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Abstract 

BACKGROUND 

Little is known about the frontolimbic abnormalities thought to underlie borderline 

personality disorder (BPD). We endeavoured to study regional responses, as well as their 

connectivity and habituation during emotion processing. 

METHODS 

                                                 

1 equal contribution 
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14 BPD patients and 14 normal female controls (NC) controlled for menstrual phase 

underwent emotion-induction during an fMRI task using standardised images in a block 

design. We then performed psychophysiological interaction (PPI) analysis to investigate 

functional connectivity.  

RESULTS 

BPD patients reported more disgust in questionnaires compared to controls. Relative to 

NC, they showed reduced left amygdala and increased dorsolateral prefrontal cortex 

(dlPFC) activation to all emotions collapsed versus neutral. Habituation of ventral striatal 

activity to repeated emotional stimuli was observed in controls but not in BPD. Finally, in 

the context of disgust (but not other emotions) versus neutral, BPD patients displayed 

enhanced left amygdala coupling with the dlPFC and ventral striatum.  

LIMITATIONS 

Strict inclusion criteria reduced the sample size. 

CONCLUSIONS 

In summary, BPD showed abnormal patterns of activation, habituation and connectivity in 

regions linked to emotion regulation. Amygdala deactivation may be mediated by 

abnormal top-down regulatory control from the dorsolateral prefrontal cortex. Aberrant 

emotion processing may play a unique role in the pathophysiology of BPD. 

Keywords: borderline personality disorder; imaging; amygdala; disgust; functional 

connectivity; habituation 

 

 

INTRODUCTION 

Borderline personality disorder (BPD) is defined by emotional dysregulation at its 

core and further comprises interpersonal difficulties, impulsivity, aggressive outbursts and 

dissociative symptoms. The disorder often involves patients experiencing profound 

distress, functional impairment, diminished quality of life 
1
 and is associated with high 
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suicidality and societal costs 
2
. Further, it is characterised by its perceived lack of a 

legitimate neurobiological basis clinically 
3
, making progress in understanding its 

pathophysiology particularly important. Whilst some progress understanding BPD has 

been made over recent years 
4
, characterising its precise neurobiological correlates and 

mechanisms has been challenging.  The majority of fMRI research to date in BPD has 

focused on abnormal limbic and amygdala responses to a range of emotive and aversive 

stimuli, auditory scripts and images 
5
.  Initial reports appeared consistent with the 

hypothesis of amygdala hyper-responsiveness to unpleasant stimuli 
6
. Subsequent studies 

implicated a more dispersed complex of regions across the prefrontal cortex and limbic 

system together with a dual frontolimbic pathology model 
7
 suggesting a ‘failure of top 

down control’ 
8
.  However, fMRI study findings and methods have not been consistent 

9
, 

and whilst many studies reported limbic changes, several studies failed to replicate the 

initially reported amygdala hyperactivation. One meta-analysis
9
 of 10 studies involving 

225 subjects with BPD found an overall decrease amygdala activation whilst a more recent 

meta-analysis
10

 conversely found increased amygdala activation in response to unpleasant 

stimuli.  These meta-analyses have suggested key abnormalities in both frontal (including 

dorsolateral prefrontal cortex (dlPFC) and limbic (amygdala, hippocampus, anterior 

cingulate cortex (ACC)) areas consistent with overall frontolimbic dysfunction.  

Whilst such fMRI studies have explored different aversive emotions, behavioural studies 

have indicated specific deficits related to disgust, and this emotion has received limited 

attention.  For instance, studies have shown BPD subjects make more errors recognising 

negative human facial emotions 
10

, and this impairment may be more prominent to disgust  

compared to other negative emotions such as fear 
12

. Recognising emotional cues in others 

may be an important skill for BPD subjects given its role in effective social functioning, 

disgust recognition deficits have been put forward as a potential explanatory mechanism 

for the problems subjects typically experience in developing and maintaining stable 
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relationships 
13

