
 

 

 

Dynamic Ensemble Selection Methods 

for Heterogeneous Data  Mining 
 

Chris Ballard and Wenjia  Wang* 
 
 

Abstract— Big data is often collected from multiple sources 
with possibly different features, representations and granularity 

and hence is defined as heterogeneous data. Such multiple 
datasets need to be fused together in some ways for further 
analysis. Data fusion at feature level requires domain knowledge 

and can be time-consuming and ineffective, but it could be 
avoided if decision-level fusion is applied properly. Ensemble 
methods appear to be an appropriate paradigm  to  do  just  

that as each subset of heterogeneous data sources can be 
separately used to induce models independently and their 
decisions are then aggregated by a decision fusion function in an 

ensemble. This study investigates how heterogeneous data can 
be used to generate more diverse classifiers to build more ac- 
curate ensembles. A Dynamic Ensemble Selection Optimisation 

(DESO) framework is proposed, using the local feature space  
of heterogeneous data to increase diversity among classifiers 
and Simulated Annealing for optimisation. An implementation 

example of DESO - BaggingDES is provided with Bagging as a 
base platform of DESO, to test its performance and also explore 
the relationship between diversity and accuracy. Experiments 

are carried out with some heterogeneous datasets derived from 
real-world benchmark datasets. The statistical analyses of the 
results show that BaggingDES performed significantly better 

than the baseline method - decision tree, and reasonably better 
than the classic  Bagging. 

 

I. INTRODUCTION 

In the era of big data, large volumes of data are often  

being generated from many different sources, such as user 

interactions with various social media, sensor arrays and 

mobile devices. Each data source could potentially contain 

some additional and/or possibly complementary information 

associated with the intended target and hence may be useful 

in analysis and  modelling. 

However, it can be very challenging [1] to use such het- 

erogeneous data sources as they may have different formats 

of representation and/or levels of granularity and hence they 

have to be integrated and/or fused in some ways before being 

used for analyses. There are roughly two broad ways for data 

integration/fusion: feature-level data fusion and decision- 

level data fusion. Feature-level data fusion can be achieved 

by merging/combining and/or concatenating features together 

from all the data sources to produce a “single flat” dataset. 

Due to the nature of heterogeneous data sources, low level 

data fusion [2] based on existing and/or new features can    

be tricky and time consuming as it often requires domain 

knowledge, [3] and may also result in either some unnec- 

essary redundancy or loss of the useful information. On    the 
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other hand, decision-level data fusion is about combining   

the decisions that are learned from various data sources 

separately to produce a final decision. In this sense, machine 

learning ensembles appear naturally to be an appropriate 

approach to solve this  problem. 
 

An ensemble in this context is a machine learning system 

that automatically induces multiple models (e.g. classifiers) 

from data for a given problem with one or some base learning 

algorithms, and then combines their outputs, i.e. decisions, 

with a decision fusion function to generate a final solution.  

A collection of N models is  more  likely  to  produce  a  

more accurate and reliable decision than an individual model 

operating alone, provided that the classifiers in the ensemble 

are diverse enough from each other to avoid making the same 

errors on testing instances. 

Ensembles are commonly built with classifiers that are 

trained from a single data source or dataset. However,  as   

the classifiers that are induced from data are highly data- 

dependent, even though different parameters or conditions 

may be used for training, they will be less diverse. As a 

result, an ensemble of such classifiers usually produces little 

or even no gain in predictive  performance. 

On the other hand, with big data that is generated from 

heterogeneous data sources, it is possible that different data 

sources capture different perspectives of the problem and 

hence more likely to generate more diverse classifiers when 

each data source is used in training   separately. 

Thus, building ensembles from heterogeneous datasets 

offers two possible benefits: (1)  it  uses  different  feature 

sets directly in training,  which  overcomes  the  challenges 

of integrating data on feature-level; and (2) the classifiers 

generated in such a manner are likely more diverse and 

therefore their ensemble can be more accurate and   reliable. 

Selecting more diverse and accurate classifiers for build- 

ing ensemble is important[4] and usually called ensemble 

selection. In Static ensemble selection a single best set of 

classifiers is selected to build an ensemble. In dynamic 

ensemble selection, diversity at a local level is dynamically 

used to find the best combination of classifiers to form a 

variable ensemble classify each individual  sample. 

