
Algorithmica
DOI 10.1007/s00453-016-0241-9

Beyond Representing Orthology Relations by Trees

K. T. Huber1 · G. E. Scholz1

Received: 18 February 2016 / Accepted: 2 November 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Reconstructing the evolutionary past of a family of genes is an impor-
tant aspect of many genomic studies. To help with this, simple relations on a set of
sequences called orthology relationsmay be employed. In addition to being interesting
from a practical point of view they are also attractive from a theoretical perspective in
that e. g. a characterization is known for when such a relation is representable by a cer-
tain type of phylogenetic tree. For an orthology relation inferred from real biological
data it is however generally too much to hope for that it satisfies that characterization.
Rather than trying to correct the data in some way or another which has its own draw-
backs, as an alternative, we propose to represent an orthology relation δ in terms of
a structure more general than a phylogenetic tree called a phylogenetic network. To
compute such a network in the form of a level-1 representation for δ, we formalize an
orthology relation in terms of the novel concept of a symbolic 3-dissimilarity which
is motivated by the biological concept of a “cluster of orthologous groups”, or COG
for short. For such maps which assign symbols rather that real values to elements,
we introduce the novel Network- Popping algorithm which has several attractive
properties. In addition, we characterize an orthology relation δ on some set X that has
a level-1 representation in terms of eight natural properties for δ as well as in terms of
level-1 representations of orthology relations on certain subsets of X .

Keywords Orthology relation · Phylogenetic network · Level-1 network · Trinet ·
3-Dissimilarity · COG

B K. T. Huber
k.huber@uea.ac.uk

G. E. Scholz
gllm.scholz@gmail.com

1 School of Computing Sciences, University of East Anglia, Norwich, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0241-9&domain=pdf

Algorithmica

1 Introduction

Unraveling the evolutionary past of a familyG of genes is an important aspect formany
genomic studies. For this, it is generally assumed that the genes inG are orthologs, that
is, have arisen from a common ancestor through speciation. However it is known that
shared ancestry of genes can also arise via, for example, whole genome duplication
which gives rise to paralogs. This potentially obscures the signal used for reconstruct-
ing the evolutionary past of the genes in G in the form of a gene tree (essentially a
rooted tree whose leaves are labelled by the elements of G—we present precise def-
initions of the main concepts used in the next section) [28]. To tackle this problem,
tree-based approaches have been proposed such as the ones underpinning the parsi-
mony based Notung [4] (see also [25]), ecceTERA [14] and RANGER- DTL [2]
softwares, and the maximum likelihood and Bayesian-based approaches introduced
in [8] and [20], respectively. Typically, these work by reconciling a gene tree with an
assumed further tree called a species tree in terms of amap that operates on their vertex
sets. For this, certain evolutionary events are postulated such as the ones mentioned
above (see e. g. [21] for a recent review as well as [17] and the references therein).

Although undoubtedly highly attractive, one of the main drawbacks of tree-
based approaches is the dependence of the resulting reconciliation on the quality
of the employed trees which is not always guaranteed. Furthermore, these types
of approaches can be computationally demanding for datasets generated by mod-
ern sequencing technology which might contain hundreds of thousands of sequences
(see e. g. [23,29] for more on this). To overcome this problem, orthology relations
(essentially maps whose range is a set of symbols representing evolutionary events of
interest) have been proposed as an alternative. Relying on, for example, some notion
of sequence similarity [26], gene order [16,19], or annotation of genes based on their
function [5]—see e.g. [18] for more on this—these operate directly on the set of
sequences from which a gene tree is built by applying some sort of clustering [1]. In
addition to having attractive practical properties such as providing a way forward in
cases where no species tree is available for a data set of interest, such relations are also
interesting from a theoretical point of view due to their relationship with e. g. co-trees
[9,10]. Furthermore, a characterization is known for when an orthology relation can
be represented in terms of a certain type of phylogenetic tree [9].

Due to e. g. errors, noise, or indeed true signal in an orthology relation, it is how-
ever in general too much to hope for that an orthology relation obtained from a real
biological dataset satisfies that characterization. A natural strategy might therefore
be to try and correct for this in some way. Yet even if an underlying tree-like evolu-
tionary scenario is assumed for this, many natural formalizations of how this could be
achieved lead toNP-complete problems [18]. Furthermore, true non-treelike evolution-
ary signal might be overlooked. As an alternative, we propose to represent orthology
relations in terms of phylogenetic networks (as opposed to phylogenetic trees). These
are essentially rooted, directed, acyclic graphs which generalize phylogenetic trees by
permitting additional edges. To infer such a structure from an orthology relation δ,
we introduce the novel Network- Popping algorithm which returns a representation
of δ in the form of a level-1 representation, that is, a level-1 (phylogenetic) network
some of whose interior vertices are labelled in terms of evolutionary eveents. Such net-

123

Algorithmica

N1 :

a

b

c

d

e

f

g

C1

C2

C3

h

i j

k

N2 :

a

b

c

d

e

f

g

h

i

j

k

N3 :

a

b

c

d

e

f

g

h

k

i

j

C4

Fig. 1 Three distinct level-1 representations of the symbolic 3-dissimilarity δN2
with leaf set X =

{a, . . . , k} induced by N2. In all three cases the underlying phylogenetic network is a level-1 network.
However, only N1 is returned by Network- Popping when given δN2

. Furthermore, N2, is not semi-
discriminating but weakly labelled whereas N3 is semi-discriminating but not weakly labelled—see text
for details

works have a set of organisms of interest as their leaf set and are characterized by the
requirement that no two cycles (ignoring the directions for the moment!) share a ver-
tex. This simplicity makes them obvious choices for orthology relation representation
if the amount of non-treelike signals in a data set is relatively small. At the same time,
their complexity renders them an ideal starting point for methodology development
to account for further evolutionary signals (either in terms of spurious or true signal)
in orthology relations (see e. g. [21] for more on this). To illustrate these concepts, we
present in Fig. 1 three distinct level-1 representations of an orthology relation. In each
representation, the interior vertices labelled in terms of • and ◦ represent two distinct
evolutionary events such as speciation and whole genome duplication. The unlabelled
interior vertices indicate non-treelike evolutionary signals such as the ones mentioned
above.

Note that in caseswhere the underlying level-1 network N of a level-1 representation
N is in fact a phylogenetic tree in the usual sense (see e. g. [24]), the orthology relation
canonically induced on any two leaves by taking their lowest common ancestor is
unique. In fact, if N is discriminating, that is, no two adjacent interior vertices in N
have the same label, thenN is uniquely determined by the orthology relation induced
this way [3] and can be reconstructed using e. g. the Bottom- up algorithm [9].

Intriguingly, the notion of a (unique) lowest common ancestor is also well-defined
for general level-1 networks. This makes it tempting to speculate that similar kinds of
ideas could also be made to work for such networks. As the example depicted in Fig. 2
illustrates, taking pairs of leaves as in the case of a phylogenetic tree can however be
problematic from a reconstruction point of view as all three level-1 representations
depicted in that figure represent the same orthology relation obtained that way.

As it turns out, the key to overcoming the resulting uniqueness problem is held by
a point made in [6, Chapter 12] and [1]. Namely, that estimates on l-subsets, l ≥ 3,

123

Algorithmica

1

2

3 2

1

3 1

3

2

Fig. 2 Three distinct level-1 representations of the 2-dissimilarity δ : ({1,2,3}
2

) → M = {•, ×, �} defined
by taking lowest common ancestors of pairs of leaves

of a set X are potentially more accurate than mere distances on X as they capture
more information. Combined with ideas from, for example, [27] relating to clusters of
orthologous groups (COGs) on how such estimates could be obtained, we formalize
an orthology relation in terms of the novel concept of a symbolic 3-dissimilarity on
X . Contrary to symbolic 2-dissimilarities used in [9] which operate on subsets of X
of size at most two, such maps assign a symbolic value to any subset of X of size at
most three.

As we shall see, Network- Popping takes as input a 3-dissimilarity on some
set X and is guaranteed to find, in O(|X |6)-time, a level-1 representation for it if
such a representation exists. For this, it relies on the three further algorithms below
which we also introduce. It works by first finding for a symbolic 3-dissimilarity δ

on X all pairs of subsets of X that support a cycle in a potential level-1 represen-
tation for δ using algorithm Find-Cycles. Subsequent to this, it employs algorithm
Build-Cycles to construct from each such pair (H, R′) a structurally very sim-
ple level-1 representation for the symbolic 3-dissimilarity induced on H ∪ R′ where
H and R′ are as in the statement of algorithm Find-Cycles. Combined with algo-
rithm Vertex-Growing which constructs a symbolic discriminating representation
for a symbolic 2-dissimilarity (i. e. a symbolic distance), Network- Popping then
recursively grows the level-1 representation for δ by repeatedly applying algorithms
Build-Cycles and Vertex-Growing in concert. For the convenience of the reader,
we illustrate all four algorithms by means of the level-1 representations depicted in
Fig. 1. As part of our analysis of algorithmNetwork- Popping, we characterize level-
1 representable symbolic 3-dissimilarities δ on X in terms of eight natural properties
(P1)—(P8) enjoyed by δ (Theorem 2). Furthermore, we characterize such dissimi-
larities in terms of level-1 representable symbolic 3-dissimilarities on subsets of X
of size |X | − 1 (Theorem 4). Within a divide-and-conquer framework the resulting
speed-up of algorithmNetwork- Poppingmight allow it to also be applicable to large
datasets.

The paper is organized as follows. In the next section, we present basic definitions
and results. Subsequent to this, we introduce in Sect. 3 the crucial concept of a δ-trinet
associated to a symbolic 3-dissimilarity and state Property (P1). In Sect. 4, we present
algorithm Find- Cycles as well as Properties (P2) and (P3). In Sect. 5, we introduce
and analyze algorithm Build- Cycles. Furthermore, we state Properties (P4)–(P6).
In Sect. 6, we present algorithms Vertex- Growing and Network- Popping. As
suggested by the example in Fig. 1, algorithm Network- Popping need not return
the level-1 representation of a symbolic 3-dissimilarity that induced it. Employing a

123

Algorithmica

further algorithm called Transform, we address in Sect. 7 the associated uniqueness
question (Corollary 2). As part of this we establish Theorem 2 which includes stating
Properties (P7) and (P8). In Sect. 8, we establish Theorem 4.We conclude with Sect. 9
where we present research directions that might be worth pursuing.

2 Basic Definitions and Results

In this section, we collect relevant basic terminology and results concerning phyloge-
netic networks and symbolic 2- and 3-dissimilarities. From now on and unless stated
otherwise, X denotes a finite set of size n ≥ 3, M denotes a finite set of symbols
of size at least two and � denotes a symbol not already contained in M . Also, all
directed/undirected graphs have no loops or multiple directed/undirected edges.

2.1 Directed Acyclic Graphs

Suppose G is a rooted directed acyclic graph (DAG), that is, a DAG with a unique
vertex with indegree zero. We call that vertex the root of G, denoted by ρG . Also,
we call the graph U (G) obtained from G by ignoring the directions of its edges the
underlying graph of G. By abuse of terminology, we call an induced subgraph H of
G a cycle of G if the induced subgraph U (H) of U (G) is a cycle of U (G). We call a
vertex v of G an interior vertex of G if v is not a leaf of G where we say that a vertex
v is a leaf if the indegree of v is one and its outdegree is zero. We denote the set of
interior vertices of G by V (G)int and the set of leaves of G by L(G). We call a vertex
v of G a tree vertex if the indegree of v is at most one and its outdegree is at least two,
and a hybrid vertex of G if the indegree of v is two and its outdegree is not zero. The
set of interior vertices of G that are not hybrid vertices of G is denoted by V (G)−int .
We say that N is binary if, with the exception of ρN , the indegree and outdegree of
each of its interior vertices add up to three. Finally, we say that two DAG’s N and
N ′ with leaf set X are isomorphic if there exists a bijection from V (N) to V (N ′) that
extends to a (directed) graph isomorphism between N and N ′ which is the identity
on X .