. Focusing on one’s own self, including one’s own body lead to an increase 

both in self-disgust and self-harm urges in BPD 
14

. Disgust processing errors have further 

been linked to suicidality, which is notably 50 times higher in BPD compared to the 

general population 
15

. In a study of non-BPD, non-depressed patients, only errors 

recognising disgust and not other emotions was found to be significantly different between 

patients with and without previous suicide attempts 
16

. Emerging evidence has suggested 

connectivity between frontolimbic brain regions could also be aberrant and responsive to 

Dialectical Behavioural Therapy 
17

. Although frontolimbic dysfunction has been indicated 

to underlie BPD, the specific role of disgust, habituation and aberrant brain connectivity in 

its pathophysiology is less clear. 

Here we investigate the neural correlates of emotional processing in BPD and 

further examine altered habituation which has received limited attention 
18

.  We compared 

BPD and matched normal controls in a functional MRI (fMRI) block design task 

comparing emotion-inducing images specifically with neutral images.  We also included 

other positive and negatively valenced images for comparison purposes.  In-line with 

recent meta-analysis findings 
9
, we first hypothesized that BPD subjects would have lower 

amygdala activity to negative stimuli relative to neutral imagery compared to normal 

controls.  Secondly, we hypothesized that disgust would be associated with reduced 

amygdala-prefrontal connectivity in BPD compared to normal controls consistent with 

impaired emotional regulation. 
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PATIENTS & METHODS 

Participants 

14 females with BPD and 14 female normal controls (NC) participated. Patients 

were recruited from the local personality disorder service and the controls via local 

advertisements.  To control for known sex-specific differences related to processing 

emotion 
19,20

, processing disgust 
21

 and effects of the menstrual cycle 
22

, only females were 

recruited and wherever possible, scanned only during their follicular phase. All subjects 

were assessed and screened with strict criteria by a trained, experienced psychiatrist using 

structured diagnostic interview schedules (MINI International Neuropsychiatric Interview, 

23
) and Structured Clinical Interview for DSM-IV Axis II Personality Disorders (SCID-II 

24
).  Only subjects who fulfilled DSM IV-TR criteria for BPD were included. Those that 

met diagnostic criteria for other personality disorders were excluded. Further exclusion 

criteria included current major depressive disorder or lifetime history of any formally 

diagnosed psychotic illness or substance dependence identified in the MINI. Isolated 

subthreshold symptoms of a depressive, personality or psychotic disorder were allowed. 

Universal exclusion criteria also included those less than 18 years of age, MR-scanning 

incompatibility, and positive pre-scanning recreational urine drug screen. The local NHS 

research ethics committee approved this research (Cambridgeshire 4 Research Ethics 

Committee, NHS National Research Ethics Service, reference number: 09/H0305/10). 

Written informed consent was obtained from each participant. All procedures contributing 

to this work comply with the ethical standards of the relevant national and institutional 

committees on human experimentation and with the Helsinki Declaration of 1975, as 

revised in 2008. 
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Measuring disgust and psychiatric indices 

Subjects completed standardised measures of depression (Beck Depression 

Inventory (BDI 
25

); Hamilton Depression Rating Scale (HDRS 
26

), anxiety (State and Trait 

Anxiety Inventory; STAI 
27

), dissociation (Cambridge Depersonalisation Scale; CDS 
28

)  as 

well as the Borderline subscale of the Personality Assessment Inventory (PAI-BOR 
29

) and 

body mass index (BMI).  We assessed disgust using both general disgust (modified Disgust 

Scale Revised, m-DSR 
30

) and self-disgust questionnaires (Self-disgust Scale (SDS) 
31

).  

 

Emotion induction task 

We employed a block-design fMRI task using standardised intermixed emotion-

inducing images from five emotional categories from the International Affective Picture 

System (disgust, anger, sad, happy and neutral) 
32

. A Novel Image Series was presented 

before redisplaying the same pictures in a Repeated Image Series to assess for altered 

habituation (Figure 1). Repetitive emotional stimuli were presented to more closely mimic 

real-world experiences and maximise ecological validity.  50 trials of novel and repeated 

images were shown, both series consisting of a total of 10 unique images per emotional 

valence.  Images were displayed in blocks of 5 sequential images of the same valence. 

