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Abstract

Communication using speech is often an audio-visual experience. Listeners hear
what is being uttered by speakers and also see the corresponding facial movements
and other gestures. This thesis is an attempt to exploit this bimodal (audio-visual)
nature of speech for speaker separation. In addition to the audio speech features,
visual speech features are used to achieve the task of speaker separation. An
analysis of the correlation between audio and visual speech features is carried
out first. This correlation between audio and visual features is then used in the
estimation of clean audio features from visual features using Gaussian Mixture
Models (GMMs) and Maximum a Posteriori (MAP) estimation.

For speaker separation three methods are proposed that use the estimated
clean audio features. Firstly, the estimated clean audio features are used to con-
struct a Wiener filter to separate the mixed speech at various signal-to-noise ratios
(SNRs) into target and competing speakers. The Wiener filter gains are modified
in several ways in search for improvements in quality and intelligibility of the ex-
tracted speech. Secondly, the estimated clean audio features are used in developing
visually-derived binary masking method for speaker separation. The estimated au-
dio features are used to compute time-frequency binary masks that identify the
regions where the target speaker dominates. These regions are retained and form
the estimate of the target speaker’s speech. Experimental results compare the

visually-derived binary masks with ideal binary masks which shows a useful level
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of accuracy. The effectiveness of the visually-derived binary mask for speaker
separation is then evaluated through estimates of speech quality and speech in-
telligibility and shows substantial gains over the original mixture. Thirdly, the
estimated clean audio features and the visually-derived Wiener filtering are used
to modify the operation of an effective audio-only method of speaker separation,
namely the soft mask method, to allow visual speech information to improve the
separation task. Experimental results are presented that compare the proposed
audio-visual speaker separation with the audio-only method using both speech
quality and intelligibility metrics. Finally, a detailed comparison is made of the
proposed and existing methods of speaker separation using objective and subjec-

tive measures.
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Chapter 1

Introduction

Preface

This chapter starts with a brief explanation of the aims of this thesis. Then the
bimodal (audio-visual) nature of speech and its importance in human speech per-
ception and in speech processing applications such as speech enhancement and
Automatic Speech Recognition (ASR) is highlighted. This is followed by a cate-
gorization of the speaker separation methods based on their purpose, number of
channels and the underlying algorithms. Then an overview of speaker separation
methods both in audio only and audio-visual domains is presented. Then the mo-
tivations that has led to the undertaking of this work are explained. And finally

a sketch of the thesis structure is presented.



CHAPTER 1. INTRODUCTION

1.1 Aims

The main and final aim of this thesis is to use the bimodal nature of speech for
speaker separation. This main aim is achieved by dividing it into several sub aims.
The first sub aim is to determine and maximise the correlation between the audio
and visual features of different speakers. The second sub aim is to exploit this
audio-visual correlation in the estimation of clean audio features from the visual
features. The third sub aim is to use the estimated clean audio features in the
construction of visually-derived Wiener filter and visually-derived binary masking
for speaker separation. The fourth sub aim is to improve the performance of the
visually-derived Wiener filter by using perceptual gain functions. The fifth sub
aim is to enhance the accuracy of the estimation of visually-derived binary masks
for speaker separation. The sixth sub aim is to use the visual information in
the form of the estimated clean audio features to improve the performance of an

audio-only soft mask method of speaker separation.

1.2 Introduction

This section introduces first the bimodal nature of speech. Then speaker sep-
aration which is the aim of this thesis is introduced. An overview of speaker

separation systems is presented both in audio and audio-visual domains.

1.2.1 Bimodality of speech

Communication using speech is often an audio-visual experience. Listeners hear

what is being uttered by speakers and also see their corresponding facial move-
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ments and other gestures. The facial movements include the movements of lips,
jaws, tongue and eyes and sometimes the entire head. Other movements can be
the gestures made with hands or sometimes the entire body. Humans use these
visual cues in addition to the audio to enhance their understanding of the uttered
speech. In this way the speech perception system in humans exploits this bimodal
nature of speech by integrating the audio and visual streams of information to form
a better perception of what is being uttered [90]. The visual stream becomes more
important when the SNR is low because the audio stream is susceptible to acoustic
noise but the visual stream is not affected by acoustic noise. It was reported in
[90] that it was shown in [93], that the visual stream can cause an increase in the
intelligibility of audio speech that could be caused by a 16dB decrease in acoustic
noise.

On one hand visual speech is sometimes ambiguous as one set of facial move-
ments can be interpreted for different words as many words have similar visual
appearance such as in the words ‘bob’, ‘bop’, and ‘pop’. But on the other hand,
visual speech also has the ability to differentiate between many acoustically am-
biguous word pairs like ‘met’ and ‘net’. As this pair is acoustically ambiguous
but visually it is clearly different. The two nasal consonants /n/ and /m/, at the
beginning of the words, are visually different, as the lips are closed while uttering
/m/ but for for /n/ the lips remain open [90], [89]. In the McGurk effect [62],
the effect of vision upon speech perception was explained. The utterance ‘ba’ was
dubbed on to the visual cues for ‘ga’, normal adults reported it as ‘da’. These
adults recognised these sounds accurately when they listened to the audio only or

when they watched the unmodified film.
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1.2.2 Speaker separation

Speech enhancement and ASR systems are becoming more and more helpful and
handy in everyday life. The performance of these systems drop considerably in
the presence of noise. This noise can be of different forms such as car noise, babble
noise, background music and competing speakers. Competing speech is considered
to be the most challenging type of noise in automatic speech recognition and
speech enhancement systems because high correlation in the temporal structure
of the target and competing speech exists and the acoustic features of the target
speech can be easily confused with that of the competing speech [31],[89],[77].
Another reason that adds to this challenge is the highly non-stationary nature of
the competing speech that can vary instantaneously and results in the variation of
the noise estimate and the reliability of the target speech [90]. This task becomes
more challenging when only one channel recording of the mixed speech is available
because information regarding the source location is missing in this case [31].
The performance of ASR and speech enhancement systems is much reduced in
the presence of competing speech as compared to human listeners. Human listen-
ers have excellent abilities to either mask the unwanted speech or extract the target
speech or both to have a better perception of the target speech in the presence
of different unwanted sources [31]. Speaker separation is the process of extract-
ing a target speaker from a mixture of sounds that comprises other speakers and
acoustic noise. Single-channel speaker separation where only single-microphone
recording of the mixture is available is the aim of this thesis. The task of single-
channel speaker separation is shown in Figure 1.1. Although multiple microphones

are preferred for speaker separation as in this case spatial information can be ex-
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ploited but existence of multiple microphones is not always the case. For example,
in ASR of radio broadcasts and teleconferencing. Therefore, single-channel sys-
tems have a role to play [31]. Auditory Scene Analysis (ASA) explains the speech

(2
A

h

B

¢

Speaker

/ g Separation

System

Figure 1.1: The single-channel speaker separation task

separation process in humans in the presence of competing speech [11]. Computa-
tional Auditory Scene Analysis (CASA) techniques [47], [12], [16], [22], [63],, [35],
imitate the ASA principles by using computers. CASA is summarised as a two-
step process: segmentation and regrouping. The mixed speech is decomposed into
smaller units and then the similar units are grouped together to be used in the
construction of the target speech. CASA techniques were reviewed in [102].

