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1. Introduction 

Collective rent-seeking or political lobbying can be viewed as contests in which groups 

collectively expend sunk resources in order to win a rent. Group members involved in rent-seeking 

expend resources, or ‘bids,’ individually. An aggregation function that maps individual group 

member bids into a ‘group bid’ is called an impact function. One of the most popular forms of 

modeling the winning probability is a group all-pay auction, in which only the group that expends 

the highest group bid wins the rent.1 In this study we focus on the specific class of rent-seeking 

games, in which one group is represented by the weakest bid among its group members, while the 

other group is represented by the strongest one.  

 There are various instances of such a structure in real life. Consider, for example, a 

lobbying game between the car industry versus the environmental groups. Car industry lobby 

groups, such as the Association des Constructeurs Européens d'Automobiles or Alliance of 

Automobile Manufacturers, often lobby for relaxed environmental regulations, car manufacturing 

regulations, etc., whereas environmental lobby groups, e.g., Clean Air Watch or Environmental 

Defense Fund, lobby for stricter rules. Oftentimes (e.g., over the past decade in California) the 

effective strength of the car lobby groups becomes the weakest part of the car technology, whereas 

the strength of the environmental groups is the strongest evidence of environmental damages. 

Another example comes from political economy. Imagine a status-quo policy being challenged by 

activists. The status-quo could be ‘Britain stays in the EU’ or ‘Catalonia stays in Spain,’ with the 

alternative ‘Exit the status-quo.’ The strength of the incumbents defending the status-quo is as 

good as the weakest feature of the status-quo. The strength of the challengers, however, is the best 

possible outcome from the alternative. Both of these examples resemble our structure.2  

 Note that if a group wins the contest, then it implies a win for every group member, because 

the prize has the feature of a group-specific public good. Hence, in this study we consider a group 

all-pay auction with a group specific public good prize in which one group follows a best-shot and 

                                                                 
1 Equilibria in individual all-pay auction are characterized by Baye et al. (1996), who find no pure strategy equilibrium. 

Players randomize over a continuous support and may put mass at some points. The upper bound of the support, the 

amount of the mass, and the equilibrium payoffs depend on the prize valuation.  
2 Further field observations consist of group conflicts in which one group defends from another group’s attack. When 

terrorist groups attack, one can argue that the best-shot of the attack constitutes the power of terrorists, while for the 

internal security groups the strength of defense depends on the weakest-link; a prominent example is due to Conybeare 

et al. (1994). The same logic applies to the attack and defense mechanisms in computer security and in system 

reliability (Varian, 2004). 
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the other group follows a weakest-link impact function. Baik et al. (2001) are the first to analyze 

an all-pay auction with a group specific public good prize. However, in their study, the sum of all 

group members’ bids constitutes the group-bid. They find free-riding equilibria in which the 

highest valuation player in a group makes a positive bid with a positive probability, whereas all 

the other group-members free-ride by placing zero bids. This is later generalized by Topolyan 

(2014) who characterizes further equilibria. Chowdhury et al. (2016) and Barbieri et al. (2014) 

extend this by considering a weakest-link (the weakest or the minimum bid within a group 

represents the group-bid) and a best-shot (the strongest or the maximum bid does so) impact 

function, respectively. Both studies find multiple equilibria that can be ranked according to 

payoffs.3 Note that in each of those studies the impact function, i.e., the bid aggregation 

technology, is symmetric among the contesting groups, whereas we allow for asymmetric impact 

functions. 

Our analysis contributes to three areas of literature. It extends the research on group contest 

(as it considers heterogeneous impact functions among groups) and adds to the understanding of 

the issues of attack and defense. Since the prize is a group-specific public good and the group 

members face network externalities, this study also contributes to the literature on public goods 

with network externalities (Hirshleifer, 1983; Bliss and Nalebuff, 1984; Bergstrom et al., 1986; 

Cornes, 1993; Barbieri and Malueg, 2014). Finally, the current study contributes to the all-pay 

auction literature by deriving new types of equilibria, in which players place mass at the upper 

bound of the support, or have two mass points at the opposite ends of equilibrium support. 