2.2 Phylogenetic Networks and Last Common Ancestors

A (rooted) phylogenetic network N (on X) is a rooted DAG with leaf set X that does
not contain a vertex that simultaneously has indegree and outdegree one. In the special
case that a phylogenetic network N is such that each of its interior vertices belongs
to at most one cycle we call N a a level-1 (phylogenetic) network (on X). Note that
a phylogenetic network may contain cycles of length three and that a phylogenetic
network that does not contain a cycle is called a phylogenetic tree T (on X).

For the following, let N denote a level-1 network on X . For Y ⊆ X with |Y | ≥ 3,
we denote by N |Y the subDAG of N induced by Y (suppressing any resulting vertex
that have indegree and outdegree one). Clearly, N |Y is a phylogenetic network on Y .

123

Algorithmica

Suppose v is a non-leaf vertex of N . We say that a further vertex w ∈ V (N) is
below v if there is a directed path from v to w and call the set of leaves of N below
v the offspring set of v, denoted by F (v). Note that F (v) is closely related to the
hardwired cluster of N induced by v (see e.g. [13]). For a leaf x ∈ F (v), we refer to
v as an ancestor of x . In case N is a phylogenetic tree, we define the lowest common
ancestor lcaN (x, y) of two distinct leaves x, y ∈ L(N) to be the (necessarily unique)
vertex v ∈ V (N) such that {x, y} ⊆ F (v) and {x, y} � F (v′) holds for all children
v′ ∈ V (N) of v. More generally, for Y ⊆ X with 2 ≤ |Y | ≤ |X |, we denote by
lcaN (Y) the unique vertex v of N such that Y ⊆ F (v), and Y � F (v′) holds for all
children v′ ∈ V (N) of v. Note that in case the tree N we are referring to is clear from
the context, we write lca(Y) rather than lcaN (Y).

It is easy to see that the notion of a lowest common ancestor is not well-defined for
phylogenetic networks in general. However the situation changes in case the network
in question is a level-1 network, as the following central result shows. Since its proof
is straight-forward, we omit it.

Lemma 1 Let N be a level-1 network on X and assume that Y ⊆ X such that
|Y | ≥ 2. Then there exists a unique interior vertex vY ∈ V (N) such that Y ⊆ F (vY)

but Y � F (v′), for all children v′ ∈ V (N) of vY . Furthermore, there exists two
distinct elements x, y ∈ Y such that vY = lca(x, y).

Continuing with the terminology of Lemma 1, we refer to vY as the lowest common
ancestor of Y in N , denoted by lcaN (Y). As in the case of a phylogenetic tree, we
write lca(Y) rather than lcaN (Y) if the network N we are referring to is clear from
the context.

2.3 Symbolic Dissimilarities and Labelled Level-1 Networks

Suppose k ∈ {2, 3}. We denote by
(X
k

)
the set of subsets of X of size k, and by

(X
≤k

)

the set of nonempty subsets of X of size at most k. We call a map δ : (X
≤k

) → M� :=
M ∪ {�} a symbolic k-dissimilarity on X with values in M� if, for all A ∈ (X

≤k

)
, we

have that δ(A) = � if and only if |A| = 1. To improve clarity of exposition, we refer
to δ as a symbolic 3-dissimilarity on X if the set M is of no relevance to the discussion.
Moreover, for Y = {x1, . . . , xl}, l ≥ 2, we write δ(x1, . . . , xl) rather than δ(Y) where
the order of the elements xi , 1 ≤ i ≤ l, is of no relevance to the discussion.

A labelled (phylogenetic) network N = (N , t) (on X) is a pair consisting of a
phylogenetic network N on X and a labelling map t : V (N)−int → M . If N is a level-1
network thenN is called a labelled level-1 network (see e.g. Fig. 3). To improve clarity
of exposition we use calligraphic font to denote a labelled phylogenetic network.

Suppose N = (N , t) is a labelled level-1 network on X such that the vertices
in V (N)−int are labelled in terms of M . Then we denote by δN : (X

≤3

) → M� the
symbolic 3-dissimilarity on X induced byN given by δN (Y) = t (lca(Y)) if |Y | �= 1,
and δN (Y) = � otherwise. For N ′ = (N ′, t ′) a further labelled level-1 network on
X , we say thatN andN ′ are isomorphic if N and N ′ are isomorphic and δN = δN ′ .

Conversely, suppose δ is a symbolic 3-dissimilarity on X . In view of Lemma 1,
we call a labelled level-1 network N = (N , t) on X a level-1 representation of δ if

123

Algorithmica

x

y
u

z x

y

z x

y

u

x y u

(a) (b) (c) (d)
Fig. 3 a A labelled level-1 network N on X = {x, y, z, u}. b, d Semi-discriminating level-1 representa-
tions of δN restricted to {x, y, z} and Y = {u, x, y}, respectively. c A level-1 representation of δN |Y in
the form of a labelled trinet that is is not a δN -trinet

δ = δN . For ease of terminology, we sometimes say that δ is level-1 representable if
the labelled network we are referring to is of no relevance to the discussion.

As is straight-forward to see, any labelled network N = (N , t) that contains
a directed edge e both of whose endvertices have the same label induces the same
symbolic 3-dissimilarity as the labelled network obtained from N by collapsing e.
From a uniqueness point of view this is clearly undesirable. We therefore call a level-1
representation of δ semi-discriminating if N does not contain a directed edge (u, v)

such that t (u) = t (v) except for when there exists a cycle C of N with |V (C) ∩
{u, v}| = 1. For example, all three labelled level-1 networks depicted in Fig. 1 are
level-1 representations of δN2 where N2 is the labelled level-1 network depicted in
Fig. 1. Furthermore, the representations N1 and N3 of δN2 presented in Fig. 1 are
semi-discriminating whereas N2 is not as the parents of j and i belong to the same
cycle, are joined by an edge, and have same label.

Note that in case N is a phylogenetic tree on X the definition of a semi-
discriminating level-1 representation for δ reduces to that of a discriminating symbolic
representation for the restriction δ2 = δ|(X

≤2)
of δ to

(X
≤2

)
(see [3] and also [9,24]

for more on such representations, called discriminating symbolic representations in
[24]). Using the concept of a symbolic ultrametric, that is, a symbolic 2-dissimilarity
δ : (X

≤2

) → M� for which, in addition, the following two properties are satisfied

(U1) |{δ(x, y), δ(x, z), δ(y, z)}| ≤ 2 for all x, y, z ∈ X ;
(U2) there exists no four elements x, y, z, u ∈ X such that

δ(x, y) = δ(y, z) = δ(z, u) �= δ(z, x) = δ(x, u) = δ(u, y);

such representations were characterized by the authors of [3] as follows.

Theorem 1 ([3, Theorem 7.6.1]) Suppose δ : (X
≤2

) → M� is a symbolic 2-
dissimilarity on X. Then there exists a discriminating symbolic representation of δ

if and only if δ is a symbolic ultrametric.

Clearly, it is too much to hope for that any symbolic 3-dissimilarity δ has a level-
1 representation. The question therefore becomes: Which symbolic 3-dissimilarities
have such a representation? A first partial answer is provided by Theorem 1 and
Lemma1 for not δ but its restriction δ2.More precisely, δ has a discriminating symbolic

123

Algorithmica

x y z

x y z

x

y

z

x y z

x y z

x y z

x y z

x y z

x y z

x y z

x y z

x y z

τ1 :

τ2 :

τ3 :

τ4 :

τ5 :

τ6 :

τ7 :

τ8 :

τ9 :

τ10 :

τ11 :

τ12 :

Fig. 4 The twelve trinets in the form of level-1 networks. The two omitted trinets from [11] are not level-1
networks in our sense

representation if and only if δ2 is a symbolic ultrametric and, for all x, y, z ∈ X
distinct, δ(x, y, z) is the (unique) element appearing at least twice in the multiset
{δ2(x, y), δ2(x, z), δ2(y, z)}.

3 δ-Triplets, δ-Tricycles, and δ-Forks

Tomake afirst inroad into the aforementionedquestion,wenext investigate structurally
very simple level-1 representations of symbolic 3-dissimilarities. As we shall see,
these turn out to be of fundamental importance for our algorithmNetwork- Popping

(see Sect. 6) as well as for our analysis of its properties. In the context of this, it is
important to note that although triplets (i. e. binary phylogenetic trees on 3 leaves) are
well-known to uniquely determine (up to isomorphism) phylogenetic trees this does
not hold for level-1 networks in general [7]. To overcome this problem, trinets, that is,
phylogenetic networks on three leaves were introduced in [11]. For the convenience
of the reader, we depict in Fig. 4 all 12 trinets τ1, . . . , τ12 on X = {x, y, z} from [11]
that are also level-1 networks in our sense. In the same paper, it was observed that even
the slightly more general 1-nested networks are uniquely determined by their induced
trinet sets (see also [12] for more on constructing level-1 networks from trinets, and
[30] for an extension of this result to other classes of phylogenetic networks).

123

Algorithmica

Table 1 For δ : (X
≤3

) → M� a symbolic 3-dissimilarity we list all labelled trinets on X = {x, y, z} in
terms of the size of E

|{δ(x, y), δ(x, z), δ(y, z)}| δ(x, y, z) = . . . N

1 δ(x, y) = δ(x, z) = δ(y, z) Fork

3 δ(y, z) x ||yz
2 δ(y, z) �= δ(x, y) = δ(x, z) x ||yz
2 δ(x, y) = δ(x, z) x |yz

Perhaps not surprisingly, trinets on their own are not strong enough to uniquely
determine labelled level-1 networks in the sense that any two level-1 representations
of a symbolic 3-dissimilarity must be isomorphic. To see this, suppose |X | = 3 and
consider the symbolic 3-dissimilarity δ : (X

≤3

) → {A,�} that maps X and every 2-
subset of X to A. Then the labelled network (τ1, t) where t maps the unique vertex in
V (τ1)

−
int to A is a level-1 representation of δ and so is the labelled network (τ4, t ′),

where every vertex in V (τ4)
−
int is mapped to A by t ′. Note that similar arguments may

also be applied to the level-1 representations involving the trinets τ4 to τ12 depicted
in Fig. 4.

To be able to state the next result (Lemma 2), we say that a symbolic 3-dissimilarity
δ satisfies the Helly-type Property if, for any three elements x, y, z ∈ X , we have
δ(x, y, z) ∈ {δ(x, y), δ(x, z), δ(y, z)}. Note that we sometimes also refer to the Helly-
type property as Property (P1).

Lemma 2 Suppose δ is a symbolic 3-dissimilarity on a set X = {x, y, z} taking
values in M�. Then there exists a level-1 representation N of δ if and only if δ

satisfies the Helly-type Property. In that caseN can be (uniquely) chosen to be semi-
discriminating and, (up to permutation of the leaves of the underlying level-1 network
N) N is isomorphic to one of the trinets τ1, τ2 and τ3 depicted in Fig. 4.

Proof Suppose first that N = (N , t) is a level-1 representation of δ. Then, in view
of Lemma 1, δ(x, y, z) ∈ {δ(x, y), δ(x, z), δ(y, z)} must hold.

Conversely, suppose that δ(x, y, z) ∈ E := {δ(x, y), δ(x, z), δ(y, z)} holds. By
analyzing the size of E it is straight-forward to show that one of the situations indicated
in the rightmost column of Table 1 must apply. With defining a labelling map t :
V (N)−int → M� in the obvious way using the second column of that table, it follows
that N is a level-1 representation for δ.
�

Interestingly, all of trinets τ1 through to τ12 can be labelled in such a way that line 1
in Table 1 is satisfied. Similarly, all of trinets τ4 through to τ11 and τ2 can be labelled
so that line 4 holds and only τ3 can be labelled so that lines 2 or 3 apply. Reflecting
our assumption that the amount of non-treelike signals in a dataset is small, we evoke
parsimony regarding the number of cycles for the former two cases and focus for the
remainder of this paper on the trinets τ1, τ2 and τ3. We shall refer to them as fork on
X = {x, y, z}, triplet z|xy, and tricycle y||xz, respectively.