In [31], speaker separation systems were classified based on their characteristics
as: single-channel-based or multiple-channel based, knowledge-based or statistical-
based (model-based) and recognition-based or speech enhancement based. Multiple-
channel based systems use multiple microphones for the collection of audio signals
and use the spatial cues such as Interaural Time Differences (ITD) and Interaural
Level Differences (ILD) to distinguish between the wanted and unwanted sources

[56]. Most of the time, only one microphone is available and in this case, no spatial
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cues are available. Single-channel systems rely on the information carried by the
speech signal itself. Model-based systems [83], [30], [44], [71], [73], [72], [45], need
enough training data to learn the corresponding speech statistics. Knowledge-
based (CASA) systems implement the knowledge known about human speech
perception using machines. The performance of model-based systems is often bet-
ter than CASA systems because model-based systems use training data and CASA
systems replicate the human speech perception process which is still not exactly
known [31],[102]. The objective of speech-enhancement-based systems is to im-
prove the quality of the wanted speech while the objective of recognition-based sys-
tems is to improve the intelligibility of ASR systems. Model-based single-channel
speaker separation (SCSS) techniques can be considered similar to model-based
single-channel speech enhancement (SCSE) techniques [24], [92], [60]. The differ-
ence is the non-stationary nature of both the target and interfering sources in the
case of SCSS [70].

Audio-only speaker separation is well established when multiple microphone
channels are available. Techniques such as deconvolution and Blind Source Sep-
aration (BSS) make the assumption that the various signals in the mixture are
independent and exploit the set of input signals to extract individual audio sources
[102], [103], [67], [85], [98], [21], [66], [86], [37], [87], [57]. Other work has considered
the more difficult problem of speaker separation from a single audio channel. In
this instance prior statistical knowledge of the speakers is utilised to enable extrac-
tion of the target speaker. Methods using spectral masking have been effective at
solving this problem and use either hard or soft masks to identify time-frequency
regions that belong to a target speaker [77], [84].

Visual speech information from a target speaker’s mouth region has also been
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used in multiple channel speaker separation to supplement audio-based methods of
extracting a target speaker [78], [50], [51], [52], [54]. For example, in [50] a target
speaker is first extracted from a speech mixture using audio BSS. Visual informa-
tion from speakers is then used to address permutation and scaling ambiguities
present after BSS. The method still uses multiple audio channels but supplements
this information with visual information that increases the quality of the extracted
target speech. Visual speech has also been used to aid single-channel speaker sep-
aration [33] by improving the accuracy of hidden Markov model (HMM) decoding
of input speech signals, with the HMMs providing statistics on the speech to be
separated.

In [81], an overview of the key methodologies of the audio-visual speaker sepa-
ration methods was provided and the research activities in this area were broadly

categorized as
e To robustly model the Audio-Visual (AV) correlation [78], [54].

e To combine the AV correlation with time-frequency (T-F) masking or Inde-

pendant Component Analysis (ICA) [55].

e To use the AV correlation in resolving the permutation and scaling ambigu-

ities present after BSS [78], [50], [51], [52], [54], [80].

e To use the visual information in Voice Activity Detection (VAD) algorithms

[79], [911,13], [49], [6], [53].

e To use the visual information in determining the position, direction of arrival

and velocity of the moving sources [41], [64], [65].
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This work examines whether the problem of speaker separation can be achieved
through the use of visual speech information. When humans listen to audio sounds
that comprise a mixture of different speakers, they are very good at extracting a
target speaker from the various interfering speakers. Having two ears improves the
situation but humans also exploit other cues such as observing visual speech in-
formation from the speakers. This work considers the scenario of a single-channel
audio input and examines whether visual speech information can provide infor-

mation to allow extraction of a target speaker from this mixture of sounds. The

Speaker _f’
Separation
System .\’ .

Figure 1.2: Speaker separation task using a single audio channel and
visual speech information

task is shown in Figure 1.2.

1.3 Motivations

Although it has been shown that the speech signal is of bimodal nature and
the visual component does carry information which improves speech perception
[13], [62], [88], yet traditional speech processing applications such as speech recog-

nition, speech enhancement, speech coding and speaker identification, all focus on
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the audio component of the speech signal. To use this bimodal nature of the speech
signal for speaker separation is the main motivation for this thesis. Secondly, the
audio component of the speech signal is vulnerable to acoustic noise while the
visual component does has the advantage that it is not contaminated by acoustic
noise. Thus when the audio component becomes unreliable in noisy conditions,
the visual component can play an important role. Thirdly, audio-visual speech
processing algorithms can be a part of modern communication devices such as
PCs, laptops and mobile phones as they all now have built-in cameras and their
computational processing powers and memory capacities are increasing, making

the deployment of these algorithms possible in real time.

1.4 Thesis structure

This section gives a short description of the thesis.

Chapter 2

This chapter starts with a description of the human speech production system.
The relation between audio and visual speech units is described then in terms of
phonemes to visemes mapping. This is followed by the description of the audio-
visual databases used in this work and then the methods of audio and visual
feature extraction are described. Then correlation between these audio and visual

features is also described and analysed.
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Chapter 3

This chapter exploits the audio-visual correlation for the estimation of clean au-
dio features from visual features using a Gaussian Mixture Model (GMM) and
Maximum a Posteriori (MAP) estimation. The accuracy of the estimation is also

measured.

Chapter 4

This chapter explains the construction of a Wiener filter and perceptual gain
functions for speaker separation using the clean speech estimates for the target
and competing speakers made in Chapter 3. The speaker separation tasks are

evaluated using different quality and intelligibility measures.

Chapter 5

This chapter explains the derivation of binary masks for speaker separation using
visual features. The accuracy of the estimation of binary masks along with the
factors affecting it is discussed. The quality and intelligibility of the extracted
speech using visually derived binary masking is also measured along with the

study of the factors affecting these measures.

Chapter 6

This chapter combines audio-only soft mask speaker separation with visual infor-
mation with the aim to improve the quality and intelligibility of the extracted

speech.

10
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Chapter 7

This chapter provides a comparison of the proposed methods in this thesis with the
existing methods using both objective and subjective measures for the evaluation

of the quality and intelligibility of the extracted speech.

Chapter 8

This chapter presents a summary of the work and the conclusions derived from

this thesis. Some directions for the future work are also suggested.

11



Chapter 2

Audio and Visual Feature
Extraction and Correlation

Analysis

Preface

This chapter gives a description of the human’s speech production process along
with the functioning of the main organs involved. The relation between audio and
visual speech units is described in terms of phonemes to visemes mapping. The
three AV speech databases used in this work are then described. Then methods
for the extraction of the audio and visual speech features from these databases are
discussed. Then correlation between these audio and visual features is discussed.

And finally the correlation results for these three databases used are presented.

12
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2.1 Speech production

The speech production process in humans involves several organs shown in Figure

2.1 [69)].

