Efficacy of High Dose Vitamin D Supplements for Elite Athletes

*Daniel J. Owens¹, *Jonathan C.Y. Tang², Warren J. Bradley¹, S. Andy Sparks³, William D. Fraser², James P. Morton¹ & Graeme L. Close¹

*Authors contributed equally to the manuscript

Affiliations: ¹Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK. ²Faculty of Medicine and Health Science, Norwich Medical School, University of East Anglia. Norwich, United Kingdom. ³Department of Sport and Physical Activity, Edge Hill University, Ormskirk, United Kingdom.

Abbreviated title: Efficacy of High Dose Vitamin D Supplements

Corresponding Author: Prof. Graeme L. Close

Research Institute for Sport and Exercise Science, Liverpool John Moores University

Tom Reilly Building, Byrom Street, Liverpool, L3 5AF.

g.l.close@ljmu.ac.uk

Disclosure statement: the authors have nothing to disclose.
Abstract

Purpose: Supplementation with dietary forms of vitamin D is commonplace in clinical medicine, elite athletic cohorts and the general population, yet the response of all major vitamin D metabolites to high doses of vitamin D is poorly characterized. We aimed to identify the responses of all major vitamin D metabolites to moderate and high dose supplemental vitamin D₃.

Methods: A repeated measures design was implemented in which 46 elite professional European athletes were block randomized based on their basal 25(OH)D concentration into two treatment groups. Athletes received either 35,000 or 70,000 IU·week⁻¹ vitamin D₃ for 12 weeks and 42 athletes completed the trial. Blood samples were collected over 18 weeks to monitor the response to supplementation and withdrawal from supplementation.

Results: Both doses led to significant increases in serum 25(OH)D and 1,25(OH)₂D₃. 70,000 IU·week⁻¹ also resulted in a significant increase of the metabolite 24,25(OH)₂D at weeks 6 and 12 that persisted following supplementation withdrawal at week 18, despite a marked decrease in 1,25(OH)₂D₃. Intact PTH was decreased in both groups by week 6 and remained suppressed throughout the trial.

Conclusions: High dose vitamin D₃ supplementation (70,000 IU·week⁻¹) may be detrimental for its intended purposes due to increased 24,25(OH)₂D production. Rapid withdrawal from high dose supplementation may inhibit the bioactivity of 1,25(OH)₂D₃ as a consequence of sustained increases in 24,25(OH)₂D that persist as 25(OH)D and 1,25(OH)₂D concentrations decrease. These data imply that lower doses of vitamin D₃ ingested frequently may be most appropriate and gradual withdrawal from supplementation as opposed to rapid withdrawal may be favorable.

Key Terms: 25-hydroxyvitamin D, 24,25-dihydroxyvitamin D, 1,25-dihydroxyvitamin D₃, parathyroid hormone, vitamin D
Introduction

Vitamin D and its metabolites can be described as a group of seco-steroid hormones derived primarily from dermal synthesis following ultraviolet B (UVB) radiation exposure (sunlight) and also from the diet. Cholecalciferol (vitamin D₃), resulting from both skin exposure to UVB and in limited amounts from dairy products, oily fish and meat, is considered to be the major contributor to vitamin D concentration (14); whereas ergocalciferol (vitamin D₂) is exclusively derived from the diet of irradiated plants and mushrooms, and appears to have less biological significance. Following the photosynthetic conversion of 7-dehydrocholesterol to pre-vitamin D₃ and subsequently vitamin D₃ (or cholecalciferol, 14) or following dietary intake, vitamin D is transported in the circulation to the liver bound to the vitamin D binding protein (DBP), where it is hydroxylated at C-25 by the cytochrome P450 enzyme CYP27A1 (25-hydroxylase) to form 25-hydroxyvitamin D (25[OH]D or calcidiol). This metabolite is then carried, again by DBP, to the kidney where at the proximal renal tubule it is hydroxylated by CYP27B1 (1α-hydroxylase) at C-1α to form the biologically active metabolite, 1,25-dihydroxyvitamin D₃ (1,25[OH]₂D or calcitriol)(1). The active compound, 1,25[OH]₂D has long been known as a potent modulator of mineral homeostasis via transactivation of genes related to the maintenance of calcium and phosphate homeostasis. This biological activity is achieved through interaction of 1,25[OH]₂D₃ with its receptor, the vitamin D Receptor (VDR), which heterodimerizes with retinoid X receptor to form a transcriptional complex that can bind to vitamin D response elements in the promoter of vitamin D regulated genes (12).

