
 

 

The self-reference effect in dementia: Differential involvement of cortical midline structures in 

Alzheimer’s disease and behavioural-variant frontotemporal dementia 

 
 

Stephanie Wong1,2,3, Muireann Irish1,3,4, Eric D. Leshikar5, Audrey Duarte6, Maxime Bertoux7, Greg 

Savage1,2, John R. Hodges1,3,8, Olivier Piguet1,3,8 and Michael Hornberger1,7
 

 

1ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia 

2Department of Psychology, Macquarie University, Sydney, Australia 

3Neuroscience Research Australia, Sydney, Australia 

4School of Psychology, the University of New South Wales, Sydney, Australia 
 

5Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA 

6School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA 

7Norwich Medical School, University of East Anglia, Norwich, UK 

8School of Medical Sciences, the University of New South Wales, Sydney, Australia 

 
 

Corresponding author: 

Prof. Michael Hornberger 

Norwich Medical School, University of East Anglia, NR4 7TJ, Norwich, UK 
 

Tel: +44 1603 593540; Fax: +44 1603 593752; Email: m.hornberger@uea.ac.uk 
 
 
 
 
 
 

Word count: 8693  Tables: 3 Figures: 6 
 

Target journal: Cortex Special Issue – Cognitive Neuroscience of Source Memory 

mailto:m.hornberger@uea.ac.uk


 
 
 
 
 

Highlights 
 

• Self-referential encoding did not ameliorate source memory deficits in bvFTD or AD. 
 

• Reduced self-reference effect (SRE) was not related to general memory deficits. 
 

• Atrophy in different cortical midline structures was implicated in bvFTD and AD. 
 

• Different aspects of self-referential processing may be affected in bvFTD and AD. 
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Abstract 

 

Encoding information in reference to the self enhances subsequent memory for the source of this 

information. In healthy adults, self-referential processing has been proposed to be mediated by 

the cortical midline structures (CMS), with functional differentiation between anterior-ventral, 

anterior-dorsal and posterior regions. While both Alzheimer’s disease (AD) and behavioural-

variant frontotemporal dementia (bvFTD) patients show source memory impairment, it remains 

unclear whether they show a typical memory advantage for self-referenced materials. We also 

sought to identify the neural correlates of this so-called ‘self-reference effect’ (SRE) in these 

patient groups. The SRE paradigm was tested in AD (n=16) and bvFTD (n=22) patients and age-

matched healthy controls (n=17). In this task, participants studied pictures of common objects 

paired with one of two background scenes (sources) under self-reference or other-reference 

encoding instructions, followed by an item and source recognition memory test. Voxel-based 

morphometry was used to investigate correlations between SRE measures and regions of grey 

matter atrophy in the CMS. The behavioural results indicated that self-referential encoding did not 

ameliorate the significant source memory impairments in AD and bvFTD patients. Furthermore, 

the reduced benefit of self-referential relative to other-referential encoding was not related to 

general episodic memory deficits. Our imaging findings revealed that reductions in the SRE were 

associated with atrophy in the anterior-dorsal CMS across both patient groups, with additional 

involvement of the posterior CMS in AD and anterior-ventral CMS in bvFTD. These findings suggest 

that although the SRE is comparably reduced in AD and bvFTD, this arises due to impairments in 

different subcomponents of self-referential processing.   

 

Keywords: Self-reference effect; Source memory; Alzheimer’s disease; Behavioural-variant 

frontotemporal dementia; voxel-based morphometry 
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1. Introduction 

For many years, the concept of self has intrigued philosophers, psychologists and, more recently, 

neuroscientists. While a number of different theoretical notions and definitions of the self exist, it 

is accepted that the self plays an important role in memory consolidation (Northoff et al., 2006; 

Rogers, 1977; Symons & Johnson, 1997). According to Rogers, Kuiper and Kirker (1977), evaluating 

new information in relation to the self promotes deeper and more elaborate memory encoding. 

This so-called self-reference effect (SRE) on memory has since been demonstrated in numerous 

studies, where self-referentially encoded information is retrieved more accurately on a 

subsequent memory task, relative to information that has been encoded in relation to another 

person (other-reference) or based on its physical or semantic features (Rogers et al., 1977; 

Symons & Johnson, 1997). While the SRE paradigm typically involves encoding and retrieval of 

trait adjectives (Bower & Gilligan, 1979; Gutchess, Kensinger, & Schacter, 2010), the effect has also 

been replicated with memory for objects (Hamami, Serbun, & Gutchess, 2011; Leshikar & Duarte, 

2013), actions (Rosa & Gutchess, 2011) and specific contextual details (Hamami et al., 2011; 

Leshikar & Duarte, 2012; Serbun, Shih, & Gutchess, 2011). As such, self-referential encoding 

promotes episodic memory retrieval by enhancing not only item memory, but also source 

memory.   

 

The robustness of the SRE has been demonstrated across the lifespan in healthy individuals (Glisky 

& Marquine, 2009; Gutchess, Kensinger, Yoon, & Schacter, 2007b; Gutchess et al., 2015; Leshikar, 

Dulas, & Duarte, 2015). Importantly, while older individuals typically show age-related decline in 

source memory accuracy (Johnson, Hashtroudi & Lindsay, 1993; Yonelinas, 2002), recent work has 

found that these deficits are ameliorated for source information that has been encoded with 

reference to the self (Leshikar et al., 2015; Leshikar & Duarte, 2013). Nevertheless, it remains to be 
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established whether self-referencing may benefit source memory retrieval in dementia patients 

presenting with episodic memory impairment.   

 

Patients with Alzheimer’s disease (AD) show marked impairments in episodic memory (McKhann 

et al., 2011) and perform poorly on source memory tests (Haj & Kessels, 2013; Multhaup & Balota, 

1997). While retrieval of self-referential episodic memories from the past are adversely affected in 

AD (Irish, Lawlor, O’Mara, & Coen, 2011b), notably, concept of self appears to be relatively 

preserved, as indexed on measures of trait self-knowledge (Klein, Cosmides, & Costabile, 2003; 

Rankin, 2005) and self-descriptive statements (Eustache et al., 2013). To date, evidence for the 

benefit of self-referential encoding on source memory retrieval in AD is mixed. Most existing 

studies have evaluated the self-reference recollection effect (SRRE) in AD using the 

Remember/Know/Guess paradigm, where ‘remember’ responses are presumed to involve 

episodic memory, with conscious recollection of contextual details, as opposed to ‘know’ 

responses, which reflect a ‘feeling of knowing’ without recollection (Tulving, 1985; 2002). While 

three studies in AD patients have demonstrated higher rates of ‘remember’ responses for self-

referenced trait adjectives (Kalenzaga & Clarys, 2013; Kalenzaga, Bugaïska, & Clarys, 2013; 

Lalanne, Rozenberg, Grolleau, & Piolino, 2013), others have found no SRE for item recognition 

(Leblond et al., 2016) or both reduced SRE and SRRE (Genon et al., 2013). Nonetheless, the 

Remember/Know/Guess paradigm does not control for the variability of remembered contextual 

details for each item within and between participants. As such, a source memory experimental 

design would help objectively determine which, if any, specific contextual details are 

disproportionately enhanced by self-referencing in AD. While no prior research in AD has 

investigated the SRE on source memory, one study in patients with amnestic mild cognitive 

impairment (aMCI) showed a benefit of self-referencing in terms of reducing item and source 

memory errors (Rosa, Deason, Budson, & Gutchess, 2014).  
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Individuals diagnosed with behavioural-variant frontotemporal dementia (bvFTD) can also present 

with episodic memory dysfunction (Bertoux et al., 2014; Graham et al., 2005; Hornberger & 

Piguet, 2012; Hornberger, Piguet, Graham, Nestor, & Hodges, 2010) and show impaired 

performance on tests of source memory (Irish, Graham, Graham, Hodges, & Hornberger, 2012b; 

Simons et al., 2002). In contrast to AD however, the core clinical features of bvFTD include marked 

changes to personality and interpersonal conduct (Piguet, Hornberger, Mioshi, & Hodges, 2011), 

with declines in social cognition and empathy (Eslinger, Moore, Anderson, & Grossman, 2011; 

Rascovsky et al., 2011) and lack of insight (Mendez & Shapira, 2011; O'Keeffe et al., 2007). Not 

surprisingly, bvFTD patients show alterations in their self concept, as reflected in the striking 

discrepancies between patient and carer ratings of personality traits (Rankin, 2005; Ruby et al., 

2007), as well as reports of dramatic changes in social, political or religious values (Miller et al., 

2001). To the best of our knowledge, no study to date has explored the impact of self-referential 

processing on source memory in bvFTD, nor has this been directly contrasted in AD and bvFTD.  