This papers explores the application of diversity measures 

for dynamic ensemble selection of classifiers trained against 

multiple heterogeneous data sources. It will also assess the 

effectiveness of some diversity measures in active participa- 

tion of ensemble generation and classifier combination at a 

local level. 
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II. RELATED WORK 

A. Ensemble selection strategies 

There are three main ways that classifiers can be selected 

in order to optimise the overall ensemble accuracy   [5]. 

1) Dynamic Classifier Selection: with classifier selection, 

a single best classifier is selected by evaluating their compe- 

tence in the local region of an instance x after the classifiers 

have been trained. 

2) Static Ensemble Selection(SES): starts from generating 

a pool of classifiers and selects a fixed (static) single ”best” 

set of classifiers to form an  ensemble. 

3) Dynamic Ensemble Selection(DES): builds on the clas- 

sifier selection approach. Rather than selecting a single best 

classifier, a set of classifiers is chosen for each sample. A  

key idea of DES is based on an assumption that different 

classifiers will perform better in different regions of the 

feature space. By using an appropriate evaluation metric 

within a region local to the instance being classified, we can 

determine the set of classifiers which perform  optimally. 

 

B. Dynamic Ensemble Selection 

1) Finding the optimal ensemble: The requirements for 

finding the optimal ensemble to use to classify a single 

instance are the same as that for static ensemble selection. 

However, performance is an even greater consideration as the 

search will need to be repeated for each classified instance. 

Typically a combinatorial optimisation algorithm is  used. 

2) Local k-NN Ensemble Selection: Ko et al [5] suggest 

two methods for DES. KNORA-ELIMINATE considers the 

nearest K neighbours to x and uses classifiers that give a 

correct prediction for the K neighbouring points. KNORA- 

UNION only considers classifiers  that  correctly  classify  

any of the N neighbouring instances. The algorithms were 

tested on three ensembles generated using random subspace, 

bagging and boosting. The results showed marginal but not 

uniform improvements in accuracy when tested against small 

data sets, but good improvement when tested on a relatively 

large data set. The issue here is that the results from just one 

dataset could not be  generalised. 

3) GMDH Adaptive Ensemble Selection: Xiao  and  He 

[6] propose an algorithm called GDES which uses Group 

Method of Data Handling (GMDH) to find the optimal 

ensemble to classify each test instance. GMDH uses a feed-

forward neural network structure to combine candidate 

models. Bagging was used to generate a pool of classifiers. 

For each instance to be classified, the K-nearest neighbours 

are located in the training set, which are then classified by 

each classifier in the pool. GMDH is used to find the ”opti- 

mum” ensemble. Their results showed that GDES obtained 

marginally better results than KNORA-ELIMINATE. 

4) Dynamic ensemble selection using local competence 

and diversity: Soares et al [7] propose two approaches to 

dynamic ensemble selection which are conceptually similar 

to KNORA. However, their method takes into account mea- 

sures of local competence and diversity to select   classifiers. 

By comparing their approach to static classifier selection 

using accuracy and diversity, and dynamic classifier selection 

using local accuracy, they found that the clustering approach 

gave the best performance, but only statistically significant 

on one out of the two datasets used. For these reasons, the 

results are hardly convincing. 

5) Dynamic ensemble selection using a randomised    ref- 

erence classifier: Woloszynski and Kurzynski [8] considers 

classifier competence as part of a probabilistic model. In 

their experiments, this approach led to statistically significant 

improvement over majority vote and KNORA-ELIMIATE. 

This approach was extended to take into account both local 

competence and diversity [9]. The competence  of  classi- 

fier and pairwise diversity are calculated for the pool of 

classifiers. However,  this work is limited by the fact that      

it only employed a pairwised diversity measure, which is 

known to be ineffective, as a criterion for selecting models, 

although it is combined with a competence measure. It may 

be interesting to see if non-pairwise diversity measures can 

do better when used in selecting models for building an 

ensemble. 

III. PROPOSED DYNAMIC ENSEMBLE SELECTION(DES) 

METHODS 

A. A framework of DES with optimisation  (DESO) 

To  overcome  the  issues  described  above,  we  propose  

a generic DES framework with an optimisation function 

(DESO), by taking the advantages of their algorithms, i.e. the 

k-means version of algorithm in [7] and simulated annealing 

in [9] for finding the best combination of classifiers in each 

cluster sub-ensemble, albeit for a different DES approach. 