Blocks of different emotional valences were randomised so that different emotion blocks 

were intermixed within the same series whilst this randomised order was kept constant 

across participants to control for effects of different duration latencies between first seeing 

an image and its repetition.  For each trial, an emotion-inducing image was displayed for 6 

seconds, before subjects were given 2 seconds to respond to a simple task as to whether the 

preceding picture was ‘inside or outside’ in order to assess task engagement. Then, a 

fixation cross was displayed for a further 2 seconds to provide an inter-trial interval before 

the next emotion-induction image was shown.  The inter-stimulus-interval was not jittered. 

Trials were repeated as described until the experiment was complete.  
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Neuroimaging Acquisition & Analysis 

A 3T Siemens Magnetom TrioTim syngo MR B17 scanner was used with a 12-

channel head coil using a tilted plane acquisition at the Wolfson Brain Imaging Centre in 

Cambridge. T2-weighted echo planar images (EPI) using interleaved slices were acquired. 

Parameters were TR=2000ms, TE=30ms, flip angle 78 degrees, matrix size 64x64, with 32 

slices created with a slice thickness of 3mm (in-plane resolution 3mm x 3mm x 3mm). 

Analysis was performed using Statistical Parametric Mapping 8 (Wellcome Department of 

Cognitive Neurology, London, United Kingdom http://www.fil.ion.ucl.ac.uk/spm). Images 

were realigned and spatially normalised to standard Montreal Neurological Institute (MNI) 

space and smoothed with an 8mm full width at half-maximum Gaussian kernel.  The first 6 

volumes of each session were discarded to allow for T1 equilibration. Motion artefact was 

controlled for by including subject-specific realignment parameters in the general linear 

model.  

Onsets and durations for displaying each emotion-inducing image were encoded for 

subjects at the first level. Second-level analysis was computed using a mixed measures 5x2 

ANOVA with the within-subject factor of valence and between-subjects factor of Group.  

We first examined the effects of all emotional valences versus neutral and then specifically 

assessed disgust versus neutral. Three imaging analyses were conducted: (i) Whole-brain 

contrasts examining effects of group, emotional valence and habituation; (ii) Amygdala 

region of interest contrasts (iii) Amygdala functional connectivity.  Whole-brain and ROI 

analyses were performed on only the Novel Presentations series of images. To assess for 

habituation, a series of images with Repeat Presentations was used and the number of 

times an image had been presented was encoded as a parametric modulation function at the 

first level. Age was used as covariate of no interest in the SPM model. To assess for neural 
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correlations of disgust and self-disgust, questionnaire scores were entered as a regressor 

into the SPM model.   

For whole-brain contrasts, regions that survived FWE-correction at the cluster level 

at p<0.05 were considered significant. For a priori regions of interest, an amygdala mask 

was used from the Automated Anatomical Labelling atlas (AAL), 
33

. For the ventral 

striatum, an 8mm sphere, the size of the smoothing kernel, was used centred on the nucleus 

accumbens of MNI coordinates -10 8 -4, as employed by previous studies 
34

. Results were 

small-volume FWE-corrected, with P<0.05 considered significant.  Functional connectivity 

using Psycho-Physiological Interaction (PPI) analysis was employed using a data-driven 

approach to map task-dependent functional connectivity between a seed region and the 

whole brain. A significant cluster here represented an interaction between a) the predictive 

relationship with the activity in a seed region and b) specific stimulus-related signal 

changes, meaning that the functional connectivity between the regions was dependent on 

the experimental stimulus. Hence PPI represents a measure of stimulus-dependent 

connectivity, describing responses in one region in terms of the interaction between 

responses in another region and a psychological process. We employed this PPI analytic 

approach for left amygdala seed. For the amygdala seed, we created a 5mm
3
 sphere 

centered on the peak deactivation coordinates from our main ANOVA for disgust>neutral 

contrast (-18 -2 -28; Table 2). The blood-oxygen-level dependent time-course response 

(adjusted for the individual stimulus-specific effects) of our seed region was used as the 

physiological variable. Our 3 main contrasts (disgust>neutral; sad>neutral; and 

happy>neutral) were each used as psychological variables. We used these variables as 

regressors, along with the psychophysiological interaction term, in a single SPM model.  

