nonsigns > 
signs)] > [deaf nonsigners + hearing nonsigners (nonsigns > signs)]. 
L = left; R = right; unc = uncorrected. 

However, given that signing and nonsigning groups were 

not directly contrasted in that study, it was not clear 

whether signers may have recruited perisylvian language 

regions to a greater extent. 

 
 

Handshape and Location Are Processed by 
Different Perceptual Networks, but the Same 
Linguistic Network 

SL phonology relates to patterning of handshape and 

hand location in relation to the body and hand move- 

ment with regard to the actively signing hand (Emmorey, 

2002). However, although the semantic level of language 

processing can be understood in similar ways for sign and 

speech, the phonological level of language processing 

may be specifically related to the sensorimotor character- 

istics of the language signal. Although it has been shown 

that the neural network supporting phonological pro- 

cessing is to some extent supramodal (MacSweeney, 

Waters, et al., 2008), the processing of different phono- 

logical components, such as handshape and location, 

could recruit distinct networks, at least partially. Here 

we show that different phonological components of sign 

languages are indeed processed by separate sensorimo- 

tor networks, but that both components recruit the same 

language-processing regions when linguistic information 

is extracted. In deaf signers, the extraction of handshape 

and hand location in sign-based material did evoke im- 

plicit linguistic processing mechanisms, shown by the 

specific recruitment of STC for each of these tasks only 

in this group. However, this neural effect was not re- 

flected on performance. Furthermore, the interaction be- 

tween group and task did not result in any significantly 

activated voxel, suggesting that phonological processing 

in SL is not related to specific sensorimotor characteris- 

tics of the signal. Differences between the handshape 



 

and the location tasks were observed in all the experi- 

mental groups, independently of their SL knowledge or 

hearing status, suggesting that the differences are related 

to basic perceptual processing of the stimuli or task-specific 

demands. Specifically, extracting handshape recruits ven- 

tral visual regions involved in object recognition, such as 

the fusiform gyrus and the inferior temporal gyrus, and 

dorsal parietal regions involved in mental rotation of ob- 

jects (Bracci et al., 2010; Op de Beeck et al., 2010; Wilson 

& Farah, 2006; Koshino, Carpenter, Keller, & Just, 2005). 

The location task resulted in the activation of dorsal areas 

such as the angular gyrus and the precuneus, as well as pre- 

frontal areas, involved in the perception of space, localiza- 

tion of body parts, self-monitoring, and reorientation of 

spatial attention (Chen, Weidner, Vossel, Weiss, & Fink, 

2012; Felician et al., 2009; Kelley et al., 2002). 

The significant difference in RTs between tasks across 

groups suggests that distinct neural activations may be 

due, at least partly, to differences in task difficulty or cog- 

nitive demands. The cognitive demands of the hand- 

shape task are greater than those of the location task. 

Although the handshape task involves determining which 

hand to track and resolving handshape, even when par- 

tially occluded, the location task could be solved simply 

by allocating attention to the cued region of the field of 

view. As a reflection of these differences, participants in 

all groups were significantly faster at detecting location 

targets compared to handshape targets. In agreement 

with the observed behavioral effect, stronger activations 

were found for the handshape task in the inferior parietal 

lobule and the IFG, which are regions that are involved in 

cognitive control and where activation correlates with 

task difficulty (Cole & Schneider, 2007). Furthermore, ac- 

tivity in the precuneus, which was more active in the lo- 

cation task, has been shown to correlate negatively with 

task difficulty (Gilbert, Bird, Frith, & Burgess, 2012). 

The fact that handshape and location did not elicit dif- 

ferent activations in language-processing areas in deaf 

signers does not exclude the possibility that these two 

features contribute differently to lexical access. In a pre- 

vious ERP study, Gutiérrez, Müller, et al. (2012) found dif- 

ferences in the neural signature relating to handshape 

and location priming. An interesting possibility is that 

the processing of handshape and location do indeed 

have a different role in lexical access, as postulated by 

Gutiérrez et al., but are processed within the same lin- 

guistic network, with differences in timing (and role in 

lexical access) between handshape and location arising 

as a reflection of different delays in internetwork connec- 

tivity between the perceptual processing of these phono- 

logical parameters and its linguistic one. 

