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Abstract  25 

Within legume root nodules, rhizobia differentiate into bacteroids that oxidise host-derived 26 

dicarboxylic acids, which is assumed to occur via the TCA-cycle to generate NAD(P)H for 27 

reduction of N2. Metabolic flux analysis of laboratory grown Rhizobium leguminosarum 28 

showed that the flux from 13C-succinate was consistent with respiration of an obligate 29 

aerobe growing on a TCA-cycle intermediate as the sole carbon source. However, the 30 

instability of fragile pea bacteroids prevented their steady state labelling under N2-fixing 31 

conditons. Therefore, comparitive metabolomic profiling was used to compare free-living R. 32 

leguminosarum with pea bacteroids. While the TCA-cycle was shown to be essential for 33 

maximal rates of N2-fixation, pyruvate (5.5-fold down), acetyl-CoA (50-fold down), free 34 

coenzyme A (33-fold) and citrate (4.5-fold down) were much lower in bacteroids. Instead of 35 

completely oxidising acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like 36 

polymer poly-β-hydroxybutyrate (PHB), the latter via a type II PHB synthase that is only 37 

active in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of 38 

electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely 39 

electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox 40 

potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of 41 

acetyl-CoA in the TCA-cycle with its storage in PHB and lipids.  42 

 43 

Importance  44 

Biological nitrogen fixation by symbiotic bacteria (rhizobia) in legume root nodules is an 45 

energy-expensive process. Within legume root nodules, rhizobia differentiate into 46 

bacteroids that oxidise host-derived dicarboxylic acids, which is assumed to occur via the 47 

TCA-cycle to generate NAD(P)H for reduction of N2. However, direct reduction of the likely 48 
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electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox 49 

potentials. Instead bacteroids must balance oxidation of plant-derived dicarboxylates in the 50 

TCA-cycle with lipid synthesis. Pea bacteroids channel acetyl-CoA into both lipid and the 51 

lipid-like polymer poly-β-hydroxybutyrate, the latter via a type II PHB synthase. Lipogenesis 52 

is likely to be a fundamental requirement of the redox poise of electron donation to N2 in all 53 

legume nodules. 54 

Introduction 55 

Biological reduction (or fixation) of atmospheric nitrogen (N2) to ammonia (NH3) provides up 56 

to 50% of the biosphere’s available nitrogen, mostly through symbioses between soil 57 

bacteria (rhizobia) and legumes (1, 2). These symbioses are initiated by rhizobia infecting 58 

legume roots, resulting in the formation of nodules. Rhizobia differentiate into N2-fixing 59 

bacteroids that express nitrogenase to reduce N2 to NH3 under microaerobic conditions (3). 60 

Bacteroids receive carbon from the legume while secreting NH3 to the plant. The overall 61 

stoichiometry of N2 fixation under ideal conditions is: 62 

 63 

Thus, eight moles of electrons and protons and 16 moles of ATP reduce a single mole of N2, 64 

making N2 fixation energetically expensive.  65 

 66 

Legumes energise bacteroid N2 fixation by supplying dicarboxylates, principally malate (4), 67 

which must be oxidised to yield ATP and electrons to reduce N2. Bacteroids metabolise 68 

malate by NAD+-dependent malic enzyme (5-7) and pyruvate dehydrogenase to provide 69 

acetyl-CoA, which can be completely oxidised in the TCA-cycle, yielding FADH2 and NAD(P)H. 70 

The standard model is that NAD(P)H supplies electrons both to nitrogenase via ferredoxin, 71 
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or an equivalent low potential electron donor, and to an electron transport chain for ATP 72 

synthesis (8, 9).  73 

 74 

This is supported by work in Rhizobium leguminosarum and Sinorhizobium meliloti, where 75 

TCA-cycle mutants are unable to fix N2 in symbiosis with pea (Pisum sativum) and alfalfa 76 

(Medicago sativa), respectively (10-13). However, the TCA-cycle provides both reductant 77 

and biosynthetic precursors, so the abolition of N2 fixation in these mutants could be due to 78 

insufficient NAD(P)H to directly power nitrogenase or, equally, result from biosynthetic 79 

deficiencies. In contrast, in soybean (Glycine max) bacteroids, the TCA-cycle is either 80 

dispensable for N2 fixation or can be bypassed, with isocitrate dehydrogenase and 2-81 

oxoglutarate dehydrogenase mutants of Bradyrhizobium japonicum able to fix N2 at wild-82 

type rates (14, 15).  Moreover, standard midpoint potentials indicate that NAD(P)H is 83 

unlikely to donate electrons directly to ferredoxin [E0' for NAD+/NADH is -320 mV,  84 

NADP+/NADPH is -324 mV and ferredoxin (Fe3+/Fe2+) is -484 mV] (16, 17). Thus some other, 85 

as yet undefined mechanism, must exist to transfer electrons to nitrogenase in root nodule 86 

bacteroids.  87 

 88 

Finally, N2-fixing bacteroids in nodules formed by soybean and common bean (Phaseolus 89 

vulgaris) accumulate large quantities of the lipid-like polymer poly-β-hydroxybutyrate (PHB), 90 

while bacteroids from pea, alfalfa and clover (Trifolium spp.) apparently do not (18). While 91 

abolishing PHB synthesis does not adversely affect N2 fixation rates in soybean and common 92 

bean (19-21), in Azorhizobium caulinodans, mutation of PHB synthase prevents N2 fixation in 93 

both free-living and symbiotic forms (22), implying a fundamental role for PHB synthesis in 94 

at least some N2-fixing rhizobia.  95 
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 96 

Determining how N2 is fixed by bacteroids, arguably the second most important nutrient 97 

assimilation cycle after photosynthesis, requires an understanding of bacteroid carbon 98 

metabolism. Metabolic profiling, flux analysis, as well as mutational and N2 fixation studies 99 

were used to investigate carbon flow in bacteroids. Remarkably, this reveals that the TCA-100 

cycle is not the only sink for plant-derived carbon in symbiotic N2 fixation; rather, pea 101 

bacteroids divert appreciable quantities of acetyl-CoA into the production of lipid or PHB. 102 

N2-fixing bacteroids are therefore inherently lipogenic and this is probably a metabolic 103 

requirement for N2 fixation.  104 

 105 

Materials and Methods 106 

Bacterial strains and culture conditions. Bacterial strains and plasmids used in this study are 107 

detailed in Table 1. Rhizobium leguminosarum bv. viciae (Rlv3841) was grown at 28°C on 108 

tryptone yeast extract (TY) (23) or acid minimal salts medium (AMS)(24) with succinate (20 109 

mM) and NH4Cl (10 mM) as the sole carbon and nitrogen source, respectively. Where 110 

appropriate, antibiotics were used at the following concentrations (in μg ml-1): streptomycin 111 