Armed with Lemma 2, we make the following central definition. Suppose that
|Y | = 3, that δ is a symbolic 3-dissimilarity on Y , and that N = (N , t) is a semi-

123

Algorithmica

discriminating level-1 representation of δ. Then we call N a δ-fork if N is a fork on
Y , a δ-triplet if N is a triplet on Y , and a δ-tricycle if N is a tricycle on Y . For ease
of terminology, we collectively refer to all three of them as a δ-trinet. Note that as the
example of the labelled trinet depicted in Fig. 3c shows, there exist trinets that are not
δ-trinets. By abuse of terminology, we refer for a symbolic 3-dissimilarity δ on X and
any 3-subset Y ⊆ X to a δ|Y -trinet as a δ-trinet.

4 Recognizing Cycles: The Algorithm FIND-CYCLES

In this section, we introduce and analyze algorithmFind- Cycles (seeAlgorithm 1 for
a pseudo-code version). Its purpose is to recognize cycles in a level-1 representation
of a symbolic 3-dissimilarity δ if such a representation exists. As we shall see, this
algorithm relies on Property (P1) and a certain graph C (δ) that can be canonically
associated to δ. Along the way, we also establish two further crucial properties enjoyed
by a level-1 representable symbolic 3-dissimilarity.

We startwith introducing further terminology. Suppose N is a level-1 network andC
is a cycle of N . Then we denote by r(C) the unique vertex inC for which both children
are also contained in C and call it the root of C . In addition, we call the hybrid vertex
of N contained in C the hybrid of C and denote it by h(C). Furthermore, we denote
the set of all elements of X below r(C) by R(C) and the set of all elements of X below
h(C) by H(C). Clearly, H(C) � R(C). Moreover, for any leaf x ∈ R(C) − H(C),
we denote by vC (x) the last ancestor of x inC . Note that vC (x) is the parent of x if and
only if x is incident with a vertex in C . Last-but-not-least, we call the vertex sets of
the two edge-disjoint directed paths from r(C) to h(C) the sides of C . Denoting these
two paths by P1 and P2, respectively, we say that two leaves x and y in R(C)− H(C)

lie on the same side of C if the vertices vC (x) and vC (y) are both interior vertices
of P1 or P2, and that they lie on different sides if they are not. For example, for C
the underlying cycle of the cycle C2 indicated in the labelled networkN1 pictured in
Fig. 1, we have R(C) = {b, . . . , g} and H(C) = {c}. Furthermore, the sides of C are
{r(C), vC (b), h(C)} and {r(C), vC (d), vC (e), h(C)} and d, . . . , g lie on one side of
C whereas b and d lie on different sides of C .

Suggested by Property (U2), the following property is of interest to us where δ

denotes again a symbolic 3-dissimilarity on X :

(P2) For all x, y, z, u ∈ X distinct for which δ(x, y) = δ(y, z) = δ(z, u) �=
δ(z, x) = δ(x, u) = δ(u, y) holds there exists exactly one subset Y ⊆
{x, y, z, u} of size 3 such that a tricycle on Y underlies a level-1 representa-
tion of δ|Y .

As a first result, we obtain

Lemma 3 Suppose δ is a level-1 representable symbolic 3-dissimilarity on X. Then
δ satisfies the Helly-type Property as well as Property (P2).

Proof Note first that Property (P1) is a straight-forward consequence of Lemma 1.
To see that Property (P2) holds, note first that since δ is level-1 representable there

exists a labelled level-1 network (N , t) such that δ(Y) = t (lca(Y)), for all subsets

123

Algorithmica

b||ah

g||ah

f ||ah
e||ah

c||ah

d||ah

d||ak

e||ak

c||ak
b||ak

f ||ak

g||ak

c||be

c||bf

c||bg

f ||eg

Fig. 5 The graph C (δN1
), where N1 is the labelled level-1 network depicted in Fig. 1

Y ⊆ X of size 2 or 3. Suppose x, y, z, u ∈ X distinct are such that δ(x, y) =
δ(y, z) = δ(z, u) �= δ(z, x) = δ(x, u) = δ(u, y). To see that there exists some
Y ⊆ Z := {x, y, z, u} for which (N |Y , t |Y) is a δ-tricycle, assume for contradiction
that there exists no such set Y . By Theorem 1, N cannot be a phylogenetic tree on
X and, so, N must contain at least one cycle C . Without loss of generality, we may
assume that x ∈ H(C), and y lies on one of the two sides of C . By assumption
δ(y, z) �= δ(x, z) and so either z and y lie on opposite sides of C , or z and y lie
on the same side of C and vC (y) lies on the directed path from r(C) to vC (z). As
can be easily checked, either one of these two cases yields a contradiction since then
δ(z, u) �= δ(x, u) = δ(y, u) cannot hold for u, as required.

To see that there can exist at most one such tricycle on Z , assume for contradiction
that there exist two tricycles τ and τ ′ with L(τ)∪L(τ ′) ⊆ Z . Then |L(τ)∩L(τ ′)| = 2.
Choose x, y ∈ L(τ) ∩ L(τ ′). Note that the assumption on the elements of Z implies
that x or y must be below the hybrid vertex of one of τ and τ ′ but not the other.Without
loss of generality we may assume that y is below the hybrid vertex of τ but not below
the hybrid vertex of τ ′. Then y must lie on a side of the unique cycle C ′ of τ ′. But
this is impossible since the unique cycle of τ and C ′ are induced by the same cycle
of N .
�

Weremark in passing that the proof of uniqueness in the proof ofLemma3combined
with the structure of a level-1 network, readily implies the following result.

Lemma 4 Suppose that δ is a symbolic 3-dissimilarity on X that is level-1 repre-
sentable by a labelled network (N , t) and that x, y, z ∈ X are three distinct elements
such that x ||yz is a δ-tricycle. Let C denote the unique cycle in N such that x ∈ H(C)

and y, z ∈ R(C) − H(C), and let x ′ ∈ X. If x ′||yz is a δ-tricycle then x ′ ∈ H(C)

and if x ||x ′z is a δ-tricycle then x ′ ∈ R(C) and x ′ and y lie on the same side of C.

To better understand the structure of a symbolic 3-dissimilarity δ, we next associate
to δ a graph C (δ) defined as follows. The vertices of C (δ) are the δ-tricycles and any
two δ-tricycles τ and τ ′ are joined by an edge if |L(τ) ∩ L(τ ′)| = 2. For example,
consider the symbolic 3-dissimilarity δN1 induced by the labelled level-1 networkN1
pictured in Fig. 1. Then the graph presented in Fig. 5 is C (δN1).

The example in Fig. 5 suggests the following property for a symbolic 3-dissimilarity
δ to be level-1 representable:

123

Algorithmica

(P3) If τ and τ ′ are δ-tricycles contained in the same connected component of C (δ),
then

δ(L(τ)) = δ(L(τ ′)).

We collect first results concerning Property (P3) in the next proposition.

Proposition 1 Suppose δ : (X
≤3

) → M� is a symbolic 3-dissimilarity. If δ is level-
1 representable or |M | = 2 holds then Property (P3) must hold. In particular, if
N is a level-1 representation for δ then there exists a canonical injective map from
the set of connected components of C (δ) to the set of cycles of the level-1 network
underlying N .

Proof Suppose first that δ is level-1 representable. Let N = (N , t) denote a level-1
representation of δ. Then δ = δN . Since δN (x, y, z) = t (r(C)) holds for all cycles
C of N , and any x ∈ H(C) and any y, z ∈ R(C) that lie on different sides of C ,
Property (P3) follows.

Suppose next that |M | = 2. It suffices to show that Property (P3) holds for any two
adjacent vertices of C (δ). Suppose τ and τ ′ are two such vertices and that x, y, z ∈ X
are such that τ = x ||yz. Then there exists some u ∈ X such that either τ ′ = u||yz or
τ ′ = x ||ru where r ∈ {y, z}. Without loss of generality we may assume that r = y.
In view of Table 1, we clearly have δ(x, y) �= δ(x, y, z) = δ(y, z). Since, in addition,
δ(u, y, z) = δ(y, z) holds in the former case it follows that δ(L(τ)) = δ(L(τ ′)). In
the latter case, we obtain δ(x, y, u) �= δ(x, y) and thus, δ(L(τ)) = δ(L(τ ′)) follows
in this case too as |M | = 2.

The claimed injective map is a straight-forward consequence of Lemma 4.
�
Algorithm Find-Cycles exploits the injection mentioned in Proposition 1 by inter-

preting for a symbolic 3-dissimilarity δ a connected component C of C (δ) in terms
of two sets HC and R′

C . Note that if C
′ is a cycle in the level-1 network underlying

a level-1 representation of δ (if such a representation exists!), the sets H(C ′) and HC

coincide and R′
C ⊆ R(C ′) holds.

For example, for the symbolic 3-dissimilarity δN1 induced by the labelled
network N1 depicted in Fig. 1, algorithm Find-Cycles returns the three pairs
(bcde f g, abcde f gk), (c, bce f g) and (f, e f g) where we write x1 . . . x|A| for a set
A = {x1, . . . , x|A|}.

5 Constructing Cycles: The Algorithm BUILD-CYCLES

We next turn our attention toward reconstructing a structurally very simple level-1
representation of a symbolic 3-dissimilarity (should such a representation exist). For
this, we use algorithm Build-Cycleswhich takes as input a symbolic 3-dissimilarity
δ and a pair returned by Find-Cycles when given δ.

To state Build-Cycles, we require further terminology. Suppose N is a level-1
network. Then we say that N is partially resolved if all vertices in a cycle of N have
degree three. Note that partially-resolved level-1 networks may have interior vertices

123

Algorithmica

Input: A symbolic 3-dissimilarity δ on X .
Output: An integer m ≥ 0 and m pairs of subsets (Hi , R

′
i) of X , 1 ≤ i ≤ m, or the statement “δ is

not level-1 representable”.

if δ satisfies Property (P1) then1
Build the graph C (δ);2
Denote by m the number of connected components of C (δ);3
for i ∈ {1, . . . ,m} do4

Let Ki denote a connected component of C (δ);5
set Hi = {x ∈ X : there exist y, z ∈ X such that x ||yz is a vertex of Ki };6
set R′

i = Hi ∪ {y ∈ X : there exist x, z ∈ X such that x ||yz is a vertex of Ki };7

end8
return m, (H1, R

′
1), . . . , (Hm , R′

m);9

end10
else11

return δ is not level-1 representable;12

end13

Algorithm 1: Find-Cycles – Property (P1) is checked in Line 1.

not contained in a cycle that have degree greater than three. Thus such networks need
not be binary. If, in addition to being partially resolved, N is such that it contains a
unique cycle C such that every non-leaf vertex of N is a vertex of C then we call N
simple.

Algorithm Build-Cycle (see Algorithm 2 for a pseudo-code version) relies on a
further graph called the TopDown graph associated to a symbolic 3-dissimilarity δ. For
(H, R′) a pair returned by algorithm Find-Cyclewhengiven δ and x ∈ H and S ⊆ R′,
that graph essentially orders the vertices of S. Thus, for each connected component
K of C (δ), Build-Cycle computes a level-1 representation of δ corresponding to K
(should such a representation exist).

We start with presenting a central observation concerning labelled level-1 networks.

Lemma 5 Suppose N = (N , t) is a labelled level-1 network, and C is a cycle of
N . Suppose also that x, y, z ∈ X are three elements such that x ∈ H(C), y, z ∈
R(C) − H(C) and t (vC (z)) = t (r(C)) �= t (vC (y)). Then, vC (z) lies on the directed
path from vC (y) to h(C) if and only if y|xz is a δN -triplet.