In the past decade, understanding of the biological effects of vitamin D has grown exponentially due to the development of the vitamin D knockout mouse (22) and high throughput gene microarray techniques (2). Vitamin D is now understood to be not only an important regulator of mineral homeostasis but may be influential in cell proliferation and differentiation (21), innate and acquired immunity (13), muscle development and repair (26, 27) and in the prevention of psychological diseases such as Alzheimer’s. This is particularly pertinent given the growing understanding that low vitamin D concentrations (< 30 nmol.L⁻¹) are highly prevalent worldwide in general (34) as well as
athletic populations (4, 24). Despite a rich research base characterizing the biological importance of vitamin D, the regulation of the vitamin D endocrine system is less well understood. Practically this is an important consideration given that some authors advocate high doses of vitamin D, be administered to individuals with osteomalacia/rickets caused by severe vitamin D deficiency (defined < 12.5 nmol/L), to ameliorate symptoms (15, 19). In the context of professional sport it is commonplace to supplement entire teams with a blanket approach to vitamin D supplementation, often without basal concentrations being assessed, and with a target concentration of >100 nmol/L the aim. Perhaps even more concerning is that the sports teams have access to vitamin D in single capsule form at doses up to 50,000 IU (1,250 µg) making single dose weekly supplementation with mega doses practically very simple and without definitive guidelines for supplementation this could result in more harm than benefit. Such practice is in discord with recommendations set by the European Food Safety Authority, whom advise a safe daily upper limit of 4,000 IU.day\(^{-1}\) (9), in line with advice portrayed by the US Institute of Medicine (IoM) guidelines for vitamin D intake (33). Notably the US IoM also state a no adverse effect limit (NOAEL) of 10,000 IU.day\(^{-1}\). Evidence does not exist to appropriately define the effect that high dose blanket supplementation protocols, commonly employed in elite sport, have upon the negative regulators of the vitamin D endocrine system, notably 24,25-hydroxylase (CYP24A1 or 24-hydroxylase), which functions to inactivate both 25[OH]D and 1,25[OH]\(_2\)D\(_3\) (16) by hydroxylation at C-24. It is important to characterize the response high dose blanket approaches in order to avoid potentially detrimental effects of too much supplemental vitamin D and contribute toward the establishment of the most safe and effective vitamin D supplementation schemes for elite athletes.

The current study therefore aimed to characterize the serum responses of the major vitamin D metabolites, 25[OH]D, 1,25[OH]\(_2\)D\(_3\), 24,25[OH]\(_2\)D\(_3\) and iPTH to high dose vitamin D supplementation (35,000 and 70,000 IU vitamin D\(_3\) weekly) in an elite professional team sport cohort. It was hypothesized that supplementation would dose dependently increase total serum 25[OH]D and the active metabolite 1,25[OH]\(_2\)D\(_3\) in a concomitant manner but would also increase the production of 24,25[OH]\(_3\)D.
Methods

Participants

Forty-six elite male elite professional team sport athletes volunteered to participate in the current trial (Age = 26 ± 3 years, height = 1.86 ± 0.6 m, weight 101.5 ± 11 kg, fat mass 11.4 ± 3 %). Participants underwent a medical screening and provided full informed consent prior to inclusion into the study. Participants were excluded if they were currently taking vitamin D supplements, using sun beds or injured at the time of the study. Ethical approval was granted by the ethics committee of Liverpool John Moores University (Ethics code 12/SPS/047). The recruitment for the study began in November 2012 and testing commenced in the same month. The study was concluded in April 2013. The study was conducted at latitude 52°N during the winter months in order to limit sunlight exposure.

