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Abstract

Homographies – a mathematical formalism for relating
image points across different camera viewpoints – are at
the foundations of geometric methods in computer vision
and are used in geometric camera calibration, image reg-
istration, and stereo vision and other tasks. In this paper,
we show the surprising result that colors across a change
in viewing condition (changing light color, shading and
camera) are also related by a homography. We propose a
new color correction method based on color homography.
Experiments demonstrate that solving the color homogra-
phy problem leads to more accurate calibration.

1 Introduction

In image formation there are two important parts, the ge-
ometry of how points in space map to image locations and
the photometry of how illumination, surface reflectances
and camera sensors combine to form the colors in an im-
age. Broadly, the mathematical tools underlying our un-
derstanding of image geometry are non-linear reflecting
the non-linear perspective nature of image formation. Im-
portant non-linear concepts include ”solving for the ho-
mography” (e.g. relating subsequent frames in panorama
stitching [1]) and epipolar geometry in stereo vision [8]).
In contrast, the majority of methods in color/photometric
computer vision are linear which, at least for simplified
scenes such as the eponymous Mondrian world [5, 10]
(the world consists of a patchwork of flat co-planar re-
flectances), reflects the physics of how images are formed.
Linear color problems include, color correction [2, 13]
(e.g. mapping raw colors from camera to display RGB)
and modeling illuminant color change [14] e.g. for color
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Figure 1: Top left, panel (a), images of two planes are
related by an homography. Right, panel (b), 4 images of
a colored ball are shown. Ball 1 is the reference image
where the illumination color is white and placed behind
the camera. Ball 2 is the object illuminated with a blue
light from above. Respectively, Ball 3 and Ball 4 are the
least-squares mapping and the homography match from
Ball 2 to Ball 1, Bottom right, panel (c), the chromatici-
ties from Ball 2 matched to corresponding chromaticities
in Ball 1.

object recognition [11].

In geometry computer vision, an homography relates
two planes. In Figure 1a, π1 and π2 might denote the
same 3D plane viewed in two different images related by
the homography H . In color, an homography relates two
photometric views. In Figure 1b, Ball 1 is the image of
the side-view of a 4-color ball where the ball is lit from
behind the camera with a white light. The same ball is lit
from above with a bluish light, image Ball 2. The images
are in pixel-wise correspondence. We first color correct



Ball 2 to match Ball 1 by using linear regression. Its re-
sults is shown in image Ball 3 where the colors are incor-
rectly mapped and the red color segment looks particu-
larly wrong. Ball 4 shows the results of correcting Ball 2
by solving for the Homography, visually there is much
better color correction.

In this paper, we propose that to map one photomet-
ric view to another we must map the colors correctly
independent of shading. Since shading only affects the
brightness, or magnitude, of the RGB vectors, it is pos-
sible to find the 3 × 3 map which maps the color rays
(the RGBs with arbitrary scalings) in one photometric
view to corresponding rays in another. We note that this
”ray matching” is precisely the circumstance in geometric
mapping for co-planar and corresponding points in two
images [8]. An RGB without shading can be encoded
as the rg-chromaticity coordinate. In Figure 1c, the 4
reflectances from the ball correspond to 4 points in an
rg-chromaticity diagram which define the quadrilaterals
shown in the left and right of the panel (for respectively
for the images Ball 2 and Ball 1). The mapping between
the two chromaticity diagrams is an homography. We
show that the color calibration problem – mapping device
RGBs recorded for a color chart to corresponding XYZs
– can be formulated as a homography problem.

In real images of a color chart the shading can vary
from one side to the other and not accounting for this
shading variation can result in an incorrect calculation of
the color correction matrix [6]. Methods exist for solv-
ing for color correction independent of shading including
minimizing the singular fitting error [6] or an alternating
least-squares (ALS) approach where one successively and
iteratively solves for the color correction metric and the
shading [4].

According to this paper the correct formalism for color
correction independent of shading is to solve for the ho-
mography relating the image colors of a color chart to,
for example, corresponding XYZ measurements. Un-
like linear methods finding the best homography, disad-
vantageously, requires an iterative approach but advanta-
geously allows different error metrics to be used (not just
least-squares error). Compared to respectively, simple
least-squares and the prior-art ALS method, homography-
based correction delivers a 40 and 10% performance in-
crement.