Proof Put δ = δN . Suppose first that vC (z) lies on the directed path from vC (y) to
h(C). Then lca(x, y, z) = lca(x, y) = lca(y, z) = vC (y) and lca(x, z) = vC (z).
Hence, δ(x, y, z) = δ(x, y) = δ(y, z) = t (vC (y)) �= t (vC (z)) = δ(x, z). By Table 1,
y|xz is a δ-triplet.

Conversely, suppose that y|xz is a δ-triplet. Then, by Table 1, we have δ(x, y, z) =
δ(x, y) = δ(y, z) �= δ(x, z). Since δ(x, y) = t (vC (y)) and δ(x, z) = t (vC (z)), it
follows that δ(x, y, z) = t (vC (y)) �= t (vC (z)). But then y and z must lie on the same
side of C as otherwise δ(y, z) = t (r(C)) follows which is impossible by assumption
on x , y and z. Thus, either vC (y) must lie on a directed path P from vC (z) to h(C) or
vC (z) must lie on a directed path P ′ from vC (y) to h(C). However vC (y) cannot be a
vertex on P as otherwise lca(y, z) = vC (z) holds and, so, δ(y, z) = δ(x, z) follows,
which is impossible. Thus vC (z) must be a vertex on P ′.
�

123

Algorithmica

d

ef

g

c

be

gd

f

(a) (b)

Fig. 6 For δN1
the symbolic 3-dissimilarity induced by the labelled network N1 pictured in

Fig. 1, we depict in (a) the TopDown graph T D({d, e, f, g}, c) and in (b) the CheckLabels graph
CL({c}, {b}, {d, e, f, g}) which we formally introduce in Sect. 7. In both graphs, the vertices are indi-
cated by times symbol. In the latter graph the value assigned to two vertices under δN1

is indicated in terms
of dashed and non-dashed edges (ignoring directions for the moment). See text for details

With N and C as in from Lemma 5, it follows from Lemma 4, that whenever
algorithm Find-Cycles is given δN as input, it returns a pair (H, R′) such that
H = H(C) and R′ = H(C) ∪ {y ∈ R(C) : t (vC (y)) �= t (r(C))}. Moreover giving
(H, R′) and δN as input to algorithm Build-Cycle, Lemma 5 implies that Build-
Cycle finds all elements z ∈ R(C) − R′ for which there exists some y ∈ R′ such
that vC (z) lies on the path from vC (y) to h(C). However it should be noted that if
z ∈ R(C) − H(C) is such that t (v) = t (r(C)) = t (vC (z)) holds for all vertices v on
the path from r(C) to vC (z) then the information captured by δN for x , y, and z is in
general not sufficient to decide if z and y lie on the same side of C or not. In fact, it is
easy to see that, in general, z ∈ R(C) need not even hold.

We now turn our attention to the aforementioned TopDown graph associated to a
symbolic 3-dissimilarity δ on X which is defined as follows. Suppose that S � X , and
that x ∈ X − S. Then the vertex set of the TopDown graph T D(S, x) is S and two
elements u, v ∈ S distinct are joined by a direct edge (u, v) if u|vx is a δ-triplet.

Rather than continuing with our analysis of algorithm Build- Cycle we break
for the moment and illustrate it by means of an example. For this we return again to
the symbolic 3-dissimilarity δN1 on X = {a, . . . , k} induced by the labelled level-1
network N1 depicted in Fig. 1. Suppose (c, bce f g) is a pair returned by algorithm
Find-Cycle and c||be is the δ-tricycle chosen in line 2 of Build-Cycle. Then H =
{c}, S′

b = {b} and S′
e = {e, f, g} (lines 3 and 4), and Sb = {b} and Se = {d, e, f, g}

(lines 8 and 9). The graph T D(Se, c) is depicted in Fig. 6a. It implies that for the
cycle C associated to the pair (c, bce f g) in a level-1 representation of δN1 , we must
have vC (e) = vC (f) = vC (g) and that one of the two sides of C is {d, e, f, g}. Since
|Sb| = 1, the other side of C is {b} (lines 11 to 33).

Continuing with our analysis of algorithm Build- Cycle, we remark that the fact
that the TopDown graph T D(Se, c) in the previous example is non-empty is not a
coincidence. In fact, it is easy to see that the graph G defined in line 14 of Build-
Cycle is non-empty whenever δ is level-1 representable. Thus, the DAG C returned
by algorithm Build- Cycle cannot contain multi-arcs. Note however that there might
be tricycles induced by C of the form x ||uz with u ∈ R′ − S′

y as, for example,
δ(x, z) = δ(x, y) = δ(z, y) = δ(x, u) might hold and thus x ||uz is not a δ-tricycle.

123

Algorithmica

Input: A symbolic 3-dissimilarity δ on X that satisfies Property (P1) and a pair (H, R′) returned by
algorithm Find-Cycle when given δ.

Output: Either a labelled simple level-1 network (C, t) on a partition of a subset X ′ of X such that
R′ ⊆ X ′ and H(K) = H holds for the unique cycle K of C , or the statement “δ is not
level-1 representable”.

set rep=0;1
Choose a δ-tricycle x ||yz, where x ∈ H and y, z ∈ R′ − H ;2
set S′

y = {u ∈ R′ : x ||uz is a δ-tricycle};3

set S′
z = {u ∈ R′ : x ||yu is δ-tricycle};4

Initialize C as a graph with three vertices respectively labelled by r(C), h(C) and H , and the edge5
(h(C), H);
if for all x ′ ∈ H, y′ ∈ S′

y and z′ ∈ S′
z , x

′||y′z′ is a δ-tricycle and δ(x, y, z) = δ(x ′, y′, z′) then6

set t (r(C)) = δ(x, y, z);7
set Sy = S′

y ∪ {u ∈ X − R′ : there exists u′ ∈ S′
y such that u′|ux is a δ-triplet};8

set Sz = S′
z ∪ {u ∈ X − R′ : there exists u′ ∈ S′

z such that u
′|ux is a δ-triplet};9

if for all u1 ∈ Sy , u2 ∈ Sz , δ(u1, u2) = t (r(C)) then10
for i ∈ {y, z} do11

set vl = r(C);12
if T D(Si , x

′) = T D(Si , x
′′) for all x ′, x ′′ ∈ H and T D(Si , x) does not contain a13

directed cycle then
set G = T D(Si , x);14
set rep=rep+1;15
while V (G) �= ∅ do16

Add a new child v to vl ;17
set F (v) = {u ∈ Si : u has indegree 0 in G};18
Delete from G all vertices in F (v);19
if for all u, u′ ∈ F (v), x ′, x ′′ ∈ H ∪ V (G), δ(u, x ′) = δ(u′, x ′′) then20

Choose some u ∈ F (v);21
set t (v) = δ(x, u);22
Add the leaf F (v) as a child of v;23
set vl = v;24

end25
else26

Remove all vertices from G;27
set rep=rep-1;28

end29

end30
Add the edge (vl , h(C));31

end32

end33

end34

end35
if rep=2 then36

return C ;37

end38
else39

return δ is not level-1 representable;40

end41

Algorithm 2: Build-Cycle – The set R′ is the set H ∪ Sy ∪ Sz , Property (P4) is
checked in Lines 6, 10, and 20, and Properties (P3), (P6), (P7) and (P8) are checked
in Lines 6, 13, 10 and 20, respectively.– See text for details.

123

Algorithmica

Note that similar reasoning also applies to S′
z and the extensions of S′

y and S′
z to Sy

and Sz defined in lines 8 and 9, respectively. Also note that the sets Sy and Sz are
dependent on the choice of the δ-tricycle in line 2. However, line 6 ensures that the
labelled simple level-1 network returned by algorithm Build-Cycle is independent
of the choice of that δ-tricycle.

To establish Proposition 2 which ensures that algorithm Build- Cycle terminates,
we next associate to a directed graph G a new graph P(G) by successively removing
vertices of indegree zero and their incident edges until no such vertices remain. As a
first almost trivial observation concerning that graph we have the following straight-
forward result whose proof we again omit.

Lemma 6 Let G be a directed graph. Then P(G) is nonempty if and only if G contains
a directed cycle.

Given as input to algorithm Build-Cycle a symbolic 3-dissimilarity δ that satisfies
Property (P1) and a pair (H, R′) returned by algorithm Find-Cycle for δ we have:

Proposition 2 Algorithm Build-Cycle terminates.

Proof As is easy to check the only reason for algorithm Build-Cycle not to terminate
is the while loop initiated in its line 16. For i = 1, 2, this while loop works by
successively removing vertices of indegree 0 (and their incident edges) from the graph
T D(Si , x), and terminates if the resulting graph, i. e. P(T D(Si , x)), is empty. Since
line 13 ensures that this loop is entered if and only if T D(Si , x) does not contain a
directed cycle, Lemma 6 implies that Build-Cycle terminates.
�

It is straight-forward to see that when given a level-1 representable symbolic 3-
dissimilarity δ such that the underlying level-1 network is in fact a simple level-1
network the labelled network returned by algorithm Build- Cycle satisfies the fol-
lowing three additional properties (where we use the notations introduced in algorithm
Build- Cycle).

(P4) For i = y, z, we have S′
i = {u ∈ Si : δ(u, x) �= δ(y, z)} and Sy∩Sz = Sy∩H =

Sz ∩ H = ∅.
(P5) For all u, v ∈ R := H ∪ Sy ∪ Sz and allw ∈ X− R, we have δ(u, w) = δ(v,w).
(P6) For all u, u′ ∈ H and i ∈ {y, z}, the graphs T D(Si , u) and T D(Si , u′) are

isomorphic and do not contain a directed cycle.

Since the quantities on which these properties are based also exist for general
symbolic 3-dissimilarities we next study Properties (P4)–(P6) for such dissimilarities.
As a first consequence of Property (P4) combined with Properties (P1) and (P2), we
obtain a sufficient condition under which the TopDown graph T D(Si , x) considered in
algorithmBuild- Cycle does not contain a directed cycle (lines 13). For convenience,
we employ again the notation used in Algorithm 2.

Proposition 3 Suppose that δ : (X
≤3

) → M� is a symbolic 3-dissimilarity that satisfies
Properties (P1), (P2) and (P4), that (H, R′) is a pair returned by algorithm Find-

Cycles when given δ, and that x, y and z are as specified as in line 2 of algorithm
Build- Cycle. Then the following hold for i = y, z.

123

Algorithmica

(i) If T D(Si , x) contains a directed cycle then it contains a directed cycle of size 3.
(ii) T D(Si , x) does not contain a directed cycle of length 3 whenever |M | = 2 holds.

Proof (i) By symmetry, it suffices to show the proposition for i = y. Suppose
T D(Sy, x) contains a directed cycle. Over all such cycles in T D(Sy, x), choose a
directed cycle C of minimal length. If |V (C)| = 3, then the statement clearly holds.

Suppose for contradiction for the remainder that |V (C)| ≥ 4. Suppose a, b, c, d ∈
V (C) are such that (a, b), (b, c), (c, d) are three directed edges in C . We next distin-
guish between the cases that |V (C)| ≥ 5 and that |V (C)| = 4.

Suppose |V (C)| ≥ 5.Then sincea, c ∈ Sy , Lemma4combinedwith theminimality
of C implies that we either have a δ-fork on {a, c, x} or the δ-triplet ac|x . Hence,
δ(x, a) = δ(x, c) holds in either case. Note that similar arguments also imply that
δ(x, b) = δ(x, d). Since |V (C)| ≥ 5, the directed edges (a, d) and (d, a) cannot
be contained in T D(Sy, x) and, using again similar arguments as before, δ(x, a) =
δ(x, d) must hold. In combination, we obtain δ(x, a) = δ(x, b) which is impossible
in view of (a, b) being an edge in T D(Sy, x) and thus δ(x, a) �= δ(x, b).