(500), neomycin (80), spectinomycin (50), gentamycin (20) and ampicillin (50).  112 

 113 

Metabolic flux analysis. Rlv3841 cells grown in succinate/NH4Cl AMS were harvested at 114 

mid-log phase (OD600 ≈ 0.5) and subcultured into fresh AMS media to a starting OD600 of 115 

0.02, with 20 mM [13C4]succinate (20% fractional abundance). Cells were harvested at OD600 116 

of 0.3 and centrifuged at 8,500 x g for 5 min. The resulting pellet was washed with fresh 117 

AMS, centrifuged and the resulting cell pellet was extracted in 80% (v/v) ethanol at 80°C for 118 

5 min, prior to centrifugation at 12,000 x g for 5 min. The supernatant containing the soluble 119 
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amino acids, organic acids and sugars was dried by vacuum centrifugation. The insoluble 120 

pellet was rapidly frozen in liquid N2 and freeze-dried. Protein in the insoluble fraction was 121 

hydrolysed to its component amino acids by incubation with 6 M HCl for 24 h at 100°C.  122 

 123 

GC-MS analysis of derivatised amino acids, organic acids and sugars was performed on an 124 

Agilent 7890A GC/5975C quadrupole MS system as described elsewhere (25). Amino acids 125 

and organic acids were analysed after derivatisation using N-tert-butyldimethylsilyl-N-126 

methyltrifluoroacetamide (MTBSTFA) or N-methyl-N-(trimethylsilyl)-trifluroacetamide 127 

(MSTFA); sugars were treated with methoxyamine hydrochloride and then derivatised with 128 

MSTFA. Protein-derived and soluble amino acids were examined separately. Mass 129 

isotopomer abundances were quantified using Chemstation and corrected for the presence 130 

of naturally occurring heavy isotopes introduced during derivatisation. The chemical 131 

fragments used for metabolic flux analysis are detailed in Supplementary Table 1.  132 

 133 

Metabolic modelling was performed with 13C-FLUX (version 20050329) using the iterative 134 

procedure described before (25, 26). A complete description of the model, which also 135 

defines the network carbon atom transitions, is provided in Supplementary Table 2 and net 136 

fluxes are provided in Supplementary Table 3. During initial parameter fitting, fluxes to 137 

biomass outputs were allowed to vary, and the mean values from ten best-fit estimates 138 

were then used to constrain the network output flux values in subsequent simulations. 139 

Malate and oxaloacetate were combined into a single metabolite pool, as were 140 

phosphoenolpyruvate and pyruvate, to improve determinability of fluxes between these 141 

intermediates. No adjustments were required to compensate for the contribution of pre-142 
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existing unlabelled pools of metabolites. Molar fluxes are reported relative to a succinate 143 

uptake flux of 1. 144 

 145 

Material for metabolite profiling. To prepare samples of free-living Rlv3841, six 146 

independent cultures of Rlv3841, derived from six isolated colonies of the strain, were 147 

grown in AMS on a gyratory shaker at 250 rpm to an OD600 of 0.4. Cell pellets were collected 148 

by centrifugation (5000 x g, 5 min), washed with isolation buffer (8 mM K2HPO4, 2 mM 149 

KH2PO4, 2 mM MgCl2) and stored at -80°C for later use in metabolite profiling. 150 

 151 

To prepare bacteroid and nodule cytosolic samples, seeds of P. sativum cv. Avola were 152 

surfaced sterilised with 70% (v/v) ethanol for 30 s, rinsed once in sterile water and then 153 

immersed in a 2% (w/v) NaOCl solution for 2 min, prior to rinsing 10 times in sterile water. 154 

Seeds were sown into 2 L beakers containing washed and autoclaved fine grade vermiculite. 155 

Six independent cultures of the test strains Rlv3841 or RU116, derived from six isolated 156 

colonies of each strain, were prepared. A one ml aliquot of each culture was inoculated into 157 

a minimum of six pots, at cell densities between 5-9 x 107 cells ml-1. Seeds were initially 158 

sown in duplicate and thinned to one plant per pot after seven days. Plants were watered 159 

once with 250 ml nitrogen-free nutrient solution as previously described (24) and were 160 

incubated in an illuminated environment-controlled growth room at 22°C on a 16 h day, 8 h 161 

night cycle.   162 

 163 

Plants were harvested at 28 days post-inoculation (dpi) for metabolomic profiling. 164 

Approximately 1.5 g of nodule tissue was excised from plants from each set of pots. Nodules 165 

were ground in isolation buffer (8 mM K2HPO4, 2 mM KH2PO4, 2 mM MgCl2) and the 166 

 on A
ugust 15, 2016 by U

niversity of E
ast A

nglia
http://jb.asm

.org/
D

ow
nloaded from

 

http://jb.asm.org/


 8

homogenate was passed through muslin and centrifuged (250 x g for 5 min) to remove plant 167 

debris before a further round of centrifugation (5000 x g, 10 min) to pellet the bacteroids. 168 

The resulting supernatant, representing the nodule cytosol fraction, was freeze-dried and 169 

the pellet, representing the bacteroid fraction, was washed twice with isolation buffer, 170 

centrifuged (5000 x g, 10 min) and the pellets frozen at -80°C for later use in metabolite 171 

profiling.  172 

Metabolite profiling platform. Metabolomic profiles of free-living, bacteroid and nodule 173 

cytosol were each performed using non-biased, global metabolome profiling technology 174 

based on GC/MS and UHLC/MS/MS2 platforms (27, 28) developed by Metabolon 175 

(www.metabolon.com). Six replicate samples from each treatment (free-living, bacteroid 176 

and nodule cytosol) were extracted using the automated MicroLab STAR® system (Hamilton, 177 

www.hamiltoncompany.com). Recovery standards were added prior to the first step in the 178 

extraction process for quality control purposes. To monitor total process variability a series 179 

of technical replicates were taken from a pool made from small aliquots of all the 180 

experimental samples. These were spaced evenly among the randomly ordered 181 

experimental samples and all consistently detected metabolites were monitored for 182 

reproducibility. Sample preparation was conducted using methanol extraction to remove 183 

the protein fraction while allowing maximum recovery of small molecules. The resulting 184 

extract was divided into two fractions; one for analysis by LC and one for analysis by GC. 185 

Samples were placed briefly on a TurboVap® (Zymark) to remove the organic solvent. Each 186 

sample was frozen and dried under vacuum. Samples were then prepared for the 187 

appropriate instrument, either LC/MS or GC/MS.  188 

 189 
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The LC/MS portion of the platform was based on a Waters ACQUITY UHPLC and a Thermo-190 

