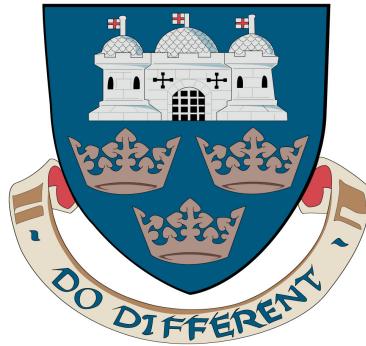


# **An Integrated Clustering Analysis Framework for Heterogeneous Data**

**Aalaa Mojahed**

A thesis submitted for the Degree of  
Doctor of Philosophy

University of East Anglia  
School of Computing Sciences



August 26, 2016

©This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotation from the thesis, nor any information derived therefrom, may be published without the author's prior written consent.

# Abstract

Big data is a growing area of research with some important research challenges that motivate our work. We focus on one such challenge, the variety aspect. First, we introduce our problem by defining heterogeneous data as data about objects that are described by different data types, e.g., structured data, text, time-series, images, etc. Through our work we use five datasets for experimentation: a real dataset of prostate cancer data and four synthetic dataset that we have created and made them publicly available. Each dataset covers different combinations of data types that are used to describe objects. Our strategy for clustering is based on fusion approaches. We compare intermediate and late fusion schemes. We propose an intermediary fusion approach, Similarity Matrix Fusion (SMF), where the integration process takes place at the level of calculating similarities. SMF produces a single distance fusion matrix and two uncertainty expression matrices. We then propose a clustering algorithm,  $Hk$ -medoids, a modified version of the standard  $k$ -medoids algorithm that utilises uncertainty calculations to improve on the clustering performance. We evaluate our results by comparing them to clustering produced using individual elements and show that the fusion approach produces equal or significantly better results. Also, we show that there are advantages in utilising the uncertainty information as  $Hk$ -medoids does. In addition, from a theoretical point of view, our proposed  $Hk$ -medoids algorithm has less computation complexity than the popular PAM implementation of the  $k$ -medoids algorithm. Then, we employed late fusion that aggregates the results of clustering by individual elements by combining cluster labels using an object co-occurrence matrix technique. The final cluster is then derived by a hierarchical clustering algorithm. We show that intermediate fusion for clustering of heterogeneous data is a feasible and efficient approach using our proposed  $Hk$ -medoids algorithm.

# Publications and presentations

A copy of all the followings is presented in Appendix D. The main work in all the publications was conducted by the first author including: proposing solutions, running the experiments, writing the first draft of the papers, creating the datasets used, analysing the results, etc. All the others co-authors efforts have enriched the quality of the work produced.

## **Publications :**

1. We have published a paper [181] titled "A fusion approach to computing distance for heterogeneous data" accepted in KDIR 2014, the 6<sup>th</sup> International Conference in Knowledge Discovery and Information Retrieval which took place in Rome, Italy between the 21<sup>st</sup> and the 24<sup>th</sup> of October 2014. KDIR is a part of IC3K conferences, the International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. The conference proceedings are indexed by Citation Index (ISI), INSPEC, DBLP, EI (Elsevier Index) and Scopus.
2. We have published a paper [183] titled "Applying Clustering Analysis to Heterogeneous Data Using Similarity Matrix Fusion (SMF)" as part of MLDM 2015, the 11<sup>th</sup> International Conference on Machine Learning and Data Mining which took place in Hamburg, Germany between the 20<sup>th</sup> and the 23<sup>ed</sup> of July 2015. The paper was published by Springer Verlag in volume 9166 of the Lecture Notes in Computer Science series in the book "Machine Learning and Data Mining in Pattern Recognition" .

3. We have also successfully published a paper [182] titled "An adaptive version of  $k$ -medoids to deal with the uncertainty in clustering heterogeneous data using an intermediary fusion approach" as a regular paper in the International Journal of Knowledge and Information Systems (KAIS). the paper is submitted on 07 October 2015, revised on 02 January 2016 and accepted on 28 Februray 2016.
4. We are also at the moment targeting the International Journal of Data Mining and Knowledge Discovery (DMKD) with a regular paper titled "Clustering heterogeneous data using fusion".

**Presentations :**

1. A 20 minutes oral presentation of our paper, "A fusion approach to computing distance for heterogeneous data", in KDIR 2014.
2. A 30 minutes oral presentation of our paper, "Applying Clustering Analysis to Heterogeneous Data Using Similarity Matrix Fusion (SMF)", in MLDM 2015.
3. A a poster representation of the research proposal in the CMP Postgraduate day on the 29<sup>th</sup> of November 2013 with a research abstract published within the event's abstract booklet.
4. A a poster representation of the research progress in the CMP Postgraduate day on the 31<sup>st</sup> of October 2014 with a research abstract published within the event's abstract booklet.
5. A poster representation of the research in the 8<sup>th</sup> Saudi Students Conference which takes place at the hosting university, Imperial College London, UK between 31<sup>st</sup> of January and the 1<sup>st</sup> of February 2015. The research abstract is published by the Imperial College Press.
6. A a poster representation of the research progress in the CMP Postgraduate day on the 23<sup>ed</sup> of October 2015 with a research abstract published within the event's abstract booklet.

*I dedicate the 3 years effort to the one person who personifies everyone in my life; parents, sisters, brothers, children and friends. I know myself, but you know me more. I trust myself, but you trust me more. I love myself, but you love me more. I love you dearly my soul-mate and I love our commitment and determination to each other.*

*It is always you who give me everything I need and it is only you...*

# Acknowledgements

First and foremost, I would like to express my deep debt of gratitude and greatest appreciation to my supervisor, Dr. Beatriz de la Iglesia, for supervising my graduate study for three and a half years. I feel blessed to have her as my advisor. She helped me not only accomplish my dream of becoming a professional in data mining but also develop a more mature personality. I thank her for every piece of her intensive efforts that have been put into this research work. I also thank her for introducing me to the field of data mining at the first place in 2006 when I was a Master student at the UEA in which I found great interests of doing my PhD in this area.

I would like to thank Dr. Wenja Wang for sharing with me a lot of knowledge in doing this work. He has been instrumental with Beatriz in finding the topic of this dissertation. I would also like to recognize his helpful comments and advice in improving the quality of my work.

I gratefully acknowledge the funding sources that made my Ph.D. work possible. I was funded by King Abdulaziz University, Jeddah, KSA for my 3 years study period which is supported in the UK by the Saudi Cultural Bureau in London.

All the love and thanks goes to the best person out there for me, the only and unique man in my life since I was 14, my sweetheart Bader. He was a marvellous half during the last 14 years, we are really linked heart to heart. I cannot remember one thing in my life without him; he is always the light that leads the way. He sacrificed to let me be what I

want to be and showed the world how much he loves me and believes in me. You helped me to achieve my goals as quick as I can to get back to your arms simply by your faith in me.

My adorable kids, Azoz, Lamar and Aziz, you gave me the most in my life and I owe you a lot. I cannot imagine my days without you; you are the smile, peace and safe, thank you. My special hero Azoz, you always stand by me when things look bleak, you inhabit my heart and I cannot force myself to forget you or stop loving you. If the only place where I can see you is in my dreams, I will sleep forever. I miss you son. Lamar and Aziz, you are the reason for the sparkle in my eye, smile on my face and bounce in my step, I love you.

Also, I am very grateful to my beloved family, parents, sisters and brothers. Their sincerest love has given me courage to overcome the most difficult times in my way of pursuing my dream of studying abroad and doing my PhD. Special thanks are due to my special sisters: Sahar and Nouf. It was their unconditional and consistent care, support and understanding that helped me sustain. No matter where I go, how old I become, I will never forget that I owe my childhood to a unique mother, Sahar, who was and still is my backbone. Nouf, we both are so varied yet alike, so diverse yet so unified, at different places yet always by each others side. All I can say is I love you both.

Last but not least, special thanks due to my studying mate, Abdurrahman. He shares with me the long cold and disparate nights until the sun shines again. I appreciate your patience, support and love.

Thank you all

# Contents

|                                                          |             |
|----------------------------------------------------------|-------------|
| <b>Acknowledgements</b>                                  | <b>v</b>    |
| <b>List of Figures</b>                                   | <b>x</b>    |
| <b>List of Tables</b>                                    | <b>xiii</b> |
| <b>1 Introduction</b>                                    | <b>1</b>    |
| 1.1 Background and motivation . . . . .                  | 1           |
| 1.2 Research hypothesis . . . . .                        | 3           |
| 1.3 Research objectives . . . . .                        | 4           |
| 1.4 Research limitations and boundaries . . . . .        | 5           |
| 1.5 Research contributions . . . . .                     | 6           |
| 1.6 Thesis structure . . . . .                           | 7           |
| <b>2 The Task of Clustering in Data Mining</b>           | <b>8</b>    |
| 2.1 Introduction to clustering . . . . .                 | 8           |
| 2.2 Distance measures . . . . .                          | 11          |
| 2.2.1 Types of distance measures . . . . .               | 13          |
| 2.2.2 Weaknesses of existing distance measures . . . . . | 25          |
| 2.2.3 Selecting distance measures . . . . .              | 25          |
| 2.3 Cluster analysis . . . . .                           | 27          |
| 2.3.1 Notation definitions . . . . .                     | 27          |
| 2.3.2 Clustering solutions . . . . .                     | 29          |
| 2.3.3 Number of clusters . . . . .                       | 31          |
| 2.4 Clustering algorithms . . . . .                      | 35          |
| 2.4.1 Classification of clustering algorithms . . . . .  | 35          |
| 2.4.2 Representation of clusters . . . . .               | 45          |

|          |                                                                          |            |
|----------|--------------------------------------------------------------------------|------------|
| 2.4.3    | Overview on existing clustering algorithms                               | 46         |
| 2.5      | Evaluation of clustering solutions                                       | 47         |
| 2.5.1    | Internal validation methods                                              | 50         |
| 2.5.2    | External validation methods                                              | 56         |
| 2.5.3    | Relative validation methods                                              | 58         |
| 2.6      | Cluster ensemble                                                         | 60         |
| 2.6.1    | Generation mechanism                                                     | 61         |
| 2.6.2    | Consensus function                                                       | 63         |
| 2.7      | Chapter summary                                                          | 65         |
| <b>3</b> | <b>Clustering Framework for Heterogeneous Data</b>                       | <b>66</b>  |
| 3.1      | Introduction to Heterogeneous data definition                            | 66         |
| 3.2      | Defining heterogeneous data                                              | 69         |
| 3.3      | Problem statement                                                        | 71         |
| 3.4      | Related work on clustering heterogeneous data                            | 77         |
| 3.5      | Proposed methodology for applying cluster analysis to heterogeneous data | 80         |
| 3.5.1    | The intermediate fusion approach                                         | 81         |
| 3.5.2    | The proposed $H_k$ -medoids clustering                                   | 87         |
| 3.5.3    | The late fusion approach                                                 | 92         |
| 3.6      | Validating the proposed clustering framework for heterogeneous data      | 98         |
| 3.7      | The sets of heterogeneous data used to validate the proposed methodology | 99         |
| 3.7.1    | The cancer dataset                                                       | 100        |
| 3.7.2    | The plants dataset                                                       | 104        |
| 3.7.3    | The journals dataset                                                     | 106        |
| 3.7.4    | The papers dataset                                                       | 109        |
| 3.8      | The celebrities dataset                                                  | 110        |
| 3.9      | Chapter summary                                                          | 112        |
| <b>4</b> | <b>Results of applying the similarity matrix fusion</b>                  | <b>113</b> |
| 4.1      | Experimental set up                                                      | 113        |
| 4.2      | Computing DMs                                                            | 118        |
| 4.3      | The results of the cancer dataset                                        | 119        |
| 4.3.1    | A worked example of the SMF approach                                     | 119        |
| 4.3.2    | DMs and FM calculation results                                           | 121        |

|          |                                                                |            |
|----------|----------------------------------------------------------------|------------|
| 4.3.3    | Clustering results . . . . .                                   | 126        |
| 4.3.4    | Statistical testing . . . . .                                  | 133        |
| 4.4      | The results of the plants dataset . . . . .                    | 136        |
| 4.4.1    | DMs and FM calculation results . . . . .                       | 136        |
| 4.4.2    | Clustering results . . . . .                                   | 141        |
| 4.4.3    | Statistical testing . . . . .                                  | 145        |
| 4.5      | The results of the journals dataset . . . . .                  | 147        |
| 4.5.1    | DMs and FM calculation results . . . . .                       | 147        |
| 4.5.2    | Clustering results . . . . .                                   | 149        |
| 4.5.3    | Statistical testing . . . . .                                  | 153        |
| 4.6      | The results of the papers dataset . . . . .                    | 155        |
| 4.6.1    | DMs and FM calculation results . . . . .                       | 155        |
| 4.6.2    | Clustering results . . . . .                                   | 157        |
| 4.6.3    | Statistical testing . . . . .                                  | 161        |
| 4.7      | The results of the celebrities dataset . . . . .               | 162        |
| 4.7.1    | DMs and FM calculation results . . . . .                       | 162        |
| 4.7.2    | Clustering results . . . . .                                   | 164        |
| 4.7.3    | Statistical testing . . . . .                                  | 167        |
| 4.8      | Chapter summary . . . . .                                      | 168        |
| <b>5</b> | <b>Results of applying the H<sub>k</sub>-medoids algorithm</b> | <b>170</b> |
| 5.1      | Experimental set up . . . . .                                  | 170        |
| 5.2      | The results of the cancer dataset . . . . .                    | 174        |
| 5.3      | The results of the plants dataset . . . . .                    | 175        |
| 5.4      | The results of the journals dataset . . . . .                  | 178        |
| 5.5      | The results of the papers dataset . . . . .                    | 180        |
| 5.6      | The results of the celebrities dataset . . . . .               | 181        |
| 5.7      | Time complexity of H <sub>k</sub> -medoids . . . . .           | 183        |
| 5.7.1    | Time complexity of H <sub>k</sub> -medoids . . . . .           | 183        |
| 5.7.2    | Thresholds parameter sensitivity . . . . .                     | 186        |
| 5.8      | Chapter summary . . . . .                                      | 188        |
| <b>6</b> | <b>Clustering heterogeneous data using late fusion</b>         | <b>190</b> |
| 6.1      | Experimental set up . . . . .                                  | 190        |

|                                                                    |                                                  |            |
|--------------------------------------------------------------------|--------------------------------------------------|------------|
| 6.2                                                                | The results of the cancer dataset . . . . .      | 194        |
| 6.3                                                                | The results of the plants dataset . . . . .      | 196        |
| 6.4                                                                | The results of the journals dataset . . . . .    | 200        |
| 6.5                                                                | The results of the papers dataset . . . . .      | 202        |
| 6.6                                                                | The results of the celebrities dataset . . . . . | 205        |
| 6.7                                                                | Results evaluation . . . . .                     | 207        |
| 6.8                                                                | Chapter summary . . . . .                        | 210        |
| <b>7</b>                                                           | <b>Conclusions and further research</b>          | <b>212</b> |
| 7.1                                                                | Conclusions . . . . .                            | 212        |
| 7.2                                                                | Limitations and future work . . . . .            | 217        |
| <b>Bibliography</b>                                                |                                                  | <b>219</b> |
| <b>Appendices</b>                                                  |                                                  | <b>241</b> |
| <b>Appendix A: Data Dictionary</b>                                 |                                                  | <b>242</b> |
| <b>Appendix B: Full results of the late fusion approach</b>        |                                                  | <b>250</b> |
| <b>Appendix C: The detailed results of the celebrities dataset</b> |                                                  | <b>255</b> |
| <b>Appendix D: Publications</b>                                    |                                                  | <b>257</b> |

# List of Figures

|     |                                                                                                                                                                               |     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.1 | Computers increasingly do the legwork work as we move towards the data mining era . . . . .                                                                                   | 9   |
| 2.2 | $k$ -means clustering algorithm . . . . .                                                                                                                                     | 39  |
| 2.3 | PAM clustering algorithm . . . . .                                                                                                                                            | 41  |
| 2.4 | CLARA clustering algorithm . . . . .                                                                                                                                          | 41  |
| 2.5 | CLARANS clustering algorithm . . . . .                                                                                                                                        | 42  |
| 2.6 | Representation of clusters by points schemes . . . . .                                                                                                                        | 45  |
| 2.7 | Representation of clusters using classification tree and conjunctive statements schemes . . . . .                                                                             | 46  |
| 2.8 | Diagram of the clustering ensemble approach . . . . .                                                                                                                         | 62  |
| 3.1 | RGB image element representation . . . . .                                                                                                                                    | 75  |
| 3.2 | Heterogeneous data representation . . . . .                                                                                                                                   | 76  |
| 3.3 | Conceptual framework for clustering heterogeneous datasets comprising $M$ elements and producing three clusters following the proposed intermediate fusion approach . . . . . | 83  |
| 3.4 | $H_k$ -medoids clustering algorithm . . . . .                                                                                                                                 | 89  |
| 3.5 | A graphical representation of the cluster ensemble . . . . .                                                                                                                  | 94  |
| 4.1 | FM for the data sample and its combined uncertainty filter . . . . .                                                                                                          | 121 |
| 4.2 | Heatmap representation for DMs and FM-1 calculated for the prostate cancer dataset . . . . .                                                                                  | 123 |
| 4.3 | Heatmap representation for the filtered fused matrix (FM-1) calculated for the prostate cancer dataset . . . . .                                                              | 124 |
| 4.4 | Summary of the performance of $k$ -medoids clustering obtained using the individual DMs for the prostate cancer dataset . . . . .                                             | 128 |
| 4.5 | Summary of the performance of $k$ -medoids clustering obtained on fusion matrices for prostate cancer dataset . . . . .                                                       | 130 |

|      |                                                                                                                                                              |     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.6  | Summary of the performance of $k$ -medoids clustering obtained on both elements' DMs and fusion matrices for prostate cancer dataset . . . . .               | 131 |
| 4.7  | Heatmap representation for DMs and FMs-1 calculated for the plants dataset                                                                                   | 138 |
| 4.8  | Heatmap representation for the filtered fused matrices, FM-1, FM-NoRare-1, FM-NoRare-Reduced-1 and FM-Reduced-1, calculated for the plants dataset . . . . . | 139 |
| 4.9  | Summary of the performance of $k$ -medoids clustering obtained using the individual DMs for the plants dataset . . . . .                                     | 142 |
| 4.10 | Summary of the performance of $k$ -medoids clustering obtained by fusion matrices for plants dataset . . . . .                                               | 143 |
| 4.11 | Summary of the performance of $k$ -medoids clustering obtained on both elements' DMs and best and worst fusion matrices for plants dataset . . .             | 144 |
| 4.12 | Heatmap representation for DMs and FM-1 calculated for the journals dataset . . . . .                                                                        | 148 |
| 4.13 | Heatmap representation for the filtered fused matrix (FM-1) calculated for the journals dataset . . . . .                                                    | 149 |
| 4.14 | Summary of the performance of $k$ -medoids clustering obtained using the individual DMs for the journals dataset . . . . .                                   | 150 |
| 4.15 | Summary of the performance of $k$ -medoids clustering obtained on fusion matrices for journals dataset . . . . .                                             | 152 |
| 4.16 | Summary of the performance of $k$ -medoids clustering obtained on both elements' DMs and fusion matrices for journals dataset . . . . .                      | 153 |
| 4.17 | Heatmap representation for DMs and FMs-1 calculated for the papers dataset . . . . .                                                                         | 156 |
| 4.18 | Heatmap representation for the filtered fused matrices, FM-1 and FM-NoRare-1 calculated for the papers dataset with grey representing uncertainty . . . . .  | 157 |
| 4.19 | Summary of the performance of $k$ -medoids clustering obtained using the individual DMs for the papers dataset . . . . .                                     | 158 |
| 4.20 | Summary of the performance of $k$ -medoids clustering obtained on fusion matrices for papers dataset . . . . .                                               | 159 |
| 4.21 | Summary of the performance of $k$ -medoids clustering obtained on both elements' DMs and best and worst fusion matrices for papers dataset . .               | 160 |
| 4.22 | Heatmap representation for DMs and FM-1 calculated for the celebrities dataset . . . . .                                                                     | 163 |
| 4.23 | Heatmap representation for the filtered fused matrices, FM-1 calculated for the celebrities dataset . . . . .                                                | 164 |

|      |                                                                                                                                                                                                                 |     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.24 | Summary of the performance of $k$ -medoids clustering obtained using the individual DMs for the celebrities dataset . . . . .                                                                                   | 165 |
| 4.25 | Summary of the performance of $k$ -medoids clustering obtained on fusion matrices for celebrities dataset . . . . .                                                                                             | 166 |
| 4.26 | Summary of the performance of $k$ -medoids clustering obtained on both elements' DMs and fusion matrices for celebrities dataset . . . . .                                                                      | 167 |
| 5.1  | The average execution time measured in seconds of H $k$ -medoids and PAM implementation of the standard $k$ -medoids calculated for the heterogeneous datasets ordered in ascending number of objects . . . . . | 185 |
| 6.1  | Visualization of post-hoc Nemenyi test for the performance of different clustering approaches . . . . .                                                                                                         | 210 |

# List of Tables

|      |                                                                                                                  |     |
|------|------------------------------------------------------------------------------------------------------------------|-----|
| 2.1  | The main four quantities of binary features to compare two $m$ -dimensional objects . . . . .                    | 14  |
| 2.2  | The main differences between the typical hierarchical clustering algorithms . . . . .                            | 38  |
| 2.3  | The main differences in computational complexity between the typical partitioning clustering algorithms. . . . . | 43  |
| 2.4  | Notation in validity indices . . . . .                                                                           | 50  |
| 3.1  | Main characteristics of our heterogeneous datasets . . . . .                                                     | 100 |
| 3.2  | NICE risk group classification system for localised prostate cancer . . . . .                                    | 102 |
| 3.3  | The classification systems for the journals dataset . . . . .                                                    | 108 |
| 4.1  | Correlation coefficients between DMs and FM-1 calculated for prostate cancer dataset . . . . .                   | 125 |
| 4.2  | NICE risk groups for prostate cancer dataset . . . . .                                                           | 126 |
| 4.3  | Gleason grade risk group classification system for localised prostate cancer . . . . .                           | 126 |
| 4.4  | Mortality conditions grouping for prostate cancer dataset . . . . .                                              | 127 |
| 4.5  | The performance of clustering prostate cancer dataset using certainty filters . . . . .                          | 133 |
| 4.6  | Statistical analysis of SMF performance on the prostate cancer dataset . . . . .                                 | 134 |
| 4.7  | The Dunn index values from the results of clustering the prostate cancer dataset . . . . .                       | 135 |
| 4.8  | Correlation coefficients between DMs and FMs-1 calculated for plants dataset . . . . .                           | 140 |
| 4.9  | The performance of clustering plants dataset using certainty filters . . . . .                                   | 144 |
| 4.10 | Statistical analysis of SMF performance on the plants dataset . . . . .                                          | 145 |
| 4.11 | The Dunn index values from the results of clustering the plants dataset . . . . .                                | 146 |
| 4.12 | Classification systems for journals dataset . . . . .                                                            | 150 |
| 4.13 | The performance of clustering journals dataset using certainty filters . . . . .                                 | 152 |
| 4.14 | Statistical analysis of SMF performance on the journals dataset . . . . .                                        | 154 |

|      |                                                                                                                                                                                                              |     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.15 | The Dunn index values from the results of clustering the journals dataset .                                                                                                                                  | 154 |
| 4.16 | Correlation coefficients between DMs and FMs-1 calculated for papers dataset . . . . .                                                                                                                       | 157 |
| 4.17 | The performance of clustering papers dataset using certainty filters . . . . .                                                                                                                               | 161 |
| 4.18 | Statistical analysis of SMF performance on the papers dataset . . . . .                                                                                                                                      | 161 |
| 4.19 | The Dunn index values from the results of clustering the papers dataset . .                                                                                                                                  | 162 |
| 4.20 | Correlation coefficients between DMs and FM-1 calculated for celebrities dataset . . . . .                                                                                                                   | 164 |
| 4.21 | The Dunn index values from the results of clustering the celebrities dataset                                                                                                                                 | 168 |
| 5.1  | A comparison between the performance of SMF and H <sub>k</sub> -medoids clustering for the prostate cancer dataset . . . . .                                                                                 | 175 |
| 5.2  | A comparison between the performance of SMF, H <sub>k</sub> -medoids, clustering by SD element alone and by the best TS element in the four natural grouping systems of the prostate cancer dataset. . . . . | 176 |
| 5.3  | A comparison of SMF and H <sub>k</sub> -medoids clustering for the plants dataset .                                                                                                                          | 177 |
| 5.4  | A comparison between SMF and H <sub>k</sub> -medoids clustering and the best individual element for the plants dataset. . . . .                                                                              | 178 |
| 5.5  | A comparison between SMF and H <sub>k</sub> -medoids clustering for the journals dataset . . . . .                                                                                                           | 179 |
| 5.6  | A comparison between SMF, H <sub>k</sub> -medoids and the best individual DM for the journals dataset in all the three classification systems. . . . .                                                       | 180 |
| 5.7  | A comparison between SMF and H <sub>k</sub> -medoids clustering for the papers dataset . . . . .                                                                                                             | 181 |
| 5.8  | A comparison between SMF, H <sub>k</sub> -medoids and best individual DMs for the celebrities dataset . . . . .                                                                                              | 182 |
| 5.9  | A comparison between SMF and H <sub>k</sub> -medoids clustering for the celebrities dataset . . . . .                                                                                                        | 182 |
| 5.10 | A comparison between SMF , H <sub>k</sub> -medoids clustering and the best DMs for the celebrities dataset. The best results for each validation measure and grouping are highlighted in bold. . . . .       | 183 |
| 5.11 | The execution time measured in seconds of H <sub>k</sub> -medoids and PAM implementation of the standard $k$ -medoids for all the experiments. . . . .                                                       | 184 |
| 5.12 | Certainty thresholds sensitivity and their effect on H <sub>k</sub> -medoids performance                                                                                                                     | 187 |
| 5.13 | Certainty thresholds sensitivity and their effect on H <sub>k</sub> -medoids execution cost . . . . .                                                                                                        | 187 |
| 6.1  | The ensemble settings that produced the best aggregation clustering results                                                                                                                                  | 193 |

|      |                                                                                                                                                                                  |     |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 6.2  | Summary of the performance of the clustering ensemble for the cancer dataset . . . . .                                                                                           | 195 |
| 6.3  | Summary of the performance of individual DMs, intermediate and late fusion approaches which were examined in order to apply the cluster analysis to the cancer dataset . . . . . | 196 |
| 6.4  | Summary of the Dunn index that was calculated for the plants dataset . . . . .                                                                                                   | 198 |
| 6.5  | Summary of the performance of clustering the ensemble for the plants dataset . . . . .                                                                                           | 198 |
| 6.6  | Summary of the performance of individual DMs, intermediate and late fusion approaches for the plants dataset . . . . .                                                           | 199 |
| 6.7  | Summary of the performance of the clustering ensembles for the journals dataset . . . . .                                                                                        | 201 |
| 6.8  | Summary of the performance of individual DMs, intermediate and late fusion approaches for the journals dataset . . . . .                                                         | 201 |
| 6.9  | Summary of the Dunn index for the papers dataset . . . . .                                                                                                                       | 203 |
| 6.10 | Summary of the performance of the clustering ensemble for the papers dataset . . . . .                                                                                           | 204 |
| 6.11 | Summary of the performance of individual DMs, intermediate and late fusion approaches for the papers dataset . . . . .                                                           | 204 |
| 6.12 | Summary of the performance of the clustering ensemble for the celebrities dataset . . . . .                                                                                      | 206 |
| 6.13 | Summary of the performance of individual DMs, intermediate and late fusion approaches on the celebrities dataset . . . . .                                                       | 206 |
| 6.14 | Ranked measure of the performance of individual DMs, intermediate and late fusion approaches . . . . .                                                                           | 207 |

# List of Abbreviations

|             |                                                                                                             |
|-------------|-------------------------------------------------------------------------------------------------------------|
| $H$         | a heterogeneous dataset                                                                                     |
| $O_i$       | the $i^{th}$ object $\in H$                                                                                 |
| $N$         | the total number of objects $\in H$                                                                         |
| $E_{O_i}^j$ | the $j^{th}$ element of the $i^{th}$ object                                                                 |
| $M$         | the total number of elements of $O_i$                                                                       |
| $k$         | number of clusters                                                                                          |
| DM          | distance matrix represents the pair-wise distances between objects                                          |
| FM          | a fusion matrix reporting fused distances                                                                   |
| CV          | a certainty vector                                                                                          |
| UFM         | matrix expressing the degree of uncertainty from missing elements                                           |
| DFM         | matrix expressing the standard deviation of similarity values in the DMs                                    |
| SD          | a structured data element                                                                                   |
| TS          | a time-series element                                                                                       |
| TE          | a free text element                                                                                         |
| IE          | an image element                                                                                            |
| $dist$      | distance measure                                                                                            |
| CTS         | Connected-Triple-based Similarity, a co-occurrence similarity method                                        |
| SRS         | SimRankbased Similarity, a co-occurrence similarity method                                                  |
| ASRS        | Approximate SimRank-based Similarity, a co-occurrence similarity method                                     |
| SL          | single-linkage, a hierarchical clustering algorithm                                                         |
| CL          | Complete-linkage, a hierarchical clustering algorithm                                                       |
| AL          | Average-linkage, a hierarchical clustering algorithm                                                        |
| DTW         | Dynamic Time Wrapping, a distance measure for Time-series                                                   |
| NICE        | The risk classification system of the National Institute for Health and Care Excellence for prostate cancer |
| GS-1        | Gleason score 1, a risk classification system for the cancer dataset                                        |
| GS-2        | Gleason score 2, a risk classification system for the cancer dataset                                        |
| MC          | Mortality condition, a classification system for the cancer dataset                                         |
| IF          | The Impact Factor score, a classification system for the journal dataset                                    |
| ES          | The Eigenfactor Score, a classification system for the journal dataset                                      |
| IF          | The Article Influence score, a classification system for the journal dataset                                |

# Chapter 1

## Introduction

This chapter serves as an introduction to the research. In Section 1.1 we give some general background on big data and direct the discussion towards heterogeneous data and the motivation of dealing with it. Section ?? gives the research hypothesis, while Section 1.3 summarises the objectives of this study as well as its road-map. Boundaries and limitation are presented in Section 1.4 and the main contributions of the research are stated in Section 1.5. The chapter ends in Section 1.6 with the structure of the remaining parts of the thesis.

### 1.1 Background and motivation

Big data is produced daily by digital technology such as social networks, web logs, traffic sensors, broadcast audio streams, online banking transactions, music file hosting services, financial markets, and so on. Big data is not only huge in volume but also has the properties of velocity and variety [147]. The three *Vs* of volume, velocity and variety refer to different aspects of big data that overwhelm the processing capacity of conventional systems. Volume describes massive datasets (e.g. terabytes, petabytes of data); velocity refers to the increasing rate at which data flows (e.g. continuously streaming data); and variety defines data variability which does not fit the conventional structured database (e.g. images, free text, video, sound). The three categories can also overlap in some

context to provide real challenges for data analysis. Interestingly, valuable patterns and information lie within this data complexity. However, exploiting the value in such data requires new processing methods.

The research presented in this thesis tries to explore big data. Given the large scope of such enterprise, we narrow our investigation to the variety aspect of big data. We interpret variety as referring to the presence of heterogeneous data types such as text, images, audio, structured data, time series etc. In this research, we set out to deal explicitly with variety in the data. In particular, we address the complexity that occurs when objects to be analysed are described by multiple data types. For example, in a hospital environment, a patient may be characterised by structured data from the administrative systems, images from radiology, text reports that accompany images, others text reports containing, for example, discharge information, results of blood tests which may be interpreted as time series, etc. The analysis of such complex objects may sometimes be beneficial as mining them may reveal interesting associations that would remain concealed if researchers investigate only one type of data. This area of development is currently under-addressed in data mining so there is a gap to fill.

Two popular data mining tasks are clustering and classification. Although they share some similarities and common analysis purposes, they are different approaches. Classification is the most common representative of supervised learning techniques (i.e. predefined classes are required). Classification models are build so that the class of an object can be determined given the values of some decision (or dependent) variables. On the other hand, clustering analysis is used to represent unsupervised knowledge discovery tasks (i.e. where no supervisor has established predefined classes) [124] [257]. In clustering, a set of patterns or objects are clustered into related groups based on some measures of (dis)similarity. The aim is to form groups or clusters where the objects within one cluster are similar to one another and different from the objects in other clusters. Given the exponential growth in the generation of big data (expected to be over 35 trillion GB by 2020), clustering is receiving renewed attention and is used in many applications. Furthermore, in the context of heterogeneous data unlabelled objects are likely and the task

is often to investigate if there is any relationships among objects. Thus, in this research we focus on clustering analysis.

The measure of similarity plays a critical role in pattern analysis, including clustering. Applying appropriate measures results in more accurate configurations of the data [227]. Accordingly, several measures have been proposed and tested in the literature. These range from simple approaches which reflect the level of dissimilarity between two attribute values, to others such as those that categorize conceptual similarity [131]. Different data types (i.e., graphs, text, time series, etc.) rely on different similarity measures. Most of the available, reliable and widely-used measures can only be applied to one type of data. In this context, it is essential to construct an appropriate similarity measure for comparing complex objects that are described by components from diverse data types. Once a measure of distance is defined, and a Distance Matrix (DM) representing the distance between the objects can be obtained, complex objects can be manipulated by means of any of the popular clustering algorithms, including partitioning (e.g.  $k$ -means [166], Partitioning Around Medoids (PAM) [133] or Clustering LARge Applications (CLARA) [135]) and hierarchical algorithms (e.g. BIRCH. [274], CURE [92] or ROCK [93]). Furthermore, it may also be possible to perform other data mining tasks, e.g., classification analysis using distance-based techniques such as  $k$ -nearest neighbor algorithms [42]. Thus, experimenting and comparing different approaches to measure the (dis)similarity between heterogeneous objects is one of the main objectives of this study.

## 1.2 Research hypothesis

We hypothesise that heterogeneous objects are complex and properly defined by all of their constituent elements, hence clustering of complex objects should take account of all of the constituent data types. For example, clustering patients on the basis of all of their available data (e.g. images, time series with results of blood tests, text reports, etc) should produce better configurations than clustering patients based on any one individual piece of information or data type. Our hypothesis is that the process of fusion of information

from each object's element could compensate for possible errors in a single element's clustering result, hence the decision of a group should be more reliable than the decision of any individual element.

### 1.3 Research objectives

Mining heterogeneous data is complex in terms of having mixed data types, various data representation schemes, and miscellaneous methods to measure similarity. Limited attempts in the literature cover the processing of heterogeneous data; there is big room for improvement in this area of research. Our main aim, therefore, is to define the problem of mining heterogeneous data and to propose different approaches to efficiently apply clustering to such data. Some emphasis is given to calculating robust similarity measures as they are crucial for clustering, and in addition considerable attention is paid to carrying out clustering validation in order to assess the efficiency of the proposed approaches. Six key objectives structure the road-map of this research, and these are:

1. State the problems and challenges in mining heterogeneous data and review all the preceding efforts and related research in this context.
2. Identify a data representation scheme for heterogeneous data that is capable of describing complex objects which include structured data along with other unstructured data types, e.g., text, time-series, images, etc. The representation scheme should be extendable to allow for the introduction of more complexity in the objects such as other unstructured data types.
3. Propose a framework to cluster heterogeneous objects following intermediate and late fusion approaches:
  - Intermediate fusion can operate by combining distances between the constituent parts of the objects. Hence heterogeneous objects are compared with regards to each data type separately using selected distance measures and then

the distances are fused. Clustering operates on the fused distances. The fusion occurs as part of the modelling.

- Late fusion approaches can operate via ensemble methods to combine the results of applying clustering analysis on each dataset separately. Hence objects are clustered according to each data type and the clustering results are fused to produce the final clustering. Fusion occurs after models production.

4. Collect and prepare several heterogeneous datasets. In each dataset, objects should be described by a different collection of data types in order to examine the approaches on different combinations. Preferably, objects should have labels that can be used to assess the results using external cluster quality measures.
5. Test the results of operating both intermediate and late fusion clustering on the prepared datasets. Moreover, examine the benefit of clustering objects by means of different data types compared to clustering them by means of only one single data type. This would address the main research hypothesis.
6. Interpret, evaluate and compare the results using clustering validation techniques and multiple statistical tests.

## 1.4 Research limitations and boundaries

The limitations and boundaries of our study are:

- Although heterogeneous data is growing in popularity, there is no formal universal definition of it and it therefore means different things to different groups of researchers.
- Mining heterogeneous data is a relatively new research area. This may hinder progress as very limited experience can be exploited and approaches we can compare against may not be readily available.

- There are difficulties in finding appropriate public datasets. The alternative for finding suitable published or accessible datasets is to create synthetic heterogeneous datasets from various sources.
- The complications in mining mixed data types, created by semantic gaps as well as the fact that multimedia data are subject to varying interpretations (e.g. a particular colour can represent different things in different cultures).
- The problem of uncertainty in measuring and combining similarity calculations due to missing data, disagreement between distance calculations, etc.

## 1.5 Research contributions

The main contributions of this research are:

1. To provide a detailed and extensible definition of heterogeneous data. Our formal data heterogeneity definition was published in [183].
2. To propose an intermediate data fusion approach, SMF, as a part of the proposed solution which incorporates uncertainty. This appeared in [181]
3. To propose a new  $Hk$ -medoids algorithm for clustering heterogeneous data that uses uncertainty in the fusion process to produce better clustering configurations. This algorithm was published as a journal article in [182].
4. To propose a framework to investigate clustering performance in an integrative manner including internal and external validation methods as well as statistical significance tests and provide extensive experimental results under this framework.
5. To provide a comparison of intermediate and late data fusion approaches for clustering heterogeneous data. This comparison has been submitted for publication

## 1.6 Thesis structure

The thesis incorporates seven chapters, below is a brief explanation of them:

**Chapter 1** Discusses the importance of the research and the motivation to conduct the study. It also, summarises the aims and objectives of the research as well as its boundaries and limitations.

**Chapter 2** Discusses in details the task of clustering in data mining; it defines clustering analysis and describes all the issues related to implementing this task. In addition, it outlines the most widely-used distance measures categorised by the data types that they deal with. At the end of the chapter, the evaluation of clustering solutions is described along with the available internal and external validation methods.

**Chapter 3** Reviews how the literature describes heterogeneous data and some of the key related work. Then, it covers our definition of heterogeneous data. Next, it discusses the proposed methods to apply clustering analysis on this type of data including intermediate and late fusion approaches. Finally, it describes the heterogeneous datasets that are experimented with to evaluate the proposed techniques.

**Chapter 4** Presents the results of applying the proposed intermediate fusion approach, SMF, on five different datasets and evaluates the results using external clustering validation methods.

**Chapter 5** Shows the results of applying the proposed H<sub>k</sub>-medoids clustering algorithm which takes account of uncertainty calculations.

**Chapter 6** Demonstrates the results of applying late fusion schemes on the five heterogeneous datasets and evaluates the results using external clustering validation methods.

**Chapter 7** Provides conclusions by discussing the results of all the proposed solutions. In addition, it recommends some ideas for future work.

# Chapter 2

## The Task of Clustering in Data Mining

This chapter provides background on clustering. It starts in Section 2.1 with a general introduction to data mining and then the focus is narrowed to cluster analysis as one of the main data mining tasks. Next in Section 2.2 we discuss how to measure distances in datasets as this plays a critical role in many pattern analysis tasks including clustering. Other important related issues such as the possible clustering solutions and number of clusters are investigated in Section 2.3. This is followed by a discussion on existing clustering algorithms in Section 2.4. Then, a review on clustering result assessment methods is summarise in Section 2.5. A cluster ensemble discussion is then given in Section 2.6. In Section 2.7, the chapter ends with a summary.

### 2.1 Introduction to clustering

Data mining is a combination of techniques, methods and algorithms used to extract hidden knowledge from massive databases in order to help decision makers. It is applicable to several fields: sciences [143], engineering [91], medicine [185], healthcare [196], economics [20], social sciences [105], business [30] and many others. Therefore, it is quickly becoming a powerful tool for expanding our knowledge of the physical and social worlds [233]. Figure 2.1. illustrates the assistance that data mining offers. There are many classifications for what data mining can do, for example, Shaw et al. [212] group data mining

tasks into the following broad categories:

- Predictive modeling (e.g., classification and regression)
- Class identification (e.g., clustering and mathematical taxonomy)
- Dependency analysis (e.g., discovering association rules and frequent sequences)
- Dependency modeling and causality, i.e. data visualization (e.g., graphical models, geometric projection and density estimation)
- Deviation detection/modeling (e.g., anomalies and changes)
- Concept description (e.g., summarisation, discrimination and comparison)

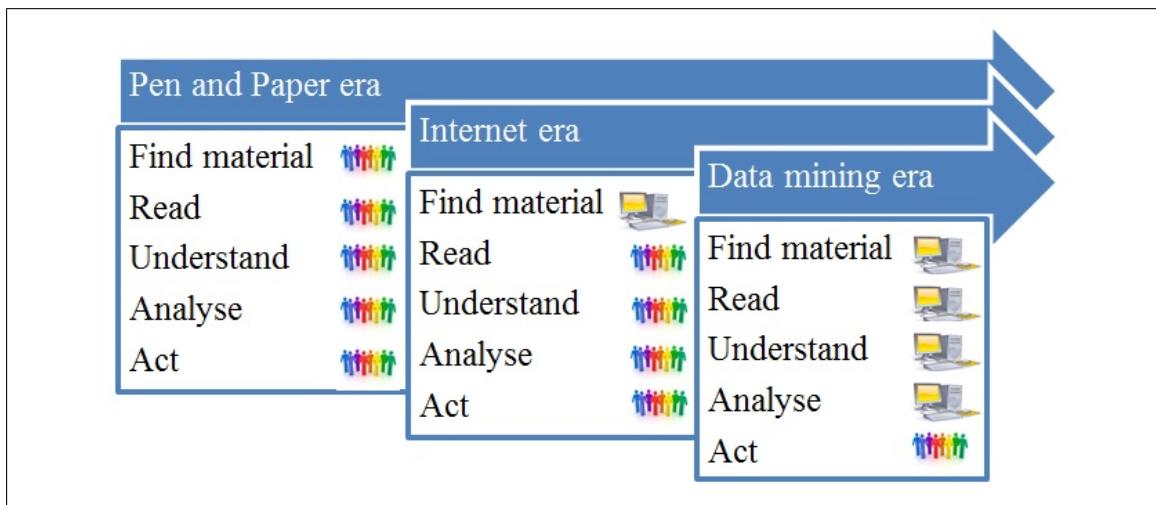


Figure 2.1: Computers increasingly do the legwork work as we move towards the data mining era

Different tasks may require different data mining models. For instance, association rules would be needed to discover relationships between items, while a clustering algorithm would be required to group similar data into clusters. It should be noted here that choosing the best algorithm for each data problem is a considerable challenge. Data mining uses a family of computational tools (e.g., statistical analysis, decision trees, neural networks, rule induction and graphic visualization) that were developed during the last years. Recent improvements and changes in computer H/W, S/W and data types have

made data mining even more attractive. In this research we study one of the main data mining tasks, clustering, to solve a growing present challenge: mining heterogeneous data. Therefore, clustering is described in detail in this chapter. The discussion covers most related issues including clustering definition, areas of application, different types of clustering solutions, similarity measures and existing clustering techniques. Afterwards, in Chapter 3, a discussion on heterogeneous data is presented.

Clustering is an unsupervised classification technique where a set of patterns (observations, data items or feature vectors), are clustered into related groups or clusters based on some similarity or dissimilarity measure without using predefined class labels [102]. If the dataset,  $D$ , comprises  $N$  objects such  $D = \{O_1, O_2, \dots, O_N\}$  and the  $i^{th}$  object in  $D$  is denoted  $O_i = \{A^1, A^2, \dots, A^M\}$  where the  $j^{th}$  component,  $A^j$ , is a data feature or an attribute and its value is denoted as  $O_i.A^j$  and  $M$  is the object's dimensionality, then the  $N$  objects are clustered into  $k$  groups where  $k \leq N$ . Normally, to achieve the goal of clustering the number of clusters has to be  $k \ll N$ . Typically the dataset  $D$  to be clustered is viewed as a  $N \times M$  object-feature matrix. The partition of  $D$  into  $k$  sub-groups is denoted as  $\hat{C} = \{C_1, C_2, \dots, C_k\}$ . Apart from using class labels, when available, to verify how well the clustering worked, clustering does not use previously assigned class labels during data processing. This is why it is considered as unsupervised learning [227]. In contrast to classification analysis where the objective is to predict the class to which a new pattern belongs, clustering seeks to discover the number and compositions of natural partitions or clusters in the data. One of the drawbacks of unsupervised learning is the probability of generating highly undesirable clusters. Using some form of supervision can improve the clustering quality. For example, semi-supervised clustering clusters objects based on user feedback or guidance constraints that lead the algorithm towards a better partitioning [102].

Data from different application areas and different data types has been analyzed using clustering algorithms. Data in different application areas includes: geoscientific data, e.g. satellite images [144]; biological data, e.g. microarray gene expression [129]; World Wide Web data [156] and multimedia data [109]. Examples of different data types that

were used in clustering tasks are: Text [228]; time-series [155] and structured data [7]. Clustering is also a highly effective tool in spatial database applications [187], information retrieval [158], Web analysis [270], marketing [95], medical diagnostics [89], computational biology [17], image segmentation [261], outlier detection [161] and many other applications.

Clustering contains assumptions about the meaning of similarity as it is based on comparisons of objects. A reliable and accurate similarity measure is an essential requirement for effective clustering performance. Most clustering algorithms then try to maximize the inter-cluster similarity and minimize the intra-cluster similarity. In other words, they try to combine objects that are similar to objects within their clusters and dissimilar to objects of other clusters [73]. A more detailed discussion on similarity and dissimilarity measures can be found in Section 2.2.

The problem of clustering can be described as an optimization problem with respect to some clustering criteria. Two commonly used criteria are compactness and separation. Compactness is a measure of object similarity within a cluster and separation is a measure of isolation between clusters [172]. These criteria are used to assess the results of applying a clustering algorithm to group some data. To use these criteria, there are several validity measures that can be optimized for better clustering performance but no single measure can be considered as the best for all clustering problems. Moreover, it is possible to optimize multiple measures either separately or combined as a single measure to evaluate the clustering solution. This is known as multi-objective clustering [140]. All possible solutions along with validity index values describe the complete search space [172]. The process of evaluating the complete search space is called cluster validity assessment and is presented in Section 2.5.

## 2.2 Distance measures

Distance or similarity measures are essential to solve many pattern recognition problems such as classification, clustering, outlier detection, noise removal and retrieval problems

[132]. The similarity of patterns in any clustering technique is typically reflected by a distance measure. Jain [124] defined the "distance measure" term as a metric or quasi-metric on the space of features utilized to calculate and represent the similarity between patterns or objects. Synonyms for distance measures include "similarity measures" and "similarity coefficients". There is a variety of similarity/dissimilarity measures that have been developed and are in use at present [32]. These measures range from simple approaches which reflect the dissimilarity between two patterns based on their attribute values (e.g. Euclidean) to others like those that categorize the conceptual similarity [131]. The importance of these indices comes from their critical impact on the quality of the clustering output [227]. Therefore, with a good distance measure the construction of the learning models becomes easier and its accuracy usually improves [260].

A distance measure (e.g., Minkowski method) is simply called a "metric" (function) if it satisfies four mathematical properties [227, 113]. If  $O_i$ ,  $O_j$  and  $O_z$  are the objects and  $dist$  is the distance metric, then the four properties are:

1. Reflexivity: the metric function produces zero, if and only if, the two examined objects are identical, i.e.  $dist(O_i, O_j) = 0 \leftrightarrow O_i = O_j \quad \forall i \wedge j \in \{1 : N\}$ .
2. Symmetry: the distance from an objects  $O_i$  to an object  $O_j$  is the same as the distance from  $O_j$  to  $O_i$ , i.e.  $dist(O_i, O_j) = dist(O_j, O_i) \quad \forall i \wedge j \in \{1 : N\}$ .
3. Triangle inequality: this property is denoted by  $dist(O_i, O_z) \leq dist(O_i, O_j) + dist(O_j, O_z) \quad \forall i \wedge j \wedge z \in \{1 : N\}$ , where the equality happens when  $O_j$  lies on the line that connects  $O_i$  and  $O_z$ .
4. Non-negativity: the metric function does not produce negative distances, i.e.  $dist(O_i, O_j) \geq 0 \quad \forall i \wedge j \in \{1 : N\}$ .

In contrast, other distance measure, for example, some methods used with binary data are not metrics, thus they do not satisfy these mathematical properties [227]. Also, there are multiple distance measures for numeric data that are not metrics such as the Cosine similarity method (defined in the next section). Non-metric distance measures are occasionally referred to as "divergence" [32].

### 2.2.1 Types of distance measures

The diversity of problems, data types and their scales makes picking the most appropriate distance measure(s) a major challenge. In this section we present some of the widely-used distance measures classified according to the data types that they deal with.

1. **Distance measure for structure data:** The typical feature types in structured data are binary, discrete nominal or ordinal and continuous [254]. Whereas binary attributes may take the value 0 or 1, a discrete attribute can take one of a set of values while a continuous feature gets a real value [227]. The similarity/dissimilarity of objects is typically defined by some measure of distance of the individual attributes that create these objects. Considering a dataset containing  $N$  objects,  $\{O_1, O_2, \dots, O_N\}$ , where each object  $O_i$  is described by a single attribute  $A$  which is denoted as  $O_i.A$ , the dissimilarity between  $O_i$  and  $O_j$  are defined by Tan et al. [231] according to the attributes type as follows:

$$dist(O_i, O_j) = \begin{cases} \begin{array}{ll} \text{Binary or nominal attributes} & \left\{ \begin{array}{ll} 0 & \text{if } O_i.A = O_j.A \\ 1 & \text{if } O_i.A \neq O_j.A \end{array} \right. \\ \text{Ordinal attributes} & |O_i.A - O_j.A|/(N-1) \\ \text{Continuous attributes} & |O_i.A - O_j.A| \end{array} \end{cases}$$

The common distance measures described below are more complex calculations as they measure the distance between objects that are described by multiple attributes. They calculate the distance between two structured objects defined as  $O_i = \{O_i.A^1, O_i.A^2, \dots, O_i.A^p, \dots, O_i.A^z\}$  and  $O_j = \{O_j.A^1, O_j.A^2, \dots, O_j.A^p, \dots, O_j.A^z\}$ . The following measures are classified according to the attributes type of the structured data.

- **Distance measures for binary data**

The group of measures developed for this category of data is known as matching coefficients [57]. The approach underlying these techniques is that two objects are viewed as similar to the degree that they share a common pattern of at-

tribute values among the binary variables. Typically, the matching coefficients range between 0 for not similar at all and 1 for completely similar [73]. The comparison between two objects,  $O_i$  and  $O_j$ , that are represented by the binary vector feature form with  $z$  attributes leads to four quantities called Operational Taxonomic Units (OTUs). Those are listed below and shown in Table 2.1 [32]:

- a = the number of positions where  $O_i.A^p$  was 1 and  $O_j.A^p$  was 1.
- b = the number of positions where  $O_i.A^p$  was 1 and  $O_j.A^p$  was 0.
- c = the number of positions where  $O_i.A^p$  was 0 and  $O_j.A^p$  was 1.
- d = the number of positions where  $O_i.A^p$  was 0 and  $O_j.A^p$  was 0.

|                                   | <b>Presence of <math>i</math></b> | <b>Absence of <math>i</math></b> | <b>sum</b>          |
|-----------------------------------|-----------------------------------|----------------------------------|---------------------|
| <b>Presence of <math>j</math></b> | $a$                               | $c$                              | $a + c$             |
| <b>Absence of <math>j</math></b>  | $b$                               | $d$                              | $b + d$             |
| <b>sum</b>                        | $a + c$                           | $b + d$                          | $p = a + b + c + d$ |

Table 2.1: The main four quantities of binary features to compare two  $m$ -dimensional objects

There are multiple similarity measures for this type of data proposed in the literature. The four most popular measures are discussed in this section. The first one is Russell/Rao Index [201] which is the default for binary similarity measure. It can be expressed in terms of the previous four quantities as:

$$\frac{a}{a + b + c + d} \quad (2.1)$$

This index is the proportion of cases in which both binary vectors are positively matched to the total number of features. In contrast, the Jaccard coefficient [123], sometimes referred to as Tanimoto coefficient [221], excludes d from consideration which represents joint absences where neither  $O_i$  nor  $O_j$  were 1:

$$\frac{a}{a + b + c} \quad (2.2)$$

The third calculation is the Matching coefficient [223], sometimes referred to

as Rand [200], which includes both matched cells a and d in the numerator:

$$\frac{a+d}{a+b+c+d} \quad (2.3)$$

The fourth measure is Dice's coefficient [54]. It is similar to the Jaccard coefficient, with an additional weight given to cases where  $O_i$  and  $O_j$  were 1:

$$\frac{2a}{2a+b+c} \quad (2.4)$$

The distance between two vectors is determined by subtracting each of the previous calculations from 1. Once distances are calculated for the whole data they are combined into a matrix that is an input for the selected clustering algorithm [73].

To illustrate this, assume the following two binary vectors,  $O_i$  and  $O_j$ .

$$O_i = \{1, 1, 0, 0, 1, 0, 0, 1\}$$

$$O_j = \{0, 1, 0, 1, 1, 1, 0, 1\}$$

Then, the four quantities are equal to:  $a = 3$ ,  $b = 1$ ,  $c = 2$  and  $d = 2$ . Consequently, the four described measures equal to:

$$\begin{array}{lllll} \text{Russell/Rao} & = & \frac{2}{3+1+2+2} & = & \frac{1}{4} \xrightarrow{\text{aftersubtraction}} 1 - \frac{1}{4} = \frac{3}{4} \\ \text{Jaccard} & = & \frac{3}{3+1+2} & = & \frac{1}{2} \xrightarrow{\text{aftersubtraction}} 1 - \frac{1}{2} = \frac{1}{2} \\ \text{Rand} & = & \frac{3+2}{3+1+2+2} & = & \frac{5}{8} \xrightarrow{\text{aftersubtraction}} 1 - \frac{5}{8} = \frac{3}{8} \\ \text{Dice} & = & \frac{2 \cdot 3}{2 \cdot 3 + 1 + 2} & = & \frac{2}{3} \xrightarrow{\text{aftersubtraction}} 1 - \frac{2}{3} = \frac{1}{3} \end{array}$$

It is obvious that the four indexes have different values; this is due to the differences in the definition of each of the measures. Russell/Rao index and matching correlation include negative matches, the  $d$  value, while Jaccard and Dice's coefficient do not. Furthermore, Dice's coefficient uses a weighting scheme. According to Sokal and Sneath [224], the  $d$  value does not reflect

necessarily any similarity between objects as a large proportion of the binary dimensions in two objects are more likely to have negative matches. Some other researchers [68] considered the negative matches but they see positive matches as more significant, thus they give the former less weight comparing to the latter.

Though a variety of binary similarity measures have been developed, only a few studies have compared their performance. For example, Jakson et al. [125] compared eight different similarity measures to evaluate the distances between fish species. In handwriting identification practice, Zhang and Srihari [273] compared seven binary measures which have been summarised by Tubbs [238] to solve a matching problem. A large number of experiments were conducted in these studies and they end up with different conclusions, however, in regards to the measures we have mentioned, Jaccard and Dice's coefficients were the best performers. In addition, a recent survey conducted by Choi et al. [37] has compared 76 binary similarity measures and classified them hierarchically to observe close relationships among them. This type of study has lead researchers to choose the more accurate measures for their problems.

- **Distance measures for discrete and continuous data**

Several distance measures for continuous data have been developed. The most popular and widely-used methods are given below:

- A. **Minkowski metric family**

The most popular proximity measure for this data category is the Minkowski metric,  $\mathcal{P}(O_i, O_j)$ , which is a generalization of other well-known similarity measures. Based on the Pythagorean Theorem, Euclid stated that the shortest distance between two points is a straight line connect them, consequently, this definition is known as the Euclidean distance [32]. Minkowski in the late 19<sup>th</sup> century considered other distance measures and generalized this idea to form this family of measures [141]. The Minkowski measure is the  $r^{th}$  root of the sum of the absolute differences

to the  $r^{th}$  power between the values of the objects' attributes. It is calculated using the following formula [124]:

$$\mathcal{P}(O_i, O_j) = \left( \sum_{p=1}^z |O_i.A^p - O_j.A^p| \right)^{\frac{1}{r}} \quad (2.5)$$

where,  $O_i$ ,  $O_j$  are respectively the  $i^{th}$  and the  $j^{th}$  objects in the dataset,  $r$  is a parameter,  $z$  is the data dimensionality (number of attributes) and  $O_i.A^p$  and  $O_j.A^p$  are the  $p^{th}$  attribute of  $O_i$  and  $O_j$ . The parameter,  $r$ , should not be confused with the dimensionality,  $z$ . Special cases of the Minkowski metric arise when  $r$  has different assignments. This includes the city block (Manhattan) distance ( $L_1$ norm) and the Euclidean distance ( $L_2$ norm) and the max norm ( $L_\infty$ norm). They occur when  $r = 1$ ,  $r = 2$  and  $r \rightarrow \infty$  respectively.

The Euclidean distance is defined as the square root of the sum of squared differences between two patterns. It runs from zero (in the case of identical objects) to an undetermined maximum. It has to be mentioned here that, in practice, the square root in the Euclidean distance function is often not computed because if the square root is taken or not, similar objects will still be similar anyway. Euclidean distance is the most widely used metric as it works efficiently with different data types in different dimensional space. Moreover, it has proved its effectiveness in the case of data that has compact or isolated clusters [169]. On the other hand, it sometimes needs data rescaling to get a common range of values [254] or a weighting scheme [11] in order to solve the drawback of large-scaled features due to its sensitivity to the scale of numbers.

Data rescaling is required for a fair comparison when manipulating data with different measurement units and scales. An example will be a case of measuring the distance between objects based on age and income features. Unless these two attributes are rescaled, the distance between objects will be dominated by income. To rescale a dataset, there are

two well-known techniques: data normalization and data standardization. Data normalization scales the numbers in the range between zero and one. The normalization rescales the value of the  $p^{th}$  dimension of the  $i^{th}$  object,  $O_i.A^p$ , by dividing the difference between the original value,  $O_i.A^p_{org}$ , and the minimum of the  $p^{th}$  dimension,  $A^p_{min}$ , by the difference between the maximum of the same dimension,  $A^p_{max}$ , and its minimum  $A^p_{min}$ . The following formula defines data normalization of  $O_i^x$ :

$$O_i.A^p_{norm} = \frac{O_i.A^p_{org} - A^p_{min}}{A^p_{max} - A^p_{min}} \quad (2.6)$$

Data standardization rescales the dataset by ignoring the level and amplitude aspects and transforming the numbers to have zero mean and unit variance. The level is the general size of the values which is measured by the mean and the amplitude is the extremeness or variability of the values, which is measured by the standard deviation. The standardization rescales the value of the  $p^{th}$  dimension of the  $i^{th}$  object,  $O_i.A^p$ , using the mean value,  $A^p_{mean}$ , and the standard deviation,  $A^p_{std}$ , of  $p^{th}$  dimension following the next formula:

$$O_i.A^p_{std} = \frac{O_i.A^p_{org} - A^p_{mean}}{A^p_{std}} \quad (2.7)$$

In addition, the Standardized Euclidean distance (SEuclidean) is also used in practice and might be defined as the Euclidean distance measure that is calculated on standardized data. The SEuclidean distance between structured data objects requires computing the standard deviation vector  $S = \{s^1, s^2, \dots, s^p, \dots, s^z\}$ , where  $s^p$  is the standard deviation calculated over the  $p^{th}$  attribute,  $A^p$ , of the structure data. SEuclidean between two objects,  $O_i$  and  $O_j$ , is:

$$SEuclidean_{O_i, O_j} = \sum_{p=1}^z (O_i.A^p - O_j.A^p)^2 / s^p \quad (2.8)$$

### B. Salton's Cosine Similarity

It is a measure of similarity between two vectors suggested by [209] which measures the cosine of the angle between these vectors. It is a judgment of orientation and not magnitude, so for vectors with the same orientation the value will be 1; for vectors at  $90^\circ$  angle it will be 0. Thus, its values lie in the range from 0 to 1 in positive spaces [262]. Cosine similarity is expressed by the following equation to measure the similarity between two  $z$ -dimensional objects  $O_i$  and  $O_j$ :

$$\cos(O_i, O_j) = \frac{\sum_{p=1}^z O_i.A^p \times O_j.A^p}{\sqrt{\sum_{p=1}^z (O_i.A^p)^2} \times \sqrt{\sum_{p=1}^z (O_j.A^p)^2}} \quad (2.9)$$

Cosine similarity is one of the most popular similarity measure applied to text documents [148]. This is due to its efficiency in the evaluations for sparse vectors or matrices in particular as only the non-zero dimensions will be calculated. Additionally, it works independently of the document length, i.e., it considers two documents as identical objects if they have the same set of words even if they occur in different frequencies [67].

2. **Distance measure for text:** The bag of words is one of the most popular representation models for text mining. In this scheme words are assumed to appear independently and the order is immaterial. Each word corresponds to a dimension in the term-frequency-matrix,  $TFM$ , and each document then becomes a vector of non-negative  $t$  values,  $\vec{D}$ .  $TFM$  is a mathematical  $d \times t$  matrix that represents the frequency of a list of  $t$  terms in a set of  $d$  documents. Term frequency-inverse document frequency (tf-idf) [113] is a weighting scheme used to determine the value of each entry in  $TFM$  such that  $w_{i,j}$  represent the value of the  $j^{th}$  term in the  $i^{th}$  document  $\vec{D}_i$ .

For the text data type we can use the Euclidean distance and Cosine calculation described earlier. Also, the Jaccard coefficient which measures similarity of binary data can be used. For text documents, it compares the sum weight of shared terms

to the sum weight of terms that are present in either of the two document but are not the shared terms. In addition, the following methods are other alternatives:

### A. Pearson Correlation Coefficient

A decade after Francis Galton defined regression for the first time in 1885, Karl Pearson developed a correlation index that is known by his name and still in use until today [206]. In contrast to most of the similarity methods which are bounded between [0,1], the Pearson Correlation Coefficient is measured from -1 to +1. The extremes +1 and -1 means the two objects are perfectly correlated in the case of +1 in a positive manner and in the case of -1 in a negative manner. 0 reflects uncorrelated objects while the in-between values indicating intermediate similarity or dissimilarity. When dealing with positive values only, the Pearson coefficient can be transformed linearly by adding 1 to it and dividing the total by 2. In general, Pearson coefficient measures the degree of linear dependency [67]. There are several forms of the Pearson correlation coefficient formula. The commonly used metric to measure the similarity between two text documents  $\vec{D}_i$  and  $\vec{D}_j$  is [254]:

$$Pearson(\vec{D}_i, \vec{D}_j) = \frac{t \sum_{x=1}^t w_{i,x} w_{j,x} - TF_i \times TF_j}{\sqrt{[t \sum_{x=1}^t (w_{i,x})^2 - TF_i^2][t \sum_{x=1}^t (w_{j,x})^2 - TF_j^2]}},$$

where,  $TF_i = \sum_{x=1}^t w_{i,x}$  and  $TF_j = \sum_{x=1}^t w_{j,x}$ .

### B. Averaged Kullback-Leibler Divergence

The Kullback-Leibler divergence [142], also called the relative entropy, is a non-metric, non-symmetric measure widely applied for evaluating the differences between two probability distributions. Since, a document is considered as a probability distribution of terms, we calculate the distance between the two corresponding probability distributions to reflect the similarity between two documents. Given two distributions of words  $\vec{D}_i$  and  $\vec{D}_j$  the KL-divergence is

defined as:

$$D_{KL}(\vec{D}_i \parallel \vec{D}_j) = \sum_{x=1}^t w_{i,x} \times \log \left( \frac{w_{i,x}}{w_{j,x}} \right) \quad (2.10)$$

The average KL-divergence,  $D_{\text{avg}}KL$ , is sometimes used instead, for example in text clustering [235], to overcome the non-symmetric problem. It can be computed with the following formula:

$$D_{\text{avg}}KL(\vec{D}_i \parallel \vec{D}_j) = \sum_{x=1}^t \pi_1 \times D_{KL}(w_{i,x} \parallel w_t) + \pi_2 \times D_{KL}(w_{j,x} \parallel w_t), \quad (2.11)$$

where,  $\pi_1 = \frac{w_{i,x}}{w_{i,x} + w_{j,x}}$ ,  $\pi_2 = \frac{w_{j,x}}{w_{i,x} + w_{j,x}}$  and  $w_t = \pi_1 \times w_{i,x} + \pi_2 \times w_{j,x}$

3. **Distance measure for time-series data type:** To understand how we can measure the distance between  $O_i$  and  $O_j$  that are described by time-series data, we need to know what is a time-series. A time-series is a temporally ordered set of  $r$  values which are typically collected in successive intervals of time such as  $\{(t_1, v_1), \dots, (t_l, v_l), \dots, (t_r, v_r)\}$ . Thus time-series can be represented as a vector of  $r$  time/value pairs, however,  $r$  is not fixed, and thus the length of two objects of that type can be different.

The similarity between two time-series may be computed as similarity in time, similarity in shape and/or similarity in change. The time-based similarity compares the underlying shape in the time dimension, thus, this type of assessment ignores the time component and deals with the values recorded as structured data. Correlation measures, for example the previously described Euclidean distance, can be used for this type of comparison [136]. The shape-based similarity has two types of assessment: strict time dependent and weak time dependent. The strict time dependent assessment is similar to the time-based similarity with the difference of mitigating noise in the index to capture similarity even when the data are not aligned in time; the literature suggests the Dynamic Time Warping (DTW) approach (DTW discussed below) for this type. The weak time dependent assessment compares

the similarity between the local sub-sequences of two Time-series, i.e., recognises the similarity in the shape without requiring the time alignment. The time-series shapelets method [263] is the most popular approach for measuring these similarities. The change-based similarity measures how time-series change over time. Auto-correlation functions were used in most research to transform data in order to assess the similarity rather than comparing the actual values, where similarity arises when we have a similar form of auto-correlation. To do this, researchers, normally, fit a generative model, e.g. Auto-regressive Moving Average [16].

Here, we focus on measuring the shape similarity using an elastic approach such as DTW, first introduced into the data mining community in 1996 [19]. DTW is a non-linear (elastic) technique that allows similar shapes to match even if they are out of phase in the time axis. Researchers [202] have investigated the ability of DTW to handle sequences of variable lengths and concluded that re-interpolating sequences into equal lengths does not produce a statistically significant difference to comparing them directly using DTW. Others [106] have argued that interpolating sequences into equal lengths is detrimental. In our practice, we believe that we can assess time-series objects using their original lengths. However, the calculated distances are normalized and this is achieved by normalizing through the sum of both series' lengths. To explain how to align two time-series using DTW, suppose the lengths of time-series which represent  $O_i$  and  $O_j$  are  $r_1$  and  $r_2$  respectively. First, we need to construct an  $r_1 \times r_2$  piecewise squared distance matrix. The  $(z^{th}, l^{th})$  element of this matrix corresponds to the squared distance  $(O_i.v_z - O_j.v_l)^2$ , which represents alignment between the values,  $v_z$  and  $v_l$ , of the two time-series,  $O_i$  and  $O_j$ , respectively. Then the DTW distance for  $O_i$  and  $O_j$  is defined by the shortest path through this matrix which is the best match between these two sequences. The optimal path can be found using dynamic programming [202] that minimises the warping cost:

$$DTW_{O_i, O_j} = \min \left\{ \sqrt{\sum_{k=1}^K W_k} \right\} \quad (2.12)$$

where  $W_k$  is the matrix element  $(z^{th}, l^{th})_k$  that also belongs to the  $k^{th}$  element of a

warping path,  $W$ .  $W$  is a set of contiguous matrix elements that represent a mapping between  $O_i$  and  $O_j$ .

4. **Distance measure for image data type:** There are many methods that have been formulated in the literature to measure similarity between images and these methods depend on the representation of images. Images can be compared using, for example, pixel-based [65], feature-based [50] and structural-based [31] methods. In addition, we may use different versions of the image representation data such as: the raw image, normalized image intensities, ranked intensities or joint probabilities of corresponding intensities. Lets say that we want to measure the similarity between two 2-dimensional  $m \times n$  24-bit RGB images,  $IMG_X$  and  $IMG_Y$ , which are stored as 3-dimensional matrices that are  $m \times n \times 3$ . The sequences can be considered as intensities of corresponding pixels in the images in a raster-scan order such as:  $IMG_X = \{imgX_{1,1,1}, imgX_{1,1,2}, imgX_{1,1,3}, imgX_{1,2,1}, imgX_{1,2,2}, \dots, imgX_{1,n,3}, \dots, imgX_{2,1,1}, \dots, imgX_{m,n,3}\}$  and  $IMG_Y = \{imgY_{1,1,1}, imgY_{1,1,2}, imgY_{1,1,3}, imgY_{1,2,1}, imgY_{1,2,2}, \dots, imgY_{1,n,3}, \dots, imgY_{2,1,1}, \dots, imgY_{m,n,3}\}$ . In this representation, the first two dimensions of the matrix,  $m$  and  $n$ , are the image dimensions while the third dimension is used to define colour components for each individual pixel. The colour of every pixel is determined by the combination of red, green, and blue intensities. For a particular pixel, colours intensities are stored in each of the three colour planes at the pixel's position as a number between 0 and 1. In our definition of similarity, we do not consider rotational and scaling differences. Therefore, if images  $IMG_X$  and  $IMG_Y$  match, corresponding pixels in the images will show the same scene point. Within this scenario, considerable efforts have been made to define similarities between images using popular methods such as Pearson Correlation Coefficient[206], Tanimoto measure[123], and any of the Minkowski measures family [141] including ( $L_1$ norm) and ( $L_2$ norm). However, it was found that many of these metrics suffer from one or more of the following disadvantages:

- It is difficult to combine the metric with powerful image recognition techniques such as SVM [242], LDA [25], PCA [195], etc.

- The measure is sophisticated and its computation is complicated.
- It does not obey the triangle inequality in all cases, therefore, it is possible to have two highly dissimilar images that can be both very similar to a third one.

Instead, multimedia data mining researchers take advantage of using image descriptor systems that facilitate classification, indexing and image retrieval such as QBIC [75], Netra [165], MARS [190] and VisualSEEK [220]. All of these systems work fully automatically based on the images' low-level features including colour, texture and shape. One of the image descriptors that has recently shown good performance in different image tasks (e.g., image retrieval [153] and image completion [104]) is GIST[189]. GIST is a global descriptor that does not need any form of image segmentation and works using a similar approach to the popular local SIFT descriptor [162]. In a preliminary stage, each image is re-sized in a way that does not affect the aspect ratio of the original image. More precisely, a centered crop is conducted and then the image is re-sized so that the cropped region preserves as much as possible from the original input image. Researchers who have proposed this model have also determined a set of perceptual dimensions that represent the dominant spatial structure of an image. These are: naturalness, openness, roughness, expansion and ruggedness. These dimensions can be estimated using spectral and coarsely localized information. The images are divided to  $4 \times 4$  grids for which orientation histograms are extracted. In more detail, this model uses the expression "Spatial Envelop" to define the low dimensional representation of the images. This term comes from a similar idea to what is employed in architecture to describe a composite set of boundaries. For example, the special boundaries of most freeway images look like a large surface stretching to the horizon line, filled-in with concavities such as vehicles whereas an image of a jungle would look very different from this perspective. Therefore, spatial envelope is represented by the relationship between the outlines of the surfaces and their properties, including the inner textured pattern generated by different objects like windows, trees, cars, people etc. Afterwards, when the GIST descriptions are generated, they are compared using

the  $L_2$ norm distance (described within the Minkowski metric family).

### 2.2.2 Weaknesses of existing distance measures

Distance measures reflect the degree of similarity or dissimilarity between objects and this measuring procedure should correspond to the data characteristics that might help distinguish the clusters. Since, in many cases, if not all, these characteristics are dependent on the problem context; there is no measure that is universally best for all types of clustering problems [113] Nevertheless, understanding the effectiveness of each existing measures is of importance in helping to choose the best one for the task in hand. Generally speaking, each of the methods developed through the years to measure similarity between objects has its own strengths and weaknesses. One of the general drawbacks of the existing measures, for instance, is the situation when the objects have features of mixed types. Nevertheless, researchers have developed distance measures for this heterogeneity. Examples of measures proposed to represent qualitative and quantitative features together are HVDM [254] and generalized Minkowski [121]. The generalized Minkowski manipulates all attribute types together performing one cluster analysis using weighting structure to add significance to the meaningful attributes [102]. Defining an appropriate effective distance measure for a heterogeneous data obtained from different media types is a big challenge discussed in Section 3.5.

It has to be noted that, some data mining techniques that use similarity measures such as clustering analysis, deal with a matrix of proximities instead of the original data. This matrix represents the proximities between objects in the form of an object-by-object proximity. Thus, in such cases, the  $N(N - 1)/2$  pairwise distance calculations for the  $N$  patterns are pre-computed and stored in a symmetric proximity matrix in advance [124].

