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Abstract: Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for
adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different
compounds including chemical and biological fractions. While several reviews have focused on the
chemical components of PM and associated health effects, there is a dearth of review studies that
holistically examine the role of biological and chemical components of inhalable and respirable PM
in disease causation. A literature search using various search engines and (or) keywords was done.
Articles selected for review were chosen following predefined criteria, to extract and analyze data.
The results show that the biological and chemical components of inhalable and respirable PM play
a significant role in the burden of health effects attributed to PM. These health outcomes include
low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases,
cardiovascular disease, cancer, non-communicable diseases, and premature death, among others.
This review justifies the importance of each or synergistic effects of the biological and chemical
constituents of PM on health. It also provides information that informs policy on the establishment of
exposure limits for PM composition metrics rather than the existing exposure limits of the total mass
of PM. This will allow for more effective management strategies for improving outdoor air quality.

Keywords: particulate matter; biological composition; chemical composition; health outcomes;
disease burden

1. Introduction

Clean air is a requirement for life and healthy living, a fundamental human right. An adult
requires between 10,000 and 20,000 liters of air per day for survival [1]. Staying and remaining healthy
requires constant breathing in of clean and safe air. The World Health Organization (WHO) reported
that an estimated 1.3 million deaths are ascribed to urban outdoor air pollution annually [2]. The reason
being that the air we breathe often contains particulate matter (PM) of varied sizes and compositions.
PM is introduced into the atmosphere during air pollution process, and its presence in the atmosphere
may be injurious to humans, living organisms, and the natural environment [3,4]. PM according to the
WHO, affects more people than any other pollutant [2].

PM is not a self-contained pollutant but a mixture of several pollutants distributed differently at
various sizes. The United State Environmental Protection Agency (USEPA) defined PM as “a complex
mixture of extremely small particles and gases and includes acids, organic chemicals, metals, soils
and dust” [5]. The size of a PM varies from a few nanometers (nm) to tens micrometers (µm) [6]. It is
usually expressed by mass concentration in terms of PM0.1 (aerodynamic diameter less than 0.1 µm),
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PM2.5, (aerodynamic diameter less than 2.5 µm) or PM10 (aerodynamic diameter less than 10 µm) [7].
PM10 (coarse or “inhalable” particles) can infiltrate into the human respiratory system, PM2.5 (fine or
“respirable” particles) can penetrate into the gas-exchange region of the lung), while PM0.1 (ultrafine
particles) provides a large surface area, with degrees of lung permeation [6]. Inhalable PM is a fraction
of PM that is hazardous when deposited anywhere in the respiratory tract. Whereas, respirable PM
are fractions of inhaled particles that are capable of passing beyond the human larynx and ciliated
airways [8]. The size, mass and surface area of a PM are directly linked to its potential for causing
health problems.

Though it may be apt to cluster PM as particulates, their sources, spread and effects may be highly
varied [9]. These particles can originate from natural sources, such as biological particles (pollen, fungal
spores, etc.), fine soil particles, fine marine salts, wildfire smoke particles and volcanic ash, among
other things [9]. Some are from industrial combustion processes, vehicle emissions, domestic heating
and cooking, burning of waste crop residues, land clearing, and fire control activities. Others are from
the reaction of gaseous precursors (secondary particles) [9] emitted at distant locations and transported
by atmospheric processes. The presence of PM from different sources varies with time, season, location
and climate, thus resulting in spatial and season-dependent variations in concentration, characteristics,
and toxicity [10,11].

PM contains different physical characteristics (particle size and number, total surface area, and
electrostatic properties) [12], biological and chemical components (Figure 1) [7]. The biological
components, also known as bioaerosols, are a mixture of viable and non-viable microorganisms
as well as other types of biomass suspended in the air with their sizes ranging from <0.1 µm to
ď100 µm [13]. They tend to attach in a coarser particulate fraction, however, fungal spores, fragmented
pollen, and non-agglomerated bacteria are also present in the fine fraction [14].

Int. J. Environ. Res. Public Health 2016, 13, 592  

2 
 

(μm) [6]. It is usually expressed by mass concentration in terms of PM0.1 (aerodynamic diameter less 
than 0.1 μm), PM2.5, (aerodynamic diameter less than 2.5 μm) or PM10 (aerodynamic diameter less 
than 10 μm) [7]. PM10 (coarse or “inhalable” particles) can infiltrate into the human respiratory 
system, PM2.5 (fine or “respirable” particles) can penetrate into the gas-exchange region of the lung), 
while PM0.1 (ultrafine particles) provides a large surface area, with degrees of lung permeation [6]. 
Inhalable PM is a fraction of PM that is hazardous when deposited anywhere in the respiratory 
tract. Whereas, respirable PM are fractions of inhaled particles that are capable of passing beyond 
the human larynx and ciliated airways [8]. The size, mass and surface area of a PM are directly 
linked to its potential for causing health problems.  

Though it may be apt to cluster PM as particulates, their sources, spread and effects may be 
highly varied [9]. These particles can originate from natural sources, such as biological particles 
(pollen, fungal spores, etc.), fine soil particles, fine marine salts, wildfire smoke particles and 
volcanic ash, among other things [9]. Some are from industrial combustion processes, vehicle 
emissions, domestic heating and cooking, burning of waste crop residues, land clearing, and fire 
control activities. Others are from the reaction of gaseous precursors (secondary particles) [9] 
emitted at distant locations and transported by atmospheric processes. The presence of PM from 
different sources varies with time, season, location and climate, thus resulting in spatial and season-
dependent variations in concentration, characteristics, and toxicity [10,11]. 