2 Background
For the geometric planar homography problem, we write: αx
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In Equation 1, (x, y) and (x′, y′) denote corresponding
image points – the same physical feature – in two images.
In homogeneous coordinates the vector [a b c] maps to the
coordinates [a/c b/c] and so, in Equation 1, the scalar α
cancels to form the image coordinate (x, y). For all pairs
of corresponding points (x, y) and (x′, y′) that lie on the
same plane in 3 dimensional space, Equation 1 exactly
characterises the relationship between their images [8].
To solve for an homography (e.g. for image mosaicking),
we need to find at least 4 corresponding points in a pair of
images.

3 Color Homography
Let us map an RGB ρ to a corresponding RGI (red-green-
intensity) c using a 3× 3 matrix C:

ρC = c R
G
B

ᵀ  1 0 1
0 1 1
0 0 1

 =

 R
G

R+G+B

ᵀ (2)

The r and g chromaticity coordinates are written as
r = R/(R+G+B) , g = G/(R+G+B) interpret-
ing the right-hand-side of Equation 2 as a homogeneous
coordinate we see that c ∝

[
r g 1

]
. In the following

proof it is useful to represent 2-d chromaticities by their
corresponding 3-d homogeneous coordinates.

Theorem 1 (Color Homography). Chromaticities across
a change in capture condition (light color, shading and
imaging device) are a homography apart.

Proof. First we assume that across a change in illumina-
tion or a change in device where the shading is the same
(for the Mondrian-world) the corresponding RGBs are re-
lated by a linear transform M. Clearly, H = CMC−1
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Figure 2: Color correction (mapping raw to display
sRGB) is an homography problem. This figure is also a
color chart example which was used for our color correc-
tion evaluation.

maps colors in RGI form between illuminants. Due to
different shading, the RGI triple under a second light is
represented as c′ = α′cH , where α′ denotes the unknown
scaling. Without loss of generality let us interpret c as a
homogeneous coordinate i.e. assume its third component
is 1. Then, [r′ g′] = H([r g]) (chromaticity coordinates
are a homography H() apart).

In geometry, homographies are applied for mapping
spatial coordinates in one image to correspondences in
another. In color, we apply homography to shading inde-
pendent color correction – the homography that maps 3D
colors to 3D color matches. As an example we find the
3x3 matrix that best maps the shading dependent RGBs
in the image of a color target and map them to the corre-
sponding XYZs in a way that is independent of the shad-
ing. We can visualize solving for the homography as find-
ing the best linear relation that maps chromaticities in one
viewing condition to another. Where by linear means we
map 2D chromaticities to corresponding 3D rays, apply
the 3× 3 matrix, and then recompute chromaticities.

4 Color Homography Color Correc-
tion

In Figure 2, we show the picture of an image in the raw
RGB space of a camera and the corresponding reproduc-
tion when the colors are corrected for display. Profes-
sional imaging scientist might take a picture of a color
checker and a second picture of a uniform gray target
with same size in the same location. By dividing the RGB

image of the checker by the image of the gray-target the
shading is removed and then the shading corrected RGBs
can be mapped to known reference display color coor-
dinates using simple least-squares. However, this two-
step approach is inconvenient and in some cases cannot
be done at all (e.g. in an on-going surveillance situation).

Therefore, if a color chart is not used we must solve
for the 3 × 3 color correction matrix by solving for the
homography.

4.1 Alternating Least-Squares Color Cor-
rection

Suppose A and B denote respectively n × 3 matrices of
n corresponding pixels with respect to a set of captured
RGBs and a corresponding set of XYZs. And, due to
the relative positions of light and surfaces, the per-pixel
shading intensities of the RGB set are usually different.
Assuming the Lambertian image formation,

DAH ≈ B (3)

where D is an n × n diagonal matrix of shading factors
and H is a 3× 3 color correction matrix. In [4] this equa-
tion is solved by using Alternating Least-Squares (ALS)
described in Algorithm 1 where Di and Hi are itera-

Algorithm 1: Homography from Alternating Least-
Square

1 i = 0, A0 = A;
2 repeat
3 i = i+ 1;
4 minDi

∥∥DiAi−1 −B
∥∥;

5 minHi

∥∥DiAi−1Hi −B
∥∥;

6 Ai = DiAi−1Hi;
7 until

∥∥Ai −Ai−1
∥∥ < ε;

tively and successively minimized. The effect of the in-
dividual Hi and Di can be combined into a single matrix
D =

∏
iD

i and H =
∏

iHi. The Homography com-
puted here (not because we calculate the shading we find
the color correction independent of shading) attempts to
minimize a least-squares error. However, as we know
the output of color correction might be better assessed
with reference to perceived error. For example we might



compare the color corrected RGBs with the correspond-
ing XYZs using CIE L*a*b* or CIE L*u*v* [12].