### 2.2.3 Selecting distance measures

Tan et al. [231] have pointed out some general helpful observations in choosing the similarity between objects, these are:

1. The type of similarity/dissimilarity measure should fit the data.
2. Similarity between continuous attributes is most often expressed in terms of differences, e.g. Euclidean.
3. The data should be rescaled when needed before measuring distances.
4. In the case of sparse data, which often consists of symmetric attributes such as tf-idf matrices that are used to represent free text, similarity measure that ignore 0-0 matches should be employed, e.g. Cosine and Jaccard coefficients.
5. In the case of time-series, there are some characteristics of the data vectors that may need to be considered such as the nature of the task and the data domain which specify the notion of similarity:
  - a. If the magnitude of the time-series is important, for instance, each time-series represent total sales of the same product for a different year, then Euclidean distance is optimal.
  - b. If the shape of the time-series is important which occurs when time-series represent different quantities, for instance, blood pressure and oxygen consumption, then correlation which uses a built-in normalization that accounts for differences in magnitude and level would be appropriate.

In addition, there are other issues related to time-series that we need to be aware of as they significantly impact similarity calculations including:

- a. They have trends or periodic patterns.
- b. Sometime time lags need to be taken into account.
- c. Two time-series may be similar over a specific period of time, e.g. the relation between temperature and natural gas used in heating seasons is a case in point.

## 2.3 Cluster analysis

This section describes different aspects related to clustering analysis. It starts with some definitions of important notations in Section 2.3.1. Possible clustering solutions are given in Section 2.3.2. Section 2.3.3 investigates how to determine the number of clusters in a clustering analysis problem as the number of clusters to be formed is one important feature of a good clustering; few clusters achieve simplification but unavoidably lose the fine detail of the data and vice versa [43]. After that, the available clustering techniques and algorithms as well as how the clusters can be represented are discussed in Sections 2.4.1 and 2.4.2 respectively. The clustering analysis review ends up with an overview of existing algorithm in Section 2.4.3.

### 2.3.1 Notation definitions

Some important notation in the context of clustering analysis is defined below as well as some general shared properties of the possible solutions:

- A cluster's centroid,  $\mathfrak{C}_C$ , is the center of a cluster. In the feature space, it is the point with coordinates equal to the average values, mean or median, of the variables for the objects in a particular cluster. This is usually defined by the mean of the numerical attributes and the mode of the categorical attributes. Thus, it almost never corresponds to an actual data object. For a particular numerical attribute,  $A_i$ , of objects belonging to the  $x^{th}$  cluster,  $C_x$ , the mean is often calculated using the formula below where  $|C_x|$  is number of objects in the  $x^{th}$  cluster:

$$\frac{1}{|C_x|} \sum_{O \in C_x} A_i \quad (2.13)$$

For a particular categorical attribute,  $A_j$ , of objects belonging to  $C_x$ , the mode is often assigned to the most frequently represented value of attribute  $A_j$  of all objects  $\in C_x$ . Accordingly a cluster's centroid,  $\mathfrak{C}_{C_x}$ , can be allocated by calculating the mean and/or mode for every single attribute of the objects within the  $x^{th}$  cluster. To

illustrate, the  $\mathfrak{C}_{C_x}$  that groups three 2-dimensional points, e.g., (2,3), (6,2) and (4,4) is  $((2+6+4)/3, (3+2+4)/3) = (4,3)$ .

- The cluster's medoid is considered as the most representative point within a cluster as it is the most centrally located object in the cluster. The average dissimilarity to all the objects in the cluster to the medoid is minimal [18]. In the case of data with categorical attributes, the medoid is often used. A medoid is calculated by finding object  $O_i \in$  cluster  $C_x$  that minimizes the following formula:

$$\sum_{O_j \in C_x} dist(O_i, O_j) \quad (2.14)$$

where  $dist(O_i, O_j)$  is the distance between each object  $O_j \in C_x$  and a particular object in the same cluster,  $O_i$ , which could be allocated as the cluster medoid.

- The within-cluster variation,  $WC_x$ , is the squared sum of the distances between objects,  $O_i$ , that belong to a specific cluster,  $C_x$ , and the centre of this cluster,  $\mathfrak{C}_{C_x}$ :

$$WC_x = \sum_{O_i \in C_x} dist(O_i, \mathfrak{C}_{C_x})^2 \quad (2.15)$$

It reflects how compact and tight the clusters are.

- The total-cluster variation,  $TC$ , is the squared sum of the distances of each object,  $O_i$ , to all objects' average,  $\mu_O$ , such:

$$TC = \sum_{O_i \in D} dist(O_i, \mu_O)^2 \quad (2.16)$$

- The between-cluster variation,  $BC$ , is the squared sum of the distances of the centre of each cluster  $C_x \in \hat{C}$ ,  $\mathfrak{C}_{C_x}$ , and all objects' average,  $\mu_O$ , such:

$$BC = \sum_{C_x \in \hat{C}} |C_x| dist(\mu_{C_x}, \mu_O)^2 \quad (2.17)$$

where  $|C_x|$  is the number of objects in cluster  $C_x$ .  $BC$  reflects how separated and far

the clusters are. It is also calculated for a particular cluster  $C_x$  by subtracting  $WC_x$  from  $TC$  as  $BC_x = TC - WC_x$ .

### 2.3.2 Clustering solutions

Clustering can be complete or partial. Complete clustering allocates every object in the dataset to at least one cluster such  $\forall O_{i \in N} \in D, \exists C_{x \in k} \in \hat{C}$  where  $O_i \in C_x$ , thus  $C_1 \cup \dots \cup C_x \cup \dots \cup C_k = D$ . Partial clustering produces clusters by grouping some of the objects and not all such  $\exists O_{i \in N} \in D \wedge O_i \notin C_x$  where  $x = 1, 2, \dots, k$ . An example for partial clustering is the practice of partitioning a dataset excluding the uninteresting background, noise or outlier objects [232].

Moreover, clusters can be exclusive or overlapping (probabilistic) [199]. Exclusive clusters are defined when an object is arbitrarily assigned to a single sub-group. Each object must belong to at most one cluster, i.e.  $C_x \cap C_y = \emptyset, \forall C_x, C_y \in \hat{C}$ . Overlapping clusters are defined when the clustering process allocates an object to several clusters simultaneously such that  $\exists O_{i \in N} \in D$  and  $O_i$  belongs to  $z$  clusters where  $1 \leq z \leq k$ . In other situations, objects can belong to all the clusters with a specific membership probability,  $\gamma$ , that is between 0 and 1 such  $C_x = \{\gamma O_1, \gamma O_2, \dots, \gamma O_N\}, \forall C_{x \in k} \in \hat{C}$  where  $\gamma$  is the degree of membership and  $0 \leq \gamma \leq 1$ . The clusters are known as probabilistic clusters or fuzzy clusters. In fuzzy clustering, unlike crisp or hard clustering, each object is given a membership degree that indicates the strength of the object's association to all or some of the clusters, i.e. the object is not assigned to a unique single cluster [128]. This type of clustering, which allows overlapping clusters, is therefore appropriate for imprecise and noisy data [22].

Clustering techniques define clusters differently according to how each works, i.e. depending on the distance, density, distribution, etc. The following points describe how the common clustering solutions define clusters [227, 232, 199]:

- Well-separated clustering: defines a cluster as a set of objects where each of them is more similar to every other object in the cluster,  $C_x$ , than to objects in other

clusters,  $C_y$ . That is,  $\forall O_i, O_j \in C_x, O_z \in C_y \rightarrow dist(O_i, O_j) < dist(O_i, O_z) \wedge dist(O_i, O_j) < dist(O_j, O_z)$ . This definition of clusters occurs when the dataset contains natural separated clusters. The formed clusters may have any shape. Moreover, well-separated clusters sometimes use a threshold,  $\theta$ , to satisfy that the distance between any pair of objects in different clusters is larger than the distance between any two in the same cluster.

- Centre-based clustering: defines a cluster as a set of objects where objects are more similar to the centre that defines their cluster,  $\mathfrak{C}_{C_x}$ , than to the centre of other clusters,  $\mathfrak{C}_{C_y}$ , such  $\forall O_i \in C_x \rightarrow dist(O_i, \mathfrak{C}_{C_x}) < dist(O_i, \mathfrak{C}_{C_y})$ ,  $C_x, C_y \in \hat{C}$ . The centre of a particular cluster is either a centroid or a medoid. Centre-based clusters tend to be spherical.
- Graph-based clustering: this clustering solution is used when the data is represented by graphs where nodes denote objects and links denote connections. A graph-based solution defines a cluster as a set of connected objects that are not connected to other objects outside their cluster. The connection between nodes differs according to the clustering algorithm. Contiguity-based clusters are an important example of this type where a pair of objects are connected if the distance between the objects is within a determined threshold,  $\theta$ . This is useful in the case of irregular or intertwined clusters. Clique clusters [6] are another example of graphic-based clusters where all the nodes in the graph are completely connected to each other. Not surprisingly, such cluster tends to be spherical.
- Density-based clustering: defines a cluster as a dense region of objects that are separated by low-density regions from other clusters. This approach is useful in the case of data with noise and outliers or irregular/entwined clusters where other types of clusters such as contiguity-based cluster would tend to form bridges between clusters in the presence of noise.
- Conceptual-based clustering: defines a cluster as a set of objects that creates a re-

gion with a uniform property (such as a specific density or a determined shape) or that presents a specific concept. This definition encompasses all the other mentioned definitions but the shared property approach is more general and may also include other types of clusters.

In addition, to produce a clustering solution, we can either consider only inputs or consider both inputs (or a small set of it) and outputs. Inputs mean the distribution of the input data and outputs mean the associate output mappings of these inputs. In those algorithms that allow output information to contribute, outputs are utilized as a guidance for clustering and approximation in different manners. Although, most of the available clustering algorithms work on the input information only, however, there are some efforts [87, 149] to consider both input and output information. Some researchers [248] are working on algorithms that can produce clustering configuration using both input and output information and also can determine the optimal number of clusters at the same time. Specifying the number of clusters is a big problem in clustering which is discussed in the next section (Section 2.3.3).

To apply any of the above solutions, there are many well-developed clustering algorithms in the literature, Section 2.4 introduces some of the most widely-used at present.

### 2.3.3 Number of clusters

One common problem for clustering algorithms is the choice of an appropriate number of clusters, which has a deterministic effect on the clustering output. In several clustering algorithms, e.g.  $k$ -means [166] and  $k$ -medoids [133], the number of clusters to be created is a parameter determined by the user. There are other algorithms, e.g. hierarchical techniques [275, 92], that avoid this problem by searching for the optimal choice. The optimal choice may depend on the dataset distribution and the resolution of the clustering output required. Thus, the number of clusters ranges between two extremes: one cluster (maximum data compression) and  $N$  clusters where  $N$  is the number of objects in the dataset. A prior understanding of the dataset at hand might help in estimating the number of clus-

ters [18]. However, a variety of methods have been proposed to estimate the number of clusters, especially in the absence of preceding knowledge. The most common methods are:

- **Calinski and Harabasz's pseudo-F method**

This is a global method [29] also known as the Variance Ration Criterion (VRC). It determines the optimal estimate of a number of clusters,  $k$ , by maximizing the index  $VRC_{k^*}$  over the proposed number of clusters,  $k^*$ . The larger the index value, the more distinct cluster structure and the smaller index value, the less clearly defined structure. The Calinski and Harabasz's pseudo-F index,  $VRC_{k^*}$ , for  $k^*$  clusters and  $N$  objects is given by:

$$VRC_{k^*} = \frac{BC_{k^*}/(k^* - 1)}{WC_{k^*}/(N - k^*)} \quad (2.18)$$

where  $BC_{k^*}$  and  $WC_{k^*}$  are the overall between-cluster variation and within-cluster variation, respectively.

$VRC_{k^*}$  is only defined for  $k^* > 1$  since  $BC_{k^*}$  is not defined when  $k^* = 1$  as the maximum would never occur at  $k^* = 1$ . Moreover, no one is interested in  $k^* = 1$ . Milligan and Cooper [177] evaluated thirty different methods for estimating the optimal number of clusters. They stated that the method worked well in many different cases and was one of the best examined approaches.

- **Hartigan's method**

This is an empirical method [103], which depends on the idea that, for  $k^* < k$ , where  $k$  is the optimal number of clusters and  $k^*$  is the nominated number of clusters, a  $(k^*+1)$  - cluster should be the  $k^*$  - cluster with one of its clusters divided into two. On the other hand, at  $k^* > k$ , both  $k^*$  - cluster and  $(k^*+1)$  - cluster will be equal to the optimal clustering with some of the clusters divided. Thus, there is not a great difference between the within-cluster variation in the case of  $k^*$ -clusters,  $WC_{k^*}$  and the within-cluster variation in the case of  $(k^*+1)$ -clusters,  $WC_{k^*+1}$ . Hence, Hartigan

proposed the following calculation:

$$H_{k^*} = \left( \frac{WC_{k^*}}{WC_{k^*+1}} - 1 \right) (N - k^* - 1) \quad (2.19)$$

where  $N$  is the number of objects. The idea now is to increase  $k^*$  and calculate the Hartigan index,  $H_{k^*}$ . A simple decision rule suggested by Hartigan is to stop adding clusters (increasing the value of  $k^*$  when  $H_{k^*} > 10$ . Hence,  $k^*$  is best estimated as the smallest  $k^*$  that satisfies  $H_{k^*} \leq 10$ .

#### • Silhouette

This method [134] is defined as the average of silhouette,  $\mathfrak{S}(O_i)$  for every object  $O_i$  in the dataset  $D$ . It reflects the within-cluster compactness and between-cluster separation. A silhouette,  $\mathfrak{S}(O_i)$ , close to 1 implies that  $O_i$  is in the appropriate cluster, while a silhouette,  $\mathfrak{S}(O_i)$ , close to -1 implies that  $O_i$  is in the wrong cluster. To calculate  $\mathfrak{S}(O_i)$ , two quantities needs to be computed these are:

$a(O_i)$  the average dissimilarity,  $\Lambda_{avr}$ , of object  $O_i$  to all other objects in its cluster,  $C_x$ , such:

$\Lambda_{avr} = \frac{1}{|C_x|} \sum_{O_j \in C_x} dist(O_i, O_j)$  where  $|C_x|$  is the number of objects in cluster  $C_x$ .

and

$b(O_i)$  the minimum average dissimilarity of object  $O_i$  to all other objects in cluster  $C_y$ ,  $\min\Lambda_{avr}$ , where  $C_y \in \hat{C} \wedge C_y \neq C_x \quad \forall y \in \{1 : k\}$ , such that:

$\min\Lambda_{avr} = \min\left\{ \frac{1}{|C_y|} \sum_{O_j \in C_y} dist(O_i, O_j) \right\}$  where  $|C_y|$  is the number of objects in cluster  $C_y$ .

Any measure of dissimilarity from those described in Section 2.2. can be used to measure  $dist(O_i, O_j)$ .

The silhouette,  $\mathfrak{S}(O_i)$ , of the  $i^{th}$  object, for each object in  $D$  is calculated as:

$$\mathfrak{S}(O_i) = \frac{b(O_i) - a(O_i)}{\max\{a(O_i), b(O_i)\}} \quad (2.20)$$

This can be rewritten as:

$$\mathfrak{S}(O_i) = \begin{cases} 1 - a(O_i)/b(O_i) & \text{if } a(O_i) < b(O_i) \\ 0 & \text{if } a(O_i) = b(O_i) \\ b(O_i)/a(O_i) - 1 & \text{if } a(O_i) > b(O_i) \end{cases}$$

The average of  $\mathfrak{S}(O_i)$  over all data is a measure of how to determine the natural number of clusters within a dataset. It is calculated by assuming a different number of clusters, i.e. 1, 2, 3, ..., etc. Then the number of clusters is chosen as that which maximizes the average value of  $\mathfrak{S}(O_i) \forall O_i \in D$ .

- **Gap method**

Tibshirani et al. [234] proposed a general method that is applicable to any clustering technique and distance measure. The method compares  $WC_{k^*}$ , the previously defined within-cluster variation, as  $k^*$  increases to that expected under an appropriate null reference distribution of the data. The optimal value of clusters,  $k$ , is the estimated number of cluster when the  $\log(WC_{k^*})$  falls the farthest below the expected curve. This occurs when the value of  $k^*$  maximizes the  $GAP_N(k^*)$  which is defined as:

$$GAP_N(k^*) = E_N\{\log(W_{k^*})\} - \log(W_{k^*}) \quad (2.21)$$

where  $E_N\{\log(W_{k^*})\}$  denotes the expected value of  $\log(W_{k^*})$  under the null distribution of a sample of size  $N$ .

To sum up, estimation of the number of clusters in the data should be based on several methods instead of one. While most of the previously mentioned methods are designed to work for any clustering technique, the performance of a method may depend on different application situations. If the methods do not agree on the number of clusters, then the diverse results should be interpretable in the context of the clustering application [259].

## 2.4 Clustering algorithms

Clustering techniques can be distinguished into various categories [227]:

1. They may cluster on all attributes, which is called polytheistic clustering, or cluster using one attribute at a time, which is called monotheistic clustering.
2. They may work incrementally by clustering object by object or non-incrementally where all objects are processed at once.
3. They may be overlapping where an object belongs to a single cluster or non-overlapping where an object belongs to multiple clusters at the same time.

Multiple surveys of clustering techniques exist in the literature such as [124], [257] and [18]. A review of these algorithms is provided below and organized by classifying the different clustering techniques into multiple categories.

### 2.4.1 Classification of clustering algorithms

- **Hierarchical clustering**

Hierarchical algorithms create clusters recursively by dividing a database  $D$  of  $N$  objects into a number of levels of nested partitioning, denoted by a dendrogram. A dendrogram is a two-dimensional diagram or tree and gives a complete hierarchical description of how objects are similar to each other on different levels. It can be examined at a particular level to represent a different clustering of the data [124]. There are two types of hierarchical algorithms: agglomerative algorithms and divisive algorithms. Agglomerative algorithms build the tree bottom-up, i.e. merging the  $N$  objects into groups. Divisive algorithms build the tree up-bottom by separating the  $N$  objects into finer clusters [199]. Bottom-up or agglomerative clustering, the more commonly used technique, treats each object as a cluster of size 1. Then, it merges the two nearest objects in a cluster of size 2 and so on to reach one cluster combining all the objects unless other termination condition is

satisfied [219]. The up-bottom or divisive strategy does the reverse by starting with all of the  $N$  objects in one cluster and subdividing them into smaller groups until a termination condition is met such as a desired number of clusters or it stops when each object forms a cluster. This strategy of hierarchical algorithms, up-bottom, is used less often. Kaufman and Rousseeuw [134] remarked that divisive methods have been largely ignored in the literature mostly due to computational limitations. The computational demands of these techniques is  $O(2^N)$  so grow exponentially as the number of objects,  $N$ , raises.

Hierarchical algorithms differ in the ways they determine the similarity between two clusters. There are three main ways to consider the distance between the two clusters: the single-linkage method, the complete-linkage method and the average-linkage method. The following formulas define four distance measures required to distinguish between the three linkages. They measure the distance between two clusters,  $C_x$  and  $C_y$  that have  $|C_x|$  and  $|C_y|$  objects respectively, where  $dist(O_i, O_j)$  is the distance between two objects  $O_i$  and  $O_j$  and  $dist(\mu_{C_x}, \mu_{C_y})$  is the distance between the mean values of objects belonging to cluster  $C_x$  and cluster  $C_y$  [102]:

Minimum distance:

$$\Lambda_{min}(C_x, C_y) = \min_{O_i \in C_x, O_j \in C_y} dist(O_i, O_j)$$

Maximum distance:

$$\Lambda_{max}(C_x, C_y) = \max_{O_i \in C_x, O_j \in C_y} dist(O_i, O_j)$$

Mean distance:

$$\Lambda_{mean}(C_x, C_y) = dist(\mu_{C_x}, \mu_{C_y})$$

Average distance:

$$\Lambda_{avr}(C_x, C_y) = \left| \frac{1}{|C_x| - |C_y|} \right| \sum_{O_i \in C_x} \sum_{O_j \in C_y} dist(O_i, O_j)$$

The single-linkage takes the shortest pairwise distance between objects in two different clusters by using the minimum distance. In contrast, complete-linkage takes the longest distance between the objects by using the maximum distance, while the average-linkage takes the average of the pairwise distances between all pairs

of objects coming from each of the two clusters [259]. The latter type of linkage, average-linkage, may use the mean or the average distance. Whereas the mean distance is simpler to calculate, the average distance is advantageous as it can be used to deal with categorical data.

The complete-linkage methods often generate more compact clusters and more useful hierarchical structure than the single-linkage methods. Having said that, the latter methods are more versatile [207]. Guha et al. [92] have discussed the disadvantages of single-linkage and average-linkage methods. They stated that chaining effect is the main drawback of single-linkage clustering. This happens when a few points form a bridge between two clusters which enforce this type of methods to unify the two clusters. Elongated clusters mislead average-linkage clustering according to Guha et al. [92] because this type of methods may split elongated clusters.

Most of the hierarchical algorithms join two clusters or divide a cluster into two sub-clusters. However, some algorithms work in a similar manner but with more than two clusters or sub-clusters. Thus, hierarchical clustering merges smaller clusters into larger ones or splits larger clusters into smaller ones recursively.

Steinbach et al. [227] reported some advantages and disadvantages of Hierarchical clustering. The advantages are their applicability to any attributes types, ability to handle any forms of similarity or distance and flexibility regarding the level of granularity. The disadvantages are the ambiguity of their termination criteria and the fact that most of them do not revisit the clusters for enhancement. In other words, most of the hierarchical algorithms cannot backtrack or correct any executed split or merge even if it later seems to be a poor decision. Classical examples of hierarchical clustering algorithms are BIRCH [275], CURE [92] and ROCK [93]. Table 2.2 summarises the main differences between these clustering algorithms with regards to the data type they support and the computational cost, where  $N$  is the number of objects in the dataset. In addition, it includes the shape of clusters they handle as well as the input and output of the algorithms. The arbitrary shaped

clusters may be ellipsoidal, spiral or cylindrical, for example.

| Algorithm    | Data type   | Complexity                                                                                       | Shapes of clusters | Input                                             | Output                                                                     |
|--------------|-------------|--------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------|----------------------------------------------------------------------------|
| <b>BIRCH</b> | numerical   | $O(N)$                                                                                           | non-convex         | clusters' radius + assignments of data values     | no. of objects in clusters + linear sum of objects + square sum of objects |
| <b>CURE</b>  | numerical   | $O(N_2 \log N)$                                                                                  | arbitrary          | no. of clusters + no. of clusters representatives | assignments of data values                                                 |
| <b>ROCK</b>  | categorical | $O(N_2 + N_{mmma} + N_2 \log N)$ ;<br>mm: max no. of neighbours<br>ma: average no. of neighbours | arbitrary          | no. of clusters                                   | assignments of data values                                                 |

Table 2.2: The main differences between the typical hierarchical clustering algorithms, Adapted from [97]

### • Partitioning clustering

In contrast to hierarchical techniques, partitioning clustering carves up the set of objects into disjoint clusters at a single level [228]. It constructs a one-level not nested partition of a database  $D$  of  $N$  objects into a set of  $k$  clusters.  $k$  is normally predetermined. Partitioning techniques such as  $k$ -means,  $k$ -medoids, PAM and CLARA, which are described below, run over the search space multiple times. In each iteration, the algorithms start with different states and make changes to optimize a certain criterion and get the best configuration to improve the clustering output quality [140]. Descriptions of the most popular partitioning algorithms follow.

#### A. $k$ -means

This popular algorithm was introduced by MacQueen [166] and has been used in hundreds of contexts over the last 50 years. It is still one of the most widely used clustering algorithms. In fact, it is often used as a first algorithm to cluster a dataset [225].  $k$ -means is based on the idea that a centroid can represent a cluster. Specifically, it uses the notion of a centroid to denote a cluster centre.

$k$ -means divides  $N$  objects where  $D = \{O_1, O_2, \dots, O_N\}$  in  $M$  dimensional space into a specified number of clusters,  $k$  [152]. The result is a set of  $k$  centroids, each of which is located at the centre of the partitioned dataset [Dalal et al., 2011]. Therefore, if  $O_i$  is the  $i^{th}$  object and  $C_j$  is the  $j^{th}$  cluster centroid,

$k$ -means attempts to minimise the squared error between the empirical mean of a cluster and the points in the cluster. This is represented by the following objective function:

$$F = \sum_{j=1}^k \sum_{i=1}^N [dist(O_i, \mathfrak{C}_{C_j})]^2 \quad (2.22)$$

where  $dist(O_i, \mathfrak{C}_{C_j})$  is the chosen distance measure between a data object,  $O_i$ , and a cluster centroid,  $\mathfrak{C}_{C_j}$ . Distance measures are discussed in details in Section 2.2. The pseudo code of this clustering technique is presented below in Figure 2.2 [166].

|                |                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Input:</b>  | $\mathbf{D}$ : a dataset containing $N$ objects                                                                                                                                                                                                                                                                                                                                                    |
|                | $k$ : the number of clusters                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Output:</b> | a set of $k$ clusters                                                                                                                                                                                                                                                                                                                                                                              |
| <b>Method:</b> | <ol style="list-style-type: none"> <li>1: arbitrary choose <math>k</math> initial centroids, clustering seeds, randomly or according to some heuristic.</li> <li>2: <b>repeat</b></li> <li>3: assign all the remaining objects in <math>\mathbf{D}</math> to the closest centroid.</li> <li>4: re-compute the centroid of each cluster by assuming the allocation in step 3 is correct.</li> </ol> |

Figure 2.2:  $k$ -means clustering algorithm

In order to find the optimal partition for  $k$ -means clustering, various algorithms have been developed. The two most popular  $k$ -means algorithms are Forgy's [77] and MacQueen's [166]. The main difference between the two algorithms is in the way of updating the initial clustering seeds. Forgy's assigns all remaining objects to one of the nearest seed locations and iterates the  $k$ -means algorithm until convergence. MacQueen's assigns one object at a time, in the order they occur in the dataset, to the nearest seed and runs the algorithm after each assignment. Although the latter is computationally expensive, when several iterations of the procedure are required, it is the most widely used algorithm. Irrespective of the algorithm in use,  $k$ -means is the default option for clustering since it can be easily implemented and it can converge to a local minimum. Nevertheless, there are some shortcomings mentioned in several articles, for example, [155, 192, 53] which are:

- (1) Its tendency to favour spherical clusters when a Euclidean distance mea-

sure is used, as this assumes that clusters are naturally spherical.

- (2) Its requirements for prior knowledge on the number of clusters.
- (3) It does not work well with categorical data.
- (4) It strongly depends on the initial guess of centroids.
- (5) It can be negatively affected by a single outlier.
- (6) The local optimum does not need to be a global optimum for overall clustering.
- (7) It may produce unbalance-sized or even empty structures, especially in Forgy's version.

### B. $k$ -medoids

Instead of using the mean value of data objects in a cluster to represent the centre of this cluster,  $k$ -medoids, a variation of  $k$ -means, calculates the medoid of the objects in each cluster. Once medoids are selected, clusters are shaped by grouping objects that are close to respective medoids. For each cluster  $C_x \in k$  clusters, a medoid is calculated by finding object  $O_i \in C_x$  that minimizes the following formula:

$$\sum_{O_j \in C_x} dist(O_i, O_j) \quad (2.23)$$

where  $dist(O_i, O_j)$  is the distance between each object  $O_j \in C_x$  and a particular object in the same cluster,  $O_i$ , which could be the cluster medoid. To determine the closeness between a medoid and an object, a valid similarity/dissimilarity metric is used as an objective function. The commonly used measures are Euclidean distance and Manhattan distance which are described in detail with some other popular distance measures in Section 2.2. Rai and Singh [199] stated two advantages of using this technique. Namely, it presents no limitations on attributes types and it is less sensitive to the presence of outliers. This is due to the fact that the choice of medoids is dictated by the location of objects inside a cluster rather than using a distorted mean value.

The  $k$ -medoid technique has different versions: PAM (Partitioning Around Medoids) [133], CLARA (Clustering LARge Applications) [134] and CLARANS (Clustering Large Applications based upon RANdomized Search) [187]. Pseudo codes of these  $k$ -medoid algorithms are given below in Figure 2.3, Figure 2.4 and Figure 2.5 respectively<sup>1</sup>.

|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Input:</b>  | $D$ : a dataset containing $N$ objects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | $k$ : the number of clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>Output:</b> | a set of $k$ clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Method:</b> | <ol style="list-style-type: none"> <li>1: arbitrary choose <math>k</math> objects from <math>D</math> as representative objects, seeds</li> <li>2: <b>repeat</b></li> <li>3: assign each remaining object in <math>D</math> to the cluster with the nearest representative object.</li> <li>4: for each representative object, <math>O_i</math>, randomly select a non-representative object, <math>O_{random}</math></li> <li>5: Compute the total cost, <math>S</math>, of swapping <math>O_i</math>, with <math>O_{random}</math></li> <li>6: if <math>S &lt; 0</math>, then replace <math>O_i</math>, with <math>O_{random}</math></li> <li>7: <b>until</b> no changes</li> </ol> |

Figure 2.3: PAM clustering algorithm

|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Input:</b>  | $D$ : a dataset containing $N$ objects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | $k$ : the number of clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Output:</b> | a set of $k$ clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Method:</b> | <ol style="list-style-type: none"> <li>1: <math>i=1</math></li> <li>2: <b>repeat</b></li> <li>3: draw a sample of <math>40+2k</math> objects randomly from <math>D</math></li> <li>4: call Pam algorithm to find <math>k</math> medoids of the sample</li> <li>5: for each object in <math>D</math>, determine the most similar medoid of the <math>k</math> selected in step 4.</li> <li>6: Calculate the average dissimilarity of the clustering obtained in step 5;<br/>if this value &lt; current minimum, use it as the current minimum and<br/>retain the medoids found in step 4 as the best set of medoids obtained so far.</li> <li>7: <b>until</b> <math>i=5</math></li> </ol> |

Figure 2.4: CLARA clustering algorithm

PAM uses a medoids swap mechanism to enhance the clustering output and since the medoids calculation is independent of noise, PAM is more robust than  $k$ -means in terms of handling outliers. Nonetheless, according to Pande et al. [192] it performs well on small datasets but does not work efficiently with large datasets due to its computational complexity.

Ng and Han [187] reported that this is due to the expensive calculation needed to find the medoids in PAM as it compares an object with the entire dataset each time it swaps medoids. In larger datasets, CLARA can produce better

---

<sup>1</sup>Experiments[134] indicate that 5 samples of size  $40 + 2k$  give satisfactory results in CLARA.

|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Input:</b>  | $D$ : a dataset containing $N$ objects<br>$nl$ : the number of local minima obtained<br>$mn$ : maximum number of neighbours examined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Output:</b> | a set of $k$ clusters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Method:</b> | <ol style="list-style-type: none"> <li>1: <math>i = 1</math> and Minimum cost, <math>mc =</math> large number.</li> <li>2: set <math>current</math> to an arbitrary object.</li> <li>3: <math>j=1</math>.</li> <li>4: Consider a random neighbour <math>S</math> of the <math>current</math> and calculate the cost differential of the two objects.</li> <li>5: if <math>S</math> has a lower cost, set <math>current</math> to <math>S</math> and go to step 3.</li> <li>6: Otherwise, increment <math>j</math> by 1. If <math>j \leq mn</math>, go to step 4.</li> <li>7: Otherwise, when <math>j &gt; mn</math>, if the cost of <math>current &lt; mc</math>, set <math>mc</math> to the cost of <math>current</math> and set <math>bestobj</math> to the <math>current</math>.</li> <li>8: Increment <math>i</math> by 1. If <math>i &gt; nl</math>, output <math>bestobj</math>. Otherwise go to step 2.</li> </ol> |

Figure 2.5: CLARANS clustering algorithm

clustering output than PAM. That is because PAM searches the whole sets of  $k$  medoids, while CLARA compares very few neighbours corresponding to a fixed small sample. CLARA is designed to draw a small sample of the dataset and apply the PAM algorithm to create medoids instead of generating them for the entire dataset. The drawback of this idea is that a local optimum clustering of samples may not be the global optimum for the whole dataset.

Ng and Han [187] explained the medoids allocations in PAM and CLARA as searching  $k$  sub-graphs from an  $N$ -points graph, then based on this understanding, they proposed the CLARANS algorithm in the context of clustering in *spatial* databases. The CLARANS algorithm does not confine itself to any sample at any given time, unlike CLARA that has a fixed sample at all the search stages. CLARANS draws a sample of neighbours dynamically. The clustering process can be presented as searching a graph where every node is a potential solution, that is, a set of  $k$  medoids. If the local optimum is found, CLARANS starts with a new randomly selected node in search for a new local optimum. Consequently, the multiple sampling of medoids verification consumes time. Thus clustering very large datasets in an acceptable time is one of CLARANS limitations [192].

To sum up,  $k$ -means,  $k$ -medoids, PAM, CLARA and CLARANS share the following properties:

- (1) In general, they are not good at handling noise and outliers.
- (2) They handle clusters that are non-convex shaped in the geometry space.
- (3) They need the number of clusters as an input parameter, except CLARANS which requires the maximum number of neighbours to be examined.
- (4) They all are medoid based, except  $k$ -means which produces cluster centroids.
- (5) They support numerical data types, excluding  $k$ -medoids which works on both numerical and categorical data.

Table 2.3 summarises the main differences between the mentioned partitioning clustering techniques in regards to the computational cost where  $N$  is the number of objects in the dataset and  $k$  is the number of clusters defined.

| Algorithm                     | Complexity                  |
|-------------------------------|-----------------------------|
| <b><math>k</math>-means</b>   | $O(N)$                      |
| <b><math>k</math>-medoids</b> | $O(N)$                      |
| <b>PAM</b>                    | $O(k(N - k)^2)$             |
| <b>CLARA</b>                  | $O(k(40 + k)^2 + k(N - k))$ |
| <b>CLARANS</b>                | $O(k)$                      |

Table 2.3: The main differences in computational complexity between the typical partitioning clustering algorithms.

### • Grid clustering

Kovacs et al. [140] stated that this type of clustering quantizes the space into a number of rectangular cells, and then works with objects belonging to these cells. It does not reposition them; rather, it builds multiple hierarchical levels of clusters. This technique works fast as it is dependent on the number of cells rather than the number of objects. Unlike other conventional clustering algorithms, grid clustering does not use any of the distance measures such as Euclidean distance to merge the cells properly. Instead similarity is determined using a predefined parameter, for instance, eliminating cells whose density is below a certain threshold,

$\theta$  [199]. Examples of Grid clustering algorithms are: OptiGrid [109], STING [250], BANG-clustering [210] and WaveCluster [213]. OptiGrid is based on constructing an optimal grid-partitioning by calculating the best hyperplanes for each dimension using certain data projections. STING explores statistical information stored in the grid cells. BANG-clustering uses a multi-dimensional grid data structure to organize the value space surrounding objects. WaveCluster clusters objects using a wavelet transformation method to transform the original feature space. It should be mentioned that some researchers classify grid clustering under the hierarchical clustering techniques.

- **Density-based clustering**

Rai and Singh [199] defined density as the number of objects in a particular neighbourhood of data objects. A density-based clustering technique groups objects depending on a specific density objective function. A particular cluster continues growing as long as the density does not exceed some parameter [140]. By this technique, clusters in data space are defined as high-density regions that exceed a threshold,  $\theta$ , and separated by other low-density regions. This type of clustering is able to discover clusters of arbitrary shapes and it has a natural protection against outliers [255]. The typical density-based clustering algorithms are Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [66] and DENCLUE [107] algorithm [225]. Both algorithms support numerical data types, have  $O(N \log N)$  computational complexity and require the cluster radius as well as the minimum number of objects to be specified by the user.

- **Model-based clustering**

This technique is based on the assumption that the data are generated by a mixture of underlying probability distributions [225]. The idea is to optimise a fit between data and a mathematical model including, for instance, statistical models and neural network models. It is a big challenge to choose a suitable model in the case of an unknown data distribution. Moreover, the method suffers from high computational cost, particularly in the case of data belonging to a wide range of values [192].

### 2.4.2 Representation of clusters

The construction of generated clusters' representation is an important issue in representing and understanding the results of clustering analysis. Duran and Odell [64] has introduced the notion of cluster representation. Subsequently, the following representation schemes were suggested by other researchers [55, 174] examining this issue more closely:

1. Using points, either clusters centroid or distant points.
2. Using nodes in a classification tree.
3. Using conjunctive logical expressions.

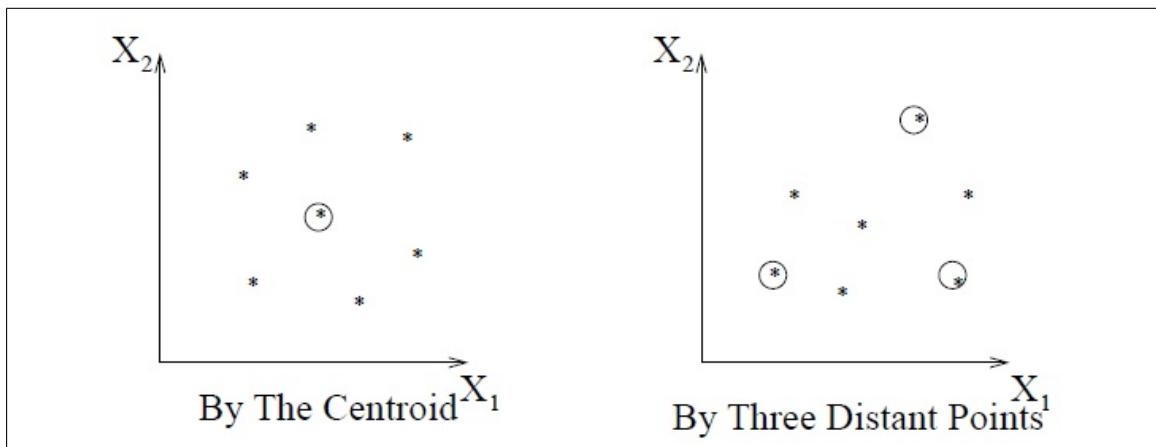


Figure 2.6: Representation of clusters by points schemes[124]

A discussion of the three clusters representation mentioned above is given by Jain et al. [124] and is summarised here. The most popular scheme to represent clusters is by using their centroids. This way of representation is ideal in the case of compact clusters. In contrast, it fails to represent elongated clusters properly. The alternative solution is to use boundary points of clusters, paying attention to the number of points needed to represent clusters. This number must be increased when the complexity of clusters' shapes increases to describe the correct shape. Figure 2.6 shows both how to represent a cluster using its centroid and using some of its distant points. The other two schemes are illustrated by an example given in Figure 2.7, where both representations denote the same set of clusters. Every path from the root to a leaf in the classification tree

corresponds to a conjunctive statement. The main limitation of using the third scheme is that it can only represent rectangular or isotropic clusters.

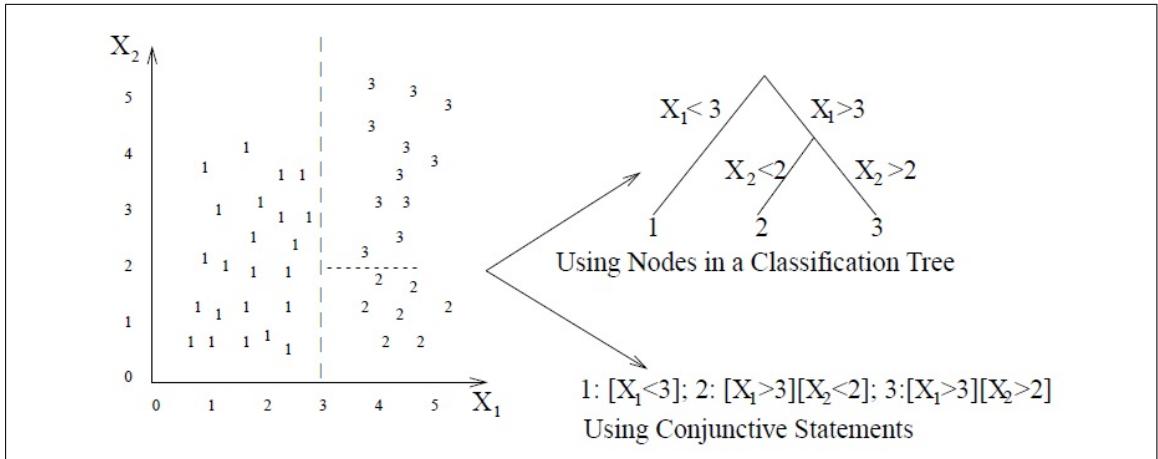


Figure 2.7: Representation of clusters using classification tree and conjunctive statements schemes [124]

### 2.4.3 Overview on existing clustering algorithms

Based on the previous material, even though the clustering algorithms mentioned are efficient, they have some drawbacks that influence the feasibility of the analysis. For example, some of them (e.g. partitioning clustering algorithms) often get stuck at some local optimum because of the choice of the preliminary cluster centres or the order of the raw data. Additionally, other algorithms work on enhancing only one cluster validity index (e.g. compactness or separation), thus, they do not produce good clusters according to different criteria [172]. Another main problem with the current algorithms is their weakness on dealing with arbitrarily shaped data distributions of the dataset to be clustered [192].

In general, most of the clustering algorithms deal with data features as equally influential factors on the clustering process [266] which does not allow for user domain knowledge to be incorporated into the clustering process. However, there are a number of recent researchers that have considered weighting schemes to extend and improve the existing methods including Modha and Spangler [178], Huang et al. [114], Wang et al. [252] and Hung et al. [118]. Moreover, the users' knowledge as well as their specific requirements cannot be used in most of the algorithms as they tend to produce the clustering

results without allowing the user to do any adjustments[192].

Clustering in high dimensional data is another challenge since there are difficulties in interpreting data embedded in high-dimensional space. Dalal et al. [43] mentioned that most of the existing clustering algorithms suffer from scalability as the size and the dimensions of the data increase. Scalability, the ability to work well on small data sets as well as large databases containing millions of objects, is one of the necessary properties to have an efficient and effective clustering algorithm. Important properties according to some authors [44, 199] include:

1. Scalability.
2. Detection of clusters with arbitrary shape.
3. Minimal requirements for domain knowledge to determine input parameters.
4. Handling of noise.
5. Insensitivity to the order of input records.
6. High dimensionality.
7. Analyse a mixture of attributes types.

Besides the ability to manipulate a mixture of data types in an efficient clustering algorithm, Han and Kamber [102] state that one of the main challenges of data mining is dealing with "mixed media data". They described this term as a combination of multiple media, such as numeric, symbolic, text, images, time series, etc. One of the objectives of this research is to stretch and extend the capability of the existing clustering algorithms to handle such problem.

## 2.5 Evaluation of clustering solutions

The existence of a wide variety of clustering algorithms makes the analysis more flexible, but it raises a major question: which clustering output best fits the application at hand?

Different algorithms or different parameter settings may give dissimilar clustering output for the same dataset [115]. Dissimilar clusters may differ in their features including their number, sizes, densities, shapes, objects they group etc. Furthermore, clustering analysis ends up with a set of clusters even if the dataset does not contain any structure [176]. To tackle these problems, assessing the results of a clustering algorithm(s) is desired [192]. The procedure of evaluating the quality of the clustering output to interpret the clustering patterns and to find the best appropriate algorithm for a specific application is known as clustering validation [98]. Bonner [26], to the best of the researcher's knowledge, is the first to argue that there is no standard and universal description of what a good clustering is.

Multiple cluster validation methods have been developed in the last years. They evaluate the quality of generated clusters with respect to the two following criteria or both as described by Dubed and Jain [61]:

- Cluster compactness: evaluates closeness of cluster's members. Variance is the common measure of compactness which should be minimized.
- Cluster separation: evaluates the clusters' isolation by computing the distance between two clusters to reflect how distinct they are. This is evaluated by measuring the distance between the closest member, between the most distant members or between the representatives of the clusters. The latter calculation has been widely used as it is efficient computationally and effective for hyper-sphere shaped clusters which are the most favourable shape for most validity measures [14].

Compactness and separation are the fundamental objectives of any clustering algorithms. Algorithms aim to satisfy these criteria based on preliminary assumption like initial location of centres, or input parameters such as number of clusters, number of objects in clusters and minimum cluster diameter [100]. High quality generated clusters are those which have minimum within-cluster scatter (well-compact) and maximum between-cluster distances (well-separated) as measured by validation methods. Almost all of the most common validation methods measure compactness and separation and relate them to

one another. For example, Baarsch and Celebi tried to do that by maximizing/minimizing a ratio between both quantities [14]. Furthermore, most of these validity methods are developed on the idea of testing a hypothesis. The methods first adopt a null hypothesis of randomness,  $H_0$ , by assuming that the dataset has no structure. Then after applying a clustering algorithm, the methods assess  $H_0$  by testing the distribution of a selected statistical model,  $T$ .  $H_0$  will be rejected if the probability of  $T$  is low at certain significance level which implies that the dataset contains clusters [115]. Furthermore, some of these validation methods employ graphical visualization to verify the clustering validation [208]. However, data visualization may not be effective in the case of large multidimensional datasets (i.e. more than three dimensions). Nevertheless, the key drawback of utilizing a clustering validation method is its high computational cost, especially when dealing with large and/or complex datasets [116]. In addition to this drawback, they cannot assess arbitrary shaped clusters as they often calculate distances and other parameters, e.g. variance, based on the chosen representative points of each cluster [140].

The existing approaches to study cluster validity are classified into three broad categories by many researchers [203, 140, 100, 124]. These are: internal validation approaches, external validation approaches and relative validation approaches. Other researchers categorized validity indices into only two groups; external approaches and relative approaches [14] or internal approaches and external approaches [207]. They have limited their prescription to the categories that have received attention from the research community, according to what they stated. However, our research considers the three categories as the majority of researchers. Each category of validity methods has its own advantages and limitations. These are described in the following sections. Table 2.4 demonstrates the common used notation in validity indices which are described below. It has to be noted that the presented validation methods are often suitable for crisp clustering, i.e. clustering with no overlap partitions [140]. Under each category, there are dozens of validation measures, some of them have been selected and described. The selection was made based on three characteristics: the success and efficiency of the method in the literature, the method's popularity and implementation simplicity.

---

| Notation              | Meaning                                                             |
|-----------------------|---------------------------------------------------------------------|
| $C_i$                 | The $i^{th}$ cluster                                                |
| $O_j$                 | The $j^{th}$ object                                                 |
| $ C_i $               | Number of objects in the $i^{th}$ cluster                           |
| $N$                   | Number of objects in the dataset                                    |
| $M$                   | Dataset dimensionality                                              |
| $k$                   | Number of clusters                                                  |
| $\mathfrak{C}_{C_i}$  | Representative point of the $i^{th}$ cluster                        |
| $ \underline{C}_i^j $ | Number of objects in the $j^{th}$ dimension of the $i^{th}$ cluster |
| $\bar{O}^j$           | The mean value of values in the $j^{th}$ dimension                  |
| $ \bar{O}^j $         | Number of objects in the $j^{th}$ dimension of the whole dataset    |
| $O_z^j$               | The value of the $j^{th}$ dimension in the $z^{th}$ object.         |

---

Table 2.4: Notation in validity indices

### 2.5.1 Internal validation methods

Internal validation uses statistics on data objects to evaluate the generated clusters excluding any other information beyond the dataset itself. In other words, based on some metrics and the dataset, internal validation indices evaluate the quality of clustering results by measuring the intra-cluster homogeneity [192].

- **Dunn Index (DI)**

This index measures the ratio of the smallest distance between any two clusters and the largest intra-cluster distance. It was first introduced by Dunn [63] and defined by:

$$DI = \min_{i \in k} \left\{ \min_{j \in k, j \neq i} \left\{ \frac{\Lambda_{min}(C_i, C_j)}{\min\{\Lambda_{max}(C_z)\}} \right\} \right\} \quad (2.24)$$

where,

$$\Lambda_{min}(C_i, C_j) = \min\{dist(O_x, O_y) | O_x \in C_i, O_y \in C_j\}$$

$$\Lambda_{max}(C_z) = \max\{dist(O_x, O_y) | O_x, O_y \in C_z\}$$

$\Lambda_{min}(C_i, C_j)$  defines the inter-cluster distance between the  $i^{th}$  and  $j^{th}$  clusters,  $C_i$  and  $C_j$  while  $\Lambda_{max}(C_z)$  defines the intra-cluster distance of cluster  $z^{th}$  cluster,  $C_z$ . Large values of Dunn's measure correspond to good clustering solution. This is because in well-separated clusters, the distance among the clusters is large and their diameters are supposed to be small. Dunn index is the most frequently cited measure [14]. It suffers from two main disadvantages, one is the time consuming calculations, especially when  $N$  and  $k$  increase. The other one is its sensitivity to noise where the maximum cluster diameter can be large in such cases [99]. Three versions of the original index have been proposed in the literature and known as Dunn-like indices [23, 191]. The researchers in the new versions have used different definition for cluster distance and cluster diameter to make the index more robust to the presence of noise. New versions use the concept of the Minimum Spanning Tree (MST), the Relative Neighbourhood Graph (RNG) and the Gabriel Graph (GG).

- **DaviesBouldin index (DB)**

DB was proposed by Davis and Bouldin [47]. This index measures the average similarity between each cluster and the one that most resembles it. It is the ratio of the sum of within-cluster scatter to between-cluster separation. The difference between DB and DI is that DB considers the average case by using the average error of each class. Also in order to measure separation, unlike DI, DB uses cluster centroids to represent clusters. The Davies-Bouldin index defined as:

$$DB = \frac{1}{k} \sum_{i=1}^k \max_{j \in k, j \neq i} \left\{ \frac{\Lambda_{avr}(C_i) + \Lambda_{avr}(C_j)}{dist(\mathfrak{C}_{C_i}, \mathfrak{C}_{C_j})} \right\} \quad (2.25)$$

where,

$$\Lambda_{avr}(C_i) = \frac{1}{|C_i|} \sum_{x=1}^{|C_i|} dist(O_x, \mathfrak{C}_{C_i})$$

$$\Lambda_{avr}(C_j) = \frac{1}{|C_j|} \sum_{x=1}^{|C_j|} dist(O_x, \mathfrak{C}_{C_j})$$

$\Lambda_{avr}(C_i)$  and  $\Lambda_{avr}(C_j)$  are the average distance of all the objects in cluster  $C_i$  and  $C_j$  to their respective centroid  $\mathfrak{C}_{C_i}$  and  $\mathfrak{C}_{C_j}$ .  $dist(\mathfrak{C}_{C_i}, \mathfrak{C}_{C_j})$  measures the distance between the centroids of the  $i^{th}$  and  $j^{th}$  clusters,  $\mathfrak{C}_{C_i}$  and  $\mathfrak{C}_{C_j}$ . According to the above definition of DB compacted and separated clusters give lower values of DB [140]. Alternative definitions of the dissimilarity between clusters and the dispersion of a cluster are given by Davies and Bouldin [47]. In addition, Pal and Biswas [191] in a similar way to the Dunn-like indices have proposed three variants of DB based on MST, RNG and GG approaches.

- **Root Mean Squared Standard Deviation (RMSSTD)**

RMSSTD was proposed by [211]. It evaluates the homogeneity of the clusters, thus the lower the RMSSTD value is, the better the clustering results. It is defined as:

$$RMSSTD = \sqrt{\frac{\sum_{\substack{i=1 \dots k \\ j=1 \dots M}} \sum_{z=1}^{|C_i^j|} (|C_z^j| - \bar{O}_j)^2}{\sum_{\substack{i=1 \dots k \\ j=1 \dots M}} (|C_i^j| - 1)}} \quad (2.26)$$

Hierarchical clustering algorithms often use this index. It can also be used for measuring the quality of clustering solutions from other algorithms [140]. In hierarchical clustering, RMSSTD measures the variance of the generated clusters at each step of the algorithm, therefore, if the value of the index in a particular step is higher than in the previous one this means the new formed clusters are not homogeneous [97].

- **Rsquare (RS)**

RS is also proposed by Sharma [211] but unlike RMSSTD which measure homogeneity within a cluster, RS indicates the extent to which clusters are different from each other. Its values range between 0 and 1; where 0 means there are no difference among the clusters and 1 indicates that there are significant differences between the

clusters. R-square index is defined using the within cluster sum of squares,  $SS_w$ , and the total sum of squares of the whole dataset,  $SS_t$  as follows:

$$RS = \frac{SS_t - SS_w}{SS_t} \quad (2.27)$$

where,

$$SS_t = \sum_{i=1}^M \sum_{z=1}^{|O^i|} (O_z^i - \bar{O}^i)^2$$

$$SS_w = \sum_{\substack{i=1 \dots k \\ j=1 \dots M}} \sum_{z=1}^{|C_i^j|} (O_z^j - \bar{O}^j)^2$$

- **SD validity index**

The idea of the SD index [96] is to evaluate the cluster validity based on the average scattering of clusters and total separation between clusters. SD validity is defined by:

$$SD(k) = \gamma \cdot Scat(k) + Dis(k), \quad (2.28)$$

where,  $Scat(k)$ , the average scattering for clusters is evaluated by variance of the clusters,  $\sigma(\mathfrak{C}_{C_i})$ ,  $i=1 \dots k$  and variance of the dataset,  $D$ , which is noted as  $\sigma(O)$ , and defined by:

$$Scat(k) = \frac{1}{k} \sum_{i=1}^k \frac{\|\sigma(\mathfrak{C}_{C_i})\|}{\|\sigma(O)\|}, \quad (2.29)$$

where,  $\sigma(O)$  and  $\sigma(\mathfrak{C}_{C_i})$ ,  $\forall i \in \{1 \dots k\}$  are calculated for each of the  $M$  dimensions as below:

$$\sigma(O) = \begin{pmatrix} \sigma_O^1 \\ \sigma_O^2 \\ \vdots \\ \sigma_O^M \end{pmatrix} \quad \text{such it is calculated for the } j^{\text{th}} \text{ dimension as:}$$

$$\sigma_O^j = \frac{1}{N} \sum (O_z^j - \bar{O}^j)^2, \quad \forall j \in \{1 \dots M\}, z \in \{1 \dots N\}$$

and

$$\sigma(\mathfrak{C}_{C_i}) = \begin{pmatrix} \sigma_{\mathfrak{C}_{C_i}}^1 \\ \sigma_{\mathfrak{C}_{C_i}}^2 \\ \vdots \\ \sigma_{\mathfrak{C}_{C_i}}^M \end{pmatrix} \quad \text{such it is calculated for the } j^{\text{th}} \text{ dimension as:}$$

$$\sigma_{\mathfrak{C}_{C_i}}^j = \frac{1}{|C_i|} \sum (O_z^j - \mathfrak{C}_{C_i}^j)^2, \quad \forall j \in \{1 \dots M\}, z \in \{1 \dots |C_i|\}$$

In  $SD(k)$ , the total separation of clusters,  $Dis(k)$ , is measured by the distances of cluster centre points by the following formula:

$$Dis(k) = \frac{\Lambda_{max}(\mathfrak{C}_C)}{\Lambda_{min}(\mathfrak{C}_C)} \sum_{i=1}^k \left( \sum_{j=1, j \neq i}^k \| \mathfrak{C}_{C_i} - \mathfrak{C}_{C_j} \| \right)^{-1} \quad (2.30)$$

where,  $\Lambda_{max}(\mathfrak{C}_C)$  and  $\Lambda_{min}(\mathfrak{C}_C)$  are the maximum distance between cluster centers and the minimum distance between cluster centers, respectively. They are calculated  $\forall i, j \in \{1, 2, \dots, k\}$  as follows:

$$\Lambda_{max}(\mathfrak{C}_C) = \max \| \mathfrak{C}_{C_i} - \mathfrak{C}_{C_j} \|,$$

$$\Lambda_{min}(\mathfrak{C}_C) = \min \| \mathfrak{C}_{C_i} - \mathfrak{C}_{C_j} \|$$

$\gamma$  in  $SD(k)$  is a weighting factor that is equal to  $Dis$  parameter in case of maximum number of clusters,  $Dis(k_{max})$ . Lower value of  $SD$  means more quality of the clustering solution, hence the clusters are compacted and separated.

- **S\_Dbw validity index**

S\_Dbw method has been proposed by [100]. The difference between SD and S\_Dbw is that the latter takes into consideration the density of the clusters, yet both indices evaluate cluster compactness and separation. Lower index values indicate better clustering schema. Mathematically, S\_Dbw is defined by:

$$S_Dbw(k) = Scat(k) + Dens\_bw(k) \quad (2.31)$$

This index measures two quantities which are:

1. The intra-cluster variance,  $Scat(k)$ , which indicates the average scattering of clusters. The smaller value of  $Scat(k)$ , the more compact clusters.  $Scat(k)$  is calculated by evaluating the variance of the clusters,  $\sigma(\mathfrak{C}_{C_i})$  where  $i=1\dots k$ , and variance of the dataset,  $D$ , which is denoted as  $\sigma(O)$ . As previously described in SD validity index,  $Scat(k)$  is described by the following formula:

$$Scat(k) = \frac{1}{k} \sum_{i=1}^k \frac{\|\sigma(\mathfrak{C}_{C_i})\|}{\|\sigma(O)\|}, \quad (2.32)$$

2. The inter-cluster variance,  $Dens\_bw(k)$ , which represents the average number of points between the  $k$  clusters in relation with density within clusters. A small value of  $Dens\_bw(k)$  reflects well-separated clusters.  $Dens\_bw(k)$  is defined as:

$$Dens\_bw(k) = \frac{1}{k.(k-1)} \sum_{i=1}^k \sum_{j=1, j \neq i}^k \frac{den(u_{C_iC_j})}{\max\{den(\mathfrak{C}_{C_i}), den(\mathfrak{C}_{C_j})\}} \quad (2.33)$$

where,  $u_{C_iC_j}$  is the middle point of the line segment between the centres of the clusters  $C_i$  and  $C_j$  which is defined by  $\mathfrak{C}_{C_i}$  and  $\mathfrak{C}_{C_j}$ . The density function around a point,  $den(u)$ , is defined as follows:

$$den(u) = \sum_{z=1}^{mp} f(O_z, u), \quad (2.34)$$

where  $mp$  is the number of tuples that belong to the clusters  $C_i$  and  $C_j$  such that  $O_z \in C_i \cup C_j \subseteq S$ . This represents the number of points in the neighbourhood of  $u$ . It counts the number of points in a hyper-sphere whose radius is equal to the average standard deviation,  $astd$ , of clusters which is calculated using the formula below:

$$astd = \frac{1}{k} \sqrt{\sum_{i=1}^k \|\sigma(\mathcal{C}_{C_i})\|} \quad (2.35)$$

The function  $f(O, u)$  is defined as:

$$f(O, u) = \begin{cases} 0, & \text{if } dist(O, u) > astd \\ 1, & \text{otherwise} \end{cases}$$

### 2.5.2 External validation methods

External validation indices imply evaluating the generated clusters based on a pre-determined structure or user specific intuition for the dataset [100].

There are two ways of evaluating the clustering results of a dataset  $D$  composed of  $N$  objects using an external validation approach. The first technique compares the clustering result,  $\hat{C} = \{C_1, C_2, \dots, C_k\}$ , with an independent partition,  $\mathfrak{p} = \{\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_s\}$ , that is build based on intuition about the dataset structure ( $k$  and  $s$  do not need to be the same). This comparison scheme is not applicable for hierarchical clustering algorithms. The second technique compares  $\mathfrak{p}$  with the distance matrix,  $DM$ .

- **Comparison of  $\hat{C}$  with  $\mathfrak{p}$**

This assumes the clustering results is  $\hat{C}$  and the defined partitioning  $\mathfrak{p}$ . The steps below described how to evaluate the clustering results using the definitions of  $\hat{C}$  and  $\mathfrak{p}$  [97, 98]:

1. Test each of the maximum number,  $mp$ , of possible pairs of objects,  $(O_i, O_j) \in D$ , where  $mp = N(N-1)/2$  and update the corresponding counter,  $a, b, c$  or  $d$

such:

$$\begin{aligned}
 a: \quad & \text{if } O_i \wedge O_j \in C_x \quad \text{and} \quad O_i \wedge O_j \in \mathfrak{p}_y \\
 & \Rightarrow C_x \in \hat{C}, \mathfrak{p}_y \in \mathfrak{p} \\
 b: \quad & \text{if } O_i \wedge O_j \in C_x \quad \text{and} \quad O_i \in \mathfrak{p}_y \wedge O_j \in \mathfrak{p}_z \\
 & \Rightarrow C_x \in \hat{C}, \mathfrak{p}_y, \mathfrak{p}_z \in \mathfrak{p} \\
 c: \quad & \text{if } O_i \in C_x \wedge O_j \in C_y \quad \text{and} \quad O_i \wedge O_j \in \mathfrak{p}_y \\
 & \Rightarrow C_x, C_y \in \hat{C}, \mathfrak{p}_y \in \mathfrak{p} \\
 d: \quad & \text{if } O_i \in C_x \wedge O_j \in C_y \quad \text{and} \quad O_i \in \mathfrak{p}_y \wedge O_j \in \mathfrak{p}_z \\
 & \Rightarrow C_y \in \hat{C}, \mathfrak{p}_y, \mathfrak{p}_z \in \mathfrak{p}
 \end{aligned}$$

where the summation of the four counters equal to the number of maximum pairs of objects,  $a + b + c + d = mp$ .

2. To define the degree of similarity between  $\hat{C}$  and  $\mathfrak{p}$ , select and calculate an appropriate binary data similarity measure, some of the most popular indices are explained with examples in Section 2.2.3. Below is a brief summary of those measures:

|                                |                                                      |
|--------------------------------|------------------------------------------------------|
| Russell/Rao [201]              | $\frac{a}{a + b + c + d}$                            |
| Jaccard coefficient [123]      | $\frac{a}{a + b + c}$                                |
| Rand statistic [200]           | $\frac{a + d}{a + b + c + d}$                        |
| Dice's coefficient [54]        | $\frac{2a}{2a + b + c}$                              |
| Fowlkes and Mallows index [78] | $\frac{a}{\sqrt{\frac{a}{a+b} \cdot \frac{a}{a+c}}}$ |

The higher the values of these indices are the more similarity between  $\hat{C}$  and  $\mathfrak{p}$ .

- **Comparison of  $\mathfrak{p}$  with  $DM$**

According to Halkidi [98], the independent partitioning of the dataset,  $\mathfrak{p}$ , can be considered as a mapping function  $f$  such that  $f: O \rightarrow \{C_1, C_2, \dots, C_k\} \forall O \in D$ . The following steps demonstrate how to compare  $\mathfrak{p}$  with  $DM \forall i, j \in \{1 \dots N\}$ :

1. Based on  $\mathfrak{p}$  generate the matrix  $Y$  which is defined as:

$$Y(O_i, O_j) = \begin{cases} 0, & \text{if } f(O_i) \neq f(O_j) \\ 1, & \text{if } f(O_i) = f(O_j) \end{cases}$$

2. Evaluate the similarity statistically between the two matrices  $DM$  and  $Y$  using huberts statistic,  $\Gamma$ , or normalized huberts,  $\acute{\Gamma}$ . The calculated index value is an indication of the clustering performance. High values of these indices indicate a strong similarity between  $DM$  and  $Y$ . Moreover,  $\acute{\Gamma}$  produces values between -1 and +1. The  $\Gamma$  and  $\acute{\Gamma}$  indices are defined below where,  $mp$  is the maximum number of all pairs,  $(O_i, O_j)$ , in the dataset [117]:

**Huberts statistic ( $\Gamma$ ):**

$$\Gamma = \frac{1}{mp} \sum_{i=1}^{N-1} \sum_{j=i+1}^N DM(O_i, O_j) Y(O_i, O_j) \quad (2.36)$$

**Normalized huberts statistic ( $\acute{\Gamma}$ ):**

It uses the mean,  $\mu_{DM}$ ,  $\mu_Y$ , and standard deviation,  $\sigma_{DM}$ ,  $\sigma_Y$ , of the matrices  $DM$  and  $Y$  respectively.

$$\acute{\Gamma} = \frac{\left[ \frac{1}{mp} \sum_{i=1}^{N-1} \sum_{j=i+1}^N (DM(O_i, O_j) - \mu_{DM})(Y(O_i, O_j) - \mu_Y) \right]}{\sigma_{DM}\sigma_Y} \quad (2.37)$$

### 2.5.3 Relative validation methods

Relative validation methods evaluate the clustering output by comparing it with other clustering schemes. On the same dataset, a clustering algorithm(s) is executed repeatedly with different input parameter and then the results are compared to find the optimal solution [203]. It is also known under the term of cluster stability.

Relative validation differs from internal and external validation methods because it

does not involve specific statistical tests, rather it has two approaches. Since the main idea of relative validation is to find the optimal clustering configuration among some obtained solutions, the selected algorithm will run on the dataset  $R$  times with different set of parameter,  $P_{alg}$ . Accordingly, there are two cases [97]:

- **Number of clusters is not a required input,  $k \notin P_{alg}$**

In this situation, the choice of the best  $P_{alg}$  is as follows:

1. Run the selected clustering algorithm for a wide range of different  $P_{alg}$ .
2. Take into consideration the largest range of  $P_{alg}$  for which  $k$  remains constant that is often  $\ll N$ .
3. Choose, as appropriate, a set of  $P_{alg}$  that correspond to the middle of this range.

This approach can be utilized to identify the optimal number of clusters that fit the dataset at hand.

- **Number of clusters is a required input  $k \in P_{alg}$**

This case involves choosing a suitable performance index,  $\pi$ , and follows the steps below:

1. Run the selected clustering algorithm for all possible values of  $k$ , denoted as  $k^*$ , that range between the maximum,  $k_{max}$ , and minimum number of clusters,  $k_{min}$ , which is determined by the user as  $k_{max}, k_{min} \in P_{alg}$ .
2.  $\forall k^*$  where  $k_{min} \leq k^* \leq k_{max}$ , run the clustering algorithm  $R$  times using different set of  $P_{alg}$  for the other parameters of the algorithm.
3. Plot the best values of the picked validity index,  $\pi$ , obtained for each possible number of clusters,  $k^*$  when trying different set of  $P_{alg}$ .
4. Identify the best clustering scheme using the plot. There are two cases in regards to the behaviour of  $T$  with respect to  $k^*$ . In the first case, we seek the maximum of the plot if  $\pi$  does not show increasing or decreasing trend as

$k^*$  changes. In the second case, we seek the significant local change, occurring as a "knee" in the plot, in the case that  $\pi$  exhibit an increasing or decreasing trend as  $k^*$  increases. It has to be stressed that the absence of a "knee" in the plot may be an indication that there is no clustering structure for the dataset.

Through the past 40 years and still to the present, cluster validity has been a strong area of research. Most of the research which proposed new methods such as [277] compared the performance of their ideas with the existing techniques. Having said that, there are a few independent attempts that have compared and measured validation methods against each other. Independent researchers [177, 247] are often more reliable as they have no agenda of their own. In these papers, a number of early validation methods have been shown to be the most efficient indices. However, the behaviour of validation indices may change if different data structures were dealt with. This is because, for example, Milligan and Cooper [177] have compared thirty methods but that was based on a well-separated small datasets where each was about only 50 objects [97].

## 2.6 Cluster ensemble

Cluster ensemble, also called consensus or aggregation of clustering, has emerged as an important elaboration of the classical clustering problem. It consists of generating a set of clusterings from a particular dataset and combining them into a single final solution which is a better fit. The purpose behind this process is to improve the performance of the results obtained by each individual clustering. In the literature, several studies demonstrate that the performance efficiency of a cluster ensemble exceeds single clustering [94, 70, 79]. Moreover, the result of a clustering ensemble practice is expected to be: consistent, robust, novel and stable which endorses the use of this kind of technique. When the ensemble result fulfills the previous properties we ensure that we have very similar solution (consistency) with better average performance than the combined results (robustness). In addition, this guarantees that the final configuration is not achievable by single clustering (novelty) and it comes with lower sensitivity to outliers/noise (stability). There is a big

variety of problems in which the clustering ensemble techniques can be applied. For example: in image segmentation [76, 34, 218], document clustering [258, 86, 215], feature extraction [110, 110, 130], bioinformatics [12, 111, 268] and physics problems [256].

Many cluster ensemble methods have been proposed over the past years and there are potential and also shortcomings for each one. There are a number of survey papers [246, 83, 151] with the purpose of reviewing these existing techniques. In general, every cluster ensemble technique consists of two principle steps: generation and consensus function. Generation is the phase of creating multiple clustering (partitions), this step is discussed in Section 2.6.1. Consensus function is the process of integrating all the clusterings that result from the previous step into a new final partition. Section 2.6.2 covers this phase.

The dataset,  $D$ , comprises  $N$  objects such  $D = \{O_1, O_2, \dots, O_N\}$ , where each  $i^{th}$  object in  $D$ ,  $O_i$ , is a tuple in the  $M$  dimensional feature space for all  $i=1, 2, \dots, N$ .  $\mathbb{P} = \{\hat{P}_1, \hat{P}_2, \dots, \hat{P}_p\}$  is a set of partitions, where each  $i^{th}$  partition,  $\hat{P}_i = \{C_i^1, C_i^2, \dots, C_i^{k_i}\}$ , is a partition of the set of objects  $D$  with  $k_i$  clusters such the  $C_i^j$  is the  $j^{th}$  cluster of the  $i^{th}$  partition for all  $i=1, 2, \dots, p$ . The results of a cluster ensemble is the consensus partition,  $\hat{P}^* \in \mathbb{P}$ , which better represents the properties of each individual partition  $\in \mathbb{P}$ . The first step in any cluster ensemble method, generation, produces  $\mathbb{P}$  while the second one, outputs  $\hat{P}^*$ . Figure 2.8 is a diagram of the general outline of any cluster ensemble method.

### 2.6.1 Generation mechanism

There are no restrictions on how  $\mathbb{P}$  can be produced. It can be generated in numerous ways, for example:

- Using different clustering algorithms [112] including partitioning, hierarchical, grid clustering algorithms, etc.
- Using different parameters to initialize the same algorithm [119], e.g., varying the number and/or location of initial cluster centers in iterative algorithms. Also, different distance measures can be used.

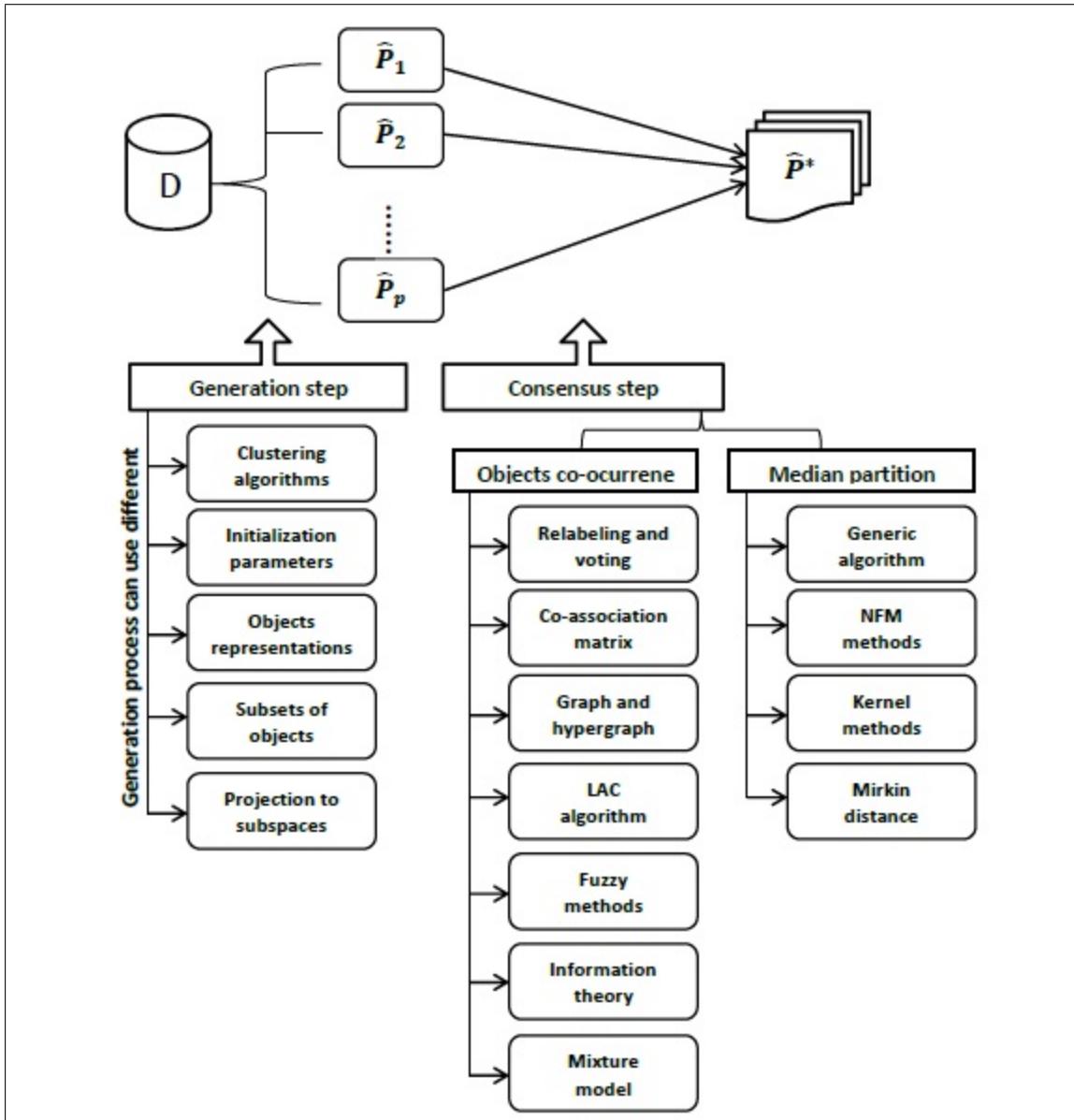


Figure 2.8: Diagram of the clustering ensemble approach

- Using different representations of objects [56], e.g., images can be represented by their pixels, histograms, location and parameters of perceptual primitives or 3D scene coordinates.
- Using objects projections such as different subspaces [70], choosing different subsets of features ([269]), or data sampling [62]. It is intuitively assumed that each clustering algorithm can provide different levels of performance for different partitions of a dataset.