 

Evidence from neuroimaging studies points overwhelmingly to the involvement of cortical midline 

structures (CMS) in self-referential processing (Craik et al., 1999; Gutchess, Kensinger, & Schacter, 

2007a; Northoff et al., 2006; Northoff & Bermpohl, 2004; Qin & Northoff, 2011). Drawing from this 

vast body of literature, Northoff et al. (2006) proposed a model in which three distinct CMS  

subregions (anterior-ventral, anterior-dorsal and posterior CMS) are associated with subfunctions 

of self-referential processing, including representation, reappraisal and evaluation, and integration 

(see also Northoff & Bermpohl, 2004). Specifically, the anterior-ventral CMS encompasses the 

medial orbitofrontal cortex (MOFC), the ventromedial prefrontal cortex (VMPFC) and the sub- and 

pregenual parts of the anterior cingulate cortex (PACC). This region is proposed to be involved in 

coding the self-relatedness of stimuli, thereby forming a self-related representation. Evaluation 
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and appraisal of self-referenced stimuli is associated with the anterior-dorsal CMS, which includes 

the dorsomedial prefrontal cortex (DMPFC) and the supragenual anterior cingulate cortex (SACC). 

Finally, the posterior CMS comprises the posterior cingulate cortex (PCC), the retrosplenial cortex 

(RSC), and the medial parietal cortex (MPC). These posterior regions are proposed to be involved 

in the integration of new self-referential information within the temporal context of one’s 

emotional and autobiographical self. While each of these CMS subregions purportedly mediate 

specific aspects of self-referential processing, no study to date has directly contrasted the 

differential contributions of these subregions. One way to address this is by comparing the SRE in 

AD versus bvFTD patients, as these neurodegenerative disorders are characterised by 

predominantly posterior and anterior burdens of CMS pathology, respectively (Rabinovici et al., 

2007). 

 

To our knowledge, only one study has investigated the neural correlates of self-referential 

processing in dementia patients (Genon et al., 2013). In this study, AD patients did not show a 

significant SRE, despite showing similar activation of the VMPFC compared to controls when 

encoding stimuli with reference to the self. A follow-up investigation revealed a wider functional 

network of brain regions associated with the accurate recognition of self-referenced information, 

including the PCC and hippocampus in AD patients (Genon et al., 2014). In the context of 

Northoff’s (2006) model, these findings (Genon et al., 2013; 2014) suggest that the absence of SRE 

in AD may not be related to impairments in the representation of stimuli as self-related by the 

anterior-ventral CMS, but rather, to a broader deficit in the retrieval of self-related memories, 

mediated by posterior CMS subregions known to be affected early in the course of the disease 

(Chetelat et al., 2007; Irish, Addis, Hodges, & Piguet, 2012a; Nestor, Fryer, Ikeda, & Hodges, 2003; 

Scahill, Schott, Stevens, Rossor, & Fox, 2002). This dovetails with previous reports of intact 

concept of self in AD (Eustache et al., 2013; Klein et al., 2003; Rankin, 2005). 
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Of particular relevance to this study is the pattern of neurodegenerative changes typically seen in 

bvFTD. Given that the MPFC is one of the earliest affected regions (Kipps, Hodges, Fryer, & Nestor, 

2009; Rabinovici et al., 2007; Seeley et al., 2008), this neurodegenerative condition offers an 

excellent opportunity to examine the impact of MPFC damage on self-referenced memories. While 

no previous research has explored the SRE in bvFTD, evidence from studies of autobiographical 

memory in these patients suggests a link between MPFC atrophy and impairments in their 

retrieval of personally relevant memories from the past (Irish, Hodges, & Piguet, 2013; Irish, 

Hornberger, Wahsh, Lam, Lah, et al., 2014a). Furthermore, the MPFC represents a site of 

particular interest, as atrophy in this region has been associated with episodic memory 

dysfunction in bvFTD, which contrasts with the predominantly posterior pattern of atrophy 

implicated in AD (Frisch et al., 2013; Irish, Piguet, Hodges, & Hornberger, 2014b; Wong, Flanagan, 

Savage, Hodges, & Hornberger, 2014). Nevertheless, it remains unclear how this anterior-posterior 

dissociation between bvFTD and AD potentially disrupts the SRE for source memory in these 

patient groups.  

 

The objectives of this study were twofold: i) to explore whether self-referential encoding would 

enhance source memory retrieval differentially in bvFTD and AD, and ii) to identify the CMS 

correlates of the SRE in these patient groups using region-of-interest voxel-based morphometry 

(VBM). We hypothesised that the SRE for source memory would be comparably attenuated in 

bvFTD and AD, but that these deficits would be associated with an anterior-posterior dissociation 

of CMS atrophy. Specifically, we proposed that atrophy of anterior-ventral CMS subregions would 

relate to the limited benefit of self-referential encoding on source memory retrieval in bvFTD. On 

the other hand, we predicted that the reduced SRE in AD would be associated with atrophy in the 

posterior CMS subregions.  
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2. Material and methods 

 

2.1. Participants 

Thirty-eight dementia patients (bvFTD=22; AD=16) and 17 age-matched healthy controls were 

recruited through FRONTIER at Neuroscience Research Australia, Sydney. All bvFTD patients 

fulfilled clinical diagnostic criteria for probable bvFTD (Rascovsky et al., 2011), with insidious onset, 

progressive decline in social behaviour and personal conduct, apathy, emotional blunting and loss 

of insight. To exclude potential phenocopy cases in the bvFTD cohort (Kipps, Hodges, & 

Hornberger, 2010), only those who showed evidence of progressive decline and atrophy on 

structural MRI brain scans were included. All AD patients met clinical diagnostic criteria for 

probable AD (McKhann et al., 2011), with worsening episodic memory impairment in the context 

of preserved personality and behaviour. Disease duration was estimated as the number of years 

elapsed since the reported onset of symptoms. The Frontotemporal Dementia Rating Scale (FRS) 

(Mioshi, Hsieh, Savage, Hornberger, & Hodges, 2010) and Clinical Dementia Rating Scale (CDR) 

(Morris, 1997) were used to determine the disease severity in bvFTD and AD patients. In addition, 

the Cambridge Behavioural Inventory revised (CBI-R) (Wear et al., 2008) was completed by the 

family or carer, to quantify symptoms of behavioural disturbance, with higher scores indicative of 

more severe behavioural disturbance. To determine their overall level of cognitive functioning, all 

participants underwent general cognitive screening using the Addenbrooke’s Cognitive 

Examination-III (ACE-III) (Hsieh, Schubert, Hoon, Mioshi, & Hodges, 2013). Age-matched healthy 

controls were recruited from the FRONTIER research volunteer panel and scored >88 on the ACE-

III (Hsieh et al., 2013). 
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Exclusion criteria for all participants included current or prior history of mental illness, significant 

head injury, movement disorders, cerebrovascular disease (stroke, transient ischaemic attacks), 

alcohol and other drug abuse and limited English proficiency. Exclusion criteria for MRI scanning 

procedures included presence of metal fragments in the eyes, cardiac pacemaker, brain aneurysm 

clips, cochlear implants, other ferromagnetic implants or severe claustrophobia.  

