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Abstract

Understanding the spatial scale at which selection acts upon adaptive genetic variation

in natural populations is fundamental to our understanding of evolutionary ecology,

and has important ramifications for conservation. The environmental factors to which

individuals of a population are exposed can vary at fine spatial scales, potentially gen-

erating localized patterns of adaptation. Here, we compared patterns of neutral and

major histocompatibility complex (MHC) variation within an island population of

Berthelot’s pipit (Anthus berthelotii) to assess whether landscape-level differences in

pathogen-mediated selection generate fine-scale spatial structuring in these immune

genes. Specifically, we tested for spatial associations between the distribution of avian

malaria, and the factors previously shown to influence that distribution, and MHC

variation within resident individuals. Although we found no overall genetic structure

across the population for either neutral or MHC loci, we did find localized associations

between environmental factors and MHC variation. One MHC class I allele (ANBE48)

was directly associated with malaria infection risk, while the presence of the ANBE48

and ANBE38 alleles within individuals correlated (positively and negatively, respec-

tively) with distance to the nearest poultry farm, an anthropogenic factor previously

shown to be an important determinant of disease distribution in the study population.

Our findings highlight the importance of considering small spatial scales when

studying the patterns and processes involved in evolution at adaptive loci.
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Introduction

Understanding the spatial scale at which selection acts

upon adaptive genetic variation in natural populations

provides information on the degree of local adaptation

of populations, and thus, potentially, on initial steps in

the speciation process (Chave 2013). Furthermore,

assessment of the spatial scale of evolutionary processes

provides information on the epidemiology of wildlife

diseases, mechanisms involved in the maintenance of

genetic variation, and patterns of dispersal (DeAngelis

& Mooij 2005), and should provide background infor-

mation for delineating conservation strategies. When

different groups of individuals evolve in different envi-

ronments, each may become adapted to the local condi-

tions. There is a large amount of empirical evidence for

such local adaptation (e.g. Kawecki & Ebert 2004; Vin-

cent et al. 2013), but studies have generally been carried

out at coarse scales, where differences in environment

are conspicuous and limited gene flow does not coun-

teract the effects of selection (Lenormand 2002).
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However, the environment can vary at fine spatial

scales (Wood et al. 2007; Soto-Centeno et al. 2013). Selec-

tion and adaptation at scales at which gene flow is not

likely to be limited have been increasingly studied in

recent years (reviewed in Richardson et al. 2014), and

there is growing evidence that fine-scale evolutionary

divergence is more common than previously thought

(Svensson & Sinervo 2004; Ray & King 2006; Mil�a et al.

2010).

Loci involved in disease resistance/resilience are of

particular interest when studying local adaptation.

Pathogens can be strong selective agents in wild host

populations (Haldane 1949; Fumagalli et al. 2011), and

their distribution is highly dependent on environmental

factors (Ostfeld et al. 2005). For example, both climatic

and anthropogenic factors can affect the distribution of

pathogenic disease (e.g. Bradley & Altizer 2007;

LaPointe et al. 2010). Furthermore, adaptation of host

immune genes to local parasite assemblages appears to

be widespread (Murray et al. 1995; Dionne et al. 2007;

Ekblom et al. 2007; Evans et al. 2010; Eizaguirre et al.

2012; Lenz et al. 2013). Assessment of the scale of selec-

tion pressures exerted by pathogens on immune genes

is important for understanding the patterns of disease

epidemiology and transmission in the landscape.

The genes of the major histocompatibility complex

(MHC), with their extraordinary levels of variation and

key role in the vertebrate acquired immune response,

have become a classic model for studying natural selec-

tion at the genetic level (reviewed in Bernatchez &

Landry 2003; Spurgin & Richardson 2010). These loci

encode cell surface receptors that bind peptides derived

from pathogens (antigens) via the peptide binding

region (PBR; Wakelin 1996). High variation at the MHC

is thought to be driven largely by pathogen-mediated

selection (PMS; Spurgin & Richardson 2010), although

sexual selection (Ejsmond et al. 2014) and other mecha-

nisms may also play a role (Van Oosterhout 2009). In an

effort to understand the role of selection mechanisms at

the MHC, many studies have investigated among-popu-

lation structure of MHC genes (reviewed in Bernatchez

& Landry 2003; Babik et al. 2008). Nevertheless, despite

it being clear that the distribution of pathogens within

an environment can vary greatly at small spatial scales

(Eisen & Wright 2001; Wood et al. 2007), studies which

assess the effects of selection on the MHC at these scales

are lacking. Such studies may provide understanding of

how selection acts within a population to maintain over-

all levels of variation, insight which may be obscured if

we only focus on coarser patterns of variation.

Fine-scale genetic structure can result from two pro-

cesses: differential selection pressures (extrinsic factors)

that result from fine-scale environmental variation, and

demographic processes (intrinsic factors) particular to

the studied species (Legendre & Legendre 2012). These

demographic processes include dispersal patterns, kin

structure, mating system and genetic drift (Legendre &

Legendre 2012; Wagner & Fortin 2013; Richardson et al.

