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12 ABSTRACT Although binary In-Se based alloys as thermoelectric (TE) candidates are of interests in recent 

13 years,  little  attention  has  been  paid  into  In6Se7   based  compounds.  With  substituting  Pb  in  In6Se7, the 
14 

15 preference  of  Pb2+   in  the  In+   site  has  been  observed,  allowing  the  Fermi  level  (Fr)  shift  towards  the 

16 conduction  band  and  the  localized state conduction  becomes  dominated.  Consequently,  the  Hall carrier 

17 concentration (nH)  has been  enhanced significantly  with  the  highest  nH  value  being about 2~3 orders   of 
18 

19 magnitude higher than that of Pb-free sample. Meanwhile, the lattice thermal conductivity (κL) tends to be 

20 reduced  as  nH    value  increases,  owing  to  an  increased  phonon  scattering  on  carriers.  As  a  result,     a 

21 significantly enhanced TE performance has been achieved with the highest TE figure of merit (ZT) of 0.4  at 
22 

23 ~850 K. This ZT value is 27 times that of intrinsic In6Se7  (ZT=0.015 at 640 K), which proves a successful 

24 band structure engineering through site preference of Pb in In6Se7. 

25 Keywords: Thermoelectric performance; Band structure engineering; Site preference; In6Se7; Fermi    Level; 
26 

27 Carrier concentration 

28  

29 1. Introduction 

30 Thermoelectric (TE)  devices are  capable of  converting  heat into  electricity  or  vice  versa for power 
30 

31 generation  or  cooling without moving  mechanical parts, therefore, they have  attracted much attention    in 

32 industry. However, bulk materials, which can be effectively used in TE devices, are still limited so far. A 

33 remarkable improvement in TE performance is still a critical challenge owing to the inverse dependence   of 
34 

35 Seebeck  coefficient  (α)  and  electrical  conductivity  (σ)  on  carrier  concentration  (n).  These  parameters 

36 directly govern the TE figure of merit (ZT): 

37 ZT=Tα2σ/κ= Tα2σ/(κL+κe) (1) 
38 

39 where, κ  is the  total thermal  conductivity, while  the  κL, κe   are  the  lattice  and     electronic  contribution, 

40 respectively. 

41 In order to enhance the ZT value, many new materials have been developed in recent years, such as, 
42 

43 copper chalcogenide Cu2Se,1  SnSe-2,3  and In4Se3-based crystals.4-7
 

44 Owing   to   their   unique   intrinsic   structures,   such   as   phases,   crystal   structures,   and structural 

45 imperfection,8   binary  In-Se  based  compounds  possess  potential  in  TE  performances.  For  example, the 
46 

47 In4Se3-based alloys give ZT=1.48 @ 705 K,4  and 1.11 @ 723 K,7 and the In2Se3-based alloy ZT=1.23 @ 916 

48 K).9  However, among the In-Se based compounds the InSe- or In6Se7-based alloys as TE candidates have 

49 not been paid much attention yet.8 

50 

51 Walther etc. determined that that In6Se7  crystallizes in a monoclinic crystal structure (space group:   P2l 

52 /m ), where indium presents multiple valences (1+, 2+ and 3+).10-12  Hence the compound In6Se7  can be 

53 formally  described  as In+[In2]4+(In3+)3(Se2-)7  presuming  that the oxidation  state of  Se is 2-,10-12   where   the 
54 

55 [In2]4+   and In3+   ions  occupy two and three  different  sites respectively. The  crystal structure of  In6Se7       is 

56 shown  in  Figure  S1  as  Supporting  Information.  Recent  investigations  on  In6Se7   revealed  p  to  n-type 

57 transition when Sn is incorporated and that the TE performance has been improved. Such an improvement is 
58 

59 related to the creation of the defect SnIn
3+  acting as a donor, since Sn4+  is energetically favorable to In+     site. 

