
Fig. 2.27. Time–latitude diagram of soil moisture 
anomalies (base period: 1991–2014). Data were masked 
as missing where retrievals are either not possible or of 
low quality (dense forests, frozen soil, snow, ice, etc.). 
(Source: ESA CCI.)

soil moisture conditions were 
also observed in eastern China 
with reported severe f loods in 
May–June. The southern part of 
South America also experienced 
wetter-than-usual conditions, 
including severe flooding in Ar-
gentina and heavy precipitation 
in the Chilean Atacama Desert 
in March (see section 7c3).

To a large extent, the spa-
tially distinct patterns in 2015 
can be related to the strong El Niño conditions 
during the second half of the year (NOAA/ESRL 
2016). ENSO anomalies are known to potentially 
cause continentwide deviations in terrestrial water 
storages (Bauer-Marschallinger et al. 2013; Boening 
et al. 2012; De Jeu et al. 2011, 2012a; Miralles et al. 
2014c). ENSO-driven global negative soil moisture 
anomalies were clear during the 1997/98 El Niño, 
while positive anomalies were observable for the 
strong La Niña episode of 2010/11, especially for the 
Southern Hemisphere (Fig. 2.26). The negative soil 
moisture anomalies in the Southern Hemisphere 
are visible in the time–latitude diagram (Fig. 2.27), 
which shows the strongest anomalies in the southern 
tropics. However, even though El Niño conditions in 
2015 were almost as strong as in 1997/98, its impact 
up to the end of 2015 on global soil moisture was not 
as strong. This suggests that other climate oscilla-
tions may have partly counterbalanced the effects of 
El Niño during 2015 at least.

No evident large-scale, long-term global soil 
moisture trends can be observed (Figs. 2.26, 2.27). 
However, this does not exclude the existence of long-
term trends at the regional or local scale (Dorigo et al. 
2012). Trends in average global soil moisture should 
be treated with caution owing to dataset properties 
changing over time and the inability to observe 
beneath dense vegetation, for mountain areas, or 
frozen soils (cf. gray regions in Plate 2.1f and Online 
Fig. S2.17).

9) monitoring gLobaL drought uS ing the 
SeLf-caLibrating paLmer drought Severity  
index—T. J .  O sbo r n , J .  Ba r i c h i v i c h , I .  Ha r r i s ,  
G. van der Schrier, and P. D. Jones

Hydrological drought results from a period of 
abnormally low precipitation, sometimes exacerbated 
by additional evapotranspiration (ET), and its occur-
rence can be apparent in reduced river discharge, soil 
moisture, and/or groundwater storage, depending 
on season and duration of the event. Here, an esti-

mate of drought called the self-calibrating Palmer 
drought severity index is presented (scPDSI; Palmer 
1965; Wells et al. 2004; van der Schrier et al. 2013a) 
using precipitation and Penman–Monteith potential 
ET from an early update of the CRU TS 3.24 dataset 
(Harris et al. 2014). Moisture categories are calibrated 
over the complete 1901–2015 period to ensure that 
“extreme” droughts and pluvials relate to events that 
do not occur more frequently than in approximately 
2% of the months. This affects direct comparison with 
other hydrological cycle variables in Plate 2.1, which 
use a different baseline period. Other drought indices 
can give varied results (see van der Schrier et al. 2015).

van der Schrier et al. (2015) noted that 2014 ap-
peared to have a remarkably small global area affected 
by drought, but the updated analysis (Fig. 2.28, with 
additional precipitation data that was not available at 
the time) now suggests that 2014 was affected by more 
extensive droughts (8% of land in severe drought at 
the end of 2014, compared with only 5% previously 
estimated). See Online Fig. S2.18 for a comparison 
with last year’s analysis.

Fig. 2.26. Time series of average global soil moisture anomalies for 
1991–2015 (base period: 1991–2014). Data were masked as missing where 
retrievals were either not possible or of very low quality (dense forests, 
frozen soil, snow, ice, etc.). (Source: ESA CCI.)
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There was a large expansion in the overall area 
of drought across the globe in 2015 (Fig. 2.28, inset), 
with 14% of global land seeing severe drought condi-
tions (scPDSI < –3) by the end of the year. The areas 
where scPDSI indicates moderate (30%), severe (14%), 
or extreme (5%) droughts by the end of 2015 are 
among the highest in the post-1950 record, exceeded 
only by some years in the mid-1980s. The 2015 peak 
should be interpreted cautiously, given that more 
observations for the final months of 2015 will become 
available in due course (see Online Fig. S2.18).

