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Abstract

Objective Palladised cells of Desulfovibrio desulfu-
ricans and Shewanella oneidensis have been reported
as fuel cell electrocatalysts but growth at scale may be
unattractive/costly; we have evaluated the potential of
using E. coli, using H,/formate for Pd-nanoparticle
manufacture.

Results Using ‘bio-Pd’ made under H, (20 wt%)
cyclic voltammograms suggested electrochemical
activity of bio-NPs in a native state, attributed to
proton adsorption/desorption. Bio-Pd prepared using
formate as the electron donor gave smaller, well
separated NPs; this material showed no electrochem-
ical properties, and hence little potential for fuel cell
use using a simple preparation technique. Bio-Pd on
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S. oneidensis gave similar results to those obtained
using E. coli.

Conclusion Bio-Pd is sufficiently conductive to
make an E. coli-derived electrochemically active
material on intact, unprocessed bacterial cells if
prepared at the expense of H,, showing potential for
fuel cell applications using a simple one-step prepa-
ration method.

Keywords Bio-Pd - E. coli - Electrochemical
activity - Fuel cell - Hydrogen production - Palladium

Introduction

A proton electrolyte membrane fuel cell (PEM-FC)
comprises anode and cathode catalysts separated by a
proton exchange membrane. Catalytic splitting of H,
anodically provides electrons, which recombine with
protons and atmospheric O, at the cathode, forming
water. Alternatively, microbial fuel cells can generate
electricity from waste (e.g. Wu et al. 2014; Sanchez
et al. 2015) but the low power density limits their use
(Jang et al. 2013). Bacteria can make H, from waste to
supply the anodic reaction (Macaskie et al. 2005;
Redwood et al. 2012); residual bacteria can then make
metallised FC-catalyst biomaterial with precious
metals biorecovered from waste (Orozco et al. 2010).

Yeast (Dimitriadis et al. 2007) or bacterial (Yong
et al. 2007) cells support palladium nanoparticle
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(Pd-NP) PEM-FC electrodes; the biomaterial required
sintering (carbonisation) to improve conductivity
(Yong et al. 2007). The highest power output,
comparable to commercial FC catalyst, used sintered,
platinised cells of Desulfovibrio desulfuricans, (Yong
et al. 2007) but palladised sintered cells of
D. desulfuricans and also E. coli (bio-Pdp_ gesuifuricans
and bio-Pd ;) were also active (Yong et al. 2010).

Later work showed electrochemical activity of
palladised native cells of D. desulfuricans, increased
by adding formate (electron donor) to live, but not
heat-killed cells while lactate supported activity using
bio-Pd on live cells only; cytochromes and periplas-
mic hydrogenases were implicated (Wu et al. 2011).
Similarly, Ogi et al. (2010) used Pd-NPs on cells of
Shewanella oneidensis in a PEM-FC to give a power
output of 90 % of that of a commercial catalyst at a Pd
loading of 20 % of the biomass dry weight. Studies
have focused on the anodic reaction whereas the rate-
limiting cathodic O, reduction reaction (ORR) is
relatively unexplored. Non-metallised, active cells
were used cathodically, with limited success (Jang
et al. 2013). Williams (2016) achieved the ORR by
using bio-Ptz ., comparably to a commercial FC
catalyst, following chemical stripping of biochemical
components to unmask an electrochemically-respon-
sive Pt surface (Attard et al. 2012).

Substitution of Pd into the electrodes would offer
major cost benefits. A PEM-FC with a ‘bio-Pd’ anode
(Yong et al. 2007, 2010) gave consistent power output
over several weeks although Pd is generally held to
have a short catalyst life; durability targets are 5000 h
of operation for automotive application and 40,000 h
for stationary FCs over 10 years (Rice et al. 2015).

D. desulfuricans is not readily scalable; it is
difficult to grow to high cell densities, while the
removal of H,S (a powerful catalyst poison) is
required; this restriction could also apply to
S. oneidensis which produces H,S from various sulfur
compounds (Wu et al. 2015). Practically, one could
use an organism grown aerobically to high cell
densities (e.g. waste bacteria from other applications).
Hydrogenases, [which make bio-Pd (Deplanche et al.
2010)], are then upregulated during anaerobic resus-
pension for catalyst manufacture (Zhu et al. 2016).