2014). Differentiating between these extrinsic and intrin-

sic processes is vital if we are to draw conclusions

about the causes and consequences of fine-scale genetic

structure. To distinguish between these alternatives, we

can contrast patterns of neutral genetic variation with

functional genetic variation, for instance, using correla-

tions between environment and genetic variation. Sev-

eral approaches have been proposed to do this (Wagner

& Fortin 2005; Dray et al. 2006; Jombart et al. 2008,

2009). One such approach uses principal components of

neighbour matrices (PCNMs) to model patterns of

genetic structure that are not accounted for by mea-

sured environmental gradients and would otherwise

contribute to spatial autocorrelation in environmental

model residuals (Borcard & Legendre 2002). This

approach has been used in several recent studies

(Manel et al. 2010; Garroway et al. 2013; Pavlova et al.

2013). PCNM analysis involves the generation and test-

ing of a range of eigenvector maps as candidate spatial

predictor variables that allow components of variation

in a response variable, which may be dependent on

geographic position alone, to be accounted for (see Dray

et al. 2006; Legendre & Legendre 2012 for details).

Another approach, spatial principal components analy-

sis (sPCA), detects the components of genetic structur-

ing that simultaneously show high variation and spatial

autocorrelation. Hence, sPCA finds spatially dependent

gradients in genetic variation without distinguishing

between gradients that are the result of environmental

or intrinsic factors. Both sPCA and PCNM methods are

useful means of deriving spatially mapped visualiza-

tions of the fine-scale genetic variation they represent

and predict, respectively.

Here, we investigated patterns of fine-scale genetic

structure at neutral markers and MHC class I loci

within a population of Berthelot’s pipit (Anthus berth-

elotii) on Tenerife, in the Canary Islands. This popula-

tion is isolated from other conspecific populations but

widespread and abundant across the Tenerife land-

scape. Importantly, it exhibits a high and spatially vary-

ing prevalence of avian malaria (Spurgin et al. 2012;

Gonzalez-Quevedo et al. 2014) which has already been

shown to be associated with fine-scale variation in the

environment (Gonzalez-Quevedo et al. 2014). Here, we

(i) assessed neutral genetic structure in the population,

(ii) estimated fine-scale genetic structure at the MHC

and (iii) tested for associations between the spatial dis-

tribution of MHC alleles and malaria infection risk and

other spatially variable environmental factors known to

influence disease distribution.

© 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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Methods

Study species and sampling

Berthelot’s pipit (Anthus berthelotii) is a small,

insectivorous passerine endemic to the Macaronesian

archipelagos, where it inhabits all 12 islands. The spe-

cies is normally distributed in open areas with dis-

persed shrubs from sea level up to 3700 m above sea

level (asl) (Mart�ın & Lorenzo 2001). The Berthelot’s

pipit population size is estimated to be up to 100 000

breeding pairs across its entire range (BirdLife Interna-

tional 2016), with up to 50 000 pairs estimated on

Tenerife (J. C. Illera, personal communication). Gene

flow among islands is thought to be very limited

based on analysis of patterns of microsatellite

variation (Illera et al. 2007; Spurgin et al. 2014). Field

observations indicate that adult individuals are very

territorial during the breeding season, and tend to

stay in close proximity (ca 500 m) to the area where

they were first observed year-round, although young

individuals may disperse more widely (J. C. Illera,

personal communication). The species has an esti-

mated generation time of 3.7 years and a socially

monogamous breeding system with a maximum of

two clutches of 2–4 eggs per clutch laid during the

annual breeding season, which in Tenerife spans

February–April depending on altitude (Garcia-del-Rey

& Cresswell 2007; BirdLife International 2016). Despite

the species being territorial and sedentary, the

population on Tenerife (Fig. 1) is likely to be

interconnected because much of the habitat they use is

continuous. The exception to this are pipits found on

the top of the mountain of El Teide (above 2000 m

asl) that may be isolated from the rest of the island

population by the band of pine forest extending from

1600 to 2000 m asl that is not inhabited by the pipit.

The surface area of Tenerife is 2034 km2. To obtain a

representative sample of the pipit over its entire range

and across all environmental gradients on Tenerife, a

1-km2 grid was laid over a map of the island obtained

from Google Earth in ARCGIS version 10 (Esri 2011,

Redlands, CA, www.esri.com). The majority of

accessible square kilometres that contained habitat

suitable for pipits were visited and, where pipits

were present, an attempt was made to catch at least

one per km2 using clap nets baited with Tenebrio

molitor larvae. The GPS coordinates of all visited sites

were recorded. Each captured bird was ringed and a

blood sample was taken by brachial venipuncture and

stored in absolute ethanol in screwcap microcentrifuge

tubes at room temperature. DNA was extracted using

a salt extraction method following Richardson et al.

(2001).

Fig. 1 The distribution of Berthelot’s pipits (Anthus berthelotii)

sampled across Tenerife. (A) Location of Tenerife within the

Canary Islands in the North Atlantic. Inset shows our division

of Tenerife into four subpopulations according to climatic and

topographic differences: the south (dry), the north (wet), the

west (narrow coastlines and high cliffs) and El Teide (high alti-

tude). (B) The spatial distribution of the number of MHC class

I exon 3 alleles identified per individual. (C) The malaria risk

level (see key) for the exact location where each of the 388

individuals was sampled. Each dot represents an individual.

© 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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Genotyping

A total of 388 pipits were genotyped at 21 microsatellite

markers (Table S1, Supporting Information), following

Spurgin et al. (2014). Of these birds, 310 were geno-

typed at the MHC class I by sequencing 240 bp (of

270 bp) of the exon 3, which codes for most of the pep-

tide binding region (PBR), using 454 sequencing.