 The regional patterns of drought (Plate 2.1p) are 
partly associated with the strong El Niño event that 
developed during 2015. The full effect of this event 
may not be apparent until 2016, and other factors 
dominate in regions where the influence of the tropi-
cal Pacific is weak. Averaged over 2015, almost no 
regions of Africa experienced wet spells, and indeed 
most land areas south of 20°N across all continents 
were either near-normal (31% with scPDSI within 
±1) or subject to some degree of drought (56% with 
scPDSI <–1).

Extensive severe or extreme drought affected 
many countries in southern Africa, intensifying as 
the 2015 El Niño progressed. These areas had been 
slowly recovering since a dry spell that began with 
the previous El Niño in 2010. In the Horn of Africa, 
severe drought affected Ethiopia and some neighbor-
ing regions in 2015, with significant impacts despite 
being apparent only over a relatively small region in 
the scPDSI data (Plate 2.1p). Very few areas of Africa 
exhibited wet spells in the 2015 mean scPDSI.

The effects of the 2014 drought in southeastern 
Brazil continued to be felt in 2015, though high rain-
fall farther south over the Paraná basin (consistent 
with previous strong El Niño events) replaced drought 
with wet conditions. New regions of drought emerged 

in the El Niño-sensitive regions of northeastern Bra-
zil, Venezuela, and Colombia; these are expected to 
impact water supplies, hydroelectric power, and crop 
yields as El Niño continues into 2016. Parts of Chile 
remained in a severe 6-year drought in 2015 despite 
wetter El Niño conditions (www.cr2.cl/megasequía).

Drought conditions developed in some Central 
American and Caribbean nations, such as Guatemala 
and Haiti, contributing to food insecurity in the re-
gion. California continued to experience severe or 
extreme drought conditions, while most of the U.S. 
Midwest, South, and East were moderately or very 
wet, extending into Ontario, Canada.

Dry conditions were widespread across Australia, 
continuing from 2014. Severe or extreme drought 
conditions were apparent along the west coast, the 
southeast, and parts of Queensland, a region par-
ticularly susceptible to drought during protracted 
El Niño events, like the current one (section 2e1). 
Farther north, dry conditions were established across 
many parts of the Maritime Continent and parts of 
Southeast Asia, especially Myanmar and southwest-
ern China (Plate 2.1p). Drought also affected parts 
of northern China and Mongolia in 2015 according 
to the scPDSI metric. In contrast with 2014, drought 
conditions were not evident in India despite a dry 
monsoon season. This was due to heavy out-of-season 
rainfall both early and late in the year. Dry condi-
tions were, however, apparent over many Middle East 
countries.

In Europe, there was a strong contrast between 
the wet conditions of the southeast and Turkey and 
the severe drought indicated by scPDSI in eastern 
Europe and western Russia, affecting important 
crop production regions. Though not apparent in the 
annual-mean scPDSI (Plate 2.1p), July to December 
was very dry in Turkey, consistent with the strong 
positive North Atlantic Oscillation in late 2015 (sec-
tions 2e1, 7f).

The expansion in drought-affected areas during 
2015 is similar to the earlier expansion during 1982 
(Figs. 2.28, 2.29a), also a year when a strong El Niño 
developed, and is consistent with the reduction in 
the atmospheric transport of moisture from oceans 
to land during El Niño events (Dai 2013). The pat-
terns of scPDSI drought (Plate 2.1p) correspond 
partly to those regions where El Niño events are as-
sociated with reduced rainfall (southeastern Africa, 
northeastern Australia, the Maritime Continent, and 
northeastern Brazil). There is weaker agreement with 
the 1997 pattern (Fig. 2.29b), which had less extensive 
droughts than in 2015, contributing to the absence 
of a clear signal in drought-affected area during the 

Fig. 2.28. Percentage of global land area (excluding ice 
sheets and deserts) with scPDSI indicating moderate 
(< –2), severe (< –3) and extreme (< –4) drought for 
each month of 1950–2015. Inset: 2015 monthly values.
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SIDEBAR 2.1: GLOBAL LAND EVAPORATION—D. G. MIRALLES, B. MARTENS,  
A. J. DOLMAN, C. JIMÉNEZ, M. F. MCCABE, AND E. F. WOOD

Evaporation of water from soils, snow-covered surfaces, 
continental water bodies, and vegetation (either via transpiration 
or interception loss) accounts for approximately two-thirds of 
continental precipitation. As such, land evaporation represents 
a key mechanism governing the distribution of hydrological re-
sources, spanning catchment to planetary scales. The ability to 
monitor land evaporation dynamics is also critical in climatologi-
cal applications, since evaporation 1) represents the exchange 
of latent energy from land to atmosphere, directly affecting air 
temperature; 2) influences air humidity and cloud formation, 
playing a strong role in driving atmospheric feedbacks; and 3) 
is intrinsically connected to photosynthesis, echoing changes 
in vegetation carbon fixation. A number of recent studies have 
highlighted the impact of evaporation on climate trends (e.g., 
Douville et al. 2013; Sheffield et al. 2012) and hydrometeoro-
logical extremes (e.g., Teuling et al. 2013; Miralles et al. 2014a).