Yong et al. (2007, 2010) and Ogi et al. (2011)
agreed that maximum FC-activity requires a high
loading of Pd(0) (20 wt%). Native palladised cells of
D. desulfuricans were active in electron transport (Wu
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et al. 2011) but the Pd(0)-loading was not stated; it
may be possible to use native bio-Pdg ,; electro-
catalytically, given suitable conductivity. This study
compared bio-Pdg ., in two ways using voltamme-
try to assess electrochemical activity. Successful
proof would open the harnessing of ‘2nd life’ E. coli
biomass into new catalysts, using these bacteria to
make FC catalysts from metallic wastes (above) as
well as potentially harnessing the tools of synthetic
biology towards ‘designer’ catalysts, since E. coli is
the ubiquitous ‘workhorse’ organism for molecular
engineering.

Materials and methods
Cell culture

E.coli. MC4100 was as described previously
(Deplanche et al. 2010). Cultures were grown anaer-
obically in sealed bottles in lysogeny broth (LB) (10 g
tryptone/l, 5 g yeast extract/l, 10 g NaCl/l). Cultures
were harvested by centrifugation in the mid-logarith-
mic phase of growth (ODg( of 0.5-0.7), washed three
times in 100 ml 20 mM MOPS/NaOH buffer
(degassed, pH 7.2) and resuspended in a small volume
of the same buffer (4 °C) until use, usually the next
day. Cell concentration (mg/ml) was determined by
reference to a pre-determined ODggy to dry weight
conversion. Some tests used Shewanella oneidensis
strain MR1 grown and prepared in the same way.

Palladium mineralisation

To make bio-Pd, 25 ml concentrated resting cell
suspension was transferred under O,-free N, into
200 ml serum bottles and 40 ml degassed 10 mM
Pd(II) [sodium tetrachloropalladate (Na,PdCl; in
0.01 M nitric acid, aq.)], or palladium chloride
(PdCl, in 0.01 M HNO3) was added to give a final
loading of 20 % (w/w) Pd on biomass. Pd/cells were
left to stand (30 min, 30 °C) with occasional shaking
to promote biosorption of Pd(II) complexes before
either H, was sparged through the suspension (200
ml/min, 20 min) or 5 ml 50 mM sodium formate
(degassed) was added to reduce cell surface-bound
Pd(II) to Pd(0). To confirm the metal content of the
metal/cell catalysts, the residual free Pd(II) ion content
in solution was monitored at all stages of the
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preparation spectrophotometrically using the tin chlo-
ride method (Deplanche et al. 2010).

Electron microscopy

For scanning transmission electron microscopy
(STEM), the Pd cell samples were immersed in
2.5 % glutaraldehyde (1 day). Secondary fixation
used 1 % OsO4 (1 h; omitted where analysis was to
be done using energy dispersive X-ray microanalysis
(EDS)). Samples were dehydrated using 50, 70, 90 and
100 % ethanol (2 x 15 min for each). Two further
dehydration steps (15 min) were made in propylene
oxide and samples were embedded in a 1:1 mixture of
propylene oxide/resin (45 min; gentle shaking) then
pure resin (1 h, then in vacuuo; 30 min) and cured
(60 °C; >16 h; atmospheric pressure). For STEM,
samples were cut into thin sections (diamond knife;
50-150 nm) and collected on electron microscope
girds (Formvar film/carbon coated). Standard stains of
uranyl acetate and lead citrate were added and the
samples were examined using a Jeol JSM-7000f FE-
SEM with an Oxford Inca EDS detector.

Electrochemical analysis of bio-Pd(0) prepared
under H, or with formate

Working electrodes were made using the drop-cast
technique. A 3 mm (EDI101, Radiometer Analytical,
Salford, UK) and 5 mm diameter (afe2m050gc, Pine
Research Instrumentation, Durham) glassy carbon
rotating disc electrode (RDE) tip was taken and
20 pl (5 mm) or 10 pl (3 mm) of bio-Pd suspension
was deposited onto a polished tip. The tip was covered
with a beaker and left to dry (12 h). A three electrode
half-cell set-up was used with a surrounding water
jacket (25 °C). The reference electrode (RE) was a
normal H, electrode (NHE), the counter electrode
(CE) was platinum gauze and the working electrode
(WE) was as above. The WE was connected to an
Autolab (PGStat302N, Metrohm-Autolab, Utrecht,
The Netherlands) potentiostat/galvanostat through
either a EDI101 RDE (Radiometer Analytical,
3 mm) or a Pine modulated speed rotator (AFMSRCE,
Pine Research Instrumentation, 5 mm). The elec-
trolyte was 0.1 M perchloric acid (Sigma-Aldrich,
TraceSELECT Ultra), with a N, purge (20 min). Prior
to electrochemical analysis the electrode was
‘cleaned’ by cycling the applied potential between O