We compared valence-dependent functional coupling between amygdala and regions 

identified in the main analysis (bilateral dlPFC and left ventral striatum) in BPD versus 
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normal controls, with small-volume corrected FWE P<0.025 (Bonferroni correction for 

multiple comparisons) considered significant. 

 

RESULTS 

Group characteristics and disgust scores 

Detailed group characteristics detailing common comorbidities are listed in the 

Supplementary table. 10 of the subjects with BPD were taking psychotropic medication; 

The remaining 4 of the subjects with BPD were unmedicated. The BPD group mean age 

was slightly higher than the healthy group (36.3 versus 29.6 years; p = 0.038). However in 

ANCOVA analyses, age did not have a significant effect as a covariate on BMI, BDI, 

HDRS, STAI state, m-DSR, SDS, or PAI-BOR indicating that any confounding effects 

were not significant. As typically found in previous studies 
35,36

, BPD subjects scored 

higher than controls on measures of symptoms of depression, anxiety and 

depersonalisation. Figure 2 shows BPD subjects compared to controls scored significantly 

higher for self-reported disgust on the modified Disgust Scale-Revised (BPD: 15.32 [4.2]; 

NC: 8.94 [4.8] p=0.003) and particularly on the Self-disgust Scale (BPD 62.36 [10.4]; NC: 

21.67 [7.4] p<0.001). 

 

Imaging outcomes 

Emotional valence versus neutral contrast 

We analysed the left and right Amygdala as a priori ROIs given our hypotheses.  

We showed that across all valences compared to neutral, there was significant decrease in 

activity in the left amygdala (left amygdala p(FWE-corr)=<0.015; right amygdala p(FWE-

corr)=0.505). Decreased activity was not significant in the comparison of disgust versus 

neutral.   
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We examined whole brain group differences for the contrast of all emotional 

valences versus neutral (Table 1). BPD subjects displayed higher left dlPFC activity across 

all valences relative to controls. The cluster localisation was confirmed to be in the dlPFC 

though was large in size and showed considerable extension medially (Figure 2a).  

BPD subjects also showed lower activity across all valences in the temporal lobe 

and cerebellum.  When disgust was compared to neutral, no clusters reached significance. 

Re-analysing data using BDI scores as a covariate of no interest did not alter the significant 

group differences.  Disgust, self-disgust or dissociation scores did not correlate with brain 

activity. 

 

Emotional valence versus neutral: habituation effects 

Repeated presentation of emotive images was associated with reduced activity of 

striatum in normal controls but not in BPD.  Whole-brain contrasts showed a well-

circumscribed area (Figure2C) in the left ventral striatum. Although this cluster did not 

survive correction for multiple comparisons (p=0.350) at the whole-brain level, the ventral 

striatal region of interest analysis demonstrated significance in left ventral striatum in BPD 

compared to normal controls (peak MNI coordinates x=-8 y=14 z=-8, k=40 peak-level 

p(FWE-corr)=0.001). Hence, the reduced ventral striatum habituation seen in BPD 

compared to normal controls may reflect relatively low striatal initial activation to novel 

images which fails to further reduce in activity subsequently with repeated viewings.  

 

 

Functional connectivity 

Finally, we conducted PPI analyses to examine underlying frontolimbic connectivity in 

BPD compared to normal controls. In the context of disgust > neutral only, BPD showed 

increased functional connectivity between left amygdala and dlPFC (Brodman areas 46 
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and 9 (left); peak coordinates, -34 40 10; small volume corrected (SVC) family-wise error 

(FWE), Z = 3.97, p = 0.046) compared to normal controls. In the same valence contrast, 

BPD also show increased functional connectivity between left amygdala and ventral 

striatum (validated anatomical masks 
33

; peak coordinates, -16 10 -4; SVC FWE, Z = 3.47, 

p = 0.018). Self-report disgust scores did not significantly correlate with the strength of the 

connection between the left amygdala and dlPFC / ventral striatum. While disgust was 

associated with changes in connectivity between amygdala and regions implicated in 

emotional control, the other valences (sad>neutral, happy->neutral) did not elicit the same 

connectivity changes.  