Finnigan LTQ mass spectrometer, which consisted of an electrospray ionization source and 191 

linear ion-trap mass analyser.  The sample extract was split into two aliquots, dried, then 192 

reconstituted in acidic or basic LC-compatible solvents, each of which contained 11 or more 193 

injection standards at fixed concentrations. One aliquot was analysed using acidic positive 194 

ion optimized conditions and the other using basic negative ion optimized conditions in two 195 

independent injections using separate dedicated columns. Extracts reconstituted in acidic 196 

conditions were gradient-eluted using water and methanol both containing 0.1% (v/v) 197 

formic acid, while the basic extracts, which also used water/methanol, contained 6.5 mM 198 

NH4HCO3. The MS analysis alternated between MS and data-dependent MS/MS scans using 199 

dynamic exclusion. 200 

 201 

The samples destined for GC/MS analysis were re-dried under vacuum desiccation for a 202 

minimum of 24 h prior to being derivatised under dried N2 using bistrimethyl-silyl-203 

triflouroacetamide (BSTFA). The GC column was 5% phenyl and the temperature ramp was 204 

40°C to 300°C, over a 16 min period. Samples were analysed on a Thermo-Finnigan Trace 205 

DSQ fast-scanning single-quadrupole gas chromatograph mass spectrometer using electron 206 

impact ionization.   207 

 208 

Compound identification, data handling and statistical analysis. For metabolite profiling, 209 

identification of known chemical entities was based on comparison to metabolomic library 210 

entries of purified standards as previously described (28, 29). Statistical analysis was 211 

performed using the software packages Array Studio (Omicsoft) and R (http://www.r-212 

project.org/). Where a given metabolite was not detected in a particular sample, then the 213 
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 10

observed minimum detected value for that metabolite from the analysis was assigned, 214 

under the assumption that missing values were not random, but resulted from the 215 

compound being below the limit of detection. Data for free-living and bacteroid samples 216 

were then normalised to protein content, as determined by Bradford assay(30). For the 217 

comparison of the bacteroids to the nodule cytosol, normalisation was performed by 218 

extracting proportional amounts of bacteroid and cytosolic fractions of matched starting 219 

samples.  That is, the total yield of bacteroid and cytosolic fractions for each sample was 220 

known, and a constant percentage of each fraction was analysed in order to compare 221 

relative amounts of metabolites in each fraction. The statistical model utilized the matched 222 

pair nature of the samples to account for absolute differences between the samples. 223 

Welch’s two-sample t-test was used to identify metabolites that differed significantly 224 

between experimental groups (P < 0.05) and the false discovery rate (FDR) was also 225 

calculated(31) to account for the multiple comparisons that normally occur in metabolomic-226 

based studies (Q < 0.1). Thus, metabolites were considered to be significantly different if 227 

they met the criteria P < 0.05 and Q < 0.10. 228 

 229 

Assessment of N2 fixation. Plants for assessment of N2 fixation were grown as described 230 

above in “Material for metabolite profiling”, with the following exceptions. For 231 

measurement of N2 fixation by acetylene reduction assay, plants were grown in 1 L pots and 232 

harvested at the onset of flowering (21 dpi). Whole plants were removed from growth pots 233 

and transferred to 250 ml sealed bottles. When rates of acetylene reduction of detached 234 

nodules were measured, nodules were excised and immediately transferred into a 25 ml 235 

bottle and assayed. Rates of N2 fixation were determined by the amount of acetylene 236 

reduced after 1 h in an atmosphere consisting of 95% air-5% acetylene, as previously 237 
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described (32). Following the acetylene reduction assay, bacteroid protein was quantified by 238 

excising nodules from roots and grinding in 40 mM HEPES (pH 7.0). The homogenate was 239 

passed through muslin and the eluate centrifuged (250 x g for 5 min) to remove plant 240 

debris. The supernatant was then centrifuged (5000 x g, 10 min) to pellet the bacteroids. 241 

Bacteroids were lysed by two rounds of ribolysing on a Fast Prep Ribolyser FP120 242 

(BIO101/Savant) at a setting of 6.5 for 30 s, with samples on ice for 5 min in between. The 243 

protein content in the resulting supernatant was determined by Bradford assay (30)  using 244 

the Pierce Coomassie assay kit (Pierce, cat# 23200) with BSA as the protein standard.  245 

 246 

For assessment of N2 fixation by plant biomass accumulation, plants were grown in 2 L pots 247 

and were supplied with 200 ml of additional sterile water at 28 dpi. Plants were then 248 

harvested at 47 dpi by cutting shoots below the hypocotyl and drying at 60°C for 48 h prior 249 

to weighing.  250 

 251 

Lipid analysis. Bacteroids for lipids analysis were collected from nodules harvested from 252 

plants grown as described in the material for metabolite profiling section and harvested at 253 

28 dpi. Nodules were ground in 20 mM HEPES buffer (pH 7.0) and purified by Percoll 254 

gradient (33). Cells of free-living Rlv3841 were grown in AMS with succinate and NH4Cl and 255 

harvested at OD600 0.4-0.6 by centrifugation (5000 x g for 10 min). Resultant bacteroid and 256 

cell pellets were stored at -80°C for later use. Bacteroid and cell pellets were lysed by 257 

ribolyser as described above and centrifuged (10,000 x g for 10 min). The supernatant was 258 

then centrifuged (20,000 x g for 20 min), prior to further ultracentrifugation (60,000 x g for 259 

60 min) to remove cell membranes. The supernatant was concentrated by vacuum 260 

centrifugation prior to lipid quantification using the triglyceride determination kit (Sigma, 261 
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cat# TR0100). Protein determination was performed using the Bradford assay as described 262 

above.   263 

 264 

Mutant construction and phenotyping. To construct the phaC2 (pRL100105) mutant of 265 

Rlv3841, primers pr1645 and pr1646 (see Supplementary Table 1) were used to amplify a 266 

2.8 Kb of the region containing the gene and the PCR product was cloned into pJET1.2/blunt, 267 

giving plasmid pLMB834. The Ω-streptomycin/spectinomycin cassette from pHP45-ΩSmSp 268 

was cloned into the unique EcoRI site of pLMB834, to produce pLMB835. The BglII fragment 269 

from pLMB835 was cloned into pJQ200SK to produce pLMB839. Plasmid pLMB839 was then 270 

conjugated into strain Rlv3841, using pRK2013 as a helper plasmid, to produce phaC2 271 

mutants as previously described(5) resulting in LMB814. The mutation was confirmed by 272 

PCR mapping using primer pairs pr1648-potfarforward and pr1657-potfarforward. Strain 273 