 

Phoneme Monitoring Is Independent of   Meaning 

Our results show no difference in the pattern of brain ac- 

tivity of deaf signers for signs that belonged to their own 

sign language (BSL) and were thus meaningful and those 

that belonged to a different sign language (SSL) and were 

thus not meaningful. This result is in agreement with 

Petitto et al. (2000), who found no differences in the pat- 

tern of activations observed while signing participants 

were passively viewing ASL signs or “meaningless sign- 

phonetic units that were syllabically organized into possi- 

ble but nonexisting, short syllable strings” (equivalent to 

our SSL stimuli). Our results are also at least partially in 

agreement with those of Emmorey et al. (2011), who did 

not observe regions recruited more strongly for meaning- 

ful signs compared to pseudosigns (equivalent to our SSL 

stimuli), and Husain, Patkin, Kim, Braun, and Horwitz 

(2012), who only found a stronger activation for ASL 

compared to pseudo-ASL in the cuneus (26, −74, 20). 

The cuneus is the region mostly devoted to visual pro- 

cessing, and Husain et al.’s (2012) result could be due 

to basic visual feature differences between the stimuli, 

given that this contrast was not evaluated in an interac- 

tion with a control group. However, the lack of differen- 

tial activations between BSL and SSL stimuli is at odds 

with other signed language literature (Emmorey et al., 

2011; MacSweeney et al., 2004; Neville et al., 1998). In 

the study of MacSweeney et al. (2004), the differences 

between stimuli were not purely semantic, and the ef- 

fects of other factors, such as phonology, cannot be ruled 

out. 

Another source of discrepancy could be the nature of 

the tasks. Because the main goal of this study was to dis- 

sociate perceptual and linguistic processing of hand- 

shape and location, our tasks were chosen so that both 

signers and nonsigners could perform at comparable 

levels, not demanding explicit semantic judgements of 

the stimuli. In Emmorey et al. (2011), participants had 

to view stimuli passively, but knew they were going to 

be asked questions about stimulus identity after scan- 

ning. In Neville et al. (1998), participants performed rec- 

ognition tests at the end of each run, and in MacSweeney 

et al. (2004), participants had to indicate or “guess” 

which sentences made sense. Thus, the tasks used in 

all three of these studies required the participants to en- 

gage in semantic processing. The contrast between the 

results of this study and previous ones may be under- 

stood in terms of levels of processing whereby deeper 

memory encoding is engendered by a semantic task, 

compared to the shallow memory encoding engendered 

by a phonological task (Craik & Lockhart, 1972), resulting 

also in stronger activations in the former. Recent work 

has identified such an effect for sign language (Rudner 

et al., 2013). It has also been suggested that semantic 

and lexical processing are ongoing, automatic processes 

in the human brain and that differences in semantic pro- 

cessing are only observed when task demands and real- 

location of attention from internal to external processes 

are engaged (see Binder, 2012, for a review). If semantic 

processing is a default state, it would be expected that, when 

the task does not require explicit semantic retrieval and can 

be solved by perceptual and phonological mechanisms, as 



 

in our study, the processing of single signs of a known and 

unknown language would not result in any difference in 

overall semantic processing. 

The lack of differences when comparing meaningful 

and meaningless signs could also be due to the strong 

relationship between semantics and phonology in sign 

languages. Although the SSL signs and the nonsigns do 

not have explicit meaning for BSL users, phonological pa- 

rameters such as location, handshape, and movement are 

linked to specific types of meaning. For example, signs in 

BSL produced around the head usually relate to mental 

or cognitive processes; those with a handshape in which 

only the little finger is extended usually have a negative 

connotation (Sutton-Spence & Woll, 1999). This, added 

to the fact that deaf people often must communicate 

with hearing peers who do not know sign language and 

that communicative gestures can be identified as such 

(Willems & Hagoort, 2007), could explain why there is 

no difference between stimuli with and without semantic 

content—meaning will be extracted (whether correct or 

not), at least to a certain extent, from any type of sign. 

 

Nonsigns Differentially Activate Action Observation 
and Phonological Processing Areas 

Monitoring nonsigns resulted in higher activations in re- 

gions that are part of an action–observation network in 

the human brain (see Corina & Knapp, 2006, for a re- 

view), including middle occipital regions, intraparietal 

sulcus, SMG, IFG (pars opercularis), and thalamus. This 

effect was observed in all groups, independently of sign 

language knowledge and hearing status, suggesting that 

it is due to inherent properties of the stimuli, such as the 

articulations of the hand and arm and the visual image 

they produce, and not due simply to being unusual or 

to violations of linguistic structure. These higher activa- 

tions in response to nonsigns could be due to more com- 

plex movements and visuospatial integration for such 

stimuli. This will in turn make these signs more difficult 

to decode, increasing the processing demands in the sys- 

tem, and potentially recruiting additional frontal and pa- 

rietal areas to aid in the disambiguation of the stimuli. In 

support of our results, a previous study (Costantini et al., 

2005) showed stronger activations in posterior parietal 

cortex for the observations of impossible manual actions 

compared to possible ones. The authors suggested that 

this was due to higher demands on the sensorimotor 

transformations between sensory and motor representa- 

tions that occur in this area. Behaviorally, performance in 

the tasks was slower for all groups with nonsigns com- 

pared to BSL and SSL, supporting the idea that overall 

higher demands were imposed to the system. 