 

2.2. Ethics statement 

All participants provided written informed consent and this study was conducted in accordance 

with the Declaration of Helsinki. Ethical approval was obtained from the Human Research Ethics 

Committee of the South Eastern Sydney Local Health District and the University of New South 

Wales.  

 

2.3. Neuropsychological assessment of episodic memory 

Following previously reported procedures (Irish, Piguet, Hodges, & Hornberger, 2014b; 

Pennington, Hodges, & Hornberger, 2011), standardised neuropsychological measures of verbal 

(Rey Auditory Verbal Learning Test; RAVLT) (Schmidt, 1996) and visuospatial (Rey-Osterrieth 

Complex Figure Test; RCFT) (Rey, 1941) episodic memory were administered to all participants. 

The following scores were included in our correlational analyses between episodic memory and 

SRE task performance: RAVLT immediate recall following interference trial (maximum score = 15); 

RAVLT delayed recall following 30 minutes (maximum score = 15); and RCFT 3-minute delayed 

recall (maximum score = 36).  

 

2.4. Experimental self-reference source memory task 

The self-reference source memory task was adapted from previous studies (Leshikar et al., 2015; 

Leshikar & Duarte, 2013). The current version assessed source memory recognition following self-
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reference and other-reference encoding conditions. A perceptual condition was included as a 

control condition. 

 

2.4.1. Stimuli 

The stimuli consisted of 40 objects and 2 background scenes. During encoding, 30 objects were 

presented superimposed on 1 of the 2 background scenes. A further 10 objects were presented as 

novel items at the subsequent recognition memory test. The objects were colour images of 

common objects (e.g., saxophone, spoon, notebook, etc.) taken from the Hemera Technologies 

Photo-Objects DVDs (Hemera Technologies, Inc.). The 2 background scenes were colour images of 

landscapes (a mountain or a beach). The word frequency and familiarity of each object was 

calculated using the MRC Psycholinguistic Database (http://www.psych.rl.ac.uk). Ten objects were 

allocated to each of the 4 stimulus sets (self-reference, other-reference, perceptual and novel), 

which were matched for total word frequency and familiarity. Sets assigned per condition were 

counterbalanced across participants. 

 

***INSERT FIGURE 1 AROUND HERE*** 

 

2.4.2. Procedure 

Participants were first trained on a short version of the encoding and recognition tasks. Training 

included 12 practice encoding trials (4 trials per encoding task) and 16 practice recognition test 

trials, containing stimuli from the 12 practice items plus 4 novel items. Participant’s understanding 

of the task instructions was checked before progressing from training to the experimental task. 

The procedures for the encoding and test phases are illustrated in Figure 1.  

 

http://www.psych.rl.ac.uk/
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During the training and experimental encoding phases of the study, participants performed 

encoding tasks under three conditions (self-reference, other-reference and perceptual). Encoding 

task instructions emphasized that there were no correct answers, as judgments made during the 

encoding tasks were intended to be subjective.   

Self-Reference Condition: Participants judged whether they liked the object-background pairing 

(yes/no).  

Other-Reference Condition: Participants judged whether the Queen of England, Elizabeth II, 

would like the object-background pairing (yes/no). Importantly, a well-known but not close-other 

person was selected for this condition, as brain regions activated during close-other processing 

(e.g. one’s best friend) have been shown to overlap with those activated during self-referential 

processing (Grigg & Grady, 2010). As previously described (Leshikar & Duarte, 2013), Queen 

Elizabeth II was selected as the other referent, under the assumption that she was well-known but 

not personally acquainted with any of the participants. A photograph of Queen Elizabeth II was 

displayed with the encoding instructions that preceded the other-reference condition. All 

participants demonstrated intact recognition of Queen Elizabeth II.  

Perceptual Condition:  Participants judged whether the object and background contained similar 

colours (yes/no).  

 

The encoding phase of the study included a total of 30 trials (10 in each encoding condition). Each 

encoding trial lasted 4000ms, including presentation of the object-scene pair for 3500ms, followed 

by a 500ms central fixation. To minimize task-switching costs, trials were presented in blocks of 10 

trials per encoding condition. At the beginning of each block, an instruction prompt (“Get ready 

for the [self/queen/colour] task.”) was displayed. The order of the blocks was counterbalanced 

across participants.   
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The test phase of the experiment was conducted immediately following encoding. The test phase 

consisted of 40 test trials, where all 30 of the objects from the encoding phase were individually 

displayed, intermixed with 10 novel objects. Trials were self-paced and presented in a random 

order. For each trial, participants first made an item recognition decision by judging whether the 

object was “old” or “new”, or whether they didn’t know (“don’t know”). The prompt “Old | New | 

Don’t know” was written below the object. This was followed by a source recognition decision for 

those objects judged to be “old”. During the source decision, the two background scenes were 

displayed above the object, with the prompt “Mountain | Beach | Don’t know” written below the 

object. Following previously reported procedures (Leshikar & Duarte, 2013), the “don’t know” 

response option was offered in order to reduce potential contamination of guessing. No feedback 

regarding response accuracy was provided throughout the task.  

 

The self-reference source memory task was programmed using E-Prime 2.0 software (Psychology 

Software Tools, Pittsburgh, PA), and testing was conducted on a laptop with a 14-inch LED-backlit 

display. During testing, participants provided verbal responses, which were recorded by the 

experimenter using the programmed response keys. 

 

2.5. Statistical analyses 

Data were analysed using SPSS 20.0 (SPSS Inc., Chicago, Ill., USA). Kolmogorov-Smirnov tests were 

used to check for normality of distribution. Where the data were normally distributed, scores 

were compared across groups using ANOVAs followed by Tukey post-hoc tests. Data that were not 

normally distributed were analysed using Kruskal-Wallis tests followed by post-hoc pairwise 

comparisons, using Dunn’s (1964) procedure with a Bonferroni correction for multiple 

comparisons. A chi-squared test was used to compare sex distribution across groups. Demographic 

variables that differed significantly across groups were included as covariates in between-group 
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analyses of SRE task variables. Item and source recognition accuracy measures from the SRE task 

were analysed using ANCOVAs. Pairwise comparisons of the main effects were adjusted for 

multiple comparisons using the Sidak method. To examine differences between encoding 

conditions within each participant group, post hoc paired-samples t-tests were conducted for each 

group separately. 

 

Responses from the test phase of the SRE task were converted into percentages of total items in 

each condition (self-reference, other-reference, perceptual, novel). Item recognition responses 

were classified as studied ‘item hit’ (correct recognition), studied ‘item miss’ (incorrect rejection) 

and studied “don’t know” for objects previously seen during the encoding phase; and unstudied 

‘item hit’ (correct rejection), unstudied ‘item miss’ (false alarm) and unstudied “don’t know” for 

novel objects presented in the test phase only. Corrected item recognition was calculated by 

subtracting the percentage of unstudied ‘item misses’ (false alarms) from the percentage of 

studied ‘item hits’ (correct recognition) in each condition. Source recognition responses were 

classified as ‘source correct’, ‘source incorrect’ and ‘source “don’t know”’. Given that the source 

recognition question was not asked following incorrect item responses (i.e. studied ‘item miss’ and 

studied “don’t know” responses), source recognition for incorrect item responses was classified as 

‘source incorrect’. As such, source recognition responses were assumed to be incorrect for 

incorrect item responses. 

 

To investigate the source memory advantage of self-reference over other-reference encoding, a 

SRE magnitude score was computed for source recognition accuracy by subtracting the other-

reference percentage ‘source correct’ scores from the self-reference percentage ‘source correct’ 

scores. Thus, larger SRE magnitude scores indicated better memory for self-reference compared to 

other-reference encoded source information. Within each participant group, independent samples 
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t-tests were conducted to determine whether SRE magnitude for source recognition was 

significantly greater than 0. SRE magnitude scores comparing source recognition accuracy for 

“self-reference” and “perceptual” encoding conditions were also computed (see Supplementary 

Material). 