Oral cavity
Velum

Pharynx
Vocal Tract

Tongue Larynx
False Vocal Cordss,

True Vocal Cords

- Rib Cage » Lungs

Diaphragm

Abdomen

Figure 2.1: Speech production system in humans [69]

2.1.1 Lungs

Lungs oxygenate the blood in human body by inhaling and exhaling the air. This
inhalation and exhalation of air also lead to the production of speech. During
inhalation, the chest cavity expands, which decreases the air pressure in the lungs
and allows air to flow in through vocal tract, trachea (windpipe) and into the lungs.
During exhalation, the chest cavity contracts, which increases the air pressure in

the lungs and allows air to flow out of the body through larynx and vocal tract

13
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[56).

2.1.2 Larynx and vocal folds

The working of the two vocal cords (vocal folds) is controlled by the larynx. The
vocal folds are shown in Figure 2.2 [69]. The gap between the two cords is called
the glottis [56]. The vocal cords can have one of three states: voiced, unvoiced
and breathing. When breathing, the vocal folds do not offer any resistance to the
air flowing from the lungs through the glottis that is wide open. When in the
voicing state, the vocal cords come closer to each other, a decrease and increase
of tension of the cords, along with a decrease and increase in pressure of glottis,
opens and closes the glottis periodically. When in the unvoiced state, the vocal
folds do not vibrate. They are tenser and come closer to each other, that causes
the air to be turbulent while it passes through the glottis. This air turbulence
is known as aspiration, and occurs in normal speech when producing sounds like
/h/ in “house” or when whispering [56]. Based on the states of vocal folds, speech
is divided into voiced and unvoiced sounds. Sounds produced during the voicing
state are called voiced sounds while those produced during unvoiced state are

called unvoiced or voiceless sounds [56].

2.1.3 Vocal tract

The vocal tract consist of the pharynx cavity, nasal cavity and oral cavity, and
extends from the lips and nose to the larynx as shown in Figure 2.1. Depending
on the position of speech articulators namely the jaws, lips, teeth, tongue and

velum, the oral cavity can have different cross-sectional areas and shapes. The

14
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Front

Thyroid - y\’oca]
Cartilage ™ —— Folds
__Glottal
Slit
Arytenoid -~ ———__ Cricoid
Cartilage > Cartilage

(a) (b)

Figure 2.2: Sketch of vocal folds, looking down the larynx, in two
states: (a) voicing and (b) breathing [69]

vocal tract functions as a physical linear filter and shapes the input into different
sounds. The vocal tract resonates in response to sounds that contain frequencies
that match the natural resonant frequencies of the volume of air. These resonances
of the vocal tract are called formants and the frequencies at which they resonate

are known as formant frequencies [56].

2.2 Classification of speech sounds

Speech sounds are described by the nature of the source such as voiced or unvoiced.
The place and way of articulation is also used to describe them. The place and
way of articulation of speech sounds is basically determined by the location of the
tongue in the oral cavity and the related expansion and contraction in the vocal
tract [56]. Speech sounds can be classified into smallest units called phonemes
based on these descriptions i.e. the nature of the source and the place and way of

articulation. In the visual domain, phonemes are represented by visemes.

15
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2.2.1 Phonemes

Speech sounds can be represented in terms of phonemes. A phoneme is the small-
est unit of a language that a listener can perceive [56]. As an example, the word
“tan” can be represented in terms of three phonemes that are /t/, /ae/ and /n/
and these phonemes belong to three different classes called plosives or stops conso-
nants, vowel class and nasal class respectively [56]. The British English language
has 40-44 phonemes which are grouped as vowels, semi-vowels, consonants and

diphthongs, as shown in Figure 2.3 [1].

2.2.2 Visemes

Visemes are used to represent phonemes in the visual domain [94]. They describe
the facial positions and movements of speech articulators during the audition of a
phoneme. The mapping between visemes and phonemes is not always one-to-one.
Usually, several phonemes are mapped to a single viseme, because these phonemes
have the same visible facial positions and movements of the speech articulators
during their audition. Also some facial positions and movements of the speech
articulators are not visible during the audition of several phonemes. This partial
visibility of the speech articulators also pushes acoustically distinct phonemes to
have common visemes [1].

It is difficult to have universally accepted phoneme to viseme mapping. Several
studies have produced different phoneme to viseme mappings. As in [1], the 45
phonemes of the Carnegie Mellon University (CMU) phoneme set, for the Messiah
database, were mapped into 14 visemes as shown in Figure 2.4 [1]. While in [10],

the 46 phonemes of American English, for the Texas Instruments-Massachusetts
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Phonemes
Vowels
front mid back \ .
i feet  Ja) heard lal card Semivowels Diphthongs
NI/ did /Al cut /6/ cod [eil say
lel red 5/ the /ol board /ail sigh
/el mat /vl wood lovl row
ful rude glides liquids fav/ bough
w/ went N let fi3/ deer
Ir/ ran /il you ;u.:;/tdoer
2/ toy
/Consonants /Eg/ dare
affricates
/d3/ jug fricatives
ft§! chum / \ plosives
n | . . / \
asals voiced unvoiced
/m/-man NI van Isl sit voiced unvoiced
Il now Iz zoo /5l ship ,
) Ip/
I/ sing /5] this i fat /bl bad pipin
I3l azure /el thin /i din W ton
k! Kill
/N hat g/ gone '

Figure 2.3: The classification of the phonemes in the English language

1].

Institute of Technology (TIMIT) speech database, were mapped into 16 visemes

as shown in Figure 2.5 [10].

The phoneme to viseme mapping is badly affected by coarticulation, specially

in continuous speech. Coarticulation means that neighbouring visemes affect the

current viseme [1]. The effect of coarticulation on phoneme to viseme mapping

can be seen clearly in Figure 2.6 [94].

Despite the shortcomings of visemes, they do help in having a good percep-

17
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Mapping of 45 phonemes to 14 visemes

Viseme Description Phonemes
Vi silence sil

V2 labiodental fv

V3 bilabial pbm

V4 alveolar tdn

Vs dental 8a

V6 velar kgwy

V7 palato-alveolar chdz |3
V& alveolar-semivowels 1ry

Vo alveolar-fricatives sz

V1o Lip-rounding 2aaoorau h s
Vil and U 0U U ue
Vi2 lip-spreading @ alele
V13 based vowels ria

Vi4 ea ia

Figure 2.4: Phoneme to viseme mapping for the Messiah database [1].

tion of speech. They have the ability to differentiate between many acoustically
ambiguous word pairs like ‘met’ and ‘net’. As this pair is acoustically ambiguous
but visually it is clearly different. The two nasal consonants /n/ and /m/, at the
beginning of the words, are visually different, as the lips are closed while utter-
ing /m/ but for for /n/ the lips remain open [90], [89]. As shown in Figure 2.4
and Figure 2.5, these phonemes: /m/ and /n/ are mapped into different viseme

classes.