- Varying the order of data presentation in on-line methods [56] such as in some implementation of BIRCH and  $k$ -means.

Since, the output of this step is a set of clusterings that will be combined in the next step, we need it to be informative for the consensus function. Thus, it is advisable to use different generation mechanism [246] in order to obtain large diversity in the set of partitions  $\mathbb{P}$ .

## 2.6.2 Consensus function

This function is used to aggregate the results of the ensemble components into a single final partition,  $\hat{P}^*$ . Thus, it is the core step in any clustering ensemble task. However, the idea here is to define a function that is capable of improving the results of each involved single clustering.

There is ambiguity in determining the best consensus function as it depends on several aspects including: the nature of the problem, what we expect from the results and the validation methods in use. A recent useful experimental comparison of clustering ensemble methods [246] helps the selection of an appropriate consensus function. The authors explore the general behavior of the functions, presented in Figure 2.8, regarding six properties. These are:

1. the ability to combine partitions with different number of clusters, i.e.  $k_i$  is not necessarily equal for all partitions in  $\mathbb{P}$ ;
2. the dependency of the consensus function on a particular type of generation mechanism that are presented in Figure 2.8;
3. whether the functions consider the original dataset of objects,  $D$ , and the object similarity values or only include the set of partitions,  $\mathbb{P}$ ;
4. the capability of determining the optimum number of cluster in  $\hat{P}^*$ , i.e. whether the number of clusters is a parameter for the consensus function or not;

5. the theoretical strength of the consensus function definitions. In general, methods that fall into median partition approach are theoretically stronger;
6. the computational cost. They use three indicators: low, high and heuristic dependent. The latter is used for cases when it is very difficult to determine the level as it depends on the problem and the convergence criteria.

The available consensus functions can be divided (according to [246]) into two main approaches: object co-occurrence and median partitions. The first approach, object co-occurrence, analyzes how many times an object, or two objects together, belong(s) to one specific cluster. Explicitly, this approach lets the objects vote for the clusters that they seem they can fit within. Consensus functions that fall under this approach can be divided into subgroups of methods: Relabeling and voting. Voting includes Voting-Merging [58], Plurality Voting [74], Cumulative Voting [13] and Voting Active Clusters [5]. Co-association matrix includes: Co-Association Single Link [124], Connected Triple Based Similarity [119] and Probability Accumulation Matrix [251]. Graph and hypergraph methods include: Cluster-based Similarity Partitioning Algorithm [229] and Hybrid Bipartite Graph Formulation [71]. Locally adaptive clustering algorithms include: WSPA and WBPA [60]. Fussy methods include: sCSPA, sMCLA and sHBGF [198]. Information theory methods include category utility function [237]; and finally, there is a finite mix model CE-EM [236].

The second approach, median partition, is an optimization problem that aims to maximize the similarity with all partitions, formally defined by:

$$\hat{P}^* = \max_{\forall \hat{P}_i, \hat{P}_j \in \mathbb{P}} \sum_{i=1}^p \text{dist}(\hat{P}_i, \hat{P}_j) \quad (2.38)$$

*dist* is the similarity measure between partitions. There are many published methods to measure (dis)similarity between partitions. They can be categorised into:

- counting pairs measures: count the pairs on which partitions agree or disagree;
- set matching measures: set cardinality comparisons;

- information theory based measures: quantify the information shared between two clustering results;
- and kernel measures: these methods were developed specially for median partition consensus functions.

With the big variety of existing measures, we need to study the properties of each one to be able to select an appropriate method for our problem. Researchers [10, 173, 197] have already conducted in-depth analysis of these measures, which might be helpful in the selection process. The most popular clustering ensemble techniques that obtain the solution based on median partition can be divided into: Generic algorithms: IT-GA [163] and HCE [264]; Non-negative matrix factorization based methods: NMFC [38]; Kernel methods: WKF [243], WPCK [244] and GWKF [245]; and Mirkin distance algorithms: SAOM [72], FURTH [84] and CC-Pivot [8].

## 2.7 Chapter summary

In this chapter we review distance measures and organises them according to the data type that they work on. Next we introduce clustering, including notation (e.g. cluster centroids) and how to select the appropriate number of clusters. We also describe clustering algorithms themselves including mathematical definitions and pseudo code as well as drawbacks of different methods. Validation methods are also explored using internal, external and relative validation calculations. The chapter ends with the cluster ensemble section which outlines the two main steps of this technique: members generations and ensemble consensus.

Thus, through this chapter we have explored clustering in depth and we have described methods that will be used to develop and test our clustering approach for heterogeneous data. Having covered the background literature on clustering we are now ready to define our research ideas for clustering heterogeneous data.

# Chapter 3

## Clustering Framework for Heterogeneous Data

This chapter covers heterogeneous data and all related issues that need to be discussed to be able to deal with this type of data. The chapter starts with a review of how the literature has defined heterogeneous data in Section 3.1. Our own definition is presented in Section 3.2 and Section 3.3 presents formally the research problem. Next, a discussion about the related work is given in Section 3.4, and this is followed by our proposed approach to apply cluster analysis to heterogeneous data in Section 3.5. Then, in Section 3.6, a set of heterogeneous datasets, that we used to assess methodology for our approach. At the end, the chapter summary is giving in Section 3.8.

### 3.1 Introduction to Heterogeneous data definition

In the literature, most descriptions, definitions and categorizations of data heterogeneity reflect each researcher's perspective. For example, some address the problems from a structural point [138] and others from a semantic perspective [85]. Liu and Dou [157] described the difference between these perspectives. They stated that structural heterogeneity refers to data gathered from multiple sources and stored in different structures (e.g., relational databases vs. spread-sheet forms), while semantic heterogeneity means

that there are differences in the data content and the supposed meaning. Taniar and Rusu [233] described the latter perspective by stating that it refers to datasets that have different data types (e.g., image, time-series, structured data, etc.), different specifications, and/or different interpretation of the same structure, for instance, different assignments (e.g., character and string) to domains in a one-to-one relation between two tables.

Another viewpoint of the definition of heterogeneous data can be found in a study [219] which described the data complexity properties that hinder straightforward data mining techniques. It describes complexity as arising from two sources: these are from data gathered from multiple processes and from data that have multiple interrelationships among attributes and between the target attribute and the others. On the other hand, Han and Kamber [102] defined a heterogeneous database as a collection of components that are interconnected databases, such that each component holds objects that greatly differ from objects in other components. Furthermore, they talk about databases that come together grouping different types of data, e.g., spreadsheets, multimedia, hierarchical and relational databases. The resulted combination is called a heterogeneous database.

Additionally, some researchers [271] view the Web as a huge source of heterogeneous data, as the Web comprises different types of objects: web pages, links, queries, items, documents, etc. Chelcea et al. [36] conducted supplementary research that supports the previous definition. They determined the characteristics of complex data as large, multi-source, heterogeneous and temporal data (e.g. time period-based clickstreams).

Hence, data from mixed media sources may be called heterogeneous data, but it can also be termed as "complex data". Mining complex data via pattern detection was discussed in [216]. The paper referred to three types of datasets as complex data: semi-structured collections, DNA and multimedia data. Similar research [175] aimed to shape a complex environment by integrating heterogeneous data sources; these were structured, semi-structured and unstructured data. The researchers stressed that, it is necessary to design a unified data approach, e.g., a multi-database/warehouse system in order to address the diversity of data types. By looking closely at the these data types, structured data is the most common data type in conventional databases. Relational databases and

object-oriented databases are two examples of the more commonly used conventional structures. On the other hand, unstructured data cannot be directly indexed or represented in these types of structures, however, this can be done if needed by a way or another. One of the most popular ways of categorizing unstructured data is by representing in terms of its space dimensionality. Zhang and Zhang [276] stated that typical examples of 0-dimensional, 1-dimensional, 2-dimensional and 3-dimensional unstructured data are free text (alphanumeric data), audio, graphics (imagery data) and video (animation), respectively. Even though Zhang and Zhang considered audio, images and videos as unstructured data, many other researchers called them multimedia data [e.g., [81]]. Akeem et al. [9] pointed out that multimedia data are unstructured or semi-structured by nature, and they defined such data as sets of audio, speech, text, web objects, images or videos, or a mixture of different types. Unlike structured data, semi-structured data have an irregular or altering organization [39]. Nonetheless, semi-structured data enforces hierarchies of records and fields by separating semantic elements using tags or other markers. Popular examples of semi-structured data are XML (the standard for data representation and exchange on the World Wide Web) [150], e-mail and Electronic Data Interchange (EDI) (a method for transferring data between computer systems or networks). It is possible to transform data from unstructured into semi-structured or fully structured data [217]. Other researchers [3] believe that structured and semi-structured data can be treated as unstructured data.

Returning back to the term of complex data, Ras et al. [278] described the specifics of this data heterogeneity by summarising three points:

- Each object in the dataset is represented by different data types, i.e. numerical, categorical, symbolic descriptor, text, images, audio and video;
- The data sources are numerous, e.g., in medical context, they could come from textual reports, measures, surveys, radio-graphs, etc; and
- The data are particular to distinct times or places, e.g., patient data that may relate to different doctors who provided certain information at different times.

It thus is clear from all of the different types of heterogeneity that complexity is inherent in heterogeneous data and that data analysis methods that address homogeneous data may need some form of adaptation to work with heterogeneous data. In this research, we define heterogeneity in a narrow sense as relating to real world complex objects that are described by different elements where each element may be of a different data type. Section 3.2. gives a precise formal description of our definition of heterogeneous data.

## 3.2 Defining heterogeneous data

A heterogeneous dataset in this research is defined as a set of objects described by a combination of a number of elements. Each element may be an instance of a specific data category. For example, in hospital environment, a 'patient' may be described by elements containing: structured data (e.g. a set of values for demographic attributes); semi-structure data ( e.g. a diagnostic text report); time series data (e.g. a set of blood test results over a period of time); and some image data (e.g. an x-ray image). Note that an object may have entire elements missing (e.g. a complete set of values for a particular blood test that the patient did not take) or values within the element missing (e.g. some demographic values are not recorded). This type of heterogeneity makes no assumptions about the source of the data. It could be an individual homogeneous database system or multiple heterogeneous datasets. However, all available data represents a different description, an element, of the same object. We are not referring to relationships between classes of entities or objects but to relationships between objects of the same class. Each element could be generated from a different process but the elements are understood as being complementary to one another and describing the object in full. Thus they all are characterised by sharing the same *Object Identifier (O.ID)*.

The data categories that might compose our heterogeneous object are:

- **Structured data**

According to Losee [160], structured data refers to data systematized in a highly predefined schema (e.g. tables and relations) where the regularities apply to the

whole dataset. The schema has to be well-defined before the content is created by determining the data types, structures and relations. A typical example for fully structured data is a relational database system. An advantage of relational database applications is the presence of several practical tools to maintain, manage and administrate this type of data structure.

- **Unstructured data**

Unlike structured data, this kind of data does not have a pre-defined data model [217]. A typical example of this category is free text. Unstructured data is also described in [2] as data that cannot be shaped in rows and columns in a similar way to relational databases. The lack of controlling navigation within unstructured content is one of the big limitations in the analysis of this data type [217], thus it is often very difficult to analyze unstructured data. Moreover, data in this format is growing significantly and experts estimate that 80 to 90 percent of the data in any organization is unstructured.

- **Semi-structure data**

In this category, the data is controlled by a regular structure that is applied to the whole content to make it self-describing [160]. The data is interpreted with structural information supplied as tags, for example, name = "Mark" and city = "London". To convert the unstructured data to semi-structured data, these tags can be allocated manually or automatically [217]. Instances of semi-structure data are: mark-up languages (e.g., XML), Electronic Data Interchange (EDI) which is a communication system that provides standards for exchanging data electronically, Electronic Mails (E-mail) and Resource Description Framework (RDF) which is a language that provides meta-data to web resources in the WWW.

Abiteboul [2] reported that one of the strengths of this data category is the possibility of creating its semi-structure according to precise specifications to make it serve a particular application, for example, allowing redundant or missing fields.

- **Sequence data**

Sequence data refers to a successive ordered set of variables such that  $S = s_1, s_2, \dots, s_m$  [108] where  $s_1$  is the first value,  $s_2$  is the second value and so on. The typical instance of sequence data is time-series where it has a temporal order and events are measured in uniform intervals and expressed numerically [108]. Other examples of sequence data made of characters include acid sequences, protein sequences and DNA sequences.

- **Multimedia data**

This category includes one or more of the data media that can be represented, processed, stored and transmitted digitally. Zhang and Zhang [276] stated that this type of data is at least 1-dimensional in the space. Images, audio and videos are common examples of these digital media. Still images are sequences of pixels that represent a region in the graphical display. Image resolution, size, complexity and compression scheme control the space needed to store them. Audio files are sound recording files that use compressing schemes in order to minimize the space required to store them as one minute of sound can take up to 2-3 Mbs of space. Full-motion videos are stored as sequences of frames. They are the most space intensive multimedia data type. However, that depends on the resolution and size of the frames, were a single frame may need up to 1 MB to be stored.

### 3.3 Problem statement

In this research, the formal definition of a heterogeneous dataset,  $H$ , is a set of objects such that  $H = \{O_1, O_2, \dots, O_i, \dots, O_N\}$ , where  $N$  is the total number of objects in  $H$  and  $O_i$  is the  $i^{th}$  object in  $H$ . Each object,  $O_i$ , is defined by a unique *Object Identifier*,  $O_i.ID$ . We use the dot notation to access the identifier and other component parts of an object. In our heterogeneous dataset objects are also defined by a number of components or elements  $O_i = \{\mathcal{E}_{O_i}^1, \dots, \mathcal{E}_{O_i}^j, \dots, \mathcal{E}_{O_i}^M\}$ , where  $M$  represents the total number of elements and  $\mathcal{E}_{O_i}^j$  represents the data relating to  $\mathcal{E}^j$  for  $O_i$ . Each full element,  $\mathcal{E}^j$ , for  $1 \leq j \leq M$ , may be considered as representing and storing a different data type. Hence, we can view  $H$  from

two different perspectives: as a set of objects containing data for each element or as a set of elements containing data for each object. Either representation will allow us to extract the required information. For example,  $O_3$  would refer to all the elements available for object 3 (e.g a specific patient with a given ID);  $O_3.\mathcal{E}^2$  would refer to the second element for object three (e.g. a set of hemoglobin blood test results for a specific patient);  $\mathcal{E}^2$  would refer to all of the objects' values for element 2 (e.g. all of the hemoglobin blood results for all patients) .

We begin by considering a number of data types:

**SD** A heterogeneous dataset may contain a (generally only one) SD element,  $\mathcal{E}^{SD}$ . In this case, there is a set of attributes  $\mathcal{E}^{SD} = \{A^1, A^2, \dots, A^p\}$  defined over  $p$  domains with the expectation that every object,  $O_i$ , contains a set of values for some or all of the attributes in  $\mathcal{E}^{SD}$ . Hence,  $\mathcal{E}^{SD}$  is a  $N \times p$  matrix in which the columns represent the different attributes in  $\mathcal{E}^{SD}$  and the rows represent the values of each object,  $O_i$ , for the set of attributes in  $\mathcal{E}^{SD}$ . For example,  $O_i.\mathcal{E}^{SD}.A^3$  refers to the value of  $A^3$  for  $O_i$  in the SD element. The domains for SD are those considered in relational databases, e.g.:

- Primitive domains: there are a number of data types that can be considered as primitive domains, for example: boolean, numeric, character and string. Boolean values can be either true or false. A numerical value may be an integer or a real number. A character value could be any uni-code character such as a letter, number, symbol, space, etc. A strings domain, consists of or a sequence of Unicode characters.
- Date or partial date domains: an instance of date as used in human communication; it is represented by all or a combination of year, month, day.
- Time domain: used to specify time in the following form "hh:mm:ss" where hh indicates hours, mm indicates minutes and ss indicates seconds and all the components are required. Thus it denotes a time ranging from 00 : 00 : 00 to 23 : 59 : 59.

SD attributes may take one of a fixed number of possible values for each data entry. This is known as a categorical data type, where the values are drawn from the previously mentioned domains (e.g. integer, char, string). In contrast, other attributes may contain continuous values drawn from the numeric domain.

TS The heterogeneous dataset may also contain one or more time-series elements:  $\mathcal{E}^{TS1}, \dots, \mathcal{E}^{TSg}, \dots, \mathcal{E}^{TSq}$ . A TS is a temporally ordered set of  $r$  values which are typically collected in successive (possibly fixed) intervals of time:  $\mathcal{E}^{TSg} = \{(t_1, v_1), \dots, (t_l, v_l), \dots, (t_r, v_r)\}$  such that  $v_1$  is the first recorded value at time  $t_1$ ,  $v_l$  is the  $l^{th}$  recorded value at time  $t_l$ , etc.,  $\forall l, v_l \in \mathfrak{R}$ . Any TS element,  $\mathcal{E}^{TSg}$ , can be represented as a vector of  $r$  time/value pairs. Note, however, that  $r$  is not fixed, and thus the length of the same time-series element can vary among different objects.

TE A heterogeneous object may be described using one or more distinct text elements. A text element refers to an unstructured or a semi-structured segment of text forming a document and modelled as a vector of  $t$  values that belongs to the term-frequency-matrix,  $TFM$ . A term is a word(s) or set of words or a phrase (a word in our case) that exists in a document and is extracted using one of the string matching algorithms.  $TFM$  is a mathematical  $d \times t$  matrix that represents the frequency of a list of  $t$  terms in a set of  $d$  documents. Rows correspond to documents and columns correspond to terms. The term frequency-inverse document frequency (tf-idf) [113] is a weighting scheme that was used to determine the value of each entry in  $TFM$ . This scheme uses a statistic weighting factor that reflects how important a word is to a particular document that belongs to a set of documents. Although more frequent words are assumed to be more important, in practice this is not the case. Probably the most frequent words that appear in English text, e.g. "a" and "the", are not descriptive or important in the text mining task.

$$TFM = \begin{bmatrix} w_{1,1} & w_{1,2} & \cdots & w_{1,t} \\ w_{2,1} & w_{2,2} & \cdots & w_{2,t} \\ \vdots & \vdots & \ddots & \vdots \\ w_{d,1} & w_{d,2} & \cdots & w_{d,t} \end{bmatrix}$$

$w_{i,j}$ , is the weight based on tf-idf scheme of the  $j^{th}$  term in the  $i^{th}$  document. But we have to apply several standard transformations on the basic term vector representation before constructing TFM. The stop words such as 'the', 'and', 'are' and 'do' have to be removed. Also, since the different morphological variations of words with the same stem are similar, words with different endings, they need to be mapped into a single word. For example, 'introduction', 'introduce', 'introducing' and 'introduces' are mapped to be the stem 'introduc' and they should be treated as a single word. In addition, including rare terms may introduce noise and add more cost to the similarity computations. Thus, words that appear with less than a given threshold frequency may be discarded.

Note that, in the case of having more than one TE for the same object, they might be viewed as distinct elements or as one element after merging them.

IE A heterogeneous object may be described by one or more  $m \times n$  24-bit RGB images, sometimes known as a true colour image. An RGB image is stored as a 3-dimensional matrix which is  $m \times n \times 3$  such as  $IMG = \{img_{1,1,1}, img_{1,1,2}, img_{1,1,3}, img_{1,2,1}, img_{1,2,2}, \dots, img_{1,n,3}, \dots, img_{2,1,1}, \dots, img_{m,n,3}\}$ . The first two dimensions of the matrix,  $m$  and  $n$ , are the image dimensions where  $m \times n$  is the number of pixels. The third dimension of the matrix, 3, are used to define red, green, and blue colour components for each individual pixel. The colour of each pixel is determined by the combination of the three colours intensities. For a particular pixel, colours intensities are stored in each of the three colour planes at the pixel's position as a number between 0 and 1. The colour components for a black pixel are 0, 0, and 0 for the red, green and blue plane, while a pixel whose colour components are 1, 1, and 1 is displayed as white. The three colour components for each pixel are stored

along the third dimension of the RGB matrix. For example, the red, green, and blue colour components of the pixel (6,15) are stored in the following position of the RGB matrix: (6,15,1), (6,15,2), and (6,15,3), respectively, see figure 3.1. In a 24-bit RGB images, every colour plane: the red, green, and blue components, is 8 bits which produces up to 16 million different colours,  $2^{24}$  combinations.

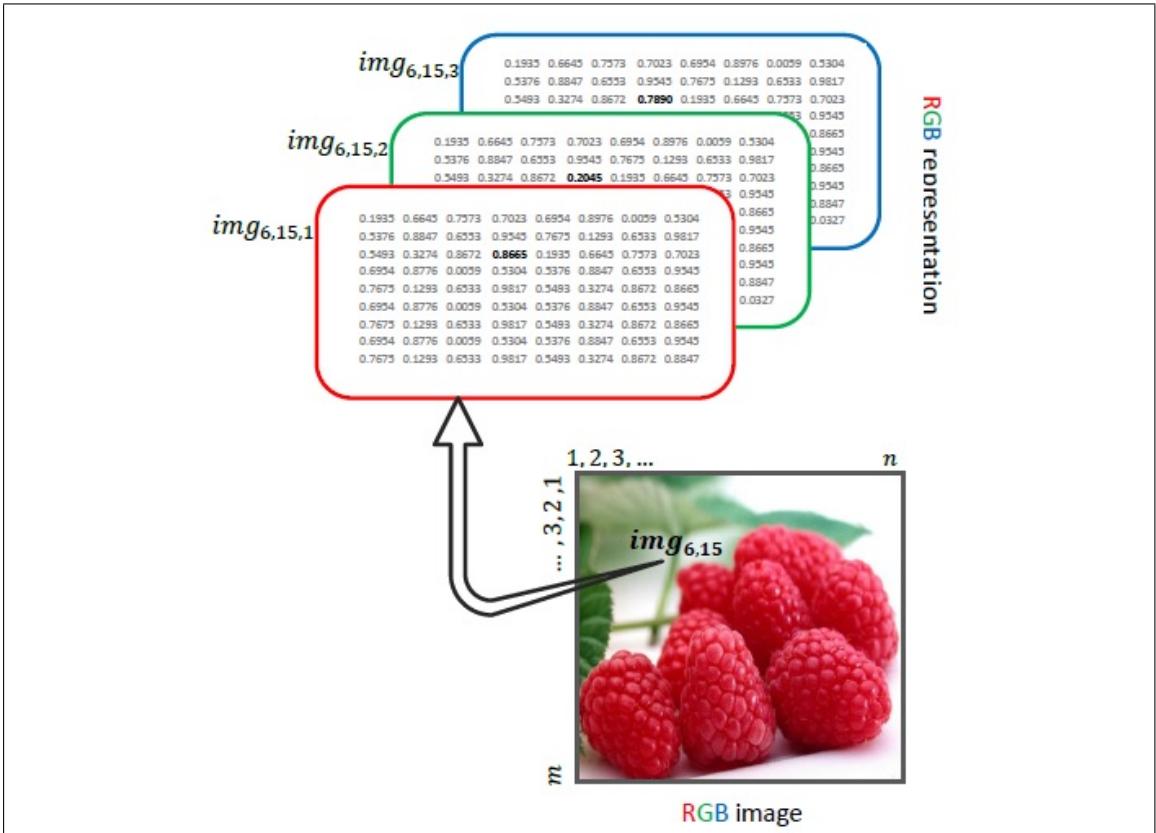


Figure 3.1: RGB image element representation: The value and the position of storing the red, green, and blue colour components of the pixel (6,15) in the 3-dimensional matrix that represents the RGB image

As a general comment, this definition of an object is extensible and allows for the introduction of further data types such as video, sounds, etc. Moreover, it can be concluded from the above definition that any object  $O_i \in H$  might contain more than one element drawn from the same data category. In other words, a particular object  $O_i$  may be composed of a number of DSs and/or TSs and/or images. Moreover, incomplete objects are permitted, where one or more of their elements are absent. Figure 3.2 demonstrates two different views of our heterogeneous dataset: an elements' view and an objects' view.

The data can be stored in a way that allows easily to alternate between these two views,

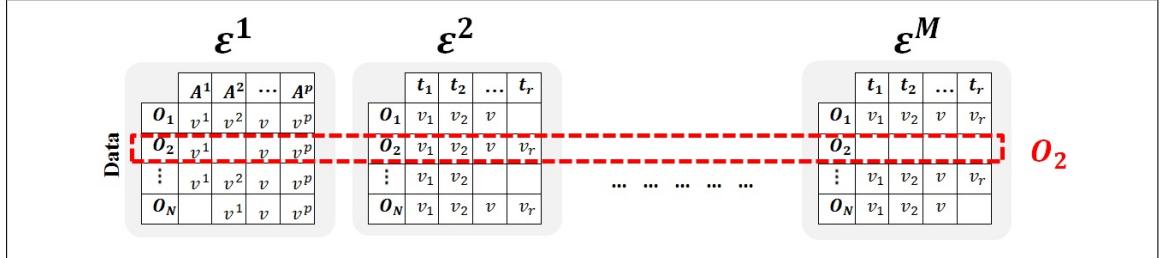


Figure 3.2: Heterogeneous data representation: The red dashed rectangle shows the data relating to a particular object,  $O_2$ , whereas the matrices show various elements including a SD element,  $\mathcal{E}^1$ , and two TS elements,  $\mathcal{E}^2$  and  $\mathcal{E}^M$ .

i.e. the data of a particular element, say  $\mathcal{E}^1$ , can be accessed as well as the data for a particular object, say  $O_2$ . It may be possible, for example to store the data as sets of tuples  $< O.ID, \mathcal{E}.ID, Data\ Type, field, value >$  where for a SD element the field contains the name of the Attribute to be stored with its corresponding value, whereas for a TS element the field corresponds to the time with its corresponding value and for TE element the field corresponds to the term and the value reflecting the frequency from TFM. A simplified example of a patient data recorded in this way may be similar to:

```

<Pat123, HISData, age, 57 >,
<Pat123, HISData, weight, 66 >,
<Pat123, HISData, tumourStage, 3 >
<Pat123, BloodVitaminD, 0, 13.2 >
<Pat123, BloodVitaminD, 30, 13.6 >
<Pat123, BloodVitaminD, 65, 13.8 >
<Pat123, BloodCalcium, 0, 39 >
<Pat123, BloodCalcium, 30, 42 >
<Pat123, BloodCalcium, 65, 40 >
<Pat123, report1, 'tumour', 2 >
<Pat123, report1, 'MRI', 4 >
<Pat123, report1, 'diagnosed', 1 >
<Pat123, report1, 'positive', 1 >

```

```

<Pat123,report2,'cancer',6>
<Pat123,report2,'medication',2>
<Pat123,report2,'prostate',5>
<Pat123,report2,'drugs',3>

```

In this scenario, it is possible to distribute the data using a distributed file system and it is also possible to then retrieve the whole dataset for an object or for an element as required by an algorithm.

For a heterogeneous dataset,  $H$ , comprising  $N$  objects as defined above, then the target is to cluster the  $N$  objects into  $k$  groups where  $k \leq N$ . Normally, to achieve the clustering goal, the number of clusters has to be  $k \ll N$ . The partition of  $H$  into  $k$  clusters is denoted as  $\hat{C} = \{C_1, C_2, \dots, C_k\}$  where each  $C_i$  is formed by grouping similar heterogeneous objects based on similarity measures.

Few attempts have been made to apply data mining techniques on such mixture of data types. The next section (Section 3.4) describes what has been achieved in this area so far. In particular, it details how previous researchers have tried to apply clustering techniques on heterogeneous data and afterwards the discussion lead us to our proposed approach to perform this task in Section 3.5.

## 3.4 Related work on clustering heterogeneous data

Nowadays, modern digital technologies can generate heterogeneous, complex and peculiar data. This creates some challenges for data mining techniques. Thus, more data mining research is needed [9]. Clustering, as discussed in Section 2.2, is the process of grouping similar objects into meaningful clusters without prior knowledge. In the community of data mining and machine learning, clustering homogeneous data has been studied a great deal; comparatively, clustering of heterogeneous data is not a well-developed area of research [82]. Few researchers have ventured into this field, discarding the basic assumption that only homogeneous data objects can be successfully clustered, although

nothing substantial has been achieved yet. Two recent surveys have appeared on mining multimedia data (i.e. data containing mixed data types): [167] and [9]. They discuss various data mining approaches and techniques, including clustering. However, as review papers, detailed procedures are not provided; instead, they focus only on defining the problem including the nature of this challenging data.

Clustering two data types simultaneously, documents and terms, is tackled in two similar studies [51, 272]. In both studies, researchers clustered documents and terms as vertices in a bipartite graph with the edges of the graph indicating their co-occurrence, using edge weights to indicate the frequency of this co-occurrence. There was a restriction in these papers: each word cluster was associated with a document cluster. The underlying assumption here was that words that typically appear together should be associated with same/similar concept which means similar documents. Considering this assumption as a limitation, Dhillon et al. [52] worked on the same problem but they did not impose such a restriction in their study. In addition to clustering a mixture of data types at the same time, a reinforcement approach was suggested by other researchers [249], which might help to address the problem of clustering a set of interrelated objects with different types. The idea behind this approach is to cluster multiple data types separately. Inter-type links are used to iteratively project the clustering results from one type onto another. The researchers applied their scheme on multi-type interrelated web objects, and they noted that their experiment results proved the effectiveness of this approach; significant improvements in clustering accuracy were delivered compared to the result obtained by a standard "flat" clustering scheme. Their idea might have been inspired by a former study conducted by Zeng et al. [271], which attempted to develop a unified framework for clustering heterogeneous web objects. It can be concluded from both studies that relationships between objects can be represented as additional attributes of data and used in the clustering. From the previously presented studies, it can be observed that much of the work in this area relates to the clustering of multi-class interrelated objects, that is, objects defined by multiple data types and belonging to different classes that are connected to one another.

On the other hand, by reviewing the literature, it seems that fusion approaches [27, 4] are often used to deal with this mix of data as they can combine diverse data sources even when they differ in terms of representation. General speaking, fusion approaches focus on the analysis of multiple matrices and formulate data fusion as a collective factorisation of matrices. For example, Long et al. [159] proposed a spectral clustering algorithm that uses the collective factorisation of related matrices to cluster multi-type interrelated objects. The algorithm discovers the hidden structures of multi-class/multi-type objects based on both feature information and relation information. Ma et al. [164] also used fusion in the context of a collaborative filtering problem. They propose a new algorithm that fuses a user’s social network graph with a user-item rating matrix using factor analysis based on probabilistic matrix factorisation in order to find more accurate recommendations. Some recent work on data fusion [4] has sought to understand when data fusion is useful and when the analysis of individual data sources may be more advantageous. Data fusion approaches have become popular for heterogeneous data. It is referred to as the process of integration of multiple data and knowledge from the same real-world object into a consistent, accurate, and useful representation. In practice, data fusion has been evolving for a long time in multi-sensor research [101, 137] and other areas such as robotics and machine learning[1, 69]. However, there has been little interaction with data mining research until recently [45].

According to the stage at which the fusion procedure takes place in the modelling process, data fusion approaches are classified into three categories [170, 194, 90]: early integration, late integration and intermediate integration. In early integration, data from different modalities are concatenated to form a single dataset. According to Žitnik and Zupan [239], this fusion method is theoretically the most powerful approach but it neglects the modular structure of the data and relies on procedures for feature construction. Intermediate integration is the newest method. It retains the structure of the data and concatenates different modalities at the level of a predictive model. In other words, it addresses multiplicity and merges the data through the inference of a joint model. The negative aspect of intermediate integration is the requirement to develop a new inference algorithm for every given model type. However, according to some researchers [239, 241, 194, 145]

the intermediate data fusion approach is very accurate for prediction problems and may be very promising for clustering. In late integration, each data modality gives rise to a distinct model and models are fused using different weightings.

Though many studies (e.g. [146, 24, 214]) have examined data fusion in classification there is less work in the clustering domain. However, in one hand a recent work on intermediate fusion for data clustering was conducted by Yu et al. [267] and found to be promising. On the other hand, Greene and Cunningham [90], for example, present an approach to clustering with late integration using matrix factorisation. Others have derived clustering using various ensemble methods [59, 229, 249, 82] to arrive at a consensus clustering.

### 3.5 Proposed methodology for applying cluster analysis to heterogeneous data

Our proposed solution for clustering heterogeneous data is to explore intermediate fusion as well as late fusion and then compare the results of both. On the one hand, intermediate fusion could be used to examine ways to merge Distance Matrices (DMs) prior to the application of clustering algorithms. A number of DMs can be produced to assess the similarity between heterogeneous objects; each matrix represents distance with regards to a single element. We then fuse the DMs for the different elements together to generate a single fused DM for the objects. We merge the DMs using a weighted linear scheme to allow different elements to contribute to the clustering according to their importance. In the machine learning community, these weights are sometimes assigned based on a subjective process supported by domain knowledge. This subjective weighting process may be feasible only in an environment where data is stable (i.e., not subject to a constant change). Alternatively, weights can be determined automatically. Attention has been paid to this topic and a number of weight setting methods were proposed [126, 41, 179, 226]. In this research, we employ a systematic, but not automatic, manual approach in weighting different elements (see section 3.5.1).

A problem may arise when the different distance measures work on very different scales. However, here we tackle this issue by normalising the pre-calculated values within the individual DMs by scaling them to a range between 0 and 1. That makes the assumption that the values in the final single distance matrix are directly comparable since they can be considered as measured using the same "unit". Additionally, in our fusion process we combine metric measures with non-metric ones and this could be considered a problem. However, we have no specific evidence to say these are non-commensurable with each other. The differences between metric and non-metric measures are given in Section 2.2. In general, a metric is a distance measure that satisfies four mathematical properties: reflexivity, symmetry, triangle inequality and non-negativity. In contrast, non-metric measure lack one or more of these properties. Although, it is desirable to satisfy the metric properties, there are advantages in using the non-metric measures. An example to illustrate this claim is the case of using non-metric measures that are insensitive to radiometric changes in the scene or invariant to sensor parameters like those that are used to compare images which are captured under different lighting conditions [32]. Additionally, there are multiple distance measures that do not satisfy the triangle inequality property.

Previous research [4, 194] has found that combining data types is not always useful to knowledge extraction because some data types may introduce noise into the model. Accordingly, we need to measure how useful each element is to our clustering results. Moreover, other uncertainty issues need to be addressed too. On the other hand, a late fusion solution could be designed by applying clustering algorithms multiple times, each time trying to cluster heterogeneous objects with regards to a single element. The resulting clusters can then be fused using some form of voting scheme as part of an ensemble. The late fusion idea has not been explored yet in our research so we currently focus on the intermediary fusion.

### 3.5.1 The intermediate fusion approach

We propose to use a Similarity Matrix Fusion (SMF) approach, as follows:

1. Define a suitable data representation to both describe the dataset and apply suitable distance measures;
2. Calculate the DMs for each element independently;
3. Consider how to address data uncertainty;
4. Fuse the DMs efficiently into one Fusion Matrix (FM), taking account of uncertainty;
5. Use the FM to apply clustering algorithms to the heterogeneous objects; and
6. Validate the resulting clusters.

The main idea of SMF is to create a comprehensive view of distances for heterogeneous objects. SMF computes DMs obtained from each of the elements separately, taking advantage of the complementarity in the data. It also computes uncertainty in order to use it with the FM to reflect the reliability of the distance calculations. Once we have a FM representing distances between complex objects and values of uncertainty for the calculations, we can proceed to cluster heterogeneous objects using standard algorithms which were introduced in Section 2.4. Figure 3.3 illustrates the phases of this proposed approach.

### Construction of DMs for each element

For every pair of objects,  $O_i$  and  $O_j$ , we begin by calculating entries for each individual DM corresponding to one of the elements in the heterogeneous database,  $\mathcal{E}^z$ , as follows:

$$DM_{O_i, O_j}^{\mathcal{E}^z} = dist(O_i, \mathcal{E}^z, O_j, \mathcal{E}^z), \quad (3.1)$$

where in each case  $dist$  represents an appropriate distance measure for the given data type. The most widely-used distance measures were explored in Section 2.2, and were classified by the data types they can deal with. All the computed distances in the  $M$  DMs need to be normalized to lie in the range  $[0 - 1]$  since this is essential in handling data uncertainty which is discussed later. For each DM, we use the following formula to scale

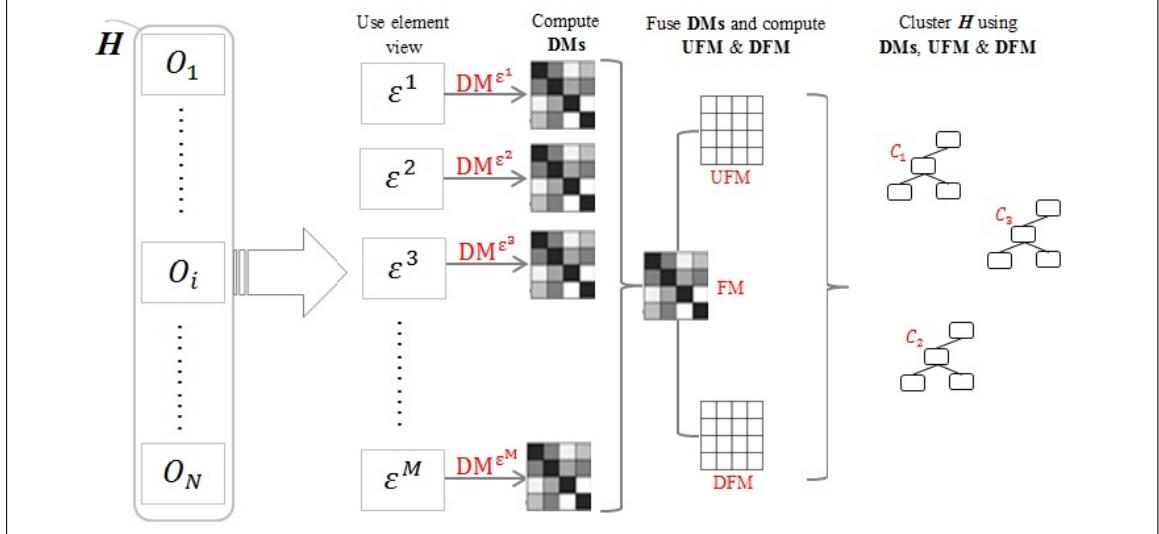


Figure 3.3: Conceptual framework for clustering heterogeneous datasets comprising  $M$  elements and producing three clusters following the proposed intermediate fusion approach

the calculations between 0 and 1:

$$DM_{O_i, O_j}^{E^z} = \frac{dist(O_i, E^z, O_j, E^z) - \min \{DM^{E^z}\}}{\max \{DM^{E^z}\} - \min \{DM^{E^z}\}}, \quad (3.2)$$

where  $\min \{DM^{E^z}\}$  is the minimum distance calculation that is recorded in the DM which corresponds to element  $E^z$  and  $\max \{DM^{E^z}\}$  is the maximum distance calculation that is recorded in the DM which corresponds to element  $E^z$ .

Once we have constructed the  $M$  DMs, they are later fused into one matrix, FM, which expresses the distances between heterogeneous objects. Below is the explanation of our proposed fusion technique.

### Computing the Fusion Matrix

Fusion of the  $M$  DMs for each element can be achieved using a weighted average approach. Weights are used to allow emphasis on those elements that may have more influence on discriminating the objects. The fused matrix representing the distance between

two objects,  $FM_{O_i, O_j}$ , can be defined  $\forall i, j \in \{1, 2, \dots, N\}$  as:

$$FM_{O_i, O_j} = \frac{\sum_{z=1}^M w^z \times dist(O_i \cdot \mathcal{E}^z, O_j \cdot \mathcal{E}^z)}{\sum_{z=1}^M w^z} \quad (3.3)$$

The weight for the  $z^{th}$  element,  $w^z$ , can be estimated manually by analysing all constructed DMs using the heatmap visualization technique, and then evaluating the importance of each element in clustering our heterogeneous objects. Other automatic alternatives might also be utilized. For example, for each DM we operate a clustering algorithm to group our objects into  $k$  clusters and then assess the performance via one of the clustering validation calculations, using the resulting value as a weight for that particular element. One should remark here that weights are a convenient inclusion because there might be substantive reasons for up-weighting or down-weighting the importance of a specific element. For example, an element might not be significant from the end-user perspective, or its effects needed to be masked while clustering the dataset. In addition, one or more of the weights might have a zero-value in some cases such as trying to measure the similarity between the objects while masking out a particular element. This means that the weighting scheme might include some user-defined weights.

Along with the process of fusing DMs, uncertainty needs to be addressed. This includes two main problems:

1. Incomplete objects: i.e. objects with missing elements which result in a missing value in the DMs; for example, a patient could have a missing blood test resulting in a missing distance with respect to another patient for that element; and
2. Disagreement between matrices: i.e. divergence with respect to how similar objects are according to the different DMs. It is important to also measure this because according to equation 3.3 two objects which have elements with middling values for their distance measures may give raise to a fused distance value which would be

very similar to two objects with widely differing distance values. Yet in the second case, we may be less confident that the objects are similar than in the first case.

Below is our suggested solution to represent certainty in our fused calculations, FM.

### How to handle uncertainty

Uncertainty is inseparably associated with learning from data. Cormode and McGregor [40] reported that combining data values, can be considered as a source of uncertainty. In fact, traditionally, uncertainty in data analysis, has been described in probabilistic terms, and this approach has been applied in the data mining field. Many of clustering and classification algorithms have been extended correspondingly, e.g., UK-means clustering [35], fuzzy c-means clustering [171] and nearest-neighbour classification [49, 265]. However, we need to bear in mind that although there are accuracy and reliability benefits to handling uncertainty appropriately there are also often increased computational costs.

In our research the process of measuring similarity can be affected by uncertainty in a number of ways. First, as explained, we may be comparing incomplete objects which brings uncertainty to any similarity calculations. Secondly, a lack of coincidence in judging/assessing the distance between objects when using different elements may also introduce uncertainty in the FM. For instance,  $O_i$  and  $O_j$  may be considered as similar objects in some of the pre-computed DMs but not in others, making the overall similarity of the objects uncertain.

The question that arises here is how to define the uncertainty in our fused calculations in an appropriate manner. We propose a general probabilistic description of both types of uncertainty. For each pair of objects,  $O_i$  and  $O_j$ , we compute the uncertainty associated with the FM arising from missing information, UFM, as follows:

$$UFM_{O_i, O_j} = \frac{1}{M} \sum_{z=1}^M \begin{cases} 1, & DM_{O_i, O_j}^{E^z} \neq \text{null} \\ 0, & \text{otherwise} \end{cases} \quad (3.4)$$

With regards to the disagreement between DMs judgments, we compute the uncertainty associated with the FM, DFM, for each pair of objects,  $O_i$  and  $O_j$ , as follows:

$$DFM_{O_i, O_j} = \left( \frac{1}{M} \sum_{z=1}^M (DM_{O_i, O_j}^{E^z} - \overline{DM}_{O_i, O_j})^2 \right)^{\frac{1}{2}}, \quad (3.5)$$

where,

$$\overline{DM}_{O_i, O_j} = \frac{1}{M} \sum_{z=1}^M DM_{O_i, O_j}^{E^z}$$

In other words,  $UFM$ , calculates the proportion of missing distance values in the DMs associated with all elements for objects  $O_i$  and  $O_j$ , while  $UFM$ , calculates the standard deviation of distance values in the DMs associated with all elements for objects  $O_i$  and  $O_j$ . We now have two expressions of uncertainty,  $UFM$  and  $DFM$  associated with each value of the fusion matrix, FM. They may be used separately to filter data or combined together. We may wish to use  $UFM$  and  $DFM$  individually or we may wish to report both values together, for example by calculating the average of both measures as the uncertainty associated with a given value of FM. To filter out values we can set thresholds for each calculation individually, i.e., ignoring cases where  $UFM \geq \phi_1$  or  $DFM \geq \phi_2$ . Furthermore, we can produce adapted versions of the standard clustering algorithms such as  $k$ -medoids which use the uncertainty information in the cluster formation process. This will be part of our research.

### General comment

Our proposed approach, SFM, for measuring the distances between objects in a heterogeneous dataset is flexible because of the following reasons:

1. It is extendable to other types of object elements as long as there is a distance measure that can be used to compare this data type in a homogenous dataset.
2. It is applicable if there is more than one object's component of the same type. For instance, a heterogeneous object composed of structured data, four images, three different text documents, a sound file and two distinct time-series. This can be done either by dealing with every type separately as a collection of elements of a

particular type or by dealing with every component distinctly.

3. It is flexible with regards to the choice of distance measure of each individual type of data.
4. It is modifiable in terms of the clustering validity indicator used in determining the weight of each object's component.
5. It is simple when the researcher desires to modify or mask the effect of a particular component on the overall clustering results by changing the weight of the components.
6. It can incorporate uncertainty in the calculations.

### 3.5.2 The proposed $Hk$ -medoids clustering

The standard  $k$ -medoids [133] is one of the most popular clustering techniques in use. Several versions of this algorithm have been proposed in the literature. For example: PAM (Partitioning Around Medoids) [133], CLARA (Clustering LARge Applications) [134] and CLARANS (Clustering Large Applications based upon RANdomized Search) [187]. Although, several versions of this algorithm were proposed and experimented with in the literature, they are not able to handle data heterogeneity as we have defined it nor the related uncertainty that arises in similarity calculations. Thus, with a view toward an integrated analysis of certain and uncertain heterogeneous data, we introduce  $Hk$ -medoids, an optimized version of the standard  $k$ -medoids algorithm that can address the aforementioned problems.

Similar to the standard  $k$ -medoids, the proposed  $Hk$ -medoids makes multiple iterative passes through the dataset and allows object membership to change based on distance from medoids. It seeks to minimize the total variance of the clusters, i.e., the sum of the distances from each object to its assigned cluster medoid. In both algorithms, we need to update the objects assignments and the medoids allocations.

For the update stage, in some  $k$ -medoids implementations that works in a similar way

to the  $k$ -means, two update phases iterative algorithm is applied over all  $k$  clusters. The literature often describes the two update phases as batch update and PAM-like online update. For example, the implementation that we have used in this paper, called 'small', which employs a variant of the Lloyd's iterations based on [193]. During the batch update, each iteration consists of reassigning objects to their closest medoid, all at once, followed by recalculation of cluster medoids. During the PAM-like online update, for each cluster, a small subset of data objects that are normally the furthest from and nearest to the medoid are chosen. For each chosen data object, the algorithm reassigns the clustering of the whole dataset and checks if doing so will reduce the sum of distances. This approach is similar to what PAM does, however, the swap considerations are limited to the points near the medoids and far from the medoids. When both update phases operate that tends to improve the quality of solutions generated where the online update seems to produce better solution than those found by the full batch updates [154].

Thus, in  $Hk$ -medoids, we exploited the difference between batch and PAM-like online update phases; however, we use a different subset selection condition. We restrict the PAM-like swap step to uncertain objects only, then reallocate the objects to the new medoids. The pseudo code of  $Hk$ -medoids is presented below in Figure 3.4.

It is clear from Figure 3.4 that the proposed algorithm requires some calculations prior to applying it to heterogeneous data. We have to fuse the distances between the individual data types using pre-calculated distance matrices, DMs. This is to produce a single pairwise matrix of fused distances, FM, between heterogeneous objects that can be used to produce a clustering configuration. In addition, we need to have some uncertainty expressions. To compute these calculations, we benefit from the proposed intermediary fusion approach, SMF, which is described in Section 3.5.1. SMF computes the fusion matrix, FM, and two uncertainty expressions, UFM and DFM. UFM reflects uncertainty arising from assessing incomplete objects and DFM expresses the degree of disagreement between DMs. We then define certainty criteria by setting threshold(s) for one or both of the UFM and DFM expressions, for example,  $UFM \geq \phi_1$  and/or  $DFM \geq \phi_2$ . Our parameter experimentations lead to thresholds associated with between 10% and 35% of

---

**Input:**  $\mathbf{FM}$ :  $N \times N$  pairwise distance fusion matrix for  $N$  objects,  $O_1, O_2, \dots, O_N$   
 $k$ : number of clusters  
 $\mathbf{CV}$ : certainty vector for  $N$  objects,  $CV = \{CV_{O_i}\}_{i=1}^N$

**Output:** a set of  $k$  clusters' medoids,  $\mathfrak{M} = \{\mathfrak{M}_j\}_{j=1}^k$   
label assignments  $\forall O_i, L = \{L_{O_i}\}_{i=1}^N$

**Method:**

- 1: Choose  $k$  initial objects as medoids,  $\mathfrak{M}_1, \mathfrak{M}_2, \dots, \mathfrak{M}_k$  randomly
- 2: Assign the remaining  $N - k$  objects to the closest medoids using the FM:  
**foreach**  $O_i \in$  the remaining  $N - k$  objects  
 $L_{O_i} \leftarrow \min_j \mathbf{FM}(O_i, \mathfrak{M}_j), j \in \{1 \dots k\}$   
**end**
- 3: Begin the batch-updating phase using certain objects only:  
**repeat**  
%% calculate medoids using certain objects  
**foreach**  $\mathfrak{M}_p \in \mathfrak{M}$  **do**  
 $x \leftarrow \min_{1 \leq j \leq N} \sum_{i=1}^N \mathbf{FM}(O_i, O_j), \forall O_i, O_j \in \mathfrak{M}_p$ , i.e.  $CV_{O_i} = 1, CV_{O_j} = 1$   
**if** ( $O_x \neq \mathfrak{M}_p$ ) **then**  
 $\mathfrak{M}_p = O_x$   
%% assign certain objects to the nearest medoids  
**foreach**  $O_i, i \in \{1 \dots N\}$  **do**  
**if**  $CV_{O_i} = 1$  **then**  
 $\mathcal{L}_{O_i} \leftarrow \min_j \mathbf{FM}(O_i, \mathfrak{M}_j), j \in \{1 \dots k\}$   
**if** ( $\mathcal{L}_{O_i} \neq L_{O_i}$ ) **then**  
 $L_{O_i} \leftarrow \mathcal{L}_{O_i}$   
**end**  
**end**  
**end**  
**until** none of the  $L_{O_i}$  change
- 4: Begin the PAM-like online-updating phase to deal with uncertain objects:  
%% assign uncertain objects to the nearest medoids  
**foreach**  $O_i, i \in \{1 \dots N\}$  **do**  
**if**  $CV_{O_i} = 0$  **then**  
 $\mathcal{L}_{O_i} \leftarrow \min_j \mathbf{FM}(O_i, \mathfrak{M}_j), j \in \{1 \dots k\}$   
**if** ( $\mathcal{L}_{O_i} \neq L_{O_i}$ ) **then**  
 $L_{O_i} \leftarrow \mathcal{L}_{O_i}$   
**end**  
**end**  
%% operate PAM-like swap step using uncertain objects only  
**do**  
**foreach**  $\mathfrak{M}_p \in \mathfrak{M}$  **do**  
 $x \leftarrow \min_{1 \leq j \leq N} \sum_{i=1}^N \mathbf{FM}(O_i, O_j), \forall O_i, O_j \in \mathfrak{M}_p$ , i.e.  $CV_{O_i} = 0 || 1, CV_{O_j} = 0$   
**if** ( $O_x \neq \mathfrak{M}_p$ ) **then**  
 $\mathfrak{M}_p \leftarrow O_x$   
**end**  
**end**  
%% if any  $\mathfrak{M}_j$  change, assign all objects to the nearest medoids  
**foreach**  $O_i, i \in \{1 \dots N\}$  **do**  
 $\mathcal{L}_{O_i} \leftarrow \min_j \mathbf{FM}(O_i, \mathfrak{M}_j), j \in \{1 \dots k\}$   
**if** ( $\mathcal{L}_{O_i} \neq L_{O_i}$ ) **then**  
 $L_{O_i} \leftarrow \mathcal{L}_{O_i}$   
**end**  
**end**  
**until** none of the  $\mathfrak{M}_j$  change
- 5: **return**  $\mathfrak{M}$  and  $L$

---

Figure 3.4: Hk-medoids clustering algorithm

objects being considered as uncertain because between those margins we saw little effect on performance. However, when going outside those margins, clustering performance deteriorates. We practically illustrate the sensitivity of this parameter in Section 5.7.2. Accordingly, we can determine pairs of objects for which FM calculations are uncertain, given defined thresholds:

$$Certain(O_i, O_j) = 1 \quad \forall O_i, O_j \mid UFM_{O_i, O_j} \geq \phi_1 \text{ and/or } DFM_{O_i, O_j} \geq \phi_2 \quad (3.6)$$

For a given object,  $O_i$ , the certainty is defined in relation to all the other objects:

$$Certainty(O_i) = \sum_{1 \leq j \leq N} Certain(O_i, O_j) \quad (3.7)$$

We can then produce a certainty vector,  $CV$ , such that:

$$CV = \{CV_{O_1}, CV_{O_2}, \dots, CV_{O_N}\} \text{ where } CV_{O_i} = \begin{cases} 0, & Certainty(O_i) \geq \frac{N}{2} \\ 1, & \text{otherwise} \end{cases} \quad (3.8)$$

In other words,  $CV$  is a  $N$  binary vector indicating which of the  $N$  objects have uncertain fused calculations according to the UFM and/or DFM thresholds,  $\phi_1$  and  $\phi_2$ .  $CV_{O_i}$  is created for  $O_i$  by analysing the uncertainty calculations that are defined for  $O_i$  in relation to all the other objects. When the number of objects that hold uncertain calculations with  $O_i$  is greater than half of the total number of objects in the dataset,  $CV$  considers it as an object with uncertain calculations and vice versa.

The main differences between the standard  $k$ -medoids and  $Hk$ -medoids are outlined below:

1. The ability of  $Hk$ -medoids to deal with heterogeneous datasets.
2.  $Hk$ -medoids uses the uncertainty expressions generated in relation to the fused distances.
3. Fusion matrix, FM, and uncertainty expressions, UFM and DFM, must be computed

before applying  $Hk$ -medoids.

4.  $Hk$ -medoids assigns the objects that are associated with certain calculations in the batch phase only.
5.  $Hk$ -medoids allocates the objects that are associated with a high degree of uncertainty in the online phase.

In fact, the most consuming part of any standard  $k$ -medoids implementation is the calculation of the distances between objects. However, this is not the case in our algorithm as it takes the pairwise fused distance matrix as an input. Thus we assume that as a preliminary step we have used  $\mathbf{O}(M \times N^2)$  steps to calculate FM, where  $M$  is the number of elements and  $N$  is the number of heterogeneous objects. To compare the efficiency of our proposed algorithm to the most popular  $k$ -medoids implementation, PAM, we can discuss their computational complexity. We are interested in comparing our work to PAM because our algorithm has a main iterative step that works similarly to PAM. Also, we have analysed the complexity of 'small' for the same reason. The complexity of PAM is  $\mathbf{O}(k(N - k)^2)$ , where  $k$  is number of clusters. However, other  $k$ -means like implementations, e.g. 'small', are  $\mathbf{O}(kN)$ . By analysing the pseudo code of  $Hk$ -medoids in Figure 3.4 we can observe that the iterative parts of the algorithm are in step 3 (similar to 'small') and step 4 (similar to PAM). The computational complexity of step 3 is  $\mathbf{O}(k(N - n))$  where  $n$  is the number of uncertain objects, while the complexity of Step 4 is  $\mathbf{O}(k(N - n - k)^2)$ . Thus, the cost of step 3 is less than the cost of 'small' and the cost of step 4 is less than the cost of PAM. The differences become more noticeable when we use specific uncertainty thresholds that control the number of certain/uncertain objects. In other words, if we come to a point where  $n = 0$  or  $n$  is a very small number, the cost of step 3 will be equivalent to the cost of 'small' and step 4 will not be executed at all, hence the behaviour of our algorithm will approximate that of 'small'. On the other hand, with a reasonable number of uncertain objects  $n$ ,  $Hk$ -medoids will be more efficient in term of execution time compared to the standard PAM as the number of swaps in step 4 will be  $n$  and not  $N$ . Thus, we overcome a main drawback of PAM which works inefficiently for large datasets due to its swap complexity. In summary,  $Hk$ -medoids consists of two different iterative

steps, but it is still less expensive than PAM +'small'. This is true even in worse scenario, i.e. when  $n = N$ .

### 3.5.3 The late fusion approach

The justification for employing this type of methods to our problem can be linked to the definition of a clustering ensemble. We can define it as the problem of reconciling multiple clustering information about the same dataset but coming from different sources (elements in our case). Then, building a clustering ensemble seems a natural solution to clustering heterogeneous data. The results of applying a clustering algorithm to a set of heterogeneous objects depend on many factors, for example, the characteristics of the used dis/similarity function(s) and the structure of our objects according to each element. Thus, when we apply clustering analysis to the same set of heterogeneous objects, we may obtain very dissimilar configurations by comparing the results achieved based on the different elements. Consequently, we can aggregate clustering results of all individual elements to attain a more accurate and stable final clustering result. Relaying on this interpretation, we endorse the use of clustering ensemble methods.

We chose one of the well-established ensemble methods: the pairwise similarity approach [79, 229]. It is one of the ensemble approaches that makes use of co-occurrence relationships between all pairs of data objects that are represented in a similarity matrix. The co-occurrence matrix denotes the proportion of base clusterings in which each pair of objects are assigned to the same cluster. This way of reporting associations between objects was criticized [71, 119] because the matrix ignores the similarity amongst clusters. In response to this criticism, new methods for generating two link-based pairwise similarity matrices were proposed: Connected-Triple-based Similarity (*CTS*) [139], SimRank-based Similarity (*SRS*) [127] and Approximate SimRank-based Similarity (*ASRS*) [120] matrices. These matrices consider both the associations among objects as well as those among clusters using link-based similarity measures (e.g. [28, 127]). The aforementioned approach has proved its effectiveness in many different application domains such as: gene expression data analysis [184, 230] and satellite image analysis [144].

In our heterogeneous dataset,  $H$ , with  $N$  objects such that  $H = \{O_1, O_2, \dots, O_i, \dots, O_N\}$ , each  $i^{th}$  object in  $H$ ,  $O_i$ , is defined by  $M$  elements for all  $i=1, 2, \dots, N$  such that  $O_i = \{\mathcal{E}_{O_i}^1, \dots, \mathcal{E}_{O_i}^j, \dots, \mathcal{E}_{O_i}^M\}$ .  $\mathbb{P} = \{\hat{P}_1, \hat{P}_2, \dots, \hat{P}_M\}$  is a set of  $M$  partitions, where each  $k^{th}$  partition,  $\hat{P}_k = \{C_k^1, C_k^2, \dots, C_k^{xk}\}$ , is a partition of the set of heterogeneous objects  $H$  with  $xk$  clusters such the  $C_k^l$  is the  $l^{th}$  cluster of the  $k^{th}$  partition for all  $k=1, 2, \dots, M$  and  $\hat{P}_k$  groups the objects according to the  $k^{th}$  element,  $\mathcal{E}^k$ . Note that, for each  $O_i \in H$ ,  $C(O_i)$  denotes the cluster label assigned to the data object  $O_i$ , i.e. in the  $k^{th}$  partitions,  $C(O_i) = l$  if  $O_i \in C_k^l$ . The results of cluster ensemble is the consensus partition,  $\hat{P}^*$ , which aggregates the assessment of all pre-produced partitions,  $\mathbb{P}$ , that were obtained by considering the  $M$  elements individually. To do this, we need to conduct two steps: generation and aggregation. The first step in the cluster ensemble techniques, the generation, produces  $\mathbb{P}$  while the second step, the aggregation, outputs  $\hat{P}^*$ .

The peculiarities of our definition of heterogeneous data demand that we apply cluster ensemble techniques according to the requirements of our application. Thus, in the generation step, we use  $k$ -medoids algorithm to produce the  $M$  partitions,  $\mathbb{P} = \{\hat{P}_1, \hat{P}_2, \dots, \hat{P}_M\}$ . We select  $k$ -medoids in order to be able to compare the results of the intermediate and the late fusion approaches, as  $k$ -medoids algorithm was the base clustering technique in the intermediate fusion solution. Thus, we produce here a homogeneous ensemble where base clusterings are established using repeated runs of  $k$ -medoids, each with a unique element of those that define our heterogeneous objects.

In the aggregation step, we selected the link-base cluster ensemble approach. Explicitly, we use *CTS*, *SRS* and *ASRS* matrices in order to refine the evaluation of similarity values among objects using three different similarity measures, instead of employing the conventional method to establish the similarity calculations.

- **How to create *CTS* matrix:** *CTS* works using the connected-triple technique, which assumes that if two nodes in a graph have a link to a third one, then this indicates a similarity between those two nodes. The formal definition of the connected-triple technique is given below. However, to understand the general idea, Figure 3.5 is a graphical representation of a clustering ensemble  $\mathbb{P}$ . Square nodes represent

clusters in each clustering  $\hat{P}_k$ ,  $k = 1, 2, \dots, M$ , whilst circle nodes denote data objects,  $O_x$  where  $x = 1, 2, \dots, N$ . In a partition  $\hat{P}_k$ , object  $O_x$  is linked to cluster  $C^i$  if  $O_x$  is assigned to  $C^i$  according to  $\hat{P}_k$ . For example,  $O_1$  is assigned to  $C^3$  in  $\hat{P}_1$  and to  $C^2$  in  $\hat{P}_3$ . The figure illustrates that  $O_1$  and  $O_3$  are similar because in clustering  $\hat{P}_2$  and  $\hat{P}_3$  they have the same allocation ( $C_2^3$  and  $C_3^2$  respectively).  $\hat{P}_1$  on the other hand gives them a different allocation to clusters  $C_1^3$  and  $C_1^4$  respectively. However, clusters  $C_1^3$  and  $C_1^4$  may be perceived as similar using the connected-triple technique because they have two connected-triples for  $C_2^3$  and  $C_3^2$ .

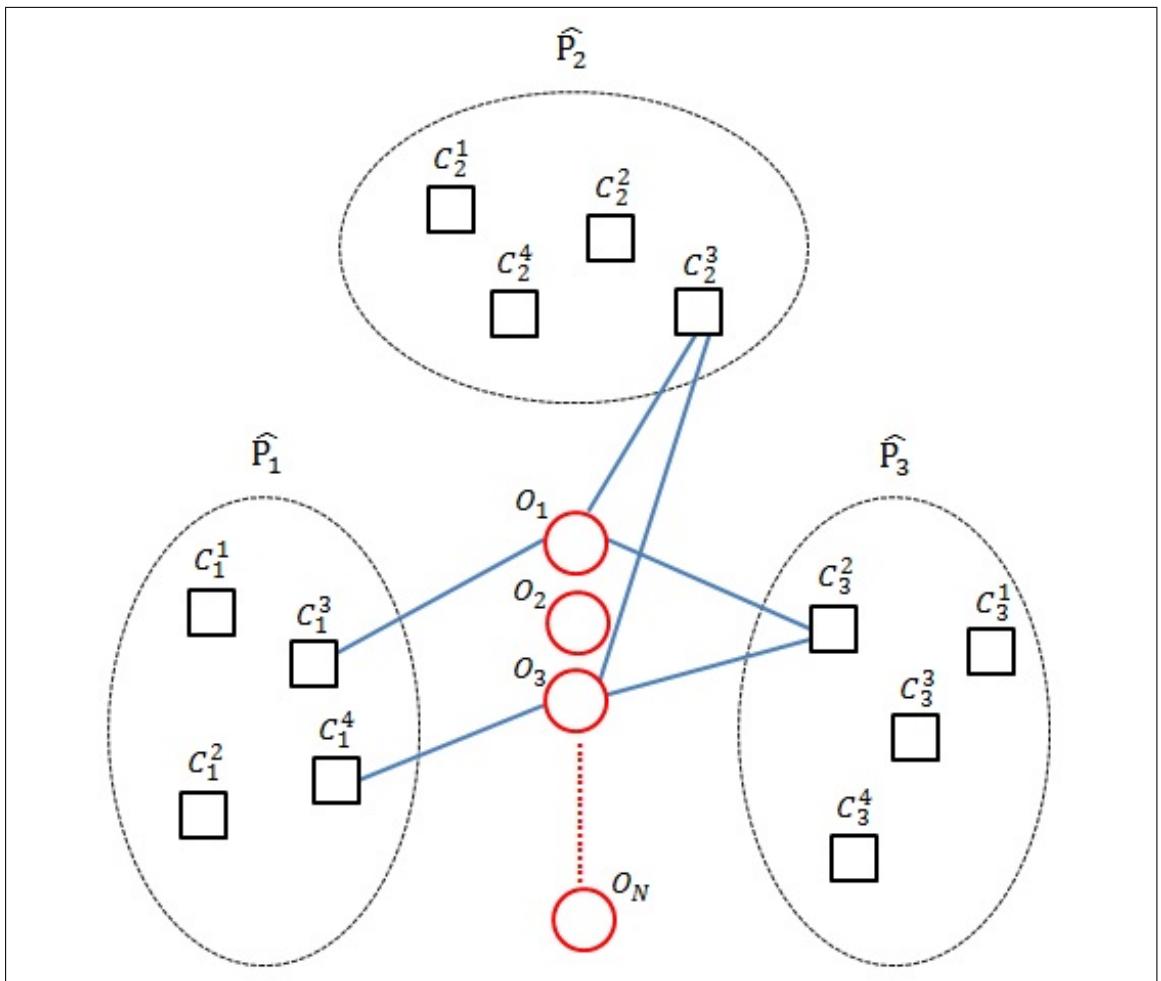


Figure 3.5: A graphical representation of the cluster ensemble: an example of the application of *CTS* on  $\mathbb{P}$

In the application of *CTS* to the cluster ensemble problem, the idea is to build a weighted graph  $G = (V, W)$ , where  $V$  is the set of vertices each corresponding to a

cluster  $\in \mathbb{P}$  and  $W$  is a set of weighted edges between clusters. The proportion of overlapping members between two clusters,  $C^i$  and  $C^j \in V$ , is used to estimate the weight,  $w_{ij}$ , which is assigned to the edge that connects the two clusters,  $C^i$  and  $C^j$  such as:

$$w_{ij} = \frac{|O_{C^i} \cap O_{C^j}|}{|O_{C^i} \cup O_{C^j}|},$$

where  $O_{C^i} \subset H$  represents a subset of objects assigned to  $C^i$ . Since, *CTS* works on the concept that if two nodes have a link to a third one, then this indicates a similarity between those two nodes, we are required to study the involved connected-triples. A connected-triple is a sub-graph of  $G$  containing three vertices,  $C^i$ ,  $C^j$  and  $C^z \subset V$  and two weighted edges  $w_{iz}$  and  $w_{jz} \subset W$ , while  $w_{ij} \notin W$ . Here we compute the minimum weight of the two involved edges instead of counting the number of connected-triples as a whole number because we want to take into account shared data members among clusters. Thus, the count of the connected-triple between  $C^i$  and  $C^j$  where  $C^z$  is their neighbor,  $WCT_{ij}^z$ , and the count of all  $q$  triples between  $C^i$  and  $C^j$ ,  $WCT_{ij}$ , can be calculated respectively as follows:

$$WCT_{ij}^z = \min(w_{iz}, w_{jz}), \quad WCT_{ij} = \sum_{z=1}^q WCT_{ij}^z, \text{ where } 1 \leq q < \infty$$

Following that, the similarity between two data objects  $O_x$  and  $O_y$  that belong to the  $k^{th}$  ensemble member,  $\hat{P}_k$ , is calculated as:

$$S_k(O_x, O_y) = \begin{cases} 1 & \text{if } C(O_x) = C(O_y) \\ WCT_{C(O_x), C(O_y)}/WCT_{max} \times DC & \text{otherwise} \end{cases}$$

where  $C(O_x)$  is the cluster label to which  $O_x$  is assigned according to the  $k^{th}$  partition.  $WCT_{max}$  is the maximum  $WCT$  value of any two clusters within the cluster ensemble  $\mathbb{P}$ .  $DC$  is a constant decay factor  $\in (0, 1]$ ; which is the confidence level of considering two non-identical objects as similar. To understand why we need  $DC$ , consider a simple scenario where there is some similarity between  $O_x$  and  $O_y$ . We can say that the similarity of  $O_x$  with itself is  $S_k(O_x, O_x)=1$ , but we most likely

cannot conclude that  $S_k(O_x, O_y) = S_k(O_x, O_x) = 1$  even if  $O_x$  and  $O_y$  are very similar. Instead, we simply let  $S_k(O_x, O_y) = DC \cdot S_k(O_x, O_x)$ , which means that we are less confident about the similarity between  $O_i$  and  $O_j$  than we are between  $O_i$  and itself. Accordingly, to construct  $CTS$  matrix, each entry is calculated as:

$$CTS(O_x, O_y) = 1/M \sum_{k=1}^M S_k(O_x, O_y)$$

- **How to create  $SRS$  matrix:** Although the  $SRS$  method considers the ensemble problem as a network of clusters similar to the  $CTS$  method,  $SRS$  goes beyond the context of adjacent neighbours. It extends the assumption because it assumes that neighbours are similar if their neighbours are similar as well. Thus, for our graph  $G = (V, E)$ ,  $V$  corresponds to both objects and clusters in  $\mathbb{P}$ , while  $E$  represents edges between objects and the clusters to which they are allocated. Explicitly, similarity between two objects is the average similarity between the clusters to which they belong, and likewise, the similarity between clusters is the average similarity between their members.  $SRS(i, j)$ , the similarity between any pair of objects or any two clusters, can be found by:

$$SRS(i, j) = \begin{cases} 1 & \text{if } i = j \\ \frac{DC}{|N_i||N_j|} \sum_{i' \in N_i} \sum_{j' \in N_j} SRS(i', j') & \text{otherwise} \end{cases}$$

where  $DC$  is constant factor  $\in (0, 1]$ , similar to  $DC$  described for the  $CTS$  matrix.  $N_i \subset V, N_j \subset V$  are neighbour sets whose members are connected to vertices  $i$  and  $j$ , respectively. The optimal similarity between two vertices  $i$  and  $j$ , could be obtained through the iterative refinement of similarity values to a fixed-point and that can be found after  $r$  iterations by:

$$\lim_{r \rightarrow \infty} SRS_r(i, j) = SRS(i, j)$$

- **How to create  $ASRS$  matrix:**  $ASRS$  is an improved version of  $SRS$  working in

a similar manner but without the iterative process of similarity refinement. We represent the problem as a graph  $G = (V, E)$ , where  $V$  represents objects as well as clusters and  $E$  denotes edges between objects and their clusters. The similarity between vertices  $i, j \in V$  is calculated as follows:

$$ASRS(i, j) = \begin{cases} 1 & \text{if } i = j \\ \frac{1}{|N_i||N_j|} \sum_{i' \in N_i} \sum_{j' \in N_j} Sim^{clus}(i', j') & \text{otherwise} \end{cases}$$

where  $N_i \subset V, N_j \subset V$  are set of vertices connecting to  $i$  and  $j$ , respectively. In other words,  $N_i$  are a set of clusters to which  $i$  is allocated.  $Sim^{clus}$  is the function used to estimate similarity value between clusters. This function relays on a Weighted SimRank ( $wSR$ ) technique that also represents the ensemble problem as a graph. However,  $wSR$  graph  $G = (V, W)$  is similar to the  $CTS$  graph where  $V$  denotes only clusters and  $W$  represents weighted edges between these clusters. Again here we estimate the weight of the edge between clusters  $C^i$  and  $C^j$  using the proportion of the overlapping members among  $C^i$  and  $C^j$ :

$$w_{ij} = \frac{|O_{C^i} \cap O_{C^j}|}{|O_{C^i} \cup O_{C^j}|},$$

where  $O_{C^i} \subset H$  represents a subset of objects assigned to  $C^i \in V$ . To measure the similarity between any two vertices (i.e. clusters)  $C^i$  and  $C^j$ , denoted as  $Sim^{clus}$ , we use the formula:

$$Sim^{clus}(C^i, C^j) = \begin{cases} 1 & \text{if } C^i = C^j \\ wSR(C^i, C^j) / wSR_{max} \times DC & \text{otherwise} \end{cases}$$

where  $DC \in (0,1]$  is a constant decay factor, the same idea of  $DC$  described for the  $CTS$  matrix.  $wSR_{max}$  is the maximum  $wSR$  value of any two clusters  $C^x, C^y \in V$ ,

which is calculated as:

$$wSR(C^x, C^y) = \frac{1}{|N_{C^x}| |N_{C^y}|} \sum_{C^{x'} \in N_{C^x}} \sum_{C^{y'} \in N_{C^y}} (w_{xx'}, w_{yy'})$$

where  $N_{C^x}, N_{C^y} \in V$  are the set of clusters to which clusters  $C^x$  and  $C^y$  are linked, respectively.

To yield the final clustering solution, we use the obtained three similarity matrices as an input to any similarity-based clustering algorithm. The literature suggest employing hierarchical agglomeration clustering algorithms. Therefore, we selected single-linkage, complete-linkage and average linkage techniques. Each of those takes a similarity matrix and a number of clusters as an input, builds the model and outputs the final ensemble result as set of  $N$  labels.

## 3.6 Validating the proposed clustering framework for heterogeneous data

Using clustering validity over this research involves exploiting internal and external approaches. These indicators can be used as follows:

**Situation 1:** Internal clustering validation can be used when clustering heterogeneous datasets that have no pre-determined labels for the objects. Here, we evaluate our data using internal assessment to validate the results of clustering. Internal validation methods use statistics that are calculated from the dataset itself by measuring the intra-cluster homogeneity or compactness and inter-cluster separation. In Section 2.5.1, several popular internal validity methods were presented.

**Situation 2:** External validation indices can be used to assess our results in the case of having semi-supervised tasks. This happens when we are testing the approach on objects that have pre-determined structure or user specific intuition for the dataset.

Thus, we can compare clusters produced by our scheme with the original labels. Section 2.5.2 discussed the available methods in detail.

After that, we conduct statistical tests in order to assess whether the difference in performances that are calculated using external validation methods are statistically significant. All the selected validation measures and details of the chosen statistical tests are given in the experimental set up sections and in the results chapters (i.e. 4.1, 5.1 and 6.1).