PM contains different physical characteristics (particle size and number, total surface area, and 
electrostatic properties) [12], biological and chemical components (Figure 1) [7]. The biological 
components, also known as bioaerosols, are a mixture of viable and non-viable microorganisms as 
well as other types of biomass suspended in the air with their sizes ranging from <0.1 μm to ≤100 
μm [13]. They tend to attach in a coarser particulate fraction, however, fungal spores, fragmented 
pollen, and non-agglomerated bacteria are also present in the fine fraction [14]. 

 
Figure 1. Biological and chemical components of particulate matter. 

The chemical components of PM include mineral matter (oxides of aluminum, calcium, silicon, 
titanium, iron, magnesium, manganese, sodium and potassium), organic matter, elemental carbon, 
secondary inorganic aerosol, sea salt and trace elements [15]. Among these components, secondary 
inorganic aerosols (sulfate, nitrate, and ammonium) and carbonaceous particles are of great 
concern, as they are crucial factors controlling the degree of acidity and toxicity of the PM [16]. 

Although exposure to PM has been implicated in the causation of diverse health outcomes [17–
23], not much has been reported on the role each or mixture of the components of PM plays in the 
occurrence of adverse health outcomes. The exact components of PM that effect disease causation 

Figure 1. Biological and chemical components of particulate matter.

The chemical components of PM include mineral matter (oxides of aluminum, calcium, silicon,
titanium, iron, magnesium, manganese, sodium and potassium), organic matter, elemental carbon,
secondary inorganic aerosol, sea salt and trace elements [15]. Among these components, secondary
inorganic aerosols (sulfate, nitrate, and ammonium) and carbonaceous particles are of great concern,
as they are crucial factors controlling the degree of acidity and toxicity of the PM [16].

Although exposure to PM has been implicated in the causation of diverse health outcomes [17–23],
not much has been reported on the role each or mixture of the components of PM plays in the
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occurrence of adverse health outcomes. The exact components of PM that effect disease causation
and the modalities involved are relatively unknown. Studies to determine the components of PM that
contribute to airway inflammation and irritation have however been attempted [24,25]. Describing the
importance of the effects of each or mixtures of these components of PM on human health is of public
health significance.

The aim of this review paper is to summarize the global evidence of the effects of the biological
and chemical components of inhalable and respirable PM on health, and to recommend future focus
areas for research and policy.

2. Methods

The authors conducted a scientific review of accessible literature published over the last 30 years.
Our main objective was to provide evidence of the role of biological and chemical components of PM
in the causation of adverse health effects in humans. We commenced a PubMed database search using
the MESH terms “PM”, “particulate matter”, “air pollution”, “ultrafine particles”, “fine particles”,
“coarse particles”, “PM10”, “PM2.5”, “PM0.1”, “Bioaerosols in PM”, “Bacteria in PM”, “Endotoxin
in PM”, “Fungi and pollens in PM”, “trace elements in PM”, “secondary inorganic species in PM”,
“Polycyclic aromatic hydrocarbon in PM”, “Inorganic mineral dust in PM”, “Elemental carbon in PM”,
“Organic carbon in PM”, and “Black carbon in PM”, “Health effects”. Literature was also sourced from
other scientific databases including ProQuest and Science Direct online database search. Articles were
selected and agreed upon by the authors based on relevance and usefulness.

3. Particulate Matter-Associated Bioaerosols

Airborne PM comprises a substantial fraction of biological components [26]. Bioaerosols, which
originate from biological sources and mostly associated with PM, are solid or liquid particles that are
present in the gaseous medium [27]. Bioaerosols are generally planted pollen, microorganisms (fungi,
bacteria, viruses) or organic compounds that evolve from microbes (endotoxins, metabolites, toxins
and other microbial fragments) [28]. Stetzenbach [29], opined that about 5% to 34% of air pollutants is
composed of bioaerosols. Bioaerosols attached to PM can exist either as non-viable biomolecules
(e.g., antigenic compounds, dead skin cells, dander, plant and insect debris), non-viable
microorganisms or as viable microorganisms [30].

In 2002, [31] termed bioaerosols to differ in mass and structure and are subject to the source,
aerosolisation, and environmental conditions prominent at the site. Most bioaerosols are of the
respirable size of 0.003 µm for viruses [32], 0.25 to 20 µm for bacteria [33], 17 to 58 µm for plant
pollens [34], and 1 to 30 µm for fungi [35]. Bauer et al. [36] reported that Fungi accounted for up
to ~10% of organic carbon, and ~5% of PM10 at urban and suburban locations and abundant in a
coarser particulate fraction. However, Meklin and colleagues were of the opinion that fungal spores,
fragmented pollen, and non-agglomerated bacteria are also present in a fine fraction of PM [13].
Other researchers reported that biological sources of PM accounted for between 5% and 10% of the
urban and rural aerosol composition [37,38].