To date, land evaporation cannot be observed directly from 
space. However, a range of approaches have been proposed to 
indirectly derive evaporation by applying models that combine 
the satellite-observed environmental and climatic drivers of the 
flux (e.g., Price 1982, Nemani and Running 1989; Anderson et al. 
1997; Su 2002). Pioneering efforts targeting the global scale (Mu 
et al. 2007; Fisher et al. 2008) have been advanced by interna-
tional activities to further explore and develop global datasets, 
such as the European Union Water and global Change (WATCH) 
project, the LandFlux initiative of the Global Energy and Water-
cycle Exchanges (GEWEX) project, and the European Space 
Agency (ESA) Water Cycle Multi-mission Observation Strategy 
(WACMOS)-ET project.

Nonetheless, continental evaporation remains one of the 
most uncertain components of Earth’s energy and water balance. 
Both the WACMOS-ET and LandFlux projects have brought to 
light the large discrepancies among widely used, observation-
based evaporation datasets, particularly in semiarid regimes 
and tropical forests (e.g., Michel et al. 2016; Miralles et al. 2016; 
McCabe et al. 2016). Figure SB2.1 displays the spatial variability 
of land evaporation over the 2005–07 period based on data from 
the Penman–Monteith model that forms the basis of the official 
MODIS product (PM–MOD; Mu et al. 2007), the Priestley and 
Taylor Jet Propulsion Laboratory model (PT–JPL; Fisher et al. 
2008), the Model Tree Ensemble (MTE; Jung et al. 2010), and the 
Global Land Evaporation Amsterdam Model (GLEAM; Miralles 
et al. 2011). The ERA-Interim reanalysis (Dee et al. 2011) is also 
included for comparison. Global estimates range between the 
low values of PM–MOD and the high values of ERA-Interim, 
with the remaining models showing a higher degree of spatial 
agreement.

Records of observation-based global evaporation only span 
the satellite era. This has not prevented a handful of studies from 
attempting to disentangle the impact of climate change on trends 
in evaporation. Jung et al. (2010) suggested a reversal in the rise 
of evaporation since the late 1990s, which was later shown to 
be a temporary anomaly caused by ENSO (Miralles et al. 2014b). 
Nonetheless, these studies, together with more recent contribu-
tions (Zhang et al. 2015, 2016), have indicated the existence of 
a slight positive trend over the last few decades, in agreement 
with expectations derived from temperature trends and global 
greening, and the theory of an accelerating hydrological cycle.

Although many of the models used for global flux estimation 
were originally intended for climatological-scale studies, some 
have evolved to provide estimates of evaporation in operational 

Fig. SB2.1. Mean land evaporation patterns for differ-
ent datasets. The right panel illustrates the latitudinal 
averages over the 2005–07 period. Adapted after  
Miralles et al. (2016).
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Fig. SB2.2. (a) 2015 land evaporation anomalies. (Source: GLEAM). (b) Mean continental evapo-
ration anomaly time series for the satellite era, based on an ensemble of GLEAM datasets (after 
Miralles et al. 2014b). The MTE dataset (Jung et al. 2010), the satellite-based multimodel range 
by Mueller et al. (2013), and the Southern Oscillation index (SOI) are also shown. GLEAM runs 
for 2012–15 incorporate SMOS data. Anomalies are calculated relative to the 1997–2007 period 
in which all datasets overlap.

mode, with ongoing efforts aiming to reduce product latency 
and improve spatial resolution. This opens up a range of pos-
sible applications, from global drought monitoring to irrigation 
management. Some examples of evaporation datasets targeting 
near-real-time simulation at continental scales include the Land 
Surface Analysis Satellite Applications Facility (LSA SAF) product 
(Ghilain et al. 2011) and the Atmosphere–Land Exchange Inverse 
(ALEXI) datasets (Anderson et al. 1997, 2011). While GLEAM 
was not deliberately designed with an operational intent, the 
current version 3 dataset has been updated to include 2015, using 
observations from the Soil Moisture and Ocean Salinity (SMOS) 
mission (www.gleam.eu). Figure SB2.2 shows the anomalies in 
evaporation for 1980–2015 based on this new dataset.

Periods of global decline in evaporation typically coincide 
with El Niño conditions, and are associated with drought in the 
water-limited ecosystems of the Southern Hemisphere (Miralles 
et al. 2014b). The year 2015 was no exception: despite El Niño 
conditions intensifying only in the second half of 2015, Fig. SB2.2 
shows anomalously low evaporation in central Australia, eastern 
South America, Amazonia, and southern Africa. Considering the 
entire multidecadal record, the continental evaporation in 2015 

does not seem particularly anomalous, as climate variability is 
superimposed on a positive trend of ~0.4 mm yr–1. For most 
of the Northern Hemisphere, evaporation was above the 
multidecadal mean, with the notable exception of California, 
which experienced extraordinary drought conditions.