Supplementation

Participants were randomly allocated to either 35,000 or 70,000 IU.week⁻¹ supplemental vitamin D₃ (Maxi Nutrition, UK), herein referred to as moderate and high, respectively. Randomisation was achieved with blocking based on baseline serum 25[OH]D and the use of a random number table to allocate participants into balanced groups. The random allocation sequence was allocated by a member of the research team and known by the rest of the research team at the point of supplement administration. The supplemental doses were chosen based on the fact that they represent widely reported supplement strategies (PubMed literature based search), applied experience of the authors in both clinical and elite sporting settings and also the NOAEL set by the US IoM. Supplements were taken orally as a bolus in capsule form on a weekly basis to increase compliance with the protocol, which was 100% as club staff were present during the weekly distribution of supplementation and monitored the ingestion of capsules in order to track compliance. Supplementation continued for 12 weeks at which point supplementation was ceased to monitor the response of vitamin D metabolites to withdrawal. Participants were blinded to the supplement they were receiving. Forty two players completed the trial whilst four dropped out or were excluded for the following reasons; one player did not tolerate venipuncture, one player would not comply with the supplementation protocol, two players used sun beds during the trial. The vitamin D supplements were batch screened by
chromatography and mass spectrometry for contaminants and confirmation of vitamin D content stated on the label. Screening was performed in accordance with ISO standard 17025. Sunlight exposure was minimal during the trial due to the latitude at which the players were based. Participants travelled for a two-day match fixture to a foreign climate at latitude 43°N, in December during a period of significant cloud cover. Thus, players were exposed to minimal amounts of sunlight during the study period although no direct measurement of UV exposure was taken.

Blood Sampling

Blood samples were drawn prior to supplementation (basal and then at 6, 12 and 18 (withdrawal) weeks from the start of supplementation. Blood was obtained from the antecubital vein into two serum separator tubes and two K$_2$EDTA tubes (Becton, Dickinson and Co. Oxford, UK). Samples were then separated to isolate serum/plasma via centrifugation at 1500 RCF for 15 minutes at 4 °C.

Serum/plasma was extracted and stored at -80 °C until required for analysis. All samples were collected in the medical room of a professional sports club.

Analysis of Vitamin D Metabolites and Parathyroid Hormone

Liquid chromatograph tandem mass spectrometry (LC-MS/MS) analysis of 25[OH]D$_3$, 25[OH]D$_2$, 24,25[OH]$_2$D$_3$ and 24,25[OH]$_2$D$_2$ was performed using a Micromass Quattro Ultima Pt mass spectrometer (Waters Corp., Milford, MA, USA). NIST SRM972a traceable 25[OH]D$_3$ and 25[OH]D$_2$ calibration standards (Chromsystems, München, Germany) and quality controls (UTAK Laboratories, CA, USA) were purchased commercially, ranged from 0-200 nmol/L. 24,25[OH]$_2$D$_3$ and 24,25[OH]$_2$D$_2$ calibration standards were prepared from certified standards (IsoSciences, King of Prussia, PA, USA) spiked into human vitamin D depleted serum (BBI Solutions, Cardiff, UK), ranged from 0-14.8 nmol/L. To 100 µL of human serum samples, calibration standards and quality controls, 200 µL of pretreatment solution consist of deuterated 25[OH]D$_3$-[²H$_6$] and 24R,25[OH]$_2$D$_2$-[²H$_6$] in isopropanol:water 50:50 (v/v) was added to displace binding proteins. After mixing, the samples were loaded onto Supported Liquid Extraction (SLE+) plates (Biotage, Uppsala, Sweden), which were
eluted with 1.5 mL of n-heptane. The extraction procedure was performed by Extrahera positive pressure automation system (Biotage). Eluents were dried under nitrogen, followed by reconstitution with 50 μL 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) (Sigma-Aldrich, Dorset, UK). After a 30 minute incubation period at room temperature, 50 μL of water was added to stop the reaction. 20 μL of the derivatised extracts were injected into LC-MS/MS. Separation of vitamin D metabolites were achieved using core-shell C18 2.7μm 50 x 2.1mm (Restek, PA, USA) reversed-phase column. A gradient elution profile was set up using mobile phase (A) LCMS grade water and (B) methanol containing 0.2 mM methylamine in 0.1% formic acid. The gradient at the start was 50:50 (v/v) at column flow rate of 0.4 mL/min, gradually increased to 99% B. 24,25[OH]_{2}D_{3}/D_{2} and 25[OH]D_{3}/D_{2} peaks were eluted at 1.39, 1.42, 1.68 and 1.73 minutes respectively (Supplementary Figure 1). Optimisation of MS/MS conditions were carried out by direct infusion of derivisated standards into the ion source via a T-connector. The precursor to product ion transitions were based on the molecular weight of the methylamine adduct of PTAD derived products (Supplementary Table 1).