Bioaerosols can attach to PM from varied sources (e.g., traffic, industry, soil), have its aerodynamic
and antigenic properties altered, and thus aiding its penetration into deeper regions of the lung [39].
For instance, inhalation of whole pollen (>10 µm) cannot reach the small airways, however, pollen
allergens present in PM2.5 can easily penetrate the small airways of the lung [40]. Thus, the discrete
effects of bioaerosols and PM, as well as their combined effects, can exacerbate respiratory allergy
and other pulmonary diseases. A study done in the Cincinnati area revealed that high concentration
of PM10 was synergistic with the airborne pollen concentration levels for envisaging daily asthma
visits [41].

Adhikari and colleagues also reported that the combined effect of bioaerosols and PM can
aggravate respiratory allergy and other pulmonary diseases in human [42]. It could trigger allergic,
toxic, and infectious responses in exposed individuals [43–45]. Symptoms in exposed individuals can
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include coughing, wheezing, runny nose, irritated eyes or throat, skin rash, diarrhea, aggravation
of asthma, headache, and fatigue. Immunological reactions include asthma, allergic rhinitis, and
hypersensitivity pneumonitis [43–45]. Table 1 summarizes the available information on the types of
study and biological pollutants analyzed (either singly or in combination with PM), study population
and location, observed health effects, and the details of cited references.

3.1. Particulate Matter-Associated Endotoxins

Endotoxin, an important biological component of PM is ubiquitous in the environment and is
a key structural constituent of the outward membrane of Gram-negative bacteria [46]. Endotoxin is
reported to be present in ambient PM at low levels. Some researchers reported that the endotoxin
concentration in inhalable particles was 3–10 times higher than that in respirable particles [47,48].
However, other researchers assert that airborne endotoxins are considerably linked with PM2.5 [49–51]
and are deposited in the lungs after inhalation [52].

Exposure to endotoxin has been reported to cause and trigger asthma and wheezing occurrence
in children and adults [53,54]. Liebers et al. [55] and Rabinovitch et al. [56], implicated endotoxin in
the weakening of the functioning of the lung, and the pathogenesis of pulmonary diseases such as
organic dust lung diseases [57], chronic obstructive pulmonary diseases (COPD) [44], and acute lung
injury [58]. Different studies have pointed out the role of endotoxin in PM toxicity both in vitro [59,60]
and in vivo [61]. Inhalation of endotoxins together with other airborne pollutants such as PM, fungi,
allergens, and ozone, have been documented to increase the susceptibility to and severity of an immune
response, and can lead to other adverse health effects [62–64].

Therefore, it can be inferred that the airborne biological particles, a fraction of which is endotoxin,
plays a significant role in the proinflammatory response. This is consistent with other previous findings
that have been reported [65,66]. However, the actual role of endotoxin in inducing proinflammatory
response is not well understood [67].

3.2. Particulate Matter-Associated Bacteria

Airborne bacteria are one of the main components of airborne biological particles in natural and
urban environment. This is in addition to being key components of outdoor and indoor aerosols [68–70].
Contemporary knowledge of the distribution of bacteria in the atmosphere is quite inadequate. This is
because most bioaerosols studies relied solely on culture-based techniques [71,72] or accounted only
for the whole fraction of the PM [73]. However, recently, culture-independent techniques have been
used in the study of bioaerosols associated with small size particles [74] and the characterisation of the
spatial or temporal variations of bioaerosols in urban environments [69,75]. High concentrations of
airborne bacteria can have major effects on human health as pathogens or triggers of allergic asthma
and seasonal allergies [68].

3.3. Particulate Matter-Associated Fungi and Pollen Grains

Dominant biological component of airborne coarse particles are fungal spores [76]. They are
produced during the life cycle of a fungus, and whose size range between 2 and 10 µm [77].
They originate from sources, such as plants, animals, soil and human activities. Kendrick [78] asserts
that there are over 100,000 fungal species whose spores may become airborne. Earlier studies stated that
PM may possibly bind with airborne pollen [79] and fungal spores [77] thus altering their morphology.
Womiloju et al. [38], reported that cell materials of fungi and pollen could contribute 4%–11% of the
total PM2.5 mass and 12%–22% of organic carbon in fine particulate matter.
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Table 1. Summary of epidemiological and toxicological studies on health effects of exposure to biological components of PM.

Study Type of Study Study Population Study Location Pollutant Analyzed Health Outcome

Schwartz et al. [44] Cross-sectional Grain handlers and postal
workers Iowa City Endotoxin and grain dust Concentration of endotoxin in the may be important in

the development of grain dust-induced lung disease.

Targonski et al. [45] Cross-sectional
5- to 34-year-olds in the
general population
1985-1989

Chicago Ambient aeroallergen

The odds of a death caused by asthma occurring on
days with mold spore counts of 1000 spores per
cubic meter or greater was 2.16 times higher
(95% CI = 1.31–3.56, p = 0.003) than on days on which
mold spore counts were less than 1000 spores per
cubic meter.

Bolte et al. [54] Cohort Munich and Leipzig,
Germany Endotoxin High endotoxin levels increased the risk of repeated

wheeze (OR = 1.52; CI = 1.08–2.14).

Loh et al. [57] Cross-sectional 18 healthy non-atopic
human subjects

Inhaled endotoxin or
lipopolysaccharide (LPS)

Myeloperoxidase, human neutrophil elastase and
interleukin-8 in sputum sol, showed a trend towards
greater increase following 50 µg LPS.

Alexis et al. [61] Toxicological 9 Healthy subjects Chapel Hill, NC PM2.5–10, biologic material
on PM2.5–10

Induced elevated inflammation; increased eotaxin, and
increased phagocytosis.