Suppose |V (C)| = 4. By the minimality ofC , neither (b, d) (d, b), (a, c) nor (c, a)

can be a directed edge in T D(Sy, x). Using similar arguments as in the previous case,
it follows that δ(x, b) = δ(x, d) and δ(x, a) = δ(x, c). Combined with the facts that
(a, b), (b, c), (c, d) are directed edges in C and that (d, a) must also be an edge in C
as |V (C)| = 4, it follows that with A := δ(c, d) and B := δ(b, c) we have

A = δ(x, c) = δ(x, a) = δ(a, b) �= δ(x, b) = δ(x, d) = δ(d, a) = δ(b, c) = B.

(1)

Note that, δ(a, c) ∈ {A, B} must also hold as otherwise |{δ(a, c), δ(a, b), δ(b, c)}| =
3 and so, in view of Table 1, δ|{a,b,c} would be level-1 representable by a δ-tricycle
on {a, b, c}. But then H ∩ {a, b, c} �= ∅ which is impossible in view of Property
(P4). Similarly, one can show that δ(b, d) ∈ {A, B}. By combining a case analysis
as indicated in Table 1 with Eq. 1, it is straight-forward to see that each of the four
detailed combinations of δ(a, c) and δ(b, d) in that table yields a contradiction in view
of Property (P2).

(ii) By symmetry, it suffices to assume i = y. Let |M | = 2 and assume for
contradiction that T D(Sy, x) contains a directed cycle C of size 3. Let s, u, v denote
the three vertices of C such that (s, u), (u, v) and (v, s) are the three directed edges of
C . Then δ(u, x) �= δ(s, x) �= δ(v, s) = δ(v, x) �= δ(u, v) = δ(u, x) must hold. Since
|M | = 2, this is impossible.
�

6 Constructing Level-1 Representations From Symbolic
3-Dissimilarities: The Algorithm NETWORK-POPPING

In this section, we present algorithm Network-Popping which allows us to decide
if a symbolic 3-dissimilarity is level-1 representable or not. If it is, then Network-
Popping is guaranteed to find a level-1 representation in polynomial time.

Network-Popping takes as input a symbolic 3-dissimilarity δ on X and employs
a top-down approach to recursively construct a semi-discriminating level-1 represen-

123

Algorithmica

tation for δ (if such a representation exists). For l a leaf whose label set is of size at
least two and constructed in one of the previous steps it essentially works by either
replacing l with a labelled simple level-1 network or a labelled phylogenetic tree. To
compute those networks algorithms Find-Cycle and Build-Cycle are used, and to
construct such trees algorithm Vertex-Growing is employed. At the heart of the
latter lie Proposition 4 and algorithm Bottom-Up introduced in [9]. The latter takes
as input a symbolic 2-dissimilarity δ satisfying Properties (U1) and (U2), and builds
the unique discriminating symbolic representation T for δ (if it exists).

To be able to state algorithm Vertex-Growing, we require again further termi-
nology. Following e. g. [24], we call a collection H of non-empty subsets of X a
hierarchy on X if A ∩ B ∈ {A, B,∅} holds for any two sets A, B ∈ H . The proof of
the following result is straight-forward and thus omitted.

Lemma 7 Let N be a level-1 network with cycles C1,C2, . . . ,Ck, k ≥ 1. Then,
HN = {R(C1), R(C2), . . . , R(Ck)} is a hierarchy on X.

Suppose A is a set of non-empty subsets of X . Then we define a relation ∼(X,A)

on X by putting x ∼(X,A) y if there exists some A ∈ A such that x, y ∈ A, for all
x, y ∈ X . Note first that ∼(X,A) is clearly an equivalence relation whenever A is a
hierarchy. In addition, suppose that A is such that the partition X ′ of X induced by
∼(X,A) has size two or more. If δ : (X

≤3

) → M� is a symbolic 3-dissimilarity such
that for any two sets Y,Y ′ ∈ X ′ we have δ(x, y) = δ(x ′, y′) for all x, x ′ ∈ Y and
y, y′ ∈ Y ′, then we associate to δ the map δ̂ given by

δ̂ : (X ′
≤2

) → M�

{Y1,Y2} �→
{� if Y1 = Y2,

δ(y1, y2), where y1 ∈ Y1, y2 ∈ Y2 otherwise.

Note that δ̂ is clearly well-defined and a symbolic 2-dissimilarity on X ′. Associating
to a level-1 representationN = (N , t) of δ the setR := {R(C) : C is a cycle of N },
we have the following result as an immediate consequence.

Proposition 4 SupposeN is a labelled level-1 network on X and X ′ is the partition
of X induced by the relation ∼(X,R) on X. If |X ′| ≥ 2 then ˆδN is well defined and
satisfies Properties (U1) and (U2). In particular, ˆδN is a symbolic ultrametric on X ′.

Proof Put N = (N , t) and δ′ = ˆδN . Note first that for all x, y ∈ X , Lemma 7
implies that there exists some R ∈ R such that x, y ∈ R if and only if there exists
R′ ∈ R ′ := {R ∈ R : R is set-inclusion maximal inR} such that x, y ∈ R′. Let
TN denote the tree obtained from N by first collapsing for every cycle C of N with
R(C) ∈ R ′ all vertices below or equal to r(C) into a vertex and then labelling that
vertex by R(C). Put tN := t |V (TN). Then (TN , tN) is clearly a labelled phylogenetic
tree on X ′. Since N is a labelled level-1 network, it follows that (TN , tN) is a sym-
bolic discriminating representation of ˆδN . In view of Theorem 1, the proposition
follows.
�

123

Algorithmica

Input: A symbolic 3-dissimilarity δ on a set X , a subset Y ⊆ X , and a hierarchyS of proper
subsets of Y .

Output: A discriminating symbolic representation on the partition of Y induced by ∼(Y,S) or the
statement “There exists no discriminating symbolic representation”.

Let Y ′ denote the partition of Y induced by ∼(Y,S);1

Apply the Bottom-Up algorithm to the symbolic ultrametric δ̂ induced by δ on Y ′, as considered in2
Proposition 4;
if Bottom-Up returns a labelled tree T then3

return T ;4

end5
else6

return There exists no discriminating symbolic representation. ;7

end8

Algorithm 3: Vertex-Growing – Property (P2) is checked in Line 3.

To illustrate algorithm Vertex-Growing consider again the symbolic 3-dissi-
milarity δN1 induced by the labelled level-1 network on X = {a . . . , k} depicted
in Fig. 1. Let M1, M2, and M3 denote the three labelled simple level-1 net-
works returned by algorithm Build-Cycle when given δN1 such that L(M1) = X ,
L(M2) = {b, . . . , g} and L(M3) = {e, f, g}. Then the partition of X found in
line 1 of algorithm Vertex-Growing when given δN1 and R = ⋃3

i=1{L(Mi)}
is X itself, since any two leaves of X are in relation with respect to ∼(X,R).
Thus, the discriminating symbolic representation returned by Bottom-Up is a single
leaf.

Armedwith the algorithmsFind- Cycles,Build- Cycles, andVertex-Growing,
wenext present a pseudo-codeversionof algorithmNetwork-Popping (Algorithm4).

To be able to establish in Proposition 6 that algorithm Network-Popping returns
a semi-discriminating level-1 representation for a symbolic 3-dissimilarity (if such a
representation exists), we require the following technical result.

Proposition 5 Let δ be a symbolic 3-dissimilarity on X satisfying Property (P1), and
assume that Network-Popping returns a labelled level-1 network N on X when
given δ as input. Then the restrictions δ|(X

≤2)
and δN |(X

≤2)
of δ and δN to

(X
≤2

)
,

respectively, coincide if and only if δ and δN coincide.

Proof Put N = (N , t). Also, put δ′ = δ|(X
≤2)

and δ′
N = δN |(X

≤2)
. Clearly, if δ and

δN coincide then δ′ = δ′
N must hold.

Conversely, assume that δ′ = δ′
N . Let Z = {a, b, c} ∈ (X

3

)
and put m = δ(Z).

Note that since N is clearly a level-1 representation of δN , Lemma 3 implies that
δN also satisfies Property (P1). Further note that, up to permuting the elements
in Z , we either have (i) a δ-fork on Z , (ii) a|bc is a δ-triplet, or (iii) a||bc is a
δ-tricycle.

If Case (i) holds then δ(a, b) = δ(a, c) = δ(b, c) = m. Since, by assumption,
δ(Y) = δN (Y) for allY ∈ (X

2

)
, we also have δN (a, b) = δN (a, c) = δN (b, c) = m.

Hence, δN (Z) = m = δ(Z) as δ satisfies Property (P1).
If Case (ii) holds then m = δ(a, b) = δ(a, c) �= δ(b, c). Assume for contradiction

that δN (Z) �= m. Then, since δN satisfies Property (P1) it follows that δN (Z) =

123

Algorithmica

Input: A symbolic 3-dissimilarity δ on X .
Output: A semi-discriminating level-1 representation N = (N , t ′) of δ, if such a representation

exists, or the statement “δ is not level-1 representable”.

Initialize N as an unique vertex v, labelled by X ;1
set r = 1;2
Use Find − Cycles(δ) to obtain m ≥ 0 pairs (Hi , R

′
i) of subsets Hi and R′

i of X , 1 ≤ i ≤ m;3

if for all i ∈ {1, . . . ,m}, Build − Cycle(δ; Hi , Ri) returns a labelled simple level-1 network4
(Ci , ti) as described in that algorithm then

put Ri = R(Ci), andR = {R1, . . . , Rm };5
if for all i ∈ {1, . . . ,m}, and all y, z ∈ Ri , and x /∈ Ri , we have δ(x, y) = δ(x, z) then6

while there exists a leaf l of N whose label set Vl ⊆ X has two or more elements AND r �= 07
do

if there exists i ∈ {1, . . . ,m} such that Vl = Ri then8
identify l with the root of the labelled simple level-1 network corresponding to Ri9
and replace N with the resulting labelled level-1 network;

end10
else11

putSl = {R ∈ R : R ⊆ Vl };12
if Vertex-Popping(δ, Vl ,Sl) returns a discriminating symbolic representation13
T = (T, t) then

identify l with the root of T and replace N with the resulting labelled level-114
network;

end15
else16

set r = 0;17

end18

end19

end20

end21

end22
if r = 1 AND N is not v then23

return N := (N , t ′) where t ′ is canonically obtained by combining the maps t and ti ,24
1 ≤ i ≤ m;

end25
else26

return δ is not level-1 representable;27

end28

Algorithm 4: Network-Popping – Property (P5) is checked in Line 6.

δN (b, c). By Table 1, a||bc must be a δN -tricycle. Hence, there must exist a cycle
C in N such that a ∈ H(C), b and c are contained in R(C) but lie on different
sides of C , and t (r(C)) = δN (Z). Since algorithm Network-Popping completes
by returning N it follows that C is constructed in the while-loop starting in line 16
of algorithm Build- Cycle. But then the condition in line 6 of Build-Cycle has to
be satisfied which implies that t (r(C)) = δ(Z) in view of line 7 of that algorithm.
Hence, m �= δN (Z) = t (r(C)) = δ(Z) = m which is impossible.

If Case (iii) holds then the while-loop initiated in line 16 of algorithm Build-
Cycle implies that there must exist a cycle C in N such that t (r(C)) = δ(Z) = m.
Since N is returned by algorithm Network-Popping when given δ and N is
clearly a level-1 representation for δN it follows that δN (Z) = t (r(C)) = m
= δ(Z).
�

123

Algorithmica

As a first result concerning algorithm Network-Popping, we have

Proposition 6 Suppose δ is a symbolic 3-dissimilarity on X, and Network-Popping
applied to δ returns a labelled level-1 networkN . Then δ = δN . In particular,N is
a level-1 representation for δ.