The rest of the paper proceeds as follows. In the next section we formally set up the model. 

In Section 3 we solve for equilibrium and interpret the results. We provide two specific examples 

of the model and the corresponding equilibria in Section 4. Section 5 concludes. 

2. Model  

Consider a situation in which two groups are engaged in a group all-pay auction. Group 1 ( 2) 

consists of 𝑚 (𝑛) risk-neutral players, respectively, who make irreversible and costly bids to win 

                                                                 
3 There also is a stream of research that considers group contests with the Tullock (1980) CSF. The earliest study in 

this area is by Katz et al. (1990) who employ an additive impact function. This is extended in various ways by Baik 

(1993, 2008), Lee (2012), Kolmar and Rommeswinkel (2013), Chowdhury et al. (2013) and Chowdhury and Topolyan 

(2016). The last study considers heterogeneous impact functions and is the closest to the current analysis. We compare 

these two studies below and further in the Conclusion section. 
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a group-specific public-good prize. This bid can be in the form of money, time, effort or any other 

resources – depending on the specific contest, but is measured in the same units as the prize values. 

The individual group members’ valuation for the prize may differ across groups; however it is the 

same within a group. Let 𝑣𝑔 > 0 represent the group-specific common valuation for the prize in 

group 𝑔. Furthermore, let 𝑥𝑔𝑖 ≥ 0 represent the bid by player 𝑖 in group 𝑔, and 𝑋𝑔 - group 𝑔's bid. 

We assume that the group-bid of group 1 is represented by the maximum bid placed among the 

players in group 1, i.e., 𝑋1 = 𝑚𝑎𝑥{𝑥11, 𝑥12, … , 𝑥1𝑚}, while the group-bid of group 2 is determined 

by the minimum bid, i.e., 𝑋2 = 𝑚𝑖𝑛{𝑥21, 𝑥22, … , 𝑥2𝑛}. We analyze a group all-pay auction and 

assume that the winning probability of group 1 is 

𝑝1(𝑋1, 𝑋2) = {

1       if  𝑋1 > 𝑋2

1/2   if  𝑋1 = 𝑋2

0       if  𝑋1 < 𝑋2

 

The probability that group 2 wins is: 1 − 𝑝1(𝑋1, 𝑋2).  

We assume that only the members of the winning group receive the group-specific public 

good prize but all players forgo their bids. For all the players, the cost of bid is the bid itself. Hence, 

the payoff for player 𝑖 in group 𝑔 is: 

𝑢𝑔𝑖 = 𝑝𝑔𝑣𝑔 − 𝑥𝑔𝑖 .                       (1) 

To close the structure, we assume that every player in the contest simultaneously and 

independently chooses her bid, and that all of the above, including the parameter values and the 

rules of the game, is common knowledge. We employ Nash equilibrium as our solution concept 

and use the following definitions throughout the paper. To simplify notations, Definition 1 is given 

for group 1, though it is analogous for group 2. 

Definition 1. A strategy of player i in group 1 is a probability distribution over a subset of ℝ+, and 

is denoted by 𝑠1𝑖. Group 1's strategy is an 𝑚-tuple of its members' strategies (𝑠11, ⋯ , 𝑠1𝑚), and is 

denoted by 𝑠1.  

Definition 2. If player 𝑖 in group 𝑔 distributes positive mass over some nonempty subset of ℝ++, 

then the player is called active. Otherwise the player is called inactive. 
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Definition 3. If group 𝑔 distributes positive mass over some nonempty subset of ℝ++, then the 

group is called active. Otherwise the group is called inactive. 