Cakmak et al. [80] Cross-sectional
Children presented with
diagnosed conjunctivitis or
rhinitis 1993–1997

Eastern Ontario,
Canada

Fungal spores and
pollen grains

An increase of 551 basidiomycete’s spores per m3, or of
72 ragweed grains per m3, was associated with an
increase of about 10% in hospital visits for conjunctivitis
and rhinitis.

Adhikari et al. [81] Cross-sectional Adult showing symptoms
of type-I respiratory allergy India Airborne viable and

non-viable fungi
52% of the viable airborne fungi identified
were allergenic.
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In a study conducted in Cincinnati in the United State on the correlation of ambient
inhalable bioaerosols with PM and ozone, the predominant airborne fungi and their corresponding
percentages relative to the total airborne fungal load found during the entire sampling period were:
Aspergillus/Penicillium group (41.6%), Cladosporium (28.4%), Ascospores (10.6%), Basidiospores (9.8%),
smut spores (2.6%), Alternaria (1.4%), Epicoccum (0.7%), and rust spores (0.2%) [42]. Bauer and
colleagues in their study that focused on knowing the significant contributions of fungal spores
to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol discovered that
fungal spores are the main constituents of coarse organic PM in the summer season [36].

Fungal spores are recognized risk factor for adverse health effects, such as inflammatory
responses associated with allergies and asthma [80,82,83]. Among different bioaerosol components,
airborne fungi and pollen grains are associated with respiratory allergic diseases and asthma [84,85].
Various studies around the world have investigated the ambient airborne fungi and pollen in relation
to respiratory allergies [81,86].

4. Chemicals in Airborne Particulate Matter

Chemical components of PM are highly varied. They can generally be classified as carbonaceous
fractions including organic carbon, elemental carbon, carbonate carbon and inorganic components
consisting of crustal elements, trace metals, and ionic species. Each of these components typically
contributes about 10%–30% of the total PM mass load [87,88].

Chemical constituents of PM can trigger allergic and asthmatic reactions caused by exposure
to bioaerosols. Epidemiologic studies examining sources and composition of PM have identified
several definite components, including elemental carbon, organic carbon, and nitrates as associated
with increased risk for cardiovascular and respiratory hospital admissions [89,90] and mortality [91].
Elemental components of PM2.5, including Ni, Zn, Si, Al, V, Cr, As, and Br, have also been linked with
increased cardiovascular and respiratory hospital admissions [89,92], increased mortality [93], and
lower birth weight [94].

Many studies have examined the association between adverse health effects and the toxicity of
the diverse chemical components of PM [95] and among others the role that transition metals [60,96]
and organic species (polycyclic aromatic hydrocarbons and quinones) [97,98] played in PM toxicity.
Findings from toxicological studies reported that organic compounds and transition metals present in
PM2.5 may be significant due to their ability to stimulate inflammation with subsequent respiratory
and cardiovascular effects [99]. However, the United Kingdom Department of Health Committee on
the medical effects of air pollution [100] affirmed that no known single chemical substance in PM is of
sufficient toxicity to cause the observed magnitude of health effects.

Studies that demonstrate the role of chemical components of inhalable and respirable PM in the
causation of adverse health effects are presented in Table 2. Only studies written in English and with
information on the types of study and chemical component were analyzed (in combination with PM),
and study population and location, and observed health effects were examined. The reference list of
the reviewed articles was also included.
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Table 2. Summary of epidemiological and toxicological studies on health effects of exposure to chemical components of PM.

Study Type of Study Study Population Study Location Component Analyzed Health Outcome

Jacobs et al. [17] Cross-sectional 88 non-smoking
individuals Antwerp, Belgium PM2.5, PAHs, transition metals

Increase of 20.8 µg/m3 in 24-h mean outdoor PM2.5 was associated
with an increase in pulse pressure of 4.0 mmHg (95% CI = 1.8–6.2);
V, Fe and Ni contents of PM2.5 were significantly associated with
systolic blood pressure and pulse pressure; chrysene-5, 6-dione
and benzo(a)pyrene-3,6-dione were significantly associated with
increases in systolic blood pressure and pulse pressure.

Osornio-Vargas et al. [63] Toxicological N/A N/A EC, bacteria on PMs

PM2.5 and PM10 samples caused cytotoxicity; PM2.5 induces
cytotoxicity in vitro through an endotoxin-independent mechanism
that is likely mediated by transition metals; PM10 with relatively
high levels of endotoxin induces proinflammatory cytokine release
via an endotoxin-dependent mechanism.

Bell et al. [89] Cross-sectional General population
>64 years 1999–2005 106 U.S. Counties PM2.5, Vanadium, nickel,

elemental carbon

Positive association between county-specific estimates of
short-term effects of PM2.5 on cardiovascular and respiratory
hospitalizations and county-specific levels of V, EC, or Ni
PM2.5 content.

Peng et al. [90] Cross-sectional General population
2000–2006

119 U.S urban
communities

PM2.5, sulfate, nitrate, Si, elemental
carbon, organic carbon matter,
sodium, ammonium ions

Ambient levels of elemental carbon and organic carbon matter are
associated with risks of emergency hospitalization.