We also observed that nonsigns caused a stronger acti- 

vation, only in deaf signers, in the SMG. This effect suggests 

a modulation of phoneme monitoring by phonological struc- 

ture of the signal and corroborates the role of this areain pho- 

nological processing of signed (MacSweeney, Waters, et al., 

2008; Emmorey et al., 2002, 2007; Emmorey, Grabowski, 

et al., 2003; MacSweeney, Woll, Campbell, Calvert, et al., 

2002; Corina et al., 1999) and spoken language (Sliwinska, 

Khadilkar, Campbell-Ratcliffe, Quevenco, & Devlin, 2012; 

Hartwigsen et al., 2010). It also demonstrates that an in- 

crease in processing demands when stimuli are less coher- 

ent is seen not only at a perceptual level but also at a 

linguistic one. In short, the interaction effect observed in 

bilateral SMG suggests that stimuli contravening the pho- 

notactics of sign languages exert greater pressure on pho- 

nological mechanisms. This is in agreement with previous 

studies of speech showing that the repetition of nonwords 

composed of unfamiliar syllables results in higher activa- 

tions predominantly in the left frontal and parietal regions 

when compared to nonwords composed of familiar sylla- 

bles (Moser et al., 2009). The specific factor causing an in- 

crease in linguistic processing demands in SMG is not 

known. Possibilities include more complex movements, in- 

creased visuospatial integration demands, less common 

motor plans, or transitions between articulators. All these 

may also be responsible for the increase in activity in the 

action observation network, impacting as well phonologi- 

cal processing in the SMG. 

Overall, the fact that violations of phonological rules 

result in higher demands on the system, independently 

of previous knowledge of the language, suggests that 

the phonological characteristics of a language may arise 

partly as a consequence of more efficient neural process- 

ing for the perception and production of the language 

components. 

 

Posterior Middle Temporal Gyrus Is Recruited 
More Strongly in Deaf Nonsigners while Processing 
Dynamic Visuospatial Stimuli 

One of the novelties of our study is the introduction of a 

group of deaf nonsigners individuals as a control group, 

which allows us to make a comparison between knowing 

and not knowing a sign language, within the context of 

auditory deprivation. Our results show that deaf non- 

signers recruited more strongly a bilateral region in pos- 

terior middle temporal gyrus, when compared to both 

deaf signers and hearing nonsigners. Given that the stim- 

uli had no explicit linguistic content for the deaf non- 

signers who had no knowledge of sign language, this 

result suggests that life-long exclusive use of the visual 

component of the speech signal in combination with au- 

ditory deprivation results in a larger involvement of this 

region in the processing of dynamic visuospatial stimuli. 

This region is known to be involved in the processing of 

biological motion, including that of hands, mouth, and 

eyes (Pelphrey, Morris, Michelich, Allison, & McCarthy, 

2005; Puce, Allison, Bentin, Gore, & McCarthy, 1998). 

This includes instances of biological motion as part of a 

language or a potential communicative display, as it is re- 

cruited for the processing of speechreading and sign 

stimuli in both signers and nonsigners (Capek et al., 



 

2008; MacSweeney, Woll, Campbell, McGuire, et al., 

2002). It is likely that deaf nonsigners extract meaningful 

information from biological motion more often in their 

everyday life than hearing nonsigners, hence the signifi- 

cant difference between these groups. In particular, this 

is more likely to happen when they know that manual 

actions may contain meaning or have a communicative 

purpose, as is the case with signs. This is also consistent 

with the role of this region in semantic processing via vi- 

sual and auditory stimulation (Visser, Jefferies, Embleton, 

& Lambon Ralph, 2012; De Zubicaray, Rose, & McMahon, 

2011). Deaf nonsigners are likely to use visuospatial rath- 

er than linguistic processing to extract meaning, given 

their lack of knowledge of the language, and this may 

be the reason a greater activation of the posterior middle 

temporal gyrus bilaterally is found for this group. In sup- 

port of this, MacSweeney et al. (2004) showed that, com- 

pared to Tic-Tac (a nonlinguistic manual code used by 

racecourse bookmakers to communicate odds), sign lan- 

guage stimuli resulted in stronger activations in areas in- 

volved in visual movement processing, including the 

posterior middle temporal gyrus, particularly in partici- 

pants who do not have sign language representations, 

suggesting that they analyze these sequences as complex 

dynamic visuospatial displays. 