### **3.7 The sets of heterogeneous data used to validate the proposed methodology**

This section gives descriptions of the heterogeneous datasets that we have compiled for these experiments. As unfortunately, there are no readily available large datasets that we could find containing data heterogeneity as we define it, we have started compiling our own collection. It is not easy to construct these datasets as it is a semi manual process. Hence, although the number of objects we have gathered is limited in our datasets, they are complex as they are composed of several different types of elements. Moreover, the number of objects in the cancer dataset is large compared to the other datasets and the data comes from a real world problem. Note also that it was not possible to gain access to the datasets that were examined by other researchers who studied similar problems.

The datasets we have compiled are publicly available at [180]. They comprise different mixtures of elements, e.g. multiple TSs and SD, text and SD, etc. We propose five heterogeneous datasets: the prostate cancer dataset, the plants dataset, the papers dataset, the journals dataset and the celebrities dataset. Table 3.1 summarises the main characteristics of these datasets and we follow with some additional descriptions.

| dataset     | no. of objects | no. of elements | type of elements | no. of groupings | no. of FMs |
|-------------|----------------|-----------------|------------------|------------------|------------|
| Cancer      | 1,598          | 24              | 1 SD, 23 TSs     | 4                | 1          |
| Plants      | 100            | 3               | 1 SD, 1 TE, 1 IE | 1                | 4          |
| Journals    | 135            | 3               | 1 SD, 2 TSs      | 3                | 1          |
| Papers      | 300            | 3               | 1 SD, 1 TS, 1 TE | 1                | 2          |
| Celebrities | 100            | 3               | 1 SD, 2 TSs      | 1                | 1          |

Table 3.1: Main characteristics of our heterogeneous datasets

### 3.7.1 The cancer dataset

This is a real dataset on a total of 1,904 patients diagnosed with prostate cancer during a period of seven years from 2004 to 2010 at the Norwich and Norfolk University Hospital (NNUH), UK. The dataset was created by Bettencourt-Silva et al. [21] by integrating data from nine different hospital information systems. The data represents the follow up of patients diagnosed with prostate cancer from the time of diagnosis until various points, so in some cases it covers more than eight years after diagnosis. In addition, it also includes pre-diagnosis description data for a period that ranges between 1 day to, in some patients, more than 38 years before the day of discovering this medical condition. The data dictionary is presented in Appendix A. Each patient's data is represented by 26 attributes describing demographics (e.g. age, death indicator), disease states (e.g. Gleason score, tumor staging) and kinds of treatments that the patient has had (e.g. Hormone Therapy, radiology, surgery). In addition, 23 different blood test results (e.g. Vitamin D, MCV, Urea) are recorded over time and may be indicative of the health of the patient over the period of observation. Time is considered as 0 at the day of diagnosis and then reported as number of days from that day. Data for all blood test results before  $time = 0$  is recorded with corresponding negative numbers which represent number of days before diagnosis. There are also outcome indicator attributes which record if the patient is dead or alive at the end of the study period, as well as the causes of death.

In the preparation stage we have changed the data representation and conducted some modifications. The 26 attributes are considered as forming the SD element. We have

added categories in attributes with missing data in order to represent patients that fall in the same category but were left blank. For example, in the death indicator attribute, there are two values and both of them represent dead patients; 1 corresponds to patients that died because of other reasons and 2 corresponds to those that died because of prostate cancer. The values in this attribute were left blank for patients that survived to the end of the study, thus we recorded them as group 3. This type of logical replacement method was used in other cases, for example when missing data are categorical and objects with blank values represent one possible group of patients. We end up with 100% completed SD elements for all the 1,598 patients.

With regards to the blood test results, we put them in the form of 23 distinct TS elements. For every TS, data reported at  $time < 0$  was discarded. Before starting distance calculations, we wanted to restrict ourselves to have an analysis time window of three years after diagnose period, in order to have comparable objects. Ideally, we would look at five years follow up period, yet according to one of the dataset creators, this would reduce the cohort considerably (we will end up with  $\approx 600$  patients only). Therefore, we look at a three year period so that all patients are followed up for not more than this amount of time, thus we kept patients with insufficient follow up as well (i.e. patients with data for three years or less). In other words, patients that either past away during the three years period or the day of their last check was when  $time < 1095$  are included. For the patients that are retained, all the data in the TSs corresponding to  $time > 1095$  (i.e. three years after diagnosis) was excluded and the death indicator attribute was modified to have the value of the third group (i.e. survived) even if they died after the three years to note three year survival. For three objects, we found patients that died just one to three days after the three years period and we included them as died within three years. This is because there is usually some delay in reporting dates and that was an acceptable delay according to the dataset generator(s). For patients with data for less than three years, on one hand, we kept the original values of the death indicator attribute (i.e. 1 or 2) for those that died before the three years period. On the other hand, the death indicator was changed to have the value of 4, which represents a forth group for some other patients. This group represent patients with insufficient follow up (i.e. less than three years) but with an indicator of

3 (i.e. the patient was alive) at the last check. After this, z-normalization was conducted on all values remaining in the TSs before calculating the distance matrices. This was done for each TS separately, i.e. each TS then has values that have been normalised for that TS to achieve mean equal to 0 and unit variance. Also, we cleaned the data by discarding blood tests where there were mostly missing values for all patients, and removed patients which appeared to hold invalid values for some attributes, etc. At the end of this stage, we still had 1,598 patient objects with SD for 26 attributes and 22 distinct TSs.

The natural grouping systems for patients were suggested by the data donors. They are as follows:

- **NICE system for risk stratification**

There are a number of approaches used to classify risk groups for prostate cancer patients. A widely used system is a composite risk score. It uses three data variables: Prostate-Specific Antigen (PSA), Gleason Grade, and Clinical Stage (Tumour Stage). Risk assessment is conducted at the time of diagnosis or as soon as possible thereafter. This stratification reflects the clinicians' belief that patients with the same risk have a similar clinical outcome and may follow a similar trajectory through the disease pathway. The National Institute for Health and Care Excellence (NICE) [188] provides the following guidance, presented in Table 3.2 for the risk stratification of men with localised prostate cancer.

| level of risk | PSA ng/ml | Gleason score | clinical stage |
|---------------|-----------|---------------|----------------|
| Low risk      | <10       | and<br>≤6     | and<br>T1-T2a  |
| Medium risk   | 10 -20    | or<br>7       | or<br>T2b      |
| High risk     | >20       | or<br>8-10    | or<br>≥T2c     |

Table 3.2: NICE risk group classification system for localised prostate cancer [188]

Our dataset requires some adaptation to apply this guidance, and advice on this was obtained from the data creators. PSA is recorded as a TS. What we have done is consider the value at diagnosis, and if there is nothing recorded at  $time = 0$ , then the closest value before any type of treatments. Gleason score is divided into two values; primary and secondary, thus we use the sum of both scores. The clinical

stage is reported using numbers. We considered the following: clinical stage  $< 2$  as low, clinical stage = 2 as medium and clinical stage  $> 2$  as high risk.

- **Gleason score risk classification system**

Another well-known risk classification can be obtained by using Gleason grade alone to classify patients diagnosed with prostate cancer. Gleason grade shows the level of differentiation of the cancer cells under the microscope. High differentiation is associated with worst prognosis which indicates more aggressive tumors [33]. Gleason grade is computed as a sum of two or sometimes three scores: primary, secondary and tertiary (if applicable). Primary is the most commonly seen level of differentiation under the microscope, secondary is second most common and so on. The level of differentiation for these three scores is given from 1 to 5 and then summed together. The totals of Gleason scores in our dataset are all  $> 5$  as all the cases are definite cancer patients. We have defined two ways of groupings patients according to their Gleason score: Gleason-score-1 and Gleason-score-2. The first way of grouping, Gleason-score-1, has three groups: low, medium and high risk. Gleason-score-2, classifies patients into four groups: low, medium-1, medium-2 and high risk. The difference between the two groupings is in the medium risk group. In Gleason-score-2 the medium group is divided into two sub-groups depending on the exact values of the primary and secondary scores and not only their sum.

- **Mortality grouping**

This labeling procedure classifies patients according to the outcome at the end of the study period, rather than looking at the potential risk of patients at diagnosis. For this grouping we used death indicators after conducting some changes on the values of the corresponding attribute as discussed in Section 3.7.1.

The previous grouping systems are used to evaluate clustering configurations. From now on we refer to them as: NICE, GS-1, GS-2 and MG respectively.

### 3.7.2 The plants dataset

The data was derived from the website of the Royal Horticultural Society (RHS), the UK's leading gardening charity [222]. We have developed the dataset by choosing objects from three different plant types in order to have labeled objects which are categorized into distinct groups. The dataset consists of 100 objects in total; these are 42 kinds of fruits, 22 different roses and 36 types of grass. Each plant has a description in form of structured data and another in form of free text, in addition to an image representation of it. Consequently, each object is composed of three elements: SD, TE and an IE. The structured data element, SD, includes data for eight attributes, e.g. the plant's height, rate of growth, colour, flowering period etc. The data dictionary is presented in Appendix A. The text element, TE, is a general free text description about the plant. The image element, IE, is a picture of the plant in Joint Photographic Experts Group, JPEG, image format. Note that, there are no incomplete objects so we do not have either missing element or missing data within an element. The analysis for this dataset will not address uncertainty in terms of missing data. However we are still expected to deal with uncertainty related to the disagreement between the various distance calculations.

In the preparation stage, we have coded some attributes of the SD element in an alternative way. We did this for attributes that can not be considered as categorical nor numerical. For example, there are eight different types of soil and some plants can grow in multiple types like: fertile, humus rich and/or well drained soil. As each plant has the ability to live in a different combination of these types, we have constructed eight binary variable each represents a different soil type to report this information. Another example is the flowering period attribute that we have also divided it into seven binary variables where they represent the calendar months between April and October. This is because in some cases the flowering period is extended for more than one season.

The TE element was processed according to the standard of text mining. We used the bag of words representation, where words are assumed to appear independently and the order is immaterial and the tf-idf weighting scheme was utilized to report the frequencies of terms per document. In order to do that we used the TextPipe workbench [46] to do

the text transformation, conversion, cleansing and extraction. Explicitly, we modified all TE elements by removing punctuations, converting to small-case text and then extracting the terms to generate the word list. The word list (term vector representation) originally, after discarding duplications, consisted of 1720 unique words. From this list we removed stop words which are the non-descriptive common terms such as 'a', 'and', 'are' and 'do'. Following common practices, we used the one implemented in the Weka machine learning workbench, which contains 524 stop words. In addition, we have deleted all the numbers from the word list as well and ended up with 1455 terms. Since, different morphological variations of words with the same root (stem) are thematically similar, i.e. supposed to be treated as a single word, we applied a stemming algorithm. We used Porter stemming algorithm, 'Porter stemmer', [240] which maps words with different endings into a single word. For example production, produce, produces and product will be mapped to the stem produc. As a result of the stemming and removing duplications, we cut down the list to 1189 words. Another normalisation process, that is sometimes done when preparing text data for data mining and information retrieval tasks, is applying a basic frequency based term selection to remove rare terms (infrequent terms). The idea behind this practice is that we are aware of the effect of including rare terms in the document representation on the overall clustering performance. Including these terms can introduce noise into the clustering process and add more cost to similarity computations. Consequently, we decided to discover the effect of removing infrequent terms that make little contribution to the similarity between two documents by discarding words that appear only in one document. The word list after applying this term selection includes 631 words. Next, the tf-idf weighting was used to construct a  $100 \times 631$  matrix that represents the TE element, where rows correspond to the 100 plant objects.

For IE element, we considered both the original true colour images and another colour modified version. The original images are true colour 24-bit images which can display up to  $2^{24}$  colours defined by the RGB colour cube. This cube is a 3-dimensional array that represents the colours by defining values for the three colour planes: red, green and blue. In order to produce the reduced version of IE elements, we might do a uniform quantization which involves dividing the RGB colour cube into equal-sized smaller cubes.

The size of the smaller cubes can be determined by setting a tolerance value where the allowable range is between 0 and 1. The tolerance value of 0.2, for example, means the edge of the smaller cubes is one-fifth the length of the original RGB cube. When the colour cube is cut up into smaller boxes, quantization process maps all colours that fall within each box to the colour value at the centre of that box. Since the problem of finding optimal palette is computationally expensive, other approaches can be used. In our experiment, it was appropriate to use  $k$ -means clustering algorithm since the problem of colour reduction may be considered as a clustering problem. We performed image conversion to 16 colours by finding the optimal positions of 16 clusters in RGB space that represent the image so that the global error after picture conversion is minimized.

The type of plant is the natural grouping system that we have used here. We have relied on this grouping scheme when we structured the dataset. The 100 objects are classified according to plant type into three classes. We have 42 different fruits, 22 different roses and 36 kinds of grass.

### 3.7.3 The journals dataset

The data was obtained from the Journal Citation Reports (JCR) in the ISI Web of Knowledge website [204]. JCR offers a systematic, objective means to critically evaluate the world's leading journals, with quantifiable, statistical information based on citation data. We adopt a dataset from 2013 JCR Science Edition, which is the latest version of the published reports. We have selected the journals from two fields of research: computer science and information systems. When we were creating the dataset, we have sorted the the journals by the Impact Factor (IF) in order to include journals with variation in the IF scores. We have developed the dataset by choosing 135 journals where the IF ranges between 0.179 and 9.39. The number of articles in the chosen set of journals is 11,383 with 196,770 total citations. Each journal has a description in the form of structured data and another in the form of two distinct time-series. Consequently, each object is composed of three elements: SD and two TSs. The structured data element, SD, includes data for 11 attributes, e.g. number of citations, number of issues published by the journals per year,

language of scripts, number of articles, etc. The data dictionary is presented in Appendix A. The two time-series elements, TSs, report the annual number of citations for 10 years period which is from 2004 to 2013. One TS element defines the changes in the number of citations to articles published in the journal and the other TS is to report the number of citations from articles published in the journal. There are 16 journals that have some missing values within their SD element. Thus, the analysis here will address uncertainty in terms of missing data as uncertainty that is related to the disagreement between the various distance calculations.

In the preparation stage, we have coded some attributes of the SD element in an alternative way. We did this for categorical attributes with string values such as the issuing country of journals and the languages of articles published in the journals. In other words, we use numbers to define categorical values instead of the alphabetical original values. For example, we use the numbers between 1 and 17 to code 17 different countries.

We have defined three grouping systems for our 135 journals. All the grouping systems use citation data to assess and track the influence of a journal in relation to other journals. They are as follows:

- **The Impact Factor score**

The journal impact factor is calculated by dividing the number of citations in the JCR year by the total number of articles published in the two previous years. An Impact Factor of 1.0 means that, on average, the articles published one or two year ago have been cited one time. An Impact Factor of 2.5 means that, on average, the articles published one or two year ago have been cited two and a half times. The citing works may be articles published in the same journal. However, most citing works are from different journals, proceedings, or books indexed by Web of Science. The journals in our dataset are divided into five categories, presented in Table 3.3.

- **The Eigenfactor Score**

This score is based on the number of times articles from the journal published in the past five years have been cited in the JCR year, but it also considers which

journals have contributed these citations so that highly cited journals will influence the network more than lesser cited journals. References from one article in a journal to another article from the same journal are removed, so that Eigenfactor Scores are not influenced by journal self-citation. Our objects are divided into three categories, presented in Table 3.3.

- **The Article Influence score**

This score determines the average influence of a journal's articles over the first five years after publication. It is calculated by dividing a journal's Eigenfactor Score by the number of articles in the journal, normalized as a fraction of all articles in all publications. This measure is roughly analogous to the five-Year Journal Impact Factor in that it is a ratio of a journal's citation influence to the size of the journal's article contribution over a period of five years. The mean Article Influence Score is 1.00. A score greater than 1.00 indicates that each article in the journal has above-average influence. A score less than 1.00 indicates that each article in the journal has below-average influence. The journals in our dataset are divided into three categories, presented in Table 3.3.

The previous grouping systems are used to evaluate SMF clustering configurations. From now on we refer to them as: IF, ES and AI respectively.

| grouping | group definition       | number of objects |
|----------|------------------------|-------------------|
| IF       | $IF \leq 0.5$          | 28                |
|          | $0.5 < IF \leq 1.0$    | 36                |
|          | $1.0 < IF \leq 1.5$    | 29                |
|          | $1.5 < IF \leq 2.0$    | 22                |
|          | $IF > 2.0$             | 20                |
| ES       | $ES \leq 0.0025$       | 84                |
|          | $0.0025 < ES \leq 0.0$ | 30                |
|          | $ES > 0.0$             | 21                |
| AI       | $AI \leq 0.4$          | 62                |
|          | $0.4 < AI \leq 0.8$    | 41                |
|          | $AI > 0.8$             | 32                |

Table 3.3: The classification systems for the journals dataset

### 3.7.4 The papers dataset

We adopt a dataset containing research papers published in year 2002. The dataset is obtained from the Web of Science [205] by Thomson Scientific. The Web of Science is a premier research platform that gives an access to high quality literature through a unified platform that links a wide variety of content with one seamless search. In our obtained dataset, 300 papers are selected from three different research fields (computing sciences, business and healthcare services); for each field we chose 100 papers. For each research field, we obtain the papers' data from a specific research topic and those were: data mining in computing sciences, economics in business and medical in health care services. Before choosing the papers of each topic, we put all the available articles in the website in an ascending order according to the total number of citations. Then we choose papers with high, medium and low number of citations in order to have data that varies from the scientometrics point of view. Each research paper has a description in the form of structured data and another in the form of time-series, in addition to a free text description. Consequently, each object is composed of three elements: SD, TS and an TE. The structured data element, SD, includes data for seven attributes, e.g. number of pages, total number of citations, number of authors, month of publication, etc. The data dictionary for SD is presented in Appendix A. The time-series, TS, is supplementary data for the paper's citations spanning 16 years. It reports the annual number of citations to the paper from the publication year, i.e. 2000, to year 2015. The text element, TE, is basically the paper's abstract. There are five papers that have some missing values within their SD element. Thus, the analysis here will address uncertainty in terms of missing data as uncertainty that is related to the disagreement between the various distance calculations.

In the preparation stage, we have coded some attributes of the SD element in an alternative way. For example, in the month of publication attribute, we used the numbers from 1 to 12 to represent the 12 calendar months instead of using the complete names of the months. Another similar example is reporting the number of the paper's author(s) as a more beneficial replacement for their names. Also, as an alternative to using the numbers of the beginning and end pages of the paper, we convert this into the number of pages. By

looking at the missing data in the SD, we found that most missing data is in the attribute that reports the issue number of the journal that published the paper. Thus, in the analysis we discarded this attribute because it is not very informative for the analysis and in its place we create an alternative attribute to report whether the article is a conference paper or not. This is because, the missing data in the attribute that records the issue number is only missing in the case of conference papers.

The TE element was processed according to the standard of text mining similarly to how we dealt with the text element of the plant dataset (see section 3.7.2). After doing all preparations using the TextPipe workbench, the word list consisted of 7,376 unique words. We cut this number to 6,582 terms by removing stop words and deleting all the numbers. Then, by applying a stemming process, the list included 4,351 words. As we did previously with the plants dataset, we also applied a basic frequency based term selection to remove rare terms. We discarded words that appear only in a single document and we ended up with 1080 words in the list. Next, the tf-idf weighting was used to construct a  $300 \times 1,080$  matrix that represent the TE element where rows correspond to the 300 paper objects.

For the TS, we specifically chose papers that were published in the same year to unify the citation span to be from year 2000 to year 2015. As a result, the citation TSs for all the papers start and end at the same point on the time-axis.

The research field of the papers is the natural grouping system that we have used for this data. We have relied on this grouping scheme to construct the dataset. The 300 papers are classified into three different research fields. We have 100 computing sciences papers, 100 business papers and 100 healthcare services papers.

## 3.8 The celebrities dataset

We have created a dataset about celebrities. The data was obtained from multiple web sources: Forbes [122], Wikipedia [253] and Google trends [88]. In one hand, Forbes is a leading source for reliable business news and financial information. It is well known for

its lists and rankings such as the lists of the richest Americans and rankings of world's top companies. From Forbes, we have borrowed the list of the 2014 ranking of the world's most powerful celebrities. After that, we have obtained some data about those celebrities from both Forbes and Wikipedia. On the other hand, Google Trends analyses a percentage of Google searches to determine how many searches have been done for the terms we are interested in compared to the total number of Google searches done during the same time. Numbers in Google Trends are normalized in order to make it easier to compare search data. From Google trends website, we have obtained data on measuring search interest for people in our celebrities' list during a two year period. We have looked at the searches in English language and limited ourselves to analyse UK searches only that happened between January 2013 and January 2015. We chose the data in these particular two years to be consistent with the results of the 2014 ranking that we have selected to determine our celebrity list. We have developed the dataset by collecting data about the 100 celebrities that we have in our list. They are divided into three groups of professions: actors/actresses (30), musicians (24) and 46 other celebrity personalities including athletes, directors, producers and authors. Each celebrity has a description in the form of structured data and another in the form of two distinct time-series. Consequently, each object is composed of three elements: SD and two TSs. The structured data element, SD, includes data for 12 attributes, e.g. age, gender, number of awards, the year of activation, etc. The data dictionary is presented in Appendix A. The two time-series elements, TSs, report the weekly normalized number of searches about the celebrity that have been done from the first week in January 2013 to the first week in January 2015. One TS element defines the interest of people in the UK through web searches and the other TS is to report their interest using Youtube searches. Note that, there are no incomplete objects so we do not have missing elements. Thus, the analysis of uncertainty here will refer only to the disagreement between the various distance calculations.

In the preparation stage, we have coded some attributes of the SD element in an alternative way. We did this for categorical attributes with string values such as the gender, Marital Status and country of origin of the celebrity. In other words, we use numbers to define categorical values instead of the alphabetical original values. For example, we

use the numbers between 1 and 3 to code the marital status: 1 for married, 2 for single and 3 for divorced where these three conditions are the only marital status that appear in the data. We also, calculate the active age using the date of birth and the year of activation attributes. Also, the country of origin of the celebrity has been amended; only 20% of celebrities in the list are not American and they come from 11 different countries. Thus, we have grouped them all in a single category of non-American celebrities while the remains 80 personalities are in the American group.

The natural grouping system we have chosen is the professional grouping. The 100 celebrities are classified into three different groups of professions. We have 30 actors/actress, 24 musicians and 46 other celebrity personalities.

### 3.9 Chapter summary

The purpose of this chapter is to establish a suitable definition of heterogeneous data and to propose a reliable framework to apply cluster analysis to this kind of data. Related to that effort, it was necessary to start with an understanding of data heterogeneity as defined in the literature. We formalise our definition of heterogeneous data, and also identify the need for further research in this area, in particular in relation to clustering. We also look at data fusion techniques as they may be the best approach for our work. Next, we suggest an intermediate fusion approach, SMF, which fuses distances between individual elements and records the uncertainty attached to the fusion. Then we propose an algorithm,  $H_k$ -medoids, which can utilise the output of the SMF approach including the uncertainty information. We also suggest how late fusion methods (ensemble) can be implemented. We discuss how to statistically validate the results obtained by the proposed methodology in order to make comparisons between the different approaches. We also introduce a set of five heterogeneous datasets that will be used in the experimental work in order to examine and validate the proposed methodology. Hence, this chapter presents all the methods we propose for clustering heterogeneous data. The next few chapters will then present the results of testing those approaches on the selected heterogeneous datasets.

# Chapter 4

## Results of applying the similarity matrix fusion

The performance of the proposed intermediate integration technique is evaluated on five heterogeneous datasets: the prostate cancer dataset, the plants dataset, the papers dataset, the journals dataset and the celebrities dataset. Section 3.7 gives descriptions of the five datasets as well as the data preparation process for each experiment, while here we give the experimental set up in Section 4.1. This is followed by the similarity measure choices in Section 4.2. The experiment results come in the next sections and they are demonstrated for each dataset separately. The results include: clustering configurations, performance comparisons and validation assessment using statistical significance tests. Finally, we sum up everything in the conclusions in Section 4.8.

### 4.1 Experimental set up

In order to apply and validate our proposed Similarity Matrix Fusion approach, SMF, described in Section 3.5.1, on the five heterogeneous datasets we describe here the experimental set up. We can make evaluations when applying cluster analysis to heterogeneous objects by measuring (dis)similarities in relation to a single element compared to the integrated (fused) assessment for all elements. In other words, we can judge the performance

of SMF by studying the relation between elements that composed the heterogeneous objects, their distances and the distances between the objects themselves. We can also use naturally groupings of objects into categories, which gives the study a semi-supervised analysis environment, and we can investigate how clustering using individual elements compares to clustering using the fused matrix.

After defining a suitable data representation for our objects along with the data pre-processing, the first step in SMF is to calculate DMs for each element independently. For each dataset we discuss the choices of the distance measures that we used and all related issues in order to construct the pairwise DM, where each DM reports distances between objects in relation to an individual element. At the fusion phase and by means of using the pre-calculated DMs, we apply the next stage in our SMF approach and compute the primary fusion matrix, FM. We set an initial equal weight for all the elements (i.e.  $w^i = 1$  for every element) and from here on we refer to this fusion matrix using the notation FM-1. In addition, we have calculated the two primary uncertainty matrices UFM-1 and DFM-1, which report the level of uncertainty related to the fused distances in FM-1. We can also created more than one fusion matrix by making some changes to the weighting scheme of the components. As presented later on, we define a second fusion matrix as FM-2. In this matrix, the weights are not equal but are instead selected based on some criteria. We propose to use clustering performance obtained on each individual element in order to set new weights for DMs. Accordingly, we have to produce amended uncertainty calculation matrices which can be referred to as UFM-2 and DFM-2.

We used heatmap visualisations to exemplify our approach. That leads us to present the pre-computed pairwise distance matrices using heatmap visualisation for each element of each dataset. Our visualisation also takes into consideration uncertainty as represented by UFM-1 and DFM-1. Accordingly, we can observe the correlation between the different distance matrices corresponding to different elements. In addition, we calculate correlation between DMs. Since most of the currently available comparison techniques are based on the Mantel test [168], we used the standard test to express the significance of the correlation. The Mantel test is a non-parametric statistical method that computes

the correlation between two distance matrices. The coefficients fall between  $-1$ , strong negative correlation, and  $+1$ , strong positive correlation, where a value of  $0$  indicates no correlation.

Next, we apply  $k$ -medoids clustering on the distance matrices and the results are presented for each heterogeneous dataset. We feed the algorithm with the pre-calculated DMs as well as several versions of Fusion Matrices, FMs, independently. The performance of the SMF approach is then evaluated in comparison to the results of applying the same clustering algorithm to each element separately and to FMs. Our hypothesis is that the combined information contained in the FMs produces better clustering than the individual elements.

For every heterogeneous dataset, we evaluate clustering in relation to the possible grouping(s) of the objects in the dataset. Each experiment consists of the following steps:

1. Choose a grouping system, in case we have more than one. The possible groupings are described within the definition of each dataset in Section 3.7.
2. Set the number of clusters,  $k$ , to be equal to the number of categories existing in the grouping system.
3. Produce a clustering solution using  $k$ -medoids with one of the pre-computed DMs.
4. Use external validation methods to evaluate the solution taking advantage of the labels and evaluate also using an internal method.
5. **Repeat** step 3 and step 4 **for** each DM and for the FMs.

Hence for each dataset and grouping system we apply  $k$ -medoids algorithm on each individual DM and on the FM(s). We divided our experimental work into three main sets of experiments:

1. Apply cluster analysis to distance calculations of all the objects by means of using the DMs for different elements. Since objects of each heterogeneous dataset are described by SD element and one or two other data types, we report the performance

of the results generated by clustering DMs that are related to SD. We also report the performance of the best and the worst performing element that is drawn from other data types and in some cases the average performance of all the other types where it is suitable.

2. Apply cluster analysis to cluster fused distance calculations using the initial FM-1 and the amended versions of the fused matrix and compare it to the previous set of experiments. Since in SMF we can use weights in the fusion step, we have examined different weightings. However, it may not always be possible to establish the degree of relevance of each element and hence weighted fusion may not be an option. Having said that, in our experiment, we used clustering performance of each individual element to specify elements' weights and produced several amended FMs. The influence of playing with these weights on the fused distance calculations is reported in FM-2.
3. A repetition of the previous experiment using only certain distances (i.e. we filter FM-1 using UFM-1 and DFM-1). We use a filtering approach to remove objects that are related to uncertain distances and then apply  $k$ -medoids to the remaining objects. We set out thresholds for UFM-1 and DFM-1 in order to filter out objects. We then eliminate objects that exceed these thresholds when they are compared to half or more of the other objects. For example, if the dataset consists of 100 objects, then we may remove an object if it holds uncertain fused distances between the object itself and 50 or more of the other 99 objects. Moreover, in some cases we have used more than one filter. For example, in the prostate cancer dataset, we set three filters: in filter 1 we used UFM-1 and DFM-1 expressions together, whereas in filters 2 and 3 we used UFM-1 and DFM-1 individually. As a second step we can use the clustering results of the certain objects to cluster the uncertain ones. In other words, we use the medoids that were generated with the filtering approach to assign the residual objects that were removed from the analysis to the produced clusters.

In all these experiments, we aim to examine if fused DMs are more informative to the

$k$ -medoids algorithm than using individual DMs. In cluster evaluation, we use the ground-truth labels that we previously gave to the objects in order to calculate the external validation indices. To evaluate the results we calculate three different external validation tests: Jaccard coefficients, Rand statistic and Dice's index. We choose these three methods as they are defined differently. Rand statistic includes negative matches whereas Jaccard and Dice's coefficient do not. Also, Dice's considers the positive matches as more significant in the calculation and thus it gives them more weight. With regards to the choice of an internal validation method, we use the Dunn index as it measures both compactness (i.e. maximum distance between data objects of clusters) and clusters separation (i.e. minimum distance between clusters). Large values indicate the presence of compact and well-separated clusters.

Finally, we demonstrate the significance of SMF performance using statistical testing. Note that as the nature of  $k$ -medoids implies that we may get different results with different initialisations, we applied each algorithm 50 times. Each run was executed with random initialization. In the results we report the best outcome for each experiment out of 50 runs.

In the thesis we present experimental results by selecting the best run, since there are little differences among multiple runs for most of the cases including FMs and individual DMs. We attached the full detailed performance of 50 clustering runs for one of our dataset (the celebrities dataset) using jaccard coefficient in Appendix C. The results confirm a stable clustering performance as the variances calculated over the 50 runs were small. The variance of the 50 results obtained by clustering  $DM^{SD}$ ,  $DM^{TSWeb}$  and  $DM^{TSUtube}$  and FM-1 were 0.004568314, 0.007842824, 0.006584078 and 0.006383843, respectively. In addition, the main conclusions holds equally when we analyse the results based on either the average or the best of the 50 runs. In this context, by clustering  $DM^{SD}$ ,  $DM^{TSWeb}$  and  $DM^{TSUtube}$  and FM-1, the averages of performances were 0.322745098, 0.371764706, 0.368627451 and 0.42627451, while the best obtained results for these matrices respectively were, 0.41, 0.53, 0.50 and 0.54. Thus, both statistics lead to the same conclusions in terms of what methods lead to best clustering performances.

## 4.2 Computing DMs

In order to construct DMs, we have chosen one similarity measure for each data type. For the SD element, Standardized Euclidean distance was employed since it is well established and works efficiently in countless experiments. For TE, we used Cosine calculation as it is a widely studied and examined method in text mining problems and it has proved its efficiency. With regards to TSs, we used a Dynamic Time Warping (DTW) approach for several reasons:

1. DTW has been used before to measure the similarities between TSs in the field of data mining; it was first introduced into this community in 1996 [19].
2. DTW is a non-linear (elastic) technique that allows similar shapes to match even if they are out of phase in the time axis.
3. The ability of DTW to handle sequences of variable lengths has been investigated by Keogh and Ratanamahatana [202] and they concluded that re-interpolating sequences into equal lengths does not produce a statistically significant difference to comparing them using their original lengths directly by means of DTW.

Accordingly, we used DTW to assess the TS elements since we want our calculations to reflect that two TSs are close to each other if they have a similar behavior through the time-line regardless of the actual timing and the TSs' lengths. Every calculated distance for the TSs was computed by dividing the cumulative distance by the sum of both series' lengths. This normalization step is especially important in DTW when comparing alignments between time series of different lengths and also when performing partial matches, which is applicable in some cases like the prostate cancer dataset.

For IE, following what the multimedia data mining researchers do, we have taken the advantage of using a recent image descriptor system. We used GIST which has shown good performance in different image mining tasks.

By applying those similarity measures on our data, we have constructed the pairwise DMs, one for each element. Note that, the *DM* for element *i* has no *null* values in the

case of having all the objects with a present element  $i$ . However, the *null* value occurs when comparing incomplete objects. As previously explained, UFM and DFM address this problem.

## 4.3 The results of the cancer dataset

We begin our experiments with a real dataset that satisfies our definition of heterogeneous data, including the objects' description and the presence of cases with different levels and types of uncertainty. This dataset can be considered as a set of independent, but clinically related, measurements on patients that aid our goal of deriving consistent and relevant clustering configurations from heterogeneous data. A description of the data is given in Section 3.7.1 while the experimental results are given in the following sections. Before proceeding to apply SMF on the whole dataset, we present first a worked example. It examines the proposed approach on a smaller scale as this was our first experimental data.

### 4.3.1 A worked example of the SMF approach

Before proceeding to apply clustering algorithms, we present here a worked example that examines the proposed approach for calculating distances of heterogeneous objects in the context of different scenarios. We selected a small sample of 16 patients that represent the following scenarios:

**S1** 4 patients,  $O_1 : O_4$ , that are described as complete heterogeneous objects, with 22 TSs and SD element with 26 recorded values. Manual examination of the raw data indicated they are very similar (but not identical) in all of their elements. Thus, we are certain that they represent a cohort of similar patients.

**S2** 4 patients,  $O_5 : O_8$ , that are described as complete heterogeneous objects, with 22 TSs and SD element with 26 recorded values. Manual examination of the raw data shows they are dissimilar, and all their DMs reported concordant large values

(associated with dissimilarity). Thus, we are certain that this patients are dissimilar according to all their elements.

**S3** The same four patients in S1 are used with some of their elements discarded to create uncertainty,  $O_9 : O_{12}$ . They all hold a complete SD element but are described by different number of TSs as we have removed some. The no. of present TSs are  $O_9=14$ ,  $O_{10}=16$ ,  $O_{11}=13$  and  $O_{12}=15$ . Thus, they are similar but we are uncertain as the objects are incomplete.

**S4**  $O_{13} : O_{16}$ , the same four patients in S2 but with some added noise to the raw data so that they reported large but divergent similarity according to the different DMs. Also we discarded some of the TSs so the no. of TSs present are:  $O_{13}=15$ ,  $O_{14}=16$ ,  $O_{15}=17$  and  $O_{17}=12$ . Thus, they are dissimilar but we are uncertain as disagreement and objects' incompleteness are present.

Note that in the process of removing TSs, we sometimes deleted the same TS element,  $\mathcal{E}^{TSi}$ , from two objects and other times we discarded different TSs,  $\mathcal{E}^{TSi}$  and  $\mathcal{E}^{TSj}$ , in order to test both cases.

Patients in the sample were compared to each other following our SMF approach. Figure 4.1 provides a visualisation of our results for the small sample of data. Objects in S1 reported dissimilarity values in the  $FM < 0.2$  while the FM dissimilarities for patients in S2 were  $> 0.7$ . Both had all associated variance values, DFM,  $\leq 0.1$  and incompleteness values, UFM, equal to 0. Patients in S3 reported dissimilarity values in  $FM < 0.2$  with variances reported in DFM  $\leq 0.2$  and incompleteness values in UFM  $> 0.4$ . Patients in S4 reported dissimilarity values  $> 0.7$  in FM with variances in DFM  $> 0.2$  and incompleteness in UFM  $> 0.4$ .

In Figure 4.1 the UFM and DFM are used to report uncertainty in the right hand heatmap (coloured in grey). We can see in the heatmap on the right that patients from S1 and S2 are similar/dissimilar respectively but in both cases the similarity reported in the FM is certain according to the companion uncertainty heatmap. On the other hand, patients in S3 are still similar (as they relate to S1 patients) but report higher levels of

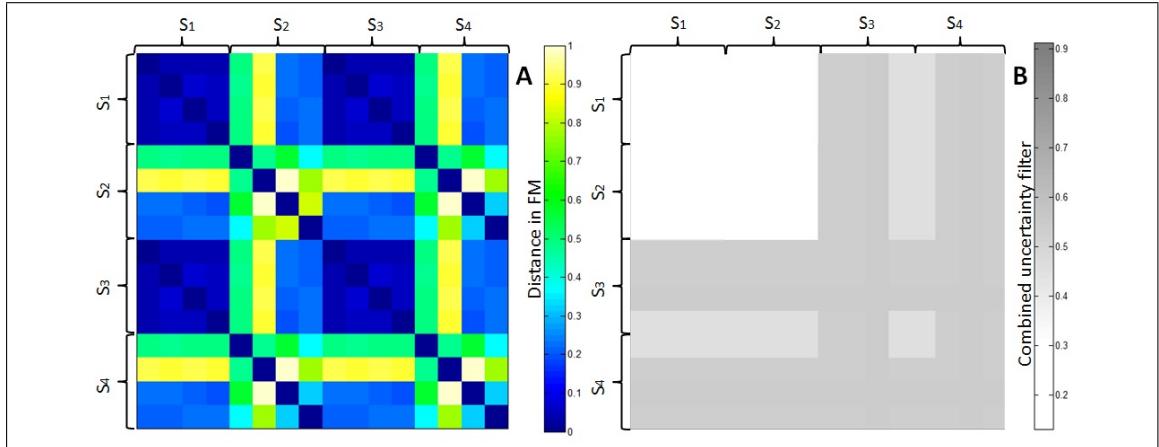


Figure 4.1: FM for the data sample (A, to the left) and its combined uncertainty filter (B, to the right): The uncertainty filter reports the average of UFM and DFM. In A, dark blue reflects strong similarity ( $FM \leq 0.1$ ) and then it scales through green until it reaches bright yellow to reflect dissimilarity ( $FM=0.9$ ). In B, the scales of grey colour report uncertainty, the darker the colour the higher the level of uncertainty. The white area in B supports the FM calculations for  $S_1$  and  $S_2$  cases with combined uncertainty values  $\leq 0.05$ . The other calculations are subject to varying levels of uncertainty.

uncertainty, whereas the  $S_4$  patients are both dissimilar (as they relate to  $S_2$ ) and uncertain.

The worked example on a small sample of patients shows what we were expecting from SMF. Moreover, it shows how the distance and uncertainty calculations may be visualised via heatmaps.

### 4.3.2 DMs and FM calculation results

DMs were calculated for SD element and for every TS. Next, We fused DMs and constructed FM-1 along with the associated uncertainty matrices UFM-1 and DFM-1. In all the results, we refer to the elements using their names. More information about them can be found in the data dictionary in Appendix A.

Since the size of each generated DM is very large ( $1598 \times 1598$ ), we use the heatmap graphical representation to provide an immediate visual summary of distance calculations. Figure 4.2 shows visualization of our distance matrices using colours to represent distance values in a two-dimensional graph for each individual element. As before, we

use dark blue to reflect strong similarity and then the colour scales through green until it reaches bright yellow to reflect strong dissimilarity. In addition, we use red to report null values that appear in DMs when comparing incomplete objects. For FM-1, in Figure 4.2 we represent the entire fused calculations for all the objects while in Figure 4.3 we use the grey colour to represent all patients that report uncertain distance values in FM-1 due to exceeding one or both of the determined thresholds for UFM-1 and DFM-1. The thresholds were set up as  $UFM-1=0.4$  and  $DFM-1=0.2$ , thus we omitted fused distances for patients (represented in grey colour) that have  $UFM-1$  values  $\geq 0.4$  or  $DFM-1 \geq 0.2$ . We present FM-1 before and after filtering objects because we will use both matrices in the application of  $k$ -medoids algorithm in the next section (Section 4.3.3). Note that, in both figures patients are reported in ascending order using their identifiers from left to right on the x-axis and from up to down on the y-axis.

The visualisations allow us to draw some initial conclusions about DMs that seem to be related to each other. However, to explore this in more detail, we used the Mantel test as a DM comparison technique. Calculated correlation coefficients that reflects the degree of the relationships between the DMs and FM-1 are summarised in Table 4.1. By looking at the calculations in the table, we can conclude that B20, B22, B23 and B26 are all well-correlated elements as the coefficients between every pair is  $\geq 0.5750$ . This is confirmed also by the heatmap visualisations in Figure 4.2. Moreover, the degree of associations between B20-B22 and between B22-B23 is very strong with values of 0.8296 and 0.9809 respectively. Another strong correlation (0.8074) appears to be between B2 and B3, in addition to a moderate association that correlates both P-B1 as well as B10-B12. One interesting observation from these statistics is the relationship between SD and both B22 and B23 as the coefficients here reflect the only negative correlations in the table. The heatmap visualisations in Figure 4.2 confirms all these stated associations. These findings may have some medical relevance which we will explore with the domain expert as all the blood tests that we analyse are not always associated with prognosis or risk in prostate cancer; our analysis may reveal some unknown correlations that may be of interest and is novel in its own way.

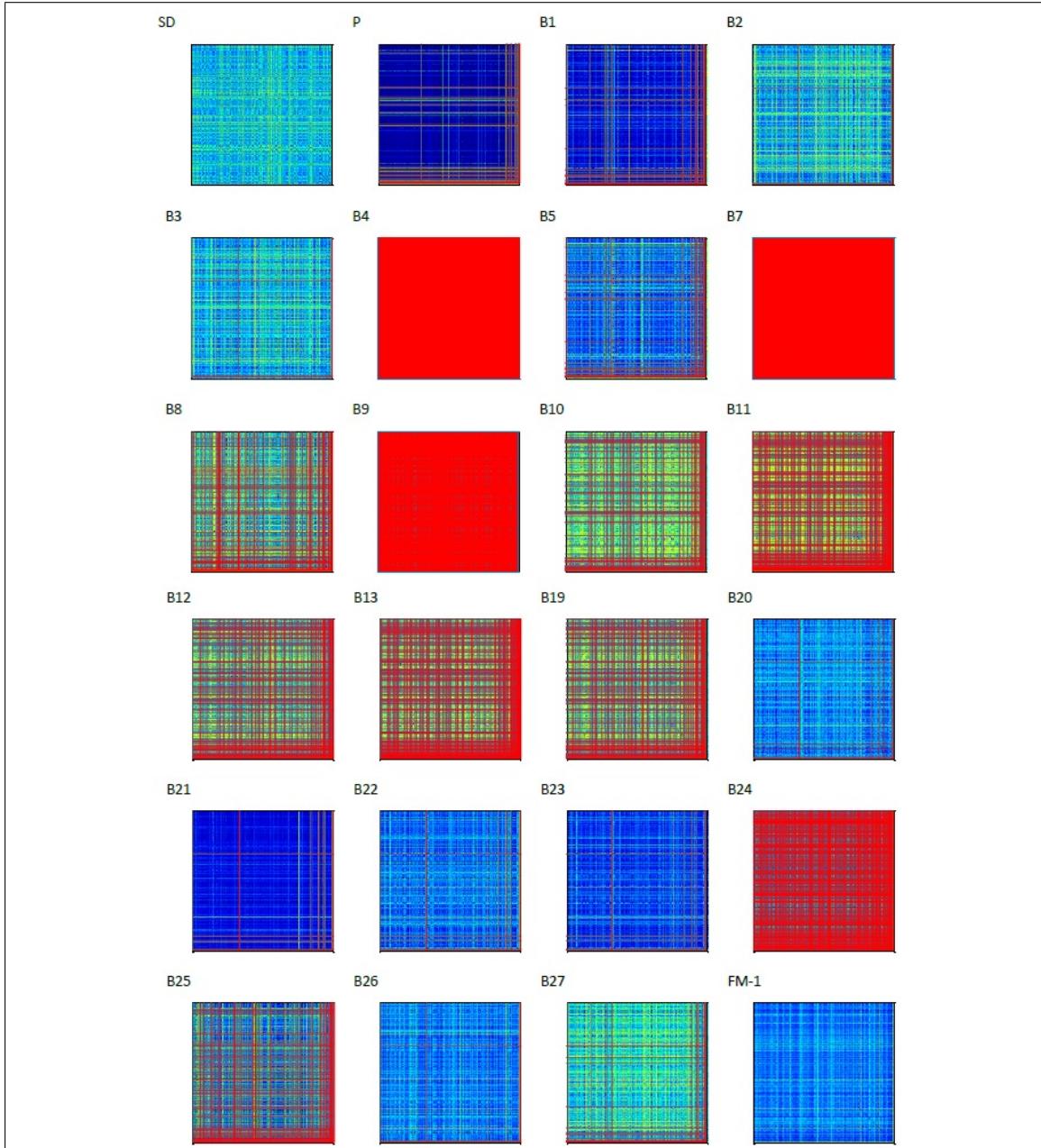


Figure 4.2: Heatmap representation for DMs and FM-1 calculated for the prostate cancer dataset: DMs for SD and TSs use red colour to represent missing values; blue indicates similarity and yellow indicates dissimilarity. The fusion matrix, FM-1, represent the fused distances without taking into account uncertainty.

It is also worth observing that the FM maintains a higher degree of correlation with some elements than with others. For example, elements B10 to B20, B22 and B23, and B25-B27 appear well represented in terms of the correlation measure. Hence the well correlated elements are able to exert a stronger influence in the FM.

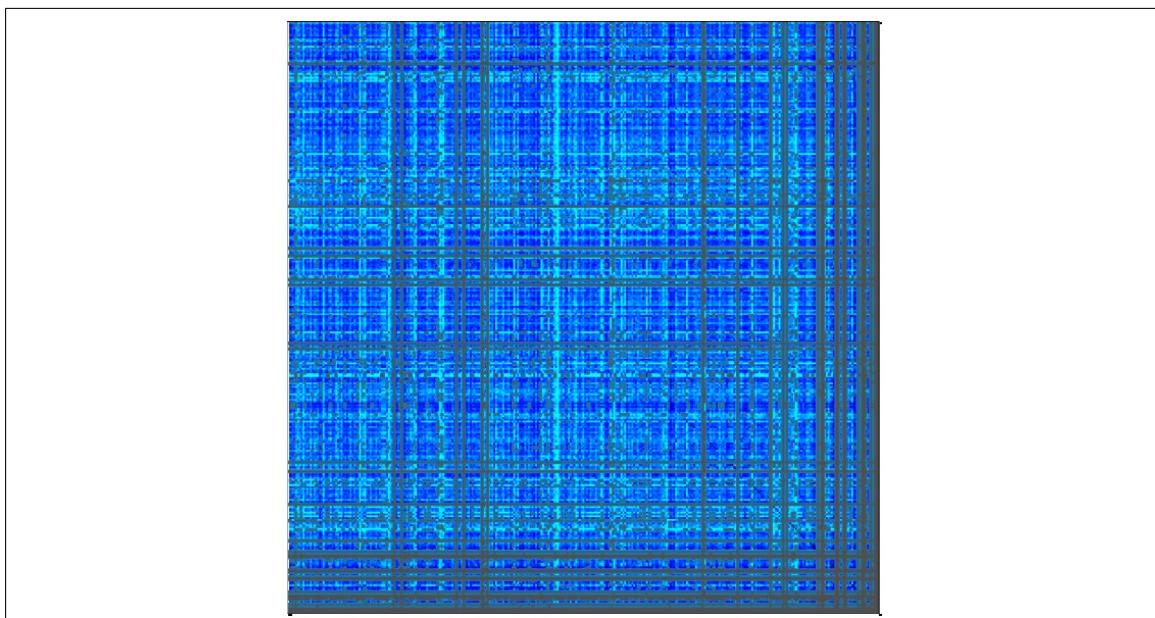


Figure 4.3: Heatmap representation for the filtered fused matrix (FM-1) calculated for the prostate cancer dataset

|             | SD            | P             | B1     | B2     | B3     | B4     | B5     | B7     | B8     | B9            | B10    | B11     | B12    | B13           | B19           | B20           | B21            | B22            | B23           | B24    | B25    | B26    | B27    | FM-1 |  |  |
|-------------|---------------|---------------|--------|--------|--------|--------|--------|--------|--------|---------------|--------|---------|--------|---------------|---------------|---------------|----------------|----------------|---------------|--------|--------|--------|--------|------|--|--|
| <b>SD</b>   | 0.0195        | 0.0025        | 0.0544 | 0.0980 | 0.0720 | 0.0300 | 0.0723 | 0.0458 | 0.0649 | 0.0346        | 0.0205 | 0.0422  | 0.0231 | 0.0365        | 0.0043        | 0.0184        | <b>-0.0130</b> | <b>-0.0187</b> | 0.0272        | 0.0447 | 0.0010 | 0.0594 | 0.1521 |      |  |  |
| <b>P</b>    | <b>0.4355</b> | 0.2063        | 0.1648 | 0.1246 | 0.3778 | 0.2476 | 0.0344 | 0.2223 | 0.0056 | 0.1167        | 0.0361 | 0.0222  | 0.0238 | 0.1479        | 0.3677        | 0.1047        | 0.1096         | 0.1410         | 0.1489        | 0.1339 | 0.1172 | 0.2474 |        |      |  |  |
| <b>B1</b>   | 0.2169        | 0.1851        | 0.1348 | 0.5604 | 0.3491 | 0.0414 | 0.3155 | 0.0642 | 0.1660 | 0.0792        | 0.0726 | 0.0781  | 0.2156 | 0.3945        | 0.1838        | 0.1842        | 0.2090         | 0.2106         | 0.2691        | 0.1571 | 0.3457 |        |        |      |  |  |
| <b>B2</b>   |               | <b>0.8074</b> | 0.1404 | 0.2076 | 0.4054 | 0.0330 | 0.3649 | 0.0667 | 0.1920 | 0.1181        | 0.0989 | 0.0906  | 0.2620 | 0.1935        | 0.1754        | 0.2425        | 0.1733         | 0.1711         | 0.1733        | 0.2546 | 0.1736 | 0.3976 |        |      |  |  |
| <b>B3</b>   |               |               | 0.1368 | 0.1726 | 0.3697 | 0.0139 | 0.3318 | 0.0629 | 0.1621 | 0.1045        | 0.0846 | 0.0674  | 0.2307 | 0.1423        | 0.1263        | 0.1231        | 0.2192         | 0.1678         | 0.1986        | 0.1531 | 0.3626 |        |        |      |  |  |
| <b>B4</b>   |               |               |        | 0.1404 | 0.1167 | 0.1212 | 0.0986 | 0.1575 | 0.1217 | 0.1567        | 0.1357 | 0.0220  | 0.0472 | 0.1351        | 0.0660        | 0.1655        | 0.0681         | 0.0523         | 0.3631        | 0.1569 | 0.1989 |        |        |      |  |  |
| <b>B5</b>   |               |               |        |        | 0.1403 | 0.0865 | 0.3689 | 0.0866 | 0.2009 | 0.1149        | 0.0969 | 0.1073  | 0.2179 | <b>0.4794</b> | 0.2376        | 0.2373        | 0.2547         | 0.2667         | 0.3369        | 0.2191 | 0.4020 |        |        |      |  |  |
| <b>B7</b>   |               |               |        |        |        | 0.1435 | 0.0917 | 0.0058 | 0.1598 | 0.0588        | 0.0583 | 0.0604  | 0.1649 | 0.0035        | 0.1662        | 0.1657        | 0.0682         | 0.0524         | 0.0633        | 0.0570 | 0.1991 |        |        |      |  |  |
| <b>B8</b>   |               |               |        |        |        |        | 0.3929 | 0.1619 | 0.1918 | 0.1635        | 0.1665 | 0.1595  | 0.1694 | 0.0804        | 0.2000        | 0.1950        | 0.2814         | 0.1988         | 0.1726        | 0.2724 | 0.4365 |        |        |      |  |  |
| <b>B9</b>   |               |               |        |        |        |        |        | 0.1529 | 0.0055 | 0.0054        | 0.0538 | 0.1555  | 0.0586 | 0.1321        | 0.0600        | 0.0596        | 0.0626         | 0.0477         | 0.1576        | 0.0513 | 0.1910 |        |        |      |  |  |
| <b>B10</b>  |               |               |        |        |        |        |        |        | 0.3757 | <b>0.5424</b> | 0.1589 | 0.2586  | 0.1529 | 0.1050        | 0.1603        | 0.1553        | 0.1410         | 0.2342         | 0.1864        | 0.2516 | 0.5781 |        |        |      |  |  |
| <b>B11</b>  |               |               |        |        |        |        |        |        |        | 0.3677        | 0.2422 | 0.2528  | 0.2701 | 0.1821        | 0.2737        | 0.2720        | 0.1433         | 0.2900         | 0.2858        | 0.2554 | 0.5932 |        |        |      |  |  |
| <b>B12</b>  |               |               |        |        |        |        |        |        |        |               | 0.2480 | 0.3642  | 0.1747 | 0.1140        | 0.1861        | 0.2332        | 0.2152         | 0.2305         | 0.1419        | 0.5873 |        |        |        |      |  |  |
| <b>B13</b>  |               |               |        |        |        |        |        |        |        |               |        | 0.26107 | 0.1794 | 0.1056        | 0.1835        | 0.1803        | 0.2421         | 0.2118         | 0.1882        | 0.2003 | 0.5818 |        |        |      |  |  |
| <b>B19</b>  |               |               |        |        |        |        |        |        |        |               |        |         | 0.1636 | 0.1058        | 0.1686        | 0.1649        | 0.2422         | 0.2312         | 0.1883        | 0.1996 | 0.6038 |        |        |      |  |  |
| <b>B20</b>  |               |               |        |        |        |        |        |        |        |               |        |         |        | 0.1500        | <b>0.8296</b> | <b>0.8258</b> | 0.3675         | 0.3016         | <b>0.5750</b> | 0.3768 | 0.6493 |        |        |      |  |  |
| <b>B21</b>  |               |               |        |        |        |        |        |        |        |               |        |         |        |               | 0.1700        | 0.1691        | 0.2184         | 0.2139         | 0.2842        | 0.1505 | 0.3457 |        |        |      |  |  |
| <b>B22</b>  |               |               |        |        |        |        |        |        |        |               |        |         |        |               |               | <b>0.9809</b> | 0.3727         | 0.3185         | <b>0.6464</b> | 0.3578 | 0.6631 |        |        |      |  |  |
| <b>B23</b>  |               |               |        |        |        |        |        |        |        |               |        |         |        |               |               |               | 0.3696         | 0.3159         | <b>0.6385</b> | 0.3538 | 0.6575 |        |        |      |  |  |
| <b>B24</b>  |               |               |        |        |        |        |        |        |        |               |        |         |        |               |               |               |                | 0.1385         | 0.0368        | 0.0331 | 0.1663 |        |        |      |  |  |
| <b>B25</b>  |               |               |        |        |        |        |        |        |        |               |        |         |        |               |               |               |                |                | <b>0.6634</b> | 0.2974 | 0.5176 |        |        |      |  |  |
| <b>B26</b>  |               |               |        |        |        |        |        |        |        |               |        |         |        |               |               |               |                |                |               | 0.3841 | 0.6333 |        |        |      |  |  |
| <b>B27</b>  |               |               |        |        |        |        |        |        |        |               |        |         |        |               |               |               |                |                |               |        | 0.5727 |        |        |      |  |  |
| <b>FM-1</b> |               |               |        |        |        |        |        |        |        |               |        |         |        |               |               |               |                |                |               |        |        |        |        |      |  |  |

Table 4.1: Correlation coefficients between DMs and FM-1 calculated for prostate cancer dataset

### 4.3.3 Clustering results

This section presents the results of applying a  $k$ -medoids algorithm to each of the pre-calculated DMs and also to several constructed fused matrices starting with the initial fused calculations, FM-1. The section is organized to report the clustering experimental work in the three sets of experiments that we have designed in Section 4.1. The main aim of these experiments is to examine if the FMs are more informative for the  $k$ -medoids algorithm than using individual DMs. NICE, GS-1, GS-2 and MG grouping systems (defined in Section 3.7.1) were used to evaluate SMF clustering configurations in all the experiments. Consequently, we started with patients labeling following all the different classification systems.

We applied the NICE guidance to label our patients. Table 4.2 shows number and percentage of patients in each risk category following the NICE categorisation system.

| level of risk | number of patients | percentage |
|---------------|--------------------|------------|
| Low risk      | 16                 | 1.0%       |
| Medium risk   | 806                | 50.43%     |
| High risk     | 776                | 48.56%     |

Table 4.2: NICE risk groups for prostate cancer dataset

As can be observed, the 'Low risk' category presents low numbers in our data.

With regards to GS-1 and GS-2 groupings, table 4.3 presents the difference between both systems as well as number and percentage of patients that were assigned to each risk category.

| level of risk          | Gleason scores                | number of patients | percentage |
|------------------------|-------------------------------|--------------------|------------|
| <b>Gleason-score-1</b> |                               |                    |            |
| Low risk               | primary + secondary $\leq 6$  | 70                 | 4.38%      |
| Medium risk            | primary + secondary = 7       | 1142               | 71.46%     |
| High risk              | primary + secondary $\geq 8$  | 386                | 24.16%     |
| <b>Gleason-score-2</b> |                               |                    |            |
| Low risk               | primary + secondary $\leq 6$  | 70                 | 4.38%      |
| Medium-1 risk          | primary = 3 and secondary = 4 | 594                | 37.17%     |
| Medium-2 risk          | primary = 4 and secondary = 3 | 548                | 34.29%     |
| High risk              | primary + secondary $\geq 8$  | 386                | 24.16%     |

Table 4.3: Gleason grade risk group classification system for localised prostate cancer

Similarly, GS-1 and GS-2 categorisation has assigned a minority group of patients to the 'Low risk' class. In addition, we can observe that GS-2 system has divided the 'medium risk' patients into approximately two equal subgroups.

The last possible groupings, MG, is quite different because it looks at the patients' outcome at the end of the study period, instead of the assessment of risk at the beginning of the study period. Since our TS represent bio-markers of the patient health status for the follow up period, they may be informative in establishing the outcome hence we thought we would study this. The four mortality categories after we have made our changes on the death indicator as described in Section 3.7.1 are: died due to prostate cancer, died because of other reasons, survived for three years and insufficient follow up to establish three year outcome (i.e. undetermined). Table 4.4 presents number and percentage of patients that are classified in each mortality group.

| <b>mortality conditions</b> | <b>number of patients</b> | <b>percentage</b> |
|-----------------------------|---------------------------|-------------------|
| Died due to prostate cancer | 158                       | 9.89%             |
| Died due to other reasons   | 28                        | 1.75%             |
| Survived                    | 902                       | 56.45%            |
| Undetermined                | 510                       | 31.91%            |

Table 4.4: Mortality conditions grouping for prostate cancer dataset

It can be concluded from the table that the majority of our cancer patients survived for three years, while a small percent of the patients died due to reasons other rather than prostate cancer.

For the next step of applying  $k$ -medoids, the number of clusters,  $k$ , was determined depending on the selected grouping system, i.e. we set  $k=3$  for NICE and GS-1 experiments and  $k=4$  in GS-2 and MG experiments. The presentation of clustering results are divided below into the three main sets of experiments that we have designed in the experiment set up section:

1. Results of applying  $k$ -medoids to cluster distance calculations of all objects by means of using the DMs calculated for elements. Figure 4.4 shows the performance of clustering evaluated according to the four possible groupings, NICE, GS-1, GS-2

and MC. The figure includes a summary of the statistics calculated using the three external validation indices: Jaccard, Rand and Dice's coefficients. The indices evaluate the clustering configurations produced by  $k$ -medoids using: SD and TSs DMs. In the figure we report SD and the best TS performer (Max TS), the worst(Min TS) and the average of all 22 TSs (Average TS).

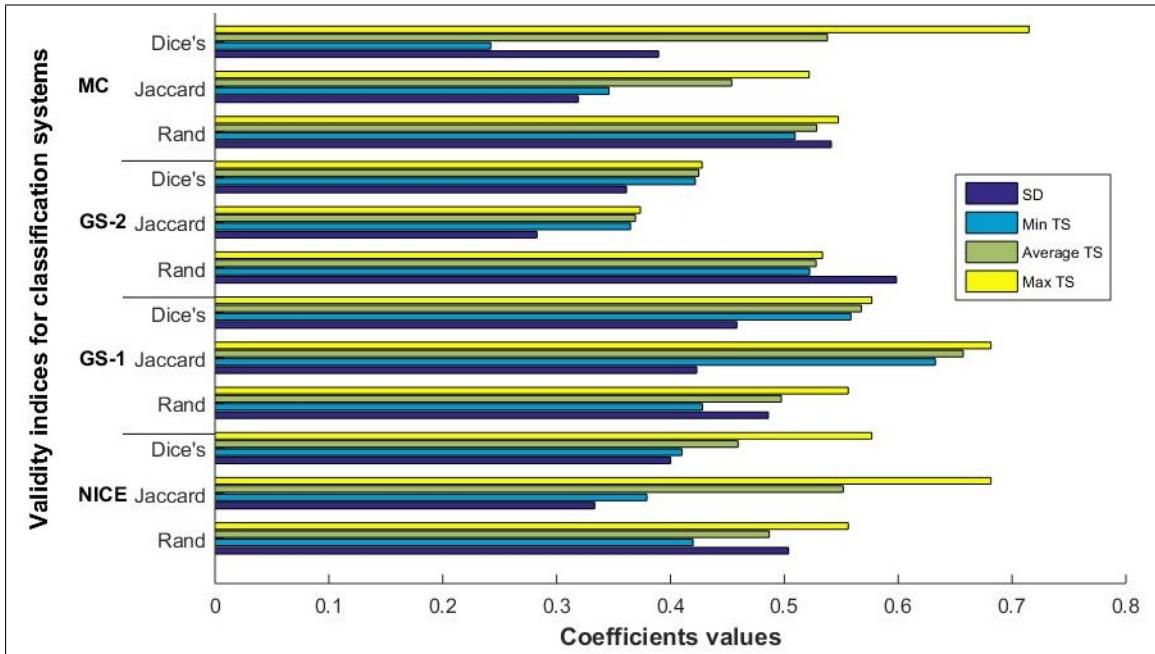


Figure 4.4: Summary of the performance of  $k$ -medoids clustering obtained using the individual DMs for the prostate cancer dataset

It can be observed from the figure that although the SD element contains the information that defines four groupings, it does not seem to be the best performer. According to two of the validation methods, Dice's and Jaccard, the SD element alone performs worse than the Max TS and the average TS. The Rand coefficient, however, evaluates the clustering performance obtained by the SD as competitive, and better in the case of GS-2. The other two validation methods make different judgments. In general, the Jaccard and Dice methods behave similarly whereas the Rand index reports different results. When we compare SD and Min TS, for both Dice and Jaccard, Min SD performs better than SD, except for the calculation of Dice's index in the MC groupings.

In most cases, SD has worse performance than the Min TS, average TS and the

Max TS, hence some of the TSs appear to have good information for the clustering process.

2. For the second set of experiments, in addition to the initial FM-1, we produced another version of the fused matrix, FM-2. Since in SMF we can use weights in the fusion step, we have examined different weightings. In our experiment, we used clustering performance of each individual element to establish weights. For each classification system, we have selected the top five elements that produced the highest averaged evaluation coefficients. The elements that we have selected for NICE system are P, B1, B9, B21 and B27 and for GS-1 they are B1, B8, B10, B12 and B25 elements. For GS-2 classification, we use B2, B3, B7, B12 and B26 elements. For MC groupings, we chose B1, B10, B13, B19 and B20 elements. By looking at the DMs heatmap visualisations in Figure 4.2, we can observe the degree of association between some of the elements selected here. For example, P, B1 and B21 (used for NICE); B8, B10, B12 and B25 (used for GS-1); B10, B13 and B19 (used for GS-2) and B10, B13 and B19 (used for MC) seem to be similar DMs. Some of these associations are also supported by the calculations of Mantel test in Table 4.1. For example, NICE uses B1 which is moderately related to P, B21 and B9 with 0.4355, 0.3945 and 0.3155 correlation values respectively, also P has a moderate correlation value (0.3677) with B21. A strong relation is estimated between B10 and B12, used as top performers for GS-1. With regards to GS-2, we found that B2 and B3 show a strong relation with values of 0.8074. Other moderate correlations are estimated between B3 and B7 (0.3697) also between B2 and B7 (0.4054). Another interesting finding that can be discussed with the domain expert is having B7 and B9 as good elements to classify patients according to NICE and GS-2 even though they have a large number of missing values. The number of patients that lack the two elements respectively is 1584 and 1394. For MC, B13 and B19 are also correlated with value of 0.3642. Note that what we have done here may not be appropriate in a real scenario as we may not be able to establish the worth of each element in clustering the data, specially in the absence of external

assessment. However, we consider it a worthwhile exercise in order to understand how privileged information about the best contributors could affect the clustering outcome.

We calculate FM-2 for each grouping system by giving the selected DMs a double weight compared to the remain 18 DMs. The influence of playing with these weights on the clustering performance is demonstrated in Figure 4.5. This compares FM-2, the weighted fusion matrix, to FM-1 that fuses DMs by giving equal weights for all the elements. Again, the performance here is evaluated and presented according to the three external indices.

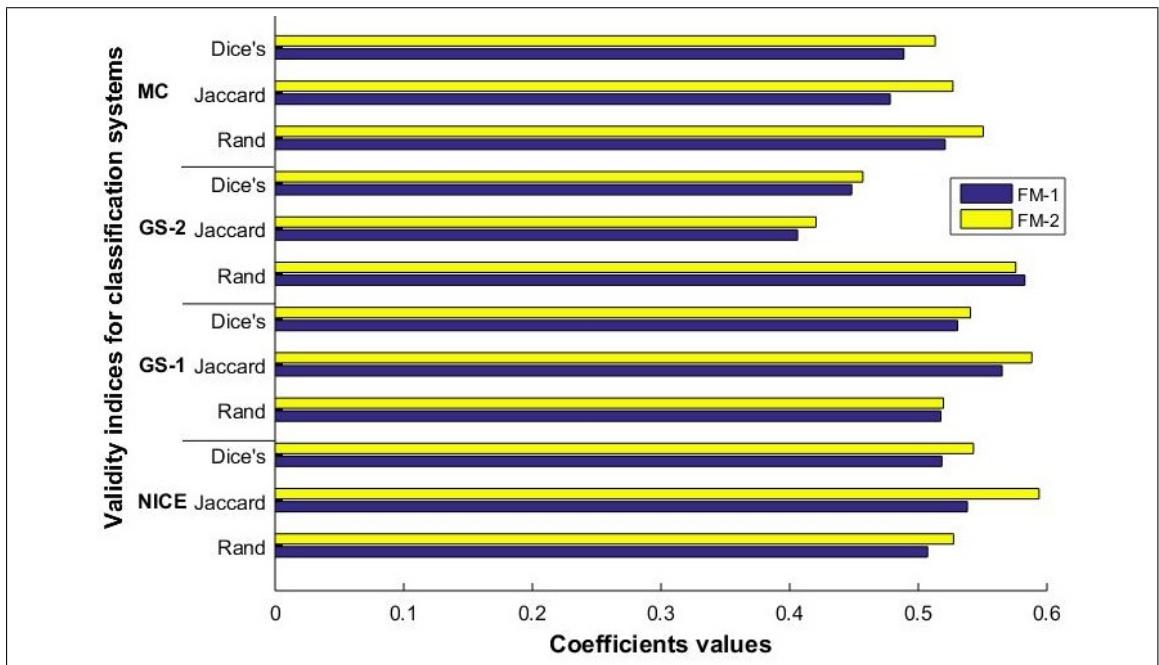


Figure 4.5: Summary of the performance of  $k$ -medoids clustering obtained on fusion matrices for prostate cancer dataset

By looking at Figure 4.5, it is obvious, and perhaps expected, that FM-2 produces better clustering results than FM-1. Therefore, prior knowledge about the most important contributors could be exploited positively. Having said that, we need to remember that such information may not be available.

Figure 4.6 summarises the comparison between the clustering performance when using individual DMs, FM-1 and FM-2. The figure shows the evaluation of clustering using SD, Min TS, Average TS, Max TS, FM-1 and FM-2. The performance

here is reported with regards to the four grouping systems, and for the purpose of presentation simplification, by Jaccard coefficients only as a representative of the three calculated external indices. We chose Jaccard as there is seems to be an agreement between its calculations and Dice's judgment, in contrast with Rand statistics in some occasions.

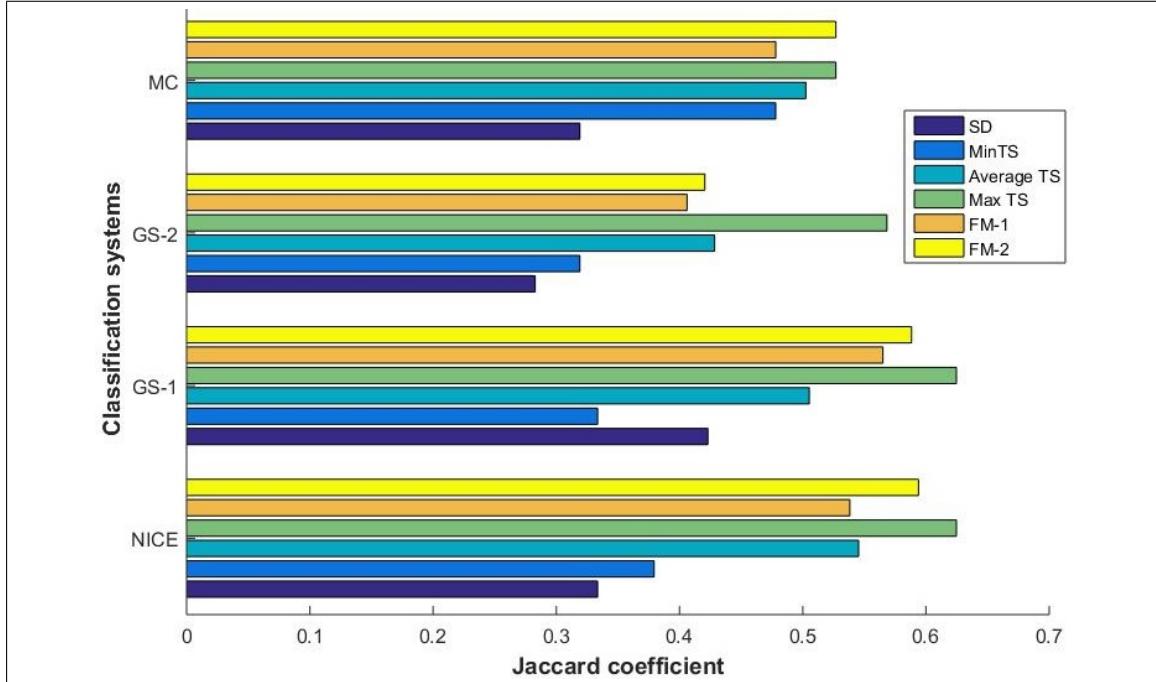


Figure 4.6: Summary of the performance of  $k$ -medoids clustering obtained on both elements' DMs and fusion matrices for prostate cancer dataset

The results show that by combining DMs (i.e. using FM-1 or FM-2), we obtained better performance than Min TS and than SD. This is interesting in the context that the ground-truth labels are contained within SD. For example, although Gleason scores are part of the SD element and they are key factors of the first all three classification systems, NICE, GS-1 and GS-2, FM-1 and FM-2 produced better clustering results compared to the SD element. Also interestingly, for all classification systems, Average TS seems to be better than SD element. Hence the information contained in the blood test time series aids in defining our groupings more accurately than the information contained in SD. Also, by experimenting with FM-1 and FM-2, we obtain better or comparable performance to the Average of individual TSs. Thus, the SMF approach combines data from the different type of elements

to give an accurate configurations and since it may not be possible a priori to know which TS is the best performer it is reassuring that the combination approach is within some acceptable deviation from the Average of TSs and the best TSs.

3. The third set of experiments is concerned with applying  $k$ -medoids to cluster certain data only. As described in Section 4.1, we filtered all the uncertain data to perform the clustering and then assigned the uncertain data as a separate step. In order to screen the objects, we set three filters. In filter 1, we remove records and columns from FM-1 that correspond to 175 patients, as those patients have UFM-1 values  $\geq 0.4$  and DFM-1  $\geq 0.3$ . In filter 2, we set a threshold only for UFM-1 to remove objects that miss  $\geq 30\%$  of the calculations in FM-1. In filter 3 we used DFM-1 only by setting a threshold of 0.1. As a result, by using filter 2 we removed 405 patients while by using filter 3 we excluded 383 patients. Table 4.5 shows a summary of the experiments compared to the results of clustering using all objects (from experiment 2). We report Jaccard coefficient as a representative for the clustering validity for all the approaches and the calculations presented evaluate the results of applying filter 1. The results indicate that the  $k$ -medoids algorithm applied to the filtered data does not produce better clustering performance. The accuracy of our model has decreased by experimenting with all three filters compared to the results previously reported for using the full FM-1. In addition to what is presented in Table 4.5, a similar deterioration occurs when we used the medoids of the generated clusters to assign the residual objects, 175, 405 and 383 patients, that were removed by the three filters respectively. Filtering is therefore not a suitable approach. Note that Rand and Dice's indices concurred with the same conclusion, moreover, the results of trying the other two filters came up with the same interpretation. We can concluded here that uncertain fused calculations that are related to incomplete objects and/or objects with high degree of disagreement between their elements in the similarity assessments seem to have information that aids the clustering process. Thus, we can say that they need to be included in the analysis, however, we may use the uncertainty information in a different manner. Our plan is to produce a modified

| classification system | FM-1   | Filtering:certain objects |
|-----------------------|--------|---------------------------|
| NICE                  | 0.5382 | 0.4132                    |
| GS-1                  | 0.5651 | 0.3440                    |
| GS-2                  | 0.4061 | 0.3292                    |
| MC                    | 0.4781 | 0.3333                    |

Table 4.5: The performance of clustering prostate cancer dataset using certainty filters

version of  $k$ -medoids algorithm in a way that will use the uncertainty information to inform the clustering process. That will be the subject of chapter 5.