Other prior art [7] searches for the best color correc-
tion method and with respect to that framework the prac-
titioner can choose the error metric used. However, be-
cause, in this paper, we have made the link to homogra-
phies we prove that the apposite tool is to use a particular
robust searching technique – used frequently in geometric
computer vision – called RANSAC.

4.2 RANSAC Color Correction
To solve for a homography we need 4 corresponding sets
of chromaticities (e.g. the rg and xy chromaticities for
the RGBs and XYZs). We might then test how good this
homography is for mapping the rg and xy chromaticities.
In this paper we are interested in fitting a homography
that minimizes a perceptual error and in line with [3] we
first choose CIE L*u*v*. It then makes sense to measure
the goodness of fit by comparing actual and fitted u*v*
coordinates.

The number of chromaticities that are fitted within a
criterion error are said to belong to a consensus set. We
iteratively find a homography using match sets of 4 cor-
responding rg and uv chromaticities and measure the size
of the chromaticity error and the size of the consensus
set. We keep sampling until the best consensus set is suf-
ficiently large or we have reached the maximum number
of trials (in which case we choose the homography that
has the lowest error). RANSAC stands for “random sam-
pling consensus”. A key advantage of RANSAC is that
it is a robust statistical estimator [9]. However, due to
the randomness nature of RANSAC, our color correction
does not always give the “best” solution. RANSAC also
assumes that the majority of data are inliers whose distri-
bution can be explained by a set of model parameters.

5 Evaluation
In Figure 2 left we show a raw image and the color cor-
rected counterpart (with tone mapping) in the right. We
wish to evaluate color correction when shading varies
across the color target (in this case a Macbeth Color
Checker). We adopt the following experimental method-
ology. First we measure, in the lab, the actual ground

truth XYZs. Second we, in situ, measure the RGBs in a
raw image where the shading can vary across the chart.
We now solve directly for the correction matrix mapping
the RGBs to XYZs. We do this using simple least-squares
and using two homography methods. First, we use the Al-
ternating Least-Squares method and second the RANSAC
homography method.

We apply the three computed correction matrices
(least-squares, ALS and RANSAC) to the RGBs form the
checker where the effects of intensity variation has been
removed. The intensity variation is removed by dividing
by the brightness image of a uniform grey checker images
in the same location in the same scene.

In evaluating our algorithms we will use both CIE
L*a*b* and CIE L*u*v*. This said it is important to reit-
erate how we solve for the correction matrices. The Least-
squares matrix is found by minimizing the mapping from
RGB to XYZ. The ALS method also minimizes the fit to
XYZ but finds the best homography (shading independent
linear fit). The RANSAC method is a robust fitting strat-
egy which directly minimizes CIE L*u*v* chromaticity
error.

For evaluation, we use 3 images that were taken around
a local historical site that is popular with amateur and
professional photographers alike (e.g. Figure 2). The
mean, median, 95% quantile and max ∆E errors are re-
ported in Table 1 and Table 2. It is clear that RANSAC-
homography-based color correction supports a signifi-
cantly improved color correction performance compared
with the simple least square (all error measures are about
40% improved). Compared with the ALS color correc-
tion, all mean errors are improved by about 10%, and all
median errors are improved by about 20%, at the cost of
getting slightly higher 95% quantile error and maximum
error.

Table 1: CIE ∆E L*a*b* error
Method Mean Median 95% Max

Least-Squares 3.70 3.30 7.73 8.39
ALS [4] 2.36 2.04 5.11 5.64
Homography 2.18 1.69 5.46 6.18



Table 2: CIE ∆E L*u*v* error
Method Mean Median 95% Max

Least-Squares 4.28 3.84 8.30 9.53
ALS [4] 2.73 2.41 5.82 6.54
Homography 2.58 2.11 6.62 6.94

6 Conclusion
In this paper, we shown the surprising result that col-
ors across a change in viewing condition (changing light
color, shading and camera) are related by a homography.
Our RANSAC-based color homography color correction
is robust to outliers and delivers improved color fidelity
compared with the state-of-the-arts.
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