LMB816, the phaC1 (RL2098) phaC2 (pRL100105) double mutant, was made by using the 274 

general transducing phage RL38 to lyse strain RU137. The kanamycin-marked phaC1::Tn5 275 

mutation was then back-transduced into LMB814 to generate LMB816, as previously 276 

described (34) and the mutation was confirmed by PCR mapping with pr1647-277 

potfarforward, pr1648-potfarforward and pr1647-Tn5-1 primer pairs. Assessment of N2 278 

fixation of the resulting mutants was performed as described above. Transmission electron 279 

microscopy was performed on nodules harvested from plants at 28 dpi and the methods for 280 

nodule sectioning, staining and microscopy are as detailed previously (20). 281 

 282 

 283 

Results  284 
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Metabolic flux analysis of free-living rhizobia. Dicarboxylates are provided to bacteroids by 285 

plants to support N2 fixation (3, 4), so the pathways operating in free-living Rhizobium 286 

leguminosarum bv. viciae 3841 (Rlv3841) growing on [13C4] succinate were quantified. The 287 

major flux of succinate metabolism in Rlv3841 was via fumarate to malate (Figure 1) and 288 

subsequently from malate to pyruvate and oxaloacetate to phosphoenolpyruvate. These 289 

fluxes would support the major metabolic requirements of cells growing on a TCA-cycle 290 

intermediate for synthesis of acetyl-CoA to supply the TCA-cycle and phosphoenolpyruvate 291 

for biosynthesis of sugars. Large fluxes were also detected in gluconeogenesis converting 292 

phosphoenolpyruvate to triose phosphates, in the oxidative decarboxylation of pyruvate to 293 

acetyl-CoA and in the TCA-cycle from oxaloacetate to 2-oxoglutarate. Overall, these fluxes 294 

are consistent with respiration of an obligate aerobe growing on a TCA-cycle intermediate 295 

as the sole carbon source.  296 

 297 

Currently, metabolic flux analysis cannot be conducted on notoriously fragile isolated pea 298 

bacteroids (35). Nitrogenase activity, as measured by acetylene reduction, in isolated pea 299 

nodules collapsed 90 minutes after excision to less than 2% of that in nodules on roots (0.25 300 

± 0.03 vs 18.3 ± 2.5  nmol acetylene reduced. mg nodule-1. h-1). This precludes labelling of 301 

nodule metabolites to isotopic steady state under physiologically relevant conditions in an 302 

isolated system. Moreover, the likely slow rate of protein turnover in non-dividing 303 

bacteroids compromises the use of the labelling patterns of protein-derived amino acids to 304 

reflect those of their metabolic precursors. We therefore used metabolite profiling to 305 

examine the differences in levels of metabolic intermediates between cultured cells and 306 

bacteroids. 307 

 308 
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Bacteroid Central Metabolism. The metabolic profiles of free-living and bacteroid forms of 309 

Rlv3841 were analysed using non-biased, untargeted metabolome analysis (27, 28).  310 

Metabolites most highly elevated in bacteroids relative to free-living Rlv3841 were 311 

homoserine and asparagine (increased 105- and 58-fold respectively; Figure 2). Both were 312 

also high in the nodule cytosolic fraction relative to bacteroids (33- and 11-fold increased, 313 

Supplementary Table 5), in accordance with previous observations (36, 37), and consistent 314 

with their known plant origin. Asparagine is made in the plant cytosol as the primary 315 

nitrogen export product from nodules (35). Furthermore, free asparagine is not made by 316 

Rlv3841, which from analysis of its genome uses the GatCAB pathway to insert asparagine 317 

into proteins by charging asparaginyl-tRNA with aspartate and then transamidating 318 

aspartate to asparagine (38).  In addition, catabolism of asparagine and homoserine is not 319 

up-regulated in bacteroids (39), nor do catabolic mutants show reduced N2 fixation rates 320 

(40, 41), consistent with minor roles in symbiosis. 321 

 322 

Our fundamental question is whether the TCA-cycle is altered during symbiotic N2 fixation. 323 

The dicarboxylates malate, fumarate and succinate are the carbon sources for bacteroids in 324 

planta and levels of all three were increased in bacteroids relative to free-living cells (Figure 325 

2). Moreover, these metabolites were also much higher in the plant nodule cytosol fraction 326 

relative to bacteroids (malate 14-, fumarate 20-; succinate 2.5-fold, Supplementary Table 5), 327 

consistent with active plant dicarboxylate synthesis.   328 

 329 

Metabolism of dicarboxylates by bacteroids is via malic enzyme and phosphoenolpyruvate 330 

carboxykinase to pyruvate and phosphoenolpyruvate, respectively, with pyruvate 331 

subsequently oxidatively decarboxylated to acetyl-CoA (5-7). The intermediates of sugar 332 
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metabolism such as 3-phosphoglycerate, fructose-6-phosphate and glucose-6-phosphate 333 

and the pentose phosphate pathway (ribulose-5-phosphate and xylulose-5-phosphate) were 334 

greatly reduced (Figure 2), suggesting little sugar synthesis occurs in bacteroids. 335 

Remarkably, pyruvate (5.5-fold down), acetyl-CoA (50-fold down), free coenzyme A (33-fold) 336 

and citrate (4.5-fold down) were much lower in bacteroids (Figure 2). In sharp contrast, the 337 

transcription and enzymatic activity of citrate synthase (RL2234, icdB) was increased 3.2- 338 

and 12-fold, respectively and increases in the activity and transcription of other enzymes of 339 

the decarboxylating arm of the TCA-cycle have been noted (39, 42). While such increased 340 

enzyme biosynthesis might indicate increased flux into the TCA-cycle, it is equally consistent 341 

with lower feedback inhibition of the synthesis and activity of enzymes by key intermediates 342 

such as acetyl-CoA and citrate (43, 44).  343 

 344 

Carbon in the TCA cycle could also be channelled to glutamate, which is synthesised from 2-345 

oxoglutarate by glutamine synthetase/glutamate synthase (GS/GOGAT)(45). However, 346 

glutamate levels were 20-fold lower in bacteroids relative to free living cells (Figure 2), 347 

consistent with GS/GOGAT activity being both low and not essential in mature bacteroids 348 

(46). Metabolites derived from glutamate, including glutathione and N-acetylglutamate 349 

were also reduced while levels of many other amino acids were either only slightly altered 350 

or unchanged in bacteroids (Figure 2).  351 

 352 

However, steady state metabolite levels do not represent flux. Low levels of pyruvate, 353 

acetyl-CoA, coenzyme A and citrate in bacteroids may indicate a low rate of synthesis but 354 

can equally result from rapid turnover. Furthermore, metabolites may dramatically change 355 

concentrations during isolation of bacteroids from nodules. We addressed this by comparing 356 
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wild-type with mutant bacteroids defective in the TCA-cycle, which should lead to different 357 

metabolite profiles. If low acetyl-CoA in wild-type bacteroids relative to free-living cells 358 

results from increased flux through the TCA-cycle, then TCA-cycle mutants should have 359 

elevated acetyl-CoA. 360 

 361 

Metabolite profile of a TCA cycle mutant.We previously isolated several Tn5 insertions in 362 