Measurements of total 1,25[OH]_{2}D were carried out using a commercially available enzyme immunoassay kit (IDS, Boldon, UK). Duplicate samples underwent immunoextraction with a 1,25[OH]_{2}D specific solid phase monoclonal antibody and incubated overnight with sheep anti-1,25[OH]_{2}D. 1,25[OH]_{2}D linked biotin was added the next day, followed by horseradish peroxidase labelled avidin to selectively bind to biotin complex. After a wash step, colour was developed using a chromogenic substrate (TMB). The absorbance of the stopped reaction mixtures were read in a microtiter plate spectrophotometer (Multiskan Go, Thermo Scientific, Finland) at wavelength of 450 nm.

Intact parathyroid hormone in K_{2}EDTA plasma samples were determined by electrochemiluminescence immunoassay (ECLIA) performed using Roche e601 analyser (Mannheim, Germany). Two labelled monoclonal antibodies were employed to react with the N-terminal fragment (1-37) and C-terminal fragment (38-84) of PTH; forming a sandwich complex. The antibody complex
was magnetically captured and washed to remove unbound substances. A voltage was applied to induce chemiluminescent emission which was measured by a photomultiplier.

Assay validation
Summary of assay characteristics are described in Supplementary Table 2. Linearity of the methods were evaluated by analysing stock standards made up from reference calibration solutions spiked into human sera. Standard curve was constructed by plotting the analyte response against the concentration of their respective standards. A calibration curves were accepted as linear if the weighted linear regression produced a correlation coefficient (r^2) value of >0.999. Intra and inter-assay imprecision of the methods were assessed by running quality control (QC) materials 10 times within a single run and separately over a three-month period. Assays were deemed acceptable when the QC results fall within ±2SD from the mean value. Lower limit of quantification (LLoQ) was determined by the lowest concentration quantifiable with a precision CV of 20% over 12 replicates and minimum peak signal-to-noise ratio of 10:1 (17). Assay recovery was determined by analysing samples containing a fixed amount of the analyte and calculate the percentage of the measured value against the sum of endogenous value plus spiking concentration.

Statistical Analyses
Comparisons of basal total serum 25[OH]D concentration for the two dose groups were made using an independent t-test. The effects of vitamin D dose and time on all repeated measures variables was determined using linear mixed modeling. Time (basal, weeks 6, 12 and 18) and dose (moderate and high) were modeled as fixed effects and participants as a random effect, with time being modeled as a continuous variable where linear or quadratic responses were observed. The covariance structure that minimized the Hurvich and Tsai’s criterion (AICC) value was used for the final fitted model for each metabolite. Where significant main or interaction effects were observed, post hoc pairwise comparisons were made with Sidak adjusted p-values. All statistical procedures were conducted using SPSS v22 for Windows (IBM, Armonk, NY, USA), and two-tailed statistical significance was accepted at the $p < 0.05$ level. Descriptive statistics are displayed as means ± standard deviation (SD).
For the calculation of sample size, Minitab software was used. Pilot work from our laboratories during
the winter months suggested that the standard deviation for test–retest serum 25(OH)D concentrations
(taken 6 weeks apart) in young athletes is \(\sim 12\) nmol.L\(^{-1}\). To enable the detection of a meaningful 50
nmol.L\(^{-1}\) increase in total serum 25(OH)D concentration between pre-supplementation and post-
supplementation with 80% power; \(n = 6\) participants per group was required. Thus, the recruitment of
an entire squad of 42 players provided a large enough sample size to make valid conclusions from the
derived data.

Results

Of the 42 participants that were enrolled onto the trial, 40 were tested for all primary outcome
measures. This was due to player commitment to international duty. However, no participants
presented with adverse side effects to supplementation during the trial and thus no participant was
withdrawn. Basal (pre-treatment) total serum 25(OH)D concentrations were \(86 \pm 20\) and \(85 \pm 10\)
nmol.L\(^{-1}\) for high and moderate treatment groups, respectively (Figure 1). These concentrations were
not significantly different between groups \((t = 0.20, P = 0.84)\).