### 4.3.4 Statistical testing

A number of clustering configurations have been evaluated with regards to four possible groupings, NICE, GS-1, GS-2 and MG. Again, we report here Jaccard index as a representative of the three external validation calculations, for the same reasons mentioned earlier. We applied a  $z$ -test to establish if the differences in performance between the various versions were statistically significant. We compare the difference in performance of data fusion and the SD element alone and also to the average of the TSs performances. Table 4.6 reports for each experimented classification systems the Jaccard as well as statistics for the test of significance of difference between the performance of fusion matrices compared to the individual DMs.

All  $p$  values that compare the performance of SD and FMs are  $< 0.05$  which indicates significant difference between accuracy percentage. With regards to  $p$  values that compare the performance of the average TSs and FMs, the statistics report them as significant as well for all classification systems. In general, these statistics prove that the SMF approach produces better result than the SD element alone and also the TSs average. Furthermore, we have evaluated the difference between FM-1 and FM-2 for all the grouping systems and the statistical tests concluded that the difference in NICE and MC is significant where  $p$  values were  $7.31E - 4$  and  $2.899E - 3$  respectively. In the other two classification systems, GS-1 and GS-2, the difference between performances of FM-1 and FM-2 was

| groupings system | SD     | FM-1         | FM-2         | TSs    | FM-1         | FM-2         |
|------------------|--------|--------------|--------------|--------|--------------|--------------|
| <b>NICE</b>      |        |              |              |        |              |              |
| Jaccard          | 0.3335 | 0.5381       | 0.5939       | 0.4712 | 0.5381       | 0.5939       |
| <i>z</i> score   | –      | $\pm 11.663$ | $\pm 14.76$  | –      | $\pm 3.782$  | $\pm 6.951$  |
| <i>p</i> value   | –      | $< 1.0E - 5$ | $< 1.0E - 5$ | –      | $7.8E - 5$   | $< 1.0E - 5$ |
| <b>GS-1</b>      |        |              |              |        |              |              |
| Jaccard          | 0.4230 | 0.5651       | 0.5882       | 0.4746 | 0.5651       | 0.5882       |
| <i>z</i> score   | –      | $\pm 8.034$  | $\pm 9.34$   | –      | $\pm 5.12$   | $\pm 6.435$  |
| <i>p</i> value   | –      | $< 1.0E - 5$ | $< 1.0E - 5$ | –      | $< 1.0E - 5$ | $< 1.0E - 5$ |
| <b>GS-2</b>      |        |              |              |        |              |              |
| Jaccard          | 0.2829 | 0.4061       | 0.4205       | 0.3229 | 0.4061       | 0.4205       |
| <i>z</i> score   | –      | $\pm 7.328$  | $\pm 8.145$  | –      | $\pm 4.886$  | $\pm 5.709$  |
| <i>p</i> value   | –      | $< 1.0E - 5$ | $< 1.0E - 5$ | –      | $< 1.0E - 5$ | $< 1.0E - 5$ |
| <b>MC</b>        |        |              |              |        |              |              |
| Jaccard          | 0.3191 | 0.4781       | 0.5269       | 0.3403 | 0.4781       | 0.5269       |
| <i>z</i> score   | –      | $\pm 9.18$   | $\pm 11.889$ | –      | $\pm 7.922$  | $\pm 10.643$ |
| <i>p</i> value   | –      | $< 1.0E - 5$ | $< 1.0E - 5$ | –      | $< 1.0E - 5$ | $< 1.0E - 5$ |

Table 4.6: Statistical analysis of SMF performance on the prostate cancer dataset. The table reports statistics for Jaccard coefficient of  $k$ -medoids clustering obtained with regards to four possible groupings of the prostate cancer dataset. The first group of columns provides the statistical test that calculates the significance of SMF performance compared to using SD and the second group of columns compares to the average performance of all TSs

not significant with 0.093084 and 0.204119 *p* values.

It is also interesting to see the TSs that are particularly good performers, i.e. those that have the highest values according to the previous set of experiments as they are blood tests that may either be indicative of risk or mortality. They are PSA test (P, 0.5119), HDL Cholesterol (B12, 0.5569), Aspartate transaminase (B4, 0.3767) and Haemoglobin (B20, 0.3899) for NICE, GS-1, GS-2 and MC, respectively, where the figures in the brackets are the Jaccard external evaluation coefficients of the blood tests.

We also computed the Dunn internal index for every single DM and FMs using the results of applying clustering in relation to the four groupings. Table 4.7 shows the coefficients that have evaluated SD element, FM-1, FM-2 and the best individual DM for each classification system. The best individual DM represented in the table are the ones that have been chosen according to the internal validation calculations.

In general, Dunn index considers B3, B21, B23 and B26 as the top TSs that have potential to produce good quality clustering results (i.e. well separated and compact clusters). In ascending order the top five DMs according to Dunn evaluations for NICE system are: SD, FM-2, FM-1 and B23 and B4; for GS-1: SD, FM-1, FM-2, B23 and B4; for GS-2: SD, FM-1, FM-2, B26 and B21; and for MC: SD, FM-1, FM-2, B26 and B21. For all the

| DM          | NICE        | GS-1        | GS-2        | MC          |
|-------------|-------------|-------------|-------------|-------------|
| <b>SD</b>   | 0.025244647 | 0.039554437 | 0.035023101 | 0.035023101 |
| <b>B23</b>  | 0.002995108 | 0.002440136 | –           | –           |
| <b>B4</b>   | 0.001565763 | 0.001668239 | –           | –           |
| <b>B21</b>  | 0.000350434 | –           | 0.000784296 | 0.005162134 |
| <b>B26</b>  | –           | –           | 0.002904887 | 0.010576913 |
| <b>FM-1</b> | 0.008457828 | 0.023813098 | 0.009207189 | 0.016180151 |
| <b>FM-2</b> | 0.008720526 | 0.020815176 | 0.008968838 | 0.014523745 |

Table 4.7: The Dunn index values from the results of clustering the prostate cancer dataset: the statistics are reported for SD and FMs as well as the top TS that are chosen by internal validation calculations. We use – to represent the case when the DM is not associated with the top informative TS for a particular grouping.

experiments that we have conducted, the Dunn index ranks SD as the best and FM-1 as the second best DM, except for NICE where FM-1 ranks third after FM-2. FM-2 holds the third top position in terms of quality of the clustering that might be obtained using this matrix. Accordingly, in general, Dunn evaluates FM-1 as more informative than FM-2. Moreover, it does not rate DMs that were considered as the best performers according to external validation indices as one of the top informative DM, except in the case of NICE (they agree on B21) and GS-2 (they agree on B26). Hence interestingly, external and internal validation metrics do not agree on the same conclusion, but their judgment of FM-1 and FM-2 for all groupings as top performers were the same. Thus, the fused matrices seem to have reasonable performance according to both internal and external validation. In other words, DMs that have been evaluated as good performers using external and internal methods are not the same, except for the two fusion matrices, FM-1 and FM-2, for all the four groupings. This may be a positive result for the SMF approach when we do not have external information. In real clustering problems, we are not expected to have the ground truth labels, thus, the only way to examine different elements is by using internal quality measures. From our results and supposing that we agree with external evaluation as guidance on the true clusters, internal validation may not produce a good ranking of elements in terms of their ability to produce good clusters. Hence in many clustering exercises it would not be possible to know a prior which elements to use to produce good clustering. However, the FMs may provide a combined evidence approach that aids the clustering towards producing good results. Thus, when we cannot establish

which elements to use or give more weight to, the fusion matrix can be used to produce clustering results that are not very far from what we could obtain using the best elements.

## 4.4 The results of the plants dataset

We have created a dataset about plants. Objects in this dataset are also described by a mixture of data types, but different from those in the prostate cancer patients and hence providing us with new challenges. It will enable us to further validate the feasibility of our approach on different combinations of data types. In addition, all objects are classified into pre-defined classes which is beneficial at the stage of assessing and comparing the performance. A description of the data is given in Section 3.7.2 while the experiment is giving in the following next sections.

### 4.4.1 DMs and FM calculation results

A plant object is defined by three data types: structured data, SD, free text element, TE, and an image, IE. We selected three distance measures, as described in Section 4.2, and then generated pairwise DMs for each of the three elements. We calculated  $DM^{SD}$ ,  $DM^{TE}$ ,  $DM^{TENoRare}$ ,  $DM^{IE}$  and  $DM^{IEReduced}$ . These matrices are for the following respectively: SD, TE, TE element represented without rare terms, IE and IE element represented with reduced colours. Next, we fused DMs and constructed the initial FMs along with the associated uncertainty matrices DFM-1 where there was no need to calculate UFM-1 as in this dataset we do not compare incomplete objects. We computed four FMs; by fusing all possible combination of DMs and including all the three data types. FM-1 fuses  $DM^{SD}$ ,  $DM^{TE}$  and  $DM^{IE}$ ; FM-NoRare-1 fuses  $DM^{SD}$ ,  $DM^{TENoRare}$  and  $DM^{IE}$ ; FM-NoRare-Reduced-1 fuses  $DM^{SD}$ ,  $DM^{TENoRare}$  and  $DM^{IEReduced}$ ; and FM-Reduced-1 fuses  $DM^{SD}$ ,  $DM^{TE}$  and  $DM^{IEReduced}$ . In all the results, we may refer to the elements using their names. More information about them is available in the data dictionary in Appendix A.

Since the size of each generated DM is large ( $100 \times 100$ ) to be compared, we use the heatmap graphical representation to provide an immediate visual summary of distance calculations. Figure 4.7 shows visualization of our distance matrices using colours to represent distance values in a two-dimensional graph for each individual element. As before, we use dark blue to reflect strong similarity and then the colour scales through green until it reaches bright yellow to reflect strong dissimilarity. For the four FMs, in Figure 4.7 we represent the entire fused calculations for all the objects while in Figure 4.8 we use the gray colour to represent all plants that report uncertain distance values in FMs due to exceeding the determined threshold for DFM-1. The threshold was set up as  $DFM-1=0.4$  for the the four FMs, thus we omitted fused distances for plants (represented in grey colour) that have  $DFM-1 \geq 0.4$ . We present FMs before and after filtering objects because we will use both matrices in the application of  $k$ -medoids algorithm in the next section (Section 4.4.2). Note that, in both figures, plants are reported in ascending order using their identifiers from left to right on the x-axis and from up to down on the y-axis. We have the 42 fruits first then the 22 roses and finally the 36 types of grass at the end.

The visualisations allow us to draw some initial conclusions about DMs that seem to be related to each other. However, to explore this in more detail, we used the Mantel test as a DM comparison technique. Calculated correlation coefficients that reflects the degree of the relationships between the DMs and FM-1 are summarised in Table 4.8. By looking at the calculations in the table, we can conclude that SD, TE and TE-NoRare are all well-correlated elements as the coefficients between every pair is  $\geq 0.4183$ . Moreover, the degree of associations between TE-TE-NoRare and between IE-IE-Reduced is very strong with values of 0.9950 and 0.9727 respectively. However, this is to be expected as those represent the same data element. This is confirmed also by the heatmap visualisations in Figure 4.7. In addition, all the statistics indicate positive relationship between elements as there are no negative coefficients.

It is also worth observing that the four FMs maintains a higher degree of correlation with some elements than with others. The SD and both DMs that report the similarity calculations for TE element appear well represented in terms of the correlation measure.

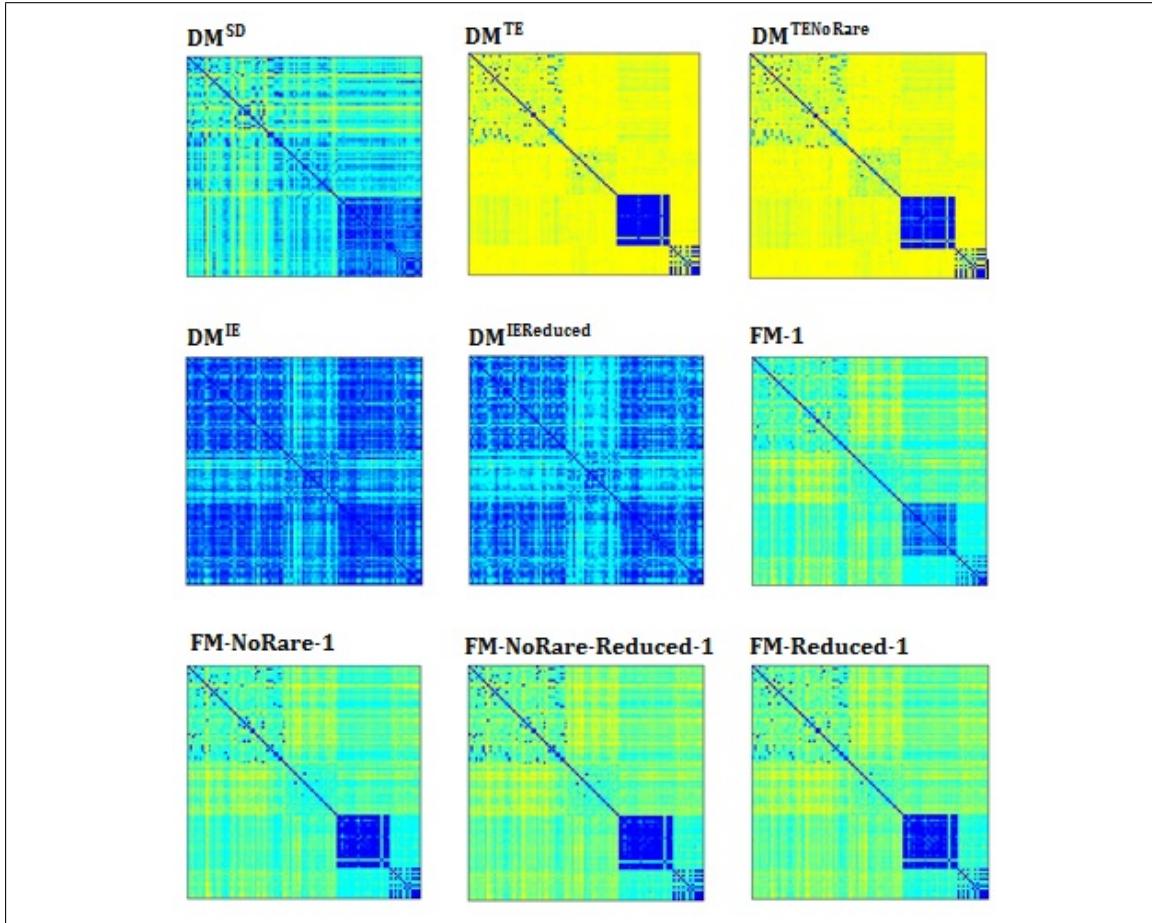


Figure 4.7: Heatmap representation for DMs and FMs-1 calculated for the plants dataset: DMs for SD, TE, TE-NoRare, IE and IE-Reduced. We use blue colour to indicate similarity and yellow to indicate dissimilarity. The fusion matrices, FMs-1, represent the fused distances without taking into account uncertainty.

However, the text element seems to be the most correlated to the FMs. Hence the well correlated elements are able to exert a stronger influence in the FM. In addition, by looking at all DMs and FMs in figures 4.7 and 4.8, the representation reflect some expected similarities among plants of the same type. For example, given that the objects are ordered by class, the dark blue square at the right bottom corner of the DMs and FMs correlate to the expected strong similarity between grass objects. Also, strong similarity was reported among fruits objects, in contrast to the calculated distances between roses.

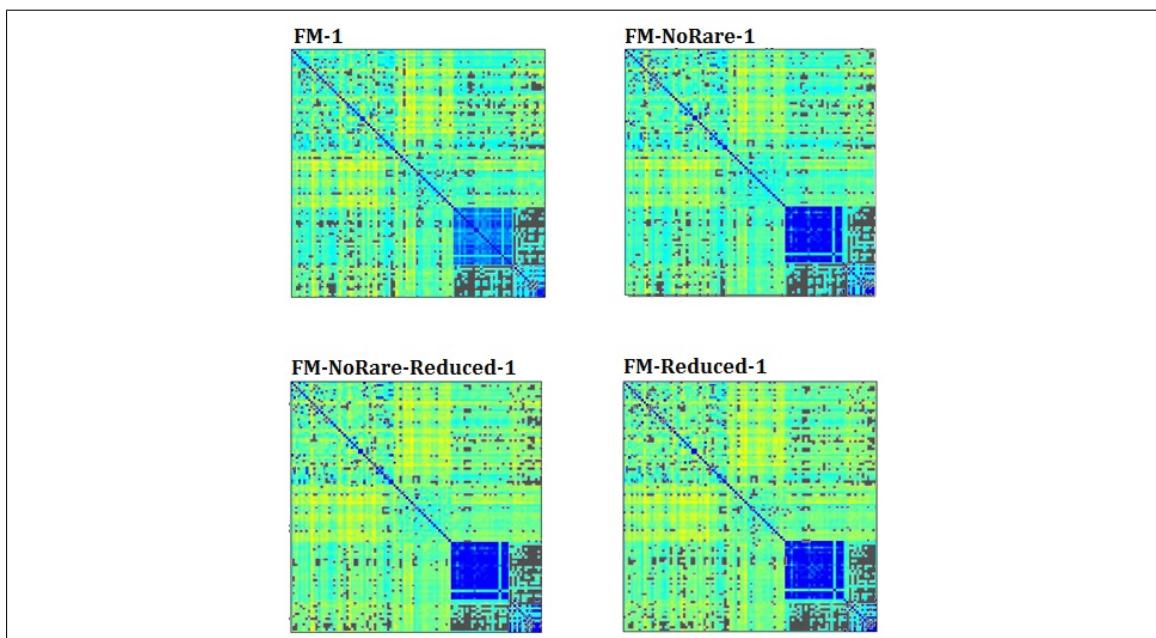


Figure 4.8: Heatmap representation for the filtered fused matrices, FM-1, FM-NoRare-1, FM-NoRare-Reduced-1 and FM-Reduced-1, calculated for the plants dataset

| SD                         | TE     | TE-NoRare | IE     | IE-Reduced | FM-1   | FM-NoRare-1 | FM-NoRare-Reduced-1 | FM-Reduced-1 |
|----------------------------|--------|-----------|--------|------------|--------|-------------|---------------------|--------------|
| <b>SD</b>                  | 0.4183 | 0.4198    | 0.1953 | 0.1837     | 0.7697 | 0.7641      | 0.7666              | 0.7725       |
| <b>TE</b>                  | 0.9950 | 0.2219    | 0.2194 | 0.2194     | 0.7906 | 0.8007      | 0.8066              | 0.7967       |
| <b>TE-NoRare</b>           |        | 0.2220    | 0.2190 | 0.2190     | 0.7902 | 0.8053      | 0.8110              | 0.7960       |
| <b>IE</b>                  |        |           | 0.9727 | 0.9727     | 0.5965 | 0.5867      | 0.5654              | 0.5748       |
| <b>IE-Reduced</b>          |        |           |        | 0.5791     | 0.5694 | 0.5683      | 0.5782              |              |
| <b>FM-1</b>                |        |           |        |            | 0.9985 | 0.9943      | 0.9959              |              |
| <b>FM-NoRare-1</b>         |        |           |        |            |        | 0.9961      | 0.9946              |              |
| <b>FM-NoRare-Reduced-1</b> |        |           |        |            |        |             | 0.9984              |              |
| <b>FM-Reduced-1</b>        |        |           |        |            |        |             |                     |              |

Table 4.8: Correlation coefficients between DMs and FMs-1 calculated for plants dataset

#### 4.4.2 Clustering results

Here we present the results of applying the standard  $k$ -medoids algorithm to individual DMs and also to FMs; including FM-1 and FM-2. Our main aim is to examine if the FMs lead the  $k$ -medoids algorithm to produce better clustering results than using individual DMs. To do this we conducted three sets of experiments that we have designed in Section 4.1. The plant type is the grouping system that was used to evaluate SMF clustering configurations in all the experiments. This categorisation has 22 % of the objects classed as ‘roses’. In addition, the ‘fruits’ class contains approximately half of our objects (42%), while the remaining 36 plants belonging to the class ‘grass’.

The number of clusters,  $k$ , was determined depending on this grouping system, thus, for this experiments we set  $k=3$ . The results are presented below and divided into three sets according to the experiment set up section:

1. First we present the results of applying  $k$ -medoids to cluster our heterogeneous objects by means of using the individual DMs. Figure 4.9 shows the performance of clustering evaluated according to the truth-labels of the plants. As before, three external validation indices: Jaccard, Rand and Dice’s coefficients are presented in the figure. They were calculated to evaluate the results produced by  $k$ -medoids using: SD, TE, TE-NoRare, IE and IE-Reduced DMs.

It can be observed from the figure that the TE-NoRare element alone performs better than the other four elements with regards to all coefficients. In general, text element and structured data seem to be perform better than the image element. Thus, the IE element is the least informative for the grouping. However, Jaccard and Dice’s indices put IE-Reduced slightly ahead of the other version of the image element, IE.

2. The second set of experiments, examines the initial fusion matrices, FMs-1, and the special weighted fusion matrices, FMs-2. Here we produced the following versions of the FM-1: FM-1, FM-NoRare-1, FM-NoRare-Reduced-1 and FM-Reduced-1. All those combine DMs with equal weight. We also produced FM-2 using differ-

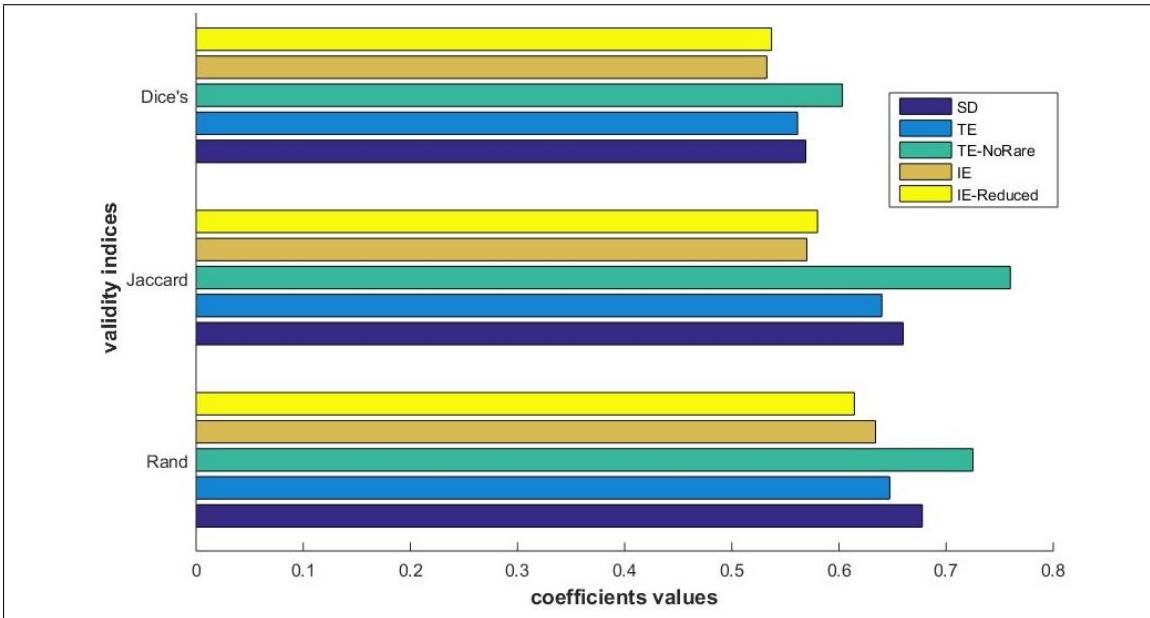


Figure 4.9: Summary of the performance of  $k$ -medoids clustering obtained using the individual DMs for the plants dataset

ent weights: FM-2, FM-NoRare-2, FM-NoRare-Reduced-2 and FM-Reduced-2. In order to determine these weights, we used clustering performance of each individual DM. Note that in the absence of external assessment, we may not be able to establish the worth of each element using the approach that we propose here.

We calculate FMs-2 by giving the text element, which is the best performer, a double weight compared to the remaining two DMs. The influence of playing with these weights on the clustering performance is demonstrated in Figure 4.10 which compares FMs-2 to FMs-1. The figure demonstrates the results for each of the four different ways of grouping individual DMs: FM, FM-NoRare, FM-NoRare-Reduced and FM-Reduced. Again, the performance here is evaluated using the three external indices.

As it was expected, Figure 4.10, shows that FM-2 produces better clustering results than FM-1. Nevertheless, examining different weighting has not improved the performance of FM-NoRare-Reduced. This fuses: SD, TE-NoRare and IE-Reduced. In addition, we can conclude from Figure 4.10 that the best fusion of the three elements that compose our objects is by combining: SD, TE-NoRare and IE Reduced.

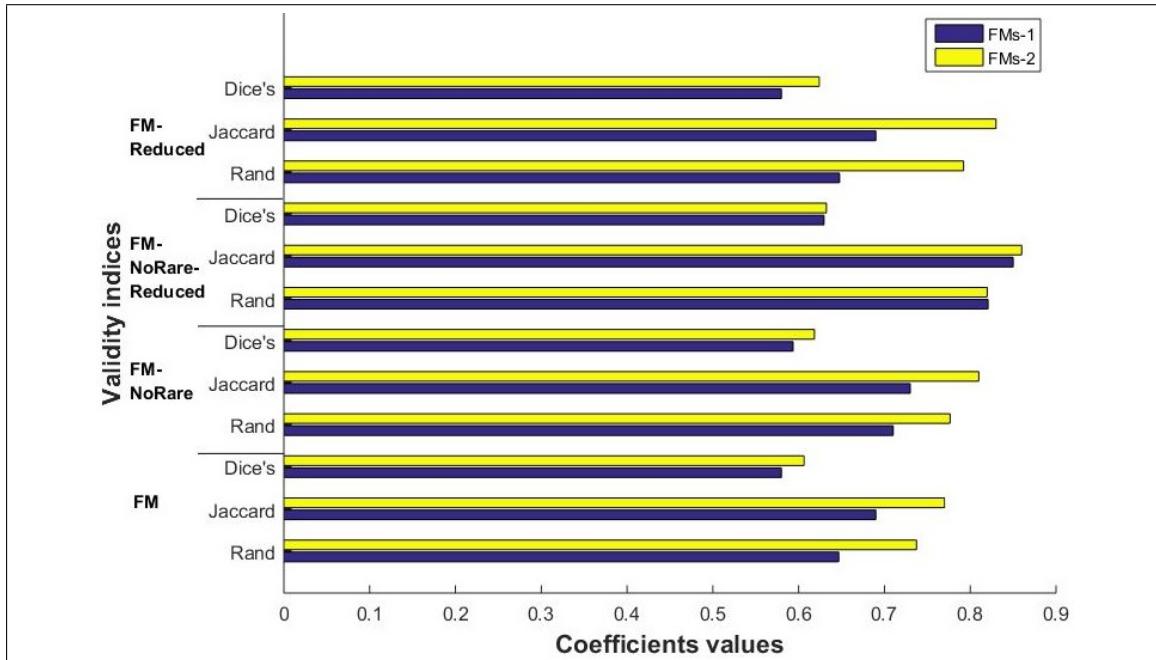


Figure 4.10: Summary of the performance of  $k$ -medoids clustering obtained by fusion matrices for plants dataset

We conducted a comparison between the clustering performance when using individual DMs, FMs-1 and FMs-2 and the results are summarised in Figure 4.11. The figure shows the evaluation of clustering using SD, TE, TE-NoRare, IE and IE-Reduced. It compares these matrices to the best FMs-1 performer (Max FM-1) and the worst (Min FM-1) and the same for FMs-2 matrices (Max FM-2 and Min FM-2). The best fusion matrix was FM-NoRare-Reduced and the worst was FM. The performance here is reported, for the purpose of presentation simplification, by Jaccard coefficients only as a representative of the three calculated external indices. In general, the results show that FM-1 and FM-2 produced better performance than individual DMs. Min FM-1 and Min FM-2 seem better than the individual DMs, except for TE-NoRare when compared to Min FM-1. Thus, we conclude that our results are reassuring as the combination approach is within some acceptable deviation from the best individual matrices even when it is not possible to determine the best performer.

3. To conduct the third set of experiment, as described in Section 4.1, we filter all the

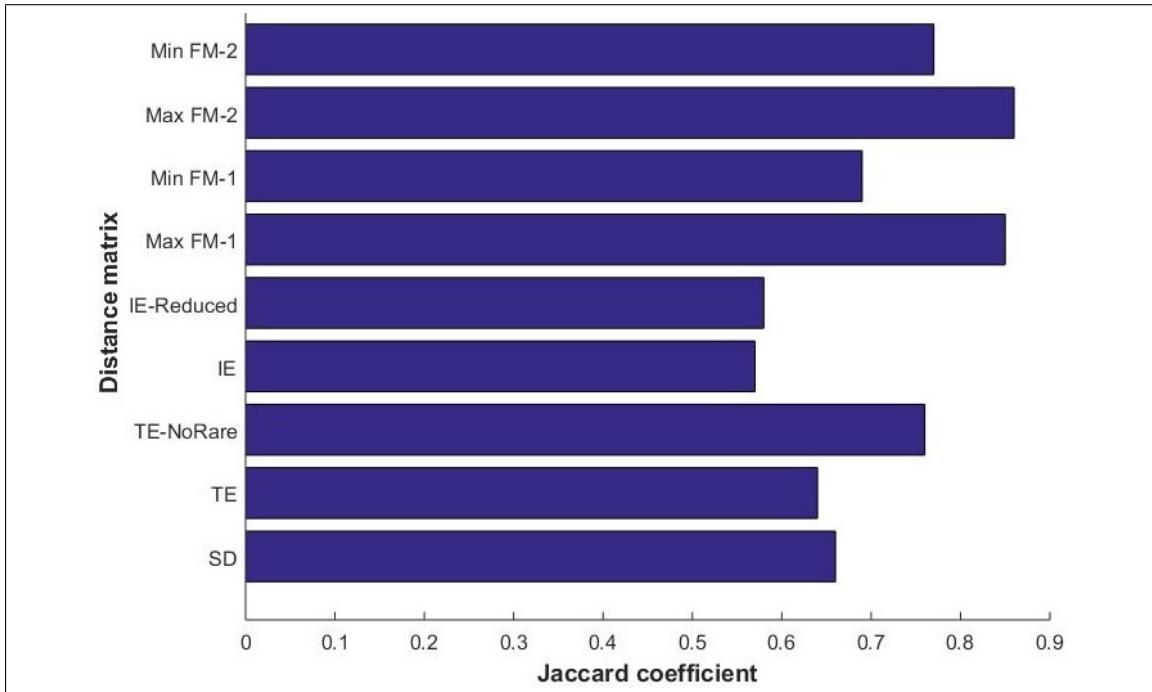


Figure 4.11: Summary of the performance of  $k$ -medoids clustering obtained on both elements' DMs and best and worst fusion matrices for plants dataset

uncertain data to perform the clustering and then assign the uncertain data as a separate experiment. Accordingly, we removed 14, 24, 25 and 20 plants, as those plants have DFM-1 values  $\geq 0.3$  in all FMs-1. Table 4.9 shows a summary of the experiments reported by Jaccard coefficient compared to the results of clustering using all objects. The results indicate that when we applied  $k$ -medoids algorithm to the filtered data, the performance of clustering configuration has decreased compared to the results reported for the full FMs-1.

| Fusion matrix       | FMs-1 | Filtering:certain objects |
|---------------------|-------|---------------------------|
| FM-1                | 0.69  | 0.4651                    |
| FM-NoRare-1         | 0.73  | 0.4468                    |
| FM-NoRare-Reduced-1 | 0.85  | 0.5761                    |
| FM-Reduced-1        | 0.69  | 0.4375                    |

Table 4.9: The performance of clustering plants dataset using certainty filters

In addition to what is presented in Table 4.9, a worse deterioration was reported when we used the generated medoids using certain data only to assign the residual objects that

| fusion matrix            | SD   | FMs-1       | FMs-2       | text  | FMs-1       | FMs-2       | image | FMs-1       | FMs-2       |
|--------------------------|------|-------------|-------------|-------|-------------|-------------|-------|-------------|-------------|
| <b>FM</b>                |      |             |             |       |             |             |       |             |             |
| Jaccard                  | 0.66 | 0.69        | 0.77        | 0.64  | 0.69        | 0.77        | 0.57  | 0.69        | 0.77        |
| $z$ score                | –    | $\pm 0.453$ | $\pm 1.723$ | –     | $\pm 0.749$ | $\pm 2.016$ | –     | $\pm 1.757$ | $\pm 3.008$ |
| $p$ value                | –    | 0.325274    | $4.2444E-2$ | –     | 0.226929    | $2.19E-2$   | –     | $3.9459E-2$ | $1.315E-3$  |
| <b>FM-NoRare</b>         |      |             |             |       |             |             |       |             |             |
| Jaccard                  | 0.66 | 0.73        | 0.81        | 0.76  | 0.73        | 0.81        | 0.57  | 0.73        | 0.81        |
| $z$ score                | –    | $\pm 1.075$ | $\pm 2.403$ | –     | $\pm 0.487$ | $\pm 0.861$ | –     | $\pm 2.372$ | $\pm 3.669$ |
| $p$ value                | –    | 0.141187    | $8.131E-3$  | –     | 0.313129    | 0.194619    | –     | $8.846E-3$  | $1.22E-4$   |
| <b>FM-NoRare-Reduced</b> |      |             |             |       |             |             |       |             |             |
| Jaccard                  | 0.66 | 0.85        | 0.86        | 0.76  | 0.85        | 0.86        | 0.58  | 0.85        | 0.86        |
| $z$ score                | –    | $\pm 3.124$ | $\pm 3.311$ | –     | $\pm 1.606$ | $\pm 1.802$ | –     | $\pm 4.229$ | $\pm 4.41$  |
| $p$ value                | –    | $8.92E-4$   | $4.65E-4$   | –     | 0.054137    | $3.5773E-2$ | –     | $1.2E-5$    | $< 1.0E-5$  |
| <b>FM-Reduced</b>        |      |             |             |       |             |             |       |             |             |
| Jaccard                  | 0.66 | 0.69        | 0.83        | 64.00 | 0.69        | 0.83        | 0.58  | 0.69        | 0.83        |
| $z$ score                | –    | $\pm 0.453$ | $\pm 2.758$ | –     | $\pm 0.749$ | $\pm 3.044$ | –     | $\pm 1.616$ | $\pm 3.876$ |
| $p$ value                | –    | 0.325274    | $2.908E-3$  | –     | 0.226929    | $1.167E-3$  | –     | 0.053047    | $5.3E-5$    |

Table 4.10: Statistical analysis of SMF performance on the plants dataset. The table reports statistics for Jaccard coefficient of  $k$ -medoids clustering obtained with regards to the different fusion combinations. The first set of columns provides the statistical test that calculates the significance of SMF performance compared to using structured data, the second set of columns compares to the performance of the text element while the last set of columns is for the image element. – means that the statistic can not be calculated

were removed. Thus, we can concluded here that uncertain fused calculations seem to have information that aids the clustering process. Thus, we need to include them but in a different manner. This confirms our previous conclusion in Section 4.3.3. Note that Rand and Dice’s indices concurred with the same conclusion.

#### 4.4.3 Statistical testing

The performance of clustering were evaluated here to examine the significance of the differences between Jaccard calculations that were computed for clustering results obtained using FMs and individual DMs. We applied a  $z$ -test to establish if the differences in performance were statistically significant. Table 4.10 shows the Jaccard values and statistics for the test of significance.

The  $p$  values confirm that the difference between the performance of FMs-2 and each of the individual element: SD, text and image is significant, except for FM-NoRare-2 when compared to the text element. With regards to  $p$  values that compare the performance of FMs-1 to text (TE or TE-NoRare) and SD, the statistics report them as not significant apart from the one that compares FM-NoRare-Reduced-1 and SD. The statisti-

|                   |             |                            |             |                            |             |
|-------------------|-------------|----------------------------|-------------|----------------------------|-------------|
| <b>SD</b>         | 0.181775611 | <b>FM-1</b>                | 0.275899167 | <b>FM-2</b>                | 0.092507311 |
| <b>TE</b>         | 0.327597615 | <b>FM-NoRare-1</b>         | 0.226079578 | <b>FM-NoRare-2</b>         | 0.162051703 |
| <b>TE-NoRare</b>  | 0.114691349 | <b>FM-NoRare-Reduced-1</b> | 0.168005112 | <b>FM-NoRare-Reduced-2</b> | 0.158479823 |
| <b>IE</b>         | 0.154771467 | <b>FM-Reduced-1</b>        | 0.184643632 | <b>FM-Reduced-2</b>        | 0.178111331 |
| <b>IE-Reduced</b> | 0.116527353 | —                          | —           | —                          | —           |

Table 4.11: The Dunn index values from the results of clustering the plants dataset: the statistics are reported for the different representation of the three elements, DMS. Also, the two versions of the FMs for the different combinations of data fusion.

cal test also considers that FMs-1 perform significantly better than the image element (IE or IE-Reduced), except for one fusion matrix, FM-Reduced-1. Although, some of these statistics are not significant, the SMF approach produces at least comparable results, and some times significantly better results, to the individual elements separately, especially in the case of using weights. We have also evaluated the difference between FMs-1 and FMs-2. For each fusion combination, statistical tests concluded that the difference is not significant; except for FM-Reduced combination with  $1.0225E - 1$   $p$  value. Thus, in the case of just combining everything together without weightings (i.e. using FMs-1), SMF can be used to produce clustering results that are not very far from what we could obtain using the best elements.

We also computed the Dunn internal index for every single DM and FMs. Table 4.11 shows the coefficients that have evaluated SD element, text, image, FMs-1 and FMs-2.

Dunn index considers text element as the top individual DMs that have potential to produce good quality clustering results. It evaluates FM-1 and FM-NoRare-1 as the next best distance matrices. In general, for all the experiments that we have conducted, the Dunn index ranks FMs-1 as better matrices in terms of quality of the clustering that might be obtained over FMs-2. Accordingly, Dunn evaluates FMs-1 as more informative than FMs-2. Therefore, external and internal validation metrics do not agree on the same conclusion. In addition, external validation evaluates TE-NoRare as the best performer whereas the internal index points at TE.

## 4.5 The results of the journals dataset

We have created a dataset of journals in the context of scientometrics analysis. Objects in this dataset are described by two different data types, similar to the mixture of data types in the prostate cancer patients but with some changes. In addition, all objects are classified into pre-defined classes which facilitates the process of assessing and comparing clustering performances. A description of the data is given in Section 3.7.3 while the experiment is giving in the following sections.

### 4.5.1 DMs and FM calculation results

A journal object is defined by two data types composed of three elements: structured data, SD, and two Time-series, TSs. We selected two distance measures, as described in Section 4.2, and then generated pairwise DMs for each of the three elements. We calculated  $DM^{SD}$ ,  $DM^{TS_{toJ}}$  and  $DM^{TS_{fromJ}}$ . These matrices are for the following respectively: SD, TS to the journal and TS from the journal. Next, we fused DMs and constructed the initial FM-1 along with the associated uncertainty matrices DFM-1 and UFM-1. In all the results, we refer to the elements using their names. More information about them is presented as a data dictionary in Appendix A.

Since the size of each generated DM is large ( $135 \times 135$ ), we use the heatmap graphical representation to provide an immediate visual summary of distance calculations. Figure 4.12 shows a visualization of our distance matrices using colours to represent distance values in a two-dimensional graph for each individual element. Colours are mapped as previously.

For FM-1, in Figure 4.12 we represent the entire fused calculations for all the objects while in Figure 4.13 we use the grey colour to represent all objects that report uncertain distance values in FM-1 due to exceeding one or both of the determined thresholds for UFM-1 and DFM-1. The thresholds were set up as  $UFM-1=0.33$  and  $DFM-1=0.1$ , thus we omitted fused distances for journals that have  $UFM-1$  values  $\geq 0.33$  or  $DFM-1 \geq 0.1$ . We present FM-1 before and after filtering objects because we will use both matrices in

the application of  $k$ -medoids algorithm in the next section (Section 4.5.2). Note that, in both figures, journals are reported in ascending order using their identifiers from left to right on the x-axis and from up to down on the y-axis.

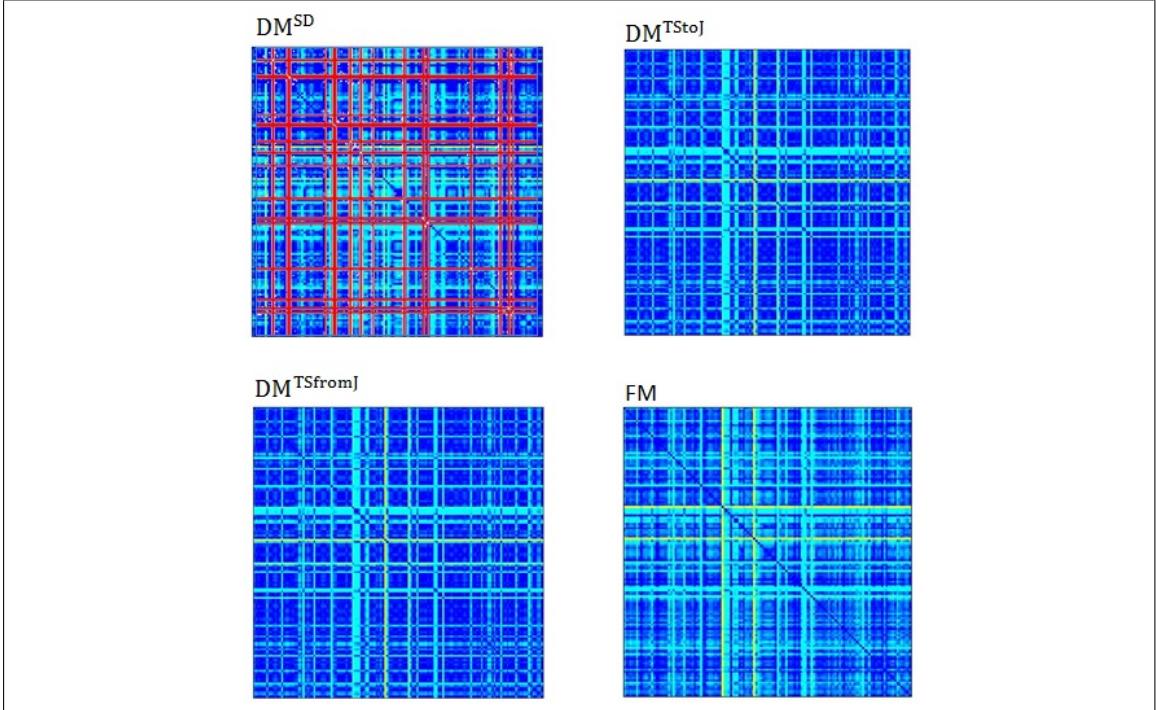


Figure 4.12: Heatmap representation for DMs and FM-1 calculated for the journals dataset: DMs for SD and two TSs with red colour to represent missing values; blue indicates similarity and yellow indicates dissimilarity. The fusion matrix, FM-1, represent the fused distances without taking into account uncertainty.

The visualisations allow us to draw some initial conclusions about DMs but we will also use the Mantel test as before. The calculated correlation coefficients reflects a strong degree of the relationships between TStoJ and TSfromJ with 0.9950. This is confirmed also by the heatmap visualisations in Figure 4.12. By looking at the other calculations, we can conclude a moderate association that correlates both SD-TStoJ as well as SD-TSfromJ with 0.4183 and 0.4198 respectively. The heatmap visualisations in Figure 4.12 confirms all these stated associations. In addition, all the statistics indicate positive relationship between elements as there is no negative coefficients.

It is also worth observing that the FM maintains a higher degree of correlation with some elements than with others. For example, SD appear to be the least representative

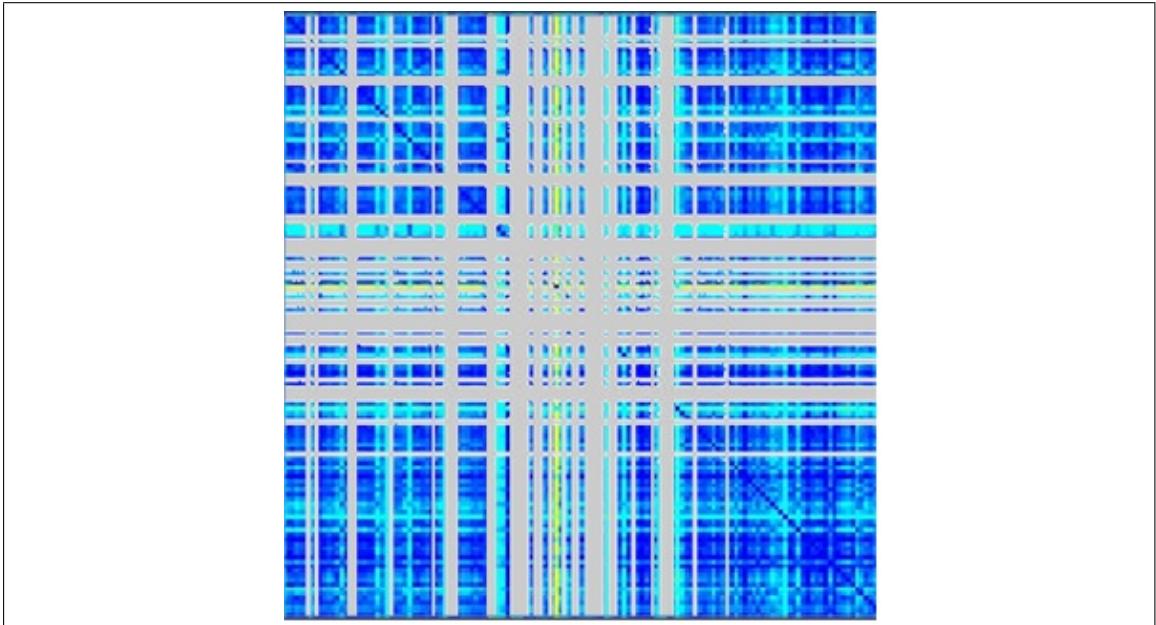


Figure 4.13: Heatmap representation for the filtered fused matrix (FM-1) calculated for the journals dataset

element in terms of the correlation measure while the others are more correlated elements which means they may have a stronger influence on the FM-1.

### 4.5.2 Clustering results

In order to examine our FMS approach, we applied  $k$ -medoids to DMs and FMs to evaluate and compare the generated clustering configurations. Three sets of experiments, designed in Section 4.1, were conducted and their results are presented below. The plant type is the grouping system that was used to validate the results. For evaluation, we used IF, ES and AI grouping systems that are defined in Section 3.7.3.

We started with journals labeling following all the different classification systems. Table 4.12 shows number and percentage of journals in each category following the three categorisation system.

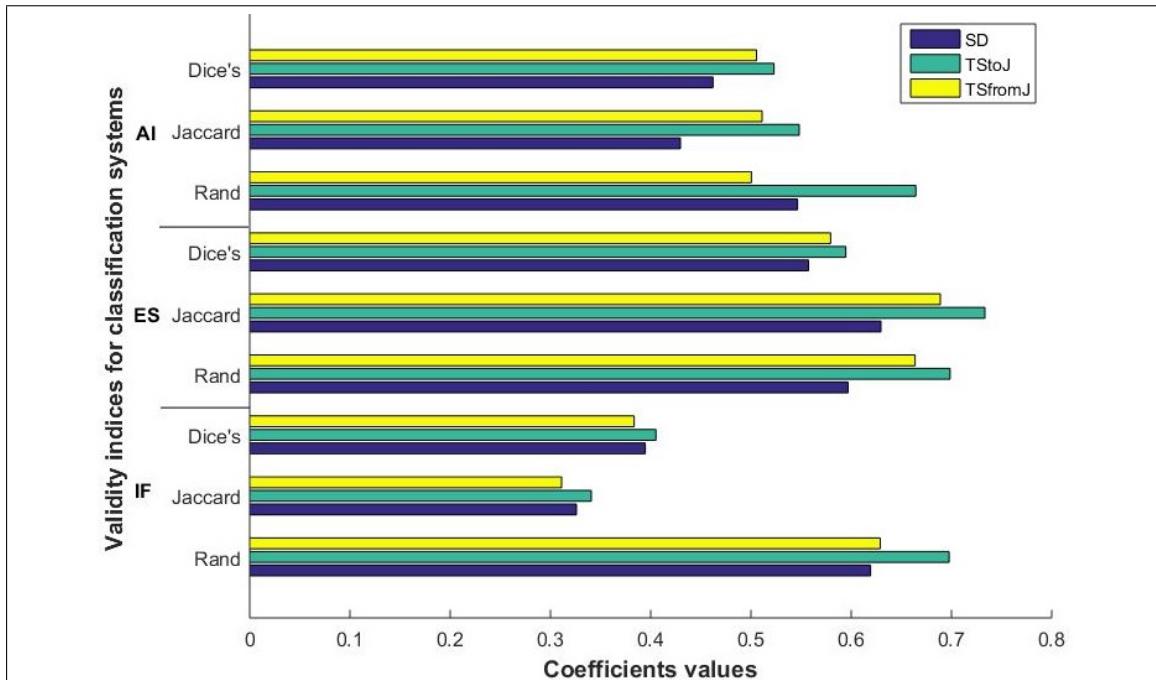
As can be observed, each of the three classification assigned a minority group of journals to the last category. In IF labeling system, the data is well distributed in the middle clusters while in ES and AI groupings much of the data belongs to the first category.

| IF cluster            | no. | %      | ES cluster             | no. | %      | AI cluster            | no. | %      |
|-----------------------|-----|--------|------------------------|-----|--------|-----------------------|-----|--------|
| IF $\leq 0.5$         | 28  | 20.74% | ES $\leq 0.0025$       | 84  | 62.22% | AI $\leq 0.4$         | 62  | 45.93% |
| 0.5 $<$ IF $\leq 1.0$ | 36  | 26.67% | 0.0025 $<$ ES $\leq 0$ | 30  | 22.22% | 0.4 $<$ AI $\leq 0.8$ | 41  | 30.37% |
| 1.0 $<$ IF $\leq 1.5$ | 29  | 21.48% | ES $> 0$               | 21  | 15.56% | AI $> 0.8$            | 32  | 23.70% |
| 1.5 $<$ IF $\leq 2.0$ | 22  | 16.30% | —                      | —   | —      | —                     | —   | —      |
| IF $> 2.0$            | 20  | 14.81% | —                      | —   | —      | —                     | —   | —      |

Table 4.12: Classification systems for journals dataset

For this experiment, we set  $k=5$  for IF grouping and  $k=3$  in ES and AI grouping. The presentation of clustering results are divided below into the three main sets of experiments as before:

1. Results of applying  $k$ -medoids to cluster distance calculations of all objects by means of using the DMs calculated for elements. Figure 4.14 shows the performance of clustering evaluated according to the three possible groupings, IF, ES and AI. The figure includes a summary of the statistics calculated using the three external validation indices: Jaccard, Rand and Dice's coefficients to evaluate the clustering configurations. In the figure we report SD, TStoJ and TSfromJ.

Figure 4.14: Summary of the performance of  $k$ -medoids clustering obtained using the individual DMs for the journals dataset

From figure 4.14, it can be observed that with regards to Jaccard and Dice's coefficients in ES and AI classification systems, the order of the best performances is TStoJ, TSfromJ and SD. Rand agrees with this ordering in the ES groupings. However, Rand has different judgment in the other classifications, IF and AI, where SD seemed to be more informative than TSfromJ. The other two indices, Jaccard and Dice's evaluate our DMs similarly for IF classification. Again, we confirm here that the Jaccard and Dice's methods behave similarly whereas the Rand index reports different results. Nevertheless, all the three validation methods rank TStoJ as the best performer for all three grouping systems.

2. For the second set of experiments, we produced a weighted fusion matrix, FM-2, for each grouping system by giving the best performer, TStoJ, a double weight compared to the remain two DMs. The influence of playing with these weights on the clustering performance is demonstrated in Figure 4.15 which compares FM-2 to FM-1. Again, the performance here is evaluated and presented according to the three external indices.

By looking at Figure 4.15, the biggest improvement in the performance seems to be in IF and AI classification while for ES the improvement is marginal. This applies for all three validation coefficients.

We compare the performance of individual DMs and FMs, Figure 4.16 summarises this comparison. The figure shows the evaluation of clustering using every element alone, FM-1 and FM-2. The performance here is compared by Jaccard coefficients only, for the purpose of presentation simplification.

The results show that by combining DMs, using FM-1 and FM-2, we obtained stable performance that is better than individual DMs in all groupings, except AI. For AI grouping, the best individual DM, TStoJ, seems to be more informative for the clustering algorithm than FM-1, however, FM-2 outperformed TStoJ. All these findings are very similar to the conclusions that are suggested by the other two external calculations.

3. In this set of experiments, we were interested in clustering certain data. We fil-

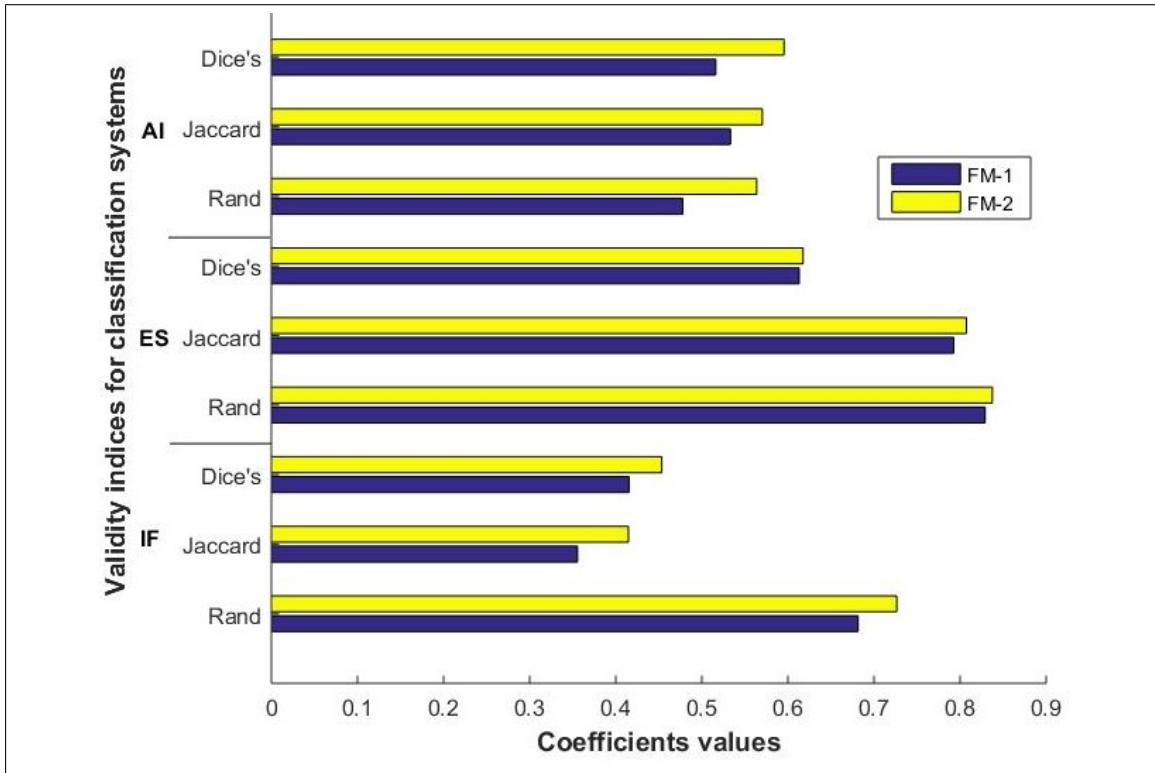


Figure 4.15: Summary of the performance of  $k$ -medoids clustering obtained on fusion matrices for journals dataset

tered out 41 journals that exceeded the thresholds  $UFM-1=0.33$  and  $DFM-1=0.1$ . The results indicate that the  $k$ -medoids algorithm applied to the filtered data does not produce better clustering performance. A deterioration occurs when we filtered uncertain journals. Moreover, worst results are produced when we assigned the residual journals to medoids that are generated when clustering certain objects only. Table 4.13 compares Jaccard coefficients that are calculated for the results of clustering certain objects compared to the results of clustering all objects. In general, we concluded here, as previously, that filtering is not a suitable approach. Thus, we need to use certainty calculations in a different manner.

| classification system | FM-1        | Filtering:certain objects |
|-----------------------|-------------|---------------------------|
| IF                    | 0.355555556 | 0.3085106383              |
| ES                    | 0.792592593 | 0.4468085106              |
| AI                    | 0.533333333 | 0.4361702128              |

Table 4.13: The performance of clustering journals dataset using certainty filters

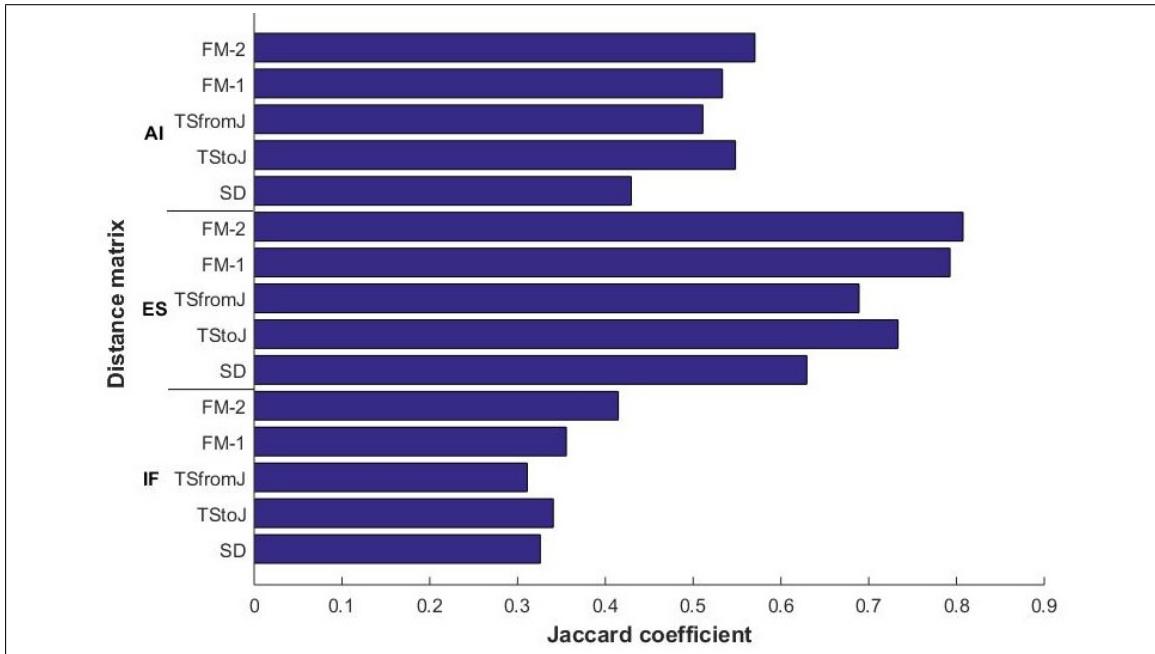


Figure 4.16: Summary of the performance of  $k$ -medoids clustering obtained on both elements' DMs and fusion matrices for journals dataset

### 4.5.3 Statistical testing

With regards to three possible groupings, IF, ES and AI, a number of clustering configurations have been evaluated. We applied a  $z$ -test to establish if the differences in performance as before are statistically significant. Table 4.14 reports for each experimented classification systems the Jaccard as well as statistics for the test of significance of difference between the performance of fusion matrices compared to the individual DMs.  $p$  values indicate that the differences between fusion matrices and TStoJ is not significant. This is not very surprising as TStoJ is the individual DM with best performance and there are not many additional pieces of information that can be combined in the FMs. When we compared the performances of FMs with SD, we found that the differences are significant in ES and AI.  $p$  values also suggest a significant difference between FMs and TSfromJ for both IF and ES. Thus, we may conclude that when the number of elements is low, the SMF approach produces comparable result to the best individual elements alone. Furthermore, we have evaluated the difference between FM-1 and FM-2 for all the grouping systems and the statistical tests concluded that the difference is not significant.

| groupings system | SD          | FM-1        | FM-2        | TStoJ       | FM-1        | FM-2        | TSfromJ     | FM-1        | FM-2        |
|------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| <b>IF</b>        |             |             |             |             |             |             |             |             |             |
| Jaccard          | 0.325925926 | 0.355555556 | 0.414814815 | 0.340740741 | 0.355555556 | 0.414814815 | 0.311111111 | 0.355555556 | 0.414814815 |
| <i>z</i> score   | –           | $\pm 0.514$ | $\pm 1.512$ | –           | $\pm 0.256$ | $\pm 1.255$ | –           | $\pm 0.775$ | $\pm 1.772$ |
| <i>p</i> value   | –           | 0.303626    | 0.065267    | –           | 0.398975    | 0.104739    | –           | 0.21917     | $3.8197E-2$ |
| <b>ES</b>        |             |             |             |             |             |             |             |             |             |
| Jaccard          | 0.62962963  | 0.792592593 | 0.807407407 | 0.733333333 | 0.792592593 | 0.807407407 | 0.688888889 | 0.792592593 | 0.807407407 |
| <i>z</i> score   | –           | $\pm 2.954$ | $\pm 3.248$ | –           | $\pm 1.145$ | $\pm 1.447$ | –           | $\pm 1.944$ | $\pm 2.243$ |
| <i>p</i> value   | –           | $1.568E-3$  | $5.81E-4$   | –           | 0.126105    | 0.073948    | –           | $2.5948E-2$ | $2.448E-2$  |
| <b>AI</b>        |             |             |             |             |             |             |             |             |             |
| Jaccard          | 0.42962963  | 0.533333333 | 0.57037037  | 0.548148148 | 0.533333333 | 0.57037037  | 0.511111111 | 0.533333333 | 0.57037037  |
| <i>z</i> score   | –           | $\pm 1.705$ | $\pm 2.313$ | –           | $\pm 0.244$ | $\pm 0.368$ | –           | $\pm 0.366$ | $\pm 0.977$ |
| <i>p</i> value   | –           | $4.4097E-2$ | $1.0361E-2$ | –           | 0.403615    | 356437      | –           | 0.357183    | 0.16428     |

Table 4.14: Statistical analysis of SMF performance on the journals dataset. The table reports statistics for Jaccard coefficient of  $k$ -medoids clustering obtained with regards to three possible groupings of the journals dataset. The first set of columns provides the statistical test that calculates the significance of SMF performance compared to using SD, the second set of columns compares to the TStoJ and the third set of columns to TSfromJ

| DM             | IF          | ES          | AI          |
|----------------|-------------|-------------|-------------|
| <b>SD</b>      | 0.019812955 | 0.014436103 | 0.038107798 |
| <b>TStoJ</b>   | 0.006900568 | 0.053354258 | 0.009976748 |
| <b>TSfromJ</b> | 0.021527789 | 0.065227503 | 0.065227503 |
| <b>FM-1</b>    | 0.012628299 | 0.01562139  | 0.08445345  |
| <b>FM-2</b>    | 0.004698804 | 0.017382167 | 0.034164988 |

Table 4.15: The Dunn index values from the results of clustering the journals dataset: the statistics are reported for SD and FMs.

In addition to the external validation, we also computed the Dunn internal index for every single DM and FMs using the results of applying clustering in relation to the three groupings. Table 4.15 shows the coefficients that have evaluated individuals elements, FM-1 and FM-2 for each classification system.

With regards to individual DMs, the Dunn index considers TSfromJ as the top individual element that has the potential to produce good quality clustering results. That applies for each classification systems. However, this was not the same conclusion that we have reached by the external coefficients. Moreover, the Dunn index does not rank FMs (FM-1 and FM-2) as highly effective in terms of quality of the clustering that might be obtained except in the case of the AI classification.

## 4.6 The results of the papers dataset

We have constructed a dataset about research papers. Objects in this dataset are also described by a mixture of data types. In order to have further validation of our approaches, the arrangements for this data were different from the previous datasets, which allows us to examine different combinations of data types. In addition, like the other datasets, all objects here are classified into pre-defined classes which is beneficial at the stage of assessing and comparing the performance. A description of the data is given in Section 3.7.4 while the experimental result are given in the following sections.

### 4.6.1 DMs and FM calculation results

A paper object is defined by three data types: structured data, SD, time-series, TS and free text element, TE. We selected three distance measures, as described in Section 4.2, and then generated pairwise DMs for each of the three elements. We calculated  $DM^{SD}$ ,  $DM^{TS}$ ,  $DM^{TE}$  and  $DM^{TENoRare}$ . These matrices are for the following respectively: SD, TS, TE and TE element represented discounting rare terms. Next, We fused DMs and constructed the initial FMs along with the associated uncertainty matrices UFM-1 and DFM-1. We computed two FMs by fusing all possible combination of DMs and including all the three data types. FM-1 fuses  $DM^{SD}$ ,  $DM^{TS}$  and  $DM^{TE}$ ; FM-NoRare-1 fuses  $DM^{SD}$ ,  $DM^{TS}$  and  $DM^{TENoRare}$ . In all the results, we refer to the elements using their names. More information about them can be found in the data dictionary in Appendix A.

We use the heatmap graphical representation to provide an immediate visual summary of distance calculations as the size of each generated DM is large ( $300 \times 300$ ). Figure 4.17 shows visualization of our distance matrices using colours to represent distance values in a two-dimensional graph for each individual element. As before, we use dark blue to reflect strong similarity and then the colour scales through green until it reaches bright yellow to reflect strong dissimilarity. For the two FMs, in Figure 4.17 we represent the entire fused calculations for all the objects while in Figure 4.18 we use the gray colour to represent all plants that report uncertain distance values in FMs due to exceeding one or

both of the determined thresholds for UFM-1 and DFM-1. The thresholds were set up as  $UFM-1=0.33$  and  $DFM-1=0.4$ , thus we omitted fused distances for papers (represented in grey colour) that have  $UFM-1$  values  $\geq 0.33$  or  $DFM-1 \geq 0.4$ . We present FMs before and after filtering objects because we will use both matrices in the application of  $k$ -medoids algorithm in the next section (Section 4.6.2). Note that, in both figures, papers are reported in ascending order using their identifiers from left to right on the x-axis and from up to down on the y-axis. However, we have the 100 computer science papers first then the 100 business economics articles and finally the last 100 papers represent research in health care services.

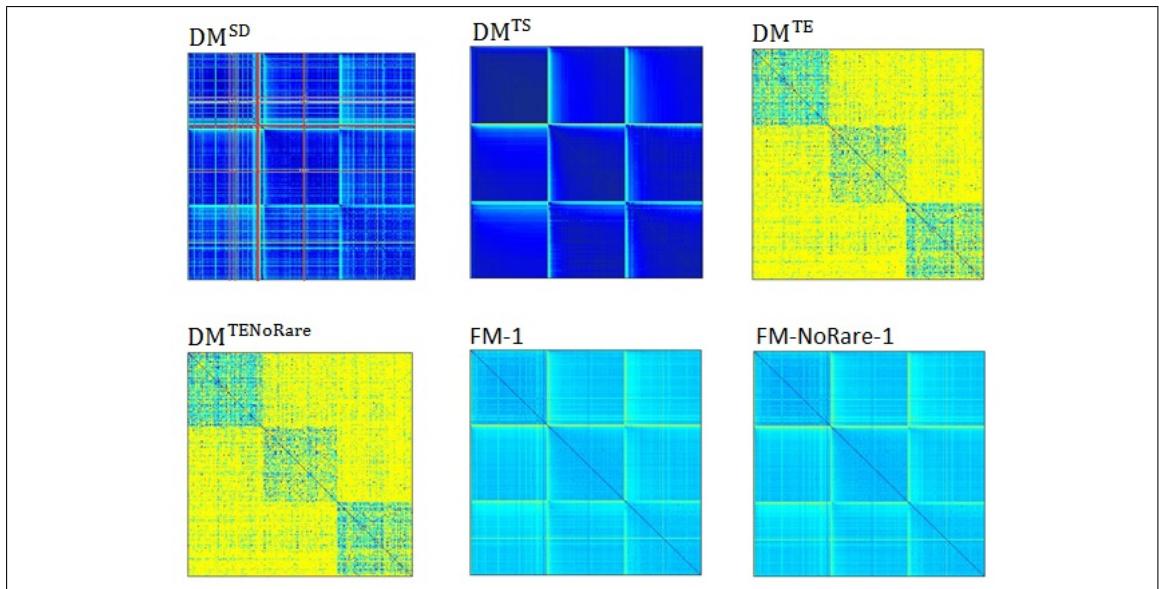


Figure 4.17: Heatmap representation for DMs and FMs-1 calculated for the plants dataset: DMs for SD, TS, TE and TE-NoRare with red colour to represent missing values. We use blue colour to indicate similarity and yellow to indicate dissimilarity. The fusion matrices, FMs-1, represent the fused distances without taking into account uncertainty.

The visualisations together with Mantel test results allow us to draw some initial conclusions about DMs that seem to be related to each other. Calculated correlation coefficients that reflects the degree of the relationships between the DMs and FMs-1 are summarised in Table 4.16. By looking at the calculations in the table, we can conclude that the degree of associations between TS-TE is very strong with values of 0.9989. This is confirmed also by the heatmap visualisations in Figure 4.17 where we have the dark blue in both DMs in the diagonal positions. Another moderate association seem to be be-

tween SD and TE-NoRare with a degree of 0.4939. In addition, all the statistics indicate positive relationship between elements as there is no negative coefficients.

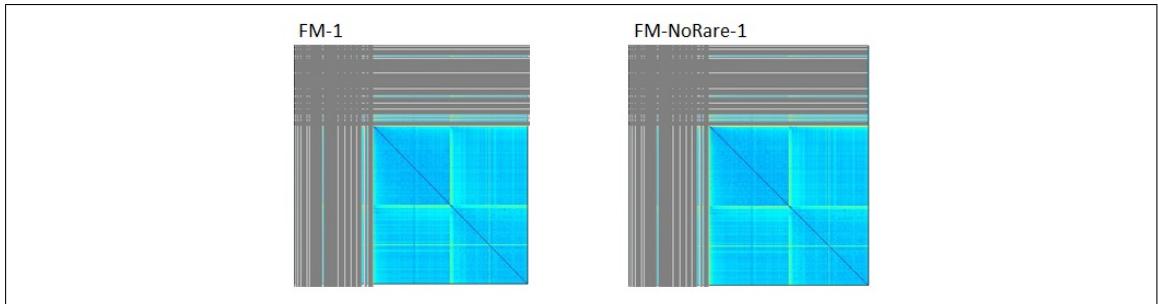


Figure 4.18: Heatmap representation for the filtered fused matrices, FM-1 and FM-NoRare-1 calculated for the papers dataset with grey representing uncertainty

Again we observe that the two FMs maintain a higher degree of correlation with some elements than with others. The SD and TE-NoRare appear well represented in terms of the correlation measure. Thus, the text element that is represented without taking into account the rare words seems to be the most correlated to the FMs. Hence the well correlated elements are able to exert a stronger influence in the FM. Consequently, they might produce a better clustering configuration.

|                    | SD | TS     | TE     | TE-NoRare | FM-1   | FM-NoRare-1 |
|--------------------|----|--------|--------|-----------|--------|-------------|
| <b>SD</b>          |    | 0.0519 | 0.0537 | 0.4939    | 0.6787 | 0.6780      |
| <b>TS</b>          |    |        | 0.9989 | 0.0508    | 0.1897 | 0.2010      |
| <b>TE</b>          |    |        |        | 0.0508    | 0.1895 | 0.2014      |
| <b>TE-NoRare</b>   |    |        |        |           | 0.8663 | 0.8649      |
| <b>FM-1</b>        |    |        |        |           |        | 0.9999      |
| <b>FM-NoRare-1</b> |    |        |        |           |        |             |

Table 4.16: Correlation coefficients between DMs and FMs-1 calculated for papers dataset

## 4.6.2 Clustering results

We present in this section the results of applying the  $k$ -medoids algorithm to DMs and FMs. We report the clustering experimental work in the three sets of experiments that we have designed in Section 4.1. The paper research field is the grouping system that was used to evaluate SMF results in all the experiments. This categorisation has assigned 100 papers to each of the three categories we have: computing sciences, business and

healthcare services. According to the grouping system, we set  $k=3$  for the next step of applying  $k$ -medoids. The results were:

1. The results of applying  $k$ -medoids to cluster distance calculations of all objects by means of using the DMs calculated for elements are shown in Figure 4.19. As before, we report three external validation indices: Jaccard, Rand and Dice's coefficients. The indices evaluate the clustering configurations produced by  $k$ -medoids using: SD, TS, TE and TE-NoRare DMs.