and 1.1 V (vs. NHE) (50 cycles at 0.1 V/s). The WE
was then placed in the half-cell described above and
cyclic voltammetry (CV) data was recorded by
applying potential scans between 0 and 1.1 V (vs.
HE) at various scan rates (0.1, 0.5, 0.05, 0.025 V/s).

Results and discussion
Uptake of Pd(II) from solution

Initial tests compared the rate of reduction of Pd(Il) from
Na,PdCl, solutions using H, or formate as electron
donors following the initial biosorption of Pd(IT). Under
H, complete removal of Pd(I) was invariably observed
within 5-10 min whereas the removal of Pd(Il) via
formate required ~1 h. By substituting PdCl, for
Na,PdCl, the rate of Pd(Il) reduction was doubled,
possibly attributable to a greater predominance of Pd*™
ions at the lower concentration of chloride, i.e. with less
tendency to form neutral (PdCl,) or anionic (PdCI3)
species in solution. Since Pd(II) can behave in a
similar way to Ni(Il), it is possible that cellular uptake
and trafficking mechanisms for Ni(Il) may have
facilitated uptake of Pd(II) into the cells although the
route of Pd(Il) uptake following initial biosorption,
and the effect of Pd(II) ions, remain to be confirmed,
along with any increased toxicity effects of the 10 mM
Pd(II) as used in this study [previous work has
generally used 2 mM Pd(II)].

Biodeposition of Pd(0) on bacterial cells

Material made from PdCl, under H, showed large Pd-
NPs (Fig. 1a; confirmed as Pd by EDS; not shown) not
visible on Pd-unchallenged cells (inset). Some depos-
its showed co-localisation in the outer and inner
membranes. A similar pattern of Pd-deposition was
obtained using Na,PdCl, (Fig. 1b). The Pd-NPs made
under H, were generally smaller when made using
Na,PdCl, (Fig. 1b) than with PdCl, (Fig. 1a). Those
made using formate were very small (Fig. 1c) and
were indistinguishable with respect to the palladium
salt used (Fig. 2b, c) but were more numerous than
those made under H, (Figs. 1, 2a). A closer examina-
tion of the deposited NPs (Fig. 2) reveals morpholog-
ical differences. NPs made under H, appear large but
comprised, in some cases, agglomerations of small
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«Fig. 1 Formation of Pd-nanoparticles (20 wt%) on E. coli
MC4100 using H, and formate as electron donors (right panels)
and cyclic voltammograms of the palladised cell preparations
(left panels; multiple lines denote repeated scans). a H, as
electron donor for synthesis of Pd(0) from PdCl, as the Pd(II)
salt. Inset cells unchallenged with Pd(II). b H, as electron donor
for synthesis of Pd(0) from Na,PdCl, as the Pd(Il) salt.
¢ Formate as electron donor for synthesis of Pd(0) from
Na,PdCly as the Pd(II) salt. Bars 200 nm

NPs, visible as separate entities (Fig. 2a). In contrast
NPs made via formate were small and well separated
(Fig. 2b, c).

We suggest that the use of formate is rate-limiting
due to the need to split it into H, and CO, in order to
reduce Pd(II) at the expense of generated H,. This can
occur either autocatalytically by ‘seeds’ of Pd(0) that
split formate catalytically, or enzymatically using
formate H, lyase (FHL). However, FHL is not a
periplasmic enzyme, which is in contradiction to the
localisation of most of the NPs seen by electron
microscopy (Figs. 1c, 2b, c). FHL activity may be
involved in intracellular Pd-NP deposition; some
Pd-NP deposits are visible intracellularly as well as
in association with the inner membrane (Fig. 1). If the
Pd-NP synthesis reaction is limited by the rate of
formate cleavage it is likely that some Pd(II) persists at
the cell surface long enough for it to localise onto
additional potential nucleation sites rather than rapid
initial nucleation and consolidation onto fewer sites,
nearer to the cell surface, when promoted by H in a fast
reaction.