60 Nevertheless, the improvement    is limited because of the negative effect of Sn2+, which prefers the In3+  site, 
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neutralizing the effect of Sn4+.13 In addition, there are some deep impurity levels formed if Sn occupies the 
4 

5 [In2]4+  and In3+  sites. These impurity levels act as annihilation centres for electrons and holes, thus making a 

6 negative contribution to the carrier concentration.13
 

7 Although Sn and Pb lie in the same column in the periodic table, the behavior of Pb is quite different 
8 

9 from that of Sn in In-Se compounds. For instance, Sn acts as a donor in InSe while Pb is an acceptor.14  In 

10 addition, the element Sn in InSe or In6Se7  can create some deep impurity levels, and it is hard to alter the 

11 large charged defect concentration in the forbidden gap.13, 15  Since an incorporation of Pb in chalcogenide 
12 

13 glasses In-Se  could  unpin  the  Fermi  level  (Fr),16   it allows  the  Fr   shift  toward the  conduction band, and 

14 enables the  conductivity of  Pb doped samples to be several orders    of  magnitude  larger than the undoped 

15 In-Se samples.16
 

16 

17 In this study, samples of substituting Pb for In in In6Se7  have been prepared, and their structures and 

18 transport properties have been examined. It has been observed that the unpinning of the Fermi level  induced 

19 by the site preference of Pb2+  in the In+  site, effectively engineers the band structures and significantly 

21 improves the TE performance. 

22  

23 2. EXPERIMENTAL SECTION 

24 Three elements In, Pb, and Se with a purity of 99.999% were loaded in different vacuum silica tubes, 

25 according to the formula In6–xPbxSe7  (x=0, 0.1, 0.3, 0.5, 0.7), and then melted at 1273 K for 24 h. The 

26 detailed preparation methods of the materials are similar to those reported in the previous publications.13,17,18
 

27 

28 The Hall coefficients (RH) were measured on a Physical Property Measurement System (PPMS) using 

29 the Van der Pauw method in a magnetic field up to ±1.5 T at room temperature (RT) and 390 K. The Hall 

30 mobility (μ) and carrier concentrations (nH) were subsequently calculated based on the relations μ=|RH|σ and 
31 

32 nH=1/(RHe), where e is the electron charge. 

33 The Seebeck coefficients (α) and electrical conductivities (σ) were measured using an ULVAC ZEM-3 

34 under a helium atmosphere in the range from RT and ~850 K. The uncertainty of each measurement is about 
35 

36 6%. The thermal conductivities (κ) were calculated from κ=dCpλ with the diffusivity (λ) measured by the 

37 TC-1200RH at RT~850 K (uncertainty < 10%). The heat capacities (Cp) were estimated using  Dulong–Petit 

38 rule, and d is the material density. The lattice contributions (κL) were attained from the total κ minus the 
39 

40 electronic part κe. κe  is estimated by Wiedemann–Franz (W-F) relation, κe  = L0σT, where the L0  is the Lorenz 

41 constant estimated to be 2.2×10-8  WΩK-2.19  The data obtained was repeated for several times using different 

42 samples. The total uncertainty for ZT was ~18%. 
43 

44 Similar  experimental  procedures,  including  the  preparation  of  the  samples,  compositional  (EDAX) 

45 analyses, XPS spectra analyses, and the measurement details of the physical parameters (α,σ,etc.) have been 

46 used here as in the previous works.13,17,18           The density of  states (DOS) and the formation energy (Ef) have 
47 

48 been calculated as in the previous publication, see reference [13]. 

49  

50 3. RESULTS AND DISCUSSION 
50 

51 3.1. Chemical compositions and structures 
52 
53 The  back-scattered  SEM images  for  the  In6–xPbxSe7   (x=0.3) bulk sample  are shown in Figure S2    as 

54 Supporting Information, while the mapping images and the EDAX spectrum are displayed in Figure S3. 
55 

56 There is no visible textured structure observed from the dense samples (more than 98.0% theoretical density 

57 6.21 g.cm-3),11  either parallel or perpendicular to the pressing direction, see Figure S2. Therefore, we did not 

58 measure the transport properties in different pressing directions, according to the previous experience.20  The 
59 

60 average chemical compositions of the sample (x=0.3) were determined by a mapping of EPMA, revealing   a 

slight  Se  deficiency  and  In  excess.  The  detailed  chemical  compositions  are  presented  in  Table  S1 as 
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Supporting Information, where the Se molars are normalized to 7. Generally, the identified relative molars 
4 

5 of In, Pb and Se are close to nominal ones, which suggest that the compositions within the final samples  are 

6 almost as intended. 