2.3 Databases used in this work

Throughout this work, three audio-visual databases: Messiah database, LIPS2008
database and the GRID database, have been used. The following sections discuss

these databases.
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Mapping of 46 phonemes to 16 visemes

Viseme  Timit

Classes  Phoneset Examples

1 pau -

2 ay, ah bite, but

3 ey, eh, ae bait, bet. bat

4 er bird

5 ix, iy, ih, ax, debit, beet, bit, about, butter,
AXT,Y yacht

) uw, uh, w boot, book, way

7 a0, aa, oy. oW bought, bott. boy, boat

8 aw bout

9 ¢, hh, k. ng pay. hay, key, sing

10 T ray

11 l.d. n.en, el t lay, day, noon, button, bottle, tea

12 5, Z sed, Zone

13 ch, sh. jh, zh choke, she, joke, azure

14 th, dh thin, then

15 f.v fin, van

16 m, em, b, p mom, bottom, bee, pea

Figure 2.5: Phoneme to viseme mapping for the TIMIT database [10].

2.3.1 Messiah database

This audio-visual speech database consists of a frontal recording of a single British
male speaker. The sentences are phonetically balanced and were spoken in a
natural way with no emotions and no over articulation. The recordings were
made using a camera mounted on a helmet worn by the speaker. It was tried to
keep the head still throughout the recording. The video frames were recorded with
a frame rate of 25 frames/sec and a resolution of 576 x 720 pixels. The audio signal
was recorded using a camera built-in microphone at a sampling rated of 11025 Hz
and a resolution of 16 bits/sample [95]. Throughout the experiments, the audio

was down-sampled to 8 KHz and the frame rate of 100 frames per second was
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pastime roofiree story

Figure 2.6: Frames showing the variability of speech articulators dur-
ing the articulation of /t/ in different contexts [94].

used. Some example frames from the Messiah database are shown in Figure 2.7.

Figure 2.7: Example frames from the Messiah database.

2.3.2 LIPS2008 database

This audio-visual speech database consists of a frontal recording of a single British
female speaker. The sentences are phonetically balanced and were spoken in a
natural way with no emotions and no over articulation. The recordings were made
using a front camera not head mounted as in the case of the Messiah database. It
was tried to keep the head still through out the recording. The video frames were

recorded with a frame rate of 50 frames/sec and a resolution of 576 x 720 pixels.

20



CHAPTER 2. AUDIO AND VISUAL FEATURE EXTRACTION AND
CORRELATION ANALYSIS

The audio signal was recorded using a microphone placed near the speaker at a
sampling rate of 44.1 KHz and a resolution of 16 bits/sample [96]. Throughout
our experiments, we have used the audio down sampled to 8 KHz and the frame
rate of 100 frames per second. Some example frames from the LIPS2008 database

are shown in Figure 2.8.

Figure 2.8: Example frames from the LIPS2008 database.

2.3.3 GRID database

This audio-visual speech database [15] contains the high quality frontal recordings
of thirty four speakers. Each speaker has spoken 1000 simple sentences in a natural
way with no emotions. Each utterance is of three seconds duration and consists
of six words of the structure

command—s colour— preposition— letter— digit— adverb.

The grammar of these sentences is shown in Table 2.1.

’ command ‘ colour ‘ preposition ‘ letter ‘ digit ‘ adverb ‘
bin blue at A-Z 1-9,0 | again
lay green by excluding w now
place red in please
set white with soon

Table 2.1: GRID database sentence grammar.

21



CHAPTER 2. AUDIO AND VISUAL FEATURE EXTRACTION AND
CORRELATION ANALYSIS

Speaker 6 (male) and speaker 4 (female) were chosen for the experiments in
this work because of their clear articulation and minimal error rates [15]. The
audio for both the speakers was down-sampled to a sampling frequency of 8KHz
from 50KHz and the video was up-sampled to 100 frames per second from 25

frames per second to match the audio frame rate.

2.4 Audio features

Raw speech data are transformed into feature vectors in speech processing applica-
tions. These features extract the important aspects of the speech signal. Various
methods have been developed for feature extraction from the speech signal. Some
of the well-known methods are Mel-Frequency Cepstral Coefficients (MFCC), fil-
terbank, formants and energy based methods. Through out this work filterbank
and MFCC features are used. MFCC features are the standard in automatic speech
recognition applications. Log filterbank features were shown to have higher cor-
relation with the visual 2D-DCT features [1]. These features are extracted from

8 KHz sampled audio at a rate of 100 vectors per second.

2.4.1 Mel-Scale filterbank features

Filterbank features are a coarse spectral envelope type representation of speech
that is obtained by quantising the power spectrum or magnitude spectrum across
frequency. Linear or a perceptual scale can be used to place the filterbank over-
lapping channels. This perceptual scaling resolves frequencies non-linearly across
the spectrum and is based upon human hearing. The filterbank feature extrac-

tion method is shown in Figure 2.9 [1]. In filterbank extraction the first step is
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.-/_\
Audio Pre- . . Fourier Mel-scale Filterbank
Speech— .t Windowing Log —~
Signal emphasis Transform| | filterbank features

Figure 2.9: Filterbank extraction process [1]

pre-emphasis. In this step the regions of frequencies greater than 1 KHz are em-
phasized and the speech power spectrum is flattened [1]. In the 2nd step, a suitable
window function is applied. The Hamming window function was used throughout
this work. In the 3rd step, the Fourier transform is applied to get the magnitude
spectrum. In the 4th step, mel-scale filterbank channels are used to filter the
magnitude spectrum. These channels model the human ear’s frequency response
and make the lower frequencies more sensitive. The non-linear mel-frequency is

given by the equation

f

I(f)=2 1 14+ —
mel(f) = 2595 x log;,(1 + =00

) (2.1)

The non-linear mel-frequency is plotted against the linear frequency in Figure 2.10.
In the last step a log is applied, which non-linearly compresses the amplitudes of
the filterbank coefficients. The first four filterbank channels of utterance “Look out
of the window and see if it is raining” for both Messiah and LIPS2008 databases

are shown in Figure 2.11 and Figure 2.12 respectively.

2.4.2 MFCC

MFCC audio features are considered to be the standard in ASR applications.

MFCC features represent the spectral envelope in a compact manner. The MFCC
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MWekfreguency

extraction is standardized in [27]. The extraction process is shown in Figure 2.13

[1].

The extraction of log filterbank features was explained in the previous section.
Adding the steps of Discrete Cosine Transform (DCT), truncation and log-energy,
the filterbank features are converted into MFCC features as shown in Figure 2.13.
The DCT step, separates the vocal tract and source components and the trun-

cation step discards the source components. The resulting MFCC feature vector

Frequency to mel-frequency curve
3000 , T T ! T

2500

2000

1500

1000

200

1] i 1 1 i 1 i
0 1000 2000 3000 4000 a000 £000 7000 g000
Freguency

Figure 2.10: Mel-frequency versus linear frequency

consists of 13 cepstral coefficients and a log-energy coefficient.

2.5 Visual features

Before visual feature extraction, a region is targeted from where to extract the

visual features. This region is called as the Region of Interest (ROI). In this work,
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Figure 2.11: First four filterbanks of the Messiah database first utter-
ance

the ROI for the Messiah database is a 180 x 100 pixels rectangle centred across
the mouth and for the LIPS2008 database the ROI is a 120 x 100 pixels rectangle
centred across the speaker’s mouth. These sizes for the ROIs were selected based
on the mouth sizes of the two speakers. The ROI can include the cheeks, jaws,
forehead eyebrows, eyes and even the complete face. Eyes, eyebrows and forehead
movements and gestures usually carry information about emotions. But in this
work, the emotions of the speakers are not considered and the databases used are
of emotionless data. That is why the ROI in this work is limited to the mouth
area only. The ROI needs to be tracked. In this work, all the databases have
already been tracked and landmarks indicating the lips of the speakers have been
provided.