Ostro et al. [91] Cross-sectional General population Six California counties

PM2.5 mass and components,
including elemental and organic
carbon (EC and OC), nitrates,
sulfates, and various metal

PM2.5 mass and several constituents were associated with multiple
mortality categories, especially cardiovascular death.

Zanobetti et al. [92] Cross-sectional General population
2000–2003 US communities PM2.5, elemental composition,

ionic species

For a 10 µg/m3 increase in 2-day averaged PM2.5 concentration,
there was an increase of 1.89% in CVD, 2.74% (95% CI: 1.30–4.2) in
diabetes, and 2.07% (95% CI: 1.20–2.95) in respiratory admissions;
PM2.5 mass was higher in Ni, As, and Cr, as well as Br and OC
significantly increased its effect on hospital admissions.

Bell et al. [94] Cross-sectional
3 Connecticut
counties and 1
Massachusetts county

PM2.5, 50 elements, traffic,
road dust/crustal

Increase in exposure was associated with low birthweight for Zn,
EC, Si, Al, V, and Ni. Analysis by trimester showed effects of
third-trimester exposure to EC, Ni, V, and oil combustion PM2.5.

Diaz and
Dominguez [101] Cross-sectional General population Mexico EC of PM2.5

High risk of contracting diseases associated with
elemental exposure.

Gavett and Koren [102] Toxicological Healthy volunteers NA Ambient PM, Transition metals
Formation of reactive oxygen species and subsequent lung injury,
inflammation, and airway hyper responsiveness leading to airflow
limitation and symptoms of asthma.

Boffetta et al. [103] Cross-sectional Industrial workers PAHs and nitro-PAHs Risk of lung, skin, and bladder cancer.

Perera et al. [104] Cross-sectional 867 mothers and
822 newborns

Northern Manhattan,
The World Trade Center
Area, Poland, and China

PM, PAH, benzo( a)pyrene
Fetus may be 10-fold more susceptible to DNA damage than the
mother and that in utero exposure to PAH may disproportionately
increase carcinogenic risk.
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Table 2. Cont.

Study Type of Study Study Population Study Location Component Analyzed Health Outcome

Edwards et al. [105] Cohort study
Pregnant, healthy,
non-smoking
women

Krakow, Poland PAH Prenatal exposure to PAH was associated with decreased Raven
Colored Progressive Matrices (RCPM) scores at age 5.

Pope et al. [106] Cross-sectional General population
1980–1989 U.S. PM, Sulfate

PM was associated with cardiopulmonary and lung cancer
mortality; Increased mortality is associated with sulfate and PM2.5
at levels commonly found in U.S. cities.

Burnett et al. [107] Cross-sectional General population
1983–1988 Ontario, Canada Sulfate

A 13 µg/m3 increase in sulfates was associated with a 3.7%
increase in respiratory admissions and a 2.8% increase in cardiac
admissions for all age groups.

Delfino et al. [108] Cross-sectional
Patients with
respiratory illnesses
1992–1993

Montreal, Quebec PM2.5, PM10, O3, SO4
2´ 1-h maximum O3, PM10, PM2.5, and SO4

2´ were all positively
associated with respiratory visits for patients over 64 yrs. of age.

Bennet et al. [109] Cross-sectional General population
1997–1999

Vancouver region of
British Columbia,
Canada

PM10, Desert Dust Additional one or two hospitalizations per 100,000 population for
respiratory and cardiac illnesses.

Bonner et al. [110] Toxicological
study General population Mexico city Endotoxins, elemental contents

of PM10

PM10 induce expression of the PDGF a-receptor subtype on rat
pulmonary myofibroblasts; endotoxin and metal components of
PM10 stimulate IL-1b release. Endotoxin on PM10 particles elicited
upregulation of the PDGF receptor.

Dockery et al. [111] Cross-sectional ICD Patients Boston PM2.5, BC, sulfate Ventricular tachyarrhythmias.

Frampton et al. [112] Cross-sectional General population Utah valley Metal content of PM10 Cytotoxicity, induced expression of interleukin-6 and -8.

Ghio et al. [113] Toxicological 38 Healthy
volunteers North Carolina Ambient particles Mild inflammation in the lower respiratory tract, and increased

concentration of blood fibrinogen.

Hsu et al. [114] Cross-sectional Elderly patients New York City PM2.5, PM10, , Elemental carbon (EC),
K, Ni, Ca, Fe, Al, Si, Se, V, Zn Cardiopulmonary function parameters.

Lall et al. [115] Cross-sectional Medicare hospital
Admissions New York City EC, Ni, Mn, Si, S Daily hospital admissions, 2001–2002.

Strickland et al. [116] Cross-sectional Children 5–17
Years 1993–2004 Atlanta

PM10, PM2.5, sulfate, EC, OC,
water-soluble
Metals

Emergency department visits for asthma.

Thurston et al. [117] Cross-sectional General population
1986–1988 Toronto, Ontario PM2.5, PM10, O3, (H+) and

sulfates (SO4
´)

Exposure to O3, H+, and SO4
´ were significantly associated with

respiratory and asthma admissions.

Wellenius et al. [118] Cross-sectional Hospitalized stroke
Patients 1999–2008 Boston area PM2.5, BC, sulfate Stroke onset.

Zhou et al. [119] Cross-sectional General population Detroit, Seattle PM2.5, Al, Fe, K, Na, Ni, S, Si, V,
Zn, EC Mortality: total, cardiovascular, respiratory.