 

2.6. Image acquisition and voxel-based morphometry (VBM) analysis 

Structural MRI brain scans were available for a subset of participants (19/22 bvFTD and 15/16 AD 

patients and 15/17 controls). Patients and controls underwent the same imaging protocol with 

whole-brain T1-weighted images using a 3T Phillips MRI scanner with a standard quadrature head 

coil (8 channels). The 3D T1-weighted sequences were acquired as follows: coronal orientation, 

matrix 256 x 256, 200 slices, 1x 1 mm in-plane resolution, slice thickness 1mm, TE/TR=2.6/5.8ms. 

3D T1-weighted sequences were analysed using FSL-VBM, a voxel-based morphometry analysis 

(Ashburner & Friston, 2000; Good et al., 2001), which is part of the FSL software package 

http://www.fmrib.ox.ac.uk/fsl/fslvbm/index.html (Smith et al., 2004). Following brain extraction, 

tissue segmentation was carried out using FMRIB’s Automatic Segmentation Tool (FAST) (Zhang, 

Brady, & Smith, 2001). The resulting grey matter partial volume maps were aligned to the 

Montreal Neurological Institute standard space (MNI52) using the nonlinear registration approach 

with FNIRT (Anderson, Jenkinson & Smith, 2007a; 2007b) which uses a b-spline representation of 

the registration warp field (Rueckert et al., 1999). To correct for local expansion or contraction, 

the registered partial volume maps were modulated by dividing them by the Jacobian of the warp 

field. Importantly, the Jacobian modulation step did not include the affine part of the registration, 

which means that the data was normalized for head size as a scaling effect. The modulated images 

were then smoothed with an isotropic Gaussian kernel with a standard deviation of 3 mm (FWHM: 

8mm).  

 

http://www.fmrib.ox.ac.uk/fsl/fslvbm/index.html
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Given our strong a priori predictions, a single region of interest mask of CMS regions was created 

by combining individual masks of the relevant Harvard-Oxford cortical structural atlas regions 

included in the FSL software package. As the regional masks for the frontal pole, orbitofrontal 

cortex and superior frontal gyri include both medial and lateral portions, masks containing only 

the medial portions were manually traced. In accordance with Northoff et al. (2006), medial 

regions were defined as those falling within MNI coordinates x < 25 or x > -25 (see Figure 2). The 

following regions were included in the CMS mask: medial frontal pole, medial orbitofrontal cortex, 

medial superior frontal gyrus, medial prefrontal cortex, subcallosal cortex, paracingulate cortex, 

anterior cingulate cortex, posterior cingulate cortex and precuneus. These regions broadly 

correspond to the CMS subdivisions proposed by Northoff et al. (2006), such that the anterior-

ventral CMS includes the medial frontal pole, medial orbitofrontal cortex, medial prefrontal cortex 

and subcallosal cortex; the anterior-dorsal CMS includes the medial superior frontal gyrus, 

paracingulate and anterior cingulate cortex; and the posterior CMS includes the posterior 

cingulate and precuneus.  

 

***INSERT FIGURE 2 AROUND HERE*** 

 

A voxel-wise general linear model (GLM) was applied to investigate differences in grey matter 

intensity via permutation-based non-parametric testing (Nichols & Holmes, 2002) with 5000 

permutations per contrast. Age and total years of education were included as nuisance variables in 

all imaging analyses. As a first step, differences in grey matter intensity between patients (bvFTD 

and AD) and controls were assessed. Group comparisons between patients and controls were 

tested for significance at p <.05, corrected for multiple comparisons via Family-wise Error (FWE) 

correction across space. A cluster extent threshold of 100 contiguous voxels was applied for group 

comparisons. Next, correlations between SRE magnitude and regions of grey matter atrophy were 



 17 

investigated separately in each patient group (bvFTD, AD) combined with controls. This procedure 

has previously been used in similar studies including AD and bvFTD patients (Irish, Piguet, Hodges, 

& Hornberger, 2014b) and serves to achieve greater variance in behavioural scores, thereby 

increasing the statistical power to detect brain-behaviour relationships. To check for potential co-

atrophy effects, diagnostic group membership was entered as an additional nuisance variable in 

the design matrix of the SRE magnitude covariate analyses, as per the method reported in 

Sollberger et al. (2009). For this co-atrophy check, we accepted a level of significance of p<.05 

uncorrected for multiple comparisons for clusters of CMS atrophy previously identified in the SRE 

magnitude covariate analysis, and p<.01 for clusters outside these regions. Finally, inclusive and 

exclusive masking procedures were employed to identify regions commonly associated with SRE 

magnitude across both patient groups, as well as regions uniquely associated with SRE magnitude 

in bvFTD and AD. SRE magnitude covariate analyses and masking procedures were conducted at 

significance levels of p<.01, uncorrected for multiple comparisons. To reduce the potential for 

false positives, we applied a stringent cluster extent threshold of 50 contiguous voxels for the 

covariate analyses. Regions of significant atrophy were superimposed on T1-weighted standard 

brain images, and regions of significant grey matter intensity decrease were localised with 

reference to the Harvard-Oxford probabilistic cortical atlas. Maximum coordinates for the 

anatomical locations of significant results are reported in MNI coordinates.  

 

3. Results 

 

3.1. Demographics 

Demographic and clinical characteristics of the participants are detailed in Table 1. Participant 

groups were matched for age (p=.111) and sex distribution (p=.281). An overall group difference 

was evident for total years of education (p=.015), driven by the fact that controls were more 
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highly educated than both bvFTD (p=.023) and AD (p=.039) patients. The total years of education 

was subsequently included as a covariate in between-group comparisons of cognitive, episodic 

memory and SRE task measures.  

 

Importantly, the patient groups were matched for disease duration (p=.871) and severity of 

dementia symptoms on the CDR (p=.976). As expected, bvFTD patients were more impaired in 

comparison to AD patients on a FTD-specific measure of functional impairment (FRS; p=.016). 

Based on CBI-R scores, both patient groups showed significantly more symptoms of overall 

behavioural disturbance compared to controls (p values <.001), with more severe symptoms in 

bvFTD compared to AD patients (p=.006).  

 

***INSERT TABLE 1 AROUND HERE*** 

 

3.2. General cognition and episodic memory assessment 

Both patient groups were significantly impaired on the ACE-III cognitive screening measure, 

relative to controls (bvFTD, p<.001; AD, p<.001). However, performance on the ACE-III was 

comparable between AD and bvFTD patients (p=.202). In comparison to controls, both patient 

groups demonstrated significant episodic memory impairment across all measures of verbal and 

visual recall (p values <.01). Comparisons between patient groups revealed lower episodic 

memory performance in AD compared to bvFTD on the RAVLT immediate recall (p=.004), RAVLT 

delayed recall (p=.015) and RCFT 3-minute delayed recall (p=.003) scores. 

 

3.3. SRE task performance 
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Supplementary Table 1 shows the mean percentages of each response type (hit, miss, “don’t 

know”) for items and sources from the self-reference, other-reference and perceptual encoding 

conditions, as well as for unstudied items.  

 

3.3.1. Item recognition task 

Supplementary Figure 1 depicts corrected item recognition accuracy for each encoding condition 

across the three participant groups. A three (group) by three (condition) repeated measures 

ANCOVA with years of education included as a covariate revealed a significant group effect 

(F(2,51)=10.702, p<.001) for overall corrected item recognition accuracy. This group effect 

reflected the fact that corrected item recognition accuracy was significantly lower in AD patients 

relative to controls (p<.001), irrespective of condition. Similarly, corrected item recognition 

accuracy was significantly lower in bvFTD patients compared to controls (p=.003). No significant 

condition effect (p=.465) or group × condition interaction (p=.857) was evident.  