7 XRD analysis shows that materials exhibit monoclinic In6Se7-based solid solution (space group:   P2l /m, 
8 

9 PDF:85-0184) in all the composition  range  (x=0~0.7), as shown  in  Figure S4  as Supporting  Information. 

10 Interestingly, both the lattice constants a and c increase linearly with Pb content increasing (see Figure 1), 

11 whereas the b value keeps almost the same (4.056 Å). The data from Welther10  and Deeb12  are plotted in 
12 

13 Figure 1 for comparison. The gradual increase of the lattice constants a and c is likely due to the decreased 

14 attraction between cation and anion Se, because Pb (2.33) has much higher electronegativity than In   (1.78). 

15 Furthermore, the linear relationship between the lattice constants and Pb content, which follows the Vegard's 
16 

17 law,  suggests  the  element  Pb  has  been  incorporated  into  the  In6Se7    lattices,  either  substutionally    or 

18 interstitially, since there are interstitial In atoms in In6Se7.21
 

19 In   order   to   determine   the  valence 
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charges of Pb in the lattice of In6–xPbxSe7, 

XPS spectra are employed to investigate 

the oxidation states. XPS spectra in the 

region of Pb4f7/2 at x=0.1~0.7 are shown in 

Figure S5. The XPS binding energies of 

Pb4f7/2 (uncertainty: ~±0.01  eV)  are 

around      137.67~138.15      eV,     which 

confirms  the  presence  of  Pb2+.22-25 While 
x value in In 

32 6-x x      7 

33 Figure  1.  Lattice  constants  a  and  c  as  a  function  of  Pb 
34 

35 content. 

36 

those of In and Se elements take the usual 

oxidation states as those in the Sn-

substituted In6Se7,13  see Table S2. 

In order to determine the site 

37 preference of Pb2+  in In6Se7, it is necessary to calculate the density of states (DOS) and formation energies 

38 (Ef) upon Pb-incorporation at different In sites using first principle calculation, as shown in Figure 2. The 
39 

40 DOS of intrinsic In6Se7  is reported in the previous publication, see reference [13] and shown in Figure S6 as 

41 Supporting Information, where the Fermi level (Fr) is just above the valence band maximum (VBM).   Upon 

42 Pb2+  occupation in In3+(1), In3+(2) or In3+(3) site, the formation energy (Ef) is -0.33 ~ -0.40 eV, and Fr   moves 
43 

44 into the valence band. The bandgap (Eg) reduces from 0.86 eV (x=0) to 0.31~0.35 eV (Figure 2a-c). If   Pb2+
 

45 occupies the In2+(1) or In2+(2) site, Fr  lies in the middle of bandgap or valence band. Ef  value is -0.39~  -0.40 

46 eV, as shown in Figure 2d,e. It is worth noting that Fr shifts into the conduction band with Ef = -0.82 eV as 
47 

48 Pb2+  occupies the In+  site, which is the lowest formation energy among different Pb2+  occupations (Figure 

49 2f). Therefore, it is reasonable to suggest that Pb2+  prefers the In+  to In3+  site, which creates donor defect 

50 PbIn
+. However, it is difficult to rule out the possibility that some Pb2+  occupies the In2+  site when Pb content 

51 

52 (x) exceeds a certain critical value in the matrix. 

53 If Pb2+  is energetically favorable to the In+  site, the chemical/crystal environment should be described as 

54 below: 
55 

56 In6-j Pbj ejSe7 (upon divalent Pb2+  occupation in In+ site) (2) 

57 where ej  is the created extra electrons. However, there should have no extra electrons or holes created if Pb2+
 

58 occupies the In2+  sites, in the light of the chemical environment. 
59 

60 3.2. Carrier concentrations 

In  order  to verify  the  contribution  of  site  preference  of  Pb2+   to  the  carrier  concentration,  the Hall 
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coefficients (RH) have been measured at RT and 390 K, and the Hall carrier concentrations (nH) and mobility 
4 

5 (μ) have been calculated as a function of Pb content x, as shown in Figure 3a. The Pb-free sample exhibits 

6 p-type semiconducting behavior, because the RH  values are positive, while the Pb-incorporated samples   are 

7 n-type. From Figure 3a it is observed that the nH  value increases as Pb content increases before it turns to 
8 

9 decrease  at  x=0.5. At  x=0.5 the  nH  values, 2.39×1025  m-3   at RT and  9.79×1025  m-3   at  390 K, are  near the 