3. Equilibria 

In this section we focus on and characterize (adopting the terminology by Barbieri et al., 2014) all 

semi-symmetric equilibrium strategies, in which all players within the same group employ the 

same strategy. Asymmetric equilibria may exist, where otherwise identical players are employing 

different strategies. However, since all players within a group are symmetric, it is natural to look 

at the possible semi-symmetric equilibria, which is the scope of this study.  

Lemma 1. There exists no equilibrium in which both groups are inactive. 

Lemma 2. There exists no pure strategy Nash equilibrium in which at least one group is active. 

The latter lemma reinstates a standard result from the all-pay auction literature. It holds 

because overbidding by a slight margin guarantees the victory, and thus if both groups play pure 

strategies (delivering a nonnegative payoff to each player in equilibrium), a player in the best-shot 

group would deviate and slightly increase her bid.  

Next we characterize equilibrium supports. For each group 𝑔, let 𝑆𝑔+
∗  denote 𝑆𝑔

∗ ∩ ℝ++ =

{𝑥 > 0: 𝑥 ∈ 𝑆𝑔
∗}, where 𝑆𝑔

∗ represents group 𝑔's equilibrium support. Also, let 𝑠𝑔
∗ = 𝑖𝑛𝑓{𝑥: 𝑥 ∈ 𝑆𝑔

∗}, 

𝑠𝑔+
∗ = 𝑖𝑛𝑓{𝑥: 𝑥 ∈ 𝑆𝑔+

∗ }, and 𝑠𝑔
∗

= 𝑠𝑢𝑝{𝑥: 𝑥 ∈ 𝑆𝑔
∗}.  

Lemma 3. Let 𝑠∗ = {𝑠1
∗, 𝑠2

∗} be a mixed strategy Nash equilibrium. Then the following statements 

are true.4 

i. 𝑆1+
∗ = 𝑆2+

∗ . 

ii. 𝑚𝑖𝑛{ 𝑠1,
∗  𝑠2

∗} = 0. 

iii. “No gaps in the support”: i.e., there exists no interval (𝑎, 𝑏) ⊆ 𝑆𝑔
∗, where 𝑎 < 𝑏, such that 

𝐹𝑔(𝑎) = 𝐹𝑔(𝑏), 𝑔 = 1,2. 

iv. No player in group 2 puts mass at 𝑠̅∗. 

                                                                 
4 The proofs are standard and omitted here; they are available upon request from the corresponding author, or can be 

found in the working paper version of the study in Chowdhury and Topolyan (2015). 
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v. No group 𝑔 puts mass at 𝑥 for any 𝑥 ∈ (𝑠+
∗ , 𝑠̅∗). 

vi. At most one group puts mass at zero. 

Property (i) is inherited from the weakest-link all-pay auction, as group 2 follows the 

weakest-link; the proof goes along the lines of Lemma 4.1.2 in Chowdhury et al. (2016). Parts (ii), 

(iii), (v), and (vi) are common to the best-shot as well as the weakest-link all-pay auctions; for 

details, refer to Barbieri et al. (2014) and Chowdhury et al. (2016). Property (iv) is inherited from 

the best-shot group all-pay auction, see Barbieri et al. (2014). 

Combining Lemmas 1-3, we state the main result of this analysis.5 A remarkable feature of 

the equilibria is that players in the best-shot group can put atom at the upper bound of the support. 

This is only possible because of the group-bid technology within the weakest-link group. In fact, 

it is possible that a group puts mass at both the lower and the upper bound of the support. This 

result is reminiscent of Che and Gale (1998) but it is obtained without assuming a cap on the bids.   

Theorem 1. There exists a continuum of semi-symmetric equilibria of the max-min all-pay auction, 

characterized as follows. 