Visual feature extraction methods are broadly categorized as appearance-based
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Figure 2.12: First four filterbanks of the LIPS2008 database first ut-
terance
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Figure 2.13: MFCC extraction process [1].
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(image transform based), shape-based (model based), and the combination of both.
In appearance-based methods, the image pixels in the ROI are directly processed
for the extraction of features. In shape-based methods, some pre-determined
model is fitted to the data [61].

It was shown in [61], in a comparison study of transform-based and model-
based visual features for large vocabulary continuous audio-visual speech recog-

nition, that the image transform methods particularly DCT perform better than
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model-based methods and even better than Active Appearance Model (AAM)

which is a combination of both the methods. however, it is worth mentioning that
the training data for the AAMs was not sufficient. Correlation between different
audio and visual features was measured in [2],[5], and it was found that AAM
visual features have slightly higher correlation to audio filterbank features as com-
pared to the correlation between 2D-DCT visual features and audio filterbank
features. On the basis of the above findings combined with the relative simplicity

of computing 2D-DCT, it is decided to use 2D-DCT visual features in this work.

2.5.1 Two-Dimensional Discrete Cosine Transform

2D-DCT is an appearance-based feature extraction method which extracts visual
features from an ROI. In this work the ROI is the region across the speaker’s
mouth. If the ROl is an M x N pixel image centred across the mouth, represented
by a matrix Z, and z,,, is the grey-scale value of m, n' pixel, then the computation

2D-DCT coefficient matrix C,, for the input image 7 of size M x N is given as

[42]
M—-1N-1
m2m+1)p  7w(2n+1)g
Cpy = 0y mzz:o nz::o Znin COS S T oN (2.2)

where the range of pand qis (0<p< M —-1),(0<¢< N —1), and

1
o
Z 1<p<M-1
and
o=
Oéq_ VN
{\/z 1<g<N-1
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Equation (2.2) can be written as

M-1 N-1
m(2m+1)p 7(2n+1)q
Cpq = QpQy mEZO COS T nEZO Zmn COS T (23)

Equation (2.3) can be written in simple terms as

Cpy = 1D — DCTy {1D — DCTy { Zon }} (2.4)

This property is called ‘separability’ [42] and means that the 2D-DCT can be
computed in two steps. In the first step, to apply the 1D-DCT vertically and in
the second step to apply the 1D-DCT horizontally to the resultant of the first
step. These two steps can be reversed as well, by applying first the 1D-DCT to
the rows and then to the columns of the resultant of the first step.

In this work, the ROI for the Messiah database is a 180 x 100 pixels rectangle
centred across the mouth shown in Figure 2.14 and for the LIPS2008 database
the ROI is a 120 x 100 pixels rectangle centred across the speaker’s mouth shown

in Figure 2.15. The 2D-DCT concentrates the energy of the ROI image in the

(a} (b) (c)

Figure 2.14: Example from the Messiah database:(a) 180 x 100 pixel
ROI, (b) 2D-DCT of ROI, (c) zigzag ordering of 2D-DCT feature vector

upper-left corner of the output matrix [42] as shown in Figure 2.14 (b) and Figure
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28]

{a) (b) ()

Figure 2.15: Example from the LIPS2008 database:(a) 120 x 100 pixel
ROI, (b) 2D-DCT of ROI, (c) zigzag ordering of 2D-DCT feature vector

a

(b)
(d)

}
c)

({
({

Figure 2.16: Reconstruction of an image using different percentages
of 2D-DCT coefficients in the inverse 2D-DCT process, (a) 100 %, (b)
40 %, (c) 20 %, (d) 10 %

2.15 (b) for the Messiah database and the LIPS2008 database frames respectively.

The final 2D-DCT visual features vector contains the first K (K = 15, in this work)

coefficients selected from the 2D-DCT output matrix in a zigzag manner as shown

in Figure 2.14 (c) and 2.15 (c¢). The zigzag scanning puts the high energy (low

frequency) coefficients at the top of the output vector. The low energy coefficients

can be discarded without introducing a notable distortion into the reconstructed

image using inverse 2D-DCT. The effect of discarding the low energy coefficients

on reconstruction, is shown in Figure 2.16.
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The first four 2D-DCT features of utterance “Look out of the window and see

if it is raining” for both Messiah and LIPS2008 database are shown in Figure 2.17

and Figure 2.18 respectively.
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Figure 2.17: First four (2 to 5) 2D-DCT features of the Messiah
database first utterance

Figure 2.19 is showing the first four filterbank and 2D-DCT features for the

first utterance of both the databases.

2.6 Correlation measurement

Correlation measure gives an indication that how much two variables are related or
associated. A statistical technique called least squares multiple linear regression is
used to study this correlation between one dependant variable and one or several

independent variables [1]. The multiple correlation coefficient is computed to
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Figure 2.18: First four (2 to 5) 2D-DCT features of the LIPS2008
database first utterance

determine the multiple correlation of every individual component of the audio
feature vector (the dependant variable) to the entire visual feature vector (the
independent variables). The multiple correlation coefficient also called as the

Pearson product moment correlation coefficient can be calculated as [1]

Yo (an(d) = ai(i)) (@ (i) — ar(2)) (2.5)

R(i) = )
VEL (i) — ()2 S5 (a(0) — an(i))?

where T is the total number of vectors, a,(i) is the predicted i** component of the
t'" audio vector and (i) is the mean of the predicted i component of the t*
audio vector. The prediction of the audio vectors from the visual vectors is the

topic of the next chapter.
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Figure 2.19: First four filterbank features of the Messiah database first
utterance (top left), First four 2D-DCT features of Messiah database
first utterance (top right), First four filterbank features of the LIPS2008
database first utterance (bottom left), First four 2D-DCT features of
LIPS2008 database first utterance (bottom right)
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2.6.1 Awudio-visual correlation

Based on the findings of [61] and [2], it is decided to use the 2D-DCT as visual
features and filterbank features as the audio features in this work. And following
from [70], another set of audio features used in the experiments with the GRID

database is the log power spectral vectors.

2.6.2 Awudio-visual correlation Messiah database

The multiple correlation across the Messiah database was measured. Fifteen (15)
dimensional 2D-DCT visual features and 23 dimensional filterbank features were
used in the experiments. The initial 200 utterances were used for the training of
the models using 16 clusters. The correlation results of 15 dimensional 2D-DCT
visual vectors to each channel of the 23 dimensional filterbank vectors are shown

in Figure 2.20. The average correlation across all the channels was 0.7655.