 

Parieto-occipital Regions Are Recruited More 
Strongly in Hearing than in Deaf Individuals during 
Visuospatial Processing 

Stronger activations in middle occipital and superior 

parietal regions were observed in the group of hearing 

nonsigners, when compared to both groups of deaf indi- 

viduals. In a previous study, a similar effect was observed 

when comparing group effects in a study of the process- 

ing of emblems (meaningful hand gestures; Husain et al., 

2012), in which hearing nonsigners recruited more 

strongly than deaf signers bilateral occipital regions and 

the left parietal cortex. However, it was not clear if this 

was due to differences in sign language knowledge or dif- 

ferences in auditory deprivation. Here we show that this 

effect is driven by auditory deprivation, given that it is 

observed when the group of hearing nonsigners is com- 

pared to both groups of deaf participants. In our pre- 

vious study (Cardin et al., 2013), we showed that both 

groups of deaf participants recruit posterior and lateral 

regions of the right STC to process sign language stimuli, 

suggesting that the right STC has a visuospatial function 

in deaf individuals (see also Fine, Finney, Boynton, & 

Dobkins, 2005). In short, to solve the perceptual de- 

mands of the task and in comparison to the hearing non- 

signers group, both groups of deaf individuals recruit the 

right STC more strongly and parieto-occipital regions to a 

lesser extent. Behaviorally, there was no significant differ- 

ence between the groups of deaf individuals, but there 

was evidence that both performed faster than the group 

of hearing nonsigners for BSL and SSL. Thus, it is possible 

to hypothesize that, due to crossmodal plasticity mecha- 

nisms, the right STC in deaf individuals takes over some 

of the visuospatial functions that in hearing individuals are 

performed by parieto-occipital regions and aids the resolu- 

tion of visuospatial tasks. In support of this, studies in con- 

genitally deaf cats have shown that the auditory cortex 

reorganizes selectively to support specific visuospatial func- 

tions, resulting in enhanced performance in corresponding 

behavioral tasks (Lomber, Meredith, & Kral, 2010). 

 

Summary 

To conclude, we show that the linguistic processing of 

different phonological parameters of sign language is in- 

dependent from the sensorimotor characteristics of the 

language signal. Handshape and location are processed 

by separate networks, but this is exclusively at a percep- 

tual or task-related level, with both components recruit- 

ing the same areas at a linguistic level. The neural 

processing of handshape and location was not influenced 

by the semantic content of the stimuli. Phonological 

structure did have an effect in the behavioral and neuro- 

imaging results, with RTs for nonsigns being slower and 

stronger activations found in an action observation net- 

work in all participants and in the SMG exclusively in deaf 

signers. These results suggest an increase in processing 

demands when stimuli are less coherent both at a per- 

ceptual and at a linguistic level. Given that unusual com- 

binations of phonological parameters or violations of 

phonological rules result in higher demands on the sys- 

tem, independently of previous knowledge of the lan- 

guage, we suggest that the phonological characteristics 

of a language may arise as a consequence of more effi- 

cient neural processing for the perception and produc- 

tion of the language components. 

 

Reprint requests should be sent to Velia Cardin, Deafness, 
Cognition and Language Research Centre, Department of Ex- 
perimental Psychology, University College London, 49 Gordon 
Square, London, United Kingdom, WC1H 0PD, or via e-mail: 
velia.cardin@gmail.com,  velia.cardin@ucl.ac.uk. 

 

Note 

1. Compounds in BSL move from higher to lower locations, 
even in loans from English where the source has the reversed 
order, cf. “foot and mouth disease” in BSL is MOUTH FOOT 
DISEASE; “good night” is NIGHT GOOD, although “good morn- 
ing” is GOOD MORNING, etc. 

 

REFERENCES 

Agrafiotis, D., Canagarajah, N., Bull, D., & Dye, M. (2003). 
Perceptually optimised sign language video coding 
based on eye tracking analysis. IEE Electronics Letters, 
39, 1703–1705. 

Alivesatos, B., & Petrides, M. (1997). Functional activation of 
the human brain during mental rotation. Neuropsychologia, 
35, 111–118. 

mailto:velia.cardin@gmail.com
mailto:velia.cardin@ucl.ac.uk


 

Andin, J., Orfanidou, E., Cardin, V., Holmer, E., Capek, C. M., 
Woll, B., et al. (2013). Similar digit-based working memory 
in deaf signers and hearing nonsigners despite digit span 
differences. Frontiers in Psychology, 4, 942. 