Rlv3841 genes encoding TCA-cycle enzymes (12). Malate dehydrogenase, succinyl-CoA 363 

synthetase and the E1 and E2 components of the 2-oxoglutarate dehydrogenase complex 364 

are transcribed from the mdh-sucCDAB operon (47). Mutations in sucA (RU156, RU724 and 365 

RU733) or sucB (RU726), encoding the E1 and E2 components of the 2-oxoglutarate 366 

dehydrogenase complex, respectively abolished 2-oxoglutarate dehydrogenase activity (12), 367 

resulting in plants that failed to reduce acetylene (Fix-). Therefore, blocking the TCA-cycle in 368 

Rlv3841 prevents N2 fixation. However, strain RU116, mutated in sucD (encoding the β-369 

subunit of succinyl-CoA synthetase), originally scored as Fix- based on yellowing of plants  370 

and small nodules but retaining low levels of succinyl-CoA synthetase activity (12), we now 371 

show is able to reduce acetylene at 35% of the wild-type rate (Figure 3). This mutation may 372 

affect the number of bacteroids in nodules, total nodule mass or reduce nitrogenase 373 

activity. However, acetylene reduction per unit bacteroid protein and shoot dry matter of 374 

plants grown in nitrogen-free conditions inoculated with the sucD mutant were 45%- and-375 

51% of the wild-type values, respectively (Figure 3). Therefore, sucD bacteroids have 376 

lowered N2 fixation, presumably due to attenuation, but not complete blockage, of the TCA-377 

cycle.  378 

 379 
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Metabolite profiles of the sucD mutant and wild-type bacteroids (Figure 4) show that while 380 

succinate levels were similar in RU116 and wild-type bacteroids, fumarate and malate were 381 

considerably lower in the mutant bacteroids, indicating reduced flux of carbon. Our key 382 

question concerns the decarboxylating arm of the TCA-cycle. Predictably for a mutant strain 383 

blocked in the TCA-cycle at succinyl-CoA synthetase, citrate levels were 11-fold higher in 384 

sucD than wild-type and intermediates derived from 2-oxoglutarate, such as glutamate, 385 

glutathione and 2-hydroxyglutarate, were all increased markedly (Figure 4). Therefore, 386 

attenuation of succinyl-CoA synthetase activity caused an accumulation of metabolites prior 387 

to the decarboxylating arm of the TCA-cycle. Thus, the TCA-cycle operates in bacteroids and 388 

reducing its activity also reduced N2-fixation. Crucially though, while the level of pyruvate 389 

was similar between the two bacteroid types, no acetyl-CoA and free Coenzyme A were 390 

detected in the sucD mutant. If the only major route for acetyl-CoA metabolism is the TCA-391 

cycle, its levels should rise dramatically in strain RU116 (sucD). This suggests acetyl-CoA has 392 

other large sinks independent of the TCA-cycle. The presence of alternative sinks for acetyl-393 

CoA would explain its very low level in bacteroids compared to free-living bacteria. It would 394 

also have profound implications for our understanding of Rhizobium-legume symbioses as it 395 

suggests a major re-routing of central metabolism during N2 fixation in pea bacteroids. 396 

 397 

Lipids are a sink for acetyl-CoA in bacteroids. Apart from its complete oxidation in the TCA-398 

cycle, the other major metabolic fate of acetyl-CoA is in lipogenesis. Two possible products 399 

of lipogenesis are poly-β-hydroxybutyrate (PHB) and fatty acids. Considerable attention has 400 

focussed on PHB because it is abundant in soybean and common bean bacteroids, although 401 

it is thought to be absent from mature N2-fixing bacteroids from indeterminate nodulating 402 
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plants including pea, alfalfa and clover. In contrast, there has been relatively little 403 

quantification of bacteroid lipids, which we sought to address.   404 

 405 

There was a range of chain lengths and degrees of unsaturation in the free-fatty acids in 406 

both bacteroids and free-living succinate-grown cells (Table 2). Levels of long chain free-407 

fatty acids (C16-C20) were higher in bacteroids than in either free-living bacteria or nodule 408 

cytosolic fractions. There were also significantly higher levels of monoacylglycerols, with 409 

bacteroids containing highly elevated levels of 1-linoleoylglycerol (>57-fold), 1-410 

palmitoylglycerol (16-fold), 2-linoleoylglycerol (> 13-fold) as well as 1-stearoylglycerol (3.9-411 

fold) and 2-oleoylglycerol (5.8-fold). Moreover, the less efficient N2-fixing sucD mutant 412 

strain showed significantly lower levels of these lipid species compared to wild-type Rlv3841 413 

bacteroids. The presence of these molecules at high levels in wild-type Rlv3841 suggests 414 

bacteroids use fatty acids as a sink for acetyl-CoA.  415 

 416 

It was not possible to detect diacyclglycerols or triacylglycerols in these samples as they fall 417 

outside the polarity range and upper size limit of the GC- and LC-MS techniques used. 418 

Therefore, membrane-free extracts were isolated by ultracentrifugation and their 419 

glycerolipid level quantified by enzyme assay. Glycerolipids were 22-fold higher in 420 

bacteroids than free-living cells (62 ± 2.66 ng/mg protein vs 2.8 ± 1.26 ng/mg protein, 421 

respectively). Bacteroids channel a large proportion of acetyl-CoA away from the TCA-cycle 422 

and into lipids, suggesting related storage mechanisms may be utilised under N2-fixing 423 

conditions. 424 

 425 
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Pea bacteroids of Rlv3841 accumulate PHB. PHB accumulation occurs in undifferentiated 426 

rhizobia in infection threads of pea nodules but is thought to be absent in bacteroids (20).  427 

When R. leguminosarum strain A34 was mutated in phaC, encoding a type I PHB synthase, it 428 

lacked detectable PHB in both infection thread bacteria and in bacteroids. This is consistent 429 

with the paradigm that bacteroids from indeterminate nodules such as pea and alfalfa do 430 

not make PHB in bacteroids. However, the genome of R. leguminosarum strain Rlv3841 has 431 

two PHB synthases: a type I on the chromosome (phaC1, RL2094) and a phaE (pRL100104) 432 

phaC2 (pRL100105) type II PHB synthase on the symbiotic plasmid pRL10. The putative 433 

operon containing phaEphaC2 is preceded by a consensus nifA promoter and was induced 7 434 

to 40-fold in bacteroids, while phaC1 was not upregulated (39). As PHB is another lipogenic 435 

end-product of acetyl-CoA metabolism, we investigated the symbiotic roles of these two 436 

PHB synthases in Rlv3841.  437 

 438 

Previous work demonstrated that phaC1 was active in free-living Rlv3841 as mutation of this 439 

gene reduced PHB accumulation in the mutant RU137 by 93% relative to wild-type (12), 440 

although the symbiotic performance of this phaC1 mutant was not determined. Therefore, 441 

we isolated a phaC2 single mutant (LMB814) and a phaC1 phaC2 double mutant (LMB816) 442 

in Rlv3841 and assessed their symbiotic phenotype, along with the original phaC1 mutant. 443 