More importantly, it should be noted that our DESO method 

employs some non-pairwise diversity measures, specifically 

the ones that appeared to be more effective among the 

existing definitions[10], such as, Coincident Failure Diversity 

(CFD) and Minority Failure Diversity (MFD), which will    

be described in a bit more detail in the next section, in 

attempt to overcome the issues associated with pairwise 

diversity measures. The proposed framework of DES with 

optimisation (DESO) firstly generates a pool of N classifiers 

using a given base learning algorithm. During training, k- 

means is used to cluster the validation set to form K clusters, 

c1, c2, . . . , cK . Simulated Annealing is then run for each 

cluster ck , to find the combination of classifiers Eck which 

should have a maximum diversity  D. 

When classifying a test instance each instance is assigned 

to its nearest cluster ck . The sub-ensemble for that cluster is 

then used to classify the instance. Finally, the decisions from 

the sub-ensemble classifiers are combined using a decision 

aggregation method. 

The full algorithm is shown in Figure    1. 

The key idea of DESO is that different classifiers should 

perform better in local regions of the feature space, trained 

from heterogeneous data sources independently. It also levers 

the idea that the best ensembles should be composed of the 

most diverse classifiers, which are optimised by simulated 

annealing with an energy function based on   diversity. 



 

c 

Input parameters 

• K clusters defining local regions in feature   space 

• N trained classifiers H = {h1, h2, . . . , hN } 

• Tck  classifiers in each sub-ensemble Eck  in cluster ck 

Ensemble training 

1) Cluster the validation set into K groups using k-means 
to generate clusters at points C = {c1, c2, . . . , ck }. 

Input parameters 

• L feature sets FS, where FSl  ∈ FS1, FS2, . . . , FSL 

split into train, test and validation  partitions. 

• Number of candidate classifiers to generate   N 

Classifier generation 

1) For each FSl  in FS: 

a) Generate N classifiers hFSl = 2) For each cluster ck : {hFSl FSl FSl 

 

a) Find  the  ensemble  Eck     as  a  solution  to      the 
1 , h2 , . . . , hN   } using Bagging. 

b) Apply DES to the validation set to generate C 

 
FSl 

following optimisation problem: clusters and identify the sub-ensemble E
c

F Sl in 

D(Eck |xck ) = maxEck 
∈H,Tck

 

. . 

D(Eck |xck ) 
each cluster with optimal diversity (see 

k 

Figure 1). 

where D is a non-pairwise measure of diversity 

and xck are instances belonging to cluster ck  in  

the validation set. 

Classification 

Classification 

1) For each Feature Set  FSl: 

a) for each test pattern xFSl   in   FSl: 

i) Classify xFSl   using the cluster  sub-ensemble 

1) For each test pattern  x: 

a) Assign x to cluster ck which has the nearest 

centroid based on the Euclidean  distance 

b) Classify test pattern using the ensemble classifiers 

in  Eck 

c) Use a decision combination method to    combine 

the classifier decisions and generate an overall 

decision for x. 
 

Fig.  1. DESO  algorithm  with  k-means  clustering   and  combinatorial 
optimisation. 

 

 

B. Heterogeneous DES method: BaggingDES 

In principle, any ensemble  construction  algorithm  can  

be used to implement the DESO. In this study, a specific 

implementation of the DESO framework is achieved with 

Bagging as its vehicle, hence named as BaggingDES. This 

was chosen because Bagging works with partitioned data 

subsets and hence fits the basic mechanism of the DESO   

and heterogeneous feature sets  naturally. 

In BaggingDES, a sub-ensemble is generated for each 

feature set using Bagging. This generates a pool of N 

classifiers in each feature set. DESO is then applied to each 

feature sub-ensemble to find the sub-ensemble in each cluster 

with optimal diversity. The algorithm is given in Figure     2. 

 

C. Conditions affecting DESO performance 

The performance of BaggingDES can be affected by the 

following parameters, which are used to configure   DESO. 

1) Size of base classifier pool: DESO selects classifiers 

from a pool generated using Bagging. The number of clas- 

sifiers in the pool may affect the performance of the DESO 

ensembles selected for each cluster. As bagging iterations  

are increased, the differentiation between the classifiers may 

reduce. Consequently with a large number of classifiers, 

DESO may not be able to find an optimal solution. But as 

this is rather common issue in ensemble methods and has 

been investigated quite intensively in the previous research, 

hence not explored particularly in this   study. 