Andin, J., Rönnberg, J., & Rudner, M. (2014). Deaf signers use 
phonology to do arithmetic. Learning and Individual 
Differences, 32, 246–253. 

Binder, J. R. (2012). Task-induced deactivation and the “resting” 

state. Neuroimage, 62, 1086–1091. 
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). 

Where is the semantic system? A critical review and meta- 
analysis of 120 functional neuroimaging studies. Cerebral 
Cortex, 19, 2767–2796. 

Bracci, S., Ietswaart, M., Peelen, M. V., & Cavina-Pratesi, C. 
(2010). Dissociable neural responses to hands and non-hand 
body parts in human left extrastriate visual cortex. Journal of 
Neurophysiology, 103, 3389–3397. 

Brentari, D. (2002). Modality differences in sign language 
phonology and morphophonemics. In R. P. Meier, K. 
Cormier, & D. Quinto-Pozos (Eds.), Modality and structure 
in signed and spoken languages (pp. 35–64). 

Buchsbaum, B., Pickell, B., Love, T., Hatrak, M., Bellugi, U., & 
Hickok, G. (2005). Neural substrates for verbal working 
memory in deaf signers: fMRI study and lesion case report. 
Brain and Language, 95, 265–272. 

Capek, C. M., Macsweeney, M., Woll, B., Waters, D., McGuire, 
P. K., David, A. S., et al. (2008). Cortical circuits for silent 
speechreading in deaf and hearing people. 
Neuropsychologia,  46, 1233–1241. 

Capek, C. M., Waters, D., Woll, B., MacSweeney, M., Brammer, 
M. J., McGuire, P. K., et al. (2008). Hand and mouth: Cortical 
correlates of lexical processing in British Sign Language 
and speechreading English. Journal of Cognitive 
Neuroscience,  20, 1220–1234. 

Cardin, V., Orfanidou, E., Rönnberg, J., Capek, M., Rudner, M., 
& Woll, B. (2013). Dissociating cognitive and sensory neural 
plasticity in human superior temporal cortex. Nature 
Communications, 4, 1473. 

Carreiras, M., Gutiérrez-Sigut, E., Baquero, S., & Corina, D. 
(2008). Lexical processing in Spanish Sign Language (LSE). 
Journal of Memory and Language, 58, 100–122. 

Chen, Q., Weidner, R., Vossel, S., Weiss, P. H., & Fink, G. R. 
(2012). Neural mechanisms of attentional reorienting in 
three-dimensional space. The Journal of Neuroscience, 
32, 13352–13362. 

Cole, M. W., & Schneider, W. (2007). The cognitive control 
network: Integrated cortical regions with dissociable 
functions. Neuroimage, 37, 343–360. 

Colin, C., Zuinen, T., Bayard, C., & Leybaert, J. (2013). 
Phonological processing of rhyme in spoken language and 
location in sign language by deaf and hearing participants: 
A neurophysiological study. Neurophysiologie Clinique/ 
Clinical Neurophysiology, 43, 151–160. 

Corina, D., & Knapp, H. (2006). Sign language processing and 
the mirror neuron system. Cortex, 42, 529–539. 

Corina, D. P. (2000). Some observations regarding paraphasia 
and American Sign Language. In K. Emmorey & H. Lane 
(Eds.), The signs of language revisited: An anthology to 
honor Ursula Bellugi and Edward Klima (pp. 493–507). 
Mahwah, NJ: Erlbaum. 

Corina, D. P., Lawyer, L. A., & Cates, D. (2012). Cross-linguistic 
differences in the neural representation of human language: 
Evidence from users of signed languages. Frontiers in 
Psychology, 3, 587. 

Corina, D. P., McBurney, S. L., Dodrill, C., Hinshaw, K., Brinkley, 
J., & Ojemann, G. (1999). Functional roles of Broca’s area and 
SMG: Evidence from cortical stimulation mapping in a deaf 
signer. Neuroimage, 10, 570–581. 

Costantini, M., Galati, G., Ferretti, A., Caulo, M., Tartaro, A., 
Romani, G. L., et al. (2005). Neural systems underlying 
observation of humanly impossible movements: An fMRI 
study. Cerebral Cortex, 15, 1761–1767. 

Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: 
A framework for memory research. Journal of Verbal 
Learning and Verbal Behavior, 11, 671–684. 

De Zubicaray, G. I., Rose, S. E., & McMahon, K. L. (2011). 
The structure and connectivity of semantic memory 
in the healthy older adult brain. Neuroimage, 54, 
1488–1494. 