While rates of N2 fixation in phaC1, phaC2 single and phaC1 phaC2 double mutants were not 444 

significantly different from wild-type Rlv3841 (Supplementary Figure 1), examination of 445 

nodule sections by TEM showed that PHB accumulation was altered. Pea nodules containing 446 

wild-type Rlv3841 exhibited large PHB droplets in bacteria in infection threads and smaller 447 

bodies in mature bacteroids (Figure 5). Previously when small PHB droplets were observed 448 

in bacteroids it was assumed they were synthesized by bacteria in infection threads. 449 
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However, while the phaC1 mutant harboured small PHB droplets in bacteroids, they were 450 

absent in the undifferentiated bacteria in infection threads. Conversely, PHB was largely 451 

absent in phaC2 mutant bacteroids, but was abundant in bacteria occupying infection 452 

threads. Finally, PHB was absent from both bacteroids and bacteria in infection threads in 453 

the phaC1 phaC2 mutant. Therefore, Rlv3841 has two functional PHB synthases: one active 454 

in free-living and undifferentiated bacteria (type I, PhaC1) and the other in bacteroids (type 455 

II, PhaE PhaC2). Although most sequenced rhizobia carry a type I PHB synthase, analysis of 456 

genome sequences shows other rhizobia contain phaEphaC2 genes, including strains 457 

forming symbiotic interactions not usually thought to make PHB, such as R. leguminosarum 458 

bv. viciae VF39 (pea) and R. leguminosarum bv. trifolii TA1 (clover) (Integrated Microbial 459 

Genomes: https://img.jgi.doe.gov/cgi-bin/w/main.cgi). It is therefore likely that these other 460 

type II-harbouring bacteroids also accumulate PHB, as has been demonstrated for Rlv3841.  461 

 462 

Discussion 463 

The metabolism of free-living Rlv3841 growing on succinate as the sole carbon source is 464 

dominated by flux through the TCA-cycle as well as anaplerotic and biosynthetic reactions.  465 

However, while the TCA-cycle is essential for fully effective N2 fixation in pea bacteroids, the 466 

accumulation of lipid shows a significant alternative fate for acetyl-CoA.  Importantly, this 467 

observation is supported by the work of Miller and Tremblay (48) who showed that S. 468 

meliloti bacteroids from alfalfa nodules contain 34% of the total neutral lipid fraction as di- 469 

and triglycerides, whereas these lipids were undetected in free-living S. meliloti. Moreover, 470 

the extraordinary deposition of PHB in bacteroids from common bean and soybean is an 471 

extreme example of carbon storage and redox balancing that has hitherto lacked a coherent 472 

explanation, particularly since preventing synthesis in these symbioses does not prevent N2 473 
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fixation (19-21). Here we show that bacteroids of some strains of R. leguminosarum, such as 474 

Rlv3841, make PHB via a putative nifA-dependent type II PHB synthase. Therefore, the 475 

paradigm that mature bacteroids from indeterminate nodules (such as those formed on 476 

pea, alfalfa and clover) do not synthesize PHB is incorrect. Most importantly, Rlv3841 477 

bacteroids accumulate both PHB and lipid showing that even with acetyl-CoA incorporated 478 

into lipids, yet more acetyl-CoA accumulates in PHB. Thus, entry of acetyl-CoA into the TCA-479 

cycle must be limited and implies that symbiotic N2 fixation should be thought of as a 480 

fundamentally lipogenic process.  481 

 482 

The complete oxidation of a mole of acetyl-CoA in the TCA cycle yields four moles of 483 

reducing equivalents (i.e. NAD(P)H or FADH2). In free-living rhizobia, this reductant can be 484 

channelled to the aerobic respiratory chain, driving oxidative phosphorylation, or used as 485 

reductant in biosynthesis to fuel cell growth and division. However, mature pea bacteroids 486 

are in a metabolically active but non-dividing state. In addition, N2 fixation in legume root 487 

nodules occurs at microaerobic O2 concentrations, estimated at 3 to 57 nM (49, 50). This 488 

low O2 level is likely to restrict bacteroid respiration and hence TCA cycle activity, thereby 489 

forcing acetyl-CoA into lipids. While it is theoretically possible to have large rates of electron 490 

flux to a high-affinity terminal oxidase such as cbb3 in bacteroids if O2-flux is also high, the 491 

large scale production of lipids and PHB suggests this route is restricted. Instead, by 492 

channelling acetyl-CoA into lipid and PHB synthesis, bacteroids could overcome this 493 

metabolic constraint by consuming both carbon and reductant as NAD(P)H. Lipogenesis is a 494 

classic response of all domains of life to an excess of carbon and reductant that cannot be 495 

reoxidised by respiration or fermentation. Thus, free-living bacteria synthesise lipid when 496 

growth is nutritionally unbalanced, such as in O2- or N2-limited conditions (51, 52). During 497 
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free-living N2 fixation, both Azotobacter beijerinckii and A. caulinodans accumulate PHB and 498 

in A. caulinodans, PHB synthesis is essential to both free-living and symbiotic N2 fixation (22, 499 

53). Thus, bacteroids may be lipogenic as a physiological response to the microaerobic 500 

environment inside legume root nodules.  501 

 502 

Although aerobically-growing free-living rhizobia and bacteroids differ in O2 supply and 503 

ability to divide, the other obvious metabolic difference is the supply of ATP and reductant 504 

for bacteroid nitrogenase. Bacteroids must supply reductant and ATP to nitrogenase, 505 

requiring 8 moles of electrons and 16 moles of ATP to reduce one mole of N2 (Equation 1). 506 

Although the electron source for nitrogenase is well understood in the free-living N2-fixing 507 

bacteria Klebsiella pneumoniae, where electrons are transferred by NifJ (pyruvate:flavin 508 

oxidoreductase) and NifF (flavodoxin) complex from pyruvate to nitrogenase (54, 55), it is 509 

unknown for rhizobia. In the classical model in rhizobia, all reductant generated by 510 

metabolism, primarily as NAD(P)H, can be allocated to all processes including N2 reduction 511 

or biosynthesis with excess reductant and ATP consumed by lipogenesis (Figure 6). 512 

However, the standard redox potentials of NADH and ferredoxin (E0' for NAD+/NADH is -320 513 

mV and ferredoxin Fe3+/Fe2+ -is 484 mV (16, 17)), suggest it is unlikely that NADH donates 514 

electrons directly to ferredoxin and then to nitrogenase. An alternative would be that a 515 

specific molecule acts as the low potential electron donor to nitrogenase, such as pyruvate 516 

oxidation by the NifJ-NifF complex in K. pneumoniae (54, 55). This process consumes four 517 

pyruvate molecules and produces four acetyl-CoA to generate the eight electrons needed by 518 

nitrogenase. Since this complex is not present in rhizobia, an alternative pathway is 519 

required. One possibility is that the Electron Transferring Flavoprotein (ETF) complex, 520 