Proof Put N = (N , t). In view of Proposition 5, it suffices to show that δ(a, b) =
δN (a, b) holds for all a, b ∈ X distinct. Let a and b denote two such elements. We
distinguish between the cases that either (i) there exists a cycle C of N such that
vC (a) �= vC (b), or (ii) that no such cycle exists.

Assume first that Case (i) holds. Then a and b lie either on the same side of C ,
or one of a and b is below the hybrid h(C) of C and the other lies on the side
of C , or a and b lie on different sides of C . If a and b lie on the same side of C
or one of them is below h(C) then we may assume without loss of generality that
there exists a directed path in C from vC (a) to vC (b). Then line 22 of algorithm
Build-Cycle implies t (vC (a)) = δ(a, b). Since lca(a, b) = vC (a), it follows that
δN (a, b) = t (vC (a)) = δ(a, b), as required.

If a and b lie on different sides of C then x ||ab is a δ-tricycle, for x as in line 2
of algorithm Build-Cycle. Since that algorithm completes, line 7 of that algorithm
implies δ(a, b) = t (r(C)). But then δN (a, b) = t (r(C)) = δ(a, b), asN is returned
by Network-Popping.

For the remainder, assume that Case (ii) holds, that is, there exists no cycle C of N
such that vC (a) �= vC (b). Consider the vertexv0 ∈ V (N)defined as follows: if the path
from the root ρN of N to lca(a, b) does not contain a vertex that is also contained in a
cycle of N , then put v0 = ρN . Otherwise let v0 denote the last vertex on a directed path
from ρN to lca(a, b) such that v0 belongs to a cycle Z of N . Note that v0 = lca(a, b)
holds if lca(a, b) is also contained in Z . Put V = F (v1) where v1 is the unique child
of v0 not contained in Z , and let V ′ denote the partition of V induced by ∼(V,Sv0)

where for any vertex w ∈ V (N) the set Sw is defined as in line 12 of algorithm
Network-Popping. Let Ra, Rb ∈ V ′ such that a ∈ Ra and b ∈ Rb. Then line 5
of Network-Popping implies ˆδN (Ra, Rb) = δN (a, b) and δ̂(Ra, Rb) = δ(a, b).
Since N is returned by Network-Popping when given δ, line 12 of that algorithm
implies δ̂(Ra, Rb) = ˆδN (Ra, Rb). Consequently, δN (a, b) = δ(a, b) holds in this
case too.
�

We conclude this section with some remarks concerning the runtime of algorithm
Network-Popping. Suppose X and δ are as in the description of that algorithm.
Then the runtime of Network-Poppingmanifests itself through (i) pairwise compar-
isons between δ-tricycles (construction of the graph C (δ)) and δ-triplets (Algorithm
Bottom-Up), respectively, and (ii) comparisons between elements x of X and (a)
δ-tricycles containing x to determine the pair (H, R′) associated to a given connected
component of C (δ) and (b) δ-triplets to obtain the TopDown graph associated to a
given connected component of C (δ). Since the number of δ-tricycles and of δ-triplets
is bounded by the number n(n−1)(n−2)

6 of 3-subsets of X and the number of δ-tricycles
and of δ-triplets containing a given element x ∈ X , respectively, is bounded by the
number (n−1)(n−2)

2 of 2-subsets of X − {x}, it follows that the runtime of Network-
Popping is O(n6).

123

Algorithmica

1

2

3

4

1

2

3
4
5
6

4
5

3
4
5

1
2

3

1

2

N5 N6 N7 N8

Fig. 7 The networks Ni , i = 5, 6, 7, 8, considered in Table 2

7 Uniqueness of Level-1 Representations Returned by
NETWORK-POPPING

As is easy to see, there exist symbolic 3-dissimilarities that although they satisfy
Properties (P1)–(P6) are not level-1 representable. The reason for this is that such
3-dissimilarities need not satisfy the assumptions of lines 10 and 20 in algorithm
Build- Cycle. A careful analysis of that algorithm suggests however two further
properties for a symbolic 3-dissimilarity to be level-1 representable. To state them, we
next associate to a symbolic 3-dissimilarity its CheckLabels graph.

Suppose Y0, Y1, and Y2 are three pairwise disjoint subsets of X such that for all
x, x ′ ∈ Y0 and all i = 1, 2, the graphs T D(Yi , x) and T D(Yi , x ′) are isomorphic
(which is motivated by Property (P6)). Then we denote by CL(Y0,Y1,Y2) the Check-
Labels graph associated to δ, Y0, Y1, and Y2 defined as follows. The vertex set of
CL(Y0,Y1,Y2) is Y0 ∪Y1 ∪Y2. Any pair (u, v) ∈ Y1 ×Y2 is joined by an (undirected)
edge {u, v}, any pair (u, v) ∈ (Y1 ∪ Y2) × Y0 is joined by a directed edge (u, v), and
two elements u, v ∈ Yi , i = 1, 2, are joined by a directed edge (u, v) if there exists
a direct path from u to v in T D(Yi , x). Finally, to each edge of CL(Y0,Y1,Y2) with
end vertices u and v or directed edge of that graph with tail u and head v, we assign
the label δ(u, v). We illustrate the CheckLabels graph in Fig. 6b for the network N1
depicted in Fig. 1.

Using the terminology of algorithm Build-Cycle it is straight-forward to observe
that the following two properties are implied by Build-Cycle’s lines 10 and 20
whenever its input symbolic 3-dissimilarity is level-1 representable:

(P7) All undirected edges of CL(H, Sy, Sz) have the same label;
(P8) For all vertices u of CL(H, Sy, Sz), all directed edges in CL(H, Sy, Sz) with

tail u have the same label.

As indicated in Table 2, Properties (P1)–(P8) are independent of each other. As we
shall see, they allow us to characterize level-1 representable symbolic 3-dissimilarities
(Theorem 2).

Theorem 2 Let δ be a symbolic 3-dissimilarity on X. Then the following statements
are equivalent (where in (iii)–(v) the input to algorithm Network-Popping is δ):

123

Algorithmica

Table 2 For sets X and M and δ a symbolic 3-dissimilarity on X as indicated, the property stated in the
first column of each row holds whereas the remaining seven properties do not

Prop. X M δ

(P1) {x, y, z} {D, S} δ(x, y) = δ(x, z) = δ(y, z) = D;

δ(x, y, z) = S.

(P2) {x, y, z, u} {D, S} δ(x, y, z) = δ(y, z, u) = δ(x, y) =
δ(y, z) = δ(z, u) = D;

δ(Y) = S otherwise.

(P3) {x1, x2, y, z} {D, S1, S2} δ(xi , y, z) = Si , i ∈ {1, 2};
δ(Y) = D otherwise.

(P4) {x, y, z, u} {D, S} δ(x, y, u) = δ(x, u) = δ(y, z) =
δ(x, y, z) = D;

δ(Y) = S otherwise.

(P5) {1, . . . , 5} {D, S} δ(1, 4) = S;

δ(Y) = δN5
(Y) otherwise.

(P6) {1, . . . , 6} {D, S} δ(3, 6) = δ(2, 3, 6) = D;

δ(Y) = δN6
(Y) otherwise.

(P7) {1, . . . , 5} {D, S} δ(2, 4) = δ(2, 3, 4) = δ(1, 2, 4) =
δ(2, 4, 5) = S;

δ(Y) = δN7
(Y) otherwise.

(P8) {1, . . . , 5} {D, S} δ(3, 5) = δ(3, 4, 5) = D;

δ(Y) = δN8
(Y) otherwise.

For i = 5, 6, 7, 8, the networks Ni are depicted in Fig. 7

(i) δ is level-1 representable.
(ii) δ satisfies conditions (P1)–(P8).
(iii) Network-Popping returns a labelled level-1 network which is unique up to

isomorphism.
(iv) Network-Popping returns a level-1 representation for δ.
(v) Network-Popping returns a semi-discriminating level-1 representation for δ.

Proof (i) ⇒ (ii): This is an immediate consequence of Lemma 3, Proposition 1, the
remark preceding Proposition 3 and the observation preceding Table 2.

(ii) ⇒ (iii): Assume that δ satisfies Properties (P1)–(P8). Then algorithm Find-
Cycles first constructs the graph C (δ) and then finds for each connected component
K of C (δ) the pair (HK , R′

K). Since algorithm Build-Cycles relies on Properties
(P3), (P4), (P6)–(P8) being satisfied, it follows that Build-Cycles constructs for
each pair (HK , R′

K), K a connected component of C (δ), a labelled simple level-1
network as specified in the output of Build-Cycles. By construction, the labelled
DAG N = (N , t) returned by algorithm Network-Popping is clearly a labelled
phylogenetic network. Since, in view of the while loop of that algorithm starting at
line 7, no two cycles in N can share a vertex it follows that N is in fact a level-1 network.
Proposition 5 combined with the observation that in none of our four algorithms we
have to break a tie implies that N is unique up to isomorphism.

123

Algorithmica

(iii) ⇒ (iv): This is trivial in view of Proposition 6.
(iv) ⇒ (v): Suppose algorithm Network-Popping returns a level-1 representa-

tion N for δ. To see that N is in fact semi-discriminating, note that algorithms
Vertex-Growing and Build-Cycles return a discriminating symbolic representa-
tion and a discriminating level-1 representation for its input symbolic 3-dissimilarity,
respectively. In combination it follows that N must be semi-discriminating.

(v) ⇒ (i): This is trivial.
�
As suggested by the two semi-discriminating level-1 representations N1 and N3

for δN1 depicted in Fig. 1, the output of algorithm Network Popping when given
a level-1 representable symbolic 3-dissimilarity δ need not be the labelled level-1
network that induced δ. To help clarify the relationship between both networks, we
require further terminology.

Suppose that (N , t) is a labelled level-1 network. Then we say that a cycle C of
N is weakly labelled if there exists at least one vertex v on either side of C such that
t (v) �= t (r(C)). More generally, we call a labelled level-1 network (N , t) weakly
labelled if every cycle of N is weakly labelled. For example, the labelled level-1
networkN2 pictured in Fig. 1 isweakly labelled (but not semi-discriminating)whereas
the network N3 depicted in Fig. 1 is semi-discriminating but not weakly labelled.

Armed with this definition, we can characterize weakly labelled cycles as follows.

Lemma 8 Let N = (N , t) be a labelled level-1 network, and let C be a cycle of
N . Then C is weakly labelled if and only if there exists some x ∈ H(C) and leaves
y, z ∈ R(C) − H(C) that lie on different sides of C such that x ||yz is a δN -tricycle.
Moreover, x ′||yz is a δN - tricycle, for all x ′ ∈ H(C).

Proof Put δ = δN . Assume first that there exists some x ∈ H(C) and leaves y, z ∈
R(C) − H(C) that lie on two different sides of C such that x ||yz is a δ-tricycle. Then
δ(x, y, z) = δ(z, y) = t (r(C)). Also δ(x, y) = t (vC (y)) and δ(x, z) = t (vC (z)).
In view of Table 1, δ(x, y, z) /∈ {δ(x, y), δ(x, z)} and, so, t (vC (i)) �= t (r(C)), for
i = y, z.

Conversely, suppose C is weakly labelled. Let v1, v2 ∈ V (C) denote two vertices
of N that lie on different directed paths from r(C) to h(C) such that t (r(C)) /∈
{t (v1), t (v2)}. Suppose y, z ∈ X are such that vC (y) = v1 and vC (z) = v2. Then x ||yz
must be a δ-tricycle, for all x ∈ H(C). Indeed, δ(x, y) = t (v1) and δ(x, z) = t (v2)
holds. Since δ(y, z) = δ(x, y, z) = t (r(C)) /∈ {δ(x, y), δ(x, z)}, Table 1 implies that
x ||yz is a δ-tricycle.