Notes: BC—Black carbon, EC—Elemental carbon, PM—Particulate matter, PAH—Polycyclic aromatic hydrocarbons, PDGF—Platelet-derived growth factor.
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4.1. Particulate Matter-Associated Trace Metals

Present in virtually every aerosol size fractions of airborne PM are trace metals [120].
Different metals such as Cd, Cr, Cu, Mn, Ni, Pb, V, and Zn have been reported to be widely distributed
in PM [121]. Their existence in PM originates from the combustion of fossil fuel, incineration,
high-temperature metal processing and from soil dust [30]. Humans can be exposed to airborne
metals in PM through inhalation of fine particulates, dermal contact and ingestion through deposition
of particulates into foods and drinks [122].

The combined risk of exposure to multi-elements in fine particulate via the inhalation route has
been reported to exceed acceptable limit [101]. Several epidemiological studies have revealed that
exposure to particulate bound trace metals can exacerbate adverse human health effects [102,123,124].
Cu, Zn, and V have been implicated in the causation of diverse cardiovascular effects, together with
increased expression of different cytokines and stress proteins, reduction in spontaneous beat rate,
vasoconstriction, and vasodilation [125,126]. Metal-bound fine respirable particles have similarly been
known to cause lung or cardiopulmonary injuries [127]. Exposure to the elevated amount of lead
and manganese can trigger neurological and haematological effects in children [128] while exposure
to As, Cd, Cr, and Ni compounds have been linked to the occurrence of cancer in human [129].
Moreover, Vanadium compounds, mostly vanadium pentoxide are associated with health effects of the
human respiratory tract [130].

Remarkably, the effects resulting from exposure to metal-bound PM may be triggered by a
complex interaction between different metals. Campen and colleagues [131], reported that nickel
and vanadium may interact synergistically to effect instant and delayed cardiovascular effects. For
instance, exposure to nickel in PM was reported to cause delayed bradycardia, hypothermia and
arrhythmogenesis effects: however, vanadium alone did not cause any significantly delayed effects,
but enhanced the effects of nickel [131].

Researchers in their studies assert that the resultant health outcomes associated with exposure
to metals in PM start from the inhalation of these particles during breathing, followed by settling of
the particles in the human respiratory system. Moreover, ultrafine particles less than 1 µm can travel
deeper into alveolar region of lungs where they mix with the lung fluid [132,133], and can be absorbed
into human physiological systems thus exerting an adverse toxic effect. Though quite a number of
studies have specified that metals are among the contributory components in PM-induced effects, the
relationship may not be direct.

4.2. Particulate Matter-Associated Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are a large group of abundant, persistent semi-volatile
organic compounds comprising of two or more bonded aromatic rings structured in various
configurations [134–136]. They are formed from the incomplete combustion and pyrolysis of organic
materials such as coal, oil, gas, and wood [137,138] and are released into the environment from natural
(e.g., volcanic eruptions and forest fires) and anthropogenic sources (coal, oil and gas burning facilities,
motor vehicles, waste incineration and industrial activities) [139].

PAHs differ in their molecular weight and structure [135]. Low molecular weight PAHs appears
to be more available in the vapor phase while higher molecular weight PAHs are mostly associated
with particulates [140]. For instance, atmospheric PAHs with 2–4 aromatic rings are assigned between
PM and gas phase, whereas the ones with high molecular weight consisting of more (4–6) aromatic
rings are mostly in the fine (PM2.5) fraction of particulate phases [141,142]. The behavior of PAHs in the
atmosphere is contingent upon complex physicochemical reactions, interactions with other pollutants,
photochemical transformations, and dry and wet deposition [143].

Moreover, PAHs in the ambient air can be attached to airborne particulate matter owing to
atmospheric conditions, the nature of the aerosol, and the properties of individual PAHs [144].
Recognized carcinogenic PAHs have been found to be mostly associated with PM [145,146].
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Some researchers also indicated that PAHs have their highest concentration in the respirable size range
of airborne PM [147,148].

Akyuz and Cabuk in their study on particulate-associated PAHs in the atmospheric environment
of Zonguldak in Turkey observed that the predominant PAHs determined in PM2.5 were pyrene,
fluoranthene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene and benzo(a)pyrene [149]. The total
concentrations of PAHs were up to 464.0 ng¨m´3 in fine and 28.0 ng¨m´3 in a coarse fraction in
winter, and up to 22.9 and 3.0 ng¨m´3 in summer months respectively [149]. Higher concentration
of PAHs was detected in fine particulates during winter as a result of higher adsorption of PAHs on
fine particulates owing to their large surface area per unit mass. Approximately 93.3% and 84.0% of
total PAHs in winter and summer months respectively were determined in PM2.5, penetrating the
pulmonary alveoli and inducing adverse effects in human [149]. Studies done elsewhere on airborne
particulates indicated that PAHs immersed in the PM may trigger adverse health effects [150,151].

Concern about exposure to PAHs in PM has been on the rise over the years due to
their persistence, bioaccumulation, and carcinogenic, and mutagenic effects [152]. Most PAHs
analyzed by the International Agency for Research on Cancer showed that benzo(a)anthracene,
benzo(a)pyrene and dibenzo(a,h)anthracene were classified as probably carcinogenic to humans; while,
naphthalene, benzo(b)fluoranthene and benzo(k)fluoranthene were classified as possibly carcinogenic
to humans [149]. The most intoxicating PAH carcinogens have been identified to include benzo(a)
anthracene, benzo(a)pyrene, and dibenz(ah)anthracene [134,153].