 

DISCUSSION 

In response to emotional versus neutral valences, we show that subjects with BPD 

relative to controls had a decrease in left amygdala and left ventral striatal activity and 

enhanced left dlPFC activity for all valence conditions combined. Our finding of decreased 

amygdala activity across all valences is consistent with the results of the previous meta-

analysis by Ruocco et Al. 
9
 and contrasts with the meta-analysis of Schulze et Al. which 

found increased amygdala activity 
10

. Divergent amygdala findings in different studies may 

relate to several study sample factors such as levels of dissociation and medication status. 

In a recent meta-regression analysis for example, medication-free samples demonstrated 

enhanced amygdala activation, whereas no such affect was found in medicated samples 
10

.   

We further show that normal controls had greater habituation of ventral striatal 

activation with repeated exposure to emotional valences, a phenomenon not observed in 

BPD subjects.  Although we did not show a specific between-group effect of disgust, we 

demonstrated altered effect of enhanced functional connectivity between left amygdala and 

regions implicated in emotion regulation (dlPFC and ventral striatum) for disgust versus 
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neutral in BPD compared to normal controls. Further work is needed to determine whether 

such changes are specific to disgust compared to other emotions in BPD.   

These findings of prefrontal hyperactivity and amygdala hypoactivity along with 

enhanced prefrontal-amygdala connectivity are consistent with abnormalities in top-down 

fronto-limbic control proposed in BPD 
4
.  We further replicate previous findings of 

elevated self-reported disgust in BPD 
37

.  Our neural findings emphasizing impaired 

fronto-limbic activity may explain the altered experience of disgust and reported 

abnormalities in over-attributing disgust 
38

.  

 

Amygdala 

The amygdala appears to be a crucial structure in BPD with both a decrease in 

structural volume 
39

 and aberrant functional activity 
9
 reported.  A longitudinal study has 

reported treatment effects of dialectical behavioural therapy after a year of treatment in 

normalising aberrant amygdala activity 
40

.  However, the direction of amygdala activity to 

unpleasant stimuli in BPD fMRI studies has been inconsistent and may be related to 

methodological differences 
9
.  Some early evidence showed an increase in amygdala 

activity to aversive stimuli 
6,8,41–44

 whereas other studies have either not found a difference 

45,46
 or shown reduced activity 

47
.  More recently, a meta-analysis showed an overall 

reduction in amygdala activity to unpleasant stimuli 
9
 in line with our findings.  

 

Dorsolateral prefrontal cortex 

Our findings of dlPFC hyperactivity in BPD in response to negative emotions is 

also supported by meta-analysis findings 
9
 showing similar between-group differences of 

increased left dlPFC unpleasant emotions in BPD compared to normal controls.  Whilst the 

dlPFC is most well known for working memory and set shifting 
48

, it plays an important 

role in upstream emotion control over multiple lower order regions of emotional regulation 
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49
. The dlPFC is involved in higher order voluntary suppression of evaluation of emotion 

and voluntary suppression of sadness 
50

.  Further, repetitive TMS of the dlPFC has shown 

to affect early emotional attention in humans 
51

. This is consistent with suggestions that 

increased dlPFC may result from increased effortful attempts to regulate emotions 
4
, 

though these attempts to utilise cognitive strategies to modulate emotions are unfortunately 

largely ineffective in patients with a diagnosis of BPD 
46

.   