E F Sl   with the nearest centroid based  on 
k 

Euclidean distance. 

2) Use a decision combination method to combine the 

feature set decisions and generate an overall decision 

for FS. 
 

Fig. 2. BaggingDES  -  Dynamic  Ensemble  Selection  with bagged sub- 
ensembles 

 

 
2) k-means clustering: The purpose of clustering is to 

group instances that are similar. Therefore the parameters   

of k-means may have an effect on performance. The number 

of clusters which are generated could also have an impact. 

Since the validation set usually has a small proportion of 

instances, it is important to balance its size with the number 

of clusters. A large number of clusters will reduce the number 

of instances per cluster. This will make it difficult for DESO 

to find any differentiation between the classifiers. This issue 

was investigated in this study but the results are not presented 

in this paper primarily due to the page’s   limit. 

3) Size of DESO ensemble: Simulated annealing will 

generate a sub-ensemble of fixed size for each cluster. The 

number of classifiers selected for each one will have an 

impact on the ensemble’s performance. With a small number 

of classifiers, there may not be sufficient diversity between 

them. Conversely, with a larger number, the performance of 

DESO will reduce as the ensemble size approaches the size 

of the base classifier pool. This is a specific issue in DESO 

and hence investigated in detail in this study and results are 

presented in Section  V-E. 

In addition, as simulated annealing optimises the value of 

an energy function, it is important to build an energy function 

that can well represent the truly useful performance of DESO 

ensemble. This could be any function such as a diversity or 

accuracy measure. The non-pairwise diversity measures are 

used in this study and will be compared to a simple measure 

of classification error. In the implementation of simulated 

annealing, for simplicity, optimisation will run for a specified 

number of iterations. With a small number of iterations, the 

optimal solution may not be  found. 



 

The chosen values for these parameters will be given in 

detail in the experiment  Section. 

IV. MEASURING ENSEMBLE DIVERSITY 

The diversity of a set of classifiers in an ensemble can     

be assessed by using diversity measures. Different measures 

are available, and all of them broadly attempt to measure the 

degree of differentiation between the base  classifiers. 

Previous research 

The type of diversity in an ensemble can greatly affect   

the outcome [11].  To  assess  the  impact  of  diversity  on  

the accuracy of an ensemble, quantitative measurements of 

diversity need to be used. These measures attempt to quantify 

the difference between the errors that the classifiers make. 

There are two types of diversity measures: pairwise and non- 

pairwise[10]. 

Pairwise diversity measures compare the difference be- 

tween the predictions of pairs of classifiers. Where an 

ensemble consists of more than two classifiers,  the statistic 

is generated for all possible classifier pairs and an average 

value obtained. Non-pairwise measures are generally more 

complex and are designed to measure the difference between 

predictions of sets of multiple classifiers[11], [12],   [13]. 

A. Non-pairwise diversity measures 

In this study, two non-pairwise diversity definitions: Co- 

incident Failure Diversity (CFD)[14] and Minority-Failure 

Diversity (MFD)[11] are used, instead of pairwise diversity 

measures used in the other studies reviewed in the related 

work. 

CFD measures the probability that n classifiers in an 

ensemble fail on randomly selected test data[14]. It is consid- 

ered as one of few relatively effective non-pairwise diversity 

measures. 

MFD is a  unique  non-pairwise  diversity  measure  as  it 

is related to the decision fusion function of an ensemble.      

It measures the probability  that  minority  of  classifiers  in 

an ensemble fail, or majority of classifiers succeed, and 

therefore is considered as more appropriate , when the 

majority voting is used as the fusion   function[11]. 

B. Actively using diversity 

Diversity measures can be used in two ways. They can    

be used as a passive “downstream” measure to assess the 

diversity of a classifier system once it has been trained. 

However, they can also be actively used as part of the 

ensemble selection processes as described in the earlier 

sections. 

This study investigates the application of the above men- 

tioned three diversity measures for dynamic ensemble selec- 

tion of classifier trained with heterogeneous data sources and 

evaluate their effectiveness in BaggingDES. 

V. EXPERIMENTS 

A. Objectives of the experiments 

With the proposed DESO and BaggingDES algorithms, we 

designed our experiments with the following objectives and 

set-ups. 

1) Benchmark test: Experiments which compare the per- 

formance of the proposed BaggingDES algorithm 

against two baseline methods - single classifier De- 

cision Trees and Bagging. 