Briefly, individuals were genotyped in duplicate to

assess variant calling accuracy, and amplification effi-

ciency (based on the number of reads of the variant per

individual) was calculated for each variant to avoid

allele dropout. The repeatability of the genotyping

method was 96.1% (SE = 5.45). For detailed methods of

the amplification procedure and the bioinformatics anal-

yses performed for the MHC genotyping, see Gonzalez-

Quevedo et al. (2015). One sample had poor coverage in

the MHC screening and was discarded; therefore, anal-

yses are based on 309 pipits. As in most passerines

(Miller & Lambert 2004; Balakrishnan et al. 2010; Wut-

zler et al. 2012), because there are linked duplicated loci

within the class I MHC, alleles cannot be assigned to

specific loci for the pipit; however for simplicity, all

variants identified are termed ‘alleles’ hereafter. There-

fore, we characterize all the class I alleles an individual

carries irrespective of locus, and use the total number

as a measure that reflects individual heterozygosity

across the MHC loci (hereafter termed ‘MHC diver-

sity’). The presence of supertypes (groups of MHC alle-

les with similar binding properties) could potentially

confound the analyses; however, in Gonzalez-Quevedo

et al. (2015) we found that each allele used in this study

has different chemical properties (and so could repre-

sent its own supertype), and therefore, we did not con-

sider supertypes in further analyses.

Genetic variation and overall population structure

MICRO-CHECKER 2.2.3 (Van Oosterhout et al. 2004) was

used to check for microsatellite null alleles and scoring

errors. Allele frequencies, observed heterozygosity and

expected heterozygosity for each microsatellite locus

were calculated using CERVUS 3.0.3 (Marshall et al. 1998),

and an exact test of Hardy–Weinberg equilibrium was

performed using 1000 dememorization steps, 100

batches and 1000 iterations per batch in GENEPOP 4.0.10

(Rousset 2008). We estimated individual diversity at

microsatellites by calculating homozygosity by loci

(HL), a measure that weighs the contribution of

each locus to the homozygosity value depending on

its allelic variability, using Cernicalin (Aparicio et al.

2006). To test how well HL might represent

genomewide heterozygosity, and thus, potentially,

inbreeding, we also calculated the g2 measure of

identity disequilibrium (see Szulkin et al. 2010) in the

software RMES (David et al. 2007).

We first divided Tenerife into four subpopulations,

chosen according to climatic and topographic differ-

ences: the south (dry), the north (wet), the west (narrow

coastlines and high cliffs) and El Teide (high altitude;

Fig. 1). We assessed coarse patterns of genetic structure

among subpopulations using analysis of molecular vari-

ance (AMOVA) and F-statistics, performed in ARLEQUIN 3.1

(Excoffier & Lischer 2010). Pairwise FST values were cal-

culated by entering the allele sequences and number of

individuals with each allele in each population as hap-

lotype data. Significance of FST was evaluated using

50 000 permutations. Second, STRUCTURE 2.3.3 (Falush

et al. 2003) was used to infer the number of genetic

groups (K) with individual genotype-based clustering

methods using microsatellite data. We used the admix-

ture model and correlated allele frequencies with

100 000 Markov chain steps and a burn-in of 10 000

steps (the runs achieved convergence within these

steps, and no further steps were needed) and per-

formed four independent runs for each value of K from

1 to 4. STRUCTURE HARVESTER (Earl & von Holdt 2012) was

used to visualize the results and to select the K value

with highest support. Third, we tested whether pair-

wise genetic distance, based on microsatellites or MHC,

correlates with pairwise geographic distance.

Microsatellite genetic distance was obtained by calculat-

ing pairwise relatedness (Queller & Goodnight 1989) in

COANCESTRY (Wang 2011). MHC genetic distance between

each pair of individuals was calculated as the mean

amino acid p-distance between all alleles present in the

pair, as amino acid differences between molecules are

likely to reflect functional differences between MHC

alleles. We correlated microsatellite and MHC distance

matrices using a Mantel test, performed using the R

package ‘ECODIST’ (Goslee & Urban 2007) with 1000 per-

mutations and 500 bootstrap iterations.

Landscape genetics analyses

All landscape analyses were performed in R 3.1.0 (R

Development Core Team 2011) unless stated otherwise.

To assess how MHC and microsatellite allele distribu-

tion varied across the landscape at a fine scale, we per-

formed a spatial principal components analysis (sPCA;

Jombart et al. 2008) implemented in the R package

‘ADEGENET’ (Jombart 2008). The sPCA assesses spatial

patterns of genetic variability by finding synthetic com-

ponents (eigenvectors) that maximize the product of the

variance in the data and Moran’s I, the latter being a

measure of the spatial dependency (or autocorrelation)

associated with that gradient of variation. Each eigen-

vector captures either positive or negative

© 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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autocorrelation, and is hence referred to as either a ‘glo-

bal’ or ‘local’ structure, respectively (Jombart et al.

2008). Local structures (negative autocorrelation) result

from greater genetic differences among neighbours than

expected, reflecting processes such as dispersal for

inbreeding avoidance. Global structures (positive auto-

correlation) arise where there are discrete clusters of

genetic similarity or spatial gradients reflecting either

isolation by distance or isolation by adaptation. For the

sPCA, we defined neighbouring sites by building a con-

nection network using the minimum distance that

would keep all points (individual birds) in the network

connected, and not leaving any unconnected points. We

mapped the scores at each sampling point for the most

important sPCA eigenvectors as a means of visualizing

the spatial genetic structures.