1) If 
𝑛𝑣1

𝑚𝑣2
≥ 1, then to every 0 ≤ 𝑎1 < 1 there corresponds a unique equilibrium, such that 

every player in group 1 puts a mass of 𝑎1 at 𝑠
∗
, where 𝑠

∗
 is a function of 𝑎1, and every 

player in group 2 puts a mass of [1 −
𝑚𝑣2

𝑛𝑣1
(1 − 𝑎1)] at zero. Player 1's cdf is given by the 

unique solution to 

(𝑚𝑣2)𝑛

(𝑛𝑣1)𝑛−1 (𝐹(𝑥))
𝑚−1

(1 − 𝐹(𝑥) − 𝑎1)𝑛−1𝐹′(𝑥) = 1, 𝐹(0) = 0 , 

and player 2's cdf is given by  𝐺(𝑥) = 1 −
𝑚𝑣2

𝑛𝑣1
(1 − 𝑎1) +

𝑚𝑣2

𝑛𝑣1
𝐹(𝑥)  for 0 ≤ 𝑥 ≤ 𝑠

∗
. 

2) If 
𝑛𝑣1

𝑚𝑣2
< 1, then there exist two types of equilibria. 

I. To every 1 −
𝑛𝑣1

𝑚𝑣2
≤ 𝑎1 < 1 there corresponds a unique equilibrium, such that every 

player in group 1 puts a mass of 𝑎1 at 𝑠
∗
, where 𝑠

∗
 is a function of 𝑎1, and every player 

in group 2 puts a mass of [1 −
𝑚𝑣2

𝑛𝑣1
(1 − 𝑎1)] at zero. Player 1's cdf is given by the 

unique solution to 

                                                                 
5 Furthermore, for details of further results, discussions and diagrammatic representations, please see the working 

paper version of this study in Chowdhury and Topolyan (2015). 
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(𝑚𝑣2)𝑛

(𝑛𝑣1)𝑛−1 (𝐹(𝑥))
𝑚−1

(1 − 𝐹(𝑥) − 𝑎1)𝑛−1𝐹′(𝑥) = 1, 𝐹(0) = 0 , 

and player 2's cdf is given by  𝐺(𝑥) = 1 −
𝑚𝑣2

𝑛𝑣1
(1 − 𝑎1) +

𝑚𝑣2

𝑛𝑣1
𝐹(𝑥)  for 0 ≤ 𝑥 ≤ 𝑠

∗
 

II. To every 0 ≤ 𝑎1 ≤ 1 −
𝑛𝑣1

𝑚𝑣2
, there corresponds a unique equilibrium, such that every 

player in group 1 puts a mass of 𝑎1 at 𝑠
∗
, where 𝑠

∗
 is a function of 𝑎1, Every player in 

group 1 puts a mass of [1 − 𝑎1 −
𝑛𝑣1

𝑚𝑣2
] at zero and a mass of 𝑎1 at 𝑠

∗
. Player 2's cdf is 

given by the unique solution to 

𝑛𝑣1 (1 − 𝑎1 −
𝑛𝑣1

𝑚𝑣2
+

𝑛𝑣1

𝑚𝑣2
𝐺(𝑥))

𝑚−1

(1 − 𝐺(𝑥))
𝑛−1

𝐺′(𝑥) = 1, 𝐺(0) = 0,  

and player 1's cdf is given by  𝐹(𝑥) = 1 − 𝑎1 −
𝑛𝑣1

𝑚𝑣1
+

𝑛𝑣1

𝑚𝑣2
𝐺(𝑥)  for 0 ≤ 𝑥 ≤ 𝑠

∗
 

Proof: See Appendix.  

The remarkable multiplicity of equilibria reflects varying degrees of free-riding. Note that 

although every player is active, free-riding takes the form of an insufficient effort, where lower 

effort levels are chosen with higher probability.  