Devlin, J. T., Matthews, P. M., & Rushworth, M. F. S. (2003). 
Semantic processing in the left inferior prefrontal cortex: 
A combined functional magnetic resonance imaging and 
transcranial magnetic stimulation study. Journal of 
Cognitive Neuroscience, 15, 71–84. 

Dye, M. W. G., & Shih, S.-I. (2006). Phonological priming in 
British Sign Language. In L. Goldstein, D. H. Whalen, & C. T. 
Best (Eds.), Laboratory phonology (pp. 243–263). Berlin, 
Germany: Mouton de Gruyter. 

Emmorey, K. (2002). Language, cognition, and the brain: 
Insights from sign language research. Mahwah, NJ: Lawrence 
Erlbaum and Associates. 

Emmorey, K., Damasio, H., McCullough, S., Grabowski, T., 
Ponto, L. L. B., Hichwa, R. D., et al. (2002). Neural systems 
underlying spatial language in American Sign Language. 
Neuroimage, 17, 812–824. 

Emmorey, K., Grabowski, T., McCullough, S., Damasio, H., 
Ponto, L. L. B., Hichwa, R. D., et al. (2003). Neural systems 
underlying lexical retrieval for sign language. 
Neuropsychologia, 41, 85–95. 

Emmorey, K., McCullough, S., & Brentari, D. (2003). Categorical 
perception in American Sign Language. Language and 
Cognitive Processes, 18, 21–45. 

Emmorey, K., Mehta, S., & Grabowski, T. J. (2007). The neural 
correlates of sign versus word production. Neuroimage, 
36, 202–208. 

Emmorey, K., Xu, J., & Braun, A. (2011). Neural responses to 
meaningless pseudosigns: Evidence for sign-based phonetic 
processing in superior temporal cortex. Brain and 
Language, 117, 34–38. 

Felician, O., Anton, J.-L., Nazarian, B., Roth, M., Roll, J.-P., & 
Romaiguère, P. (2009). Where is your shoulder? Neural 
correlates of localizing others’ body parts. Neuropsychologia, 
47, 1909–1916. 

Fine, I., Finney, E. M., Boynton, G. M., & Dobkins, K. R. (2005). 
Comparing the effects of auditory deprivation and sign 
language within the auditory and visual cortex. Journal of 
Cognitive Neuroscience, 17, 1621–1637. 

Gentilucci, M., & Dalla Volta, R. (2008). Spoken language and 
arm gestures are controlled by the same motor control 
system. Quarterly Journal of Experimental Psychology, 
61, 944–957. 

Gilbert, S. J., Bird, G., Frith, C. D., & Burgess, P. W. (2012). 
Does “task difficulty” explain “task-induced deactivation?”. 
Frontiers in Psychology, 25, 125. 

Grosvald, M., Lachaud, C., & Corina, D. (2012). Handshape 
monitoring: Evaluation of linguistic and perceptual factors in 
the processing of American Sign Language. Language and 
Cognitive Processes, 27,  117–141. 

Gutiérrez, E., Müller, O., Baus, C., & Carreiras, M. (2012). 
Electrophysiological evidence for phonological priming in 
Spanish Sign Language lexical access. Neuropsychologia, 
50, 1335–1346. 

Gutiérrez, E., Williams, D., Grosvald, M., & Corina, D. (2012). 
Lexical access in American Sign Language: An ERP 
investigation of effects of semantics and phonology. Brain 
Research, 1468, 63–83. 



 

Hamilton, A. F., & Grafton, S. T. (2009). Repetition suppression 
for performed hand gestures revealed by fMRI. Human 
Brain Mapping, 30, 2898–2906. 

Hartwigsen, G., Baumgaertner, A., Price, C. J., Koehnke, M., 
Ulmer, S., & Siebner, H. R. (2010). Phonological decisions 
require both the left and right supramarginal gyri. 
Proceedings of the National Academy of Sciences, U.S.A., 
107,  16494–16499. 

Hedberg, T., Almquist, S., Ekevid, K., Embacher, S., Eriksson, L., 
Johansson, L., et al. (Eds.) (2005). Svenskt Teckenspråkslexikon 
[Swedish Sign Language Dictionary]. Leksand, Sweden: 
Sveriges Dövas Riksförbund. 

Hickok, G., & Poeppel, D. (2007). The cortical organization 
of speech processing. Nature Reviews Neuroscience, 8, 
393–402. 

Husain, F. T., Patkin, D. J., Kim, J., Braun, A. R., & Horwitz, B. 
(2012). Dissociating neural correlates of meaningful emblems 
from meaningless gestures in deaf signers and hearing 
nonsigners. Brain Research, 1478, 24–35. 