A detailed study of the roles of hydrogenases in the
pattern of deposition of Pd(0) by E. coli was reported
(Deplanche et al. 2010). Unlike Desulfovibrio, which

has periplasmic hydrogenases involved in Pd(0)
deposition (Mikheenko et al. 2008), those of E. coli
are cytoplasmic membrane-bound, with the inward-
facing hydrogenase 3 component of the FHL complex
making cytoplasmic-facing Pd(0). Such an arrange-
ment is visible on the inner membrane of the cells in
Fig. lc, confirmed elsewhere using a mutant which
expressed only hydrogenase 3 (Deplanche et al. 2010).
In contrast the inner membrane-localisation of Pd(0)
when made under H, evidenced more discrete, denser
depositions (Fig. 1a). Deplanche et al. (2010) showed
that there is no single hydrogenase involvement in
Pd(0) manufacture by E. coli; several hydrogenases
are involved, the size of the Pd-nanoparticles relating
to the enzyme that produced them. A similar result was
reported using D. fructosovorans (Mikheenko et al.
2008). Other work, in contrast to this study and using
S. oneidensis, suggested that, with formate, Pd-NPs
were larger (and fewer) than by using H, (de Windt
et al. 2005) but de Windt et al. (2006) also showed size
control of Pd-NPs according to the conditions. Sgbjerg
et al. (2011) reported that NPs can be size-controlled
by adjusting the biomass/Pd ratio while Williams
(2016) showed, with bio-Pdp, gesuifuricanss that, by
using the same biomass (mg)/metal (total atoms) ratio,
different NP sizes resulted according to whether a
small volume of 10 mM Pd(II) was used (i.e. as in this
study), or a fivefold more dilute solution (2 mM, as in
other work). This suggests that metal toxicity (i.e.
metal concentration) may play a role in determining
the number of loci that go on to support NP growth if
this is enzymatically-mediated. The involvement of
other enzymes than hydrogenases is not precluded;
hydrogenase-deficient mutants of E. coli made Pd(0)

Fig. 2 Detail of Pd-nanoparticles formed on the surface of E. coli at 20 wt% loading at the expense of a H, + PdCl,;

b formate + PdCl, and ¢ formate + Na,PdCl,. Bar 100 nm
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but this was localised as fewer, larger NPs on the cell
surface (Deplanche et al. 2010).

Electrochemical analysis of bio-Pd(0) made
at the expense of H, and formate

CV has been used to probe the crystal surface structure
of bio-Pt. (Attard et al. 2012). Using bio-Pd made
under H, CV gave evidence for electrochemical
activity of the bio-NPs in a native (non-sintered) state
(Fig. 1a, b), attributed to the adsorption/desorption of
protons, and indicating an electrochemically active
surface area and so a routine test for fuel cell catalysts.
In contrast bio-Pd prepared using formate as the
electron donor gave well separated NPs, with the
material showing no electrochemically active surface
(Fig. 1c) and hence little potential for fuel cell use.

The effect of a hydride layer on the surface of bio-
Pd must be considered; such a ‘masking’ layer
underlied the choice of bio-Pt for detailed electro-
chemical studies (Attard et al. 2012). This phe-
nomenon introduces an uncertainty as to whether
interactions are taking place at the surface of the Pd
crystals in a true catalytic process or as a result of
hydride formation or H, absorbed within the crystal
structure of the Pd-NPs. Electrochemical analysis was
used (with this caveat); although cyclic voltammo-
grams (CVs) from samples loaded with 20 % (w/v)
Pd(0) made under H, exhibited electrochemically
active areas proper quantification would require
integration under the desorption peaks and corrections
for scan rate and nominal charge per cm? for the Pd.
This is not trivial. However the response was observed
regardless of the Pd salt used (Fig. 1a, b). Bio-Pdg ..
also showed relatively small capacitance and resis-
tance when compared to bio-Pdsiewanciia oneidensis
(Fig. 3a). Comparing Figs. 1 and 3, it appears that
the capacitance shown by the bio-Pdg ; is ~0.5-0.6
microamps whereas that of bio-Pdg ,,eigensis 1S ~ twice
this value. The resistance also appears slightly lower
in bio-Pdg, ,; due to the less sloping baselines to the
voltammetry. Note that these are (approximate)
observations made directly from the voltammetry
and no separate measurements have been made to
quantify them.