Environmental variables

In a previous study of the spatial distribution of avian

malaria in Berthelot’s pipits in Tenerife, one predomi-

nant strain of malaria, Plasmodium LK6, was found to

infect 36% of the pipit population (Gonzalez-Quevedo

et al. 2014). Infection was best predicted by minimum

temperature of the coldest month, distance to artificial

water sources and distance to poultry farms, in decreas-

ing order of importance (Gonzalez-Quevedo et al. 2014).

We took the predicted values of this model, hence the

predicted probability of an individual being infected

with malaria based on the location inhabited (hereafter

referred to as ‘malaria risk’) for each bird, and used this

as a continuous response variable. Model predictions

are a more appropriate index of malaria risk than our

original infection data, because they better account for

estimated environmental variation in average risk of

infection. We also directly assessed the separate effects

of the following continuous environmental variables on

the MHC: minimum temperature of the coldest month,

slope of terrain, density of pipits, distance to artificial

water sources, distance to poultry farms, distance to

other livestock farms and distance to urbanized sites.

These variables were chosen on the basis of known

effects on disease distribution (Harvell et al. 2002; Brad-

ley & Altizer 2007; LaPointe et al. 2010; Gonzalez-Que-

vedo et al. 2014). All calculations of environmental

variables for each sampling site were carried out in

ARCGIS 10 and R (R Development Core Team 2011;

details in Appendix S1, Supporting Information).

Models of malaria risk and infection

All models were run in R 3.1.0 (R Development Core

Team 2011). We assessed whether either individual

malaria risk and actual malaria infection status was

associated with microsatellites or MHC characteristics

using a general linear model (LM) and a generalized

linear model with binomial error distribution (GLM),

respectively. Malaria risk was normalized by logit-

transformation prior to fitting the LMs. To test for geno-

mewide effects of genetic diversity on malaria infection

risk, we ran LMs of individual microsatellite diversity

vs. malaria risk. Our expectation was that if inbred indi-

viduals with reduced diversity are more susceptible to

mortality from malaria, then we would find higher

microsatellite diversity in the individuals surviving in

higher malaria risk areas. We then tested the association

between malaria risk and MHC class I diversity by run-

ning an LM of malaria risk as the response variable and

MHC diversity as an explanatory variable. We also

assessed which MHC class I alleles best explained

malaria risk using a multipredictor model with malaria

risk as response variable and including all MHC alleles

as binary explanatory variables (hence a full model).

Any allele highlighted as significant by this multi-

predictor test was retested in a single-predictor model.

We checked for spatial autocorrelation in model residu-

als by constructing correlograms with a 1000 m distance

increment and resampling 1000 times at each distance

class, implemented in the R package ‘NCF’ (Bjornstad

2012). Where residual spatial autocorrelation was pre-

sent, we used simultaneous autoregressive (SAR) mod-

els (Kissling & Carl 2008) implemented in the R

package ‘SPDEP’ (Bivand 2012), specifying an appropriate

neighbourhood size within which autocorrelation is

accounted for.

Models of MHC and microsatellite variation in the
landscape

We used environmental and spatial predictors, respec-

tively, to assess the extent to which extrinsic and intrin-

sic factors explain MHC and microsatellite variation (in

terms of both diversity and occurrence of specific alle-

les). We selected our spatial predictors from a set of

principal components of neighbour matrices (PCNMs;

Dray et al. 2006), computed using a principal coordinates

analysis (PCoA) performed on the spatial coordinates of

sample locations using the R package ‘PCNM’. To avoid

unnecessarily inflating the number of spatial variables

tested (Nakagawa 2004), we performed two redundancy

analyses (RDAs) as a means of selecting PCNMs that sig-

nificantly influence overall MHC and microsatellite alle-

lic variation, respectively. The two resulting selections of

PCNMs were then included as spatial predictors in sub-

sequent modelling of the diversity and presence/ab-

sence of MHC and microsatellite alleles, respectively

(Borcard et al. 2011; Legendre et al. 2013; further details

below and in Appendix S2, Supporting Information).

© 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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To test whether separate environmental variables

were associated with specific MHC class I alleles, we

performed multipredictor generalized linear models for

each MHC allele in turn as a response variable, fitting

all possible combinations of environmental variables

and previously selected PCNMs as predictors. For this

purpose, we used a model selection approach (Burn-

ham & Anderson 2001) and compared the relative fit of

models using the Akaike information criterion (AIC).

MHC alleles were not in linkage disequilibrium with

each other; therefore, we were also able to test each

allele separately. To estimate the relative importance of

predictors, we performed model averaging on the mod-

els with ΔAIC ≤ 2 relative to the best model. We also

compared the fit of the models relative to the null

model, a model including only the intercept. All model

selection calculations were performed using the R pack-

age ‘MUMIN’ (Barton 2013). Model selection is a valuable

alternative to traditional null hypothesis testing that is

being increasingly used in studies of disease ecology

(Moore & Borer 2012; Manzoli et al. 2013). On all occa-

sions when multipredictor models were built, we

checked our final models by comparing them with a

series of single-predictor models to ensure consistency

of results. To test whether the explanatory power of our

MHC effects could be expected by chance, we ran sin-

gle-predictor GLMs for each of the 107 microsatellite

alleles (binomial response) at polymorphic loci and each

of the seven environmental variables (predictors),

resulting in a total of 749 models. We extracted the

adjusted R2 for every model and compared the distribu-

tion of R2 values for the MHC and microsatellite mod-

els. Our inference from the model selection approaches

were only based on comparisons of AICs and model fit

(R2). We therefore do not report P-values and do not

apply significance thresholds. For these analyses, as for

the characterization of the MHC alleles, we excluded

very rare (<2%) alleles (Gonzalez-Quevedo et al. 2015),

and alleles at >98% frequency were deemed to be fixed

and not included.