 

Post hoc paired-samples t-tests were conducted separately for each participant group, to explore 

differences in corrected item recognition for each encoding condition. In the control group, as 

expected, corrected item recognition accuracy was higher for the self-reference compared to 

perceptual condition (t(16)=3.913, p=.001) and higher for the other-reference relative to 

perceptual condition (t(16)=3.118, p=.007). However, corrected item recognition accuracy did not 

differ across self-reference and other-reference conditions (t(16)=1.231, p=.236) in this group. In 

the bvFTD group, corrected item recognition accuracy was lower for the self-reference compared 

to other-reference condition (t(21)=-2.085, p=.049). While corrected item recognition accuracy 

was comparable for the self-reference and perceptual conditions in bvFTD (t(21)=0.756, p=.458), 

this was significantly higher for the other-reference relative to perceptual condition (t(21)=2.795, 

p=.011). In AD patients, no significant difference in corrected item recognition accuracy was 
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observed between the self-reference and other-reference conditions (t(15)=0.659, p=.520), or 

between the other-reference and perceptual conditions (t(15)=0.768, p=.455). Nonetheless, a 

trend was present for higher corrected item recognition accuracy in the self-reference compared 

to perceptual condition (t(15)=2.085, p=.055). 

 

3.3.2. Source recognition task 

Figure 3A depicts source recognition accuracy for each encoding condition across the three 

participant groups. A three (group) by three (condition) repeated measures ANCOVA with years of 

education included as a covariate revealed a significant group effect (F(2,51)=25.372, p<.001) for 

overall source recognition accuracy. This group effect indicated that source recognition accuracy 

was significantly higher in controls compared to both bvFTD (p<.001) and AD (p<.001) patients, 

irrespective of condition. Furthermore, AD patients scored significantly lower than bvFTD patients 

(p=.003) on overall source recognition accuracy, regardless of condition. No significant condition 

effect (p=.937) or group × condition interaction (p=.977) was detected.  

 

To explore differences in source recognition for each encoding condition, post hoc paired-samples 

t-tests were conducted separately for each participant group. In controls, source memory 

recognition accuracy was significantly higher for the self-reference compared to the other-

reference condition (t(16)=3.357, p=.004), and higher for the self-reference compared to the 

perceptual condition (t(16)=3.067, p=.007). In contrast, source memory accuracy did not differ 

between the other-reference and perceptual conditions in controls (t(16)=0.803, p=.434). That is, 

controls showed a significant SRE for source recognition accuracy. In the patient groups however, 

none of the pairwise comparisons between self-reference, other-reference and perceptual 

conditions reached significance (all p values >.1). Therefore, only control participants showed a 
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significant source memory benefit for self-referenced compared to other-referenced and 

perceptually encoded stimuli. 

 

3.3.3. SRE magnitude for source recognition 

Figure 3B shows the mean SRE magnitude for source recognition accuracy across participant 

groups. Independent samples t-tests were conducted to determine whether SRE magnitude for 

source recognition was significantly greater than 0, indicating a positive memory advantage for 

self-referenced information. While SRE magnitude was significantly greater than 0 in the control 

group (t(16)=3.357, p=.004), this did not reach statistical significance in either bvFTD (t(21)=-0.576, 

p=.571) or AD (t(15)=0.496, p=.627). As such, only control participants showed a significant SRE, 

whereas both AD and bvFTD patients showed no source memory enhancement effect for self-

referenced information.   

 

***INSERT FIGURE 3 AROUND HERE*** 

 

3.4. Correlations between SRE magnitude and episodic memory impairment 

Spearman rank correlations were used to examine the relationship between SRE magnitude and 

performance on neuropsychological tests of episodic memory. Across all participants, SRE 

magnitude scores did not correlate significantly with the RAVLT immediate recall (R=.114, p=.449), 

RAVLT delayed recall (R=.178, p=.238) or RCFT 3-min recall (R=.238, p=.097) scores. Similarly, 

correlations between SRE magnitude scores and episodic memory scores within each participant 

group did not reach statistical significance (all p values >.1). This suggests that the benefit of self-

reference over other-reference encoding was not related to episodic memory performance per se. 

 

3.5. Voxel-based morphometry results 
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3.5.1. CMS grey matter atrophy profiles across patient groups 

Figure 4 displays the patterns of CMS grey matter atrophy evident in each patient group relative to 

controls. BvFTD patients showed a predominantly anterior profile of CMS atrophy, encompassing 

the bilateral subcallosal cortex, orbitofrontal cortex, medial prefrontal cortex, frontal pole, 

anterior cingulate cortex, paracingulate cortex and superior frontal gyrus, as well as bilateral 

regions of the posterior cingulate cortex (see Figure 4A, Table 2). In contrast, the AD group 

showed a predominantly posterior profile of grey matter atrophy, including the bilateral posterior 

cingulate cortex and precuneus. To a lesser extent, bilateral anterior cingulate and paracingulate 

and right frontal polar grey matter atrophy was also evident in AD patients (see Figure 4B, Table 

2).  

 

Direct comparison of the two patient groups revealed a predominantly anterior burden of atrophy 

in bvFTD, in contrast to a predominantly posterior burden of atrophy in AD. Bilateral regions in the 

subcallosal cortex, orbitofrontal cortex, medial prefrontal cortex, anterior cingulate cortex and 

paracingulate cortex showed greater atrophy in bvFTD compared to AD (see Figure 4C, Table 2). 

The reverse contrast revealed significantly greater atrophy in the bilateral posterior cingulate 

cortex and precuneus in the AD group (see Figure 4D, Table 2). These grey matter atrophy profiles 

are consistent with previously reported patterns of atrophy in bvFTD (Seeley et al., 2008) and AD 

(Karas et al., 2004; Rabinovici et al., 2007).  

 

***INSERT FIGURE 4 AROUND HERE*** 

***INSERT TABLE 2 AROUND HERE*** 

 

3.5.2. Grey matter correlates of SRE magnitude 
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SRE magnitude (indicating source memory advantage of self vs. other-referencing) scores were 

entered into two separate general linear models, to investigate correlations between SRE 

magnitude and regions of grey matter atrophy in each patient group (bvFTD, AD) combined with 

controls. In bvFTD, SRE magnitude covaried with grey matter intensity decrease in predominantly 

anterior CMS regions including the anterior cingulate cortex, paracingulate cortex, medial 

prefrontal cortex and subcallosal cortex, bilaterally (see Figure 5A, Table 3). In AD, SRE magnitude 

covaried with grey matter intensity decrease in bilateral anterior cingulate and paracingulate 

cortices, right posterior cingulate cortex and precuneus, and right frontal pole and orbitofrontal 

and medial prefrontal cortices (see Figure 5B, Table 3). Analysis of potential co-atrophy effects 

revealed that these regions remained significant (p<.05, uncorrected) when controlling for 

diagnostic group effects (see Table 3), and no significant clusters outside the regions of CMS 

atrophy identified in the SRE magnitude analyses emerged (p<.01, uncorrected). As a final check, 

mean cluster intensity values were extracted for each significant cluster in the anterior-dorsal 

CMS, anterior-ventral CMS and posterior CMS and plotted against SRE magnitude scores for bvFTD 

patients and controls (see Supplementary Figure 3A) and AD patients and controls (see 

Supplementary Figure 3B).  