Short-term exposure to PAHs could impair lung function in asthmatics and thrombotic effects in
people affected by coronary heart disease [154]. Mixtures of PAHs are known to cause skin irritation
and inflammation [155]. Human cancer causes of skin, lungs, and bladder have always been associated
with PAHs [103]. Exposure to PAHs may also induce cataracts and result in kidney, liver damage
and jaundice [156]. Breathing or swallowing large amounts of naphthalene can cause the breakdown
of red blood cells [157]. Moreover, PAHs can exert harmful effects on reproduction and immune
function [158,159]. Long-term exposure to PAHs is alleged to raise the risks of cell damage via gene
mutation and cardiopulmonary mortality [160].

The U.S.’s Center for Children’s Environmental Health (CCEH) demonstrated that exposure to
PAH pollution during pregnancy is correlated with adverse birth outcomes such as low birth weight,
premature delivery, and delayed child development [104]. High prenatal exposure to PAHs is also
associated with low intelligent quotient at age three, increased behavioral problems at ages six to eight,
and childhood asthma [105,161]. A study on childhood leukemia established a positive association
between exposure to benzene and the risk of childhood leukemia [148]. Exposure to air pollution
containing ultrafine particles and high levels of benzene were associated with increased oxidative
DNA damage [162]. However, though PAHs are known for their carcinogenicity characteristics, there
is still no threshold for a dose-response relationship established for PAHs [163].

4.3. Particulate Matter-Associated Inorganic Water Soluble Ionic Species

One of the chemical constituents of airborne PM are water soluble anions (e.g., NO3
–, SO4

2–, Cl–,
F–, NO2

–, Br–) and cations (e.g., NH4
+, Na+, K+, Ca2+, Mg2+) [164]. Several studies have revealed

the concentration of ionic species in PM [165,166]. Zhao and Gao [167] reported that PM1.8 made
up 68% of PM10 mass concentrations, and water-soluble ions accounted for more than 50% of PM1.8

mass concentrations.
Other researchers assert that in addition to organic species, sulfate, nitrate and ammonium ions

were the dominant constituents of water-soluble ions in PM [165,168–170]. Ying and Kleeman [171]
in their study conducted in the South Coast Air Basin, California, USA, reported that 80% of nitrate
and ammonium in PM2.5 was formed from a precursor gas. However, Han et al. [172] showed that
ionic constituents accounted for 35%–60% of PM2.5 mass in industrial and urban cities of Korea.
As a key inorganic constituent of fine aerosols, sulfate, nitrate and ammonium are also linked with
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atmospheric visibility degradation, the acidity of precipitations and conductivity, and adverse human
health effects [173].

Lippmann and Thurston in their study found statistically significant associations between sulfate
and respiratory outcomes [174]. Other studies in Canada and the US reported the effects of sulfate
on human health: on mortality [106,175], on hospital admissions [107], on respiratory health of
children [176] and on emergency room visits [108]. However, a study conducted in The Netherlands
reported no association with acute respiratory symptoms in children [177]. Although an association
between sulfate and respiratory illnesses seems well documented, a related cause-effect relationship
may be flawed by the strong correlation with PM2.5 and acidity.

Furthermore, an increase in the number of persons becoming ill has been reported when airborne
concentrations of PM2.5 and PM2.5 SO4

2´ increases [178]. Reported illnesses include respiratory
problems, changes in heart rhythms, heart attacks, and severe respiratory and heart malfunctions
leading to death. Dockery et al., [175] in the Harvard six cities study, found that increases in PM2.5 mass
and PM2.5 SO4

2´ are associated with increases in death rates. This includes deaths from all causes and
death precisely from respiratory and heart problems, as well as from lung cancer.

4.4. Particulate Matter-Associated Inorganic Mineral Dust

Over the past decades, fewer studies existed that ascertained the correlations between inorganic
mineral dust and health effects. In Europe, Perez et al. [179] brought inorganic mineral dust, the often
overlooked component of PM, to the lead of public health with their study assessing the relationship
between exposure to PM10 from Saharan dust and daily mortality. This study revealed that daily
mortality in Barcelona increased by 8.4% (per increase of 10 µg/m3 of PM10) on Saharan dust days
compared to 1.4% on non-Saharan dust days but no increased risk was observed with PM2.5 [117].
An increase in daily emergency room visits for bronchitis for each 100 µg/m3 increase in PM10 was
reported by Hefflin and colleagues in 1994 during a study of the effects of dust storms in Washington
State [180].

Moreover, Jimenez et al. [181] reported a more pronounced health effects among the elderly
(>75 years) from exposure to PM10 on dust days in Madrid. The percentage of days in their study,
11.9% of non-dust days versus 41.3% on dust days, exceeded the WHO daily health-protection levels for
PM10 (mean 50 µg/m3). Mallone et al. [182] also reported an increase in mortality for cardiovascular,
circulatory and respiratory causes in Rome linked to increases in PM10 on Saharan dust days. A study
in the Canary Islands established an association between the heart and respiratory mortality, and
PM (10 and 2.5) with rates of respiratory mortality increased by 4.9% for each PM10 increase of
10 µg/m3 [183].