2.6.3 Audio-visual correlation LIPS2008 database

The multiple correlation across the LIPS2008 database was measured. Fifteen
(15) dimensional 2D-DCT visual features and 23 dimensional filterbank features
were used in the experiments. The initial 200 utterances were used for the training
of the models using 16 clusters while the remaining 79 utterances were used for
the testing. The correlation results of 15 dimensional 2D-DCT visual vectors to
each channel of the 23 dimensional filterbank vectors are shown in Figure 2.21.
The average correlation across all the channels was 0.5784.

The results in Figure 2.20 and Figure 2.21, show that the average correlation

is higher for the Messiah database as compared to the LIPS2008 database. The
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Figure 2.20: Correlation of 15 dimensional 2D-DCT features to each
channel of 23 dimensional filterbank features of the Messiah database

reason for this is the less visible articulators and less clear articulation of speech

by the LIPS2008 speaker as compared to the Messiah database speaker.

2.6.4 Audio-visual correlation GRID database

The audio-visual correlations for the two speakers (speaker 6 and speaker 4)of the
GRID database were measured. These two speakers were selected because of the
lower word error rates reported for them [15]. The correlation results for audio
filterbank features and log power spectral features are presented in the following

sections.
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Figure 2.21: Correlation of 15 dimensional 2D-DCT features to each
channel of 23 dimensional filterbank features of the LIPS2008 database

Audio-visual correlation for filterbank features

Table 2.2, shows the average correlation across all the channels for the speaker
6 (male) of GRID database. The results show that increasing the size of visual
features vector results in the increase of correlation. But this increase in correlation
is very small. In the same way, increasing the number of clusters in the GMM,
gives improvements in the correlation but again these improvements are small.

The best correlation is given by a visual vector of size 50 and the number of

clusters being 64.
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ASize | VSize | No of Clusters | Average correlation
23 15 16 0.78
23 20 16 0.80
23 25 16 0.80
23 30 16 0.82
23 40 16 0.82
23 50 16 0.82
23 15 32 0.80
23 20 32 0.81
23 25 32 0.81
23 30 32 0.82
23 40 32 0.82
23 50 32 0.83
23 15 64 0.80
23 20 64 0.82
23 25 64 0.82
23 30 64 0.83
23 40 64 0.83
23 50 64 0.84
23 15 128 0.81
23 20 128 0.83
23 25 128 0.83
23 30 128 0.83
23 40 128 0.83
23 50 128 0.83

Table 2.2:  Awverage correlatig)?? across all the channels for different
sizes of visual vector and different number of clusters for speaker 6 of
GRID database. ASize and VSize are representing the sizes of audio
and visual features vectors respectively in the augmented AV-vector.
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Table 2.3, shows the average correlation across all the channels for the speaker
4 (female) of GRID database for a visual vector of size 25 and the number of

clusters being 64 in the GMM.

’ ASize \ VSize \ No of Clusters \ Average correlation ‘
(23 | 25 | 64 \ 0.77 |

Table 2.3: Average correlation across all the channels for speaker 4 of
GRID database for filterbank features.

The results in Table 2.2 and Table 2.3, for the two speakers of the GRID
database show that the average correlation is slightly less in case of speaker 4
(female) as compared to speaker 6 (male). This finding is in accordance with
the study reported in [15] where more error rates were reported for the speech of

speaker 4 as compared to that of speaker 6.

Audio-visual correlation for log power spectral features

Table 2.4, shows the average correlation across all the channels for the speaker
6 (male) of the GRID database. The results show that increasing the size of
the visual features vector results in the increase of average correlation. But this
increase in accuracy is very small. In the same way, increasing the number of
clusters in the GMM, gives improvements in the average correlation across all the
channels but again these improvements are small. The best average correlation
across all the channels is given by the visual vectors of sizes 25 and 30 and the

number of clusters being 128.
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ASize | VSize | No of Clusters | Average correlation
128 15 16 0.76
128 20 16 0.77
128 25 16 0.78
128 30 16 0.78
128 40 16 0.79
128 15 32 0.76
128 20 32 0.78
128 25 32 0.78
128 30 32 0.79
128 40 32 0.80
128 15 64 0.77
128 20 64 0.78
128 25 64 0.79
128 30 64 0.80
128 40 64 0.80
128 15 128 0.78
128 20 128 0.79
128 25 128 0.80
128 30 128 0.80

Table 2.4: Awverage correlation across all the channels for different
sizes of visual vector and and different number of clusters in the GMM
for speaker 6 of GRID database.

Table 2.5, shows the average correlation across all the channels for the speaker
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4 (female) of the GRID database for a visual vector of size 30 and the number of

clusters being 32 in the GMM.

’ ASize ‘ VSize ‘ No of Clusters ‘ Average correlation ‘
(128 | 30 | 32 \ 0.73 |

Table 2.5: Awverage correlation across all the channels for speaker 4 of
GRID database for log power spectral features.

The results in Table 2.4 and Table 2.5, for the two speakers of the GRID
databse show that the average correlation is slightly less in case of speaker 4

(female) as compared to speaker 6 (male).

2.7 Summary

This chapter discussed the speech production process, both from audio and visual
perspectives. The audio-visual databases used in the work were introduced along
with the audio and visual feature extraction methods. Correlation between the
audio and visual features was measured. It was shown that the size of the visual
feature vector and the number of clusters used in the modelling process affect the
correlation levels. The LIPS2008 database shows significantly lower correlation
levels as compared to the Messiah database which can be attributed to the distance
from the camera factor, which results in the lower resolution of the articulators.
For the two speakers of the GRID database, speaker 6 (male) shows slightly
higher correlation as compared to speaker 4 (female). This finding is in accordance
with the study reported in [15] where more error rates were reported for the speech

of speaker 4 as compared to that of speaker 6.
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Chapter 3

Estimation of Clean Audio
Speech Features from Visual

Features

Preface

This chapter discusses the estimation of clean acoustic speech features from visual
speech features. 2D-DCT features are used as the visual features and log filterbank
and log power spectral features are used as the audio speech features. The joint
density of the audio-visual vectors of each speaker is modelled using a GMM with
various number of clusters. Then using these trained models, a MAP estimate of
the acoustic speech features from the visual speech features is made. The accuracy
of the estimation is measured in terms of mean percentage filterbank estimation
errors and mean percentage log power spectral estimation errors. The results show

that the number of dimensions in the visual vector and the number of clusters in
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the GMM affect the accuracy of estimation.

3.1 Introduction

This chapter explains a statistical method to exploit the correlation between audio
speech features and visual speech features. This method can be divided into
two stages: firstly, to train the GMM to model the joint density of AV vectors.
Secondly, to estimate audio features from visual features using the trained GMMs.
The basis for this method is the correlation between audio and visual speech
features, discussed in the previous chapter. The creation of training data pools
is described in Section 3.2.1. The GMM training is described in Section 3.2.2
and the estimation of audio features from visual features in Section 3.2.3. The
filterbank interpolation process is explained in Section 3.3. The experimental
results in terms of estimation errors are presented in the Section 3.4.2 for the

three databases: Messiah, LIPS2008 and GRID.

3.2 Estimation of audio features from visual fea-
tures

As was said previously this method is a two step process: To train and to estimate.
The process of creating a GMM which models the joint density of the AV vectors
is shown in Figure 3.1. The process consist of augmenting the audio and visual
vectors, pooling them across the training data set and then training the GMM on

the pooled augmented AV vectors.
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Figure 3.1: GMM creation and training.