Our observation of an increase in dlPFC and amygdala functional connectivity in 

the contrast of disgust versus neutral in BPD compared to normal controls suggests a role 

for excessive or ineffective prefrontal emotional regulation. Other studies using different 

cognitive paradigms in BPD have also found dlPFC abnormalities. For example, in a PET 

study 
5
, BPD showed bilateral increased dlPFC activity while recalling memories of 

abandonment. Alternatively, dissociative or functional symptoms which have greater 

prevalence in BPD 
52

 may play a role in left dlPFC activation. Other evidence for dlPFC 

disruption in BPD include observations of reduced prefrontal grey matter volumes in 

adolescent females with BPD 
53

 and evidence of focally reduced prefrontal neuronal 

viability found in patients in a pilot magnetic resonance spectroscopy study 
54

. Prefrontal 

disruption is consistent with evidence of the heightened vulnerability of the left neocortex 

to early life stressors 
55–57

, that have been implicated in BPD pathogenesis 
4
.  Similarly, 

cognitive deficits implicating the lateral prefrontal cortex have also been shown in BPD 

including deficits in working memory, visuo-constructive abilities and non-verbal 

executive function 
58

.  

Although BPD studies typically have high levels of coexisting depressive and 

anxiety symptoms, the dlPFC-amygdala findings differ in direction of activation and 

connectivity changes suggesting affective disorders are not a significant confound. In 

active major depressive disorder for example, Siegle et al. 
48

 found the inverse pattern of 

our findings showing reduced dlPFC and increased amygdala activity.  Further, in extreme 
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early-life anxiety, connectivity between the central nucleus of the amygdala and the dlPFC 

has been found to be reduced, rather than increased as found in our study, in both monkeys 

and children with anxiety 
59

.  This would be expected if the study’s main findings were 

independent of anxiety or depression-related comorbidity, though further study with larger 

sample sizes to improve mediation subanalyses is warranted.   

Given the well-established role of the dlPFC in emotion regulation 
60,61

, and our 

findings of enhanced dlPFC-amygdala coupling, we propose that the decrease in amygdala 

activity could represent abnormal suppression possibly mediated by the dlPFC. Such 

changes in connectivity could provide novel evidence to support proposed theories of 

frontolimbic dysfunction 
36

 in BPD. 

 

Ventral Striatum 

In BPD subjects compared to controls, we show reduced activity for initial 

viewings of images and reduced subsequent habituation to repeated images for all valences 

whilst only in the context of disgust is increased functional amygdala connectivity with the 

ventral striatum observed.  Notably the decrease in habituation to repeated emotional 

valences in BPD subjects is likely related to the lack of activation to initial exposure. 

Previous BPD studies implicating the striatum and the caudate has shown both increased 

46,62
 as well as decreased 

5
 activity to negative emotions.  

Several factors implicate the ventral striatum in BPD pathophysiology. The ventral 

striatum is commonly known for its role in reward learning, which may link to BPD given 

reports of heightened reinforcement sensitivity to both punishment and reward found in a 

sample of 100 BPD patients completing reward sensitivity questionnaires 
4
. The ventral 

striatum is also thought to be involved in impulsivity, which is commonly observed in 

BPD 
634

.  Reduced ventral striatal grey matter volume has been linked to emotional 

dysregulation central to BPD. In a study of schizophrenic patients, the largest volume 
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difference in a voxel-based-morphometry study was found in the left ventral striatum of 

patients only with severe emotional dysregulation and not in patients without emotional 

dysregulation 
64

. However, underlying mechanisms at the cellular level driving observed 

changes remain unclear from voxel-based morphometry studies 
65,66

.  Additionally, striatal 

abnormalities could play a role in intense outbursts of aggression prevalent in BPD, given 

its implication in intermittent explosive disorder 
67

. In a positron emission tomography 

study of BPD subjects 
67

, high levels of aggression and comorbid intermittent explosive 

disorder was associated with significantly lower striatal activity during an anger 

provocation computer game than normal controls. Further literature has linked the ventral 

striatum to altered expression of anger 
68

.  