Jordan, K., Heinze, H. J., Lutz, K., Kanowski, M., & Jancke, L. 
(2001). Cortical activations during the mental rotation of 
different visual objects. Neuroimage, 13, 143–152. 

Karnopp, L. B. (2002). Phonology acquisition in Brazilian Sign 
Language. In G. Morgan & B. Woll (Eds.), Directions in sign 
language acquisition (pp. 29–53). Amsterdam: John 
Benjamins. 

Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., 
& Heatherton, T. F. (2002). Finding the self? An event- 
related fMRI study. Journal of Cognitive Neuroscience, 
14, 785–794. 

Koshino, H., Carpenter, P. A., Keller, T. A., & Just, M. A. (2005). 
Interactions between the dorsal and the ventral pathways in 
mental rotation: An fMRI study. Cognitive, Affective & 
Behavioral Neuroscience, 5, 54–66. 

Lomber, S. G., Meredith, M. A., & Kral, A. (2010). Cross-modal 
plasticity in specific auditory cortices underlies visual 
compensations in the deaf. Nature Neuroscience, 13, 
1421–1427. 

MacSweeney, M., Brammer, M. J., Waters, D., & Goswami, U. 
(2009). Enhanced activation of the left inferior frontal gyrus 
in deaf and dyslexic adults during rhyming. Brain, 132, 
1928–1940. 

MacSweeney, M., Campbell, R., Woll, B., Giampietro, V., David, 
A. S., McGuire, P. K., et al. (2004). Dissociating linguistic and 
nonlinguistic gestural communication in the brain. 
Neuroimage, 22, 1605–1618. 

MacSweeney, M., Capek, C. M., Campbell, R., & Woll, B. (2008). 
The signing brain: The neurobiology of sign language. Trends 
in Cognitive Science, 12, 432–440. 

MacSweeney, M., Waters, D., Brammer, M. J., Woll, B., & 
Goswami, U. (2008). Phonological processing in deaf signers 
and the impact of age of first language acquisition. 
Neuroimage, 40, 1369–1379. 

MacSweeney, M., Woll, B., Campbell, R., Calvert, G. A., McGuire, 
P. K., David, A. S., et al. (2002). Neural correlates of 
British Sign Language comprehension: Spatial processing 
demands of topographic language. Journal of Cognitive 
Neuroscience,  14, 1064–1075. 

MacSweeney, M., Woll, B., Campbell, R., McGuire, P. K., 
David, A. S., Williams, S. C. R., et al. (2002). Neural 
systems underlying British Sign Language and 
audio-visual English processing in native users. Brain, 
125, 1583–1593. 

McDermott, K. B., Petersen, S. E., Watson, J. M., & Ojemann, 
J. G. (2003). A procedure for identifying regions preferentially 
activated by attention to semantic and phonological relations 
using functional magnetic resonance imaging. 
Neuropsychologia, 41, 293–303. 

Milner, A. D., & Goodale, M. A. (1993). Visual pathways to 
perception and action. Progress in Brain Research, 95, 
317–337. 

Morgan, G., Barrett-Jones, S., & Stoneham, H. (2007). The first 
signs of language: Phonological development in British Sign 
Language. Applied Psycholinguistics, 28, 3. 

Moser, D., Fridriksson, J., Bonilha, L., Healy, E. W., Baylis, G., & 
Rorden, C. (2009). Neural recruitment for the production of 
native and novel speech sounds. Dissertation Abstracts 
International, B: Sciences and Engineering, 46, 549–557. 

Neville, H. J., Bavelier, D., Corina, D., Rauschecker, J., Karni, A., 
Lalwani, A., et al. (1998). Cerebral organization for language 
in deaf and hearing subjects: Biological constraints and 
effects of experience. Proceedings of the National Academy 
of Sciences, U.S.A., 95, 922–929. 

Northoff, G., & Bermpohl, F. (2004). Cortical midline structures 
and the self. Trends in Cognitive Sciences, 8, 102–107. 

Op de Beeck, H. P., Brants, M., Baeck, A., & Wagemans, J. 
(2010). Distributed subordinate specificity for bodies, faces, 
and buildings in human ventral visual cortex. Neuroimage, 
49, 3414–3425. 

Orfanidou, E., Adam, R., McQueen, J. M., & Morgan, G. (2009). 
Making sense of nonsense in British Sign Language (BSL): 
The contribution of different phonological parameters 
to sign recognition. Memory & Cognition, 37, 302–315. 