10 optimal  concentration in thermoelectrics,26  which are about  2~3 orders of  magnitude  higher  than that    of 

11 Pb-free sample. The composition dependent mobility (μ) at RT is analogous to nH. The mobility reaches  the 
12 

13 highest value (7.30 m2v-1s-1) at x=0.5, which is about 2 times that of Pb-free sample. However, the   mobility 

14 at 390 K reveals decreasing tendency as x value increases up to x=0.3~0.4. 
15 
16 
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38 Figure 2. The DOS and Ef  upon Pb-incorporation: (a) Pb at In3+(1) site, Ef= -0.33eV; (b) 

39 Pb at In3+(2) site, Ef= -0.33eV; (c) Pb at In3+(3) site, Ef= -0.40eV; (d) Pb at [In2]4+(1) site, 

41 Ef= -0.39eV; (e) Pb at [In2]4+(2) site, Ef= -0.40eV; (f) Pb at In+  site, Ef= -0.82eV. 

42 
43 

44 Assuming that the chemical control over carrier density in In6Se7  can be achieved simply by element 

45 substitution, and the carrier density in Pb-substituted In6Se7  estimated using the valence counting rule,27-29
 

46 the theoretical carrier densities (ncal.), ncal.=nmax(1-j), based on the description (2), using   nmax  ≈8.99×1022 m-3
 

47 

48 corresponding to intrinsic In6Se7  (p-type) at RT,13  are calculated and shown in Figure 3b. Surprisingly, there 

49 is no  agreement  between  the  measured  Hall carrier  concentrations nH   and  calculated ncal   values.  The nH 

50 values  at RT are  about  2 orders  of  magnitude  higher  than the  calculated ncal, which  indicates that     the 
51 

52 measured carrier density in the present materials do not follow the valence counting rule. 
53 

54 3.3 Thermoelectric transport properties 
55 

56 The Seebeck coefficients (α) as a function of temperature are displayed in Figure 4a, and an insert is  the 

57 close-up view  of  α values  for  Pb-incorporated samples. The  α values for  the  Pb-free sample  are positive 

58 below 835 K, and above that the α value turns to negative. Meanwhile, those for the Pb-incorporated ones 
59 

60 are negative over the entire temperature range, suggesting a complete transition from p to n type. Such a 

transition  has  also  been  observed  in  many  chalcogenides,  such  as  Bi-doped  Ge-Se  or    Ge-Te-Se,30,31
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Pb-doped  Ge-Se glasses,16,32   Se-In  compounds,33   which  is ascribed to  the disturbance  of  the equilibrium 
4 

5 between  the  charged  defect  states  of  Se–In  glass owing  to the  formation  of  ionic Pb2+-Se2-   bonds.16   In 

6 addition, the absolute α value at lower temperatures generally decreases with Pb content increasing, and  the 

7 maximum |α| values appear around 730 K, from 288.59 μVK-1  at x=0.1 to 178.14 μVK-1  at x=0.7 as Pb 
8 

9 content increases, see the insert in Figure 4a. The decrease of the |α| value is likely resulted from the 

10 enhancement  of  carrier  concentration nH  (Figure  3a). Figure 4b is the  plot of  electrical conductivities  (σ) 

11 against temperature, where the σ value roughly increases with Pb content and temperature increasing with 
12 

13 the maximum values appear at 835~840 K. The highest σ values are 7.24×103  Ω-1m-1  for x=0.5 and 8.03×103
 

14 Ω-1m-1   for  x=0.7  at  835~840  K.  However,  the  σ  value  for  Pb-free  sample  increases  with temperature 

15 monotonically. 
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30 Figure 3. (a) Measured Hall carrier concentration (nH) and mobility (μ) against x value in 
31 In6-xPbxSe7. (b) Calculated theoretical carrier densities (ncal.) against Hall concentration (nH). 
32 
33 
34 Figure 4c shows the temperature dependence of the lattice thermal conductivity (κL), and the total κ 
35 

36 values are shown as an insert. The lower left inset is the close-up view of κL  at high temperatures, which 

37 clearly indicates that κL  reduces  with Pb content  increasing. However, the  κL  value  at ~850 K  seems      to 

38 convergence at x ≥ 0.5 and reaches an almost identical value ~0.39 WK-1m-1. The total thermal  conductivity 
39 