The remainder of the lemma follows from the fact that, for all x ′ ∈ H(C), we have
δ(x ′, y, z) = δ(x, y, z), δ(x, y) = δ(x ′, y) and δ(x, z) = δ(x ′, z).
�

As a consequence, we can strengthen Proposition 1 to the following characteriza-
tion.

Theorem 3 If N = (N , t) is a labelled level-1 network, the connected components
of C (δN) are in 1–1 correspondence with the weakly labelled cycles of N .

Implied by Theorem 3, we have

123

Algorithmica

Corollary 1 Let δ be a level-1 representable symbolic 3-dissimilarity on X, and let
N = (N , t) be the level-1 representation of δ returned by algorithm Network-
Popping when applied to δ. Then N is weakly labelled if and only if, for any level-1
representation N ′ = (N ′, t ′) of δ, the number of cycles in N equals the number of
weakly labelled cycles in N ′. In particular, the number of cycles in N is minimal.

Input: A labelled level-1 network N = (N , t) on X .
Output: A semi-discriminating, weakly labelled, partially resolved level-1 networkN ′ = (N ′, t ′)

such that δN = δN ′ .
set N ′ = N ;1
while N ′ is not semi-discriminating or not weakly labelled or not partially resolved do2

Collapse all edges (u, v) satisfying t ′(u) = t ′(v) and such that either u and v belong to the same3
cycle of N ′ or do not belong to a cycle;
for All vertices v of a cycle C of degree 4 or more do4

Define a new child w of v;5
set t ′(w) = t ′(v);6
if v = r(C) then7

Redefine the children of v in C as children of w;8

end9
else10

Redefine the children of v outside of C as children of w;11

end12

end13
for All cycles C of N ′ such that (r(C), h(C)) is an edge of N ′ do14

Remove the edge (r(C), h(C));15

end16
Remove all vertices of degree 2;17

end18

Algorithm 5: Transform

Corollary 2 Suppose N is a labelled level-1 network and N ′ is the level-1 repre-
sentation for δN returned by algorithm Network-Popping. ThenN ′ is isomorphic
with the labelled level-1 network returned by algorithmTransformwhen givenN as
input. In particular,N andN ′ are isomorphic if andonly ifN is semi-discriminating,
weakly labelled, and partially resolved. Furthermore, if δ is a level-1 representable
symbolic 3-dissimilarity, then there exists an unique representation of δ that is semi-
discriminating, weakly labelled, and partially resolved.

8 Characterizing Level-1 Representable Symbolic 3-Dissimilarities

In this section, we present a characterization of level-1 representable symbolic 3-
dissimilarities on X in terms of level-1 representable symbolic 3-dissimilarities on
subsets of X of size |X | − 1 (Theorem 4). Combined with the fact that algorithm
Network- Popping has polynomial run time, this suggests that Network- Popping

might lend itself to studies involving large data sets using a Divide-and-Conquer
approach.

123

Algorithmica

At the heart of the proof of our characterization lies the following technical lemma
which concerns the question under what circumstances the restriction of a level-1
representable symbolic 3-dissimilarity δ on X is itself level-1 representable. Central
to its proof is the fact that |X | �= 4 since, in general, a symbolic 3-dissimilarity δ on a
set X of size 4 need not be level-1 representable but the restriction of δ to any subset
of size 3 is level-1 representable. An example for this is furnished by the symbolic
3-dissimilarity δ on X = {x, y, z, u}, given by δ(x, y, z) = δ(y, z, u) = δ(x, y) =
δ(y, z) = δ(z, u) �= δ(x, z) = δ(x, u) = δ(y, u) = δ(x, z, u) = δ(x, y, u).

Using the assumptions and definitions for the elements x , y, and z, and the sets H ,
Sz , and Sy made in algorithm Build- Cycle, we have the following result.

Lemma 9 Suppose δ is a symbolic 3-dissimilarity on X satisfying Properties (P1),
(P2), (P4), and (P6), x ||yz is the δ-tricycle chosen in line 2of algorithmBuild- Cycle,
and i ∈ {y, z}. If u, w ∈ Si are joined by a direct path from u to w in T D(Si , x), then
either (u, w) is a directed edge of T D(Si , x) or there exists v ∈ Si such that both
directed edges (u, v) and (v,w) are contained in T D(Si , x).

Proof By symmetry, we may assume i = y. Suppose there exists a directed path
v0 = u, v1, . . . , vk, vk+1 = w, some k ≥ 0, from u tow in T D(Sy, x) and that (u, w)

is not a directed edge on that path. Then k ≥ 1 and, so, v1 /∈ {u, w}. It suffices to show
that (v1, w) is a directed edge of T D(Sy, x).

Observe first that, in view of Property (P6), (w, u) is not a directed edge in
T D(Sy, x) as otherwise T D(Sy, x) would contain a directed cycle. Combined with
the definition of Sy it follows that either x |uw is a δ-triplet or we have a δ-fork on
{x, u, w}. In either case, δ(u, x) = δ(w, x) holds. Since (u, v1) is a directed edge in
T D(Sy, x), we also have that xv1|u is a δ-triplet. Hence, δ(v1, x) �= δ(x, u) = δ(w, x)
and so we cannot have a δ-fork on {x, w, v1}. Since, in view of Property (P4), we can-
not have a δ-tricycle on {x, w, v1} either δ(w, v1) = δ(w, x) or δ(w, v1) = δ(v1, x)
follows.

If the first equality holds, then v1x |w is a δ-triplet and, so, (w, v1) is a directed edge
in T D(Sy, x). Consequently, the directed path v1, . . . , vk, w concatenated with that
edge forms a directed cycle in T D(Sy, x), which is impossible in view of Property
(P6) holding. Thus, δ(w, v1) = δ(v1, x) must hold. Consequently, wx |v1 is a δ-triplet
and, so, (v1, w) is an edge in T D(Sy, x), as required.
�

To establish the main result of this section (Theorem 4), we need to be able to
distinguish between the sets defined in lines 8 and 9 of algorithmBuild- Cyclewhen
given a symbolic 3-dissimilarity δ on X and the restriction δ|Y of δ to a subset Y ⊆ X
with |Y | ≥ 3. To this end, we augment for a symbolic 3-dissimilarity κ on X the
definition of those sets by writing Si (κ) rather than Si , i = y, z.

Observe first that if δ is level-1 representable and Y ⊆ X such that |Y | ≥ 3,
then the restriction δ|Y of δ to Y is clearly level-1 representable. Indeed, a level-1
representation N (δ|Y) of δ|Y can be obtained from a level-1 representation N (δ)

of δ using the following 2-step process. First, remove all leaves in X − Y and their
respective incoming edges from N (δ) and then suppress all resulting degree two
vertices. Next, apply algorithm Transform to the resulting network. This begs the
question of when level-1 representations of symbolic 3-dissimilarities on subsets of

123

Algorithmica

X give rise to a level-1 representation of a symbolic 3-dissimilarity on X . To answer
this question which is the purpose of Theorem 4 we require the next result.

Proposition 7 Let δ be a symbolic 3-dissimilarity on X. Then the following statements
hold.

(i) If |X | ≥ 6 and δ does not satisfy Property (Pi), i ∈ {1, 2, . . . , 8}, then there exists
some Y ⊆ X with 3 ≤ |Y | ≤ 5 such that that property is also not satisfied by δ|Y .

(ii) If |X | ≥ 6 and δ is not level-1 representable then there exists some Y ⊆ X with
3 ≤ |Y | ≤ 5 such that δ|Y is also not level-1 representable.

Proof (i) The proposition is straight-forward to show for Properties (P1) and (P2),
since they involve three and four elements of X , respectively. Note that to see Property
(Pi), 3 ≤ i ≤ 8, we may assume without loss of generality that Properties (P j),
1 ≤ j ≤ i − 1, are satisfied by δ. For ease of readability, we put Sy := Sy(δ).

If δ does not satisfy Property (P3) then there exists a connected component C of
C (δ) and δ-tricycles τ, τ ′ ∈ V (C) such that δ(L(τ)) �= δ(L(τ ′)). Without loss of
generality, we may assume that τ and τ ′ are adjacent. Then |L(τ) ∩ L(τ ′)| = 2. Let
x, y, z ∈ X such that τ = x ||yz. Then either τ ′ = x ′||yz or τ ′ = x ||yz′ where
x ′, z′ ∈ X . But then Property (P3) is not satisfied either for δ restricted to the 5-set
Z = {x, y, z, x ′, z′}.

For the remainder, let (H, R′) denote the pair returned by algorithm Find-Cycles
when given δ and let x ∈ H and y, z ∈ R′ such that x ||yz is a vertex in the connected
component C of C (δ) corresponding to (H, R′). Suppose δ does not satisfy Property
(P4). Assume first that the second part of Property (P4) is not satisfied. Then if there
exists an element u contained in H∩Sy or in H∩Sz or in Sz∩Sy then u is also contained
in the corresponding intersections involving the sets Sy(δ|Z) ⊆ Sy and Sz(δ|Z) ⊆ Sz
found by Build-Cycle in its lines lines 8 and 9 for δ restricted to Z = {x, y, z, u}.
Thus, the second part of Property (P4) does not hold for δ|Z .

Now assume that the first part of Property (P4) does not hold for δ, that is, S′
i �=

A := {w ∈ Si : δ(w, x) �= δ(y, z)}. By symmetry, we may assume without loss
of generality that i = y. Then since S′

y ⊆ A clearly holds there must exists some
w ∈ A− S′

y . PutU = {x, y, z, w}. Thenw /∈ S′
y(δ|U) asw /∈ S′

y . However we clearly
have that w ∈ Sy(δ|U) and δ|U (w, x) �= δ|U (y, z). Thus, the first part of Property
(P4) is not satisfied with δ replaced by δ|U .

If δ does not satisfy Property (P5) then since y ∈ R := H ∪ Sy ∪ Sz it follows for
u := y and v and w as in the statement of Property (P5) that the restriction of δ to
{x, u, z, v, w} does not satisfy Property (P5) either.

If δ does not satisfy Property (P6) then either (a) there exist elements u, u′ ∈ H such
that T D(Sy, u) and T D(Sy, u′) are not isomorphic or (b) there exists some u ∈ H
such that T D(Sy, u) has a directed cycle C .

Assume first that Case (a) holds. Then there must exist distinct vertices v and w

in Sy such that (v,w) is a directed edge in T D(Sy, u) but not in T D(Sy, u′). With
Z = {v, u, u′, w, z} it follows that Sv(δ|Z) = {v,w}. Since the directed edge (v,w)

is clearly contained in the TopDown graph T D({v,w}, u) associated to δ|Z but not in
the TopDown graph T D({v,w}, u′) associated to δ|Z , Property (P6) is not satisfied
for δ|Z .

123

Algorithmica

Thus, Case (b) must hold. In view of Proposition 3(i), we may assume that the size
ofC is three. Hence, the subgraphG of T D(Sy, u) induced by Z = V (C)∪{z, u} also
contains a cycle of length 3. SinceG coincides with the TopDown graph T D(V (C), u)

for δ|Z and |Z | = 5 holds, it follows that δ|Z does not satisfy Property (P6).
If δ does not satisfy Property (P7) then there must exist undirected edges e = {a, b}

and e′ = {a′, b′} in CL(H, Sy, Sz) such that δ(a, b) �= δ(a′, b′). Then for at least one
of e and e′, say e, we must have that δ(a, b) �= δ(y, z). Put Z = {x, y, z, a, b}. Then
since {y, z} is also an undirected edge in CL(H, Sy(δ|Z), Sz(δ|Z)) it follows that δ|Z
does not satisfy Property (P7) either.