With the development of improved algorithms dedicated 
to estimating evaporation from satellite observations, global 
operational monitoring of land evaporation is becoming a 
realistic proposition. While discrepancies amongst current 
models are still large (Michel et al. 2016; McCabe et al. 2016), 
several of the existing datasets compare well against each 
other and against in situ measurements. These datasets open 
new pathways to diagnose large-scale drought and irrigation 
needs, and to improve water resources management and the 
characterization of hydrological cycles. Satellite-based evapora-
tion estimates respond to long-term changes in Earth’s water 
and energy budgets and are able to capture fluctuations due to 
internal climate variability. The mean distribution of evapora-
tion anomalies in 2015 (Fig. SB2.2) is a clear example of the 
underlying effects of multidecadal climate trends and climate 
oscillations on the terrestrial water cycle.
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strong 1997/98 El Niño (Fig. 2.28). Indeed, the other 
post-1950 years with scPDSI drought areas as large 
as in 2015 (31% in moderate drought; e.g., 1985 and 
1987) have quite different spatial patterns (Online 
Fig. S2.19), with severe drought in the Sahel and India, 
for example; 1985 was not a strong El Niño while 1987 
was part of the long 1986/87 event.

e. Atmospheric circulation
1) mean Sea LeveL preSSure and reLated modeS of 

variabiLity—R. Allan and C. K. Folland
Mean sea level pressure (MSLP) provides diag-

nostics of the major modes of variability that drive 
significant weather and climate events (Kaplan 2011). 
Arguably, the most globally impactful mode is the 
El Niño–Southern Oscillation (ENSO), for which the 
sea level pressure-derived Southern Oscillation index 
[SOI; Allan et al. 1996; normalized MSLP difference 
between Tahiti and Darwin (various other indices are 
also commonly used); Kaplan 2011; section 4b] is an 
indicator. For 2015, the SOI was negative, indicating 
the presence of the strongest El Niño since 1997/98 
(see Sidebar 1.1).

The SOI trace since 2009 highlights the shift from 
El Niño to strong La Niña conditions around mid-

2010, continuation as a protracted La Niña (with cold 
SST anomalies in the Niño-4 region) until its demise 
in early 2012, and then near-normal conditions until 
early 2013. Mainly positive (La Niña–type) values 
followed until a swing to negative (El Niño–type) 
conditions since early 2014 (Fig. 2.30; with warm SST 
anomalies in the Niño-4 region). Apart from April 
and May 2014, the SOI was negative from February 
2014 onwards (Fig. 2.30). Accordingly, the Niño-3 
and 4 regional SST anomalies have been positive 
since April and February 2014 respectively (section 
4b). Following Allan and D’Arrigo (1999), by these 
measures this constitutes a protracted El Niño epi-
sode: “….periods of 24 months or more when the SOI 
and the Niño 3 and 4 SST indices were of persistently 
negative or positive sign, or of the opposite sign in a 
maximum of only two consecutive months during the 
period….” Figure 2.30 shows the presence of these 
protracted El Niño and La Niña episodes in the SOI 
record since 1876, demonstrating that they can last 
up to six years (e.g., the 1990–95 protracted El Niño; 
see Gergis and Fowler 2009).

Major El Niño and La Niña events can be near-
global in their influence on world weather patterns, 
owing to ocean–atmosphere interactions across the 
Indo-Pacific region, with teleconnections to higher 
latitudes in both hemispheres. Protracted El Niño 
and La Niña episodes tend to be more regional in 

Fig. 2.29. Mean scPDSI for (a) 1982 and (b) 1997, years 
in which a strong El Niño developed. No calculation is 
made (gray areas) where a drought index is meaning-
less (e.g., ice sheets and deserts with approximately 
zero mean precipitation).

Fig. 2.30. Time series for modes of variability described 
using sea level pressure for the (left) complete period 
of record and (right) 2006–15. (a),(b) Southern Oscilla-
tion index (SOI) provided by the Australian Bureau of 
Meteorology; (c),(d) Arctic Oscillation (AO) provided 
by NCEP Climate Prediction Center; (e),(f) Antarctic 
Oscillation (AAO) provided by NCEP Climate Predic-
tion Center; (g),(h) Winter (Dec–Feb) North Atlantic 
Oscillation (NAO) average provided by NCAR (pre-
sented for early winter of each year so winter 2015/16 
is not shown); (i),(j) Summer (Jul–Aug) North Atlantic 
Oscillation (SNAO) average (Folland et al. 2009).
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