Equilibria where the best-shot group puts mass at the upper bound while the weakest-link 

group puts mass at zero (cases 1 and 2.I), have the following property. As the size of the weakest-

link group, 𝑛, increases (or the size of the best-shot group, m, decreases), each player in group 2 

puts greater mass at zero, which improves the payoffs in group 1.6 Players in group 2 always 

receive zero payoff as long as they put positive mass at zero. Thus, their payoff is unaffected by 

the changes in the group sizes, as long as 𝑛𝑣1 ≥ 𝑚𝑣2 is satisfied, although the players bid less 

aggressively. On the other hand, when players in group 1 put masses at zero as well as the upper 

bound (case 2.II), every player in group 2 receives a positive expected payoff of (1 − 𝑎1 −
𝑛𝑣1

𝑚𝑣2
), 

which diminishes as n increases (or m decreases), as long as 
𝑛𝑣1

𝑚𝑣2
< 1.7  

We, therefore, find partial support of the ‘group size paradox’ (Olson, 1965; Bergstrom et 

al., 1986; Pecorino, 2015); the inverse relation between the group size and payoffs in that group 

                                                                 
6 Observe that the mass that each player in group 2 puts at zero is inversely related to 𝑎1. The upper bound of the 

support, 𝑠
∗
, is determined from equation 𝐴1(1 − 𝑎1) = 𝑠

∗
, where 𝐴1 is strictly increasing in the relevant range. Thus 

when every player in group 2 puts greater mass at zero, 𝑠
∗
 decreases, making players in group 1 better-off. 

7 In general it is difficult to say how the upper bound of the group support varies with the group sizes, as the expression 

in (7) is complicated. Hence it is difficult to say how players in group 1 fare as the group sizes change. 
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holds under certain conditions, while there may be no relation at all (a constant payoff of zero), or 

the relation may be ambiguous.  

4. Examples 

In the previous section we characterized the equilibria of the game. We observed that two cases 

may arise that are very different qualitatively. Here we provide with examples that delineate the 

two most basic types of the equilibria, but cover both the technicalities and the intuition regarding 

symmetry vs. asymmetry in the group size and in prize valuations. The first one considers 

symmetric groups with common prize value whereas the second one incorporates different group 

sizes with different prize values across groups. These also correspond to the two types of the 

equilibria characterized. 

4.1. Example 1: the symmetric group size, symmetric value case 

Suppose the groups are symmetric, with 𝑚 = 𝑛 = 2 and 𝑣1 = 𝑣2 = 1. Theorem 1 implies there 

exists a continuum of equilibria, in which each player in group 1 puts a mass of 𝑎1 at the upper 

bound of the common support, where 0 ≤ 𝑎1 < 1, and every player in group 2 puts the same mass 

at zero. Equation (5) implies:  

2𝐹(𝑥)(1 − 𝐹(𝑥) − 𝑎1)𝐹′(𝑥) = 1.               (8) 

Let 𝑦 = 𝐹(𝑥), then the following equation implicitly defines y as a function of x under the 

condition 0 ≤ 𝑦 ≤ 1 − 𝑎1: 

𝑦2(1 − 𝑎1) −
2

3
𝑦3 = 𝑥.                (9) 

The implicit plot of (9) for the case 𝑎1 = 0 is in Figure 4. Indeed, when we restrict our 

attention to the range {𝑦: 0 ≤ 𝑦 ≤ 1}, 𝑦 is implicitly defined as an increasing function of 𝑥.  
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Figure 4. Implicit plot of 𝑦2 −
2

3
𝑦3 = 𝑥. 

The family of CDFs of a player in group 1, when 𝑎1 takes values of 0, 0.1, 0.2, and 0.5, is 

in Figure 5. Here effort levels are depicted on the horizontal axis, and values that CDF takes are 

depicted on the vertical axis. Theorem 1 implies that every player in group 2 puts the same mass 

at zero. It is easy to see that the upper bound of the groups' support is decreasing in 𝑎1 and ranges 

from 0.33 when 𝑎1 = 0  to 0.04 when 𝑎1 = 0.5. The upper bound of the support goes to zero as 

𝑎1 goes to 1. Notice that in equilibrium 𝑎1 = 1 is never achieved (since no group sustain a pure 

strategy), suggesting that the NE correspondence is not upper hemicontinuous. This happens 

because the players' payoffs are discontinuous due to the all-pay auction assumption. 