However, not all studies reported an association between far traveled dust and increased rates of
morbidity or mortality. Bennet et al. [109] in a retrospective study in British Columbia proved that there
was no evidence of increased hospitalization for respiratory or cardiovascular illnesses. In addition,
there were no ample changes in clinic attendance for pediatric asthma cases in Barbados in relation to
short-term increases in dust concentrations from Africa [184].

4.5. Particulate Matter-Associated Carbonaceous Species

A sizeable fraction of fine particles (PM2.5) constitutes the carbonaceous aerosol; one of its top
three components [185]. It accounts for about 40% of PM2.5 mass in urban air [186], 60% of PM2.5 in
the U.S. [187], 20%–40% [188] and 25%–50% [189] to ambient PM10 and PM2.5 mass respectively.

Carbonaceous species can be grouped into elemental carbon (EC) and organic carbon (OC).
EC (occasionally called black carbon) is formed from the incomplete combustion of materials containing
carbon, whereas OC can either be released directly into the atmosphere (primary OC) or produced
from gas-to-particle reactions (secondary OC) [190]. OC embodies a mixture of hundreds of organic
compounds, some of which are mutagenic and/or carcinogenic, such as PAHs, polychlorinated
dibenzo-p-dioxins, and dibenzofurans (PCDD/Fs) [191].
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5. Discussion

Our review, which examined literature on the biological and chemical components of PM provides
important insights into the link between exposure to these constituents of PM and health outcomes.
It is remarkable that most of the literature reviewed showed the contribution of PM components
to observed health effects. This proved that exposure to PM alone does not trigger or cause health
response but also its components, which often determine its toxicity.

Unlike the chemical components of PM, the impact of biogenic aerosols (bioaerosols) on health
relating to inhalation of PM has not been well understood. A sizeable portion of airborne PM are
bioaerosols accounting for between 5% and 10% of the urban and rural PM composition [36,37,39].
These bioaerosols are mostly fungi, bacteria, endotoxins, plant pollen, and spore material, all of which
have the potential to illicit allergic symptoms. One could say that the individual effects of bioaerosols
and PM as well as their synergistic effects, can aggravate respiratory allergy and other pulmonary
diseases. Findings from our review of literature show that endotoxins are an important component
of PM and are associated the progression of airway diseases [43]. Reduced functioning of the lungs,
occurrence of asthma and other pulmonary diseases were reported among children and adults who
were exposed to an elevated concentration of endotoxins [48,53–58]. Exposure to endotoxins on PM10

particles in a toxicological study resulted in elicited upregulation of the Platelet-derived growth factor
(PDGF) [110]. Elsewhere, PM10 with relatively high levels of endotoxin induces proinflammatory
cytokine release via an endotoxin-dependent mechanism [63]. Furthermore, fungal spores and pollen
grains associated with PM are known risk factor for inflammatory responses such as asthma [80–86].

In addition, the association between the different chemical components of PM and adverse health
effects were reported by several studies [101,103,104,106,108,112,115]. Bell et al. [94] reported that
increased exposure to metals in PM2.5 such as Zn, Al, V, Si, and Ni, resulted in an incidence of low birth
weight among pregnant women. Formation of reactive oxygen species and subsequent lung injury,
inflammation, and airway hyper responsiveness that resulted in airflow limitation and symptoms of
asthma was recorded among healthy volunteers that were exposed to metals in PM in a toxicological
study [102]. In a cross-sectional study of non-smoking individuals, an exposure to V, Fe and Ni contents
of PM2.5 were significantly associated with systolic blood pressure and pulse pressure [17].

Moreover, increased hospitalizations for respiratory and cardiac illnesses were recorded among
the general population in British Columbia who were exposed to mineral dust in PM10 [109].
Burnette et al. [107] reported that a 13-µg/m3 increase in sulfates coated-PM was associated with
a 3.7% increase in respiratory admissions and a 2.8% increase in cardiac admissions for all age groups
in Canada. In totality, the studies considered in our review implicated the different biological and
chemical constituents of PM in the causation of ill health.

6. Conclusions

In summary, findings from studies reviewed in this paper made it clear that though the particulate
matter is a complex heterogeneous mix of remarkably small particles and gases that are capable of
inducing adverse health effects in humans. Its biological and chemical components are culpable for
the different health outcomes observed in humans. This implies that health effects linked to exposure
to particulate matter are dependent on the physical properties, and the chemical and biological
compositions of the particulate matter. Bringing into bare the components of particulate matter
that drive the association between exposure and particulate-induced health outcomes is crucial to
public health, and allow for more operative regulatory guidelines that will improve outdoor air
pollution and thereby prolong human lives. Moreover, it is only with this information that strategies
aimed at effectively managing the menace of particulate matter in the environment, so as to ensure
environmental sustainability, can be developed. It will also provide evidence that will inform policy in
the establishment of standard guidelines for the biological and chemical constituents of particulate
matter rather than the total mass of ambient particulate matter. It is worth mentioning that there were
no or very few studies reported from the low income and middle-income countries. With the upsurge
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in human population, industrialization, urbanization, modernisation and its attendant increase in
vehicular emissions, studies on the health outcomes of exposure to inhalable and respirable particulate
matter in these countries should be given more priority. In addition, more studies are needed to better
understand the contribution of the combination of the biological and the chemical components of
particulate matter to documented health-end points, which have not been fully understood.
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