Total serum 25(OH)D

Total serum 25(OH)D displayed a significant interaction effect \((F = 4.30, P = 0.008)\) between dose
and time. Exploration of this interaction identified that both groups showed significantly elevated
25(OH)D concentrations at weeks 6 (moderate = 108 ± 22 and high = 122 ± 25 nmol.L\(^{-1}\)) and 12
(moderate = 163 ± 47 and high = 188 ± 66 nmol.L\(^{-1}\)). However, upon supplementation withdrawal the
moderate treatment group demonstrated a return to 25(OH)D concentrations comparable with basal by
week 18 \((P = 0.178)\) whereas the high treatment did not \((P = 0.007)\; (\text{Figure 2A}).\)

Concentrations of the bioactive metabolite, 1α,25(OH)\(_2\)D\(_3\)

Concentrations of the bioactive metabolite, 1α,25(OH)\(_2\)D\(_3\) demonstrated a significant main effect for
time \((F = 6.13, P = 0.001)\). In the moderate treatment group, peak concentrations occurred at week 6
\((141 \pm 58\; \text{pmol.L}^{-1})\). However, a delayed response was observed in the high group with peak
1α,25(OH)\(_2\)D\(_3\) levels occurring at week 12 \((112 \pm 66\; \text{pmol.L}^{-1})\; (\text{Figure 2B}).\) Following
supplementation withdrawal, the concentration of 1α,25(OH)\(_2\)D\(_3\) declined significantly in both groups
at week 18 (moderate, 107 ± 32 and high = 104 ± 42 pmol.L\(^{-1}\), \(P = 0.042\)) compared with
concentrations at week 12 and were comparable with basal by this time point ($P = 0.332$).

The inactivated metabolite, 24,25[OH]D, showed comparable values between groups at basal (moderate = 8.3 ± 2.5 and high = 7.1 ± 1.7 nmol.L$^{-1}$). Both groups showed significant increases in this metabolite by week 6 (moderate, $P = 0.011$ and high, $P = 0.000$) that continued to increase between weeks 6 and 12. A significant interaction effect was also detected as the high treatment group displayed markedly higher peak 24,25[OH]D concentrations (17.3 ± 4.5 nmol.L$^{-1}$) versus moderate treatment (11.8 ± 1.9 nmol.L$^{-1}$). Interestingly, whereas 1α,25[OH]$_2$D$_3$ declined following supplementation withdrawal, 24,25[OH]D remained significantly elevated at week 18 when compared with basal values in both treatment groups (moderate, 11.4 ± 2.2 and high, 15.7 ± 4.6 nmol.L$^{-1}$; $P = 0.000$ for both groups).

Intact parathyroid hormone was significantly suppressed in both groups by week 6 (moderate = 2.3 ± 0.8 and high = 1.9 ± 0.4 pmol.L$^{-1}$ vs basal values in moderate = 3.2 ± 2.3 and high 2.8 ± 1 pmol.L$^{-1}$) and remained suppressed throughout the trial and following the withdrawal of supplementation (moderate = 2.1 ± 0.8 and high 2 ± 0.6 pmol.L$^{-1}$).

Several studies have also examined the ratios of 25[OH]D and 1α,25[OH]$_2$D$_3$ to 24,25[OH]D and it is evident that additional information can be obtained that is not always obvious when measuring absolute concentrations (18, 20, 23). In addition, it has been suggested that the ratio of 25[OH]D to 24,25[OH]D is predictive of the 25[OH]D response to supplementation (35) giving important information that surpasses simply measuring the absolute values for these metabolites. Therefore we also calculated ratio data for the relationships between 25[OH]D and 1α,25[OH]$_2$D$_3$ to 24,25[OH]D. The ratio between 25[OH]D and 1α,25[OH]$_2$D$_3$ showed a significant main effect for time ($F = 3.39$, $P = 0.023$) but no group main effect with ratio’s for both supplemental treatments decreasing over the duration of the study, reaching significance by week 12 ($P = 0.039$) and increasing toward pre treatment values at week 18 (Figure 3A). The ratio of 25[OH]D to the inactivated 24,25[OH]D also showed a main effect for time ($F = 14.94$, $P = 0.000$) and the absence of a group main effect. Both
groups demonstrated a significant lower ratio at week 18 compared to basal \((P = 0.000; \text{Figure 3B})\).