Results

Neutral and MHC genetic diversity

Two of the 21 microsatellite markers showed evidence of

homozygote excess and null alleles and were excluded

from further analyses. The other microsatellite loci were

all in Hardy–Weinberg equilibrium. The number of alle-

les per microsatellite locus ranged from 2 to 17, and

observed heterozygosity from 0.023 to 0.860 (Table S2,

Supporting Information). Identity disequilibrium was

significant (g2 = 0.012, SD = 0.005, P = 0.003), suggesting

that the heterozygosity of our microsatellite panel

correlates with genomewide heterozygosity. At the

MHC, a total of 22 class I alleles were identified (for

details, see Gonzalez-Quevedo et al. 2015). Two of these

alleles, with frequencies (per cent individuals with the

allele) of 0.84 and 0.82, had very low amplification effi-

ciencies and are therefore likely to suffer from allelic

dropout. This could mean that they are present in most,

if not all, individuals but missed by the screening pro-

cess in some cases. To avoid this uncertainty confound-

ing the spatial analysis, these two alleles were excluded

from the analysis. After removing these two alleles, pip-

its in Tenerife each had between three and ten MHC

class I alleles (Fig. 1). Allele ANBE7 was also excluded

from the spatial analysis because it was fixed in the

population.

Overall population genetic structure

At microsatellites, we found very low but significant

levels of differentiation among pipits inhabiting the four

predefined zones of Tenerife (FST = 0.008, P = 0.003).

Levels of MHC differentiation were even lower, and

nonsignificant (FST = 0.001, P = 0.770). The STRUCTURE

analysis indicated that K = 1 was the most likely num-

ber of genetic clusters. Pairwise genetic distance

between individuals was not significantly associated

with geographic distance (microsatellites: r = �0.015,

P = 0.339; MHC: r = 0.038, P = 0.104).

Landscape genetics analyses

The sPCA of microsatellite genotypes showed no evi-

dence of global structure (P = 0.437). While the test for

local structure was not formally significant (P = 0.055),

the plot of the eigenvector with the largest negative

eigenvalue suggested short-scale spatial structure indica-

tive of some dissimilarity among neighbours (Fig. S1,

Supporting Information). The sPCA of MHC genotypes

did not reveal significant patterns of global (P = 0.587) or

local (P = 0.732) structure. Furthermore, when visually

scrutinized, none of the global (positive eigenvalue) or

local (negative eigenvalue) sPCA axes revealed any obvi-

ous spatial structuring in the distribution of MHC allelic

composition. None of the alleles made an important con-

tribution to sPCA axes. Overall, this indicates that the

major axes of variation in composition of MHC geno-

types across the pipit population are not spatially struc-

tured (but see PCNM results below).

Malaria risk/infection status in relation to genetic
characteristics

Malaria risk was not associated with either microsatellite

diversity (P = 0.327, R2 = 0.001) or MHC class I diversity

© 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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(P = 0.277, R2 = 0.001; Table S3a, Supporting Informa-

tion). However, when testing the association between all

MHC class I alleles and malaria risk in a multipredictor

model, the presence of the ANBE48 allele was signifi-

cantly negatively correlated with malaria risk (Table S3b,

Supporting Information), although the explanatory

power was low (single-predictor model with ANBE48 as

predictor: coefficient = �0.113 (P < 0.05), R2 = 0.010).

Models of spatial and environmental MHC and
microsatellite variation in the landscape

The PCoA performed on spatial coordinates of samples

with MHC genotypes (309) identified 176 PCNMs of

which 89 had significant Moran’s I values, the first six

being positive, indicating positive spatial autocorrelation,

while the remaining 83 were negative, indicating nega-

tive spatial autocorrelation. The PCoA performed on

samples with microsatellite genotypes (388) identified

214 PCNMs of which 103 had significant Moran’s I val-

ues, the first nine of which were positive while the

remaining 94 were negative. The redundancy analyses

(RDAs) performed on MHC alleles and on microsatellite

genotypes and the corresponding PCNMs indicated that

there was a weak association between these PCNMs and

the MHC or microsatellite allele distribution (MHC alle-

les: adjusted R2 = 0.022, P = 0.030; microsatellites:

R2 = 0.012, P = 0.035). This result adds further insight to

the sPCA findings, by indicating that a small minority of

MHC and microsatellite alleles are spatially structured.

The forward selection procedure retained seven PCNMs

for MHC: numbers 3, 4, 9, 13, 23, 24 and 87 (adjusted

R2 = 0.028, P = 0.005), which accounted for spatial varia-

tion at different scales (Fig. S2, Supporting Information).