 

***INSERT FIGURE 5 AROUND HERE*** 

***INSERT TABLE 3 AROUND HERE*** 

 

To identify the regions significantly associated with SRE magnitude in both bvFTD and AD, we 

conducted an overlap analysis (see Figure 6, Supplementary Table 2). This analysis revealed the 

bilateral anterior cingulate and paracingulate cortices to be commonly implicated across both 

patient groups. Next, exclusive masking was used to identify the regions that uniquely contributed 

to SRE magnitude in each patient group (see Figure 6, Supplementary Table 2). In bvFTD, integrity 
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of the right medial prefrontal and subcallosal cortices, as well as left anterior cingulate cortices 

correlated exclusively with SRE magnitude. In contrast, SRE magnitude in AD patients was 

exclusively associated with integrity of the right posterior cingulate cortex, as well as regions in the 

right frontal pole and orbitofrontal cortex and right anterior cingulate cortex. Thus, in relation to 

the three CMS subregions proposed by Northoff et al. (2006), anterior-dorsal CMS atrophy was 

associated with reduced SRE magnitude across both bvFTD and AD. In bvFTD, there was additional 

involvement of anterior-ventral CMS atrophy only. By contrast, SRE magnitude was exclusively 

associated with posterior CMS atrophy in AD patients, as well as atrophy in an OFC/frontal polar 

region within the anterior-ventral CMS.  

 

***INSERT FIGURE 6 AROUND HERE*** 

 

4. Discussion 

 

A vast body of work highlights the preferential encoding of information related to the self. In the 

current study, we investigated how damage to regions in the CMS, crucial for self-referential 

processing, impact the SRE in neurodegenerative disorders with divergent anterior versus 

posterior CMS pathology. In bvFTD, where the burden of pathology is overwhelmingly anterior, we 

found that the reduced SRE was related to atrophy in the anterior-ventral CMS. In contrast, 

atrophy in the posterior CMS was uniquely associated with the attenuated SRE in AD, consistent 

with the predominantly posterior burden of atrophy in this patient group. Furthermore, atrophy in 

the anterior-dorsal CMS was implicated across both patient groups. Our findings therefore 

highlight important similarities and differences in the contribution of these CMS subregions and 

corresponding subcomponents of self-referential processing, in mediating the SRE in bvFTD and 

AD.  
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This is the first study, to our knowledge, to explore the mechanisms underpinning SRE disruption 

in AD and bvFTD. In line with our predictions, bvFTD patients did not show an enhancement effect 

of self-referential processing. Our findings mesh well with previous work showing impaired 

retrieval of autobiographical memory, which is inherently self-referential, in these patients (Irish 

et al., 2011a; Piolino et al., 2003). Importantly, the reduced benefit of self- versus other-referential 

encoding did not correlate with performance on standardised tests of episodic memory, 

suggesting that the absence of SRE in these patients could not be explained by a general memory 

deficit per se. Rather, our results indicate that self-referencing has no appreciable influence on 

source memory retrieval in bvFTD. One potential explanation is that alterations in self concept 

influence the degree to which self-related information is preferentially encoded in this syndrome. 

In his original study, Rogers (1977) described the self as a cognitive structure that plays an active 

role in memory, such that new information that is consistent with one’s self is organised and 

remembered more easily than information that is incompatible with one’s self. This raises the 

possibility that alterations to the self, as documented by changes in personality (Rankin, 2005; 

Ruby et al., 2007) and personal values (Miller et al., 2001) in bvFTD, impact on its stability and 

reliability as a cognitive structure that facilitates the encoding of self-related information. 

Nonetheless, the precise mechanisms underlying this effect require further investigation. 

 

On a behavioural level, our findings in AD are comparable with bvFTD, where there was no self-

referential enhancement of source memory. The absence of SRE in our AD group corroborates 

results from previous reports of attenuated SRE and SRRE in AD (Genon et al., 2013; Leblond et al., 

2016), but extend these findings by using a source memory experimental design, showing neither 

item nor source memory enhancement. While a number of existing studies have demonstrated 

significant SRE and SRRE in AD (Kalenzaga et al., 2013; Kalenzaga & Clarys, 2013; Lalanne et al., 
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2013), the apparent disparity in results may be related to differences in methodological 

approaches. Whereas all previous self-referential encoding tasks conducted in AD patients have 

involved making judgments regarding the self-relevance of trait adjectives, reports of significant 

SRE or SRRE appear to be driven by the effect in positive (Lalanne et al., 2013) or negative 

(Kalenzaga et al., 2013; Kalenzaga & Clarys, 2013) trait adjectives only. Thus, it is plausible that 

self-referencing alone is not sufficient to provide a memory advantage in AD, unless the to-be-

remembered stimuli are emotional in nature. Indeed, evidence suggests that a significant 

emotional enhancement effect persists in AD patients, despite their profound episodic memory 

impairments (Kalenzaga, Piolino, & Clarys, 2014; Kumfor, Irish, Hodges, & Piguet, 2013; 2014). 

Given that we included relatively neutral objects and background stimuli in our SRE paradigm, it is 

unlikely that emotional valence had any appreciable impact on memory performance. Taken 

together, our findings contribute to a growing body of research which indicates that self-

referential processing alone is insufficient to enhance memory retrieval in AD. 

 

Importantly, while the absence of source memory enhancement for self-referential information 

was comparable in bvFTD and AD, the neural correlates differed markedly between groups. In line 

with evidence from neuroimaging studies that have highlighted the importance of the MPFC for 

SRE (D'Argembeau et al., 2005; Moran, Heatherton, & Kelley, 2009; Northoff et al., 2006; Philippi, 

Duff, Denburg, Tranel, & Rudrauf, 2012), atrophy in this region was associated with reductions in 

SRE magnitude in bvFTD. In the context of Northoff’s (2006) model, damage to this anterior-

ventral CMS region disrupts the initial coding of stimuli as self-related, thus compromising 

downstream self-referential processes in more posteriorly located CMS regions. In conjunction 

with findings from MPFC lesion patients, who do not show any significant SRE (Philippi et al., 

2012), our results support the notion that disruption to the initial stages of self-referential 

processing in the anterior-ventral CMS may impact the extent to which memory for self-related 
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information is enhanced. On a broader level however, the anterior-ventral CMS has also been 

proposed to function as a ‘valuation’ centre, where subjective value is assigned to incoming 

stimuli (D'Argembeau, 2013; Northoff & Hayes, 2011). As such, this region appears to be involved 

in processing and integrating features that contribute to the subjective value of a stimulus, such as 

self-relatedness (D'Argembeau, 2013; Northoff & Hayes, 2011), reward value (Kringelbach, 2005; 

Levy & Glimcher, 2012) and emotional value (Winecoff et al., 2013), which determines whether it 

is preferentially encoded. Of particular relevance, bvFTD patients do not show the typical memory 

advantage for emotional information, and this has been associated with atrophy in the OFC, which 

forms the most ventral part of the anterior-ventral CMS (Kumfor et al., 2013; 2014). In the same 

vein, the reduced memory enhancement effect for personally ‘valuable’ information was related 

to anterior-ventral CMS atrophy in our bvFTD patients. Damage to this anterior-ventral CMS 

region in bvFTD may therefore be particularly disruptive to the early processing of self-referential 

information, during which personal value is assigned.  