Finally, the ratio of the bioactive \(1\alpha,25\text{[OH]}_2\text{D}_3\) against the inactivated \(24,25\text{[OH]}_2\text{D}\) was assessed. A significant interaction effect was observed as at week 6 the moderate treatment group showed an increased ratio whilst the high treatment group showed an inverse relationship. However, by week 12 both treatment groups showed a significantly lower ratio of \(1\alpha,25\text{[OH]}_2\text{D}_3:24,25\text{[OH]}_2\text{D}\) \((P = 0.005)\) that was maintained at week 18 following supplementation withdrawal \((P = 0.003; \text{Figure 3C})\).

Discussion

The current investigation sought to define the serum responses of the major vitamin D metabolites in a professional athletic cohort to establish the efficacy of a blanket supplementation approach using two commonly employed and commercially available doses of vitamin \(D_3\). Our main findings demonstrate that both 35,000 and 70,000 IU week\(^{-1}\) oral vitamin \(D_3\) supplementation significantly elevated total serum \(25\text{[OH]}_2\text{D}\) concentrations. The highest dose led to an initial rapid increase in \(1.25\text{[OH]}_2\text{D}\) but then a decrease in serum \(1.25\text{[OH]}_2\text{D}\) at week 12 when there was a significant increase of \(24,25\text{[OH]}_2\text{D}_3\) which had also been significantly increased at week 6. Resultantly, these responses led to a significantly lower ratio of \(1.25\text{[OH]}_2\text{D}\) to \(24,25\text{[OH]}_2\text{D}\) from week 6 with the higher, 70,000 IU treatment. Following the withdrawal of supplementation, the concentrations of \(25\text{[OH]}_2\text{D}\) and \(1\alpha,25\text{[OH]}_2\text{D}_3\) return to basal values within 6 weeks. These data imply that high doses of supplemental vitamin \(D_3\) are sufficient to markedly induce the expression of 24-hydroxylase leading to the negative control of \(1.25\text{[OH]}_2\text{D}\) activity. Finally, we demonstrate that elevating serum \(25\text{[OH]}_2\text{D}\) and \(1\alpha,25\text{[OH]}_2\text{D}_3\) suppresses iPTH appearance in circulation. This finding is in agreement with previous data published by our group (28) and is underpinned by the understanding that DNA binding sequences exist in the PTH gene (7), permitting suppression of the gene when adequate ligand \((1.25\text{[OH]}_2\text{D})\) is available to induce transcriptional suppression by the VDR (31).

The fact that the concentration of serum \(24,25\text{[OH]}_2\text{D}_3\) did not show a decline along with \(1.25\text{[OH]}_2\text{D}\) following the withdrawal of supplementation has practical implications. The finding suggests that the
activity of 24-hydroxylase is sustained following large increases in 1,25(OH)₂D and may persist and
decrease both the concentration and subsequent biological activity of 1,25(OH)₂D. Evidence is now
emerging that the 24,25(OH)₂D metabolite may act at the VDR as a “blocking molecule” binding to
the VDR decreasing 1,25 [OH]₂D activity (6). Since 24,25(OH)₂D is present in the circulation in
nmol/L concentration compared to pmol/L for 1,25(OH)₂D the significantly higher prevailing
24,25(OH)₂D concentrations are liable to contribute to a significant decrease in the activity of the
biologically active 1,25(OH)₂D. Thus a dual regulation would appear to be present in subjects
receiving high dose vitamin D supplementation preventing possible toxic effects, namely, 1) the
positive stimulation of 24-hydroxylase and 2) the negative control of the vitamin D receptor activity.
This notion is supported by previous mechanistic evidence that has determined the function of
1α,25(OH)₂D in regulating 24-hydroxylase activity in vitro. Identification of two VDREs in the 5’
region of the CYP24A1 promoter demonstrated that 1α,25(OH)₂D could potently trans-activate the
CYP24A1 gene, inducing a 10 to 100 fold increase in CYP24A1 mRNA to limit the transcription of
1α,25(OH)₂D responsive genes (25). Moreover, in vitro studies on primary human myoblasts indicate
that the induction of 24-hydroxylase is dose dependent (11), which is in agreement with the serum
response of 24,25(OH)D seen in vivo in the current study.