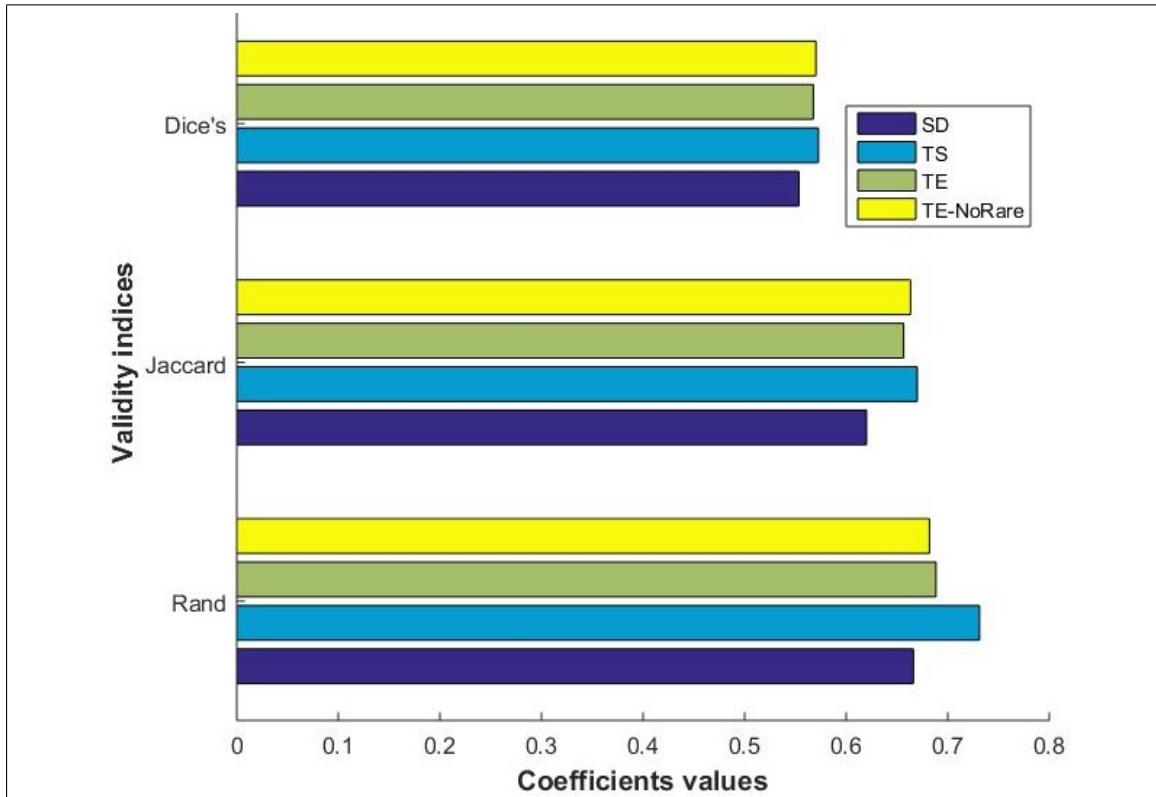


Figure 4.19: Summary of the performance of  $k$ -medoids clustering obtained using the individual DMs for the papers dataset

It can be observed from the figure that the TS DM performs marginally better than the other three DMs with regards to all coefficients. TE and TE-NoRare produced similar results. The three indices agreed that SD is marginally less informative for the grouping.

2. For the second set of experiments, we constructed: FM-1, FM-NoRare-1, FM-2 and FM-NoRare-2. According to the evaluations in the first set of experiment, we

constructed FMs-2 by giving the TS element, which is the best performer, a double weight compared to the remain two DMs. Figure 4.20 compares FMs-2 to FMs-1 using the three external indices.

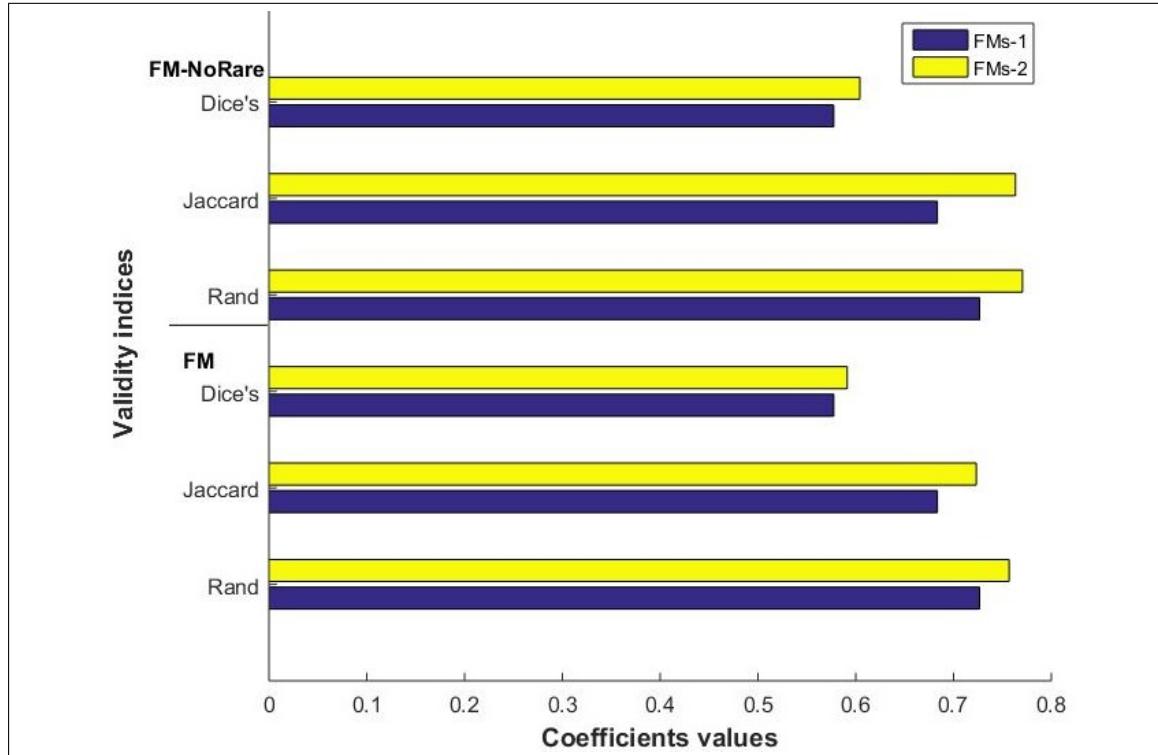


Figure 4.20: Summary of the performance of  $k$ -medoids clustering obtained on fusion matrices for papers dataset

By looking at Figure 4.20, it is obvious that FMs-2 produced better clustering configurations than FMs-1 for both combination of DMs. Thus, including weights has improved the performance of the initial fused matrices according to all three coefficients. In addition, we can conclude from Figure 4.20 that from the fusion point of view, the best combination of the three elements includes the TE-NoRare representation. This conclusions were confirmed by the three validation indices.

Figure 4.21 summarises the comparison between the clustering performance when using individual DMs, FMs-1 and FMs-2 and is reported for the purpose of presentation simplification by Jaccard coefficients only.

The results show that by combining DMs, we obtained moderately better performance compared to the results obtained using individual DMs. This is especially

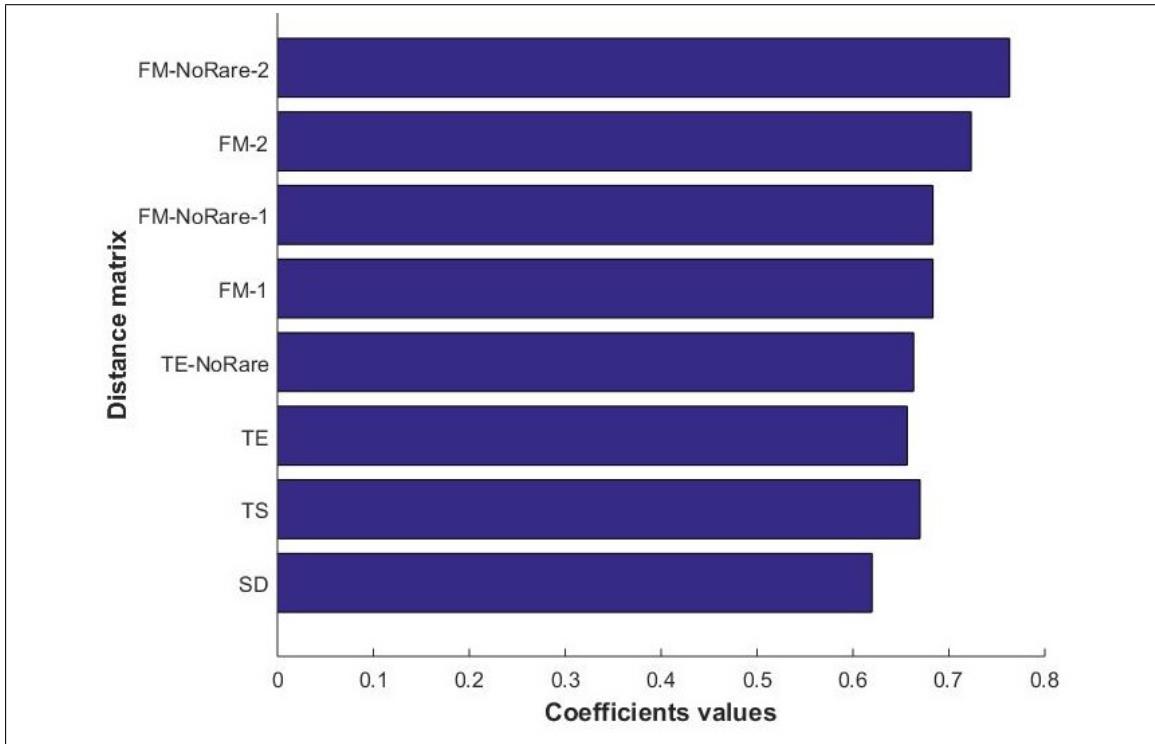


Figure 4.21: Summary of the performance of  $k$ -medoids clustering obtained on both elements' DMs and best and worst fusion matrices for papers dataset

true, for the FMs-2. When it is not be possible a prior to know which element is the best performer it is reassuring that the combination approach is producing similar results to the best individual performer, TS.

3. The third set of experiments is concerned with applying  $k$ -medoids to cluster certain data by using certainty filters. As described in Section 4.1, we filtered all the uncertain data to perform the clustering and then assign the uncertain data as a separate experiment. We remove records from FMs-1 that correspond to 99 papers in both FM-1 and FM-NoRare-1, as those papers have UFM-1 values  $\geq 0.33$  or DFM-1 values  $\geq 0.4$ . Table 4.17 reports Jaccard calculations that evaluate the results of our experiment and compares them to the results of clustering all objects, from experiment 2. Note that Rand and Dice's indices concurred with the same conclusions. The results indicate as before that filtering data in this way is not appropriate.

| Fusion matrix | FMs-1       | Filtering:certain objects |
|---------------|-------------|---------------------------|
| FM-1          | 0.683333333 | 0.4246031746              |
| FM-NoRare-1   | 0.683333333 | 0.5238095238              |

Table 4.17: The performance of clustering papers dataset using certainty filters

### 4.6.3 Statistical testing

Table 4.18 shows the Jaccard as well as statistics ( $z$ -test) for the test of significance of the difference between the performance of FMs compared to the individual DMs.

| fusion matrix    | SD   | FMs-1       | FMs-2       | TS   | FMs-1       | FMs-2       | text        | FMs-1       | FMs-2       |
|------------------|------|-------------|-------------|------|-------------|-------------|-------------|-------------|-------------|
| <b>FM</b>        |      |             |             |      |             |             |             |             |             |
| Jaccard          | 0.62 | 0.683333333 | 0.723333333 | 0.67 | 0.683333333 | 0.723333333 | 0.656666667 | 0.683333333 | 0.723333333 |
| $z$ score        | –    | $\pm 1.628$ | $\pm 2.695$ | –    | $\pm 0.349$ | $\pm 1.421$ | –           | $\pm 0.695$ | $\pm 1.765$ |
| $p$ value        | –    | 0.051762    | $3.519E-3$  | –    | 0.363545    | 0.077658    | –           | 0.243528    | $3.8782E-2$ |
| <b>FM-NoRare</b> |      |             |             |      |             |             |             |             |             |
| Jaccard          | 0.62 | 0.683333333 | 0.763333333 | 0.67 | 0.683333333 | 0.763333333 | 0.663333333 | 0.683333333 | 0.763333333 |
| $z$ score        | –    | $\pm 1.628$ | $\pm 3.801$ | –    | $\pm 0.349$ | $\pm 2.537$ | –           | $\pm 0.522$ | $\pm 2.708$ |
| $p$ value        | –    | 0.051762    | $7.2E-5$    | –    | 0.363545    | $5.59E-3$   | –           | 0.300835    | $3.385E-3$  |

Table 4.18: Statistical analysis of SMF performance on the papers dataset. The table reports statistics for Jaccard coefficient of  $k$ -medoids clustering obtained with regards to the different fusion combinations. The first column provides the statistical test that calculates the significance of SMF performance compared to using structured data, the second column compares to the performance of time-series element while the last column is for the text element. – means that the statistic can not be calculated

$p$  values confirm that the difference between the performance of FMs-2 and the individual elements (SD, TS and TE) is significant. Differences between FMs-1 and DMs are not significant. Furthermore, we evaluated the difference between FMs-1 and FMs-2 for both fusion combinations. The statistical tests concluded that the difference between performances in the first combination was not significant with  $p$  value 0.141636. The differences between FM-NoRare-1 and FM-NoRare-2 were significant with  $p$  value of 0.014262.

We also computed the Dunn internal index for every single DM and all FMs. Table 4.19 shows the coefficients that have evaluated SD element, time-series, text, FMs-1 and FMs-2. We can observe that Dunn index considers the text elements as the top individual DMs. In ascending order the top three DMs according to Dunn evaluations are: text matrices, FMs-2 and FMs-1. For all the experiments, the Dunn index ranks FMs-2 as the

|           |             |                    |             |                    |             |
|-----------|-------------|--------------------|-------------|--------------------|-------------|
| <b>SD</b> | 0.018373434 | <b>TE-NoRare</b>   | 0.286613925 | <b>FM-2</b>        | 0.278251405 |
| <b>TS</b> | 0.026078378 | <b>FM-1</b>        | 0.270661232 | <b>FM-NoRare-2</b> | 0.266406871 |
| <b>TE</b> | 0.33819674  | <b>FM-NoRare-1</b> | 0.244223864 | –                  | –           |

Table 4.19: The Dunn index values from the results of clustering the papers dataset: the statistics are reported for the different representation of the three elements and the different combinations of data fusion.

second of the top matrices in terms of quality of the clustering obtained and then FMs-1. Accordingly, Dunn evaluates FMs-2 as more informative than FMs-1.

## 4.7 The results of the celebrities dataset

We have created a dataset about celebrities. Objects in this dataset are described by two data types, namely structured data and time-series. Like the previous datasets, all objects here are classified into pre-defined classes which is beneficial when assessing and comparing clustering configurations. A description of the data is given in the Section 3.8 while the experimental results are given in the sections below.

### 4.7.1 DMs and FM calculation results

A celebrity object has a description in form of SD and another in form of two distinct TSs. We selected two distance measures, as described in Section 4.2, and then generated three pairwise DMs for each of the three elements. More information about them can be found in the data dictionary in Appendix A. We calculated  $DM^{SD}$ ,  $DM^{TSWeb}$  and  $DM^{TSSUtube}$ . These matrices are for the following respectively: SD, TS for the trends of web searches and TS for the trends of youtube searches. Next, we fused DMs and constructed the initial FM, FM-1, along with the associated uncertainty matrix DFM-1 where there was no need to calculate UFM-1 as in this dataset we do not compare incomplete objects.

Figure 4.22 shows the heatmap graphical representation of our distance matrices as before. In Figure 4.22 we represent the entire fused calculations for all the objects while in Figure 4.23 we use the grey colour to represent all celebrities that report uncertain

distance values in FM-1. We omitted fused distances for celebrities (represented in grey colour) that have  $DFM-1 \geq 0.2$ . Since we will use FM-1 before and after filtering objects in the application of  $k$ -medoids algorithm in the next section (Section 4.6.2), we present both. Note that, in both figures, celebrities are ordered so that we have 30 actors/actresses first, then 34 musicians, and finally 46 other celebrity personalities including athletes, directors, producers and authors.

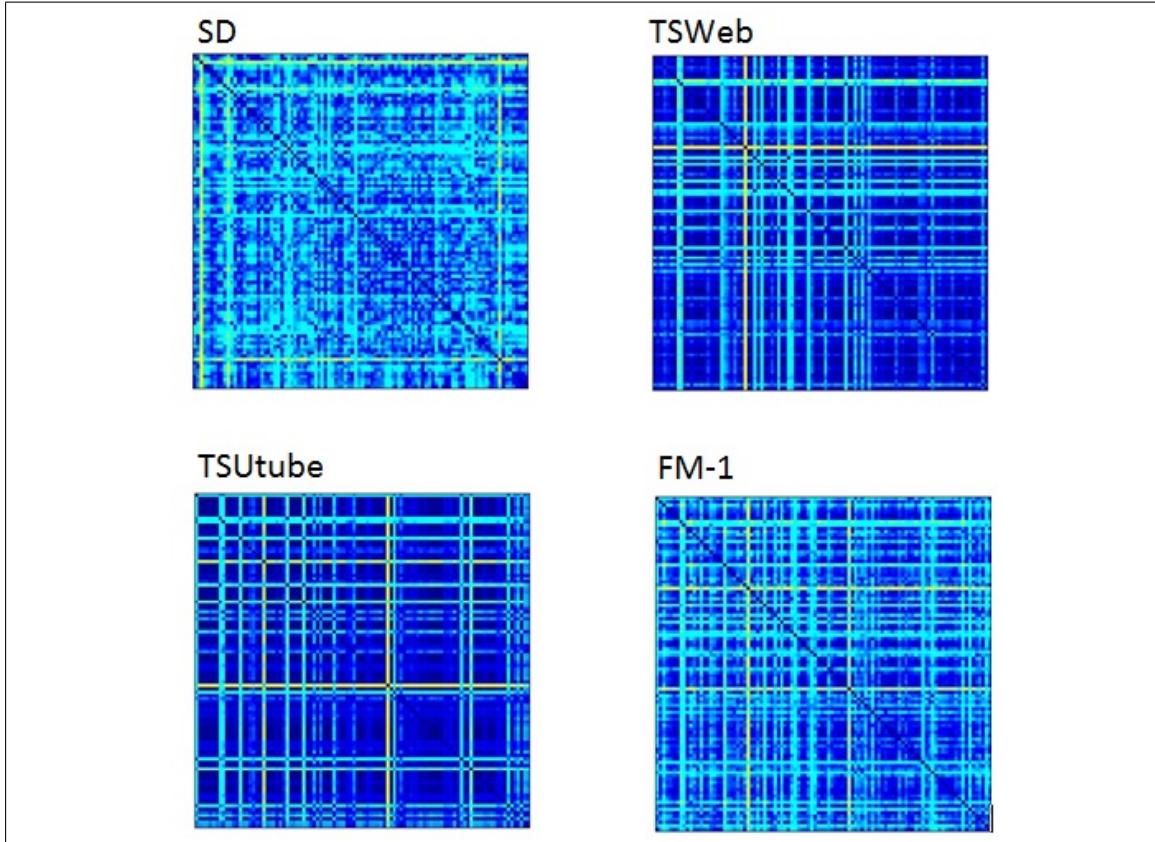


Figure 4.22: Heatmap representation for DMs and FM-1 calculated for the celebrities dataset: DMs for SD, TSWeb and TSUtube. We use blue colour to indicate similarity and yellow to indicate dissimilarity. The fusion matrix, FM-1, represent the fused distances without taking into account uncertainty.

We also calculated the Mantel test as before. Calculated correlation coefficients that reflect the degree of the relationships between the DMs and FM-1 are summarised in Table 4.20. The degree of associations between TSWeb and TSUtube is the strongest with values of 0.4549. This is also confirmed by the heatmap visualisations in Figure 4.22. Another interesting association appears to be between SD and TSUtube where the statistic reports negative coefficient. Also, the heatmap visualisation confirms this stated associa-

tion.

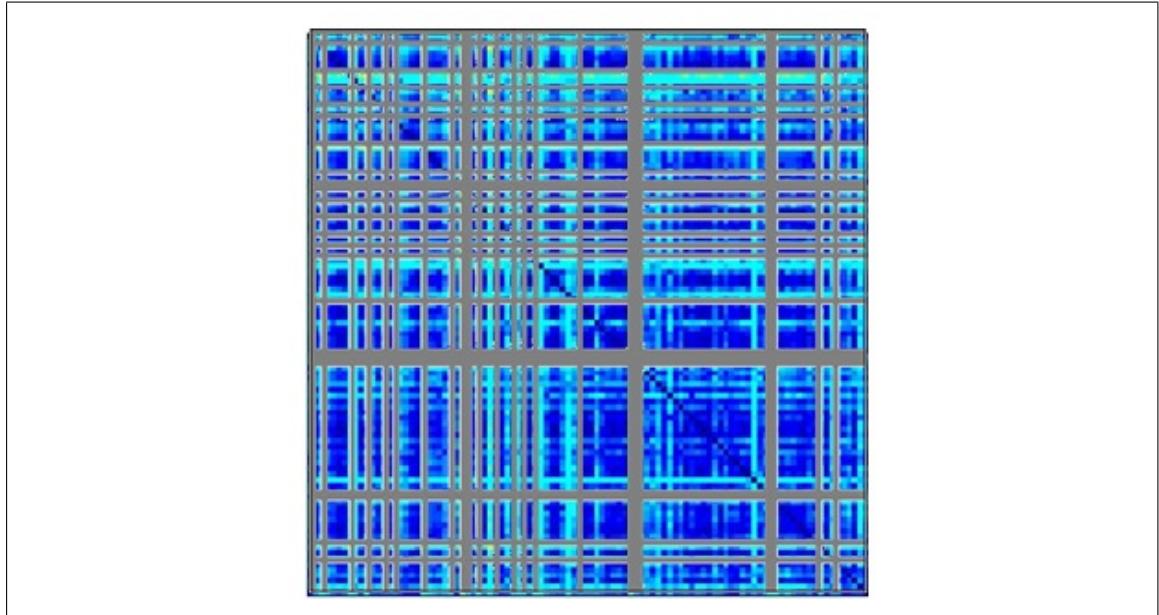


Figure 4.23: Heatmap representation for the filtered fused matrices, FM-1 calculated for the celebrities dataset

FM-1 maintains a higher degree of correlation with the TSs, more so than with SD. Hence the well correlated elements are able to exert a stronger influence in the FM-1.

|                | <b>SD</b> | <b>TSWeb</b> | <b>TSUtube</b> | <b>FM-1</b> |
|----------------|-----------|--------------|----------------|-------------|
| <b>SD</b>      |           | 0.01890      | -0.0074        | 0.3482      |
| <b>TSWeb</b>   |           |              | 0.4549         | 0.7817      |
| <b>TSUtube</b> |           |              |                | 0.8163      |
| <b>FM-1</b>    |           |              |                |             |

Table 4.20: Correlation coefficients between DMs and FM-1 calculated for celebrities dataset

### 4.7.2 Clustering results

The results of clustering each of the individual DMs and also the fused matrices are presented in this section. The type of the celebrity's profession classification (defined in Section 3.7.3) was used to evaluate SMF clustering configurations in all the experiments. The 100 celebrities are classified into three different groups of professions. Consequently,

for the next step of applying  $k$ -medoids, we set  $k=3$  for experiments. We have 30 actors/actress, 24 musicians and 46 other celebrity personalities. The clustering performance was:

1. Results of applying  $k$ -medoids using the DMs calculated for elements. Figure 4.24 includes a summary of the three external validation indices: Jaccard, Rand and Dice's coefficients. In the figure we report the performance of clustering SD, TSWeb and TSUTube.

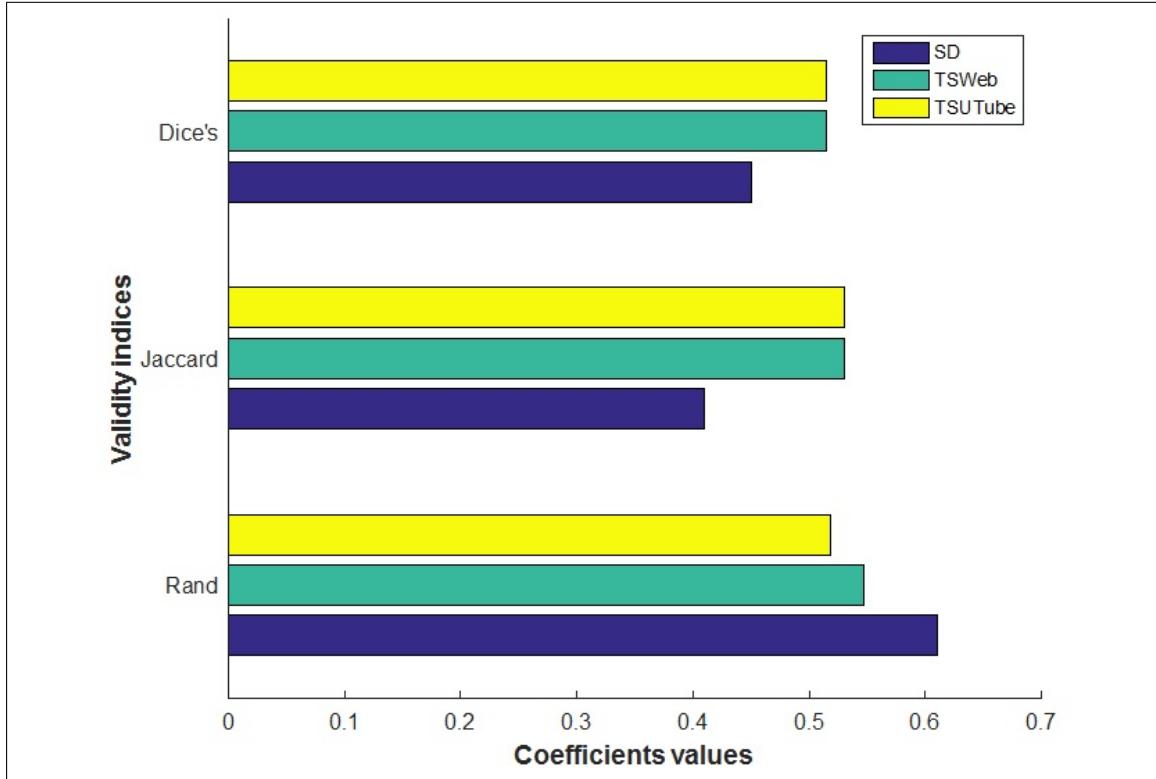


Figure 4.24: Summary of the performance of  $k$ -medoids clustering obtained using the individual DMs for the celebrities dataset

For Jaccard and Dice's calculations, TSs are better than SD and both TSs perform equally. Rand ranks the SD element higher and TSWeb seems to produce better performance than TSUTube.

2. For the second set of experiments, we produced a weighted version of the fusion matrix, FM-2. In FM-2 we give TSWeb more weight as the internal validation using Dunn put it ahead in terms of performance. The difference between the performance

of FM-1 and FM-2 that is evaluated using the three external indices is demonstrated in Figure 4.25. Figure 4.25 shows that FM-2 produces better clustering results than FM-1 according to Jaccard and Dice's methods, but not according to Rand.

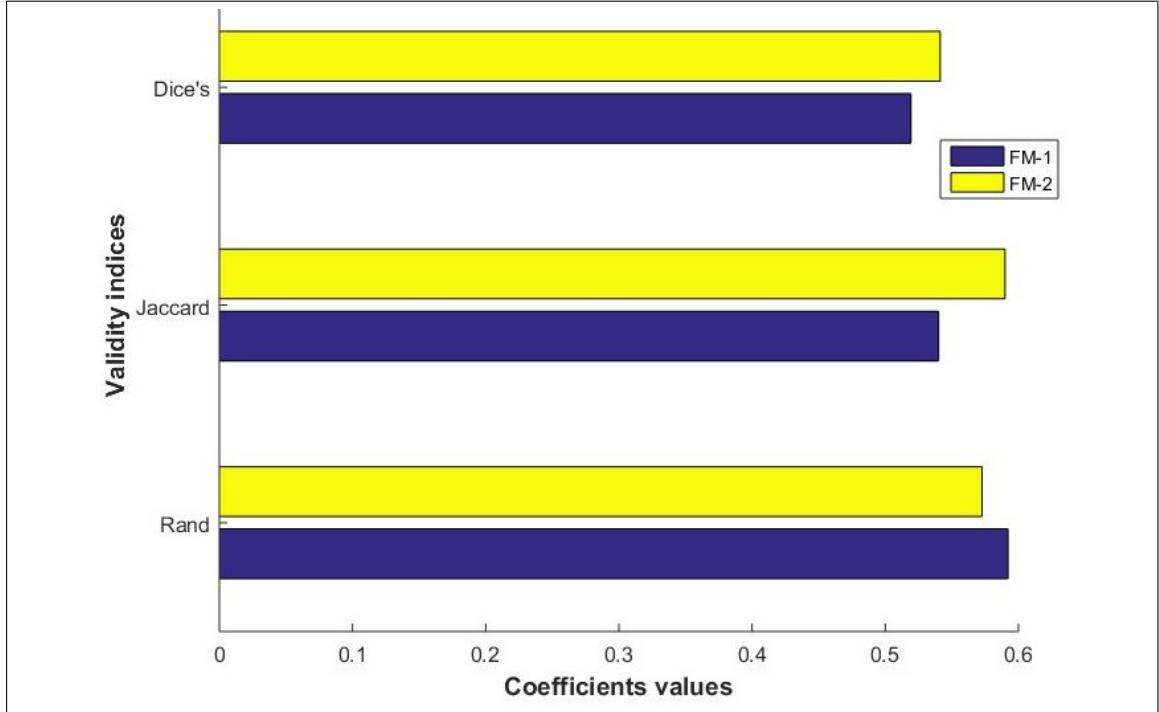


Figure 4.25: Summary of the performance of  $k$ -medoids clustering obtained on fusion matrices for celebrities dataset

In figure 4.26 we present a comparison between the clustering performance when using individual DMs and FMs. Jaccard and Dice's coefficients show that by combining DMs in FM-1 and FM-2, we obtained better performance than by using the individual elements. However, Rand still shows that SD is a strong element with a comparable performance to FMs.

3. To work on certain objects, we filtered 23 celebrities with a DFM-1 threshold of 0.2. According to all the external validity, the results indicate that the  $k$ -medoids algorithm applied to the filtered data does not produce better clustering performance. The accuracy of our model according to Jaccard index has decreased (0.42) compared to the results previously reported for using the full FM-1 (0.54). A further deterioration occurs when we used the generated medoids to cluster the remain 23 uncertain objects. This confirm our previous conclusion that uncertain objects need

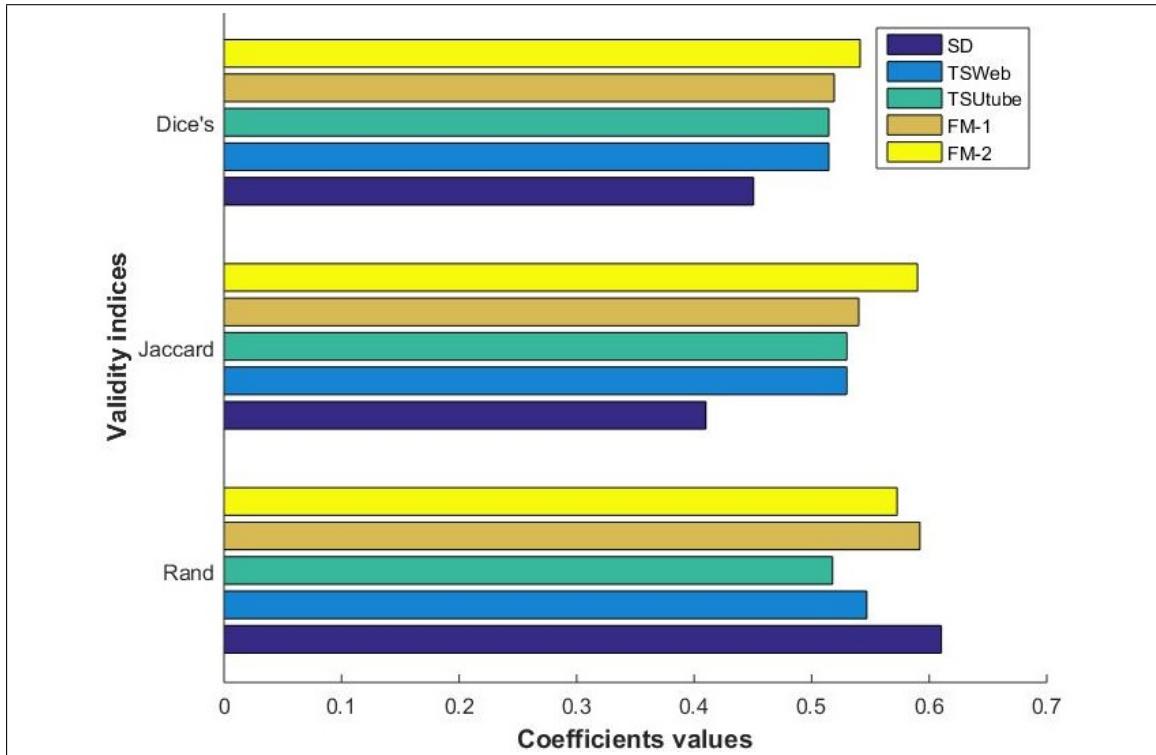


Figure 4.26: Summary of the performance of  $k$ -medoids clustering obtained on both elements' DMs and fusion matrices for celebrities dataset

to be involved in the analysis as they seem to have information that aids the clustering algorithm.

### 4.7.3 Statistical testing

We tested the significance of differences in the performance of FMs (as measured by Jaccard) compared to the individual DMs by applying a  $z$ -test. We found that the differences between the SD and FMs were significant with  $3.2811E - 2$  and  $5.448E - 3$   $p$  values when we compared SD to FM-1 and FM-2, respectively. For the other elements, TSs, the differences have not been considered as significant according to our calculations. Furthermore, we have evaluated the difference between FMs-1 and FMs-2 and concluded that it was not significant with  $0.237923$   $p$  value.

In addition, we also computed the Dunn internal index for every single DM and FMs. Table 4.21 shows the coefficients that have evaluated SD element, TSs and FMs.

|                |             |             |             |
|----------------|-------------|-------------|-------------|
| <b>SD</b>      | 0.111833878 | <b>FM-1</b> | 0.084541164 |
| <b>TSWeb</b>   | 0.059412059 | <b>FM-2</b> | 0.169743689 |
| <b>TSUtube</b> | 0.173080824 | -           | -           |

Table 4.21: The Dunn index values from the results of clustering the celebrities dataset: the statistics are reported for all DMs and FMs

We can observe that Dunn index considers TSUtube as the most informative DMs. In ascending order the top three DMs according to Dunn evaluations are: TSUtube, FM-2 and then SD. This is a very different result from what we have concluded from the external calculations.

## 4.8 Chapter summary

In this chapter, we investigated the challenge of clustering heterogeneous data using an intermediate fusion approach. We have presented some results to evaluate our proposed SMF approach. For the experimental work, we have examined five datasets. These are: prostate cancer, plants, journals, papers and celebrities. They are composed of different combinations of data types. The results are reported in a novel way using a graphical representation and statistical calculations.

In general, one of our main findings is that by using intermediary fusion we may gain significant advantage on clustering performance in comparison to using only one data element. This may be true even when the data labels may be derived from one element (e.g. structured data in the prostate cancer dataset). Also using the fused distances does not result in deterioration of clustering results so it is a safe approach when objects are described by different elements and we are not sure as to which element may best describe the objects.

With our approach, we are able to identify which elements behave similarly with respect to distance between objects. We can also identify the elements that may produce the best clustering results. In the prostate cancer dataset in particular, the results may have some clinical relevance. For example, knowing that the progression of certain blood re-

sults over time enable us to group patients according to risk or mortality more accurately may be of interest to clinicians.

We have found that time series data is often able to produce good clustering results. With regards to text data, the removal of rare terms seems to be beneficial. Structured data seemed to be less able to produce good clustering results than other modalities. We did not have enough image elements to make any conclusions for this data modality.

We have also found that external and internal clustering validity indices do not often agree on their judgment of cluster quality. Internal validity indices may lead to different choices than external validity indices in terms of elements to use in the clustering. However, both indices tend to judge fusion matrices as delivering good clustering. Even among external validity indices there is not always agreement. For example, the Jaccard and Dice's indices behave similar to each other but differently from the Rand index.

Although we have so far found a method for recording uncertainty in the fusion process, we have not yet used this information to our advantage. We need to explore variations in the standard clustering algorithms that may enable us to produce more accurate results, taking uncertainty into account. We are therefore planning a modified implementation of the  $k$ -medoids clustering algorithm.

In addition, there are many issues that could be addressed in our approach, for example, the introduction of additional data types, or the identification of the optimal number of clusters for applications with no external knowledge of the clustering. Other problems include appropriate weighting schemes. What we have done here in terms of deriving weights may not be appropriate in a real scenario as we may not be able to establish the worth of each element in clustering the data, specially in the absence of external assessment. However, we consider it a worthwhile exercise in order to understand how privileged information about the best contributors could affect the clustering outcome. An alternative that can be used in the absence of external assessment is to base the weights on internal indices instead, but as we saw external and internal methods rarely agreed on the same conclusions.

# Chapter 5

## Results of applying the $Hk$ -medoids algorithm

The performance of the proposed clustering algorithm,  $Hk$ -medoids is evaluated on five heterogeneous datasets: the prostate cancer dataset, the plant dataset, the papers dataset, the journals dataset and the celebrities dataset. Section 3.7 gives descriptions of the five datasets as well as the data preparation process for each experiment. Here we give the experimental set up in Section 5.1 and that is followed by the experimental results on clustering configurations, performance validation assessment and comparisons to the results obtained by SMF. Then, in Section 5.7, the time complexity of executing the  $Hk$ -medoids is presented by comparing the cost of our algorithm to a PAM implementation in Section 5.7.1. The sensitivity of setting the thresholds is practically discussed in Section 5.7.2 because it has an effect on  $Hk$ -medoids in terms of running time and performance. At the end of the chapter we summarise our findings.

### 5.1 Experimental set up

This section describes the experimental set up in order to validate the potential of our adaptive  $k$ -medoids algorithm,  $Hk$ -medoids, described in Section 3.5.2. We can evaluate  $Hk$ -medoids against our previously proposed SMF approach as it represents an extension

of it. The results of applying SMF to the five heterogeneous datasets are reported in Chapter 4. SMF benefited from the semi-supervised analysis environment (i.e. the natural groupings of objects into categories) to investigate clustering results and H<sub>k</sub>-medoids also uses those groupings.

*k*-medoid algorithms use a distance matrix to represent dis/similarities between objects. Since SMF produces such matrix for heterogeneous objects, as well as uncertainty measurements, we use those in H<sub>k</sub>-medoids. Hence H<sub>k</sub>-medoids is an extension of SMF to better incorporate uncertainty in the clustering process. The experimental process involves the following steps:

1. Implement SMF first to calculate the fused distances in FM and the uncertainty expressions, UFM and DFM.
2. Define certainty criteria by setting threshold(s) for one or both of the UFM and DFM expressions, for example,  $UFM \geq \phi_1$  and/or  $DFM \geq \phi_2$ . Accordingly, we can establish objects for which FM calculations are certain, given defined thresholds, and produce a certainty vector, CV such as  $CV = \{CV_{O_1}, CV_{O_2}, \dots, CV_{O_N}\}$ , where:

$$CV_{O_i} = \begin{cases} 0, & UFM_{O_i} \geq \phi_1 \text{ and/or } DFM_{O_i} \geq \phi_2 \\ 1, & \text{otherwise} \end{cases} \quad (5.1)$$

3. Execute H<sub>k</sub>-medoids.
4. Validate the resulting clusters using external assessment methods.
5. Compare the results obtained by SMF to those obtained by H<sub>k</sub>-medoids.

As previously, in order to compute DMs for the SD element in all the experimented datasets, we chose the Standardized Euclidean distance, which requires computing the standard deviation vector. With regards to TE elements, we used the standard in text mining to measure similarities, the Cosine calculation [209] as this measure is widely used and reported to be effective with text, such as in numerous information retrieval applications [15] and in clustering [148]. For TSs, we use Dynamic Time Warping (DTW),

first introduced into the data mining community in 1996 [19]. DTW can cope with TSs of different lengths. Its ability to do this was tested by many researchers (e.g., [202]). However, our calculated distances are normalized through the sum of the lengths of the TSs that we are comparing. For IE, we use the GIST [189] descriptor as it is easy to compute, provides a compact representation of the images and it is not prone to segmentation errors. Also, it has recently shown good performance in different image tasks (e.g., image retrieval [153] and image completion [104]).

By choosing the above similarity calculations, we were able to obtain individual DMs as the first step of SMF. Afterwards, we combined the individual DM as proposed in section 3.5.1 to calculate the FMs, then we calculated UFM<sub>s</sub>, DFM<sub>s</sub> and CV<sub>s</sub>. Using all these calculations, we first applied a standard  $k$ -medoids algorithm to the FMs using all objects. A second phase focused on certain objects only to find the clusters using  $k$ -medoids with specified thresholds for UFM<sub>s</sub> and DFM<sub>s</sub>, and then assigned uncertain objects to the closest generated medoids. We tried to use settings for UFM and DFM that resulted in a reasonable number of uncertain objects. Thus, we neither asses a very big nor a very small proportion of objects as uncertain. Specifically, we looked for threshold that considered less than 35% and more than of 10% of the total number of objects for each dataset as uncertain. In addition, for the plants dataset and the celebrities dataset only DFM was considered as all objects are complete so we deal only with uncertainty that arises from the disagreement between DMs. We designed the second experiment to examine the effect of eliminating uncertain objects from the analysis. Third, we implement our proposed H $k$ -medoids algorithm using all the required pre-calculated matrices and specified settings. Finally, we assess all the obtained clustering solutions.

With regards to the results assessment, the five heterogeneous datasets we have compiled have one or more natural grouping system(s). Thus, we can benefit from the ground truth labels when evaluating clustering performance. To evaluate the results we calculate three different external validation tests: Jaccard coefficient [123], Rand statistic [200] and Dice's index [54]. Finally, we demonstrate the significance of H $k$ -medoids performance using statistical testing. We apply a  $z$ -test to establish if the differences in performance

between  $H_k$ -medoids and the best individual DM and between  $H_k$ -medoids and SMF are statistically significant. We compare the difference in performance using the Jaccard calculations as a representative of the external validation coefficients in order to be consistent.

A generic outline that describes  $H_k$ -medoids algorithm is given below:

1. Begin with a random start to initialize the algorithm by selecting  $k$  objects as clustering seeds (i.e. initial medoids).
2. Assign all the remaining  $N-k$  objects to the closest centroids using the FM matrix. the batch-updating phase for certain objects only. The batch-updating phase is an iterative process that is repeated until convergence. Convergence can be, for example: maximum number of iteration, minimal decrease in squared error or no more changes in membership of clusters. In each pass of the batch-updating phase, the algorithm works on certain objects, all at once, in the following way:
  - New medoids are calculated using only certain memberships.
  - Certain objects are reassigned to other medoids if this minimises the average squared Euclidean distance between certain objects and the clusters' medoids.
3. Begin the PAM-like online-updating phase for uncertain objects only: it is called sometimes the adaptive training and it studies uncertain objects one by one as follows:
  - Reassign the uncertain membership to the closest medoids, if needed.
  - Recompute the medoids each time a single uncertain object is reassigned.
  - Reassign all objects, of medoids changed.

Note that as the nature of  $H_k$ -medoids implies that we may get different results with different initialisations. Hence, we applied each algorithm 50 times. Each run was executed with random initialisation. In the results we report the best outcome, measured by the chosen external validation methods, for each experiment out of 50 runs.

## 5.2 The results of the cancer dataset

We begin our experiments with a real dataset that satisfies our definition of heterogeneous data, including the objects' description and the presence of cases with different levels and types of uncertainty. A description of the data is given in Section 3.7.1. Briefly, this dataset, after the preparation stage, is about 1,598 patients that were diagnosed with prostate cancer. A patient is described by SD element and 23 distinct TSs. Patients are classified into groups following four different categorization systems: NICE, GS-1, GS-2 and MC. Patients are grouped into three classes according to the first two systems and four classes following the other two.

First, we implemented SMF, as explained in Section 4.3. SMF produced 24 DMs that reflect the distances for each element separately in addition to FM-1 which fuses all the 24 elements with equal weights. Uncertainty related to FM-1 was calculated in UFM-1 and DFM-1. Thresholds were set as UFM-1=0.4 and DFM-1=0.3, as a result we considered 175 patients as uncertain objects which is about 11% of the total number of objects. Note that the same patients were excluded using the filter approach in the third set of clustering experiment in Chapter 4.

Next, Hk-medoids was executed to produce a clustering solution using FM-1, UFM-1, DFM-1 and their respective thresholds. Table 5.1 shows the performance of Hk-medoids using the fused matrix for all patients. Also it compares SMF applied to all patients and to certain objects only. We report here Jaccard coefficient as a representative for the clustering validity. All the other external validity indices gave similar results.

In general, the results in Table 5.1 suggest that although using uncertainty to filter out objects does not work well, the Hk-medoids approach to using uncertainty has produced better clustering performance for all the groupings. To validate this important conclusion, we have tested if the differences in performances are significant. All  $p$  values that compare the performance of SMF with certainty filters and Hk-medoids are  $< 0.05$  which indicates significant difference between Jaccard calculations. With regards Hk-medoids and SMF without certainty filters, differences are also significant.  $p$  values were  $< 0.00001$ , 2.305,

| grouping system | SMF without certainty filter | SMF with certainty filter | Hk-medoids |
|-----------------|------------------------------|---------------------------|------------|
| NICE            | 0.5382                       | 0.4132                    | 0.7021     |
| GS-1            | 0.5651                       | 0.3440                    | 0.6358     |
| GS-2            | 0.4061                       | 0.3292                    | 0.4431     |
| MC              | 0.4781                       | 0.3990                    | 0.5307     |

Table 5.1: A comparison between the performance of SMF and Hk-medoids clustering for the prostate cancer dataset: Jaccard coefficients are reported to validate clustering results using ground truth labels for the four classification systems. The table consists of three columns, the first two report the accuracy of SMF (all objects versus complete objects) and that is compared to the results of the Hk-medoids in the third one.

0.017172 and 0.00147 for NICE, GS-1, GS-2 and MC grouping respectively.

Table 5.2 compares the results of SMF and Hk-medoids to the ones obtained by SD element alone as well as to the results of the best individual TS in all the four grouping systems. For the cancer dataset, the proposed Hk-medoids outperformed clustering on the SD alone in all cases according to Jaccard and Dice's and in two of the groupings for the Rand index. In addition, in comparison to the best individual TSs, Hk-medoids also performed well. With regards to the significant testing, all  $p$  values that compare the performance of SMF and Hk-medoids to the SD element and to the best TS using the Jaccard index are  $< 0.05$  which shows significant differences (indicated by + in the table). Hence in terms of using individual elements to cluster versus using the combined information used in the SMF approach, for the cancer dataset the proposed Hk-medoids outperforms using the SD alone, despite the groupings being derived from information contained in the SD, and also it outperforms using the best TS.

### 5.3 The results of the plants dataset

We have created a dataset about 100 plants. Objects in this dataset are described by SD, TE and IE which is a different combination of data types that provides us with new challenges. Plants objects are classified into pre-defined classes which is beneficial for assessing and comparing performances. We have 42 fruit plants, 22 kinds of roses and 36

| grouping system | SD      |               |        | best TS |        |        | SMF     |         |        | Hk-medoids      |               |                |
|-----------------|---------|---------------|--------|---------|--------|--------|---------|---------|--------|-----------------|---------------|----------------|
|                 | Jaccard | Rand          | Dice's | Jaccard | Rand   | Dice's | Jaccard | Rand    | Dice's | Jaccard         | Rand          | Dice's         |
| NICE            | 0.3335  | 0.5037        | 0.4002 | 0.5119  | 0.5195 | 0.5059 | 0.5382+ | 0.5072  | 0.5184 | <b>0.7021*+</b> | <b>0.5807</b> | <b>0.58407</b> |
| GS-1            | 0.4230  | 0.4860        | 0.4583 | 0.5569  | 0.5065 | 0.5269 | 0.5651+ | 0.51751 | 0.5306 | <b>0.6358*+</b> | <b>0.5480</b> | <b>0.5598</b>  |
| GS-2            | 0.2829  | <b>0.5985</b> | 0.3613 | 0.3767  | 0.5975 | 0.4297 | 0.4061+ | 0.5828  | 0.4482 | <b>0.4431*+</b> | 0.5502        | <b>0.4698</b>  |
| MC              | 0.3191  | <b>0.5412</b> | 0.3896 | 0.3899  | 0.5263 | 0.4381 | 0.4781+ | 0.5209  | 0.4888 | <b>0.5307*+</b> | 0.4878        | <b>0.5172</b>  |

Table 5.2: A comparison between the performance of SMF, Hk-medoids, clustering by SD element alone and by the best TS element in the four natural grouping systems of the prostate cancer dataset. The best results for each validation measure and grouping are highlighted in bold. \* denotes statistically significant difference of the Jaccard indices with respect to the standard SMF approach. A + indicates statistical difference between the value of Jaccard coefficients for the Hk-medoids algorithm and DMs including SD and best TS.

types of grass. A full description of the data is given in Section 3.7.2.

First, we implemented SMF as explained in section 4.4. SMF produced five DMs for: SD, TE, TE without rare terms, IE and IE with reduced colours. In addition we have four FMs by fusing all possible combination of the five DMs to combine the three elements and give them equal weights.

- FM fuses  $DM^{SD}$ ,  $DM^{TE}$  and  $DM^{IE}$ ;
- FM-NoRare fuses  $DM^{SD}$ ,  $DM^{TENoRare}$  and  $DM^{IE}$ ;
- FM-NoRare-Reduced fuses  $DM^{SD}$ ,  $DM^{TENoRare}$  and  $DM^{IEReduced}$ ;
- FM-Reduced fuses  $DM^{SD}$ ,  $DM^{TE}$  and  $DM^{IEReduced}$ .

Uncertainty related to FMs was calculated using DFMs-1 only as there were no incomplete objects. Using DFMs-1=0.3 filter, we had 14, 24, 25 and 20 incomplete objects in the analysis using FM-1, FM-NoRare-1, FM-NoRare-Reduced-1 and FM-Reduced-1 respectively. The number of uncertain objects according to this filter was in all cases  $\leq 25\%$  of the total number of plants objects. These plants were excluded using the same threshold as in Chapter 4 for the plants dataset.

After that, we implemented  $H_k$ -medoids. Table 5.3 summarises the results. We report here Jaccard coefficient as a representative for the clustering validity but similar results were given by the other external validity indices.

| fusion<br>matrix    | SMF<br>without certainty filter | SMF<br>with certainty filter | $H_k$ -medoids |
|---------------------|---------------------------------|------------------------------|----------------|
| FM-1                | 0.6900                          | 0.4651                       | 0.7200         |
| FM-NoRare-1         | 0.7300                          | 0.4468                       | 0.8500         |
| FM-NoRare-Reduced-1 | 0.8500                          | 0.5761                       | 0.8600         |
| FM-Reduced-1        | 0.6900                          | 0.4375                       | 0.8300         |

Table 5.3: A comparison of SMF and  $H_k$ -medoids clustering for the plants dataset: Jaccard coefficients are reported to validate clustering results using ground truth labels for the four fusion matrices. The table consists of three columns, the first two report the accuracy of SMF (all objects and certain objects) and the third reports  $H_k$ -medoids.

The results in table 5.3 are similar to the previous dataset.  $H_k$ -medoids shows an increase in clustering performance. Filtering uncertain objects is again not an appropriate practice. We have tested if the differences between performances are significant. All  $p$  values indicate significant difference between SMF with certainty filters compared to  $H_k$ -medoids. Difference in performance of  $H_k$ -medoids and SMF without certainty filters was significant in two of the FMs: FM-NoRare-1 ( $p$  value= 0.018626) and FM-Reduced-1 ( $p$  value= 0.010225).

Table 5.4 compared the performances of SMF and  $H_k$ -medoids to the one obtained by the best individual DMs for all the four different FMs.  $H_k$ -medoids outperformed the best individual DM for all the four fusion matrices in the majority of cases. SMF has performed better than the best individual matrices according to Jaccard and Dice's but not to Rand. As in other experiments, Jaccard and Dice's conclude the same outcome while Rand agreed on their judgment for  $H_k$ -medoids only. Thus, all three external validation techniques agreed that  $H_k$ -medoids outperforms the best individual DM in all four cases. However, The significance tests between Jaccard index of  $H_k$ -medoids and the best individual DM, represented by + in the table, show that the difference is significant only for FM-NoRare-Reduced-1 and FM-Reduced-1.

| fusion matrix       | best DM |               |        | SMF     |        |               | Hk-medoids      |               |               |
|---------------------|---------|---------------|--------|---------|--------|---------------|-----------------|---------------|---------------|
|                     | Jaccard | Rand          | Dice's | Jaccard | Rand   | Dice's        | Jaccard         | Rand          | Dice's        |
| FM-1                | 0.6600  | <b>0.6778</b> | 0.5690 | 0.6900  | 0.6469 | 0.5798        | <b>0.7200</b>   | <b>0.6778</b> | <b>0.5902</b> |
| FM-NoRare-1         | 0.7600  | 0.7251        | 0.6032 | 0.7300  | 0.7101 | 0.5935        | <b>0.8500*</b>  | <b>0.8103</b> | <b>0.6296</b> |
| FM-NoRare-Reduced-1 | 0.7600  | 0.7251        | 0.6032 | 0.8500  | 0.6296 | <b>0.6324</b> | <b>0.8600+</b>  | <b>0.8319</b> | 0.6323        |
| FM-Reduced-1        | 0.6600  | 0.6778        | 0.5690 | 0.6900  | 0.6477 | 0.5798        | <b>0.8300*+</b> | <b>0.7826</b> | <b>0.6241</b> |

Table 5.4: A comparison between SMF and Hk-medoids clustering and the best individual element for the plants dataset. The best results for each validation measure and grouping are highlighted in bold. \* denotes statistically significant differences between Hk-medoids and the standard SMF approach using Jaccard calculations. + indicates statistical difference between the value of Jaccard coefficients for the Hk-medoids algorithm and the best DM.

## 5.4 The results of the journals dataset

We have created a dataset about 135 journals in a context of scientometrics analysis application. A description of the data is given in Section 3.7.3. Objects in this dataset are described by two different data types, SD and two TSs. All objects are classified into pre-defined classes according to three different classification systems. IF groups journals into five classes while each of ES and AI groups them into three classes.

We began by implementing the SMF approach, Section 4.3 describes the experiment and the results. All the required matrices calculations were produced by SMF; three DMs that reflect the distances for each element separately in addition to FM-1 which fuses all the three elements with equal weights. We also computed UFM-1 and DFM-1 to report uncertainty. The thresholds were set up as UFM-1=0.33 and DFM-1=0.1, thus we considered fused distances for journals that have UFM-1 values  $\geq 0.33$  or DFM-1  $\geq 0.1$ . By applying this filter, we considered 41 journals as uncertain which is about 30% of the 135 journals that we have. These journals were removed using the same filter when we conducted the third set of clustering experiment for the journals dataset in Chapter 4.

Then, we executed Hk-medoids to produce a clustering configuration using FM-1, UFM-1, DFM-1 and their thresholds. Table 5.5 compares the performances of three experiments. These are SMF when applied to all journals objects, SMF when applied to

certain objects and  $H_k$ -medoids. The representative for the clustering validity in the table is the Jaccard coefficient. All the other external validity indices gave similar results.

| grouping system | SMF without certainty filter | SMF with certainty filter | $H_k$ -medoids |
|-----------------|------------------------------|---------------------------|----------------|
| IF              | 0.3556                       | 0.3085                    | 0.4222         |
| ES              | 0.7926                       | 0.4468                    | 0.8222         |
| AI              | 0.5111                       | 0.4362                    | 0.5926         |

Table 5.5: A comparison between SMF and  $H_k$ -medoids clustering for the journals dataset: Jaccard coefficients are reported to validate clustering results using ground truth labels. There are more than one natural grouping system for the objects and are represented in the table using their names. The table consists of three columns, the first two report the accuracy of SMF (all objects versus certain objects), the last reports on  $H_k$ -medoids.

As before, filtering uncertain objects results in deterioration against the results reported using the full FM-1. On the other hand,  $H_k$ -medoids produced better clustering performance compared to the other two approaches. Using uncertainty information within the clustering algorithm is therefore a promising approach. The same conclusions were derived also by the other two external validation indices. When we tested for significance,  $p$  values were all  $< 0.05$  when we compared standard SMF with certainty filters (Jaccard index) to  $H_k$ -medoids. However, when comparing to the standard SMF approach,  $p$  values reported the difference as not significant, except for AI classification (0.024477).

Table 5.6 shows the performances of SMF and  $H_k$ -medoids as well as TStoJ for all the three groupings. We found that in each classification system  $H_k$ -medoids outperformed the best performer which was TStoJ. In general, Jaccard and Dice's conclude the same outcome. Rand agreed on their judgment when we compare the best individual performer to the results of  $H_k$ -medoids in IF and ES but not AI. Although there are improvements in performance, the statistical tests indicate that the differences are significant only in the case of ES when comparing the Jaccard index for  $H_k$ -medoids to the one TStoJ. This is signified in the table using + symbol. With regards to comparing SMF to TStoJ, in IF and ES SMF produces similar or better results than those obtained by the best individual matrix, however that was not the case in AI. This conclusion is driven by all three validation coefficients and the difference between Jaccard indexes was not significant in any case.

| grouping system | best DM |               |        | SMF     |               |        | Hk-medoids     |               |               |
|-----------------|---------|---------------|--------|---------|---------------|--------|----------------|---------------|---------------|
|                 | Jaccard | Rand          | Dice's | Jaccard | Rand          | Dice's | Jaccard        | Rand          | Dice's        |
| IF              | 0.3407  | 0.6977        | 0.4053 | 0.3556  | 0.6816        | 0.4156 | <b>0.4222</b>  | <b>0.7216</b> | <b>0.4578</b> |
| ES              | 0.7333  | 0.6986        | 0.5946 | 0.7926  | <b>0.8292</b> | 0.6132 | <b>0.8222+</b> | 0.7703        | <b>0.6218</b> |
| AI              | 0.5481  | <b>0.6646</b> | 0.5230 | 0.5111  | 0.4779        | 0.5161 | <b>0.5926*</b> | 0.6524        | <b>0.5424</b> |

Table 5.6: A comparison between SMF, Hk-medoids and the best individual DM for the journals dataset in all the three classification systems. The best results for each validation measure and grouping are highlighted in bold. \* signifies statistically significant differences between Hk-medoids and the standard SMF approach using only Jaccard calculations. A + indicates statistical difference between Hk-medoids algorithm and the best DM.

## 5.5 The results of the papers dataset

We have established a dataset about 300 research papers, a description of the data is given in Section 3.7.4. Objects in this dataset are also described by a mixture of data types, SD, TS and TE. Like the other datasets, all objects here are classified into pre-defined classes which are three fields of research. We have 100 papers from each research area: computer science, business economics and health care service.

First, we implemented SMF, full details of the experiment is given in Section 4.6. SMF produced four DMs for: SD, TS, TE and TE element without rare words. In addition we also produced two FMs by fusing all possible combination of the four DMs to combine the three elements and give them equal weights:

- FM fuses  $DM^{SD}$ ,  $DM^{TS}$  and  $DM^{TE}$ ;
- FM-NoRare fuses  $DM^{SD}$ ,  $DM^{TS}$  and  $DM^{TENoRare}$ .

Uncertainty thresholds were set up as  $UFM = 0.33$  and  $DFMs = 0.4$ . Using those filters, 99 papers were considered in both FM and FM-NoRare as uncertain objects or  $< 0.33$  of the total number of objects. These papers were excluded using the same threshold when we used when we conducted the third set of clustering experiment in Chapter 4 for the plants dataset.

Next, we implemented  $H_k$ -medoids to apply cluster analysis using FMs-1, UFM-1, DFMs-1 and their thresholds. Table 5.7 presents results as for the other datasets. The Jaccard coefficient is reported as a representative for the external clustering validity indices. A similar conclusion was obtained by the other external validity coefficients, Rand and Dice's index.

| <b>fusion<br/>matrix</b> | <b>SMF</b><br>without certainty filter | <b>SMF</b><br>with certainty filter | <b><math>H_k</math>-medoids</b> |
|--------------------------|----------------------------------------|-------------------------------------|---------------------------------|
| FM-1                     | 0.6833                                 | 0.4246                              | 0.7233                          |
| FM-NoRare-1              | 0.6833                                 | 0.5238                              | 0.7333                          |

Table 5.7: A comparison between SMF and  $H_k$ -medoids clustering for the papers dataset: Jaccard coefficients are reported to validate clustering results using ground truth labels. The table consists of three columns, the first two report the accuracy of SMF (all objects versus incomplete objects) and that is compared to the results of the  $H_k$ -medoids in the third one.

Results for these database agree with previous result.  $H_k$ -medoids shows an increase in clustering performance compared to the results obtained by clustering the full FMs-1. Differences are statistically significant for SMF with certainty filters versus  $H_k$ -medoids, as all  $p$  values were  $< 0.05$ . On the other hand,  $p$  values that compare the performance of  $H_k$ -medoids and the standard SMF that did not show statistical significance.

Table 5.8 shows comparisons with individual DMs. SMF and  $H_k$ -medoids show increased clustering performance compared to the results obtained by clustering the individual matrices in all cases. According to Jaccard and Dice's indices the increase obtained by SMF is marginal. All three validation calculations agreed that  $H_k$ -medoids outperforms the best individual DM, however, the statistical tests do not show significant improvements.

## 5.6 The results of the celebrities dataset

We have created a dataset about the 100 most popular celebrities in 2013. A description of the data is given in the Section 3.8 . Objects in this dataset are described by two data types, namely SD and two TSs. Celebrities objects are classified into pre-defined classes,

| fusion matrix | best DM |        |        | SMF     |        |        | Hk-medoids    |               |               |
|---------------|---------|--------|--------|---------|--------|--------|---------------|---------------|---------------|
|               | Jaccard | Rand   | Dice's | Jaccard | Rand   | Dice's | Jaccard       | Rand          | Dice's        |
| FM-1          | 0.6700  | 0.7313 | 0.5726 | 0.6833  | 0.7265 | 0.5775 | <b>0.7233</b> | <b>0.7526</b> | <b>0.5902</b> |
| FM-NoRare-1   | 0.6700  | 0.7313 | 0.5726 | 0.6833  | 0.7265 | 0.5775 | <b>0.7333</b> | <b>0.7603</b> | <b>0.5946</b> |

Table 5.8: A comparison between SMF, Hk-medoids and best individual DMs for the celebrities dataset. The best results for each validation measure and grouping are highlighted in bold.

we have 30 actors/actresses, 34 musicians and 46 other celebrity personalities including athletes, directors, producers and authors.

We follow same process as in previous experiments. There were three DMs that reflect the distances for each element separately and FM-1 which fuses all the three elements with equal weights. DFM-1 was computed but UFM-1 was not calculated as there is no incomplete objects in the dataset. The threshold was set up as DFM-1=0.2. As a result of applying this filter, we dealt with 23% objects as uncertain. These objects were removed also in the third set of clustering experiment for the celebrities dataset in Chapter 4. After that, we executed Hk-medoids to generate a clustering configuration using FM-1, DFM-1 and its threshold. Results are presented in Table 5.9 using Jaccard calculations, however, similar results were obtained by the other two external indices.

| fusion matrix | SMF                      |                       | Hk-medoids |
|---------------|--------------------------|-----------------------|------------|
|               | without certainty filter | with certainty filter |            |
| FM-1          | 0.5400                   | 0.4286                | 0.6200     |

Table 5.9: A comparison between SMF and Hk-medoids clustering for the celebrities dataset: Jaccard coefficients are reported to validate clustering results using ground truth labels. The table consists of three columns, the first two report the accuracy of SMF (all objects versus incomplete objects) and that is compared to the results of the Hk-medoids in the third one.

Using the filtered data, as before, performance has decreased compared the standard SMF approach. However, Hk-medoids produced better results. The differences in performances between the filtered SMF and Hk-medoids are significant according to statistical tests. However, the  $p$  value for Hk-medoids and standard SMF performance difference is

| fusion matrix | best DM |        |        | SMF     |        |        | H <sub>k</sub> -medoids |               |               |
|---------------|---------|--------|--------|---------|--------|--------|-------------------------|---------------|---------------|
|               | Jaccard | Rand   | Dice's | Jaccard | Rand   | Dice's | Jaccard                 | Rand          | Dice's        |
| FM-1          | 0.5300  | 0.5469 | 0.5146 | 0.5400  | 0.5921 | 0.5192 | <b>0.6200</b>           | <b>0.6374</b> | <b>0.5536</b> |

Table 5.10: A comparison between SMF, H<sub>k</sub>-medoids clustering and the best DMs for the celebrities dataset. The best results for each validation measure and grouping are highlighted in bold.

not significant.

Table 5.10 shows that SMF performed slightly better than the best individual matrix, TSWeb. For this dataset, H<sub>k</sub>-medoids outperformed all the DMs including the best performer but not with a significant difference according to a *z*-test.

## 5.7 Time complexity of H<sub>k</sub>-medoids

In this section, we review the time complexity of H<sub>k</sub>-medoids. In order to do this, we need to also look at the thresholds for certainty as those have a main bearing on the running of the algorithm. The specifications of the processor we used to run our implementations are: Intel(R) Core(TM) i5-3337U CPU, 1.8 GHz, 64-bit windows 8.1 operating system with 6 GB installed RAM. Section 5.7.1 discusses the costs of the H<sub>k</sub>-medoids and Section 5.7.2 tests the impact of the certainty thresholds on the results in terms of clustering performance and elapsed time needed to produce the outcome.

### 5.7.1 Time complexity of H<sub>k</sub>-medoids

With regards to the time cost of H<sub>k</sub>-medoids, we said that our H<sub>k</sub>-medoids is, theoretically, faster than the standard PAM implementation of the *k*-medoids. To back this with empirical evidence, we compared the elapsed time needed to produce the results by both algorithms for all the previous experiments over the five datasets. Table 5.11 compares the actual running time measured in seconds for all the 14 experiments. To demonstrate

| grouping system/<br>fused matrices | H <sub>k</sub> -medoids | PAM      |
|------------------------------------|-------------------------|----------|
| <b>The cancer dataset</b>          |                         |          |
| NICE                               | 0.090856                | 2.696481 |
| GS-1                               | 0.091641                | 2.697643 |
| GS-2                               | 0.094189                | 2.781021 |
| MC                                 | 0.092765                | 2.764705 |
| <b>The plants dataset</b>          |                         |          |
| FM                                 | 0.006175                | 0.011016 |
| FM-NoRare                          | 0.00603                 | 0.011506 |
| FM-NoRare-Reduced                  | 0.005926                | 0.011456 |
| FM-Reduced                         | 0.00635                 | 0.012425 |
| <b>The journals dataset</b>        |                         |          |
| IF                                 | 0.006851                | 0.018278 |
| ES                                 | 0.007501                | 0.01645  |
| AI                                 | 0.006707                | 0.01404  |
| <b>The papers dataset</b>          |                         |          |
| FM                                 | 0.008335                | 0.033052 |
| FM-NoRare                          | 0.008053                | 0.03301  |
| <b>The celebrities dataset</b>     |                         |          |
| FM                                 | 0.006441                | 0.013363 |

Table 5.11: The execution time measured in seconds of H<sub>k</sub>-medoids and PAM implementation of the standard  $k$ -medoids for all the experiments.

how H<sub>k</sub>-medoids behaves in relation to the number of objects in datasets compared to PAM, a summarised graph of the running times is shown in Figure 5.1. The figure shows the average time needed to execute both algorithms on each of the datasets. Note that the graph orders the datasets according to the number of objects in an ascending order: Plants, celebrities, journals, papers and cancer dataset. Table 5.11 and Figure 5.1 are empirical evidence of our claim about the time complexity of our algorithm, discussed in Section 3.5.2. The difference in the running time between the two algorithms is substantial when the number of objects changes from the minimum in the plants/celebrities datasets (100) to the maximum in the cancer dataset (1589). Hence, for real world datasets such as the cancer dataset our approach holds some promise.

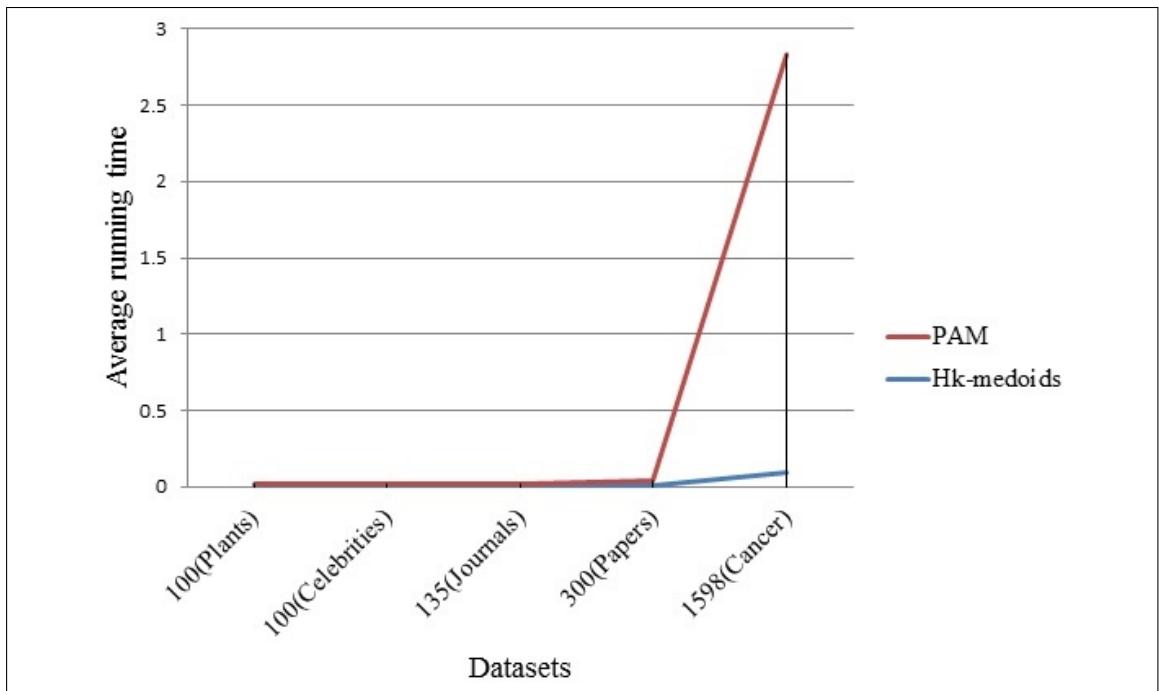


Figure 5.1: The average execution time measured in seconds of Hk-medoids and PAM implementation of the standard  $k$ -medoids calculated for the heterogeneous datasets ordered in ascending number of objects where the percentages of uncertain objects are 25%, 23%, 30%, 33% and 11%, for the plants, celebrities, journals, papers and cancer dataset, respectively.

### 5.7.2 Thresholds parameter sensitivity

In this section, we study the sensitivity of UFM and DFM and the impact of setting different thresholds on clustering performance and running time. As we discussed in Section 3.5.2, we want to set the thresholds in a way that considers a reasonable number of objects as uncertain, thus, we neither assess a very big nor a very small proportion of objects as uncertain. Our parameter experimentations lead to thresholds associated with between 10% and 35% of objects being considered as uncertain because between those margins we saw little effect on clustering performance. However, when going outside those margins, clustering performance deteriorates. We illustrate the sensitivity of this parameter using all the five dataset in Table 5.12. It compares Jaccard coefficients for  $H_k$ -medoids when we set different thresholds for UFM and DFM. We can see that thresholds leading to less than 10%, and greater than 35% of objects being considered as uncertain gave worse results for  $H_k$ -medoids. In contrast, when we observed performances between 10% and 35% by examining two points within those margins: one in 10%-20% and one in 20%-35% we obtained the best reported results. This conclusion is achieved for each set of experiments, i.e. grouping system/fusion matrix represented in each row of the table. For clarification, since the UFM and DFM calculations vary from one dataset to another and also the number of objects is different in each dataset, we could not test every point in the margins given. Instead, for each grouping system/fusion we tested one unique point within the margins given in the table header and report the results in the table so the margins are just indicative.

Hence, when we examine the influence of thresholds (showed in Table 5.12 and Table 5.13) on the performance of  $H_k$ -medoids we meet our expectations. The cost of the  $H_k$ -medoids increases as the percentage of uncertain objects rises (see section 3.5.2) as shown in Table 5.13. Table 5.13 has the actual running time measured in seconds for all the 14 set of experiments including four grouping systems for the cancer dataset, four fusion matrices for the plants dataset, three grouping systems for the journal dataset, two fusion matrices for the papers dataset and one fusion matrix for the celebrities dataset.