 

In contrast, integrity of the posterior CMS regions (including the PCC and precuneus) was 

exclusively associated with the degree of self-referential enhancement of memory in AD. This 

contrasts with results from Genon et al. (2013; 2014), where PCC activity was associated with the 

accurate recognition of self-referentially encoded information, rather than the SRE magnitude per 

se. Instead, SRE magnitude was associated with lateral PFC atrophy, which presumably mediates 

the interaction between self-referential and higher order cognitive processes (Genon et al., 2013; 

Northoff et al., 2006). Nonetheless, our results extend existing findings by using a targeted region-

of-interest approach to identify specific CMS correlates of the SRE in AD, primarily involving the 

posterior CMS but also an OFC/frontal polar region in the anterior-ventral CMS. Notably however, 

this anterior-ventral CMS subregion implicated in AD was located more laterally and did not 

overlap with the anterior-ventral CMS subregion implicated in bvFTD. Whether this lateral-ventral 
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distinction reflects further functional subdivisions within the anterior-ventral CMS, requires 

further investigation. Nonetheless, our results in AD are compatible with previous reports of both 

posterior and anterior-ventral CMS activity during the retrieval of self-referenced relative to non-

self-referenced stimuli in healthy adults (Fossati et al., 2004; Leshikar & Duarte, 2013; Yaoi, Osaka, 

& Osaka, 2015). On a broader level, the involvement of both posterior and anterior-ventral CMS 

subregions is also consistent with the pattern of CMS activity during inherently self-related 

memory processes such as autobiographical memory retrieval (Addis, McIntosh, Moscovitch, 

Crawley, & McAndrews, 2004; Maguire, 2001; Svoboda, McKinnon, & Levine, 2006). In the context 

of Northoff’s (2006) model, involvement of the posterior CMS in AD, but not bvFTD, suggests that 

the reduced SRE in AD may be further impacted by specific deficits in the ability to integrate newly 

coded self-referential information within the context of existing autobiographical memories 

(Cavanna & Trimble, 2006). Our findings therefore point to the unique contribution of posterior 

CMS atrophy to self-referential memory processes in AD, corroborating previous work 

emphasizing the role of the posterior CMS regions in the retrieval of past, and simulation of 

future, self-referential events in this patient group (Irish et al., 2012a; 2013). 

 

While we identified divergent CMS contributions to the SRE specific to each patient group, our 

analyses also implicated the anterior-dorsal CMS, particularly the anterior cingulate cortex, as a 

common neural correlate of SRE magnitude in bvFTD and AD. With respect to its role in self-

referential processing, Northoff (2006) proposed that the anterior-dorsal CMS is involved in the 

reappraisal and evaluation of self-related information. Indeed, a recent meta-analysis of functional 

neuroimaging studies contrasting self- and other-judgments revealed a spatial gradient in MPFC 

activation, such that self-referential judgments were associated with greater ventral MPFC 

activity, whereas other-referential judgments were related to greater activity in the dorsal MPFC 

(Denny, Kober, Wager, & Ochsner, 2012). The finding that dorsal MPFC supports judgments about 
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others is unsurprising, given its role in perspective taking tasks, such as those involving theory of 

mind (ToM) (D'Argembeau et al., 2007; Gallagher & Frith, 2003). Crucially, bvFTD patients show 

impairments in perspective taking and empathy (Cerami et al., 2014; Dermody et al., 2016; 

Eslinger et al., 2011), which have been proposed to be associated with underlying difficulties in 

inhibiting their own perspective when required to adopt another person’s perspective (Le Bouc et 

al., 2012). It is therefore possible that bvFTD patients tended to encode all stimuli in relation to 

the self, thereby reducing the SRE magnitude. Importantly however, our findings from the 

perceptual encoding condition do not support this position, as we did not find enhanced source 

memory retrieval for both the self- and other-reference conditions compared to the perceptual 

condition. Furthermore, while perspective taking and ToM deficits have been widely reported in 

bvFTD patients (Adenzato, Cavallo, & Enrici, 2010; Bertoux, Funkiewiez, O'Callaghan, Dubois, & 

Hornberger, 2013; Kipps & Hodges, 2006), recent work has delineated between cognitive 

(attribution of intention) and affective (attribution of emotion) ToM, showing comparable deficits 

in cognitive ToM across both bvFTD and AD patients (Dermody et al., 2016; Dodich et al., 2016). 

Against this background, the anterior-dorsal CMS involvement in SRE magnitude across both 

bvFTD and AD patients may be related to deficits in their ability to evaluate information from the 

perspective of another person. Nonetheless, the relationship between perspective taking ability 

and self-referential enhancement of memory in these patient groups remains to be established, 

and represents an important area for future research.  

 

From a theoretical viewpoint, the current findings suggest that attenuation of the self-referential 

enhancement effect in bvFTD and AD may reflect the breakdown of discrete facets of self-

referential processing, which in turn rely upon the integrity of different subregions of the CMS. 

Our results in bvFTD confirm the importance of prefrontal cortex contributions to episodic 

memory function (Simons & Spiers, 2003; Wong et al., 2014) and complement a growing body of 
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literature, which views the anterior-ventral CMS as a core ‘valuation’ hub by assigning subjective 

value to personally-, affectively- and motivationally-salient information (D'Argembeau, 2013; 

Northoff & Hayes, 2011). On the other hand, our findings in AD confirm the prominence of the 

PCC in mediating all aspects of self-related memory impairments in this syndrome (reviewed by 

Irish & Piolino, 2015). While our findings are in line with the notion that different CMS subregions 

mediate discrete aspects of self-referential processing, functional neuroimaging studies employing 

targeted experimental paradigms that directly contrast the different aspects of self-referential 

processing are necessary to support this proposal.  

 

A number of methodological issues warrant consideration. Firstly, as our SRE task only assessed 

source memory accuracy for background images, it is unclear how this compares to accurate 

retrieval of other source details (e.g. encoding context). Nonetheless, our findings demonstrate 

that self-referential processing in AD and bvFTD does not ameliorate impairments on an objective 

measure of source memory. A second point to consider is the use of background image, rather 

than encoding context, as the source recognition question, as this precluded us from 

distinguishing between false alarms for ‘new’ items incorrectly assigned as self, other or 

perceptually referenced. Of particular relevance, recent studies (Rosa & Gutchess, 2013; Rosa, 

Deason, Budson, & Gutchess, 2015) have indicated that the SRE may also impact false alarm rates, 

such that ‘new’ items that are subsequently judged to be highly self-relevant are more likely to be 

falsely recognized as ‘old’. Given that false recognition rates on clinical measures of episodic 

memory are elevated in both bvFTD and AD patients (Flanagan et al., 2016), future studies should 

investigate the potential impact of self-referential processing on false alarm rates in these patient 

groups. Thirdly, due to time constraints and patient fatigue, it was necessary to limit the number 

of trials in our SRE encoding task. Given the small number of responses, item-only hits and item 

misses were collapsed into the same response category (i.e. source-unrecollected) to contrast 
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against item-and-source hits (i.e. source-recollected). Hence, our source memory recognition 

accuracy measure only allowed us to draw conclusions regarding source memory effects, which 

were not conditionalised based on item memory effects. Similarly, the small number of responses 

also precluded us from correcting for lucky guesses in source recognition performance, as per 

previously reported procedures in healthy adults (Leshikar & Duarte, 2013). As such, the impact of 

such response biases on source recognition memory following self-referential encoding in these 

patient groups represents an important area of future enquiry. Additionally, we were not able to 

contrast subsequent item and source recognition accuracy for items positively or negatively 

judged for pleasantness during encoding. Given that greater MPFC activation is observed in 

relation to stimuli judged to be self-relevant (D'Argembeau et al., 2005; Moran et al., 2009), 

comparison of memory for stimuli according to degree of self-relevance may further elucidate 

mechanisms underlying the reduced SRE in bvFTD and AD. Likewise, the relationship between the 

SRE and alterations in concept of self represents an important area of future enquiry, especially 

considering the marked changes to personality and interpersonal conduct in bvFTD (Piguet et al., 

2011). While previous studies in AD have used self-rated measures of identity valence and 

certainty (Lalanne et al., 2013; Leblond et al., 2016), inclusion of measures that allow comparison 

between self and informant responses is necessary, as loss of insight is a prominent clinical 

characteristic in bvFTD (Piguet et al., 2011). Furthermore, given that we employed a region-of-

interest approach in our VBM analyses, we could not exclude the possibility that atrophy of 

regions beyond the CMS may have also contributed to the reduced SRE in bvFTD and AD. In 

particular, the lateral prefrontal cortex has been proposed to support interactions between self-

referential and higher-order processes, especially during tasks with a strong cognitive component 

(Northoff et al., 2006). Comparison of the SRE on tasks with a low versus high cognitive load may 

help further elucidate the role of the lateral prefrontal cortex in self-referential processing in these 

patient groups. Nonetheless, given that the lateral prefrontal cortex shows a similar degree of 
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atrophy (Rabinovici et al., 2007) and contributes to episodic memory deficits (Wong et al., 2014) in 

both bvFTD and AD, it is unlikely that this region differentially contributes to the reduced SRE in 

these patient groups. Finally, future investigations of self-referential processing in bvFTD and AD 

would benefit from incorporating resting-state functional connectivity metrics to clarify the impact 

of CMS pathology on the SRE in, the context of large-scale network dysfunction characteristic of 

these disorders. 