 

Figure 5. Strategy (CDF) of a player in group 1 when  𝑎1 = 0, 0.1, 0.2, and 0.5. 
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4.2. Example 2: the asymmetric group size, asymmetric value case 

Now suppose group 1 has three players with valuation 𝑣1 = 1, and group 2 has two players with 

valuation 𝑣2 = 3. There are two types of equilibria. 

Type I equilibria: each player in group 1 puts a mass of 𝑎1 at the upper bound of the 

common support, where 1/2 ≤ 𝑎1 < 1, and every player in group 2 puts a mass of 𝑎𝐺 =
1

2
(1 +

𝑎1) at zero. Equation (5) implies 

24𝐹(𝑥)(1 − 𝐹(𝑥) − 𝑎1)2𝐹′(𝑥) = 1 .       (10) 

Letting 𝑦 = 𝐹(𝑥), we obtain the following equation relating y and x, where 0 ≤ 𝑦 ≤ 1 − 𝑎1: 

6𝑦4 + 16(𝑎1 − 1)𝑦3 + 12(𝑎1 − 1)2𝑦2 = 𝑥.       (11) 

CDFs of a player in group 1, when 𝑎1 takes values of 0.5, 0.6, and 0.7, are depicted in 

Figure 6. Again, the upper bound of the groups' support diminishes from 0.125 to zero as 𝑎1 

increases. As 𝑎1 increases, players in group 2 put larger mass at zero, ranging from 0.75 to 1. As 

before, the mass gets infinitely close to one, however the maximum of one is never achieved. 

 

Figure 6. Strategy (CDF) of a player in group 1 when  𝑎1 = 0.5, 0.6, and 0.7. 

 
Type II equilibria: each player in group 1 puts a mass of 𝑎1 at the upper bound of the 

common support, where 0 ≤ 𝑎1 ≤
1
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, and a mass of 𝑎𝐹 =
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2
− 𝑎1 at zero. Equilibrium CDFs of a 

player in group 2 when 𝑎1 takes values of 0, 0.25, and 0.5 are depicted in Figure 7. 
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Figure 7. Strategy (CDF) of a player in group 2 when  𝑎1 = 0, 0.25, and 0.5. 

As can be observed from the figure above, the upper bound of the support diminishes, 

similar to the last case, as 𝑎1 increases. 

5. Conclusion 

We introduce a group rent-seeking contest with all-pay auction CSF and heterogeneous impact 

functions. Compared to the existing studies of group all-pay auctions, we find equilibria that are 

qualitatively different. While Chowdhury et al. (2016), imposing weakest-link impact functions 

for both groups, find equilibria in which pure and mixed strategies may co-exist, only mixed 

strategies could be sustained in equilibrium in our model. Also, unlike Chowdhury et al. (2016), it 

is not possible for both groups to be inactive in equilibrium. These results stem from the fact that 

one group adopts the best-shot effort technology. As expected, our results are also very different 

from those of Baik et al. (2001), who employ perfect substitute impact functions for both groups 

and find free-riding equilibria that are similar to the standard all-pay auction equilibria of Baye et 

al. (1996). Chowdhury and Topolyan (2016) analyze group contest with heterogeneous impact 

functions but with logit-type (Tullock, 1980) CSF. They characterize pure strategy equilibria and 

show that in any equilibrium only one player in the attacker group is active, while all players in 

the defender group exert the same positive effort. We show, compared to Chowdhury and Topolyan 

(2016), that much wider participation is possible in mixed strategy equilibria. Particularly, we 

show that it is possible that all members in the best-shot group are active and randomize over the 
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same support, and that members of the weakest-link group may fail to coordinate with respect to 

the effort level and exert different efforts in a mixed strategy equilibrium. 