These findings may explain reported observations of deterioration in skeletal muscle function,
increased risk of falls and increased fracture risk in individuals supplemented with extreme dose
vitamin D₃ to correct for severe vitamin D deficiency. As an example, in a large-scale trial (n = 2256),
women ≥ 70 years old were randomized to either 500,000 IU of vitamin D₃ or placebo. The women
randomized to the supplemental vitamin D₃ experienced significantly more falls than the placebo
group in the year following dosing of which the falls ratio was greatest in the first month following the
one off 500,000 IU dose (30). Furthermore, in a retrospective observational cohort study, very low (<
10 nmol.L⁻¹) and high (above 140 nmol⁻¹) concentrations of 25(OH)D showed an increased risk of all
cause mortality indicating not only a lower limit but also an upper limit for serum 25(OH)D (8). This
hypothesis also lends an explanation for the inconsistency in positive outcomes related to
supplemental vitamin D reported by large-scale meta-analyses (5). It is reasonable to suggest that
mega dose vitamin D supplements are detrimental to vitamin D target tissues by increasing the production of 24,25\([\text{OH}]_2\)D, which may act to block the activity of the VDR. It will be necessary to now perform mechanistic studies that clarify the function of 24,25\([\text{OH}]_2\)D and to determine whether high dose supplementation is detrimental to vitamin D signaling through the VDR.

The current trial also had limitations that are important to consider for the design of future work. Firstly, although one of our goals was to use a ‘real world’ blanket supplementation approach, we acknowledge that the same protocol used in other athletic cohorts with different body composition, genotype and lower basal serum 25\([\text{OH}]\)D concentrations may yield different results. Determining the response of the vitamin D metabolites to a similar protocol as we have used here across wider athletic cohorts will allow more conclusive recommendations to be made on dosing concentration and frequency. Indeed, we have previously shown that basal 25\([\text{OH}]\)D concentrations vary across athletes from different professional sports (3). This assumption is also true for female cohorts and as such we appreciate that our findings cannot be conclusively extended to the female athletic population.

Regarding genotype, genotypic variation in the vitamin D binding protein influences the response to exogenous vitamin D (10) and little is known of the variation in genes encoding other vitamin D metabolizing enzymes such as CY24A1 and CYP24B1. We did not perform genotyping and in light of recent evidence, we fully support genotype-phenotype studies in the context of vitamin D in future. Combining a genotyping approach with vitamin D metabolite ratio data, the latter as we have performed in this study, will offer a great advancement in the understanding of how genotype and supplementation interact and how this can be managed. We also did not measure serum or urinary calcium concentrations, which are markers of vitamin D toxicity and also regulate the PTH response. Measuring Ca\(^{2+}\) excretion would add another aspect to our findings, however we do maintain that the observed increases in 24,25\([\text{OH}]\)D are indicative of too much exposure to exogenous vitamin D.

Finally, future work should aim to monitor FGF-23, a bone derived hormone that can function to lower both 25\([\text{OH}]\)D and 1\(\alpha\),25\([\text{OH}]_2\)D\(_3\) by inducing the CYP24 genes (29). FGF-23 may also be a player in regulating the metabolite response to high dose supplementation and at present its role in lowering 25\([\text{OH}]\)D by promoting 24-hydroxylase expression is still disputed (32). Extending the
current findings to a broader range of vitamin D concentrations, coupled with intracellular signaling
cascades related to the vitamin D axis will yield the most inferential data, moving towards safer and
more effective vitamin D supplementation practices in athletes.