This section gives us some empirical justification for our selected thresholds consider-

| margins limits<br>for uncertain objects | objects≤5% | 5%<objects≤10% | 10%<objects≤20% | 20%<objects≤35% | 35%<objects≤50% | 50%<objects≤75% |
|-----------------------------------------|------------|----------------|-----------------|-----------------|-----------------|-----------------|
| <b>The cancer dataset</b>               |            |                |                 |                 |                 |                 |
| NICE                                    | 0.4685     | 0.53250        | 0.7021          | 0.7494          | 0.5891          | 0.5325          |
| GS-1                                    | 0.4850     | 0.51583        | 0.6358          | 0.7325          | 0.6616          | 0.5969          |
| GS-2                                    | 0.3085     | 0.36660        | 0.4431          | 0.4850          | 0.3785          | 0.4230          |
| MC                                      | 0.4066     | 0.48250        | 0.5307          | 0.5004          | 0.4875          | 0.5494          |
| <b>The plants dataset</b>               |            |                |                 |                 |                 |                 |
| FM                                      | 0.51       | 0.52           | 0.57            | 0.72            | 0.58            | 0.60            |
| FM-NoRare                               | 0.62       | 0.62           | 0.74            | 0.85            | 0.76            | 0.66            |
| FM-NoRare-Reduced                       | 0.57       | 0.58           | 0.63            | 0.86            | 0.71            | 0.71            |
| FM-Reduced                              | 0.58       | 0.61           | 0.78            | 0.83            | 0.81            | 0.77            |
| <b>The journals dataset</b>             |            |                |                 |                 |                 |                 |
| IF                                      | 0.3200     | 0.3926         | 0.3907          | 0.4222          | 0.3800          | 0.3841          |
| ES                                      | 0.6852     | 0.7062         | 0.7259          | 0.8222          | 0.6296          | 0.6444          |
| AI                                      | 0.4893     | 0.4963         | 0.5337          | 0.5926          | 0.5333          | 0.5093          |
| <b>The papers dataset</b>               |            |                |                 |                 |                 |                 |
| FM                                      | 0.4233     | 0.5300         | 0.6300          | 0.7233          | 0.5000          | 0.3500          |
| FM-NoRare                               | 0.4633     | 0.5833         | 0.6133          | 0.7333          | 0.6567          | 0.4300          |
| <b>The celebrities dataset</b>          |            |                |                 |                 |                 |                 |
| FM                                      | 0.32       | 0.41           | 0.62            | 0.62            | 0.45            | 0.52            |

Table 5.12: Certainty thresholds sensitivity and their effect on Hk-medoids performance: performance on the five datasets: cancer, plants, journals, papers and celebrities dataset is measured by Jaccard coefficients. The first raw indicates the thresholds margins range.

| margins limits<br>for uncertain objects | objects≤5% | 5%<objects≤10% | 10%<objects≤20% | 20%<objects≤35% | 35%<objects≤50% | 50%<objects≤75% |
|-----------------------------------------|------------|----------------|-----------------|-----------------|-----------------|-----------------|
| <b>The cancer dataset</b>               |            |                |                 |                 |                 |                 |
| NICE                                    | 0.0200238  | 0.0358446      | 0.090856        | 0.265991        | 1.069387        | 2.392394        |
| GS-1                                    | 0.0360720  | 0.0634855      | 0.091641        | 0.220607        | 1.001270        | 2.021214        |
| GS-2                                    | 0.0283484  | 0.0546670      | 0.094189        | 0.193269        | 0.950642        | 2.158189        |
| MC                                      | 0.0572720  | 0.0760780      | 0.092765        | 0.175929        | 0.904731        | 1.915334        |
| <b>The plants dataset</b>               |            |                |                 |                 |                 |                 |
| FM                                      | 0.005024   | 0.005178       | 0.006314        | 0.006175        | 0.009408        | 0.018353        |
| FM-NoRare                               | 0.00405    | 0.005885       | 0.006004        | 0.006030        | 0.009114        | 0.012870        |
| FM-NoRare-Reduced                       | 0.041581   | 0.004302       | 0.005233        | 0.005926        | 0.008987        | 0.010787        |
| FM-Reduced                              | 0.004051   | 0.004775       | 0.005941        | 0.006350        | 0.008064        | 0.011980        |
| <b>The journals dataset</b>             |            |                |                 |                 |                 |                 |
| IF                                      | 0.006392   | 0.006967       | 0.007379        | 0.006851        | 0.012160        | 0.015225        |
| ES                                      | 0.006164   | 0.007556       | 0.007441        | 0.007501        | 0.015331        | 0.016213        |
| AI                                      | 0.005092   | 0.005972       | 0.006317        | 0.006707        | 0.011062        | 0.016044        |
| <b>The papers dataset</b>               |            |                |                 |                 |                 |                 |
| FM                                      | 0.004942   | 0.006105       | 0.009425        | 0.008335        | 0.015062        | 0.019532        |
| FM-NoRare                               | 0.003167   | 0.004965       | 0.007044        | 0.008053        | 0.015740        | 0.031405        |
| <b>The celebrities dataset</b>          |            |                |                 |                 |                 |                 |
| FM                                      | 0.004353   | 0.005043       | 0.00687         | 0.006441        | 0.010893        | 0.010587        |

Table 5.13: Certainty thresholds sensitivity and their effect on on Hk-medoids execution cost. Running time is computed in seconds for the five datasets: cancer, plants, journals, papers and celebrities. The first raw indicates the thresholds margins range.

ing between 10% and 35% of the objects as uncertain. Our choice gives a balance between performance and execution time. Moreover, the same conclusion was drawn for the SMF approach when we studied the effect of different thresholds on the performance.

## 5.8 Chapter summary

In this chapter, we investigated the challenge of clustering heterogeneous data using our proposed clustering algorithm. We introduced  $Hk$ -medoids, an adapted version of the standard  $k$ -medoids algorithm. The adaptation refers to the capability to handle the problem of clustering objects that are described by a diversity of data types, heterogeneous data, while utilising the uncertainty information generated by the distance measuring process. The implementation proposed here incorporates uncertainty expressions initially suggested by the intermediate fusion approach, SMF, into the  $k$ -medoids algorithm. Although in SMF we found a method for recording uncertainty in the fusion process, in Chapter 4 we did not use this information to our advantage.  $Hk$ -medoids, explores a variation in the standard clustering algorithm that has enabled us to produce more accurate results by taking the uncertainty into account while also speeding up the clustering process.

We have experimentally evaluated the potential of our proposed algorithm using five datasets. These are: prostate cancer, plants,journals, papers and celebrities. Our heterogeneous objects are represented by standard data, text, time series and images in various combinations. Also, these five dataset that are compiled for our experimentation all are available to other researchers.

The results are reported using external validity coefficients and differences are tested for statistical significance. Our results showed that  $Hk$ -medoids produced equal or better performance compared to the standard SMF approach. In some cases, though not in all,  $Hk$ -medoids produces significantly better result than SMF. Additionally,  $Hk$ -medoids outperformed clustering using the best individual matrix in a majority of cases. It is still worth noting that identifying the best individual DM may not be feasible in real scenarios,

hence for those the SMF approach would hold promise. Another important feature in our implementation is that we adapted  $k$ -medoids that is known as less sensitive to outliers compared to other popular clustering techniques. Moreover, our proposed algorithm deals with uncertainty that arises from the disagreement between DMs, calculated as DFM, which may tackle noise in the data. All this increases the credibility of our proposal.

With regards to the comparisons between the time cost of our proposed  $Hk$ -medoids against the standard PAM implementation of  $k$ -medoids, our algorithm performs better in terms of computation time, in all cases. Since the certainty parameter plays an essential role in our proposal, we tested practically how we can set up this parameter to gain a performance advantage. Our experimentation leads us to conclude that values that correspond to 10%-35% uncertain objects showed good results so we consider those the acceptable margins. Nonetheless, others implementing our approach may wish to experiment within those margins but also possibly outside those margins.

We have experimented with intermediate data fusion to cluster heterogeneous data through both SMF and  $Hk$ -medoids. The next step is to investigate how a late data fusion approach can deal with this kind of problem. In late fusion we will perform clustering analysis separately on each data type and then at a later stage we arrive to the final clustering result by some form of ensemble.

# Chapter 6

## Clustering heterogeneous data using late fusion

The performance of the late data fusion approach on heterogeneous data is examined here on five heterogeneous datasets: the prostate cancer dataset, the plant dataset, the papers dataset, the journals dataset and the celebrities dataset. Descriptions of the experimented datasets are given in Section 3.7, in addition to information about how the data preparation process was conducted on each dataset. In this chapter, we explain the experimental set up for late fusion in section 6.1. This is followed by the experimental results for each dataset. The results include clustering configurations, performance validation assessment and comparisons to the results obtained by the intermediate fusion approach. We then present a comparison summary of all experimented clustering approaches along with comprehensive statistical tests in Section 6.7. Section 6.8, provides a summary of this chapter.

### 6.1 Experimental set up

The aim of these set of experiments is to examine if cluster ensembles can be used to boost the quality of clustering results, that is, we will combine a set of partitions obtained from applying clustering analysis to a partial definition of the heterogeneous objects. In

this sense, we will be performing late fusion as the fusion will occur after the model development. To test this scenario, we run a clustering algorithm several times, each time we cluster according to an individual element from those that define the objects in full. Nevertheless, each clustering algorithm has access to all objects. We produced these partitions for two reasons: as a generational step to begin the ensemble method and also to compare the results of the individual clustering to the aggregated configurations according to both intermediate and late fusion techniques. We begin by discussing the cluster ensembles including the design of the individual ensemble members, the methods by which the individual clustering results are combined and how the final configurations are assessed.

In the generation stage, we employ the standard  $k$ -medoids algorithm in order to be consistent and to produce comparable results to those previously obtained by the intermediate fusion approaches.  $k$ -medoids is applied several times to cluster objects in the heterogeneous dataset; each run is intended to build the clustering model in relation to an individual element (e.g. a text element or an image element). The algorithm in each run works on a pre-computed DM for the selected element. In order to create DMs, we select the same distance measures that we previously used in the intermediate fusion approach for all the experimented datasets as all the selected methods have shown good performance in different clustering tasks. As a reminder to the reader, for SD element, we choose the Standardized Euclidean distance; for TE elements, we use the Cosine calculation; for TSs, we use Dynamic Time Warping (DTW); and for IE, we use the GIST.

Hence, for each experimented dataset we apply  $k$ -medoids to every DM that represents similarity calculations between objects by means of one of its element. Thus, we produced  $M$  lists of clustering labels, each reporting how the algorithm allocates objects to clusters according to an individual element. Next, we move to the aggregation stage, in which we combined the generated  $M$  lists of labels in order to create the final clustering results.

In the aggregation stage, individual results are integrated to recover the full structure of the data by applying an object co-occurrence matrix technique. Object co-occurrence matrix technique is explained in details in Section 2.6.2. In general, this type of ensemble

technique analyses the pre-produced  $M$  label lists and examines how many times an object belongs to one cluster or how many times two objects belong together in the same cluster. Explicitly, it maps the partitions (i.e.  $M$  lists) in the cluster ensemble into an intermediate representation, called the co-association similarity matrix. This matrix can be considered as a  $N \times N$  new matrix that measures pair-wise similarity between the  $N$  objects  $\in H$ . Generally speaking, the more objects appear in the same clusters, the more similar they are considered. We use three different methods to estimate similarities between objects using the  $M$  label lists: Connected-Triple-based Similarity (*CTS*) [139], SimRank-based Similarity (*SRS*) [127] and Approximate SimRank-based Similarity (*ASRS*) [120] matrices. A description of these three similarity matrices can be found in Section 3.5.3. *CTS*, *SRS* and *ASRS* are all improved techniques to measure the similarity compared to the original co-occurrence matrix [79], which ignores in its calculations the similarity amongst clusters.

Using the co-association matrices, *CTS*, *SRS* and *ASRS*, as the similarity measure, we estimate the aggregated similarity between the objects. The constant decay factor or the level of confidence with which two non-identical clusters can be accepted as similar is  $\in (0,1]$ . In our work, it was set to 0.8. The choice of the constant decay factor was made according to its definition and role in the calculations. Moreover, it has been set it to 0.8 in several works [127, 120].

After acquiring the final similarity matrices, their quality is typically assessed using internal validity indices, which evaluate the potential of the matrices to produce good configuration using only quantities and features of the clustering solution measurable from the dataset without reference to external information. In order to be consistent with the previous experiments, we use the Dunn index. A large value of the Dunn index signifies compact and well-separated clusters.

The final clustering solution is obtained by applying any similarity-based clustering algorithm to the similarity matrices obtained in the previous step. According to the recent literature, researchers tend to employ hierarchical clustering algorithms with the co-occurrence matrix techniques. Therefore, we evaluate three different hierarchical ag-

glomerative clustering variants: single-linkage (SL), complete-linkage (CL) and average-linkage (AL). We applied them using the *CTS*, *SRS* and *ASRS* similarity matrices.

To validate the final clustering results, we use external indices Jaccard, Rand and Dice's, to be consistent with validation of intermediate fusion. Since, in the ensemble process we examine three different similarity matrices with three different hierarchical clustering algorithms, we need to show the results in an appropriate way for simplification reasons. Thus we report only the outcomes of the settings that generated the best configurations for each external index. This is so that we can compare the best late fusion performance with intermediate fusion. So for each validation index, the combination of similarity matrix and clustering algorithm that produced best results for all databases becomes number 1, then 2, etc. This ranking system therefore decides on the best settings by investigating the results of all the five datasets and all their classifications (or a combination between the individual DMs). Table 6.1 shows the results of ranking in this way.

|    | Jaccard    |            |             | Dice's     |            |             | Rand       |            |             |
|----|------------|------------|-------------|------------|------------|-------------|------------|------------|-------------|
|    | <i>CTS</i> | <i>SRS</i> | <i>ASRS</i> | <i>CTS</i> | <i>SRS</i> | <i>ASRS</i> | <i>CTS</i> | <i>SRS</i> | <i>ASRS</i> |
| SL | 1          |            |             | 1          |            |             | 1          |            |             |
| AL |            |            | 2           |            |            | 2           |            | 3          |             |
| CL | 3          |            |             | 3          |            |             | 2          |            |             |

Table 6.1: The ensemble settings that produced the best clustering results: clustering algorithm are presented in rows, similarity matrices are presented in columns. The ranking is given for each external index individually.

Based on, Table 6.1, all three validation methods put *CTS* matrix with single-linkage as best ensemble for all the conducted experiments. Also, we can observe that Jaccard and Dice's coefficients rank *ASRS* and average-linkage hierarchical algorithms in position 2. For Rand, positions 2 and 3 are different from the other two validity measures. Subsequently, we presented the late fusion results in the following sections according to the majority judgment (Jaccard and Dice's). Full results of all experiments for all the five evaluated datasets are presented in Appendix B.

Finally, we apply a *z*-test and calculate *p* values in order to establish if the differences

in performance between the late fusion and other approaches are statistically significant. We compare the difference in performance using the Jaccard calculations in order to be consistent with the previous chapters. Note that as the nature of  $k$ -medoids implies that we may get different results with different initialisations, we applied each algorithm 50 times. In the results we report the best outcome for each experiment out of 50 runs.

## 6.2 The results of the cancer dataset

A description of the cancer heterogeneous dataset is given in Section 3.7.1. In brief, after the data preparation processes, this dataset includes about 1,598 male patients diagnosed with prostate cancer. Every patient is described by 24 elements derived from two data types: one SD element and 23 distinct TSs. There are four different categorization systems that were used to label the patients. These are: NICE, GS-1, GS-2 and MC. Patients are grouped into three classes according to the first two systems and four classes following the other two.

First, we produce 24 DMs that reflect the distances between objects using the selected distance measures, mentioned in Section 6.1. We compute the DMs for each of the 24 elements to express separately the distance between objects in relation to the 24 elements. Next, we start the generation process by applying  $k$ -medoids clustering algorithm to each of the pre-calculated 24 DMs. The process is repeated to generate  $k = 3$  and  $k = 4$  clusters to match our grouping systems. The result of the generation step is 24 distinct lists of object labels used then in the aggregation step. After that, we conduct the aggregation step, as explained earlier, using different settings, including both different similarity measures and different hierarchical clustering algorithms. The Dunn index was examined for the three matrices, when  $k = 3$ , and the coefficients were 0.38440, 0.01669 and 0.19897, for *CTS*, *SRS* and *ASRS* respectively. The same was concluded when  $k = 4$ . The hierarchical clustering algorithms used *SL*, *CL* and *AL* to produce the aggregated configuration.

We then measured performances on the aggregated clustering results by computing Jaccard, Dice's and Rand index for every one of the nine experimented combinations

between the similarity matrices and the clustering algorithms. This was done for each of the categorization systems, NICE, GS-1, GS-2 and MC, separately. In Table 6.2 we present results of the clustering ensemble for the combination settings that produced the best results for all the experimented datasets according to the ranking presented in Table 6.1. Appendix B gives the full representation of the results of all the nine settings.

| grouping system | ensemble setting | Jaccard        | Dice's         | Rand           |
|-----------------|------------------|----------------|----------------|----------------|
| NICE            | SL + CTS         | <b>0.50501</b> | <b>0.50249</b> | 0.49007        |
|                 | CL + CTS         | 0.43680        | 0.46627        | <b>0.49441</b> |
|                 | AL + ASRS        | 0.50313        | 0.50156        | 0.48998        |
| GS-1            | SL + CTS         | <b>0.71464</b> | <b>0.58836</b> | <b>0.57082</b> |
|                 | CL + CTS         | 0.61577        | 0.55188        | 0.54675        |
|                 | AL + ASRS        | 0.71339        | 0.58793        | 0.56964        |
| GS-2            | SL + CTS         | 0.37109        | 0.42600        | 0.31690        |
|                 | CL + CTS         | 0.28223        | 0.36080        | <b>0.5068</b>  |
|                 | AL + ASRS        | <b>0.37234</b> | <b>0.42683</b> | 0.31679        |
| MC              | SL + CTS         | 0.01814        | 0.03502        | 0.43149        |
|                 | CL + CTS         | <b>0.41927</b> | <b>0.45609</b> | <b>0.46802</b> |
|                 | AL + ASRS        | 0.01877        | 0.03619        | 0.43088        |

Table 6.2: Summary of the performance of clustering ensemble for the cancer dataset: the table reports Jaccard, Dice's and Rand coefficients for the selected ensemble setting combinations. The statistics are organised by the four grouping systems, NICE, GS-1, GS-2 and MC. Best performance for every grouping system and index is highlighted in bold

From Table 6.2, we can observe that Jaccard and Dice's indices coincide in their assessment and show similar good performance for the SL and CTS combinations. Rand index favours CL+ CTS more often.

In addition, in Table 6.3, we compare late fusion with the SMF approach (see Section 4.3) and  $H_k$ -medoids (see Section 5.2) using Jaccard as a representative index. The table also reports the performances of the SD element and the best time-series element. Therefore, Table 6.3 summarises the difference in performances of the intermediate and the late fusion approaches when they were executed on the prostate cancer dataset compared to the performance of individual DMs.

| grouping system | Individual DMs |         | Intermediate fusion |               | Late fusion ensemble |
|-----------------|----------------|---------|---------------------|---------------|----------------------|
|                 | SD             | best TS | SMF                 | Hk-medoids    |                      |
| <b>NICE</b>     | 0.3335         | 0.5119  | 0.5382*             | <b>0.7021</b> | 0.5050               |
| <b>GS-1</b>     | 0.4230         | 0.5569  | 0.5651              | 0.6358*       | <b>0.7146</b>        |
| <b>GS-2</b>     | 0.2829         | 0.3767  | 0.4061*             | <b>0.4431</b> | 0.3723               |
| MC              | 0.3191         | 0.3899  | 0.4781*             | <b>0.5307</b> | 0.4193               |

Table 6.3: Summary of the performance of individual DMs intermediate and late fusion approaches which were examined in order to apply cluster analysis to the cancer dataset: the table compares the performances, calculated by Jaccard coefficients, of the SD element, best TS element, SMF approach, Hk-medoids algorithm and the best results obtained by late fusion for the cancer dataset. The statistics are organised by the four grouping systems. The best results for each grouping system are highlighted in bold while the second best approach is highlighted with \*.

In general, Table 6.3 suggests that Hk-medoids algorithm outperforms all the other approaches, except for GS-1 classification system. Also, we can observe that SMF comes in second place for the experimented approaches after Hk-medoids (highlighted with \* in the table). Thus, we can conclude that for this database intermediate fusion including SMF and Hk-medoids produces better clustering results than the best individual DMs and the late fusion approach. To validate this important conclusion, we have tested if the differences between performances are significant. All  $p$  values that compare the performance of late fusion and the best two approaches (highlighted in bold or by \* in the table) are  $< 0.05$  which indicates significant difference between Jaccard calculations. In the case of GS-1 grouping, the significant difference in favor of the late fusion.

### 6.3 The results of the plants dataset

The plants dataset has 100 plants. Each plant in this dataset is described by three data types: SD, TE and IE. A full description of the data is given in Section 3.7.2. Plants objects are classified into three pre-defined classes. We have 42 fruit plants, 22 roses and 36 types of grass. The labelled objects will enable us to assess and compare the performances using external validation methods.

The first step of the cluster ensemble framework is to establish cluster ensemble mem-

bers. In order to do that, we first produced five individual DMs using the selected measures (see Section 6.1). Each one was used to estimate similarities between objects in relation to: SD, TE, TE elements without rare terms, IE and IE element with reduced colours. Second, we created five lists of labels using  $k$ -medoids as a base clustering algorithm with  $k = 3$  clusters. The output produced from this step is a  $100 \times 5$  matrix of cluster labels for 100 data objects from five base clusterings.

With the cluster ensemble produced from the generation stage, the relationship between any pair of objects is calculated using link-based measures. As before, we examined three similarity matrices (*CTS*, *SRS* and *ASRS*) and three hierarchical clustering methods (SL, CL and AL). These algorithms were applied to all possible combinations of the five DMs in order to combine the three elements in each experiment. We called each of these combinations as follows:

- comb1:  $DM^{SD}$ ,  $DM^{TE}$  and  $DM^{IE}$ ;
- comb2:  $DM^{SD}$ ,  $DM^{TENoRare}$  and  $DM^{IE}$ ;
- comb3:  $DM^{SD}$ ,  $DM^{TENoRare}$  and  $DM^{IEReduced}$ ; and
- comb4:  $DM^{SD}$ ,  $DM^{TE}$  and  $DM^{IEReduced}$ .

The Dunn index for *CTS*, *SRS* and *ASRS* matrices was calculated for each DMs combination where  $k = 3$ . Table 6.4 shows the calculations that were made for all the combinations: comb1, comb2, comb3 and comb4. From the table, *CTS* matrix seems to produce the best clustering results according to Dunn index, while *SRS* seems to be not useful for this task.

For each of the four combinations and for each similarity matrix, we ended up with a  $100 \times 3$  matrix (of cluster labels for 100 objects) produced by three different methods (SL, CL and AL). Next, we computed the external validation methods but we present this here only for the settings that are best ranked as discussed in Section 6.1. In table 6.5, we show the performances using Jaccard, Dice's and Rand index. The full results of all the nine settings is given in Appendix B.

| DMs combination | <i>CTS</i> matrix | <i>SRS</i> matrix | <i>ASRS</i> matrix |
|-----------------|-------------------|-------------------|--------------------|
| <b>comb1</b>    | <b>0.28291</b>    | 0.0               | 0.10660            |
| <b>comb2</b>    | <b>0.27238</b>    | 0.0               | 0.23303            |
| <b>comb3</b>    | <b>0.35560</b>    | 0.0               | 0.12084            |
| <b>comb4</b>    | <b>0.43441</b>    | 0.0               | 0.12084            |

Table 6.4: Summary of the Dunn index that was calculated for the plants dataset: Dunn index was calculated in order to examine the ability of the computed similarity matrices: *CTS*, *SRS* and *ASRS* to produce good results by applying cluster ensemble analysis. The best results for each DMs combinations are highlighted in bold.

| DMs Combination | ensemble setting | Jaccard        | Dice's         | Rand           |
|-----------------|------------------|----------------|----------------|----------------|
| <b>comb1</b>    | SL + <i>CTS</i>  | 0.38000        | 0.43182        | 0.59252        |
|                 | CL + <i>CTS</i>  | 0.38000        | 0.43182        | <b>0.64424</b> |
|                 | AL + <i>ASRS</i> | <b>0.57000</b> | <b>0.53271</b> | 0.63172        |
| <b>comb2</b>    | SL + <i>CTS</i>  | 0.08000        | 0.13793        | 0.64141        |
|                 | CL + <i>CTS</i>  | <b>0.32000</b> | <b>0.39024</b> | <b>0.72505</b> |
|                 | AL + <i>ASRS</i> | 0.04000        | 0.07407        | 0.63152        |
| <b>comb3</b>    | SL + <i>CTS</i>  | <b>0.53000</b> | <b>0.51456</b> | <b>0.63657</b> |
|                 | CL + <i>CTS</i>  | 0.09000        | 0.15254        | 0.63495        |
|                 | AL + <i>ASRS</i> | 0.37000        | 0.42529        | 0.36343        |
| <b>comb4</b>    | SL + <i>CTS</i>  | <b>0.49000</b> | <b>0.49495</b> | 0.43172        |
|                 | CL + <i>CTS</i>  | 0.08000        | 0.13793        | <b>0.64343</b> |
|                 | AL + <i>ASRS</i> | 0.25000        | 0.33333        | 0.40263        |

Table 6.5: Summary of the performance of clustering ensemble for the plants dataset: the table reports Jaccard, Dice's and Rand coefficients for the selected ensemble settings which combine a hierarchical clustering algorithm (SL, CL or AL) with a similarity matrix (*CTS* or *ASRS*). The statistics are organised by the four combinations of DMs. We used the bold to highlight the setting with the best performance for every DMs combination and according to each validity method. The second best approach is highlighted with \*

From Table 6.5, we can conclude that in a majority of experiments *CTS* with CL or SL algorithms produced the best results. However, for comb1 Jaccard and Dice's put AL algorithm with *ASRS* matrix in the lead.

We compare Jaccard coefficients in Table 6.6 for the late fusion, SMF approach (see Section 4.4) and  $H_k$ -medoids (see Section 5.3). The table also presents the best results obtained by an individual element. Accordingly, Table 6.6 summarises the performances

of the intermediate and late fusion approaches when they were executed on the plants dataset compared to the performance of individual DMs.

| DMs<br>combinations | Individual DMs<br>best DM | Intermediate fusion |             | Late fusion<br>ensemble |
|---------------------|---------------------------|---------------------|-------------|-------------------------|
|                     |                           | SMF                 | Hk-medoids  |                         |
| <b>comb1</b>        | 0.64                      | 0.69*               | <b>0.72</b> | 0.57                    |
| <b>comb2</b>        | 0.76*                     | 0.73                | <b>0.85</b> | 0.64                    |
| <b>comb3</b>        | 0.76                      | 0.85*               | <b>0.86</b> | 0.53                    |
| <b>comb4</b>        | 0.64                      | 0.69*               | <b>0.83</b> | 0.54                    |

Table 6.6: Summary of the performance of individual DMs, intermediate and late fusion approaches for the plants dataset: Jaccard coefficients of the best element, SMF approach, Hk-medoids algorithm and the best results obtained by a clustering ensemble setting. The statistics are organised by the four combinations of DMs. The best results for each DMs combination are highlighted in bold while the second best is highlighted by \*.

Table 6.6 shows that Hk-medoids algorithm outperforms all the other approaches for all the DMs combinations. In addition, we can observe that late fusion is the worse approach for all the combinations. SMF seems to be the second best after the Hk-medoids for all DMs combinations, except for comb2. For comb2, the best individual DM,  $DM^{TENoRare}$ , comes in second place after the Hk-medoids algorithm. Accordingly, in general, the results obtained by intermediate fusion approaches (i.e. SMF and Hk-medoids) are better than the best individual DMs and the late fusion approach. We have tested if the differences between performances are significant in order to validate these results. All  $p$  values indicate significant difference between performance of late fusion and the best two other approaches, i.e. all  $p$  values, calculated using Jaccard index, are  $<0.05$ . The  $p$  values for differences between late fusion and best approach (highlighted in bold in the table) are 0.013312, 0.000328,  $<0.00001$  and  $<0.00001$  for the four DMs combinations respectively.  $p$  values that compare the late fusion and the second best approach (highlighted with \* in the table) were 0.039459, 0.032013,  $<0.00001$  and 0.014629 for comb1, comb2, comb3 and comb4 respectively.

## 6.4 The results of the journals dataset

We have created a dataset of 135 journals in the context of scientometrics analysis. A full description of the data is given in Section 3.7.3. Briefly, objects in this dataset are described by two different data types composed of three elements: structured data, SD, and two time-series, TStoJ and TSfromJ. All objects are classified into pre-defined classes, which facilitates the process of assessing and comparing clustering performances. The objects are classified according to three different classification systems: IF, ES and AI. IF groups journals into five classes while ES and AI group them into three classes.

As a first step, we generated three pair-wise DMs using the selected distance measures, described in Section 6.1. We calculated  $DM^{SD}$ ,  $DM^{TStoJ}$  and  $DM^{TSfromJ}$  for SD, TS to the journal and TS from the journal. Next, we established the cluster ensemble members by creating a list of labels for each element using  $k$ -medoids as a base clustering algorithm. The number of clusters was  $k = 5$  for the IF grouping, and  $k = 3$  for the ES and AI classifications. The output produced from this step is a  $135 \times 3$  matrix of cluster labels for 135 journals from three clusterings.

After the generation step, we begin the late integration strategy as before. Dunn index was computed for these matrices twice, for  $k = 3$  and for  $k = 5$ . However, the values were the same for *CTS*, *SRS* and *ASRS*: 0.14632, 0.0 and 0.0322, respectively. Next, these similarity matrices were used with three hierarchical clustering algorithms: SL, CL and AL.

For the evaluation, we compute three external validation methods: Jaccard, Dice's and Rand indices. Table 6.7 shows the results for the chosen clustering ensemble settings according to the ranking system described in Section 6.1. The full results for all the nine settings are given in Appendix B.

From the statistics presented in Table 6.5, we can observe that the best results for all indices for IF and ES grouping systems were obtained by applying CL and SL algorithms, respectively, with *CTS*. For AI classification, Jaccard and Dice's indices have *CTR* matrix with SL algorithm as best. Rand index puts AL algorithm with *ASRS* matrix in the lead.

| grouping system | ensemble setting | Jaccard        | Dice's         | Rand           |
|-----------------|------------------|----------------|----------------|----------------|
| IF              | SL + CTS         | 0.20741        | 0.29319        | 0.29895        |
|                 | CL + CTS         | <b>0.21481</b> | <b>0.30052</b> | <b>0.31940</b> |
|                 | AL + ASRS        | 0.20741        | 0.29319        | 0.30072        |
| ES              | SL + CTS         | <b>0.65185</b> | <b>0.56592</b> | <b>0.69585</b> |
|                 | CL + CTS         | 0.06667        | 0.11765        | 0.61979        |
|                 | AL + ASRS        | 0.08148        | 0.14013        | 0.66081        |
| AI              | SL + CTS         | <b>0.32593</b> | <b>0.39462</b> | 0.38795        |
|                 | CL + CTS         | 0.23704        | 0.32161        | 0.49033        |
|                 | AL + ASRS        | 0.23704        | 0.32161        | <b>0.49563</b> |

Table 6.7: Summary of the performance of clustering ensembles for the journals dataset: the table reports Jaccard, Dice's and Rand coefficients for the selected ensemble settings, which combine a hierarchical clustering algorithm (SL, CL or AL) with a similarity matrix (CTS or ASRS). The statistics are organised by the three grouping systems: IF, ES and AI. We used bold to highlight the setting with the best performance for every DMs combination and according to each validity method.

It is worth noting that the biggest difference between the results obtained by the best ensemble setting and others occurred for the ES classification.

We compare late fusion and intermediate fusion through the Jaccard coefficients in Table 6.8. The table compares the performances of the clustering ensemble, SMF approach (see Section 4.5) and H<sub>k</sub>-medoids (see Section 5.4). Also, the table presents the best results obtained by clustering individual elements.

| grouping system | Individual DMs best DM | Intermediate fusion SMF | Intermediate fusion H <sub>k</sub> -medoids | Late fusion ensemble |
|-----------------|------------------------|-------------------------|---------------------------------------------|----------------------|
| IF              | 0.34074                | 0.35556*                | <b>0.42222</b>                              | 0.25926              |
| ES              | 0.73333                | 0.79259*                | <b>0.82222</b>                              | 0.68889              |
| AI              | 0.54815*               | 0.53333                 | <b>0.59259</b>                              | 0.46667              |

Table 6.8: Summary of the performance of individual DMs, intermediate and late fusion approaches for the journals dataset: Jaccard coefficients are presented for the best element, SMF approach, H<sub>k</sub>-medoids algorithm and best results obtained by a clustering ensemble. The statistics are organised by the three grouping systems: IF, ES and AI. The best results for each DMs combination are highlighted in bold while the second best approach is highlighted as \*.

Based on Table 6.8, we observe that H<sub>k</sub>-medoids algorithm is the overall best strategy

in all tested systems. The other intermediate approach, SMF, outperformed late fusion and clustering based on individual elements for IF and ES. For AI grouping, the best individual DM,  $DM^{DMToJ}$ , comes in second place after the H<sub>k</sub>-medoids algorithm. Accordingly, in general, the results obtained by intermediate fusion approaches including both: SMF and H<sub>k</sub>-medoids, are promising. Interestingly, clustering ensembles produced the worse performances for all the classification systems. The differences between Jaccard indices for late fusion and H<sub>k</sub>-medoids, show statistical significance with 0.002371, 0.005386 and 0.01904  $p$  values. Comparison between ensemble and the second best approach gave  $p$  values  $> 0.05$  for two grouping systems: IF (0.043173) and ES (0.025827). However, for AI it was 0.08996. Thus, the difference in performance between late fusion and the second best clustering approach was significant, except for AI classification.

## 6.5 The results of the papers dataset

We have established a dataset of about 300 research papers. A paper object is defined by three data types: structured data, SD, time-series, TS and a free text element, TE. A more detailed description of the data is given in Section 3.7.4 and the data dictionary is available in Appendix A. Like the other datasets, all objects here are classified into pre-defined classes. The classes are three research fields: computer science, business economics and health care service. The number of papers belong to each research area is equal.

We used the selected distance measures, as described in Section 6.1, to generate the pairwise DMs, which estimate the distances between objects in relation to the three elements. We calculated  $DM^{SD}$ ,  $DM^{TS}$ ,  $DM^{TE}$  and  $DM^{TENoRare}$ . These matrices are for the SD, TS, TE and TE element without rare terms.

After that, there were two steps leading to the final consensus clustering. First, we ran the base clustering algorithm,  $k$ -medoids, to get a set of base clustering results. Second, various settings of the cluster ensemble were examined, combining the link-based similarity measures with the similarity-based clustering algorithms. In the first step, we

created four lists of labels. The output produced from this step is a  $300 \times 4$  matrix of cluster labels for 300 data objects from four base clusterings (i.e. four individual DMs). In the second step, we examined three similarity matrices:  $CTS$ ,  $SRS$  and  $ASRS$  with three hierarchical clustering techniques:  $SL$ ,  $CL$  and  $AL$ . These algorithms were applied to all possible combinations of the four DMs in a way that combined the three elements in each ensemble experiment. We called each of these combination, comb, and they were:

- comb1:  $DM^{SD}$ ,  $DM^{TS}$  and  $DM^{TE}$ ;
- comb2:  $DM^{SD}$ ,  $DM^{TS}$  and  $DM^{TENoRare}$ .

The Dunn index for  $CTS$ ,  $SRS$  and  $ASRS$  matrices was calculated for both combinations where  $k = 3$ . Table 6.9 shows the calculations that were made for comb1 and comb2. It is clear that  $CTS$  has the potential to perform better than the other two matrices according to Dunn index.

| DMs combination | $CTS$ matrix   | $SRS$ matrix | $ASRS$ matrix |
|-----------------|----------------|--------------|---------------|
| <b>comb1</b>    | <b>0.37376</b> | 0.0          | 0.20678       |
| <b>comb2</b>    | <b>0.35005</b> | 0.0          | 0.22615       |

Table 6.9: Summary of the Dunn index for the papers dataset for similarity matrices:  $CTS$ ,  $SRS$  and  $ASRS$ . The best results for each DMs combinations are highlighted in bold.

For both combinations and for each similarity matrix, we ended up with a  $300 \times 3$  matrix of cluster labels for 300 objects produced by three different clustering algorithms. To evaluate the ensemble results, we computed three external validation methods. Here we only present in Table 6.10 the results of the chosen ensemble settings according to our ranking. The full results of all the nine experimented ensemble settings are given in Appendix B.

By analysing Table 6.10, we can conclude that all the three validation methods agree that  $CTS$  with  $SL$  algorithm produced the best results for comb2. A similar conclusion can be made for comb1 according to Jaccard and Dice's methods.

In Table 6.11 we compare Jaccard coefficients for the tested fusion approaches. Also, we included the performance of the individual element that produced the best results. This

| DMs Combination | ensemble setting | Jaccard        | Dice's         | Rand           |
|-----------------|------------------|----------------|----------------|----------------|
| <b>comb1</b>    | SL + <i>CTS</i>  | <b>0.49000</b> | <b>0.49495</b> | 0.68832        |
|                 | CL + <i>CTS</i>  | 0.26667        | 0.34783        | <b>0.72109</b> |
|                 | AL + <i>ASRS</i> | 0.32000        | 0.39024        | 0.34029        |
| <b>comb2</b>    | SL + <i>CTS</i>  | <b>0.84667</b> | <b>0.62871</b> | <b>0.82305</b> |
|                 | CL + <i>CTS</i>  | 0.27333        | 0.35345        | 0.75483        |
|                 | AL + <i>ASRS</i> | 0.10333        | 0.17127        | 0.63534        |

Table 6.10: Summary of the performance of clustering ensemble for the papers dataset: the table reports Jaccard, Dice's and Rand coefficients for the selected ensemble settings which combine a hierarchical clustering algorithm (SL, CL or AL) with a similarity matrix (*CTS* or *ASRS*). The statistics are organised by two combinations of DM. We used bold to highlight best performance for every combination and according to each validity method.

element was TS, which is one of the DMs that is involved in both combinations and that was also used as one of the ensemble members.

| DMs combinations | Individual DMs best DM | Intermediate fusion |                         | Late fusion ensemble |
|------------------|------------------------|---------------------|-------------------------|----------------------|
|                  |                        | SMF                 | H <sub>k</sub> -medoids |                      |
| <b>comb1</b>     | 0.67000                | 0.68333*            | <b>0.72000</b>          | 0.49000              |
| <b>comb2</b>     | 0.67000                | 0.68333             | 0.73333*                | <b>0.84667</b>       |

Table 6.11: Summary of the performance of individual DMs, intermediate and late fusion approaches for the papers dataset: Jaccard coefficients for the best element, SMF approach, H<sub>k</sub>-medoids algorithm and the best results obtained by a clustering ensemble setting. The statistics are organised by two possible combinations of DMs. The best results for each combination are highlighted in bold while the second best approach is highlighted with \*.

Table 6.11 shows that the H<sub>k</sub>-medoids algorithm outperforms all the other approaches for comb1, while the late fusion approach produced better results for comb2. Intermediate fusion techniques worked better than the late fusion strategy for comb1 experiments. For comb1, the *z*-test and the calculated *p* values reported the difference in performance of late fusion compared to the best approach as significant with  $< 0.00001$  *p* value. Also, for comb2 the test indicated significant difference with 0.000521 *p* value; however that was in favor of the late fusion.

## 6.6 The results of the celebrities dataset

We have created a dataset of the 100 most powerful celebrities in 2013. A celebrity object has a description in the form of SD and another in the form of two distinct TSs. A description of the data is given in Section 3.8 and the data dictionary is presented in Appendix A. Again, the objects here are classified into classes and have ground truth labels. We have 30 actors/actresses, 34 musicians and 46 other celebrity personalities including athletes, directors, producers and authors.

Using the two selected distance measures, as described in Section 6.1, we constructed three DMs that reflect the distances according to each element separately. We calculated  $DM^{SD}$ ,  $DM^{TSWeb}$  and  $DM^{TSYoutube}$ . These matrices are for the following respectively: SD, TS for the trends of Web searches and TS for the trends of Youtube searches.

Next, we started the ensemble generation process by applying  $k$ -medoids clustering algorithm to the pre-calculated three DMs. The result of the generation step was three distinct lists of 100 object labels. Each list allocated the celebrities to the generated clusters according to one of the three elements. It should be noted that, number of clusters,  $k$ , was three as stated in the categorisation system. We then conducted the aggregation step using these lists as ensemble members. Different ensemble settings were experimented with. These are described in Section 6.1. We calculated *CTS*, *SRS* and *ASRS* similarity measures in the ensemble step with values of 0.41893, 0.0 and 0.21653 for the Dunn index respectively. After this, we used *SL*, *CL* and *AL* clustering algorithms in order to find the final aggregated configuration.

After that, we measured the performances by computing Jaccard, Dice's and Rand indices. Table 6.12 shows the results of the late fusion strategy for the three chosen ensemble settings (see Section 6.1). Appendix B gives the full representation of the results for all the nine settings.

From Table 6.12, two of the external validation methods assessed two ensemble settings as equivalent for the celebrities dataset. Explicitly, *SL* algorithm with *CTS* and *AL* algorithm with *ASRS* produced the same quality of aggregated configurations according

| ensemble setting | Jaccard        | Dice's         | Rand           |
|------------------|----------------|----------------|----------------|
| SL + <i>CTS</i>  | <b>0.50000</b> | <b>0.50000</b> | 0.42162        |
| CL + <i>CTS</i>  | 0.15000        | 0.23077        | <b>0.48505</b> |
| AL + <i>ASRS</i> | <b>0.50000</b> | <b>0.50000</b> | 0.42162        |

Table 6.12: Summary of the performance of clustering ensemble for the celebrities dataset. The table reports Jaccard, Dice's and Rand coefficients for the selected ensemble settings which combine a hierarchical clustering algorithm (SL, CL or AL) with a similarity matrix (*CTS* or *ASRS*). We used the bold to highlight the setting with the best performance for every DMs combination and according to each validity method.

to Jaccard and Dice's statistics. Again, Rand has a different conclusion putting CL algorithm with *CTS* at the lead. Therefore, we can conclude that all the three validation methods agree that *CTS* similarity helped to produce the best clustering ensemble results.

Furthermore, in Table 6.13 we compare the performances of the intermediate and the late fusion approaches when they were executed on the celebrities dataset. Here we summarise the results of the clustering ensemble, SMF approach (see Section 4.7), H<sub>k</sub>-medoids (see Section 5.6) and the best results obtained by individual elements. The table shows Jaccard calculations as a representative of the external validation indices.

| <b>Individual DMs</b><br>best DM | <b>Intermediate fusion</b> |                         | <b>Late fusion</b> |
|----------------------------------|----------------------------|-------------------------|--------------------|
|                                  | SMF                        | H <sub>k</sub> -medoids | ensemble           |
| 0.53                             | 0.54*                      | <b>0.62</b>             | 0.50               |

Table 6.13: Summary of the performance of individual DMs, intermediate and late fusion approaches on the celebrities dataset: Jaccard coefficients of the best element, SMF approach, H<sub>k</sub>-medoids algorithm and the best results obtained by a clustering ensemble setting. The best results for each DMs combination are highlighted in bold while the second best approach is highlighted by \*.

Table 6.13 indicates that the cluster ensemble generated the worst performance. In contrast, intermediate fusion techniques seemed to be the best approaches. In particular, for the H<sub>k</sub>-medoid algorithm the difference was considered as significant by the *z*-test with 0.043725 *p* value.

## 6.7 Results evaluation

The Friedman test [80] is a non-parametric test for testing the difference between several related samples. This test with the corresponding post-hoc tests was recommended by a comprehensive recent study by Demsar [48] when conducting comparisons between multiple algorithms over multiple datasets. In his study, Demsar theoretically and empirically examined several parametric and non-parametric statistical methods.

First, the Friedman test ranks the examined approaches separately for each experiment (in each row) from low to high. The best performing approach getting the rank of 1, the second best rank 2, ..., etc. Next, it computes the average rank of approaches, as shown in Table 6.14. From the table, we can see that the ranks themselves give a rough conclusion about the comparison.

| Dataset     | grouping system/<br>DMs combination | Original performance measures |                     |                         | Ranked performance measures |                     |                         |        |        |
|-------------|-------------------------------------|-------------------------------|---------------------|-------------------------|-----------------------------|---------------------|-------------------------|--------|--------|
|             |                                     | Individual DMs                | Intermediate fusion | Late fusion ensemble    | Individual DMs              | Intermediate fusion | Late fusion ensemble    |        |        |
|             |                                     | best DM                       | SMF                 | H <sub>k</sub> -medoids | best DM                     | SMF                 | H <sub>k</sub> -medoids |        |        |
| cancer      | <b>NICE</b>                         | 0.5119                        | 0.5382              | 0.7021                  | 0.5050                      | 3                   | 2                       | 1      | 4      |
|             | <b>GS-1</b>                         | 0.5569                        | 0.5651              | 0.6358                  | 0.7146                      | 4                   | 3                       | 2      | 1      |
|             | <b>GS-2</b>                         | 0.3767                        | 0.4061              | 0.4431                  | 0.3723                      | 3                   | 2                       | 1      | 4      |
|             | <b>MC</b>                           | 0.3899                        | 0.4781              | 0.5307                  | 0.4193                      | 4                   | 2                       | 1      | 3      |
| plants      | <b>comb1</b>                        | 0.6400                        | 0.6900              | 0.7200                  | 0.5700                      | 3                   | 2                       | 1      | 4      |
|             | <b>comb2</b>                        | 0.7600                        | 0.7300              | 0.8500                  | 0.6400                      | 2                   | 3                       | 1      | 4      |
|             | <b>comb3</b>                        | 0.7600                        | 0.8500              | 0.8600                  | 0.5300                      | 3                   | 2                       | 1      | 4      |
|             | <b>comb4</b>                        | 0.6400                        | 0.6900              | 0.8300                  | 0.5400                      | 3                   | 2                       | 1      | 3      |
| journals    | <b>IF</b>                           | 0.3407                        | 0.3556              | 0.4222                  | 0.2593                      | 3                   | 2                       | 1      | 4      |
|             | <b>ES</b>                           | 0.7333                        | 0.7926              | 0.8222                  | 0.6889                      | 3                   | 2                       | 1      | 4      |
|             | <b>AI</b>                           | 0.5482                        | 0.5333              | 0.5926                  | 0.4667                      | 2                   | 3                       | 1      | 4      |
| papers      | <b>comb1</b>                        | 0.67000                       | 0.68333             | 0.72000                 | 0.49000                     | 3                   | 2                       | 1      | 4      |
|             | <b>comb2</b>                        | 0.67000                       | 0.68333             | 0.73333                 | 0.84667                     | 4                   | 3                       | 2      | 1      |
| celebrities |                                     | 0.5300                        | 0.5400              | 0.6200                  | 0.5000                      | 3                   | 2                       | 1      | 4      |
|             |                                     |                               |                     |                         | rank sum                    | 43                  | 32                      | 16     | 48     |
|             |                                     |                               |                     |                         | average rank                | 3.0714              | 2.2857                  | 1.1429 | 3.4286 |

Table 6.14: Ranked measure of the performance of individual DMs intermediate and late fusion approaches: results are summarised for the five datasets. Numbers in the first four columns compare performance calculated by Jaccard coefficients of the best individual DM, SMF approach, H<sub>k</sub>-medoids algorithm and the best results obtained by late fusion. In the last four columns, we rank the performances from 1 to 4 for each experiment separately. The last two rows compute the sum and average of ranks for each clustering approach.

The null hypothesis for the Friedman test is that there are no differences between the performances of our approaches, i.e. their average ranks should be equal. We reject the null-hypothesis if the Friedman statistics,  $F_F$ , is greater than the critical value of the degrees of freedom for the  $\alpha$  value, which can be obtained from any statistical book. When the null-hypothesis is rejected, it can be concluded that at least one of the approaches dif-

fers from the rest significantly. Then we look at post-hoc test results to see which approach differs from others. Technically, Friedman test checks whether the average ranks (the last row in the table) are significantly different from the mean of the ranks. For any particular approach, the mean of the ranks of the 14 experiments is (number of approaches+1)/2, Thus, it is  $(4+1)/2=2.5$ . The Friedman statistics are:

$$\chi_F^2 = \frac{12 \times 14}{4 \times (4+1)} \left[ (3.0714^2 + 2.2857^2 + 1.1429^2 + 3.4286^2) - \frac{4 \times (4+1)^2}{4} \right] = 22.84296$$

$$F_F = \frac{(14-1) \times (22.84296)}{[14 \times (4-1)] - 22.84296} = 15.5013$$

We had four approaches: apply clustering using individual DMs, SMF, H<sub>k</sub>-medoids and clustering ensemble. We also had 14 experiments including different grouping systems/DMs combinations, conducted on five datasets.  $F_F$  is distributed according to the  $F$ -distribution with  $4 - 1 = 3$  and  $(4 - 1) \times (14 - 1) = 39$  degrees of freedom. The critical value of  $F(3.39)$  for the confidence level  $\alpha = 0.05$  is 2.85. Since  $15.5013 > 2.85$ , we reject the null-hypothesis.

Now, we can proceed with a post-hoc test using the Nemenyi test [186] for pairwise comparisons. According to this test, the performance of two experiments is significantly different if the corresponding average rank difference is  $\geq$  critical difference, CD, where critical values are based on the Studentized range statistic divided by  $\sqrt{2}$ . The critical value of Nemenyi test for the confidence level  $\alpha = 0.05$  when we want to study the differences in performances of four approaches is 2.569 and critical difference is:

$$CD = 2.569 \sqrt{\frac{4 \times (4+1)}{6 \times 14}} = 1.25$$

Based on CD value calculated for the confidence level  $\alpha = 0.05$ , we can identify the following:

- The best individual DM performed significantly worse than H<sub>k</sub>-medoids:  $3.0714 - 1.1429 = 1.9285 > 1.25$ .

- Late fusion performed significantly worse than  $H_k$ -medoids:  $3.4286 - 1.1429 = 2.2857 > 1.25$ .
- The difference between  $H_k$ -medoids and SMF was just below CD value so not significant ( $2.2857 - 1.1429 = 1.1428 < 1.25$ ).
- The difference between SMF and the late fusion ensemble was below the CD value so not significant ( $3.4286 - 2.2857 = 1.1429 < 1.25$ )
- The difference between SMF and individual DMs was also below the CD value so not significant ( $3.0714 - 2.2857 = 0.7857 < 1.25$ ).
- The difference between late fusion and individual DMs was also below the CD value ( $3.4286 - 3.0614 = 0.3672 < 1.25$ ).

At the  $\alpha = 0.10$  confidence level the critical value of Nemenyi test for the four approaches in comparison is 2.291 and the critical difference is:

$$CD = 2.291 \sqrt{\frac{4 \times (4+1)}{6 \times 14}} = 1.12$$

According to this CD value,  $H_k$ -medoids performs significantly better than all the other approaches including SMF. In addition, at the confidence level of  $\alpha = 0.10$ , we found that the difference between the performances of SMF and the late fusion is also significant ( $3.4286 - 2.2857 = 1.1429 > 1.12$ ).

A Critical Difference (CD) diagram for the post-hoc Nemenyi test can be established in the form defined by Demsar [48]. These diagrams provide an interesting visualization of the statistical significance in order to compare all approaches against each other. Figure 6.1 shows a diagrams of the results of a Nemenyi post-hoc test. In the resulting graph, the X-axis represents the average rank position of the respective approach across all the five datasets. Horizontal bold lines connect the approaches for which we cannot exclude the hypothesis that their average rank is equal. Any pair of unconnected approaches can be considered as having an average rank that is different with statistical significance. On top of the graph an horizontal line is shown with the critical difference.

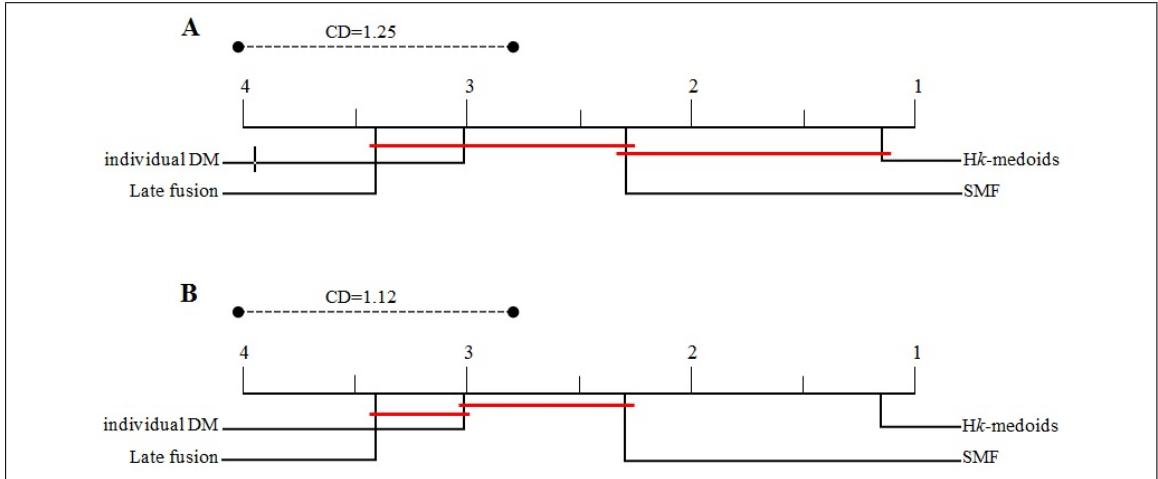


Figure 6.1: Visualization of post-hoc Nemenyi test for the performance of different clustering approaches: In A, groups of approaches that are not significantly different at the confidence level  $\alpha = 0.05$  are connected in red horizontal line. In B, groups of approaches that are not significantly different at the confidence level  $\alpha = 0.10$  are also connected with a red line.

## 6.8 Chapter summary

In this chapter we experimented with a late fusion approach. We examined five datasets that fit within our definition of heterogeneous data in which objects are described by  $M$  elements derived from different data types.

We created clustering ensemble in which the individual  $M$  ensemble members were obtained from the  $M$  data elements separately using the  $k$ -medoids algorithm to be consistent with the experiments in the previous chapters. The aggregation step was then conducted using agglomerative hierarchical clustering algorithms including single-linkage, complete-linkage and average-linkage. Those were applied to consensus similarity matrices  $CTS$ ,  $SRS$  and  $ASRS$ . These matrices fuse the generated  $M$  ensemble members to estimate the similarity between the objects. Next, we computed Dunn index to evaluate the goodness of clustering structures that can be acquired using these consensus similarity matrices. We also calculated external validation indices, Rand, Jaccard and Dice's statistics, to evaluate the performances of the cluster ensembles.

According to the Dunn index,  $CTS$  produced similarity calculations that could lead to

the best ensemble configurations. On the other hand, external validation methods produced two divided perspectives on the best ensemble settings. Jaccard and Dice's always had similar assessments, as previously, while Rand produced different conclusions in about half of the experiments. *CTS* with single-linkage algorithm was preferred by Jaccard and Dice's in 70% of the experiments compared to the other ensemble settings, while Rand put *CTS* with complete-linkage in the lead for its preferred settings. Consequently, external assessment methods validate the Dunn index results about the potential of *CTS* to obtain good performances.

For all the reported results, the intermediate integration strategies presented previously in this thesis proved to be the better than late fusion and than the best results obtained by individual DMs (see Chapter 4). More specifically, our proposed *Hk*-medoids (see Chapter 5) produced better results for all the experimented datasets including their different grouping systems and DMs combinations compared to the best results obtained by the ensemble settings except in two cases. These cases were: GS-1 grouping system in the cancer dataset and comb2 DMs combination in the papers dataset. Nevertheless, in these cases, *Hk*-medoids was the second best approach after the late fusion. Also, in these comparisons intermediate fusion approaches were generally better than the individual DMs. Thus, intermediate fusion has emerged as a good approach for clustering heterogeneous data. Most importantly, all these results were validated statistically via different statistical tests including z-test, and then different approaches were compared on the five databases using a Friedman test and its post-hoc Nemenyi test. The test confirmed that the proposed *Hk*-medoids performs statistically significantly better than the other approaches with a confidence level of  $\alpha = 0.10$ .

# Chapter 7

## Conclusions and further research

In this chapter we look back at the aims of the research and the hypotheses initially formulated and we review how the research undertaken has achieved aims and objective and answered the initial hypothesis. We also report on the recommendations that resulted from this study. Section 7.1 discusses the work undertaken, the findings, and recommendations while Section 7.2 discusses some of the limitations of our research. It also provides pointers to additional related research that should be conducted in the field of applying knowledge discovery techniques to heterogeneous data.

### 7.1 Conclusions

The goal of clustering is to find the underlying structure of a dataset following specific criteria. In this study, we consider the problem of clustering heterogeneous data. Simply stated, the aim of our work is to cluster a set of heterogeneous objects that are defined by a set of elements drawn from different data types. Applying data mining techniques on heterogeneous data has been considered a very challenging machine learning problem recently. The literature covers a few examples but they have not been extensive and many experiments were not verified statistically. Hence till now studies have employ partial or unsatisfactory solutions.

This kind of problem is very dependent on data manipulation, and in particular distance measures used for different data types. There are widely-known methods that can work effectively for each data type and those are the ones we apply and recommend here. An in-depth study of distance measures was considered outside the scope of this research. Hence our research departs from a set of distance measures calculated for objects described by different data types and it focuses on how to amalgamate the information embedded in the distance measure to produce a coherent clustering configuration.

We address the problem of clustering heterogeneous data by trying to find a clustering configuration that uses, as much as it may be beneficial, all of the objects' components. Our assumption is that analysing complex objects using an individual data type may miss some hidden relationships which can be uncovered by looking at the overall description of the object using all available data. In other words, complex (heterogeneous) objects are properly defined by all of their constituent elements, hence clustering of complex objects should take account of all of the data types that inform us of the overall object configuration. We pose the overall objectives of our work in Section 1.3 in terms of examining this hypothesis.

Chapter 2 of this thesis provides background and a literature review of relevant material to our work in relation to clustering. It defines distance measures, the clustering problem clustering evaluation, etc. It gives a summary of some important issues including basic notations (e.g. cluster centroids) and how to select the appropriate number of clusters. This is followed by a comprehensive discussion about clustering algorithms themselves including mathematical definitions and pseudo code. The assessment methods are then explored so that we can validate clustering configurations. In particular, we discussed internal, external and relative validation calculations. The chapter ends with the cluster ensemble section which outlined the two main steps of this technique: members generations and ensemble consensus. After reviewing work on clustering we identified suitable distance measures, clustering algorithms and evaluation methods so we are ready to implement clustering for heterogeneous data.

In Chapter 3 we formally define the problem of clustering heterogeneous data and

present a suitable representation for heterogeneous objects. Our initial definition of heterogeneous objects covers element descriptors of types such as text, image and time series as well as structured data. However, we make our definition extensible to other data types as long as suitable distance measures can be established for them.

In Chapter 3 we also show the connection of our problem with data fusion. This enables us to propose an intermediate fusion approach, Similarity Matrix Fusion or SMF, which includes uncertainty calculations to record the uncertainty arising in the fusion process. SMF provides a fusion of distance measures calculated for the different elements that define an object. The fusion approach can utilise weights to allow certain elements to become more prominent in the distance calculations. The output of SMF is a fused distance matrix, FM, which can be directly fed into a standard clustering algorithm such as  $k$ -medoids. We then extend this idea further by modifying  $k$ -medoids to take advantage of the uncertainty arising from the fusion process. We propose a new algorithm called  $Hk$ -medoids which has an initial phase using only certain objects, and a second phase in which uncertain objects are also considered when the medoids are updated. The resulting algorithm is not only promising in terms of clustering results but theoretically more efficient than the popular PAM implementation of the standard  $k$ -medoids algorithm.

As unfortunately we did not find many readily available large datasets that containing data heterogeneity as we defined it, we have started compiling our own collection and making them publicly available. Note that it is not easy to construct these datasets as it is a semi manual process. Hence, although the number of objects we have gathered is limited in our datasets, they are complex as they are composed of several different elements. Moreover, each dataset comprises different mixtures of elements, e.g. multiple TSs, images, text and SD, etc. Although there are some related similar work in the literature, it was not possible to gain access to the datasets that were examined by other researchers. This was additional motivation to publish our collection to the machine learning research community.

The SMF approach is empirically tested in Chapter 4. In this chapter, we apply SMF to each of the five databases we have compiled for this purpose. SMF is one of our

main contributions so we need to test it extensively. We aggregate multiple pre-calculated distance matrices for our objects before applying a clustering algorithm. We calculated individual dis/similarity measures for each element that defines the object and fuse them to find a single fused matrix. Thus, the fusion takes place within the step of producing a clustering configuration. We present the results obtained by SMF in comparison to the results produced using individual elements to cluster the objects. We experiment with assigning weights to different element by using three external validity indices to establish the best elements. Those elements are then assigned greater weights. Even though in practice this may not be possible, it enables to compare against a best case scenario. We compare results using both external and internal evaluation methods for all datasets. Our findings are that SMF produces results that are equivalent or better to those produced by the best individual elements, even when an element is the one that defines the cluster labels. This is a very positive outcome because in real life we may not know which are the best individual elements so if our combination approach produces equal or better results it should be a preferred option.

Another of our main contributes is the proposed  $Hk$ -medoids algorithm. This clustering algorithm is a modified version of the standard  $k$ -medoids. The modification extends the algorithm for the problem of clustering complex heterogeneous objects. In this algorithm, we use SMF to calculate fused similarities between objects. The fused approach entails uncertainty for incomplete objects or for objects which have diverging distances according to the different component. Our implementation of  $Hk$ -medoids proposed here works with the fused distances and deals with the uncertainty in the fusion process. We experimentally evaluate the potential of our proposed algorithm and compare its results to those obtained by SMF in Chapter 5. In addition, from a theoretical point of view, we argue that our proposed algorithm has lower computation complexity than the popular PAM implementation of the standard  $k$ -medoids. Our results show that  $Hk$ -medoids produces equal or better performance compared to the standard SMF approach. In some cases, though not in all,  $Hk$ -medoids produces significantly better results than SMF. Additionally,  $Hk$ -medoids outperformed clustering using the best individual matrix in a majority of cases. We also validate our claim that  $Hk$ -medoids is more efficient than PAM by pro-

ducing practical evidence on time cost analysis.

Finally and to provide a good comparison, late fusion techniques are experimented with. We study three different similarity methods with three different hierarchical algorithms. Their results are compared to those obtained following both proposed intermediate data fusion approaches. In Chapter 6 we report on the experimental comparison of intermediate and late fusion techniques. The results are followed by statistical tests using the Friedman test and its post-hoc analysis counterpart, to examine the difference between the performances of all the experimented approaches. Our findings are that the proposed intermediary fusion approaches proposed outperform late fusion in most cases. We need to stress on that this conclusion is based on the particular settings that we have arranged for the late fusion experiments. The arrangements include: the ensemble members' generation mechanism, the distance measure used, the aggregation technique, etc. This may indicates to the importance of further investigation on late fusion.

The main outcome of all three results chapters suggest that the intermediate approaches seem to be better than the late fusion techniques implemented. In particularly,  $Hk$ -medoids results show the feasibility of the our algorithm and also they show a performance enhancement when comparing to the application of the SMF approach in combination with  $k$ -medoids. We therefore conclude that an intermediate fusion approach is appropriate for clustering heterogeneous data and that using uncertainty that results from the fusion process can enhance performance and efficiency.

From the above, we conclude we have met the objectives of this study. We provide an extensible definition of data heterogeneity which accepts incomplete objects. We propose intermediate approaches (SMF and  $Hk$ -medoids) and practice late fusion (cluster ensemble) techniques to analyse this kind of data complexity. The main contribution of SMF, besides combining distances when evaluating similarities, is the proposed ways to record uncertainty (UFM and DFM). Furthermore, these calculations are advantageously used in the  $Hk$ -medoids algorithm. The complexity of  $Hk$ -medoids is less than PAM +'small' algorithms as we observed in Chapter 3 (Section 3.5.2) and in practical experiments in Chapter 5 (Section 5.7.1). The flexibility of our definition of heterogeneous data and the

resilience of our proposed clustering framework allows us to fuse the data derived from diverse data types without substantial pre-processing and the clustering results are as good as or better than those obtained from clustering on an individual data type.

## 7.2 Limitations and future work

Despite some researchers working on related studies, they either have a different definition of data heterogeneity (e.g. relying on the inter-linking of data types), work on other data mining tasks (e.g. collaborative filtering), or their approaches are not fully explained. Thus, a comparison against other state-of-art intermediary fusion approaches on the same problem was not possible. This was a limitation of our work. However, we have tried to provide a comprehensive comparison including experiments of our two proposed intermediate fusion techniques, late fusion methods as well as on applying cluster analysis separately to individual data types. Also, to counteract this limitation, we have constructed a number of datasets that are available to other researchers so our results are both reproducible and so that other researchers can in the future produce comparisons with our proposed techniques.

Some of the databases we provided are relatively small because of the laborious process to collect the data. However, the cancer dataset is a larger, real world dataset which gives a glimpse into the behaviour of our algorithms for larger data. We have also provided different elements, e.g. text, images, etc., but there is the potential to experiment much wider with larger datasets containing different data types (e.g. movies, audio clips, etc).

We did not attempt to produce an early fusion strategy as that would have meant modifying the original data to fuse all data elements into one representation. We believe intermediate or late fusion is more applicable and more extendable. However, further research could consider a comparison to an early fusion strategy.

The identification of the optimal number of clusters for applications with no external knowledge of the clustering is an open research issue. We assumed a scenario in which

external knowledge was available but to make the method more applicable to real world data, experimentation when the number of clusters is not known may need to be undertaken.

Although we experimented with some weighting schemes for the different elements this was based on clustering performance. It may be necessary to consider more appropriate weighting schemes for the fusion of distances. A systematic way of giving weights to the elements should be examined, specially for the cases of unlabelled objects. What we have done here, again, may not be appropriate in a real scenario as we may not be able to establish the worth of each element in clustering the data, specially in the absence of external assessment. However, we considered it a worthwhile exercise in order to understand how privileged information about the best contributors could affect the clustering outcome.

We could also examine different techniques for the initialisation of cluster medoids as those can have an effect on overall performance.

Considering the development a consensus function in the late fusion technique that exploits the uncertainty expressions, which we have proposed in the SMF approach, is also one of our future work. In this way, late fusion could perhaps become comparable to  $H_k$ -medoids which makes use of that information.

We could also examine intermediate and late fusion techniques on other knowledge discovery tasks, for example for classification problems. This could be easily achieved if we use classification algorithms that take advantage of distance between objects, such as  $k$ -nearest neighbour algorithms.

# Bibliography

- [1] M. A. Abidi and R. C. Gonzalez. *Data fusion in robotics and machine intelligence*. Academic Press Professional, Inc., San Diego, CA, USA, 1992.
- [2] S. Abiteboul, P. Buneman, and D. Suciu. *Data on the web: from relations to semi-structured data and XML*. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 1999.
- [3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. I. Wiener. The lorel query language for semistructured data. *Decision Support Systems*, 1(1):68–88, 1997.
- [4] E. Acar, M. A. Rasmussen, F. S., T. Naes, and R. Bro. Understanding data fusion within the framework of coupled matrix and tensor factorizations. *Chemometrics and Intelligent Laboratory Systems*, 129(1):53 – 63, 2013.
- [5] A. K. Agogino and K. Tumer. Ensemble clustering with voting active labels. *Pattern Recognition Letters*, 29(14):1947–1953, 2008.
- [6] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. *SIGMOD Rec.*, 27(2):94–105, June 1998.
- [7] A. B. Ahafeeq and K. S. Hareesha. Dynamic clustering of data with modified k-means algorithm. *International Conference on Information and Computer Networks (ICICN)*, 27(1):221–225, 2012.
- [8] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: Ranking and clustering. *J. ACM*, 55(5):23:1–23:27, November 2008.
- [9] O. A. Akeem, T. K. Ogunyinka, and B. L. Abimbola. A framework for multimedia data mining in information technology environment. *International Journal of Computer Science and Information Security (IJCSIS)*, 10(5):69–77, 2012.
- [10] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo. A comparison of extrinsic clustering evaluation metrics based on formal constraints. *Inf. Retr.*, 12(4):461–486, August 2009.
- [11] C. Atkeson, A. Moore, and S. Schaal. Locally weighted learning. *Artificial Intelligence Review*, 11(1):11–73, 1996.

- [12] R. Avogadri and G. Valentini. Ensemble clustering with a fuzzy approach. In O. Okun and G. Valentini, editors, *Supervised and unsupervised ensemble methods and their applications*, volume 126 of *Studies in Computational Intelligence*, pages 49–69. Springer Berlin Heidelberg, 2008.
- [13] H. G. Ayad and M. S. Kamel. Cumulative voting consensus method for partitions with variable number of clusters. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 30(1):160–173, January 2008.
- [14] J. Baarsch and M. E. Celebi. Investigation of internal validity measures for k-means clustering. In *Proceedings of the International MultiConference Engineers and Computer Scientists (IMECS)*, pages 471–476, Hong Kong, China, 2012.
- [15] R. A. Baeza-Yates and B. Ribeiro-Neto. *Modern information retrieval*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.
- [16] A. J. Bagnall and G. J. Janacek. Clustering time series from arma models with clipped data. In *Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '04, pages 49–58, New York, NY, USA, 2004. ACM.
- [17] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. *Journal of Computational Biology*, 6(3):281–297, 1999.
- [18] A. Berkhin. A survey of clustering data mining techniques. In J. Kogan, C. Nicholas, , and M. Teboulle, editors, *Grouping multimedimentional data, recent advances in clustering*, pages 25–71. Springer Berlin Heidelberg, 2006.
- [19] D. J. Berndt and J. Clifford. Finding patterns in time series: A dynamic programming approach. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, *Advances in knowledge discovery and data mining*, pages 229–248. American Association for Artificial Intelligence, Menlo Park, CA, USA, 1996.
- [20] M. J. A. Berry. *Data mining techniques: for marketing, sales and customer relationship management*. Indianapolis, Wiley, 2ed edition, 2004.
- [21] J. H. Bettencourt-Silva, B. de la Iglesia, S. Donell, and V. Rayward-Smith. On creating a patient-centric database from multiple hospital information systems in a national health service secondary care setting. *Methods of Information in Medicine*, 51(3):6730–6737, 2012.
- [22] J. C. Bezdek. Numerical taxonomy with fuzzy sets. *Journal of Mathematical Biology*, 1(1):57–71, 1974.
- [23] J. C. Bezdek and N. R. Pal. Numerical taxonomy with fuzzy sets. *IEEE Transactions on System, Man and Cybernetics, Part B: Cybernetics*, 28(3):301–315, 1998.

- [24] T. D. Bie, L. Tranchevent, L. M. M. van Oeffelen, and Y. Moreau. Kernel-based data fusion for gene prioritization. In *Proceedings of ISMB/ECCB Conference*, volume 23, pages 125–132, 2007.
- [25] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. *Journal of Machine Learning Research*, 3(1):993–1022, March 2003.
- [26] R. Bonner. On some clustering techniques. *IBM Journal of Research and Development*, 8(1):22–32, 1964.
- [27] H. Boström, S. F. Andler, M. Brohede, R. Johansson, A. Karlsson, J. van Laere, L. Niklasson, M. Nilsson, A. Persson, and T. Ziemke. On the definition of information fusion as a field of research. Technical report, Institutionen för kommunikation och information, 2007.
- [28] P. Calado, M. Cristo, M. A. Gonçalves, E. S. de Moura, B. A. Ribeiro-Neto, and N. Ziviani. Link-based similarity measures for the classification of web documents. *Journal of the American Society for Information Science and Technology*, 57(2):208–221, 2006.
- [29] T. Calinski and J. Harabasz. A dendrite method for cluster analysis. *Communications in Statistics*, 3(1):1–27, 1974.
- [30] Longbing Cao, Philip S. Yu, Chengqi Zhang, and Huaifeng Zhang. *Data mining for business applications*. Springer Publishing Company, Incorporated, 1 edition, 2008.
- [31] S. Carrato and S. Marsi. Parallel structure based on neural networks for image compression. *Electronics Letters*, 28(12):1152–1153, June 1992.
- [32] S. H. Cha. Comprehensive survey on distance/similarity measures between probability density functions. *International Journal of Mathematical Models and Methods in Applied Sciences*, 4(1):300–307, 2007.
- [33] T. Y. Chan, A. W. Partin, P. C. Walsh, and J. I. Epstein. Prognostic significance of gleason score 3+4 versus gleason score 4+3 tumor at radical prostatectomy. *Urology*, 56(5):823 – 827, 2000.
- [34] Y. Chang, D. Lee, Y. Hong, J. K. Archibald, and D. Liang. A robust color image quantization algorithm based on knowledge reuse of k-meansclustering ensemble. *Journal of Multimedia*, 3(2):20–27, 2008.
- [35] M.l Chau, R. Cheng, B. Kao, and J. Ng. Uncertain data mining: An example in clustering location data. In *Proceedings of the 10th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining*, PAKDD’06, pages 199–204, Berlin, Heidelberg, 2006. Springer-Verlag.

- [36] S. Chelcea, A. Silva, Y. Lechevallier, D. Tanasa, and B. Trousse. Pre-processing and clustering complex data in e-commerce domain. In *Proceedings of the First International Workshop on Mining Complex Data*, pages 1–7, Houston, Texas, 2005.
- [37] S. S. Choi, S. H. Cha, and C. C. Tappert. A survey of binary similarity and distance measures. *Pattern Recognition*, 22(4):43–48, 2010.
- [38] A. Cichocki, R. I. Zdunek, A. H. Phan, and S. Amari. *Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation*. Wiley Publishing, 2009.
- [39] B. F. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and M. Shadmon. A fast index for semistructured data. In *Proceedings of the 27th VLDB Conference*, pages 341–350, Roma, Italy, 2001.
- [40] G. Cormode and A. McGregor. Approximation algorithms for clustering uncertain data. In *Proceedings of the Twenty-seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems*, PODS ’08, pages 191–200, New York, NY, USA, 2008. ACM.
- [41] S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with symbolic features. *Machine Learning*, 10:57–78, 1993.
- [42] T. Cover and P. Hart. Nearest neighbor pattern classification. *IEEE Transactions on Information Theory*, 13(1):21–27, January 1967.
- [43] M. A. Dalal, N. D. Harale, and U. L. Kulkarni. An iterative improved k-means clustering. *ACEE International Journal on Network Security*, 2(3):45–48, 2011.
- [44] M. A. Dalal and U. L. Kulkarni. Data clustering. In *Proceeding of the International Conference on Computing Applications - Database Systems*, pages 57–62, Pondicherry, India, 2011.
- [45] B. V. Dasarathy. Information fusion, data mining, and knowledge discovery. *Information Fusion*, 4(1):1–2, 2003.
- [46] DataMystic. textpipe. <http://www.datamystic.com/textpipe>. Accessed: 2015-06-12.
- [47] D. L. Davies and D. W. Bouldin. A cluster separation measure. *IEEE Transaction on Pattern Analysis and Machine Intelligence*, 1(2):224–227, 1979.
- [48] J. Demšar. Statistical comparisons of classifiers over multiple data sets. *The Journal of Machine Learning Research*, 7(1):1–30, December 2006.
- [49] T. Denoeux. A k-nearest neighbor classification rule based on dempster-shafer theory. *IEEE transactions on systems, man and cybernetics*, 25(5):804–813, 1995.
- [50] T. Deselaers, D. I. Keysers, and H. Ney. Features for image retrieval: An experimental comparison. *Information retrieval*, 11(2):77–107, April 2008.