FixABCX, interacts with pyruvate dehydrogenase, as shown by genetic suppressor analysis in 521 
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A. caulinodans (56). ETF complexes use electron bifurcation in anaerobic bacteria (57, 58), 522 

which might enable FixABCX to generate low potential electrons for reduction of ferredoxin 523 

and then N2 (Figure 6). While unproven, such a mechanism requires eight moles of pyruvate 524 

to reduce one mole of N2 and would exacerbate the reductant problem because acetyl-CoA 525 

oxidised by the TCA cycle would generate excess NAD(P)H. In the absence of convincing 526 

experimental evidence for the electron donation pathway to nitrogenase, we cannot 527 

complete a formal electron and reductant balance. However, Figure 6 illustrates how 528 

dramatically redox balance in bacteroids can be altered by the need for low potential 529 

electrons for N2 reduction. 530 

 531 

While A. caulinodans, must synthesize PHB during N2 fixation (22), synthesis can be blocked 532 

in bacteroids of peas, alfalfa, common bean and soybean (19-21, 59, 60). The ability to 533 

prevent PHB synthesis and still have a functioning bacteroid may be explained by multiple 534 

storage sinks for acetyl-CoA including PHB, free fatty acids, glycerolipids and membrane 535 

phospholipids, with PHB itself being less important in these symbioses. Overall, bacteroids 536 

are highly lipogenic, with multiple lipid sinks for excess reductant. This applies to both 537 

determinate and indeterminate nodules and is likely to be an essential part of the 538 

energisation of nitrogenase and associated redox balance  in all N2-fixing symbioses. 539 

 540 

 541 

  542 
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Table 1 – Strains, plasmids and primers used in this study. 732 

Strain, 
Plasmid or 
Primer 

Genotype or Sequence Reference

Strains   
Rlv3841 Str derivative of R. leguminosarum bv. viciae strain 300 (61)
RU137 Rlv3841 phaC1::Tn5; Nmr (12) 
RU116 Rlv3841 sucD::Tn5; Nmr (12) 
RU156 Rlv3841 sucA::Tn5; Nmr (12) 
RU724 Rlv3841 sucA::Tn5-lacZ ; Nmr (12) 
RU725 Rlv3841 sucC::Tn5-lacZ ; Nmr (12) 
RU726 Rlv3841 sucB::Tn5-lacZ; Nmr (12) 
RU733 Rlv3841 sucA::Tn5-lacZ; Nmr (12) 
LMB814 Rlv3841 phaC2::Ω; Str Spr  This work 
LMB816 Rlv3841 phaC1::Tn5  phaC2::Ω; Str  Nmr Spr  This work 
DH5α Escherichia coli strain used for cloning: F- φ80lacZΔM15 Δ(lacZYA-

argF) U169 recA1 endA1 hsdR17(rk
-, mk

+) phoA supE44 thi-1gyrA96 
relA1 

Invitrogen

   
Plasmids   
pJET1.2/Blunt PCR product cloning vector; Apr Thermo-

Fisher 
pHP45-
ΩSmSp 

pHP derivative with ΩSmSp cassette, Smr Spr (62) 

pJQ200SK pACYC derivative, P15A origin of replication insertional 
mutagenesis inactivation vector, Gmr Sucs 

(63) 

pRK2013 Helper plasmid used for mobilizing plasmids. ColE1 replicon with 
RK2 tra genes, Kmr 

(64) 

pLMB834 pr1645-1646 PCR product (2.8 kbp) from pRL100105 (phaC2) 
cloned into pJET1.2/Blunt, Apr 

This work

pLMB835 pLMB834 with ΩSmSp cassette from pHP45-ΩSmSp cloned into 
unique EcoRI site, Apr Smr Spr

This work 

pLMB838 pJQ200SK with BglII fragment from pLMB835 containing phaC2:: Ω 
cloned into BamH1 site, Smr Spr Gmr Sucs 

This work 

   
Primers   
pr1645 AACGCTACAGCGCAACGCTC This work
pr1646 ACTTTCTTCGCTCCCGTCGG This work
pr1647 ACCCCGAAGACGCTCGTCAT This work
pr1648 ATGATCGTGACGGCATCGGC This work
potfarforward GACCTTTTGAATGACCTTTA (65)
Tn5-1 ATAGCCTCTCCACCCAAGC This work
 733 
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Table 2 – Comparison of fatty acids and monoacylglycerols detected in metabolite profiles 734 

showing the fold change in metabolite abundance, in Rlv3841 bacteroids relative to Rlv3841 735 

free-living, nodule cytosol and sucD bacteroid samples, respectively. Boxes highlighted in 736 

red were significantly higher (P < 0.05 and Q < 0.1) and those in green were significantly 737 

lower (P<0.05 and Q<0.1) in Rlv3841 bacteroids, with un-highlighted boxes showing no 738 

significant difference.  739 

Fold Change in Metabolite Abundance 
(Amount in Rlv3841 bacteroids relative to other sample) 

Lipid Species 

Rlv3841 Bacteroids
 vs. 

  Rlv3841 Free-
living 

Rlv3841 Bacteroids
vs. 

Nodule cytosol 

Rlv3841 Bacteroids
vs.  

sucD Bacteroids  

Free Fatty Acids       
cis-vaccenate (18:1n7) 1.99 5.91 4.00 
palmitoleate (16:1n7) 8.20 4.87  2.94 
linolenate [α or γ (18:3n3 or 6)] 23.0 4.09 1.32 
linoleate (18:2n6) 18.7 3.62 2.13 
eicosenoate (20:1n9 or 11) 8.39 2.91 2.56 
10-heptadecenoate (17:1n7) 8.22 2.54 1.19 
dihomo-linoleate (20:2n6) 3.81 2.50 1.28 
stearate (18:0) 2.16 1.90 2.44 
palmitate (16:0) 3.72 1.88 2.94 
margarate (17:0) 3.94 1.15 1.89 
pelargonate (9:0) 0.75 0.48 2.17 
heptanoate (7:0) 0.19 0.19 0.46 
caproate (6:0) 19.7 0.16 0.71 
caprylate (8:0) 1.45 0.16 0.75 
isovalerate 1.30 0.05 0.36 
Glycerolipids     
1-linoleoylglycerol (18:2) 57.2 8.04 9.09 
2-linoleoylglycerol  (18:2) 13.2 5.38 6.25 
2-oleoylglycerol  (18:1) 5.83 3.16 2.78 
1-stearoylglycerol (18:0) 3.86 0.33 3.85 
1-palmitoylglycerol (16:0) 15.6 0.27 4.35 
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Figure 1 - Flux map of central carbon metabolism for free-living R. leguminosarum Rlv3841, 740 

grown on succinate and NH4Cl. Net fluxes are expressed on a molar basis relative to 741 

succinate uptake. The thickness of each arrow is proportional to net flux with the exception 742 

that fluxes < 1% of succinate uptake are indicated by broken arrows. Biosynthetic outputs 743 

are shown in solid rectangular boxes and metabolites treated as a single pool in the model 744 

are shown in dashed grey boxes. Flux identifiers, defined in Supplementary Table 2, are 745 

shown in italics. The precise values for the deduced fluxes are presented in Supplementary 746 