40 (κ) is showing a different compositional dependence as κL, as it increases with Pb content increasing over 

41 the  entire temperature  range. This  might  be due  to the  improvement  of  electrical conductivity  upon  Pb 

42 incorporation. In addition, the Pb-free sample seems to have a little bipolar effect at high temperatures. 
43 

44 Figure 4d indicates the values of dimensionless figure of merits (ZT), which are calculated from the 

45 values of three measured parameters α,σ and κ . The insert in Figure 4d is the ZT value against Hall carrier 

46 concentration (nH) at 390 K, which increases with nH  value increasing. The maximum ZT value is ~0.4 at 
47 

48 ~850 K for the sample at x=0.5, which is as high as 27 times that of pristine In6Se7  (ZT=0.015 @ 640 K). 

49 Although this value is still lower than those of Zn-doped α-In2Se3  (ZT=1.23 @ 916 K)9  and In4Se3-based 

50 alloys (1.48 @ 705 K,4 1.40 @ 733 K,5  1.53 at 698 K7), it is 43% higher than that of Sn-substituted one 
51 

52 (ZT= ~0.28 at 833 K),13  and is the highest one among In6Se7 based alloys reported so far. 

53 The energy gap (Eg) can be estimated using Eg  = 2αmaxeT, where T is the temperature at which the 

54 maximum |α| appears, e is the electron charge and κB  Boltzmann constant. Here it tends to reduce from  0.68 
55 

56 eV (~10 κBT at x=0.1) to 0.42 eV (~7 κBT at x=0.5). After x≥0.5, the Eg  value remains relatively constant, as 

57 shown in Figure 5a, which might be due to the reduction in carrier concentration (Figure 3a). In Figure 5a, 

58 the calculated Eg  values, 0.25~0.35 eV, are displayed in color symbols,▲,▼,♦,■, upon different occupations 
59 

60 using first principle calculation for comparison. The calculated Eg  values are lower than those obtained from 

measurements, owing to the GGA problem.34,35
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The  significant  improvement  in  TE  performance  is  likely  due  to  the  enhancement  of  Hall  carrier 
4 

5 concentration nH, which is caused by band structure engineering, rather than by the chemical control over 

6 carrier density via the formation of donor defect (PbIn
+). Since there is no any deep impurity level   observed 

7 within  the  gap upon Pb incorporation (Figure  2a-f), the annihilation centre  for  electrons and holes is   not 
8 

9 existent.  Therefore,  the  enhanced  thermoelectric  performances  suggest  that  the  partial  substitution   or 

10 alloying  of  Pb  can  be  used  as  an effective  tool  to  tune  the  band  structure  without  inducing  traps for 

11 localizing the charge carriers. Such an effectiveness is somewhat analogous to that in Zintl compounds 
12 

13 Ca5M2Sb6  (M=Al, Ga, In).36
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37 Figure 4. TE properties as function of temperature, (a) Seebeck coefficient (α), the insert is the close-up 
38 view of the α values for the Pb-incorporated samples; (b) Electrical conductivity (σ), where the   thermal 

39 activation  energy  ∆Ea    <0  as  T  ≥835~840  K  for  the  Pb-incorporated  samples;  (c)  lattice   thermal 
40 

41 conductivity (κL), where the up right inset is the total κ, and the low left one is the close-up view of the 

42 κL    at  high  temperatures;  (d)  ZT  values,  the  inset  is  the  relation  of  ZT  value  with  Hall     carrier 

43 concentration  nH. Compared  to the  ZT value  of  Sn-added  sample,  the Pb-incorporated sample  has a 

44 ~43% enhancement. 
45 
46 Similarly,  the  improvement   in  electrical  conductivity  upon  Pb  incorporation  is  due   to       the 
47 

48 enhancement  in  carrier concentration,  even  though  the estimated  bandgap  (Eg) is still  the optimal   band 

49 width  in  thermoelectrics.37,38   Of course,  the  reduction in  Eg  from 10κBT to  7κBT as Pb  content  increases 

50 (Figure 5a) could decrease the thermal activation energy (∆Ea) for electron excitation at high   temperatures. 
51 

52 According to the eq 3 below, 

53   eEa /BT 

54 
55 

(3) 