3.2.1 Augmenting audio and visual feature vectors

The I-dimensional audio feature vectors and J-dimensional 2D-DCT visual feature
vectors are augmented together to form an I + J dimensional AV feature vector

as

z, = [a,, v,|" (3.1)
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where a; and v; are the audio and visual feature vectors respectively. The audio
features are either filterbank features or log power spectral features. These feature
vectors are extracted from the clean speech at time frame t. All the AV vectors
are pooled together across the training data to give a training data set z. This

training data set z, is to be used at the training step.

3.2.2 GMM training

The training data set z, of the augmented AV vectors is used to create a GMM,
®(z). This GMM models the correlation between audio and visual features. To de-
termine the initial cluster positions of the feature vectors, the K-means algorithm
[32] is used which is then further refined by using the Expectation Maximiza-
tion (EM) algorithm [20]. The created GMM, ®(z), is given as

P(z) = ) ardi(z) = Y apN(z: pif, 37) (3.2)
h=1 k=1

where «y, is the prior probability of the k' cluster, and ¢y (z) is the k" Gaussian
Probability Density Function (PDF) of the GMM. This PDF is defined by the

covariance matrix X% and the mean vector uf, where

Eaa Zav
yzo | TFOTH (3.3)
¥ya ;v
and
; 0
Hr = (3.4)
0
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For the k' cluster of the GMM, the mean vector %, comprises of the I-dimensional
mean audio vector, u?, and a J-dimensional mean visual feature vector, p)/. The
covariance matrix for the k' cluster X%, has four components: the I x I dimen-
sional covariance matrix of the audio vectors 322, the I x J dimensional covari-
ance matrix of the audio and visual vectors 3%V, the J x I dimensional covariance
matrix of the visual and audio vectors 3}, and the J x J dimensional covariance
matrix of the visual vectors 3YV. As was stated previously, initial cluster posi-
tions are determined using the K-means algorithm, which is then refined by the
EM algorithm. The EM iterations are carried out until no change in the cluster
positions occur in further iterations or when the number of iterations exceed a
specific number. The number of clusters, K, is determined experimentally and is

based on minimizing the estimation errors.

3.2.3 MAP estimation of audio features

The trained GMM can be used to estimate the audio filterbank feature vector, a;
from the input visual feature vector v,. This estimation can be carried out from
the most probable cluster £*, in the GMM. The most probable cluster, k*, for the

input vector, vy, is given as [18], [17]

k" = argmax{p(vi|¢x(2))} (3.5)

using the most probable cluster k*, and the #** visual vector v;, a MAP estimate

of the audio vector, &;, can be made as [74]

a, = arg H}i%x{p(at\vt, b ) } (3.6)

44



CHAPTER 3. ESTIMATION OF CLEAN AUDIO SPEECH FEATURES
FROM VISUAL FEATURES

where p(a;|vy, ¢y ), represent the probability of the audio vector given the visual
vector using the most probable cluster k*. The estimate of the audio features
vector for the corresponding visual vector from the most probable cluster is given
as [17], [97]

& = pi + SR (S0) 7 (ve — ) (3.7)

It was shown in [19], [17], that for better accuracy to reduce the estimation errors,
the estimation can be made from a weighted combination of all the clusters, K.
The weighting factor is the posterior probability hx(v;), of the #* visual vector,
belonging to the k' cluster. So the weighted MAP estimate of the audio vector

from all the K clusters is given by

a =Y he(vo){ i + I (20 (ve — i) } (3.8)

k=1

This weighting factor hy(v;), representing the posterior probability is determined

as [1], [17]
ha(ve) = arp(vie|oY)

= — 3.9
S p(vilo) (3.9)

where p(v;|¢}) is representing the visual vector’s marginal distribution for the k"

cluster of the GMM specific to the ' vector [4].

3.3 Interpolation of filterbank features

The estimated audio filterbank features are to be used in the construction of
visually-derived Wiener filter for speaker separation in Chapter 4 and in the deriva-

tion of binary masks in Chapter 5. But these estimated 23-dimensional filterbank
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features need to be interpolated to 128 dimensions. The 128 dimensions are for
the reason to match the number of spectral bins in the mixed speech in Chapter 4
and Chapter 5 respectively. To interpolate the filterbank features, the 23 dimen-
sional filterbank feature vectors are arranged in mel-scale positions in an interval
of 1 to 128. Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) interpo-
lation gives less interpolation errors [1], and was applied to these 23-dimensional

filterbank feature vectors to be interpolated into 128 dimensions.

3.4 Experiments

The aim of the experiments in this section is to evaluate the accuracy of the esti-
mation of acoustic features from 2D-DCT visual features for the three databases:
Messiah, LIPS2008 and GRID. Firstly, the audio and visual features and the
databases used, are described. Secondly, the experimental results are presented
that evaluate the accuracy of the estimation accuracy in terms of mean percentage

estimation errors.

3.4.1 Awudio and visual features and databases

In the case of experiments with the Messiah (male) and LIPS2008 (female) databases,
the first 200 utterances of each database were used for training while the remain-
ing 79 utterances were used for the evaluation. The audio in both databases was
down-sampled to a sampling frequency of 8 kHz. The video was up sampled to
100 frames per second to match the audio frame rate. In the case of experiments
with the GRID database, the data of speaker 6 (male) and speaker 4 (female) were

used. Out of the 1000 utterances of each speaker, 800 were used for training and
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the remaining 200 for the evaluation.

To accurately estimate audio features from visual features it is necessary to
select features that exhibit high levels of audio-visual correlation. As such, based
on [4], 23 channel mel-scale filterbank vectors, a¢, are used as the audio features.
The dimension 23 for filterbank features is based on the experimental results in
Chapter 4 and Chapter 5. Another type of audio features used is the log power
spectral features of 128 dimensions [70]. The two types of audio features are
extracted from 20ms duration frames of audio at 10ms intervals in accordance with
the ETSI XAFE standard [28]. The 2D-DCT Visual features, v;, are extracted
from an ROI centred on the speaker’s mouth. A 2D-DCT is applied to the ROI
and the first J coefficients retained as the visual vector. For a detailed discussion
of the audio and visual features and the databases used, please refer to Chapter

2.