2) DESO Conditions - experiments investigating the per- 

formance of BaggingDES under different conditions, 

as described in the earlier  section. 

3) Relationship between diversity and accuracy - ex- 

periments designed to identify whether a link exists 

between diversity and accuracy when using  DESO. 

B. Datasets 

As no benchmark heterogeneous dataset was found pub- 

licly available, we decided to construct some based on 

appropriate real-world benchmark datasets available from the 

UCI Machine Learning Repository [15]. The datasets were 

chosen based on the number of class labels and features.     

In order to simulate multiple heterogeneous data sources, 

each dataset was split into several separate feature sets based 

on the “natural” (such as phenotypic characteristics and/or 

representations) grouping of the  features. 

The details of the “semi-constructed” data sets used for  

the experiments are shown in Table I. The number of feature 

sets used for the multiple source experiments is shown for 

each dataset. 

TABLE I 

DATASETS USED IN THE EXPERIMENTS. NOTE: F-SETS: NUMBER OF 

HETEROGENEOUS  FEATURE SETS. 

 

Dataset F-Sets Instances Features Classes 

Arrhythmia 7 452 279 2 
Biodegradation (QSAR) 4 1,055 41 2 
Heart Disease 3 303 14 2 
Hill Valley 4 606 100 2 
Ionosphere 2 351 34 2 
LSVT 4 126 309 2 
Phoneme 10 5,404 5 2 
SPECTF 4 267 45 2 
WDBC 3 569 30 2 

 

 
C. Experimental procedure and conditions 

Five-fold cross validation is employed in the experiments. 

In all the experiments, DESO parameters are chosen (e.g. 

base classifiers N =100, annealing steps=150, K=3) and kept 

constant, except the parameter that is being   tested. 

D. Experimental results and comparison 

The mean accuracy  percentage  and  standard  deviation 

of the experiments for BaggingDES and the two baseline 

methods- Decision tree and Bagging are shown in Table II. 

It can be seen that the BaggingDES ensembles outperform 

the classic Bagging ensembles and also single classifiers 

Decision trees on all the datasets, except two particular 

datasets  Hill  Valley   and  Phoneme,  on  which  the    single 

classifiers decision trees performed slightly  better. 

Some statistical analyses (non-parametric Friedman and 

Nemenyi post-hoc test, with α = 0.05) were carried out to 

test whether the differences between these methods in  terms 



 

TABLE II 

MEAN ACCURACY (%) AND STANDARD DEVIATION OF BAGGINGDES 

COMPARED TO  TWO BASELINE METHODS: SINGLE CLASSIFIER   DECISION 

TREES AND CLASSIC BAGGING. (NOTE: THE NUMBER IN BOLD FONT 

INDICATES  THE  BEST RESULT.) 

 

——Method: Decision Tree Bagging BaggingDES 

Dataset Acc SD Acc SD Acc SD 

Arrhythmia 71.90 4.62 73.33 4.91 76.19 2.61 
Bio Deg 82.94 2.16 85.50 3.12 85.78 1.16 
Heart Disease 71.38 4.52 78.88 4.07 79.22 3.01 
Hill Valley 53.31 2.59 51.98 3.94 50.82 4.03 
Ionosphere 89.18 1.90 90.30 3.89 91.18 2.89 
LSVT 72.92 10.07 76.22 2.21 79.48 12.17 
Phoneme 87.21 0.59 85.07 0.58 84.92 0.98 
spectf 64.77 6.81 70.78 3.89 73.38 8.47 
WDBC 91.03 2.12 94.90 1.97 95.60 1.37 

 

 
 

of their ranking positions on all the datasets are critical or  

not and the results are illustrated by Figure 3. This shows  

that BaggingDES (BagDES) is ranked as the best with an 

average rank value of 1.44 and is significantly better than 

Decision Tree with a Critical Distance  (CD)  =  1.10,  but 

not significantly better than Bagging, which is in turn not 

significantly better than Decision Tree. It should be noted, 

however, that these results and interpretations should be 

taken with caution as the testing sample size is fairly small. 

Nevertheless, it is reasonable to state that this Dynamic 

Ensemble Selection method has shown very encouraging 

potential in dealing with heterogeneous data  sources. 