Finally, suppose that δ does not satisfy Property (P8). Considering both alternatives
in the statement of Property (P8) together, there must exist vertices u ∈ Sy and
v,w ∈ Sy ∪ H such that both (u, v) and (u, w) are directed edges of CL(H, Sy, Sz)
and δ(u, v) �= δ(u, w). Independent of whether v,w ∈ Sy or v,w ∈ H or v ∈ Sy and
w ∈ H , it follows that either δ(u, x) �= δ(u, v) or δ(u, x) �= δ(u, w). Assume without
loss of generality that δ(u, x) �= δ(u, v). Note that (u, x) is also a directed edge in
CL(H, Sy, Sz).

If v ∈ H , then δ|Z does not satisfy Property (P8) for Z = {x, y, z, u, v}. So assume
v /∈ H . Then v ∈ Sy . Since (u, v) is a directed edge in CL(H, Sy, Sz) it follows that
there exists a directed path P from u to v in T D(Sy, x). By Lemma 9, either (a) P
has a single directed edge or (b) there exists some v1 ∈ Sy such that both (u, v1) and
(v1, v) are directed edges of T D(Sy, x).

If Case (a) holds, then δ|Z does not satisfy Property (P8) for Z = {x, y, z, u, v}.
So assume that Case (b) holds. Then δ|Z ′ does not satisfy Property (P8) for Z ′ =
{x, y, z, u, v, v1}. Since the definition of T D(Sy, x) implies that xv|v1 is a δ-triplet, it
follows that δ(x, v) �= δ(x, v1). Hence, either δ(v, x) �= δ(v, z) or δ(v1, x) �= δ(v, z).
By Properties (P3) and (P4) it follows in the first case that x ||vz is a δ-tricycle, and
that x ||v1z is a δ-tricycle in the second case. Thus, either v or v1 can play the role of
y in τ . Consequently, δ restricted to Z = Z ′ − {y} does not satisfy Property (P8).

(ii) This is a straight-forward consequence of Theorem 2 and Proposition 7(i).
�
Theorem 4 Let δ be a symbolic 3-dissimilarity on a set X such that |X | ≥ 6. Then
δ is level-1 representable if and only if for all subsets Y ⊆ X of size |X | − 1, the
restriction δ|Y is level-1 representable.

Proof Suppose first that δ is level-1 representable. Then, by the observation preceding
Proposition 7, δ|Y is level-1 representable, for all subsets Y ⊆ X of size |X | − 1.

Conversely, suppose that X is such that for all subsets Y ⊆ X of size |X | − 1, the
restriction δ|Y is level-1 representable but that δ is not level-1 representable. Then, by
Proposition 7 there exists a subset Y ⊆ X with |Y | ∈ {3, 4, 5} such that δ|Y is also
not level-1 representable. But then δ restricted to any subset Z of X size |X | − 1 that
contains Y also is not level-1 representable which is impossible.
�

9 Conclusion

Orthology relations have been successfully used to shed light into the evolution of gene
families. Motivated by the fact that the signal in such relations might be obscured

123

Algorithmica

by e. g. noise or error (or indeed true evolutionary signal) we propose to represent
them in terms of a phylogenetic network (as opposed to a phylogenetic tree). As a
first step towards the development of a general framework for representing orthology
relations in terms of phylogenetic networks, we focus on the novel concept of a level-1
representation of such a relation.

Motivated by the biological concept of a “cluster of orthologous gene (COG)”,
we formalize a orthology relation in terms of the novel concept of a symbolic 3-
dissimilarity To compute a level-1 representation from a symbolic 3-dissimilarity,
we introduce the novel Network- Popping algorithm. It takes as input a symbolic 3-
dissimilarity δ, andfinds, in timeO(|X |6), a level-1 representation of δ precisely if such
a representation exists. In addition to this representation being a discriminating sym-
bolic representation of δ precisely if such a tree is supported by δ,Network- Popping

enjoys several other attractive properties. As part of our analysis of Network-

Popping, we characterize level-1 representable symbolic 3-dissimilarities δ in terms
of eight natural properties that δ must satisfy. Last-but-not-least, we also characterize
a level-1 representable symbolic 3-dissimilarity δ on some set X with |X | ≥ 6 in
terms of level-1 representable orthology relations induced by δ on subsets of X of
size |X | − 1. Combined with the polynomial run-time of Network- Popping this
suggests that it could potentially be applied to large data sets within a Divide-and-
Conquer framework thus providing an alternative to tree-based reconciliation or error
correction approaches for orthology relations.

However a number of open questions remain. For example can other types of
phylogenetic networks be used to also represent orthology relations. Interesting types
of such networks might be tree-child networks [30] as they are uniquely determined
by the trinets they induce and also regular networks [32] as they are known to be
uniquely determined by the phylogenetic trees they induce, a property that is not
shared by phylogenetic networks in general [7]. For those networks it would also be
interesting to understand how the representation of an orthology relation in terms of
those trees relates to the way such a relation is represented by the labelled network
displaying the trees. Motivated by the point made in [6, Chapter 12] on estimates of
k-subsets, k ≥ 3, already mentioned above it might also be interesting to investigate
if symbolic k-dissimilarities for k ≥ 4 lend themselves as useful formalizations of
orthology relations.

A further question concerns the fact that by evoking parsimony we only distin-
guish between three types of trinets associated to an orthology relation. Thus it
might be interesting to investigate what can be done if this framework is replaced
by e. g. a probabilistic one which assigns probability values to the trinets. Given that
in e. g. the case of COG’s [27], ortholoy relation detection is sequence based such
values could potentially be obtained by adjusting the ideas presented in [15,22,33]
which assign likelihood scores to networks. Alternatively, it might be interesting
to see if an coalescent type approach along the lines of [31] could be made to
work.

Acknowledgements The authors would like to thank M. Taylor for stimulating discussions on orthology
relations. In addition, they would like to thank both referee for their helpful comments.

123

Algorithmica

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Altenhoff, A.M., Dessimoz, C.: Phylogenetic and functional assessment of orthologs inference projects
and methods. PLoS Comput. Biol. 5, e1000262 (2009)

2. Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene
duplication, horizontal transfer, and loss. Bioinformatics 28, i283–i291 (2012)

3. Böcker, S., Dress, A.W.M.: Recovering symbolically dated, rooted trees from symbolic ultrametrics.
Adv. Math. 138, 105–125 (1998)

4. Chen, K., Durand, D., Farach-Colton, M.: Notung: a program for dating gene duplications and opti-
mizing gene family trees. J. Comput. Biol. 7, 429–47 (2000)

5. Consortium, T.G.O.: Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000)
6. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland, Massachusetts (2003)
7. Gambette, P., Huber, K.T.: On encodings of phylogenetic networks of bounded level. J. Math. Biol.

61(1), 157–180 (2012)
8. Górecki, P., Burleigh, G., Eulenstein, O.: Maximum likelihood models and algorithms for gene tree

evolution with duplications and losses. BMC Bioinform. 12, S15 (2011)
9. Hellmuth, M., Hernandez-Rosales, M., Huber, K.T., Moulton, V., Stadler, P.F., Wieseke, N.: Orthology

relations, symbolic ultrametrics and cographs. J. Math. Biol. 66(1–2), 399–420 (2013)
10. Hellmuth, M.,Wieseke, N.: On symbolic ultrametrics, cotree representation, and cograph edge decom-

position and partition. Comput. Combin. 9198, 609–623 (2015)
11. Huber, K.T., Moulton, V.: Encoding and constructing 1-nested phylogenetic networks with trinets.

Algorithmica 66(3), 714–738 (2013)
12. Huber, K.T., van Iersel, L.J.J., Moulton, V., Scornavacca, C.: Reconstructing phylogenetic level-1

networks from nondense binet and trinet sets. Algorithmica (in press)
13. Huson, D., Rupp, R., Scornavacca, C.: Phylogenetic Networks. Cambridge University Press, Cam-

bridge (2010)
14. Jacox, E., Chauve, C., Szöllösi, G., Ponty, Y., Scornavacca, C.: ecceTERA: comprehensive gene tree-

species tree reconciliation using parsimony. Bioinformatics 32, 2056–2058 (2016)
15. Jin, G., Nakhleh, L., Snir, S., Tuller, T.:Maximum likelihood of phylogenetic networks. Bioinformatics

22(21), 2604–2611 (2006)
16. Jun, J., Mandoiu, I.I., Nelson, C.E.: Identification of mammalian orthologs using local synteny. BMC

Genom. 10, 630 (2009)
17. Kordi, M., Bansal, M.: On the complexity of duplication-transfer-loss reconciliation with non-binary

gene trees. IEEE/ACM Trans. Comput. Biol. Bioinform. (in press)
18. Lafond,M., El-Mabrouk, N.: Orthology relation and gene tree correction: complexity results. In:WABI

2015, Algorithms in Bioinformatics, vol. 9289 of LNCS, pp. 966–979 (2015)
19. Lafond, M., Semeria, M., Swenson, K.M., Tannier, E., El-Mabrouk, N.: Gene tree correction guided

by orthology. BMC Bioinform. 14, S5 (2013)
20. Mahmudi, O., Sjöstrand, J., Sennblad, B., Lagergren, J.: Genome-wide probabilistic reconciliation

analysis across vertebrates. BMC Bioinform. 14, S10 (2013)
21. Nakhleh, L.: Computational approaches to species phylogeny inference and gene tree reconciliation.

Trends Ecol. Evol. 28(12), 719–728 (2013)
22. Oldman, J., Wu, T., van Iersel, L., Moulton, V.: Trilonet: piecing together small networks to reconstruct

reticulate evolutionary histories. Mol. Biol. Evol. (2016)
23. Ovadia, Y., Fielder, D., Conow, C., Libeskind-Hadas, R.: The cophylogeny reconstruction problem is

NP-complete. J. Comput. Biol. 18, 59–65 (2011)
24. Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)
25. Stolzer,M., Lai,H.,Xu,M., Sathaye,D.,Vernot, B.,Durand,D.: Inferring duplications, losses, transfers

and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28, i409–i415 (2012)
26. Tatusov, R., Galperin, M.Y., Natale, D.A., Koonin, E.V.: The COG database: a tool for genome-scale

analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000)

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica

27. Tatusov, R., Koonin, E.V., Lipman, D.J.: A genomic perspective on protein families. Science 278,
631–637 (1997)

28. Tekaia, F.: Inferring orthologs: open questions and perspectives. Genom. Insights 9, 17–28 (2016)
29. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene

transfers. IEE/ACM Trans. Comput. Biol. Bioinform. 8(2), 517–535 (2011)
30. van Iersel, L.J.J., Moulton, V.: Trinets encode tree-child and level-2 phylogenetic networks. J. Math.

Biol. 68(7), 1707–1729 (2014)
31. Wen, D., Yu, Y., Nakhleh, L.: Bayesian inference of reticulate phylogenies under the multispecies

network coalescent. PLoS Genet. 12(5), e1006006 (2016)
32. Willson, S.: Regular networks are determined by their trees. IEEE/ACM Trans. Comput. Biol. Bioin-

form. 8, 785–796 (2011)
33. Yu, Y., Dong, J., Liu, K.J., Nakhleh, L.: Maximum likelihood inference of reticulate evolutionary

histories. Proc. Natl. Acad. Sci. 111(46), 16448–16453 (2014)

123

	Beyond Representing Orthology Relations by Trees
	Abstract
	1 Introduction
	2 Basic Definitions and Results
	2.1 Directed Acyclic Graphs
	2.2 Phylogenetic Networks and Last Common Ancestors
	2.3 Symbolic Dissimilarities and Labelled Level-1 Networks

	3 δ-Triplets, δ-Tricycles, and δ-Forks
	4 Recognizing Cycles: The Algorithm Find-Cycles
	5 Constructing Cycles: The Algorithm Build-Cycles
	6 Constructing Level-1 Representations From Symbolic 3-Dissimilarities: The Algorithm Network-Popping
	7 Uniqueness of Level-1 Representations Returned by Network-Popping
	8 Characterizing Level-1 Representable Symbolic 3-Dissimilarities
	9 Conclusion
	Acknowledgements
	References