PCNMs 3 and 4 are positive and reflect relatively large-

scale spatial structures, while the other five PCNMs are

negative and reflect intermediate- to fine-scale spatial

structures. For microsatellites, the forward selection

retained eight PCNMs: numbers 1, 2, 3, 4, 10, 11, 16 and

66, all of which were positive and reflect large-scale spa-

tial structures (adjusted R2 = 0.013, P = 0.005).

In the multipredictor model of MHC diversity as the

response variable, ‘slope of terrain’ and ‘distance to

poultry farm’ were the only significant environmental

predictors (P = 0.002 and 0.014, respectively; adjusted

R2 of full model (all predictor variables) = 0.034;

Table 1). In combination, the PCNMs accounted for an

additional 3% of variance in the response, and residual

spatial autocorrelation was successfully removed. Nev-

ertheless, overall explanatory power remained low and

none of the PCNMs showed important associations

with MHC diversity. In the multipredictor model of HL

(microsatellite diversity) as the response variable, pipit

density was the only significant predictor (P = 0.025, R2

of the full model 0.013, P-value of full model = 0.174;

Table 1).

Model selection and model averaging results of the

multipredictor GLMs investigating the presence/ab-

sence of MHC alleles (response variables) in relation to

environmental variables and significant PCNMs as

Table 1 Summary of general linear models predicting MHC diversity (No. MHC alleles) and microsatellite diversity (HL) per indi-

vidual in Berthelot’s pipits (Anthus berthelotii) in Tenerife, fitting all environmental variables and corresponding PCNMs in a multi-

predictor model

No. MHC alleles HL

Predictor Coefficient Adj-R2 Predictor Coefficient Adj-R2

Poultry �0.513* 0.034 Poultry 1.44 9 10�2 0.013

Water 0.924 Water 1.14 9 10�3

Temperature 0.191 Temperature 2.19 9 10�3

Slope 0.054** Slope 1.82 9 10�3

Farm 0.251 Farm 9.75 9 10�2

Pipit density �0.114 Pipit density 7.69 3 10�2*

Urbanization 0.030 Urbanization 1.68 9 10�3

PCNM3 �1.91 9 10�5 PCNM1 �6.33 9 10�9

PCNM4 2.61 9 10�5 PCNM2 �6.07 9 10�7

PCNM9 �3.67 9 10�5 PCNM3 �2.51 9 10�7

PCNM13 �4.98 9 10�5 PCNM4 �9.26 9 10�7

PCNM23 2.41 9 10�5 PCNM10 �7.81 9 10�8

PCNM24 2.66 9 10�5 PCNM11 1.12 9 10�6

PCNM87 �1.74 9 10�5 PCNM16 �5.04 9 10�7

PCNM66 4.00 9 10�6

Significant coefficients are in bold, significance of predictors is designated by asterisks (* <0.05, ** <0.01) and model fit is expressed

as the adjusted R2 (Adj-R2).
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predictors showed different patterns for different alle-

les. The highest reduction in AIC compared to the null

model was obtained for the model predicting ANBE48

(ΔAIC = 18.5; Table 2). Model averaging shows that dis-

tance to poultry farms has a relative importance of 1.00

in explaining ANBE48 distribution, while the other

environmental variables each had a relative importance

of 0.10. Of all the models for individual alleles, the

best-fit model for ANBE48 showed the highest explana-

tory power (adjusted R2 = 0.310) and included a posi-

tive association with distance to poultry farms and

PCNMs 3 and 23 (Table 2; Fig. 2). The next highest

explanatory power (adjusted R2 = 0.210) was obtained

for the best model of ANBE38 which included a nega-

tive association with distance to poultry farms, as well

as a positive correlation with slope, and PCNMs 3 and

4 (Table 2; Fig. 2). The explanatory power of the multi-

predictor models for the other alleles was relatively low

(adjusted R2 ≤ 0.170; Table S4, Supporting Information),

indicating that associations of either environmental or

spatial predictors with other alleles are lower than those

identified for ANBE38 and ANBE48. Single-predictor

GLMs for all 107 microsatellite alleles yielded a

mean � SE R2 of 0.007 � 0.0004. Importantly, none of

the 749 microsatellite GLMs had as much explanatory

power as the single-predictor GLM of distance to poul-

try farms on the presence of allele ANBE48, which was

a clear outlier (Fig. S3, Supporting Information). Seven

of the microsatellite (~1%) GLMs had a higher R2 than

the model of distance to poultry farms on the presence

of ANBE38.

Single-predictor models broadly supported the results

of multipredictor models in this study, confirming, for

example, the relative importance of poultry farms in

explaining ANBE48 and ANBE38 distribution

(R2 = 0.154 and 0.051, respectively), and the relatively

low explanatory power of many of the individual pre-

dictor–response relationships investigated (Table S5,

Supporting Information).

Discussion

In this study, we assessed fine-scale structure at neutral

markers and at MHC class I loci in relation to environ-

mental factors within a population of Berthelot’s pipit.