Table 4. Standard abbreviations are used for amino acids and metabolic intermediates, and 747 

PPP represent the reversible non-oxidative steps of the pentose phosphate pathway.  748 

 749 

Figure 2 - Metabolite profile of Rlv3841 bacteroids vs. Rlv3841 free-living cells showing fold 750 

change in metabolite abundance relative to Rlv3841 bacteroids. Bacteroids were isolated 751 

from nodules from pea plants 28 days post-inoculation (dpi). Cells were harvested from log 752 

phase cultures grown in AMS broth with 20 mM succinate and 10 mM NH4Cl as the carbon 753 

and nitrogen sources, respectively. Bolded intermediates were detected by metabolite 754 

profiling, with a statistically significant fold difference (P < 0.05 by Welch’s T-test and Q < 0.1 755 

for the False Discovery Rate) denoted with a red (increase) or green (decrease) arrow. A > 756 

sign indicates the metabolite was undetectable in either the free-living or the bacteroid 757 

sample, so the difference reported is therefore a lower limit estimate of the fold change. 758 

Intact arrows indicate single step enzyme catalysed reactions. Broken arrows indicate where 759 

two or more enzyme-catalysed steps are involved in a series of reactions. Abbreviations: UD, 760 

undetectable; BT, bacteroid; FL, free-living; GABA, γ-amino butyric acid; GSH, glutathione 761 

(reduced); GSSG, glutathione (oxidised); 2OG, 2-oxoglutarate; OAA, oxaloacetate; PEP, 762 

phosphoenolpyruvate. 763 
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Figure 3 – Symbiotic phenotype of sucD mutant (RU116) compared to wild-type Rlv3841. N2 764 

fixation as measured by acetylene reduction on whole plants at 28 dpi expressed on (a) per 765 

plant basis (n=6 per treatment) and (b) per unit bacteroid protein basis (n=6), where the 766 

significance value *P < 0.05 was determined by Welch’s T-test.  A photograph of pea plants 767 

(c) at 47 dpi with uninoculated water control (WC), Rlv3841 and sucD (RU116) treatments. 768 

Mean shoot dry weights (d) of 42 dpi peas (n = 12 per treatment), where treatments not 769 

sharing a letter differ significantly at P < 0.05 (ANOVA and Tukey’s HSD). In all cases, error 770 

bars represent standard errors of the means. 771 

 772 

Figure 4 - Metabolite profile of sucD (RU116) bacteroids vs. Rlv3841 bacteroids showing fold 773 

change in metabolite abundance relative to sucD bacteroids. Bacteroids were isolated from 774 

nodules from pea plants 28 dpi. Bolded intermediates were detected by metabolite 775 

profiling, with a statistically significant fold difference (P < 0.05 by Welch’s T-test and Q < 0.1 776 

for the False Discovery Rate) denoted with a red (increase) or green (decrease) arrow. Intact 777 

arrows indicate single step enzyme catalysed reactions. Broken arrows indicate where two 778 

or more enzyme-catalysed steps are involved in a series of reactions.  sucD bacteroids are 779 

attenuated in TCA-cycle enzymes post 2-oxoglutarate (2-OG). Abbreviations: UD, 780 

undetectable; GABA, γ-amino butyric acid; GSH, glutathione (reduced); GSSG, glutathione 781 

(oxidised); OAA, oxaloacetate; PEP, phosphoenolpyruvate. 782 

 783 

Figure 5 – Transmission electron micrographs of pea nodules at 28 dpi. Wild-type Rlv3841 784 

(a) bacteroids and (b) in an infection thread, both showing PHB droplets. Mutant phaC1 785 

(RU137) (c) bacteroids showing PHB accumulation, which is absent from (d) infection 786 

threads. Mutant phaC2 (LMB814) (e) bacteroids where PHB droplets are largely absent, but 787 
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abundant in (f) in infection threads. Double mutant phaC1 phaC2 (LMB816) (g) bacteroids 788 

and (h) in infection threads with PHB absent from both. Scale bars are 2 μm in a, c, e and g 789 

and 1 μm in b, d, f and h.  Red arrows point to PHB droplets which appear white. 790 

 791 

Figure 6 – Two possible pathways of electron allocation in N2-fixing bacteroids.  (a) In the 792 

first scenario, NADH supplies electrons directly to nitrogenase as well as providing ATP from 793 

oxidative phosphorylation.  A minimum of two moles of malate are required to be oxidised 794 

to acetyl CoA to yield sufficient ATP and electrons to reduce one mole of N2. (b) In the 795 

second scenario, electrons are supplied to nitrogenase via a tight coupling with PDH and 796 

electron bifurcation through FixABCX, requiring eight moles of malate to reduce one mole of 797 

N2. The 16 moles of electrons liberated from the oxidation of eight moles of pyruvate could 798 

undergo electron bifurcation at FixABCX, resulting in eight electrons reducing CoQ via the 799 

Fix complex, while eight electrons are channelled to nitrogenase and N2 fixation. The 16 ATP 800 

for N2 fixation could be supplied from oxidative phosphorylation, for example the 8 801 

electrons from FixABCX (i.e. CoQH2) plus reoxidation of 8 FADH2 generated in the TCA cycle. 802 

However, in this scheme if all eight acetyl CoA are oxidised in the TCA cycle, then the large 803 

yield of reductant (24 NADH plus the eight NADH from oxidation of malate by malic enzyme) 804 

could result in over-reduction of the electron carrier pool, requiring bacteroids to consume 805 

reductant and acetyl CoA through lipogenesis. The two models are not mutually exclusive as 806 

in (a), free NADH might also interact with FixABCX enabling low potential electrons to be 807 

generated by bifurcation for reduction of ferredoxin. Note that a P:2e- ratio of 2.5 is 808 

assumed for NADH and 1.5 for electrons entering the ETC at the level of CoQ. For simplicity 809 

we have not distinguished between NAD+ and NADP+ in this model. Abbreviations: CoQ, 810 
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Coenzyme Q; ETC, electron transport chain; ME, malic enzyme; N2ase, nitrogenase; PDH, 811 

pyruvate dehydrogenase. 812 
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