We provide an important step to a flourishing area of literature. There are various ways to 

broaden this analysis, which are out of scope of the current study. We consider the case where the 

moves are simultaneous. It is, however, easy to show that the equilibria still prevail in a situation 

where the moves are sequential. Since the best responses remain the same, the result will also be 

the same when only one move per group is considered. However, the results will be different when 

the groups are allowed to add to the existing bids in a sequence. A technically difficult extension 

would be to allow more than two groups and to introduce heterogeneous valuations. Endogenizing 

the choice of impact function, endogenizing group formation, considering private good prizes, are 

among further possible topics. It will also be possible to consider simultaneous inter- and intra-

group conflict (e.g., Choi et al., 2016) in this asymmetric impact function setting. Finally, we 

consider a complete information structure; introducing incomplete information may provide 

interesting results. 
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APPENDIX 

Proof of Theorem 1. 

Let each player in group 1 randomize according to some CDF 𝐹(∙), and each player of group 2 

randomize according to a CDF 𝐺(∙). Following Barbieri et al. (2014), the expected payoff of player 

𝑖 in group 1 from exerting an effort of 𝑥 is given by 

𝑢1𝑖(𝑥) = −𝑥 + 𝑣1 [1 − ∫ (𝐹(𝑧))
𝑚−1

𝑛(1 − 𝐺(𝑧))
𝑛−1

𝑑𝐺(𝑧)
∞

𝑥
]. 

Then, 𝑢1𝑖
′ (𝑥) = 𝑛𝑣1(𝐹(𝑥))

𝑚−1
(1 − 𝐺(𝑥))

𝑛−1
𝐺′(𝑥) − 1 = 0, which implies  

𝑛𝑣1(𝐹(𝑥))
𝑚−1

(1 − 𝐺(𝑥))
𝑛−1

𝐺′(𝑥) = 1.              (2) 

Analogously, 

𝑚𝑣2(𝐹(𝑥))
𝑚−1

(1 − 𝐺(𝑥))
𝑛−1

𝐹′(𝑥) = 1.              (3) 

Let 𝑎1 be the (possibly zero) mass that every player in group 1 puts at 𝑠
∗
, then dividing (2) by (3) 

and integrating over [𝑥, 𝑠
∗
] yields 

1 − 𝐺(𝑥) =
𝑚𝑣2

𝑛𝑣1
(1 − 𝐹(𝑥) − 𝑎1) for all   0 < 𝑥 < 𝑠

∗
.            (4) 

Consider two possibilities. 

Case I. Each player in group 2 puts a mass of 𝑎𝐺 at zero, where 0 ≤ 𝑎𝐺 < 1. Lemma 3(vi) implies 

that players in group 1 do not put mass at zero. Equation (4) could be written as 𝐺(𝑥) = 1 −

𝑚𝑣2

𝑛𝑣1
(1 − 𝑎1) +

𝑚𝑣2

𝑛𝑣1
𝐹(𝑥), therefore in order to satisfy 0 ≤ 𝑎𝐺 < 1, we must have 𝑎1 ≥ 1 −

𝑛𝑣1

𝑚𝑣2
. 

Notice that if 
𝑛𝑣1

𝑚𝑣2
≥ 1, this condition holds for all 0 < 𝑎1 < 1.     

Plugging (4) into (3) yields  

(𝑚𝑣2)𝑛

(𝑛𝑣1)𝑛−1 (𝐹(𝑥))
𝑚−1

(1 − 𝐹(𝑥) − 𝑎1)𝑛−1𝐹′(𝑥) = 1.             (5) 

Denote 
(𝑚𝑣2)𝑛

(𝑛𝑣1)𝑛−1 𝑦𝑚−1(1 − 𝑦 − 𝑎1)𝑛−1 by 𝐷1(𝑦). Note that since 𝐷1(𝑦)  is a polynomial, 

its anti-derivative exists and is also a polynomial. Denote by 𝐴1(𝑦) the antiderivative of 𝐷1(𝑦) 
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with zero constant term. The solution to (5) has the form 𝐴1[𝐹(𝑥)] = 𝑥 + 𝐶, where C = constant. 