Orfanidou, E., Adam, R., Morgan, G., & McQueen, J. M. (2010). 
Recognition of signed and spoken language: Different 
sensory inputs, the same segmentation procedure. Journal 
of Memory and Language, 62, 272–283. 

Pelphrey, K. A., Morris, J. P., Michelich, C. R., Allison, T., & 
McCarthy, G. (2005). Functional anatomy of biological 
motion perception in posterior temporal cortex: An fMRI 
study of eye, mouth and hand movements. Cerebral Cortex, 
15, 1866–1876. 

Petitto, L. A., Zatorre, R. J., Gauna, K., Nikelski, E. J., 
Dostie, D., & Evans, A. C. (2000). Speech-like cerebral 
activity in profoundly deaf people processing signed 
languages: Implications for the neural basis of human 
language. Proceedings of the National Academy of 
Sciences, U.S.A., 97, 13961–13966. 

Price, C. J. (2012). A review and synthesis of the first 20 years of 
PET and fMRI studies of heard speech, spoken language and 
reading. Neuroimage, 62, 816–847. 

Price, C. J., Moore, C. J., Humphreys, G. W., & Wise, R. J. 
(1997). Segregating semantic from phonological processes 
during reading. Journal of Cognitive Neuroscience, 
9, 727–733. 

Puce, A., Allison, T., Bentin, S., Gore, J. C., & McCarthy, G. 
(1998). Temporal cortex activation in humans viewing eye 
and mouth movements. Journal of Neuroscience, 18, 
2188–2199. 

Rudner, M., Andin, J., & Rönnberg, J. (2009). Working memory, 
deafness and sign language. Scandinavian Journal of 
Psychology, 50, 495–505. 

Rudner, M., Karlsson, T., Gunnarsson, J., & Rönnberg, J. (2013). 
Levels of processing and language modality specificity in 
working memory. Neuropsychologia, 51, 656–666. 

Sandler, W., & Lillo-Martin, D. (2006). Sign language and 
linguistic universals. Cambridge, UK: Cambridge University 
Press. 

Siedlecki, T., & Bonvillian, J. D. (1993). Location, handshape & 
movement: Young children’s acquisition of the formational 
aspects of American Sign Language. Sign Language Studies, 
1078, 31–52. 

Sliwinska, M. W., Khadilkar, M., Campbell-Ratcliffe, J., 
Quevenco, F., & Devlin, J. T. (2012). Early and sustained 
supramarginal gyrus contributions to phonological 
processing. Frontiers in Psychology, 3, 161. 



 

Söderfeldt, B., Rönnberg, J., & Risberg, J. (1994). Regional 
cerebral blood flow in sign language users. Brain and 
Language, 46, 59–68. 

Sutton-Spence, R., & Woll, B. (1999). The linguistics of 
British Sign Language: An introduction. Cambridge, UK: 
Cambridge University Press. 

Thompson, R. L., Vinson, D. P., & Vigliocco, G. (2010). The 
link between form and meaning in British Sign Language: 
Effects of iconicity for phonological decisions. Journal 
of Experimental Psychology, 36, 1017–1027. 

Ungerleider, L. G., & Haxby, J. V. (1994). “What” and “where” in 
the human brain. Current Opinion in Neurobiology, 4, 
157–165. 

Vingerhoets, G., de Lange, F. P., Vandemaele, P., Deblaere, K., 
& Achten, E. (2002). Motor imagery in mental rotation: An 
fMRI study. Neuroimage, 17, 1623–1633. 

Vinson, D. P., Cormier, K., Denmark, T., Schembri, A., & 
Vigliocco, G. (2008). The British Sign Language (BSL) norms 

for age of acquisition, familiarity, and iconicity. Behavior 
Research Methods, 40, 1079–1087. 

Visser, M., Jefferies, E., Embleton, K. V., & Lambon Ralph, M. A. 
(2012). Both the middle temporal gyrus and the ventral 
anterior temporal area are crucial for multimodal semantic 
processing: Distortion-corrected fMRI evidence for a double 
gradient of information convergence in the temporal lobes. 
Journal of Cognitive Neuroscience, 24, 1766–1778. 

Willems, R. M., & Hagoort, P. (2007). Neural evidence for the 
interplay between language, gesture, and action: A review. 
Brain and Language, 101, 278–289. 

Wilson, K. D., & Farah, M. J. (2006). Distinct patterns of 
viewpoint-dependent BOLD activity during common- 
object recognition and mental rotation. Perception, 
35, 1351–1366. 

Wilson, M., & Emmorey, K. (1997). A visuospatial “phonological 
loop” in working memory: Evidence from American Sign 
Language. Memory & Cognition, 25, 313–320.

 