In contrast to CVs obtained from H,-derived bio-Pd
(Figs. 1a, b, 3a), bio-Pd made using formate shows no
significant electrochemical interaction using either
cell type (Figs. 1c, 3b). The Pd-NPs made from

@ Springer

formate were held apart by biomass materials (Fig. 2b,
¢); hence this study shows no intrinsic conductivity via
biomass layers between the Pd-NPs of intact cells. In
contrast bio-Pd made under H, was electrically
conductive, possibly attributed to direct contact
between adjacent Pd-NPs. Wu et al. (2011) argue for
arole of Pd-NPs in extracellular electron transfer with,
at high Pd-loading, no requirement for cellular
metabolism since Pd(0) splits H, catalytically to yield
electrons.

From Fig. 1a, b several conclusions can be inferred.
The CVs show several ‘fingerprint’ peaks that are
characteristic of proton adsorption occurring at the
catalyst surface. As noted above the system used may
lead to ambiguity due to the behaviour of protons
towards Pd crystals. The possibility of proton absorp-
tion into the structures means the method cannot be
used to assess conclusively the Pd-NP surface features
(kinks, terraces etc.) or the electrochemical surface
area as a true monolayer of protons may not be formed.
However the method allows for comparison of the
behaviour of Pd-NPs when compared between sepa-
rate samples and it is notable that a difference in CV
peaks was observed between bio-Pd(0) samples pro-
duced using formate or H, and also Na,PdCl, and
PdCl, as the palladium source, as well as between two
species of bacteria that produced bio-Pd(0) at the
expense of H, from PdCl, (Figs. 1a, 3a).

It is proposed that the reason underlying the
observed differences between materials made using
H, or formate is the size and relative positioning of
bio-NPs. With formate, deposition appears to be
relatively uniform across the cross sectional area of
the cell surface, producing relatively small, unaggre-
gated NPs, whereas under H, the deposition occurred
preferentially at the cell membranes forming larger
NPs (Fig. 1a, b) as aggregates (Fig. 2a). During
electrochemical analysis the latter produced larger
signals, with a much larger associated non-faradaic
charge transfer. Nominally this indicates a higher
surface area available for electrocatalytic reaction,
however due to the size of the NPs it may be associated
with a larger volume of proton adsorption within them.

A repeated voltage scan (e.g. from samples using
H, for bio-Pd manufacture from PdCl,; Figs. 1a, 3a)
shows CVs recorded during repeated scans, each
experiment representing several additional voltage
cycles. There are several possible explanations for an
observed change in the desorption peak at E°
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Fig. 3 Cyclic voltammograms of cell preparations of bio-Pd on S. oneidensis made from PdCl, at the expense of H, (a) and formate

(b) as described for E. coli

0.05-0.2 V seen in Fig. 1a. It is possible that poison-
ing of the catalyst surface occurred via impurities in
the electrolyte or compounds associated with the
bacterial surface (note that such changes were also
seen when experiments were repeated using different
commercial sources of perchloric acid and alternative
sources of distilled water). Other studies have con-
firmed using bio-Pt that even material ‘cleaned’ using
NaOH contains a component of residual cellular
material which, when removed via further chemical
cleaning and then electrochemical removal of the final
residua, leads to unmasking of various additional
features in the CV from which information about the
actual crystal surface can then be obtained (Attard
et al. 2012). A similar analysis is not possible using
bio-Pd due to the masking effect of the H, chemistry at
the catalyst surface (above). However, it could be
hypothesised through analysis of the CVs that a 110
crystal surface, which initially produces the largest
charge transfer, becomes poisoned and that the 100
surface increases in dominance. This may be enhanced
by the 100 surface being electrochemically ‘cleaned’;
such progressive cleaning results in loss of electro-
chemical resolution due to nanoparticle aggregation
(Attard et al. 2012).

Yong et al. (2007) noted little activity of bio-Pt or
bio-Pd per se as an oxidation catalyst in a PEM-FC
anode and that sintering was required to carbonise the
material in order to confer conductivity. In contrast the
present study suggests that the biomass residua may, in

fact, be electrically conductive given sufficient charge
accumulation to overcome the ohmic resistance.
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