 

Limitations 

Although the study sample size is relatively small, we employed strict exclusion 

criteria, and unlike previous studies, further controlled for menstrual cycle phase 

confounds. Further, clusters remained significant after covarying for depression scores. As 

our study was restricted to females, and known differences in disgust-processing have been 

found according to sex 
21

, it is unclear how generalizable findings are to males.  Further 

work with larger study sample sizes of both genders are needed, particularly to adequately 

power investigations of valence-specific effects and correlation analyses. Moreover, 

studies into the replicability of dlPFC findings are further needed to establish the role of 

this region as a potential biomarker for BPD emotional dysregulation.  

 

Conclusion 

Our findings support recent evidence emphasizing the amygdala, ventral striatum 

and dlPFC as key regions in disturbed emotion regulation in BPD.  We emphasize the role 

of top-down prefrontal-amygdala connectivity that appears to be disrupted during disgust 
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induction. Further understanding of pathophysiology will be critical for legitimising 

Borderline Personality Disorder as a condition with a strong neurobiological basis and 

developing novel therapies to target pathological disgust and frontolimbic dysfunction.  
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Figure 1. Emotion-induction fMRI task. Standardized emotion inducing images are 

shown to the subject initially as a series of novel presentations and subsequently with 

repeat presentations to assess for habituation effects.  

 

Figure 2. Aberrant emotional processing in BPD compared to controls. (A) Left dlPFC 

hyperactivation in BPD relative to controls across all valences collapsed versus neutral. 
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Cluster remains significant corrected for multiple comparisons (FWE). (B) Bilateral 

amygdala a priori region-of-interests showing deactivation in BPD relative to controls 

across all valences. Results were significant collapsed across all valences in SVC analysis. 

(C) The left ventral striatum showed reduced activation on repeated viewing of all 

valenced images (whole-brain uncorrected cluster displayed). (D) Significantly elevated 

disgust in BPD from self-report questionnaires compared to controls. (E) Amygdala 

Hyperconnectivity in the context of disgust to areas involved in emotion regulation and 

impulsivity in Borderline Personality Disorder. Seed region based on left amygdala found 

to be hypoactive in BPD relative to controls for all emotional valences, including disgust. 

Aberrant connectivity not found for other emotional valences. Psycho-physiological 

interaction analysis from disgust versus neutral contrast. Clusters significant after small-

volume-correction and adjustment for Family-Wise Error p<0.05. Clusters shown in (i) 

dlPFC (ii) ventral striatum (iii) vmPFC. dlPFC, dorsolateral prefrontal cortex; vmPFC 

ventromedial prefrontal cortex; BPD, Borderline Personality Disorder Group; NC, normal 

control group; m-DSR, modified Disgust Scale-Revised; SDS, self-disgust scale; dlPFC, 

dorsolateral prefrontal cortex; VS, ventral striatum; 

 

Table 1. Whole-brain group effects collapsed across all valences for novel stimuli 

presentations 

Activity Region Laterality MNI coordinates 
z 

score 
p (FWE-
corr) 

      x y z     


dorsolateral prefrontal 
cortex 

left -16 38 30 5.32 <0.001 

 cerebellum right -26 -48 -42 7.14 <0.001 

  middle temporal gyrus left -56 -2 -24 6.13 <0.001 

 

Table 2. Functional connectivity during disgust versus neutral in BPD compared to normal 

controls with amygdala seed region  

Seed 
Region 

Connectivity Region 
MNI 

coordinates 
Z-score p (FWE-corr) 

      x y z     

Left 
Amygdala 


dlPFC (left & 

right) 
-34 42 8 4.14 0.017 

  
ventral striatum 

(left) 
-16 10 -4 3.47 0.01 

FWE-corr: Family-wise error corrected 

dlPFC: dorsolateral prefrontal cortex 

vmPFC: ventromedial prefrontal cortex 

Z: Z-connectivity score 

coordinates are peak values in MNI space 
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Highlights 

 The neurobiological basis for Borderline personality disorder is unclear 

 Responding to emotional stimuli results in aberrant brain activity patterns  

 Abnormal functional connectivity and habituation is implicated 

 Abnormal amygdala and prefrontal functioning is specifically implicated 
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