 

In summary, this study reveals the differential involvement of CMS subregions in facilitating the 

SRE, by contrasting neurodegenerative disorders with a predominantly anterior versus 

predominantly posterior burden of pathology. Absence of the SRE in bvFTD is associated with 

underlying pathology in the anterior-ventral CMS, which potentially mediates the early stages of 

self-referential processing, during which personal value is assigned to stimuli. In contrast, 

pathology in the posterior CMS uniquely contributes to the attenuated SRE in AD, likely reflecting 

breakdown in integrative processes that link newly encoded self-related information with existing 

self-referential, autobiographical memories. In addition, anterior-dorsal atrophy appears to 

contribute to reductions in SRE across both bvFTD and AD, pointing to deficits in the evaluative 

aspects of self-referential processing in both syndromes. Our results provide important insights 

into the mechanisms underlying self-referential memory and point to clinically relevant similarities 

and differences in the interaction between self and memory in bvFTD and AD. Exploring the 

relationship between alterations in self concept and the memory benefit conferred by self-

referential processing will be an important next step for future studies to address.  
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Table 1. Demographic and clinical characteristics of the study cohorta 

  Control bvFTD AD Group effect Post hoc test 

Sex (M:F) 9:8 14:8 6:10 n.s. 
 

Age (y) 67.21 (6.35) 62.10 (6.78) 64.81 (9.13) n.s. 
 

Education (y) 14.38 (2.38) 11.90 (2.64) 11.91 (3.42) * Controls > bvFTD, AD 

Disease duration (y) - 5.54 (3.80) 5.51 (4.67) n.s. 
 

CDR Sum of Boxes [18] 0.25 (0.38) 5.45 (2.83) 4.10 (1.79) *** Controls < bvFTD, AD 

FRS Rasch score - -1.06 (0.99) 0.06 (1.48) * bvFTD < AD 

CBI-R total frequency score [100] 3.06 (3.06) 39.57 (13.44) 27.08 (13.36) *** Controls < AD < bvFTD 

ACE-III [100] 96.31 (2.87) 75.82 (12.14) 67.50 (7.67)  *** Controls > bvFTD, AD 

RAVLT immediate recall [15] 10.8 (2.48) 5.69 (4.01) 2.07 (1.98) *** Controls > bvFTD > AD 

RAVLT delayed recall [15] 10.67 (2.99) 5.63 (3.26) 1.27 (1.33) *** Controls > bvFTD > AD 

RCFT 3-min recall [36] 22.21 (6.86) 9.80 (6.15) 4.32 (4.99) *** Controls > bvFTD > AD 

a Standard deviations in parentheses, maximum score for tests shown in brackets. 

Clinical Dementia Rating Scale (CDR); Frontotemporal Dementia Rating Scale (FRS); Cambridge Behavioural Inventory-Revised (CBI-R); 

Addenbrooke’s Cognitive Examination (ACE-III); Rey Auditory Verbal Learning Test (RAVLT); Rey-Osterrieth Complex Figure Test (RCFT). 

*p<.05, **p<.01, ***p<.001, n.s. = non-significant 
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Table 2. Voxel-based morphometry results showing regions of significant grey matter intensity decrease for bvFTD and AD groups compared to 

controls. 

Regions 

Hemisphere 

(L/R/B) 

MNI coordinates Number of 

voxels X Y Z 

bvFTD < Controls 
     

Medial prefrontal cortex, subcallosal cortex, orbitofrontal cortex, frontal pole, 

anterior cingulate cortex, paracingulate cortex, superior frontal gyrus B 6 32 -16 7462 

Posterior cingulate cortex L -14 -34 38 104 

AD < Controls      

Posterior cingulate cortex, precuneus B -8 -46 2 3669 

Anterior cingulate cortex, paracingulate cortex B 12 14 34 699 

Frontal pole R 16 50 -22 113 

bvFTD < AD 
     

Subcallosal cortex, orbitofrontal cortex, medial prefrontal cortex B 10 14 -20 1426 

Paracingulate cortex, anterior cingulate cortex B 6 34 32 867 

AD < bvFTD 
     

Precuneus, posterior cingulate cortex B 2 -68 40 3196 

All results FWE-corrected at p<.05; only clusters with at least 100 contiguous voxels included. All clusters reported t>1.99. Age and years of 

education were included as covariates in all contrasts. L = Left; R = Right; B = Bilateral; MNI = Montreal Neurological Institute.  

 



 44 

Table 3. Voxel-based morphometry results showing regions of significant grey matter intensity decrease that covary with SRE magnitude scores 

Regions 

Hemisphere 

(L/R/B) 

MNI coordinates Number 

of voxels X Y Z 

bvFTD combined with controls 
     

Anterior cingulate cortex, paracingulate cortex† B 0 32 28 152 

Medial prefrontal cortex, subcallosal cortex† R 4 38 -14 122 

AD combined with controls 
     

Anterior cingulate cortex†  B 2 28 26 311 

Frontal pole, orbitofrontal cortex, medial prefrontal cortex† R 12 42 -20 240 

Posterior cingulate cortex† R 16 -36 38 68 

All results uncorrected at p<.01; only clusters with at least 50 contiguous voxels included. All clusters reported t>3.36. Age and years of 

education were included as covariates in all contrasts.  

† Clusters significant (p<.05) when diagnostic group included as an additional covariate for co-atrophy check. 

L = Left; R = Right; B = Bilateral; MNI = Montreal Neurological Institute. 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Figure captions 

Figure 1. Encoding and test phase procedures for the SRE task.  Screens were separated by a 

fixation cross (500ms) not represented here. 

 

Figure 2. Representation of brain regions included in the CMS mask used in VBM analyses 

 

Figure 3. A) Mean percentage correct source recognition responses for self-reference, 

other-reference and perceptual encoding conditions across participant groups. B) SRE 

magnitude (self-reference source accuracy - other-reference source accuracy) across 

groups. * = significant difference between encoding conditions. # = SRE magnitude 

significantly different from 0. Error bars represent standard error of the mean. 

 

Figure 4. VBM analyses showing CMS regions of greater reduction in (A) bvFTD patients in 

comparison with controls (B) AD patients in comparison with controls (C) bvFTD patients in 

comparison with AD patients and (D) AD patients in comparison with bvFTD patients. 

Coloured voxels show regions that were significant in the analysis with p<.05, Family-Wise 

Error corrected, and a cluster threshold of 100 contiguous voxels. Clusters are overlaid on 

the MNI standard brain.  

 

Figure 5. Regions of CMS grey matter atrophy correlating with self-other SRE magnitude in 

A) bvFTD patients and B) AD patients. Coloured voxels show regions that were significant in 

the analysis with p<.01, uncorrected and a cluster threshold of 50 contiguous voxels. 

Clusters are overlaid on the MNI standard brain.  
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Figure 6. Regions of CMS grey matter atrophy that correlate with SRE magnitude scores 

across both bvFTD and AD (overlap shown in green), and regions that correlate exclusively 

in bvFTD patients (red) and exclusively in AD patients (blue). Coloured voxels show regions 

that were significant in the analysis with p<.01, uncorrected and a cluster threshold of 50 

contiguous voxels. Clusters are overlaid on the MNI standard brain. 