Summary and implications for practice

The data presented here are the first to characterize the response of two major metabolites of vitamin
D in response to two high-dose supplementation protocols in healthy professional athletes. The results
demonstrate that a blanket approach of high-dose supplementation with 70,000 IU.wk⁻¹ leads not
only to increased 25[OH]D₃ and 1,25[OH]₂D₃ concentrations but also stimulates elevated
concentrations of the vitamin D metabolite 24,25[OH]₂D₃, which has been previously shown to limit
the transcriptional activity of 1,25[OH]₂D₃. We demonstrated that this negative regulatory effect
persists following cessation of vitamin D₃ supplementation even as 1,25[OH]₂D₃ concentrations
decrease. There are a number of novel key implications for practice that arise from our current
observations. Firstly, we speculate that ‘high dose’ bolus supplementation with vitamin D₃ is likely to
be detrimental to the intended targeted downstream biological functions due to significant increases in
the negative regulatory molecule, 24,25[OH]₂D₃. Weekly doses amounting to more than 5,000 IU.day⁻¹
may need to be reassessed in light of our data. Rapid withdrawal from high dose supplementation may
result in adverse outcomes as the concentration of 24,25[OH]₂D₃ remains elevated for several weeks
following withdrawal from supplementation despite declines in 1,25[OH]₂D₃. If moderate to high
doses of vitamin D₃ have been administered, a gradual withdrawal from supplementation is advisable.
At present the optimal approach has not been established. Lower doses administered often (daily) may
offer the most potent beneficial biological effects and limit the transactivation of CYP24A1 and
subsequent production of the negative regulatory molecule, 24,25[OH]₂D₃. Future research must aim
to establish the appropriate dose and frequency of administration to achieve a positive increase in both
The generation of 24,25[OH]₂D may be an aspect of the body’s defense mechanism to prevent
“toxicity” when administered high doses of vitamin D. We postulate that single “super” doses of
vitamin D₃ administered on a weekly basis as is common practice in many professional sporting
teams, may result in similar rapid transient increases in 1,25\([\text{OH}]_2\)D\(_3\) leading to significant increases in the negative regulatory metabolite, 24,25\([\text{OH}]_2\)D\(_3\). Further studies will be required to determine if the relationship we have observed is seen with higher and lower doses of vitamin D.

Acknowledgements

The authors would like to thank the co-operation of the athletes in the study and club staff that offered assistance and patience during sample collection. No authors declare a conflict of interest. The results of the study are presented clearly, honestly, without fabrication, falsification, or inappropriate data manipulation. The results presented in this study do not constitute endorsement by the American College of Sports Medicine.

Author Contributions

DJO designed the research, conducted the research, analyzed data and wrote the manuscript. JCYT designed the research, conducted the research, designed and optimized all analytical techniques and analyzed the data. WJB conducted the research and provided essential materials for research. AS designed the research and conducted the statistical analyses. WDF designed the research, provided essential reagents for the research, analyzed the data and wrote the paper. JPM designed the research, analyzed the data and wrote the paper. GLC designed the research, conducted the research, analyzed the data, performed statistical analysis, wrote the paper and had primary responsibility for the final content.

References

32. Stubbs, JR, Zhang, S, Friedman, PA, and Nolin, TD. Decreased conversion of 25-
hydroxyvitamin D3 to 24,25-dihydroxyvitamin D3 following cholecalciferol therapy in

Figure Captions

Figure 1. Distribution plot of basal serum total 25[OH]D concentrations in participants allocated to the 35,000 (moderate) and 70,000 IU.week\(^{-1}\) (high) supplemental treatment groups. No significant differences were detected between groups for basal total serum 25[OH]D. Data were normally distributed with no significant difference detected between groups.

Figure 2. Serum responses of the major vitamin D metabolites with treatment of either 35,000 IU.week\(^{-1}\) or 70,000 IU.week\(^{-1}\) vitamin D\(_3\) a) 25-hydroxyvitamin D (25[OH]D) b) 1\(\alpha\),25-dihydroxyvitamin D\(_3\) (1\(\alpha\),25[OH]\(_2\)D\(_3\)) c) 24,25-hydroxyvitamin D and d) intact parathyroid hormone (iPTH). Samples were collected prior to supplementation (basal) and then at weeks 6, 12 and 18 of supplementation. At week 12, supplementation was stopped in both groups. * denotes significance for both groups compared with basal and # denotes significance for the 70,000 IU.week\(^{-1}\) compared with basal.

Figure 3. Relationships between the major vitamin D metabolites, expressed as ratio at all test time points. a) ratio of 25-hydroxyvitamin D (25[OH]D) to the biologically active 1\(\alpha\),25-dihydroxyvitamin D\(_3\) (1\(\alpha\),25[OH]\(_2\)D\(_3\)). b) Ratio of 25[OH]D to the inactive metabolite 24,25[OH]D and c) ratio of 1\(\alpha\),25[OH]\(_2\)D\(_3\) to 24,25[OH]D. * denotes significance for both groups compared with basal.

Supplementary Figure 1. Chromatogram from an extracted sample containing 86 nmol/L of 25[OH]D3/D2 and 5.3 nmol/L of 24,25[OH]2D3/D2.