Since by assumption 𝐹(0) = 0, the constant C is equal to zero. Thus a solution to (5) satisfies 

𝐴1[𝐹(𝑥)] = 𝑥.                  (6) 

Furthermore, 𝐷1[𝐹(𝑥)] ≥ 0 if and only if 0 ≤ 𝐹(𝑥) ≤ 1 − 𝑎1, with strict inequality 

whenever 𝐹(𝑥) is in the interior of the interval. Notice that since 𝐷1(𝑦) =
𝜕

𝜕𝑦
[𝐴1(𝑦)], 𝐴1(∙) is 

strictly increasing on (0, 1 − 𝑎1). Therefore the inverse function 𝐴1
−1 is defined for all 0 < 𝐹(𝑥) <

1 − 𝑎1, and thus there exists a unique solution to (5) satisfying 0 < 𝐹(𝑥) < 1 − 𝑎1. The upper 

bound of the support 𝑠
∗
 is determined uniquely from equation 𝐴1(1 − 𝑎1) = 𝑠

∗
, because gaps in 

the support of 𝐹 are ruled out by Lemma 3(iii). Notice that by assumption we have 𝐹(0) = 0 and 

𝐹(𝑠
∗
) = 1 − 𝑎1.  

Finally, observe that the mass point at the upper bound of the support does not provide 

profitable deviations in either group. Indeed, a deviation to a lower effort level is not profitable for 

group 1 (group 2) by Equation 2 (Equation 3), while an upwards deviation for group 1 is not 

profitable because the other group does not put mass at the upper bound. An upwards deviation for 

group 2 is not profitable because of the weakest-link effort technology in this group. 

Case II. Each player in group 1 puts a mass of 𝑎𝐹 at zero, where 0 ≤ 𝑎𝐹 < 1, while players in 

group 2 do not put mass at zero. Rewrite Equation (4) as 𝐹(𝑥) = 1 − 𝑎1 −
𝑛𝑣1

𝑚𝑣1
+

𝑛𝑣1

𝑚𝑣2
𝐺(𝑥), then 

in order to satisfy 0 ≤ 𝑎𝐹 < 1, we must have 𝑎1 ≤ 1 −
𝑛𝑣1

𝑚𝑣2
, which holds only if 

𝑛𝑣1

𝑚𝑣2
< 1. The 

latter condition is satisfied for all 0 < 𝑎1 < 1 when  
𝑛𝑣1

𝑚𝑣2
≥ 1. Similarly to the previous case,                  

𝑛𝑣1 (1 − 𝑎1 −
𝑛𝑣1

𝑚𝑣2
+

𝑛𝑣1

𝑚𝑣2
𝐺(𝑥))

𝑚−1

(1 − 𝐺(𝑥))
𝑛−1

𝐺′(𝑥) = 1.           (7) 

Letting 𝐷2(𝑦) = 𝑛𝑣1 (1 − 𝑎1 −
𝑛𝑣1

𝑚𝑣2
+

𝑛𝑣1

𝑚𝑣2
𝑦)

𝑚−1
(1 − 𝑦)𝑛−1 and denoting by 𝐴2(𝑦) the 

antiderivative of 𝐷2(𝑦) with zero constant term, and then following the lines of Case I and noting 

that A2 is strictly increasing on (0,1) conclude that there exists a unique solution to (7). Finally, 

from 𝐴2(1) = 𝑠
∗
we solve for 𝑠

∗
. To complete the proof, follow Case I to conclude that a mass 

point at the upper bound of the support does not allow profitable deviations. ■ 

 