56 Therefore, the electrical conductivity should be increased in due course. In fact, for most Pb-incorporated 

57 samples the electrical conductivity begins to decrease with temperature elevating above 835~840K, and 

58 materials  then  show  metallic  behavior,  see  Figure  4b.  The  onset  of  the  decreasing  of  the     electrical 
59 

60 conductivity at high temperatures is not observed in Sn-added samples.13
 

In order  to gain a  deep understanding  of  the  band structure engineering  upon Pb incorporation,     the 
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Pisarenko plots are shown in Figure 5b, assuming m* =0.04, 0.4 and 1.4me  at RT and 390 K respectively. 
4 

5 The α values for the Pb-incorporated samples at RT and 390 K decrease with nH increasing and follow the 

6 Pisarenko   plots,  suggesting   the   dominant  single  parabolic   band.  However,  from  the  first   principle 

7 calculation (Figure 2a-f), one can see that upon Pb2+  occupation at the In+ site the band tailing becomes 
8 

9 more asymmetric with possible more tailing in conduction band as compared to valence band, and there is 

10 no any impurity level within the gap. Furthermore, the Fermi level unpins and shifts towards the  conduction 

11 band, which should be resulted from the disturbance of equilibrium between the charged defects presented 
12 

13 within the band gap, allowing the localized states conduction to be dominated. Therefore, the    unpinning of 

14 the Fermi level upon Pb incorporation is directly responsible for the n-type conducting and enhancement   in 

15 carrier concentration. The systematic band structures before and after Pb2+  incorporation are summarized  in 
16 

17 Figure 6. 
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30 Figure 5. (a) Estimated ∆Eg   values  according  to ∆Eg=2αmaxTe, and     those  in 
31 color (▲,▼,♦,■) are from  the  first principle  calculation for comparison;     (b) 
32 

33 Pisarenko   plots   assuming   m*   =0.04,   0.4   and   1.4me    at  RT   and   390 K 

34 As Pb content increases further (x≥0.5) the occupation of Pb2+  at In+  site might get saturated, which 
35 

36 allows the extra Pb2+  ions occupy the In2+  sites. In this case, Fr  could move towards the valence band (Figure 

37 2d, e), which neutralizes the effect from the occupation of Pb2+  at In+  site, leading to the reduction of nH   and 

38 increasing of the mobility μ. That is the reason why we have observed the increasing tendency in mobility  μ 
39 

40 and decreasing tendency in carrier concentration nH as Pb content increases, as shown in Figure 3a. 
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52 (a) Pb-free In6Se7 
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54 Figure 6.  Band  structure models,  (a) Pb-free  In6Se7,  Fermi  level  (Fr) is 
55 just above the VBM; (b) When Pb2+  occupies In+  site, Fermi    level 
56 (Fr) lifts and gets into the conduction band (CB). 
57 
58 It is believed that the low carrier concentration (8.99×1022m-3  at RT), might be the main cause to the 
59 

60 presence of the bipolar effect in the Pb-free sample. Although the nH  values in Figure 7 are attained at 390 K, 

the lattice contribution (κL) above 390 K could still follow the carrier concentration dependence shown in 
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Figure  7. Since  the  carrier density  at high  Pb content  shows  a  decreasing tendency  (Figure  3a),     it  is 
4 

5 anticipated that there is a decreasing tendency of phonon scattering on carriers, which is the reason why a 

6 limited reduction of κL  is observed when Pb content, x, is higher than 0.5. 
7 
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4. CONCLUSION 

Figure 7. Lattice thermal conductivity κL 390K as a 

function of Hall carrier concentration nH. 

25 In  summary, Pb-incorporated In6Se7  based alloys  have  been  prepared, and their band  structures    and 

26 thermoelectric transport properties have been investigated. The first principle calculation reveals that Pb2+
 

27 

28 prefers the In+  to In3+  site, which unpins the Fermi level (Ef) and shifts it towards the conduction band. As  a 

29 result, the Hall carrier concentration (nH) has been enriched through the band structure engineering,    and its 

30 value  is  about  2~3 orders  of  magnitude  higher  than that of  intrinsic  In6Se7. Consequently, the electrical 
31 

32 conductivity has been improved remarkably and the TE performance    has been enhanced significantly. The 

33 
highest TE figure of merit (ZT) of 0.4 is attained at ~850 K, which is about 27 times that of intrinsic In6Se7. 
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