We found no evidence of consistent population-wide

genetic structure for either set of markers. Nevertheless,

when assessing genetic characteristics in relation to

specific environmental factors we did find a weak nega-

tive association between malaria infection risk and one

specific MHC allele (ANBE48). Furthermore, when

taking into account spatial processes independent of

environmental gradients, we found stronger, and

opposing, associations between two MHC alleles

Table 2 Summary of model averaging performed on multi-

predictor generalized linear models (with DAIC ≤ 2 when com-

pared to the best-fit model) of Berthelot’s pipits (Anthus

berthelotii) MHC class I alleles ANBE38 and ANBE48 in Tener-

ife as response variables. Relative importance of each variable

in explaining variation in the presence of each allele after

model averaging is shown in brackets

ANBE38 ANBE48

Poultry �2.03 (1.00) 5.27 (1.00)

Water 0.98 (0.75) �0.24 (0.08)

Slope 0.12 (1.00) 0.02 (0.07)

Temperature �0.01 (0.04) �0.06 (0.09)

Farm 1.30 (0.38) 0.52 (0.09)

Urbanization �0.72 (0.31) 0.50 (0.09)

Pipit density �0.04 (0.04) 1.02 (0.08)

PCNM3 �8.63 9 10�5 (0.20) 4.20 9 10�4 (1.00)

PCNM4 2.61 9 10�4 (1.00) 3.36 9 10�5 (0.04)

PCNM9 2.83 9 10�5 (0.04) 1.79 9 10�4 (0.12)

PCNM13 3.34 9 10�4 (1.00) �9.87 9 10�6 (0.04)

PCNM23 �1.82 9 10�4 (0.20) �1.78 9 10�4 (1.00)

PCNM24 �7.86 9 10�5 (0.05) 2.05 9 10�4 (0.10)

PCNM87 �7.33 9 10�6 (0.04) 5.53 9 10�4 (0.44)

AIC Null* 139.30 90.30

AIC best† 125.36 71.78

Δ AIC 13.94 18.52

R2 best‡ 0.21 0.31

*AIC of the model with only the intercept.
†

AIC of the model with the lowest AIC compared to all other

possible models.
‡

Explanatory power of the model with the lowest AIC.
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Fig. 2 Distance to nearest poultry farms (log km) across indi-

vidual Berthelot’s pipits carrying (1) or not (0) the ANBE38

and ANBE48 MHC class I alleles. Centre lines show the medi-

ans. Box limits indicate the 25th and 75th percentiles, and out-

liers are represented by open dots.
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(ANBE48 and ANBE38) and an anthropogenic environ-

mental variable (distance to poultry farms) already

known to be important in disease distribution in the

pipit.

The STRUCTURE and FST analyses based on four prede-

fined populations revealed no evidence of neutral or

MHC structure within the population of Berthelot’s pip-

its on Tenerife. There was also no signature of isolation

by distance for either type of marker. Berthelot’s pipits

in Tenerife thus seem to be a panmictic population.

These results were confirmed by the spatial PCAs,

which found no predominant overall pattern of spatial

genetic structure for either the microsatellite or MHC

markers. This study therefore indicates that neither cli-

matic differences nor apparent barriers to dispersal

across Tenerife impede gene flow between different

areas of the island. The opposite has been found in

other systems where intrapopulation spatial clines and

global (positively spatially autocorrelated) structures in

allele frequencies of adaptive loci have been described

at relatively small spatial scales (Garroway et al. 2013;

reviewed in Richardson et al. 2014).

The lack of overall neutral and MHC-wide local or

global structure was broadly supported by the very low

explanatory power of PCNMs in the RDA of microsatel-

lite genotypes or MHC genotypes. Nevertheless, the

PCNMs did reveal some spatial structure, albeit for a

small proportion of allelic variation. This was not

detected by sPCA which optimizes the product of major

components of genetic variation and spatial autocorrela-

tion (Jombart et al. 2008). Our results echo those of

other studies in which PCNMs are considered to be

more sensitive in detecting weak spatial genetic pat-

terns compared with sPCA (Galpern et al. 2014). The

seven forward-selected PCNMs associated with MHC

genotypes accounted for spatial variation at different

scales: two of them were positive and reflected rela-

tively large-scale spatial structures, while the other five

PCNMs were negative and reflected intermediate- to

fine-scale spatial structures. This suggests that a small

subset of variation at the MHC decomposes into a num-

ber of spatial structures, indicating different scales of

influence on different alleles or groups of alleles. This

may be expected if a few specific alleles are under

selective pressure, while others are evolving under neu-

trality, which might occur if only some MHC alleles

confer resistance or susceptibility to the particular

pathogens to which Berthelot’s pipits are currently

exposed in Tenerife. This pattern of structure at specific

MHC alleles is swamped when performing analyses

with genotypes, and hence, single allele effects cannot

be revealed. Consequently, analyses performed on

individual alleles are needed in any fine-scale genetic

structure analysis.

Individual MHC alleles produce molecules which are

able to bind subsets of specific pathogen-derived pep-

tides and thus trigger the appropriate immune response

to those pathogens (Wakelin 1996). Thus, MHC charac-

teristics can be linked with pathogens in two ways.

First, specific MHC alleles can confer resistance or sus-

ceptibility to a specific pathogen, and under this scenar-

io, we would expect a correlation between allele

presence/absence and disease among individuals and

populations (e.g. Meyer-Lucht & Sommer 2005; Bon-

neaud et al. 2006; Zhang & He 2013). Second, individu-

als with greater allelic diversity may be better at

responding both to individual pathogens and to the

diversity of pathogens in the environment; if this is the

case we expect MHC diversity to be negatively associ-

ated with disease (Westerdahl et al. 2005; e.g. Kloch

et al. 2010; but see Radwan et al. 2012). In the present

study, we found no association between malaria infec-

tion risk and individual MHC diversity. However, we

did find that one allele (ANBE48) was negatively associ-

ated with increased malaria risk (Table S3b, Supporting

Information), although by itself this relationship was

too weak (R2 = 0.010 for the single-predictor model) to

be able to draw definitive conclusions (but see below).