 

Fig. 3. Critical differences between the ranks of the results obtained from 
three methods: Decision Trees(DTree), Bagging and BaggingDES(BagDES) 
on all the datasets. A thick bar groups the methods that are not statistically 
significantly different at CD =  1.10. 

 
 

 

E. Diversity, Error and Size of DESO  Ensembles 

As described earlier in Section IV, we chose two non- 

pairwise diversity measures to investigate their influence on 

the performance of DESO ensembles under some conditions, 

such as the number of DESO clusters and the ensemble  size. 

1) Coincident Failure Diversity(CFD): The fitting curves 

in Figure 4 show mean train and test error and mean CFD   

as a function of DESO ensemble size by   dataset. 

These plots show that CFD has a relatively high degree   

of correlation with the training error and a low correlation 

with the test error. That means that the relationship between 

the CFD and the test performance of DESO ensembles is not 

clear when optimising DESO  ensemble. 

 

 
 

Fig. 4.        Mean train & test error and CFD as DESO ensemble size varies. 
 

 
2) Minority Failure Diversity(MFD): The fitting curves in 

figure 5 show the mean train and test error, and mean MFD 

as a function of DESO ensemble size on each dataset. It can 

be seen that these curves are different from the ones CFD 

and closer to or almost in line with the test errors after the 

certain sizes. That means that MFD is a better predictor of 

the testing accuracy of  DESO. 
 

 
Fig. 5.        Mean train & test error and MFD as DESO ensemble size varies. 

 
In summary, these results show quite clearly that diversity 

measure CFD tends to behave just like the training errors, 

which are obviously different from the testing error on all  

the datasets used in this study and hence it is difficult to use 

it to predict how good the ensembles may perform on the  

test data. On the other hand, the diversity measure MFD 

appears to have closer approximations to the test errors, 

when the number of the classifiers in ensembles reaches a 

certain threshold, e.g. around 5 in this study, regardless of  

the differences in the data sets and the number of classifiers 

used in ensembles. Another common characteristic pattern, 

showed by all the curves, is that the diversity and test errors 

tend to be levelled off after the size of the ensembles reaches 

around 10, which indicates it is not necessary to generate a 

larger number of models to build an ensemble as they do not 

contribute much to the improvement of the performance of 

DESO ensembles, whilst consuming more time and memory 

space in learning. 

VI. CONCLUSION 

This paper presents a generic dynamic ensemble selection 

and optimisation (DESO) framework and an example of    its 



 

implementation - BaggingDES, taking a common ensemble 

method - Bagging, as a testing vehicle, for mining heteroge- 

neous data sources. 

This work is significant simply because big data is often 

collected and/or aggregated from multiple sources in differ- 

ent representations and granularity over different temporal 

and spatial periods, and these heterogeneous data sources   

are more likely to capture and represent local, diverse and/or 

complementary information of a given problem, it is then 

logical to utilise these heterogeneous data sources “indepen- 

dently” to induce models that could be more diverse from 

each other, compared with the models trained from a single 

homogeneous data source. 

So, the learning process of the proposed DESO starts by 

generating models or classifiers with different sources of the 

data - represented with different regional feature spaces, and 

these models are clustered by using k-means into groups     

or sub-ensembles and optimised with simulated annealing 

algorithm based on the diversity among the models. When 

classifying, a new data instance is presented to the nearest 

sub-ensembles and their decisions are then aggregated with   

a consensus function, such as voting, ot produce a final 

classification decision. 

The BaggingDES is tested on the eight semi-simulated 

heterogeneous datasets with various numbers of feature sets - 

generated from 7 real-world benchmark datasets, and the ex- 

perimental results show that the performance of BaggingDES 

is significantly better than the reference baseline method - 

decision tree, and much better the classic Bagging method, 

though not significantly. 

The experimental results of examining the relationships 

between the diversity, error and size of DESO ensembles 

show that there are some correlations between the diversity 

and error but it is not stronger enough to be used as a reliable 

predictor of the performance of ensembles on test   data. 

Another finding is that with heterogeneous data, it is not 

necessary to build a  DESO-ensemble  with  large  number  

of the models that are induced from  the  same  course  as 

they make no or negligible contribution to the performance 

improvement of DESO-ensembles. 

With these encouraging results, further work should in- 

clude running more experiments on more big datasets, which 

consist ideally of true heterogeneous data sources to verify 

the findings of this study and also investigating in  more 

depth on the relationship between diversity and accuracy and 

reliability of DESO ensembles. 
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