- [51] I. S. Dhillon and S. Inderjit. Co-clustering documents and words using bipartite spectral graph partitioning. In *Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '01, pages 269–274, New York, NY, USA, 2001. ACM.
- [52] I. S. Dhillon, S. Mallela, and D. Modha. Information-theoretic c-oclustering. In *Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 89–98, Washington, DC, USA, 2003.
- [53] I. S. Dhillon and D. Modha. A data clustering algorithm on distributed memory multiprocessors. In *5th ACM SIGKDD, Large-scale Parallel KDD Systems Workshop*, pages 245–260, San Diego, CA, 1999.
- [54] L. R. Dice. Measures of the amount of ecologic association between species. *Ecology*, 26(3):297–302, 1945.
- [55] E. Diday and J. C. Simon. Clustering analysis. In K. S. Fu, editor, *Digital Pattern Recognition*, pages 47–94. Springer-Verlag, Secaucus, NJ, 1976.
- [56] T. G. Dietterich. Ensemble methods in machine learning. In *Proceedings of the first International Workshop on Multiple Classifier Systems*, MCS '00, pages 1–15, London, UK, UK, 2000. Springer-Verlag.
- [57] W. R. Dillon and M. Goldstein. *Multivariate Analysis: Methods and Applications*. John Wiley and Sons, 1984.
- [58] E. Dimitriadou, A. Weingessel, and K. Hornik. Voting-merging: an ensemble method for clustering. In G. Dorffner, H. Bischof, and K. Hornik, editors, *Artificial neural networks-ICANN 2001*, volume 2130 of *Lecture Notes in Computer Science*, pages 217–224. Springer Berlin Heidelberg, 2001.
- [59] E. Dimitriadou, A. Weingessel, and K. Hornik. A combination scheme for fuzzy clustering. In N. Pal and M. Sugeno, editors, *Advances in Soft Computing (AFSS 2002)*, volume 2275 of *Lecture Notes in Computer Science*, pages 332–338. Springer Berlin Heidelberg, 2002.
- [60] C. Domeniconi and M. Al-Razgan. Weighted cluster ensembles: Methods and analysis. *ACM Transactions on Knowledge Discovery from Data*, 2(4):17:1–17:40, January 2009.
- [61] R. Dubes and A.K. Jain. Validity studies in clustering methodologies. *Patterns Recognition*, 11(1):235–234, 1979.
- [62] S Dudoit and J Fridlyand. Bagging to improve the accuracy of a clustering procedure. *Bioinformatics*, 19(9):1090–1099, 2003.
- [63] J. C. Dunn. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. *Journal of Cybernetica*, 3(1):32–57–, 1973.

- [64] B. S. Duran and P. L. Odell. *Cluster Analysis: a Survey*. Springer-Verlag, New York, 1974.
- [65] D. C. Duro, S. E. Franklin, and M. G. Dubé. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using spot-5 {HRG} imagery. *Remote Sensing of Environment*, 118(3):259 – 272, 2012.
- [66] M. Easter, H. P. Kriegel, J. Sander, and X. Xiaowei. A density-based algorithm for discovering clusters in large spatial databases with noise. In *Proceedings of the 2ed International Conference on Knowledge Discovery and Data Mining (KDD)*, pages 266–231, Portland, Oregon, 1996. AAAI Press.
- [67] L. Egghe and L. Leydesdorff. The relation between pearson’s correlation coefficient and salton’s cosine measure. *Journal of the American Society for Information Science and Technology*, 60(5):1027–1036, 2009.
- [68] D. P. Faith, P. R. Minchin, and L. Belbin. Compositional dissimilarity as a robust measure of ecological distance. *Journal of Plant Ecology*, 69(1):57–68, 1987.
- [69] N. El Faouzi, H. Leung, and A. Kurian. Data fusion in intelligent transportation systems: progress and challenges-a survey. *Information Fusion*, 12(1):4 – 10, 2011. Special Issue on Intelligent Transportation Systems.
- [70] X. Z. Fern and C. E. Brodley. Random projection for high dimensional data clustering: A cluster ensemble approach. In T. Fawcett and N. Mishra, editors, *ICML*, pages 186–193. AAAI Press, 2003.
- [71] X. Z. Fern and C. E. Brodley. Solving cluster ensemble problems by bipartite graph partitioning. In *Proceedings of the 21<sup>st</sup> international conference on machine learning, Banff, Alberta, Canada*, 2004.
- [72] V. Filkov and S. Skiena. Integrating microarray data by consensus clustering. In *Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence*, pages 418–426, Sacramento, California, Nov 2003.
- [73] H. Finch. Comparison of distance measure in cluster analysis with dichotomous data. *Journal of Data Science*, 3(1):85–100, 2005.
- [74] B. Fischer and J. M. Buhmann. Bagging for path-based clustering. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 25(11):1411–1415, November 2003.
- [75] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: The QBIC system. *Computer*, 28(9):23–32, September 1995.

- [76] G. Forestier, C. Wemmert, and P. GanÄarski. Collaborative multi-strategical clustering for object-oriented image analysis. In O. Okun and G. Valentini, editors, *Supervised and unsupervised ensemble methods and their applications*, volume 126 of *Studies in Computational Intelligence*, pages 71–88. Springer Berlin Heidelberg, 2008.
- [77] E. W. Forgy. Cluster analysis of multivariate data: efficiency vs. interpretability of classification. *Biometrics*, 21(1):768–769, 1965.
- [78] E. B. Fowlkes and C. L. Mallows. A method for comparing two hierarchical clusterings. *Journal of the American Statistical Association*, 78(383):553–569, 1983.
- [79] A. L. N. Fred and A. K. Jain. Combining multiple clusterings using evidence accumulation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(6):835–850, June 2005.
- [80] M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. *Journal of the American Statistical Association*, 32(200):675–701, December 1937.
- [81] W. Fu. Multi-media data mining technology for the systematic framework. *The 3ed IEEE International Conference on Software Engineering and Service Science (ICSESS)*, pages 570–572, 2012.
- [82] B. Gao, T. Liu, X. Zheng, Q. Cheng, and W. Ma. Consistent bipartite graph co-partitioning for star structured high-order heterogeneous data co-clustering. In *Proceedings of the 6th IEEE International Conference on Data Mining (ICDM)*, pages 1–31, Hong Kong, China, 2006.
- [83] R. Ghaemi, N. Sulaiman, H. Ibrahim, and N. Mustapha. A survey: clustering ensembles techniques. *Proceedings of World Academy of Science, Engineering and Technology*, 38(1):636–645, February 2009.
- [84] A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. *ACM Trans. Knowl. Discov. Data*, 1(1):1–30, March 2007.
- [85] C. H. Goh. *Representing and reasoning about semantic conflicts in heterogeneous information systems*. PhD thesis, School of Management, Massachusetts Institute of Technology, Madnick, Aloan, 1997. Supervisor: E. Stuart.
- [86] E. González and Jordi Turmo. Comparing non-parametric ensemble methods for document clustering. In E. Kapetanios, V. Sugumaran, and M. Spiliopoulou, editors, *Natural Language and Information Systems*, volume 5039 of *Lecture Notes in Computer Science*, pages 245–256. Springer Berlin Heidelberg, 2008.
- [87] J. González, H. Rojas, J. Ortega, and A. Prieto. A new clustering technique for function approximation. *IEEE Transactions on Neural Networks*, 13(1):132–142, 2002.

- [88] Google. Explore trends. <http://www.google.com/trends/?hl=en-GB>, 2015. Accessed: 2015-04-24.
- [89] D. Greene, A. Tsymbal, N. Bolshakova, and P. Cunningham. Ensemble clustering in medical diagnostics. In *Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems*, pages 576–581, Dublin, UK, 2004.
- [90] P. Greene and P. Cunningham. A matrix factorization approach for integrating multiple data views. In *Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: Part I*, pages 423–438, Berlin, Heidelberg, 2009.
- [91] R. Grossman. *Data mining for scientific and engineering applications*. Kluwer Academic, Dordrecht, London, UK, 2001.
- [92] S. Guha, R. Rastogi K., and Shim. Cure: an efficient clustering algorithm for large datasets. In *Proceedings of ACM SIGMOD International Conference on Management of Data*, pages 73–84, New York, USA, 1998.
- [93] S. Guha, R. Rastogi K., and Shim. Rock: A robust clustering algorithm for categorical attributes. *Information Systems*, 25(5):345–366, 2000.
- [94] S. T. Hadjitodorov, L. I. Kuncheva, and L. P. Todorova. Moderate diversity for better cluster ensembles. *Information Fusion*, 7(3):264–275, September 2006.
- [95] P. Haider, L. Chiarandini, and U. Brefeld. Discriminative clustering for market segmentation. In *Proceedings of 18th ACM SIGKDD International Conference On Knowledge Discovery and Data Mining*, pages 417–452, New York, USA, 2012.
- [96] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Quality scheme assessment in the clustering process. In *Proceeding of the 4th European Conference on Principles of Data Mining and Knowledge Discovery*, pages 265–276, 2000.
- [97] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering validation techniques. *Journal of Intelligent Information Systems*, 17(2):107–145, 2001.
- [98] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Cluster validity methods: Part 1. *SIGMOD Record*, 31(2):40–45, 2002.
- [99] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. Cluster validity methods: Part 2. *SIGMOD Record*, 31(3):19–27, 2002.
- [100] M. Halkidi and M. Vazirgiannis. Clustering validity assessment: finding the optimal partitioning of a data set. In *Proceedings of IEEE International Conference On Data Mining*, pages 187–194, San Jose, California, USA, 2001.
- [101] D.L. Hall and J. Llinas. An introduction to multisensor data fusion. *Proceedings of the IEEE*, 85(1):6–23, 1997.

- [102] J. Han and M. Kamber. *Data Mining Concepts And Techniques*. Morgan Kaufmann, San Francisco, 2ed edition, 2006.
- [103] J. A. Hartigan. *Clustering Algorithms*. Wiley and Sons, New York, 1975.
- [104] J. Hays and A. A. Efros. Scene completion using millions of photographs. In *ACM SIGGRAPH 2007*, San Diego, California, USA, 2007. ACM.
- [105] W. He. Examining students online interaction in a live video streaming environment using data mining and text mining. *Computers in Human Behaviour*, 29(1):90–102, 2013.
- [106] O. Henniger and S. Muller. Effects of time normalization on the accuracy of dynamic time warping. In *First IEEE International Conference on biometrics: theory, applications, and systems*, pages 1–6, Washington DC, USA, September 2007.
- [107] M. Herbin, N. Bonnet, and P. Vautrot. Estimation of the number of clusters and influence zones. *Pattern Recognition Letters*, 22(14):1557–1568, 2001.
- [108] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. Classification of time series by shapelet transformation. *Data Mining and Knowledge Discovery*, 28(4), 2013.
- [109] A. Hinneburg and D. Keim. An efficient approach to clustering large multimedia databases with noise. In *Proceedings of the 4th ACM SIGKDD*, pages 58–65, New York, USA, 1998.
- [110] Yi Hong, Sam Kwong, Yuchou Chang, and Qingsheng Ren. Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm. *Pattern Recognition*, 41(9):2742 – 2756, 2008.
- [111] X. Hu, E. K. Park, and X. Zhang. Microarray gene cluster identification and annotation through cluster ensemble and em-based informative textual summarization. *IEEE Transactions on Information Technology in Biomedicine*, 13(5):832–840, 2009.
- [112] X. Hu and I. Yoo. Cluster ensemble and its applications in gene expression analysis. In *Proceedings of the Second Conference on Asia-Pacific Bioinformatics*, APBC '04, pages 297–302, Darlinghurst, Australia, Australia, 2004. Australian Computer Society, Inc.
- [113] A. Huang. Similarity measures for text document clustering. In J. Holland, A. Nicholas, and D. Brignoli, editors, *The 6th New Zealand Computer Science Research Student Conference*, pages 49–56, Christchurch, New Zealand, April 2008.
- [114] J. Z. Huang, M. K. Ng, H. Rong, and Z. Li. Automated variable weighting in k-means type clustering. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(1):657– 668, 2005.

- [115] Z. Huang, D. W. Chenug, and M. K. Ng. An empirical study on the visual cluster validation methods with fastmap. In *Proceedings the 7th International Conference On Database Systems for Advanced Applications*, pages 84–91, Hong Kong, China, 2001.
- [116] Z. Huang and T. Lin. A visual method of cluster validation with fastmap. In *Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining*, pages 153–164, Kyoto, Japan, 2000.
- [117] L. J. Hubert and P. Arabie. Comparing partitions. *Journal of Classification*, 2(1):193–218, 1985.
- [118] W. L. Hung, M. S. Yang, and D. H. Chen. Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in colour image segmentation. *Pattern Recognition Letters*, 29(9):1317–1325, 2008.
- [119] N. Iam-on, T. Boongoen, and S. Garrett. Refining pairwise similarity matrix for cluster ensemble problem with cluster relations. In J. Boulicaut, M. I. R. Berthold, and T. Horvàth, editors, *Discovery Science*, volume 5255 of *Lecture Notes in Computer Science*, pages 222–233. Springer, 2008.
- [120] N. Iam-on and S. Garrett. LinkCluE: a MATLAB package for link-based cluster ensembles. *Journal of Statistical Software*, 36(9):1–36, 2010.
- [121] M. Ichino and H. Yaguchi. Generalized minkowski metrics for mixed feature-type data analysis. *IEEE Transactions on Systems Man and Cybernetics*, 24(1):698–708, 1994.
- [122] Forbes Inc. The world’s most powerful celebrities. <http://www.forbes.com/>, 2015. Accessed: 2015-04-24.
- [123] S. Jaccard. Nouvelles recherches sur la distribution florale. *Bulletin de la Société Vaudense des Sciences Naturelles*, 44:223–270, 1908.
- [124] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. *ACM Computing Surveys*, 31(3):264–323, 1999.
- [125] D. A. Jakson, K. M. Somers, and H. H. Harvey. Similarity coefficients: measures of co-occurrence and association or simply measures of occurrence? *The American Naturalist*, 133(3):436–453, 1998.
- [126] K. James. A hybrid genetic algorithm for classification. In *In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence (pp. 645–650*, pages 645–650. Morgan Kaufmann, 1991.
- [127] G. Jeh and J. Widom. SimRank: A measure of structural-context similarity. In *Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD ’02, pages 538–543, New York, NY, USA, 2002. ACM.

- [128] R. J. Hathaway and J. C. Bezdek. Recent convergence results for the fuzzy c-means clustering algorithms. *Journal of Classification*, 5(2):237–247, 1988.
- [129] D. Jiang, C. Tang, and A. Zhang. Cluster analysis for gene expression data: a survey. *IEEE Transactions on Knowledge and Data Engineering*, 16(11):1370–1386, 2007.
- [130] E. L. Johnson and H. Kargupta. Collective, hierarchical clustering from distributed, heterogeneous data. *Large-Scale Parallel Data Mining*, 1759:221–224, 1999.
- [131] R. A. Johnson and D. W. Wichern. *Applied Multivariate Statistical Analysis*. Pearson Prentice Hall, USA, 6th edition, 2007.
- [132] K. Kalpakis, D. Gada, and V. Puttagunta. Distance measures for effective clustering of arima time-series. In *Proceedings of the 2001 IEEE International Conference on Data Mining*, pages 273–280, San Jose, California, USA, 2001.
- [133] L. Kaufman and P. J. Rousseeuw. Clustering by means of medoids. In Y. Dodge, editor, *Statistical Data Analysis Based on the L1 - Norm and Related Methods*, pages 405–416. Springer Berlin Heidelberg, North-Holland, 1987.
- [134] L. Kaufman. and P. J. Rousseeuw. *Finding groups in data: an introduction to cluster analysis*. Wiley-Interscience, New York, 1990.
- [135] L. Kaufman and P. J. Rousseeuw. *Clustering Large Applications (Program CLARA)*, pages 126–163. John Wiley and Sons, Inc., 2008.
- [136] E. Keogh and S. Kasetty. On the need for time series data mining benchmarks: a survey and empirical demonstration. *Data Mining and Knowledge Discovery*, 7(4):349–371, October 2003.
- [137] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi. Multisensor data fusion: A review of the state-of-the-art. *Information Fusion*, 14(1):28 – 44, 2013.
- [138] W. Kim and J. Seo. Classifying schematic and data heterogeneity in multidatabase systems. *IEEE Computer*, 24(12):12–18, 1991.
- [139] S. Klink, P. Reuther, A. Weber, B. Walter, and M. Ley. Analysing social networks within bibliographical data. In *Proceedings of the 17th International Conference on Database and Expert Systems Applications*, DEXA’06, pages 234–243. Springer-Verlag, Berlin, Heidelberg, 2006.
- [140] F. Kovács, C. Legány, and A. Babos. Cluster validity measurement techniques. In *Proceedings of the 5th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and DataBases*, pages 388–393, Wisconsin, USA, 2006.
- [141] E. F. Krause. *Taxicab geometry an adventure in non-euclidean geometry*. Addison-Wesley Publishing Company, Menlo Park, California, 1975.

- [142] S. Kullback. *Information Theory And Statistics*. Wiley and Sons, New York, NY, USA, 1959.
- [143] A. Kusiak and A. Verma. Analysing bearing faults in wind turbines: a data-mining approach. *Renewable Energy*, 48(1):110–116, 2012.
- [144] I. O. Kyrgyzov, H. Maitre, and M. Campedel. A method of clustering combination applied to satellite image analysis. In *Proceedings of the 14th International Conference on Image Analysis and Processing (ICLAP)*, pages 81–86, Modena, 2007.
- [145] G. R. G. Lanckriet, T. D. Bie, N. Cristianini, M. I. Jordan, and W. S. Noble. A statistical framework for genomic data fusion. *Bioinformatics*, 20(16):2626–2635, 2004.
- [146] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. Ghaoui, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. *The Journal of Machine Learning Research*, 5:27–72, December 2004.
- [147] D. Laney. 3D data management: controlling data volume, velocity, and variety. Technical report, META Group, February 2001.
- [148] B. Larsen and C. Aone. Fast and effective text mining using linear-time document clustering. In *Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '99, pages 16–22, New York, NY, USA, 1999. ACM.
- [149] J. M. Leski. Generalized weighted conditional fuzzy clustering. *IEEE Transactions on Fuzzy Systems*, 11(6):709–715, Dec 2003.
- [150] Q. Li and B. Moon. Indexing and querying xml data for regular path expressions. In *Proceedings of the 27th VLDB Conference*, pages 361–370, Roma, Italy, 2001.
- [151] T. Li, M. Ogihara, and S. Ma. On combining multiple clusterings: an overview and a new perspective. *Applied Intelligence*, 33(2):207–219, 2010.
- [152] W. Li. Modified k-means clustering algorithm. *Congress on image and signal processing Conference*, 4:618–621, 2008.
- [153] X. Li, C. Wu, C. Zach, S. Lazebnik, and J. Frahm. Modeling and recognition of landmark image collections using iconic scene graphs. In *Proceedings of the 10th European Conference on Computer Vision: Part I*, ECCV '08, pages 427–440, Berlin, Heidelberg, 2008. Springer-Verlag.
- [154] P. Liang and D. Klein. Online EM for unsupervised models. In *Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics*, NAACL '09, pages 611–619, Stroudsburg, PA, USA, 2009.

- [155] J. Lin, M. Vlachos, E. Keogh, and D. Gunopulos. Iterative incremental clustering of time series. In E. Bertino, S. Christodoulakis, D. Plexousakis, V. Christophides, M. Koubarakis, K. Bohm, and E. Ferrari, editors, *Advances in Database Technology*, volume 2992, pages 106–122. Springer Berlin Heidelberg, 2004.
- [156] A. Lipai. World wide web metasearch clustering algorithm. *Revista Informatica Economică*, 2(26):5–11, 2008.
- [157] H. Liu and D. Dou. An exploration of understanding heterogeneity through data mining. In *The 2ed KDD Workshop on Mining Multiple Information Sources (MMIS)*, pages 24–27, Las Vegas, Nevada, USA, 2008.
- [158] X. Liu and W. B. Croft. Cluster-based retrieval using language models. In *Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*, pages 186–193, New York, USA, 2004.
- [159] B. Long, Z. Zhang, X. Wu, and P. S. Yu. Spectral clustering for multi-type relational data. In *International Conference on Machine Learning*, pages 585–592, Pittsburgh, USA, 2006.
- [160] R. M. Losee. Browsing mixed structured and unstructured data. *Information Processing and Management*, 42(2):440–452, 2006.
- [161] A. Loureiro, L. Torgo, and C. Soares. Outlier detection using clustering methods: a data cleaning application. In *Proceedings of the KDNet Symposium on Knowledge-Based Systems for the Public Sector*, Germany, 2004.
- [162] D. G. Lowe. Distinctive image features from scale-invariant keypoints. *International Journal of Computer Vision*, 60(2):91–110, 2004.
- [163] H. Luo, F. Jing, and X. Xie. Combining multiple clusterings using information theory based genetic algorithm. In *The International Conference on Computational Intelligence and Security*, volume 1, pages 84–89, Guangzhou, China, Nov 2006.
- [164] H. Ma, H. Yang, M. R. Lyu, and I. King. SoRec: Social recommendation using probabilistic matrix factorization. In *Proceedings of the 17th ACM Conference on Information and Knowledge Management*, CIKM ’08, pages 931–940, New York, NY, USA, 2008. ACM.
- [165] W. Ma and B. S. Manjunath. Netra: a toolbox for navigating large image databases. In *Proceedings of the 1997 International Conference on Image Processing (ICIP ’97)*, volume 3, pages 568–571, Washington, DC, USA, 1997. IEEE Computer Society.
- [166] J. MacQueen. Some methods for classification and analysis of multivariate observations. In *Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability*, volume 1, pages 281–297, California, USA, 1967.

- [167] T. N. Manjunath, R. S. Hegadi, and G. K. Ravikumar. A survey on multimedia data mining and its relevance today. *International Journal Of Computer Science and Network Security (IJCSNS)*, 10(11):165–170, 2010.
- [168] N. Mantel. The detection of disease clustering and a generalized regression approach. *Cancer research*, 27(2):209 – 220, 1967.
- [169] J. Mao and A. K. Jain. A self-organization network for hyper-ellipsoidal clustering (hec). *IEEE Transaction on Neural Network*, 7(1):16–29, 1996.
- [170] P. Maragos, P. Gros, A. Katsamanis, and G. Papandreou. Cross-modal integration for performance improving in multimedia: a review. In P. Maragos, A. Potamianos, and P. Gros, editors, *Multimodal Processing and Interaction*, volume 33 of *Multimedia Systems and Applications*, pages 1–46. Springer US, 2008.
- [171] M. Masson and T. Denoeux. ECM: An evidential version of the fuzzy c-means algorithm. *Pattern Recognition*, 41(4):1384 – 1397, 2008.
- [172] U. Maulik, S. Bandyopadhyay, and A. Mukhopadhyay. *Multiobjective genetic algorithms for clustering applications in data mining and bioinformatics*. Springer Heidelberg Dordrecht, New York, 2004.
- [173] M. Meilă. Comparing clusterings-an information based distance. *Journal of Multivariate Analysis*, 98(5):873 – 895, 2007.
- [174] R. Michalski, R. E. Stepp, and E. Diday. A recent advance in data analysis: clustering objects into classes characterized by conjunctive concepts. In L. Kanal and A. Rosenfeld, editors, *Progress in Partial Recognition*, volume 1, pages 33–56. North-Holland Publishing Co., The Netherlands, 1981.
- [175] L. L. Miller, V. Honavar, and T. Barata. Warehousing structured and unstructured data for data mining. In *Proceedings of the ASIS Annual Meeting*, volume 34, pages 215–240, California, USA, 1997.
- [176] G. W. Milligan. A monte carlo study of thirty internal criterion measures for clustering analysis. *Psychmetrika*, 46(2):187–199, 1981.
- [177] G. W. Milligan and M. Cooper. An examination of procedures for determining the number of clusters in a data set. *Psychmetrika*, 50(2):159–179, 1985.
- [178] D. S. Modha and W. S. Spangler. Feature weighting in k-means clustering. *Machine Learning*, 52(1):217–237, 2003.
- [179] T. Mohri and H. Tanaka. An optimal weighting criterion of case indexing for both numeric and symbolic attributes, 1994.
- [180] A. Mojahed. Heterogeneous data: data mining solutions. <http://amojahed.wix.com/heterogeneous-data>, 2015. Accessed: 2015-08-30.

- [181] A. Mojahed and B. de la Iglesia. A fusion approach to computing distance for heterogeneous data. In *KDIR 2014 - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, Rome, Italy, 21 - 24 October, 2014*, pages 269–276, 2014.
- [182] A. Mojahed and B. de la Iglesia. An adaptive version of k-medoids to deal with the uncertainty in clustering heterogeneous data using an intermediary fusion approach. *Knowledge and Information Systems*, pages 1–26, 2016.
- [183] A. Mojahed, J. H. Bettencourt-Silva, W. Wang, and B. de la Iglesia. Applying clustering analysis to heterogeneous data using similarity matrix fusion (SMF). In *Machine Learning and Data Mining in Pattern Recognition - 11th International Conference, MLDM 2015, Hamburg, Germany, July 20-21, 2015, Proceedings*, pages 251–265, 2015.
- [184] S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. *Machine Learning*, 52(1-2):91–118, July 2003.
- [185] S. Neil. Digging for drug facts. *Communications of the ACM*, 55(10):11–13, 2012.
- [186] P. Nemenyi. *Distribution-free multiple comparisons*. PhD thesis, Princeton University, New Jersey, USA, 1963.
- [187] R. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. In *Proceedings of the 20th Conference on VLDB*, pages 144–155, Santiago, 1994.
- [188] NICE. Prostate cancer: diagnosis and treatment. *NICE clinical guideline 175*, pages 1–48, 2014.
- [189] A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope. *International Journal for Computer Vision*, 42(3):145–175, May 2001.
- [190] M.I Ortega, Y. Rui, K. Chakrabarti, S. Mehrotra, and T. S. Huang. Supporting similarity queries in MARS. In *Proceedings of the 5th ACM International Conference on Multimedia*, MULTIMEDIA '97, pages 403–413, New York, NY, USA, 1997. ACM.
- [191] N. R. Pal and J. Biswas. Cluster validation using graph theoretic concepts. *Pattern Recognition*, 30(6):847– 857, 1997.
- [192] R. S. Pande, S. S. Sambare, and V. M. Thakre. Data clustering using data mining techniques. *International Journal of Advanced Research in Computer and Communication Engineering*, 1(8):494 –499, 2012.
- [193] H. Park and C. Jun. A simple and fast algorithm for k-medoids clustering. *Expert Systems Applications*, 36(2):3336–3341, March 2009.

- [194] P. Pavlidis, J. Weston, J. Cai, and W. S. Noble. Learning gene functional classifications from multiple data types. *Journal of Computational Biology*, 9(2):401–411, 2002.
- [195] K. Pearson. On lines and planes of closest fit to systems of points in space. *Philosophical Magazine*, 2(6):559–572, 1901.
- [196] K. Penny and G. D. Smith. The use of data-mining to identify indicators of health-related quality of life in patients with irritable bowel syndrome. *Journal of Clinical Nursing*, 21(19):2761–2771, 2012.
- [197] D. Pfitzner, R. Leibbrandt, and D. Powers. Characterization and evaluation of similarity measures for pairs of clusterings. *Knowledge Information Systems*, 19(3):361–394, May 2009.
- [198] K. Punera and J. Ghosh. Consensus-based ensembles of soft clusterings. *Applied Artificial Intelligence*, 22(7-8):780–810, 2008.
- [199] P. Rai and S. Singh. A survey of clustering techniques. *International Journal of Computer Applications*, 7(12):1–5, 2010.
- [200] W. M. Rand. Objective criteria for the evaluation of clustering methods. *Journal of the American Statistical Association*, 66(336):846–850, 1958.
- [201] C. R. Rao. The utilization of multiple measurements in problems of biological classification. *Journal of the Royal Statistical Society, Series B*, 10(2):159–193, 1948.
- [202] C. A. Ratanamahatana and E. Keogh. Three myths about dynamic time warping data mining. In *Proceedings of SIAM International Conference on Data Mining (SDM05)*, pages 506–510, Newport Beach, CA, USA, 2005.
- [203] E. Rendón, I. Abundez, and A. Arizmendi and E. M. Quiroz. Internal versus external cluster validation indexes. *International Journal Of Computers And Communications*, 1(5):27–34, 2011.
- [204] Thomson Reuters. ISI Web of Knowledge: Journal Citation Reports. [http://wokinfo.com/products\\_tools/analytical/jcr/](http://wokinfo.com/products_tools/analytical/jcr/), 2015. Accessed: 2015-04-14.
- [205] Thomson Reuters. Web of Science. [http://apps.webofknowledge.com/WOS\\_GeneralSearch\\_input.do?product=WOS&SID=P1JvWUMqY5wYpc8EIER&search\\_mode=GeneralSearch](http://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&SID=P1JvWUMqY5wYpc8EIER&search_mode=GeneralSearch), 2015. Accessed: 2015-04-14.
- [206] J. L. Rodgers and W. A. Nicewander. The relation between pearson's correlation coefficient and salton's cosine measure. *Journal of the American Society for Information Science and Technology*, 60(5):1027–1036, 1988.

- [207] L. Rokach and O. Maimon. Clustering methods. In O. Maimon and L. Rokach, editors, *The Data Mining And Knowledge Discovery Handbook*, pages 321–352. Springer Science + Businesses Media Inc., USA, 2005.
- [208] P. J. Rousseeuw. Sihouettes: a graphical aid to the interpretation and validation of cluster analysis. *Journal Of Computational And Applied Mathematics*, 20(1):23–65, 1987.
- [209] G. Salton and M. J. McGill. *Introduction to Modern Information Retrieval*. McGraw-Hill, New York, NY, USA, 1987.
- [210] E. Schikuta and M. Erhart. The bang-clustering system: grid-based data analysis. In *Proceeding of Advances in Intelligent Data Analysis, Reasoning about Data, 2nd International Symposium*, pages 513–524, London, UK, 1997.
- [211] S. Sharma. *Applied Multivariate Techniques*. John Wiley and Sons, Inc, 1996.
- [212] M. J. Shaw, C. Subramaniam, G. W. Tan, and M. E. Welge. Knowledge management and data mining for marketing. *Decision Support Systems*, 31(1):127–137, 2001.
- [213] G. Sheikholeslami, S. Chatterjee, and A. Zhang. Wavecluster: A multi resolution clustering approach for very large spatial databases. In *Proceedings of the 24th Conference on VLDB*, pages 428–439, New York, USA, 1998.
- [214] Y. Shi, T. Falck, A. Daemen, L. Tranchevent, J. A. K. Suykens, B. De Moor, and Y. Moreau. L2-norm multiple kernel learning and itsapplication to biomedical data fusion. *BMC Bioinformatics*, 11(1):309 – 332, 2010.
- [215] H. Shinnou and M. Sasaki. Ensemble document clustering using weighted hypergraph generated by (NMF). In *Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics*, Prague, 2007.
- [216] A. Siebes and Z. Struzik. Complex data: mining using patterns. In D. J. Hand, N. M. Adams, and R. J. Bolton, editors, *Pattern Detection And Discovery*, volume 2447, pages 24–35. Springer Berlin Heidelberg, 2002.
- [217] R. Sin, S. Schaffert, S. Stroka, and R. Ferstl. Combining unstructured, fully structured and semi-structured information in semantic wikis. In *Proceedingsthe of the 4th Workshop on Semantic Wikis (SemWiki 2009) at ESWC09*, pages 1–15, Heraklion, Greece, 2009.
- [218] V. Singh, L. Mukherjee, J. Peng, and J. Xu. Ensemble clustering using semidefinite programming with applications. *Machine Learning*, 79(1-2):177–200, 2010.
- [219] D. Skillicorn. *Understanding complex datasets data mining with matrix decompositions*. Taylor and Francis Group, LLC, USA, 2007.

- [220] J. R. Smith and S. Chang. VisualSEEk: a fully automated content-based image query system. In *Proceedings of the 4th ACM International Conference on Multimedia*, MULTIMEDIA '96, pages 87–98, New York, NY, USA, 1996. ACM.
- [221] P. H. A. Sneath. Some thoughts on bacterial classification. *Journal of General Microbiology*, 17(1):184–200, 1957.
- [222] The Royal Horticultural Society. Plants, Septmber 2014. URL: <https://www.rhs.org.uk/>.
- [223] R. R. Sokal and C. D. Michener. A statistical method for evaluating systematic relationships. *University of Kansas Science Bulletin*, 28(1):1409–1438, 1958.
- [224] R. R. Sokal and P. H. Sneath. *Principles of Numeric Taxonomy*. W. H. Freeman, San Francisco, 1963.
- [225] A. N. Sravya and M. N. Sri. A novel approach of temporal data clustering via weighted clustering ensemble with different representations. *International Journal of Computer Trends and Technology (IJCTT)*, 41(4):642–629, 2013.
- [226] C. Stanfill and D. Waltz. Toward memory-based reasoning. *Commun. ACM*, 29(12):1213–1228, December 1986.
- [227] M. Steinbach, L. Ertfoz, and V. Kumar. The challenges of clustering high dimensional data. In L. Wille, editor, *New Directions in Statistical Physics*, pages 273–309. Springer Berlin Heidelberg, 2004.
- [228] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering techniques. In *KDD Workshop on Text Mining*, pages 1–20, 2000.
- [229] A. Strehl and J. Ghosh. Cluster ensembles — a knowledge reuse framework for combining multiple partitions. *Journal of Machine Learning and Research*, 3(1):583–617, March 2003.
- [230] S. Swift, A. Tucker, V. Vinciotti, N. Martin, C. Orengo, X. Liu, and P. Kellam. Consensus clustering and functional interpretation of gene-expression data. *Genome Biology*, 5(11):1–16, 2004.
- [231] P. Tan, M. Steinbach, and V. Kumar. *Data Mining*. Pearson, Addison Wesley, Boston, San Francisco, New York, 2005.
- [232] P. Tan, M. Steinbach, and V. Kumar. *Introduction To Data Mining*. Pearson Education Inc., Boston, 2005.
- [233] D. Taniar and L. I. Rusu. *Strategic Advancements in Utilizing Data Mining and Warehousing Technologies: new Concepts and Developments*. IGI Global, Yurchak Printing Inc, 2010.
- [234] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of data clusters via the gap statistic. *Journal of the Royal Statistical Society*, 63(1):411–423, 2001.

- [235] N. Z. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. In *Proceedings of the 37th Allerton Conference on Communication, Control and Computing*, pages 22–24, USA, 1999.
- [236] A. P. Topchy, A. K. Jain, and W. F. Punch. A mixture model for clustering ensembles. In M. W. Berry, U. Dayal, C. Kamath, and D. B. Skillicorn, editors, *Proceedings of the SIAM International Conference on Data Mining*, pages 379–390. SIAM, 2004.
- [237] Alexander Topchy, Anil K. Jain, and William Punch. Clustering ensembles: models of consensus and weak partitions. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(12):1866–1881, 2005.
- [238] J. D. Tubbs. A note on binary template matching. *Pattern Recognition*, 22(4):159–365, 1989.
- [239] M. Žitnik and B. Zupan. Data fusion by matrix factorization. *ArXiv e-prints*, 37(1):41–53, July 2013.
- [240] C.J. van Rijsbergen, S.E. Robertson, and M.F. Porter. New models in probabilistic information retrieval. Technical report, Computer Laboratory, Cambridge (England), 1980.
- [241] M. H. van Vliet, H. M. Horlings, M. J. van de Vijver, M. J. T. Reinders, and L. F. A. Wessels. Integration of clinical and gene expression data has a synergetic effect on predicting breast cancer outcome, 2012.
- [242] V. N. Vapnik. *The Nature of Statistical Learning Theory*. Springer-Verlag New York, Inc., New York, NY, USA, 1995.
- [243] S. Vega-Pons, J. Correa-Morris, and J. Ruiz-Shulcloper. Weighted cluster ensemble using a kernel consensus function. In J. Ruiz-Shulcloper and W. G. Kropatsch, editors, *Progress in Pattern Recognition, Image Analysis and Applications*, volume 5197 of *Lecture Notes in Computer Science*, pages 195–202. Springer Berlin Heidelberg, 2008.
- [244] S. Vega-Pons, J. Correa-Morris, and J. Ruiz-Shulcloper. Weighted partition consensus via kernels. *Pattern Recognition*, 43(8):2712 – 2724, 2010.
- [245] S. Vega-Pons and J. Ruiz-Shulcloper. Clustering ensemble method for heterogeneous partitions. In E. Bayro-Corrochano and J. Eklundh, editors, *Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications*, volume 5856 of *Lecture Notes in Computer Science*, pages 481–488. Springer Berlin Heidelberg, 2009.
- [246] S. Vega-Pons and J. Ruiz-Shulcloper. A survey of clustering ensemble algorithms. *IJPRAI*, 25(3):337–372, 2011.

- [247] L. Vendramin, R. J. G. B. Campello, and E. R. Hruschka. Relative clustering validity criteria: a comparative overview. *Statistical Analysis And Data Mining*, 3(4):209–235, 2010.
- [248] D. Wang, X. Zeng, and J. A. Keane. An input-output clustering method for fuzzy system identification. In *Proceedings of IEEE International Conference on Fuzzy Systems*, pages 1–6, Imperial College, London, UK, 2007.
- [249] J. Wang, H. Zeng, Z. Chen, H. Lu, L. Tao, and W. Ma. Recom: reinforcement clustering of multi-type interrelated data objects. In *Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*, pages 274–281, New York, NY, USA, 2003.
- [250] W. Wang, J. Yang, and R. Muntz. Sting: a statistical information grid approach to spatial data mining. In *Proceedings of 23rd International Conference on Very Large Data Base (VLDB)*, pages 186–195, Greece, 1997.
- [251] X. Wang, C. Yang, and J. Zhou. Clustering aggregation by probability accumulation. *Pattern Recognition*, 42(5):668 – 675, 2009.
- [252] X. Z. Wang, Y. D. Wang, and L. J. Wang. Improving fuzzy c-means clustering based on feature-weight learning. *Pattern Recognition Letters*, 25(1):1123 – 1132, 2004.
- [253] Wikipedia. Wikipedia: The free encyclopedia. [https://en.wikipedia.org/wiki/Main\\_Page](https://en.wikipedia.org/wiki/Main_Page), 2015. Accessed: 2015-04-24.
- [254] D. R. Wilson and T. R. Martinez. Improved heterogeneous distance functions. *Journal of Artificial Intelligence Research*, 6(1):1–34, 1997.
- [255] M. A. Wong. A hybrid clustering method for identifying high-density clusters. *Journal of the American Statistical Association*, 77(1):841–847, 1982.
- [256] A. Wouterse and A. P. Philipse. Geometrical cluster ensemble analysis of random sphere packings. *The Journal of Chemical Physics*, 125(19), 2006.
- [257] R. Xu and D. Wunsch. Survey of clustering algorithms. *IEEE Transactions on Neural Networks*, 16(3):645–678, May 2005.
- [258] S. Xu, Z. Lu, and G. Gu. An efficient spectral method for document cluster ensemble. In *The 9th International Conference for Young Computer Scientists*, pages 808–813. IEEE Computer Society, 2008.
- [259] M. Yan. *Methods of determining the number of clusters in a data set and a new clustering criterion*. PhD thesis, Faculty of the Virginia Polytechnic Institute and State University, Virginia, 2005. Supervisor: K. Y. Chair.
- [260] Liu Yang and Rong Jin. Distance metric learning: a comprehensive survey. *Michigan State Universiy*, 2, 2006.

- [261] Y. Yang and S. Huang. Image segmentation by fuzzy c-means clustering algorithm with a novel penalty term. *Computing and Informatics*, 26(1):17–31, 2007.
- [262] Jun Ye. Cosine similarity measures for intuitionistic fuzzy sets and their applications. *Mathematical and Computer Modelling*, 53(1-2):91–97, January 2011.
- [263] L. Ye and E. Keogh. Time series shapelets: a new primitive for data mining. In *Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, KDD '09, pages 947–956, New York, NY, USA, 2009. ACM.
- [264] H. Yoon, S. Ahn, S. Lee, S. Cho, and J. Kim. Heterogeneous clustering ensemble method for combining different cluster results. In J. Li, Qiang Y., and A. Tan, editors, *BioDM*, volume 3916 of *Lecture Notes in Computer Science*, pages 82–92. Springer, 2006.
- [265] Z. Younes, F. Abdallah, and T. Denoeux. An evidence-theoretic k-nearest neighbor rule for multi-label classification. In L. Godo and A. Pugliese, editors, *Scalable Uncertainty Management*, volume 5785 of *Lecture Notes in Computer Science*, pages 297–308. Springer Berlin Heidelberg, 2009.
- [266] J. Yu, M. Yang, and E. Lee. Sample-weighted clustering methods. *Computer and Mathematics with Applications*, 62(1):2200–2208, 2001.
- [267] S.i Yu, B. Moor, and Y. Moreau. Clustering by heterogeneous data fusion: framework and applications. In *Learning from Multiple Sources Workshop (NIPS)*, Whistler, BC, Canada, 2009.
- [268] Z. Yu and H. Wong. Class discovery from gene expression data based on perturbation and cluster ensemble. *IEEE Transactions on NanoBioscience*, 8(2):147–160, June 2009.
- [269] Z Yu, H Wong, and H Wang. Graph-based consensus clustering for class discovery from gene expression data. *Bioinformatics*, 23(21):2888–2896, 2007.
- [270] O. Zamir and O. Etzioni. Web document clustering: a feasibility demonstration. In *Proceedings of 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval*, pages 46–54, New York, 1998.
- [271] H. Zeng, Z. Chen, and W. Ma. A unified framework for clustering heterogeneous web objects. In *Proceedings of the 3rd International Conference on Web Information Systems Engineering (WISE)*, pages 161–172, Singapore, 2002.
- [272] H. Zha, C. Ding, and M. Gu. Bipartite graph partitioning and data clustering. In *Proceedings of the 10th International Conference on Information and Knowledge Management*, pages 25–32, New York, NY, USA, 2001.

- [273] B. Zhang and S. N. Srihari. Binary vector dissimilarity for handwriting identification. In *Proceedings of SPIE, Document Recognition And Retrieval X*, pages 15–166, Santa Clara, California, USA, 2003.
- [274] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method for very large databases. In *Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, SIGMOD '96*, pages 103–114, New York, NY, USA, 1996. ACM.
- [275] T. Zhang, R. Ramakrishnman, M., and Linvy. BIRCH: an efficient method for large databases. *ACM SIGMOD*, 25(2):103–114, 1996.
- [276] Z. Zhang and R. Zhang. *Multimedia data mining: a systematic introduction to concepts theory*. Chapman and Hall/CRC, Taylor and Francis Group, USA, 2008.
- [277] Q. Zhao, M. Xu, and P. Franti. Sum-of-squares based cluster validity index and significance analysis. In *Proceedings Of The International Conference On Adaptive And Natural Computing Algorithms (ICANNGA), Lecturer Notes In Computer Science 5495*, pages 313–322, Berlin, Heidelberg, 2009.
- [278] D. A. Zighed, S. Tsumoto, Z. W. Ras, and H. Hacid, editors. *Mining Complex Data*, volume 165 of *Studies in Computational Intelligence*. Springer, 2009.

# Appendices

## **Appendix A: Data Dictionary**

**Data dictionary of the prostate cancer dataset**

| variable                                                     | description                                        | type        | values or range                 | normal range |
|--------------------------------------------------------------|----------------------------------------------------|-------------|---------------------------------|--------------|
| <b>A.Attributes represented as a structured data element</b> |                                                    |             |                                 |              |
| id                                                           | patient identifier                                 | integer     | 1:1904                          | –            |
| time                                                         | time in days                                       | integer     | -14170:3278                     | –            |
| Z                                                            | death indicator                                    | categorical | 1-any causes, 2-prostate cancer | –            |
| Q                                                            | deprivation score                                  | categorical | 1.5                             | –            |
| DD                                                           | year of diagnose                                   | categorical | 2004:2010                       | –            |
| A                                                            | age diagnosis                                      | decimal     | [41.3:94.9]                     | –            |
| D                                                            | diagnosis tumour staging                           | categorical | 1:6                             | –            |
| G1                                                           | Gleason grade primary                              | categorical | 3:10                            | –            |
| G2                                                           | Gleason grade secondary                            | categorical | 3:5                             | –            |
| G3                                                           | Gleason grade tertiary                             | categorical | 3:7                             | –            |
| S                                                            | Treatment: surgery                                 | binary      | 1-applied                       | –            |
| H                                                            | Treatment: hormone therapy                         | binary      | 1-applied                       | –            |
| R                                                            | Treatment: radiology                               | binary      | 1-applied                       | –            |
| W                                                            | Treatment: watchful waiting                        | binary      | 1-applied                       | –            |
| C1                                                           | ischaemic heart disease                            | binary      | 1-applied                       | –            |
| C2                                                           | cerebrovascular diseases                           | binary      | 1-applied                       | –            |
| C3                                                           | lung cancer                                        | binary      | 1-applied                       | –            |
| C4                                                           | chronic lower respiratory diseases                 | binary      | 1-applied                       | –            |
| C5                                                           | influnza and pneumonia                             | binary      | 1-applied                       | –            |
| C6                                                           | malignant neoplasm of colon, sigmoid, rectum, anus | binary      | 1-applied                       | –            |
| C7                                                           | dementia                                           | binary      | 1-applied                       | –            |
| C8                                                           | malignant neoplasm lymphoid, haematopoietic        | binary      | 1-applied                       | –            |

|                                                         |                                                                                                                                               |                |               |          |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|----------|
| C9                                                      | diseases of liver                                                                                                                             | binary         | 1-applied     | =        |
| C10                                                     | Genitourinary: renal failure                                                                                                                  | binary         | 1-applied     | =        |
| C11                                                     | Genitourinary: inflammatory disease of prostate                                                                                               | binary         | 1-applied     | =        |
| C12                                                     | Genitourinary: prostate hyperplasia                                                                                                           | binary         | 1-applied     | =        |
| C13                                                     | Genitourinary: other                                                                                                                          | binary         | 1-applied     | =        |
| C14                                                     | other diagnoses                                                                                                                               | binary         | 1-applied     | =        |
| <b>B. Elements represented as time-series data type</b> |                                                                                                                                               |                |               |          |
| P                                                       | PSA test                                                                                                                                      | decimal        | 0.05:1.0000.0 | =        |
| B1                                                      | Alkaline Phosphatase: high - Liver disease, bone conditions (metastases to bone), biliary obstruction; low - malnutrition, vitamin deficiency | integer        | 21:7085       | 38-126   |
| B2                                                      | Creatinine: high - urinary tract problems, kidney disease; low - muscle problems                                                              | integer        | 29:2325       | 55-125   |
| B3                                                      | Urea: kidney, renal function, dehydration                                                                                                     | decimal        | 0.9:68.0      | 1.7-7.1  |
| B4                                                      | Aspartate transaminase: enzymes produced in the liver; liver disease                                                                          | integer        | 16:770        | <40      |
| B5                                                      | Bilirubin: liver function, biliary obstruction                                                                                                | integer        | 2:478         | <22      |
| B6                                                      | Gamma-glutamyl transpeptidase: Liver disease                                                                                                  | not determined | all missing   | <60      |
| B7                                                      | Vitamin D: vitamin deficiency, weaker bones                                                                                                   | integer        | 11:670        | 50-120   |
| B8                                                      | Calcium: bones                                                                                                                                | decimal        | 1.24:4.18     | 2.5-7.5  |
| B9                                                      | Testosterone: hormone fuels prostate cancer, makes it grow quicker                                                                            | decimal        | 0.1:39.9      | 9.9-27.8 |
| B10                                                     | Cholesterol (total): atherosclerosis, strokes, etc                                                                                            | decimal        | 1.4:10.2      | 3.6-5.0  |
| B11                                                     | Triglycerides: nutrition/obesity, diabetes, kidney disease                                                                                    | decimal        | 0.31:13.86    | 0.5-1.7  |
| B12                                                     | HDL Cholesterol                                                                                                                               | decimal        | 0.35:3.46     | 0.85-2.0 |
| B13                                                     | LDL Cholesterol                                                                                                                               | decimal        | 0.0:7.2       | 0.4-3.0  |
| B19                                                     | Total cholesterol divided by LDL                                                                                                              | decimal        | 0.0:9.7       | N/A      |

|     |                                                                                                           |         |           |         |
|-----|-----------------------------------------------------------------------------------------------------------|---------|-----------|---------|
| B20 | Haemoglobin: low - bleeding or kidney failure; high - poor heart/lung function or liver and kidney cancer | decimal | 3.8:22.7  | 13-18   |
| B21 | White Blood Count: high - bacterial infections, allergies, etc; low - viral infections, HIV, chemo        | decimal | 0.0:510.6 | 4-11    |
| B22 | Mean corpuscular volume: average volume of a red blood cell; indicates anemia                             | integer | 55:128    | 77-95   |
| B23 | Mean corpuscular Haemoglobin: mass of Hb in blood cell; also indicates anemia                             | decimal | 14.0:45.0 | 27-32   |
| B24 | Fasting Glucose: diabetes; hypoglycaemia                                                                  | decimal | 2.1:20.9  | 3.5-6.1 |
| B25 | Random Plasma Glucose: diabetes; hypoglycaemia                                                            | decimal | 1.3:49.4  | 3.5-7.8 |
| B26 | Sodium: low - kidney failure, heart failure; high - dehydration, diabetes                                 | integer | 109:173   | 134-145 |
| B27 | Albumin: low - kidney or liver disease; high - dehydration, diet (high protein)                           | integer | 10:56     | 35-50   |

| Data dictionary of the plants dataset                         |                                                 |                   |                                                                                               |
|---------------------------------------------------------------|-------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------|
| variable                                                      | description                                     | type              | values or range                                                                               |
| <b>A. Attributes represented as a structured data element</b> |                                                 |                   |                                                                                               |
| position                                                      | position of growth                              | categorical       | full sun<br>full sun or partial shade                                                         |
| soil                                                          | type of the soil                                | categorical       | fertile, moist, humus rich,<br>well-drained, acidic, alkaline,<br>compost and/or well teorate |
| rate of growth                                                | the growth rate of the plant                    | categorical       | slow, average or fast                                                                         |
| hardness                                                      | the hardness type of the plant                  | categorical       | fully or frost                                                                                |
| height                                                        | the height                                      | decimal           | 0.15-10                                                                                       |
| spread                                                        | the spread                                      | decimal           | 0.15-10                                                                                       |
| color                                                         | the color of the plant's flowers                | categorical       | 6 different colors                                                                            |
| period                                                        | the plant's flowering period                    | categorical       | set of calendar months                                                                        |
| <b>B. Element represented as text data type</b>               |                                                 |                   |                                                                                               |
| description                                                   | a general free text description about the plant | free text         | —                                                                                             |
| <b>C. Element represented as image data type</b>              |                                                 |                   |                                                                                               |
| image                                                         | a picture of the plant                          | 24-bit JPEG image | —                                                                                             |

| variable                                                      | description                                                                                                                    | type        | values or range            |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------|
| <b>A. Attributes represented as a structured data element</b> |                                                                                                                                |             |                            |
| total_cites                                                   | total number of citation to the journal in 2013                                                                                | integer     | 26-31522                   |
| IF                                                            | the impact factor of the journal                                                                                               | decimal     | 0.179-9.39                 |
| 5y-IF                                                         | the 5 year impact factor                                                                                                       | decimal     | 0.21-8.504                 |
| II                                                            | the Immediacy Index of the journal.                                                                                            | decimal     | 0-1.251                    |
| articles2013                                                  | the total number of articles in the journal published in 2013                                                                  | integer     | 0-602                      |
| chI                                                           | The cited half-life of the journal                                                                                             | decimal     | 1.7-15                     |
| Eigenfactor Score                                             | similar to IF but it considers which journals have contributed these citations and is not influenced by journal self-citations | decimal     | 0.00001-0.06204            |
| Article Influence Score                                       | the average influence of a journal's articles over the first five years after publication                                      | decimal     | 0.056-3.5                  |
| country                                                       | the origin country                                                                                                             | categorical | 17 different countries     |
| language                                                      | the accepted language(s)                                                                                                       | categorical | English or multi-languages |
| issue/year                                                    | no of issues published per year                                                                                                | integer     | 0-24                       |
| <b>B. Element represented as time-series</b>                  |                                                                                                                                |             |                            |
| to journal                                                    | annual number of citations to the journal                                                                                      | integer     | —                          |
| from journal                                                  | annual number of citations from the journal                                                                                    | integer     | —                          |

| Data dictionary of the papers dataset                         |                                                          |             |                 |
|---------------------------------------------------------------|----------------------------------------------------------|-------------|-----------------|
| variable                                                      | description                                              | type        | values or range |
| <b>A. Attributes represented as a structured data element</b> |                                                          |             |                 |
| no of authors                                                 | number of the paper's authors                            | integer     | 1-18            |
| month                                                         | the publication month of the paper                       | categorical | 1-12            |
| volume                                                        | the volume of the journal that the paper is published in | integer     | 1-1910          |
| conference                                                    | the article is a conference paper                        | binary      | 1-applied       |
| pages                                                         | the total number of the paper's pages                    | integer     | 3-58            |
| citation                                                      | total number of citation to the paper since publication  | integer     | 20-2372         |
| average per year                                              | average number of citation per year                      | decimal     | 1.25-148.31     |
| <b>B. Element represented as time-series data type</b>        |                                                          |             |                 |
| citation                                                      | the annual number of citations from 2000 to 2015         | integer     | 0-299           |
| <b>C. Element represented as text data type</b>               |                                                          |             |                 |
| abstract                                                      | the paper's abstract                                     | free text   | —               |

| Data dictionary of the celebrities dataset                    |                                                                 |             |                                 |
|---------------------------------------------------------------|-----------------------------------------------------------------|-------------|---------------------------------|
| <b>A. Attributes represented as a structured data element</b> |                                                                 |             |                                 |
| variable                                                      | description                                                     | type        | values or range                 |
| age                                                           | the age of the celebrity                                        | integer     | 21-72                           |
| DOB                                                           | the celebrity's year of birth                                   | date        | 1942-1994                       |
| active-year                                                   | the year when the celebrity started the career                  | date        | 1957-2011                       |
| active-age                                                    | the celebrity's age when s/he started the career                | date        | 4-40                            |
| gender                                                        | the celebrity's gender                                          | categorical | 1-female, 2-male                |
| MS                                                            | Marital Status of the celebrity                                 | categorical | 1-married, 2-single, 3-divorced |
| children                                                      | no of the celebrity's children                                  | integer     | 0-7                             |
| country                                                       | the origin of the celebrity                                     | binary      | 1-American                      |
| relatives                                                     | whether if s/he has a celebrity relative                        | binary      | 1-applied                       |
| awards                                                        | number of awards s/he has won                                   | integer     | 0-177                           |
| nominations                                                   | number of nominations                                           | integer     | 0-259                           |
| earnings                                                      | how many million s/he earns                                     | decimal     | 3.5-620                         |
| <b>B. Element represented as time-series data type</b>        |                                                                 |             |                                 |
| web                                                           | the normalized number of weekly web searches over two years     | integer     | 0-100                           |
| uTube                                                         | the normalized number of weekly youtube searches over two years | integer     | 0-100                           |

## **Appendix B: Full results of the late fusion approach**

## 1. The performance of clustering ensemble for the cancer dataset

| grouping systems | similarity measures | clustering algorithm | External validation methods |             |             |
|------------------|---------------------|----------------------|-----------------------------|-------------|-------------|
|                  |                     |                      | Rand                        | Jaccard     | Dice's      |
| NICE             | <i>CTS</i>          | SL                   | 0.490069381                 | 0.505006258 | 0.502490660 |
|                  |                     | CL                   | 0.494407145                 | 0.436795995 | 0.466265865 |
|                  |                     | AL                   | 0.491453390                 | 0.500625782 | 0.500312695 |
|                  | <i>SRS</i>          | SL                   | 0.490069381                 | 0.505006258 | 0.502490660 |
|                  |                     | CL                   | 0.504295836                 | 0.224655820 | 0.310017271 |
|                  |                     | AL                   | 0.491766869                 | 0.501251564 | 0.500625000 |
|                  | <i>ASRS</i>         | SL                   | 0.489975337                 | 0.503128911 | 0.501559576 |
|                  |                     | CL                   | 0.489994146                 | 0.010638298 | 0.020833333 |
|                  |                     | AL                   | 0.489975337                 | 0.503128911 | 0.501559576 |
| GS-3             | <i>CTS</i>          | SL                   | 0.570823109                 | 0.714643304 | 0.588356517 |
|                  |                     | CL                   | 0.546750282                 | 0.615769712 | 0.551878856 |
|                  |                     | AL                   | 0.561345075                 | 0.693992491 | 0.581236897 |
|                  | <i>SRS</i>          | SL                   | 0.569639727                 | 0.713391740 | 0.587931924 |
|                  |                     | CL                   | 0.522627298                 | 0.202127660 | 0.287878788 |
|                  |                     | AL                   | 0.540198573                 | 0.108260325 | 0.177983539 |
|                  | <i>ASRS</i>         | SL                   | 0.569639727                 | 0.713391740 | 0.587931924 |
|                  |                     | CL                   | 0.568572331                 | 0.243429287 | 0.327441077 |
|                  |                     | AL                   | 0.569639727                 | 0.713391740 | 0.587931924 |
| GS-4             | <i>CTS</i>          | SL                   | 0.316901293                 | 0.371088861 | 0.426005747 |
|                  |                     | CL                   | 0.506774671                 | 0.282227785 | 0.360800000 |
|                  |                     | AL                   | 0.328163022                 | 0.366708385 | 0.423104693 |
|                  | <i>SRS</i>          | SL                   | 0.316901293                 | 0.370463079 | 0.425593098 |
|                  |                     | CL                   | 0.459324939                 | 0.309762203 | 0.382534776 |
|                  |                     | AL                   | 0.343909850                 | 0.360450563 | 0.418909091 |
|                  | <i>ASRS</i>         | SL                   | 0.316794710                 | 0.372340426 | 0.426829268 |
|                  |                     | CL                   | 0.323411465                 | 0.046933667 | 0.085812357 |
|                  |                     | AL                   | 0.316794710                 | 0.372340426 | 0.426829268 |
| MC               | <i>CTS</i>          | SL                   | 0.431488797                 | 0.018147685 | 0.035024155 |
|                  |                     | CL                   | 0.468027113                 | 0.419274093 | 0.456092580 |
|                  |                     | AL                   | 0.433310893                 | 0.559449312 | 0.528056704 |
|                  | <i>SRS</i>          | SL                   | 0.431488797                 | 0.017521902 | 0.033857316 |
|                  |                     | CL                   | 0.501232364                 | 0.152065081 | 0.233205374 |
|                  |                     | AL                   | 0.462612549                 | 0.025031289 | 0.047675805 |
|                  | <i>ASRS</i>         | SL                   | 0.430875946                 | 0.018773467 | 0.036188179 |
|                  |                     | CL                   | 0.430875946                 | 0.018773467 | 0.036188179 |
|                  |                     | AL                   | 0.430875946                 | 0.018773467 | 0.036188179 |

## 2. The performance of clustering ensemble for the plants dataset

| DMs combination | similarity measures | clustering algorithm | External validation methods |         |             |
|-----------------|---------------------|----------------------|-----------------------------|---------|-------------|
|                 |                     |                      | Rand                        | Jaccard | Dice's      |
| comb1           | CTS                 | SL                   | 0.592525253                 | 0.38    | 0.431818182 |
|                 |                     | CL                   | 0.644242424                 | 0.38    | 0.431818182 |
|                 |                     | AL                   | 0.659797980                 | 0.15    | 0.230769231 |
|                 | SRS                 | SL                   | 0.356969697                 | 0.22    | 0.305555556 |
|                 |                     | CL                   | 0.657171717                 | 0.12    | 0.193548387 |
|                 |                     | AL                   | 0.729898990                 | 0.22    | 0.305555556 |
|                 | ASRS                | SL                   | 0.358989899                 | 0.24    | 0.324324324 |
|                 |                     | CL                   | 0.633333333                 | 0.26    | 0.342105263 |
|                 |                     | AL                   | 0.631717172                 | 0.57    | 0.53271028  |
| comb2           | CTS                 | SL                   | 0.641414141                 | 0.08    | 0.137931034 |
|                 |                     | CL                   | 0.725050505                 | 0.32    | 0.390243902 |
|                 |                     | AL                   | 0.744848485                 | 0.14    | 0.218750000 |
|                 | SRS                 | SL                   | 0.649292929                 | 0.64    | 0.561403509 |
|                 |                     | CL                   | 0.744848485                 | 0.14    | 0.218750000 |
|                 |                     | AL                   | 0.791313131                 | 0.09    | 0.152542373 |
|                 | ASRS                | SL                   | 0.354949495                 | 0.37    | 0.425287356 |
|                 |                     | CL                   | 0.667070707                 | 0.24    | 0.324324324 |
|                 |                     | AL                   | 0.631515152                 | 0.04    | 0.074074074 |
| comb3           | CTS                 | SL                   | 0.636565657                 | 0.53    | 0.514563107 |
|                 |                     | CL                   | 0.634949495                 | 0.09    | 0.152542373 |
|                 |                     | AL                   | 0.744848485                 | 0.14    | 0.218750000 |
|                 | SRS                 | SL                   | 0.363030303                 | 0.25    | 0.333333333 |
|                 |                     | CL                   | 0.867474747                 | 0.03    | 0.056603774 |
|                 |                     | AL                   | 0.867474747                 | 0.35    | 0.411764706 |
|                 | ASRS                | SL                   | 0.363434343                 | 0.23    | 0.315068493 |
|                 |                     | CL                   | 0.615353535                 | 0.38    | 0.431818182 |
|                 |                     | AL                   | 0.363434343                 | 0.37    | 0.425287356 |
| comb4           | CTS                 | SL                   | 0.431717172                 | 0.49    | 0.494949495 |
|                 |                     | CL                   | 0.643434343                 | 0.08    | 0.137931034 |
|                 |                     | AL                   | 0.622020202                 | 0.54    | 0.519230769 |
|                 | SRS                 | SL                   | 0.356969697                 | 0.24    | 0.324324324 |
|                 |                     | CL                   | 0.662424242                 | 0.02    | 0.038461538 |
|                 |                     | AL                   | 0.647474747                 | 0.05    | 0.090909091 |
|                 | ASRS                | SL                   | 0.354949495                 | 0.23    | 0.315068493 |
|                 |                     | CL                   | 0.629292929                 | 0.02    | 0.038461538 |
|                 |                     | AL                   | 0.402626263                 | 0.25    | 0.333333333 |

### 3. The performance of clustering ensemble for the journals dataset

| grouping system | similarity measures | clustering algorithm | External validation methods |             |             |
|-----------------|---------------------|----------------------|-----------------------------|-------------|-------------|
|                 |                     |                      | Rand                        | Jaccard     | Dice's      |
| AI              | <i>CTS</i>          | SL                   | 0.298949696                 | 0.207407407 | 0.293193717 |
|                 |                     | CL                   | 0.319402985                 | 0.214814815 | 0.300518135 |
|                 |                     | AL                   | 0.389718076                 | 0.207407407 | 0.293193717 |
|                 | <i>SRS</i>          | SL                   | 0.228745163                 | 0.259259259 | 0.341463415 |
|                 |                     | CL                   | 0.476616915                 | 0.185185185 | 0.270270270 |
|                 |                     | AL                   | 0.476616915                 | 0.185185185 | 0.270270270 |
|                 | <i>ASRS</i>         | SL                   | 0.220453289                 | 0.259259259 | 0.341463415 |
|                 |                     | CL                   | 0.348590381                 | 0.207407407 | 0.293193717 |
|                 |                     | AL                   | 0.300718629                 | 0.207407407 | 0.293193717 |
| ES              | <i>CTS</i>          | SL                   | 0.695854063                 | 0.651851852 | 0.565916399 |
|                 |                     | CL                   | 0.619789939                 | 0.066666667 | 0.117647059 |
|                 |                     | AL                   | 0.619789939                 | 0.066666667 | 0.117647059 |
|                 | <i>SRS</i>          | SL                   | 0.495632946                 | 0.614814815 | 0.551495017 |
|                 |                     | CL                   | 0.663681592                 | 0.133333333 | 0.210526316 |
|                 |                     | AL                   | 0.619789939                 | 0.066666667 | 0.117647059 |
|                 | <i>ASRS</i>         | SL                   | 0.473963516                 | 0.222222222 | 0.307692308 |
|                 |                     | CL                   | 0.663681592                 | 0.688888889 | 0.579439252 |
|                 |                     | AL                   | 0.660807076                 | 0.081481481 | 0.140127389 |
| IF              | <i>CTS</i>          | SL                   | 0.387949143                 | 0.325925926 | 0.394618834 |
|                 |                     | CL                   | 0.490326147                 | 0.237037037 | 0.321608040 |
|                 |                     | AL                   | 0.482365948                 | 0.318518519 | 0.389140271 |
|                 | <i>SRS</i>          | SL                   | 0.358982863                 | 0.318518519 | 0.389140271 |
|                 |                     | CL                   | 0.561636263                 | 0.518518519 | 0.509090909 |
|                 |                     | AL                   | 0.568048646                 | 0.466666667 | 0.482758621 |
|                 | <i>ASRS</i>         | SL                   | 0.371807629                 | 0.303703704 | 0.377880184 |
|                 |                     | CL                   | 0.508678828                 | 0.214814815 | 0.300518135 |
|                 |                     | AL                   | 0.495632946                 | 0.237037037 | 0.321608040 |

#### 4. The performance of clustering ensemble for the papers dataset

| DMs combination | similarity measures | clustering algorithm | External validation methods |             |             |
|-----------------|---------------------|----------------------|-----------------------------|-------------|-------------|
|                 |                     |                      | Rand                        | Jaccard     | Dice's      |
| comb1           | CTS                 | SL                   | 0.688316611                 | 0.490000000 | 0.494949495 |
|                 |                     | CL                   | 0.721092531                 | 0.266666667 | 0.347826087 |
|                 |                     | AL                   | 0.708606466                 | 0.163333333 | 0.246231156 |
|                 | SRS                 | SL                   | 0.340289855                 | 0.320000000 | 0.390243902 |
|                 |                     | CL                   | 0.792173913                 | 0.276666667 | 0.356223176 |
|                 |                     | AL                   | 0.703879599                 | 0.423333333 | 0.458483755 |
|                 | ASRS                | SL                   | 0.335629877                 | 0.326666667 | 0.39516129  |
|                 |                     | CL                   | 0.698483835                 | 0.056666667 | 0.101796407 |
|                 |                     | AL                   | 0.340289855                 | 0.320000000 | 0.390243902 |
| comb2           | CTS                 | SL                   | 0.823054627                 | 0.846666667 | 0.628712871 |
|                 |                     | CL                   | 0.754827202                 | 0.273333333 | 0.353448276 |
|                 |                     | AL                   | 0.829832776                 | 0.303333333 | 0.377593361 |
|                 | SRS                 | SL                   | 0.342541806                 | 0.323333333 | 0.392712551 |
|                 |                     | CL                   | 0.797703456                 | 0.286666667 | 0.36440678  |
|                 |                     | AL                   | 0.636633222                 | 0.510000000 | 0.504950495 |
|                 | ASRS                | SL                   | 0.335585284                 | 0.330000000 | 0.397590361 |
|                 |                     | CL                   | 0.773088071                 | 0.776666667 | 0.608355091 |
|                 |                     | AL                   | 0.635340022                 | 0.103333333 | 0.171270718 |

#### 5. The performance of clustering ensemble for the celebrities dataset

| similarity measures | clustering algorithm | External validation methods |         |             |
|---------------------|----------------------|-----------------------------|---------|-------------|
|                     |                      | Rand                        | Jaccard | Dice's      |
| CTS                 | SL                   | 0.421616162                 | 0.50    | 0.500000000 |
|                     | CL                   | 0.485050505                 | 0.15    | 0.230769231 |
|                     | AL                   | 0.495959596                 | 0.21    | 0.295774648 |
| SRS                 | SL                   | 0.374343434                 | 0.22    | 0.305555556 |
|                     | CL                   | 0.546868687                 | 0.31    | 0.382716049 |
|                     | AL                   | 0.546868687                 | 0.19    | 0.275362319 |
| ASRS                | SL                   | 0.397373737                 | 0.20    | 0.285714286 |
|                     | CL                   | 0.421616162                 | 0.50    | 0.500000000 |
|                     | AL                   | 0.421616162                 | 0.50    | 0.500000000 |

## **Appendix C: The detailed results of the celebrities dataset**

| Run no. | $DM^{SD}$ | $DM^{TSWeb}$ | $DM^{TSUTube}$ | FM-1 | K-medoids |
|---------|-----------|--------------|----------------|------|-----------|
| 1       | 0.35      | 0.34         | 0.31           | 0.39 | 0.44      |
| 2       | 0.28      | 0.52         | 0.33           | 0.35 | 0.56      |
| 3       | 0.31      | 0.4          | 0.3            | 0.35 | 0.42      |
| 4       | 0.23      | 0.29         | 0.33           | 0.33 | 0.59      |
| 5       | 0.25      | 0.29         | 0.27           | 0.5  | 0.3       |
| 6       | 0.28      | 0.3          | 0.5            | 0.35 | 0.35      |
| 7       | 0.38      | 0.36         | 0.37           | 0.4  | 0.42      |
| 8       | 0.34      | 0.3          | 0.31           | 0.53 | 0.38      |
| 9       | 0.39      | 0.36         | 0.27           | 0.36 | 0.44      |
| 10      | 0.41      | 0.24         | 0.5            | 0.38 | 0.59      |
| 11      | 0.26      | 0.3          | 0.28           | 0.51 | 0.54      |
| 12      | 0.28      | 0.19         | 0.33           | 0.49 | 0.58      |
| 13      | 0.19      | 0.36         | 0.51           | 0.48 | 0.32      |
| 14      | 0.28      | 0.24         | 0.3            | 0.47 | 0.44      |
| 15      | 0.21      | 0.29         | 0.38           | 0.31 | 0.3       |
| 16      | 0.26      | 0.43         | 0.27           | 0.46 | 0.42      |
| 17      | 0.41      | 0.34         | 0.31           | 0.33 | 0.4       |
| 18      | 0.4       | 0.29         | 0.5            | 0.4  | 0.33      |
| 19      | 0.25      | 0.36         | 0.37           | 0.38 | 0.55      |
| 20      | 0.3       | 0.35         | 0.38           | 0.23 | 0.62      |
| 21      | 0.35      | 0.19         | 0.37           | 0.49 | 0.59      |
| 22      | 0.34      | 0.34         | 0.3            | 0.53 | 0.42      |
| 23      | 0.2       | 0.36         | 0.37           | 0.33 | 0.58      |
| 24      | 0.28      | 0.51         | 0.29           | 0.54 | 0.57      |
| 25      | 0.35      | 0.5          | 0.37           | 0.44 | 0.32      |
| 26      | 0.26      | 0.4          | 0.37           | 0.37 | 0.36      |
| 27      | 0.41      | 0.36         | 0.48           | 0.41 | 0.48      |
| 28      | 0.33      | 0.51         | 0.3            | 0.54 | 0.4       |
| 29      | 0.41      | 0.51         | 0.5            | 0.39 | 0.37      |
| 30      | 0.4       | 0.34         | 0.38           | 0.48 | 0.58      |
| 31      | 0.25      | 0.39         | 0.41           | 0.37 | 0.27      |
| 32      | 0.38      | 0.3          | 0.51           | 0.54 | 0.52      |
| 33      | 0.28      | 0.34         | 0.31           | 0.44 | 0.38      |
| 34      | 0.32      | 0.38         | 0.47           | 0.3  | 0.34      |
| 35      | 0.39      | 0.29         | 0.48           | 0.52 | 0.42      |
| 36      | 0.41      | 0.41         | 0.3            | 0.27 | 0.32      |
| 37      | 0.38      | 0.39         | 0.38           | 0.43 | 0.42      |
| 38      | 0.41      | 0.34         | 0.41           | 0.5  | 0.44      |
| 39      | 0.38      | 0.51         | 0.47           | 0.49 | 0.59      |
| 40      | 0.26      | 0.49         | 0.31           | 0.43 | 0.62      |
| 41      | 0.21      | 0.51         | 0.3            | 0.53 | 0.61      |
| 42      | 0.31      | 0.36         | 0.37           | 0.51 | 0.36      |
| 43      | 0.34      | 0.5          | 0.31           | 0.48 | 0.55      |
| 44      | 0.38      | 0.48         | 0.28           | 0.44 | 0.32      |
| 45      | 0.41      | 0.51         | 0.21           | 0.32 | 0.59      |
| 46      | 0.21      | 0.24         | 0.5            | 0.46 | 0.54      |
| 47      | 0.34      | 0.36         | 0.35           | 0.39 | 0.5       |
| 48      | 0.38      | 0.46         | 0.41           | 0.43 | 0.45      |
| 49      | 0.32      | 0.4          | 0.3            | 0.36 | 0.59      |
| 50      | 0.3       | 0.39         | 0.5            | 0.54 | 0.37      |

## **Appendix D: Publications**