However, while our explanatory power was relatively

low, these results do concur with other studies that

have found MHC alleles that confer resistance/suscepti-

bility to malaria (Hill et al. 1991; Bonneaud et al. 2006;

Westerdahl et al. 2013).

Spatially variable selection on specific MHC alleles

has been reported at large scales (Landry & Bernatchez

2001; Ekblom et al. 2007). Interestingly, in Berthelot’s

pipits we found that distribution of allele ANBE48 was

positively associated with distance to poultry farms, a

variable previously found to have a negative association

with malaria infection in pipits in Tenerife (Gonzalez-

Quevedo et al. 2014). In short, the closer an individual

pipit was to a poultry farm (where malaria transmission

has been shown to be higher, Gonzalez-Quevedo et al.

2014) the less likely it was to be carrying the ANBE48

allele (Fig. 2). Distance to a poultry farm explained 15%

of the variation in the distribution of ANBE48, and was

the most important variable in the best model for this

allele. Another allele, ANBE38, was negatively associ-

ated with distance to poultry farms (Fig. 2), although

the amount of variation in ANBE38 explained by this

variable was not as large (5%) as for ANBE48. Compar-

ison with the R2 estimates for all possible bivariate

microsatellite allele–environmental predictor relation-

ships indicated that the chance that any neutral marker

showed similar strength of environmental association as

MHC allele ANBE48 was nil. Moreover, that we found

no association between microsatellite or MHC diversity

and these factors suggests that this MHC result is not

© 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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explained by genomewide diversity but is directly asso-

ciated with the alleles identified. This lack of a general

genomewide effect is perhaps more noteworthy given

that significant identity disequilibrium (g2) indicates

that variability in our microsatellite panel may correlate

reasonably well with genomewide variability.

Given that (i) ANBE48 only explained 1% variation in

an index of malaria risk, (ii) ANBE38 was not signifi-

cantly associated with malaria risk and (iii) both

ANBE48 and ANBE38 were much more significantly

associated with distance to poultry farms, we hypothe-

size that these alleles are linked with the incidence of

diseases other than just malaria. The relationship that

poultry farms have with the transmission of other avian

diseases that may interact with the MHC, and possibly

affect the survival of pipits, has yet to be explored.

However, we do know that other pathogens exist

within this population, such as avian pox and haemo-

sporidians of the genus Leucocytozoon (Spurgin et al.

2012). Therefore, assessment of the interaction of these

pathogens with the MHC and of their association with

poultry farms might give some insight into the mecha-

nisms behind the association we found of ANBE48 and

ANBE38 with distance to poultry farms. The relatively

low explanatory power of the detected associations

between environmental variables/disease risk and

MHC variation is perhaps not surprising. The verte-

brate immune system is an extremely complex, multi-

faceted, interacting system underpinned by numerous

genes (Ekblom et al. 2010). Further exploration of varia-

tion at other key immune loci, such as Toll-like recep-

tors and beta-defensins which play important roles in

the innate immune system, would help resolve this.

Previous work has provided considerable evidence

that selection (as well as drift) has shaped MHC class I

variation in Berthelot’s pipit (Spurgin et al. 2011; Gonza-

lez-Quevedo et al. 2015). In particular, selection appears

to be focused on 15 sites within the exon 3 (Brown et al.

1993) that are involved in encoding the key peptide bind-

ing region (PBR; Gonzalez-Quevedo et al. 2015). Among

the alleles found in the Berthelot’s pipits in Tenerife,

allele ANBE48 has a unique PBR, different from that of

allele ANBE38 at nine amino acids, suggesting these two

alleles have very different binding properties (Gonzalez-

Quevedo et al. 2015). This is in line with our finding of

opposing effects associated with these alleles. The most

logical explanation we can put forward for the results

that we find is that carrying the ANBE48 allele renders

an individual susceptible to a pathogen that exists (or is

at higher levels) around poultry farms, while ANBE38 is

a nonsusceptible alternative allele. Whatever the specific

pathogen, we hypothesize that birds that live close to

poultry farms have a higher risk of contracting a patho-

genic disease if they carry ANBE48.

Understanding the mechanisms that drive fine-scale

genetic structure at adaptive loci is vital in evolutionary

research (Richardson et al. 2014). To our knowledge,

this is the first study to show an effect of a physical

environmental variable on MHC variation at the

intrapopulation level. The fact that this variable (the

presence of poultry farms) is anthropogenic has consid-

erable implications for understanding evolution in the

context of global environmental change and human

impact on disease transmission in wild populations

(Daszak et al. 2001). Moreover, this study highlights the

importance of considering fine spatial scales, in addi-

tion to coarse scales, when assessing patterns of selec-

tion at adaptive loci. Key patterns and associations may

be overlooked when we lump together within-popula-

tion variation to assess differences only at greater

scales, potentially undermining our understanding of

the factors and mechanisms that drive the evolution of

the loci and species in question. Furthermore, under-

standing the scales, speed and causes of local adapta-

tion within a species can have important implications

for conservation, particularly when populations are

challenged by new factors induced by environmental

changes, be they due to habitat disturbance, agricultural

changes or even conservation actions.
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