3.4.2 Results

The estimation accuracy for the log filterbank and log power spectral features is

measured in terms of mean percentage absolute estimation errors, F, as
12 a(i) —a(i
E=—Y Y| M | x100 (3.10)

where a;(7) and a;(7) are non-negative and are the reference and estimated values
of the i** channel and t"* frame of the audio features. 7 is the total number of
frames and I is the number of channels. The estimation errors E, for the various

arrangements of the three databases are shown in Table 3.1 - 3.6.
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3.4.3 Filterbank estimation errors

Table 3.1, shows the mean filterbank estimation errors for the speaker 6 (male)
of GRID database. The results show that increasing the size of visual features
vector results in the reduction of estimation errors thus increasing the estimation
accuracy. But this increase in accuracy is very small. In the same way, increasing
the number of clusters in the GMM, gives improvements in the estimation accuracy
but again these improvements are small. The best accuracy is given by a visual

vector of size 50 and the number of clusters being 64.
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ASize | VSize | No of Clusters | Mean % FB estimation errors
23 15 16 10.80
23 20 16 10.47
23 25 16 10.32
23 30 16 10.04
23 40 16 10.05
23 50 16 9.90
23 15 32 10.29
23 20 32 9.99
23 25 32 10.01
23 30 32 9.81
23 40 32 9.76
23 50 32 9.71
23 15 64 10.00
23 20 64 9.74
23 25 64 9.61
23 30 64 9.50
23 40 64 9.55
23 50 64 9.44
23 15 128 9.67
23 20 128 9.52
23 25 128 9.43
23 30 128 9.51
23 40 128 9.52
23 50 128 9.62

Table 3.1: Mean percentage ffll%erbank estimation errors for different
sizes of visual vector and different number of clusters for speaker 6 of
GRID database. ASize and VSize are representing the sizes of audio
and visual features vectors respectively in the augmented AV-vector.
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Table 3.2, shows the mean filterbank estimation errors for the speaker 4 (fe-
male) of GRID database for a visual vector of size 25 and the number of clusters

being 64 in the GMM.

’ ASize \ VSize \ No of Clusters \ Mean % FB estimation errors ‘
123 | 25 | 64 \ 10.41 |

Table 3.2: Mean percentage filterbank estimation errors for speaker /
of the GRID database.

Table 3.3, shows the mean filterbank estimation errors for the Messiah database.
The results show that increasing the number of clusters in the GMM, gives im-
provements in the estimation accuracy but again these improvements are small.
The best accuracy is given by the number of clusters being 16 and further increase

in the number of clusters decreases the estimation accuracy.

’ ASize \ VSize \ No of Clusters \ Mean % FB estimation errors ‘

23 15 1 9.49
23 15 2 8.72
23 15 4 8.50
23 15 8 8.38
23 15 16 8.12
23 15 32 8.45
23 15 64 9.02

Table 3.3: Mean percentage filterbank estimation errors for different
number of clusters for the Messiah database.

Table 3.4, shows the mean filterbank estimation errors for the LIPS2008 database.
The results show that the best accuracy is given by the number of clusters being 16
and further increase in the number of clusters decreases the estimation accuracy.

The results in Table 3.1 and Table 3.2, for the two speakers of the GRID

databse show that the estimation errors are almost of the same level. But the re-
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’ ASize \ VSize \ No of Clusters \ Mean % FB estimation errors ‘
23 15 16 12.85
23 15 32 13.60

Table 3.4: Mean percentage filterbank estimation errors for clusters
sizes from 16 to 32 for the LIPS2008 database.

sults in Table 3.3 and Table 3.4, show that the estimation errors are more for the
LIPS2008 database as compared to the Messiah database. This can be attributed
to the low correlation between the audio and visual features of the LIPS2008
database. As measured in Chapter 2, the average correlation between the audio
and visual features of the Messiah database was 0.7655 and 0.5784 for LIPS2008
database. The reason for this is the less visible articulators and less clear artic-
ulation of speech by the LIPS2008 speaker as compared to the Messiah database

speaker.

3.4.4 Log power spectral estimation errors

The Log power spectral estimation errors for the speaker 6 (male) of the GRID
database were calculated using Equation 3.10 and are shown in Table 3.5. The re-
sults show that increasing the size of visual features vector results in the reduction
of estimation errors thus increasing the estimation accuracy. But this increase in
accuracy is very small. In the same way, increasing the number of clusters in the
GMM, gives improvements in the estimation accuracy but again these improve-
ments are small. The best accuracy is given by a visual vector of size 30 and the

number of clusters being 128.
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ASize | VSize | No of Clusters | Mean % LPS estimation errors
128 15 16 17.66
128 20 16 17.16
128 25 16 16.98
128 30 16 16.89
128 40 16 16.50
128 15 32 17.35
128 20 32 16.59
128 25 32 16.67
128 30 32 16.30
128 40 32 16.21
128 15 64 16.93
128 20 64 16.48
128 25 64 16.21
128 30 64 16.04
128 40 64 15.99
128 15 128 16.61
128 20 128 16.20
128 25 128 15.94
128 30 128 15.91

Table 3.5: Mean percentage LPS estimation errors for different sizes
of visual vector and and different number of clusters in the GMM for
speaker 6 of the GRID database.

Table 3.6, shows the Log power spectral estimation errors for the speaker 4
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(female) of the GRID database for a visual vector of size 30 and the number of

clusters being 32 in the GMM.

’ ASize ‘ VSize ‘ No of Clusters ‘ Mean % LPS estimation errors ‘
(128 | 30 | 32 \ 17.18 |

Table 3.6: Mean percentage LPS estimation errors for speaker 4 of
the GRID database.

The results in Table 3.5 and Table 3.6, for the two speakers of the GRID
databse show that the estimation errors are almost of the same level.

Figure 3.2 and Figure 3.3 are showing the comparison of two estimated filter-
banks channel 10 and channel 15 centred at 860 Hz and 1613 Hz with the reference
filterbanks of a sentence from the Messiah and LIPS2008 databases respectively.
The mismatch between the reference and estimated filterbanks in the initial silence
region of Figure 3.2 is because of the mouth opening of the speaker which can be

verified from the video.
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(a) reference waveform, (b) filterbank channel 10, (c) filterbank channel
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3.5 Summary

In this chapter, it was shown that the higher levels of correlation between audio
and visual speech features can be exploited to estimate filterbank and log power
spectral audio features from visual features. The estimation process consists of
two stages. Firstly, the audio and visual speech feature vectors were augmented
across the training dataset and these training datasets were used to train the
GMMs using K-means and EM algorithms. Secondly, using MAP estimation and
visual feature vectors, the corresponding audio features were estimated.

The estimation accuracy was measured in terms of estimation errors and the
results show that the audio features can be estimated from the visual features
with a good accuracy. The size of the visual feature vector and the number
of clusters in the GMM has an effect on the estimation accuracy and these are
determined experimentally. The accuracy of the estimation is directly proportional
to the levels of correlations existing between the audio and video. The accuracy
levels for the two speakers of the GRID database are almost the same but not
for the Messiah and LIPS2008 databases. The accuracy levels for the LIPS2008
database are lower as compared to the Messiah database. This is attributed to the
lower correlation between the audio and visual features of the LIPS2008 database
because of the recording conditions.

It was also shown that visual features for the open mouth in the silence region
can mislead the estimation process and the non-speech regions are taken as speech

regions because of the mouth opening.
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Chapter 4

Speaker Separation Using Wiener

Filtering

Preface

This chapter proposes a method of single-channel audio speaker separation that
uses visual speech information to extract a target speaker’s speech from a mixture
of speakers. The method requires a single audio input and visual inputs from each
speaker in the mixture. The visual information from speakers is used to create
a visually-derived Wiener filter. The Wiener filter gains are then non-linearly
adjusted by a perceptual gain transform to improve the quality and intelligibility
of the target speech. Experimental results are presented that measure the quality
and intelligibility of the extracted target speaker and a comparison is made of
the different perceptual gain transforms. These show that significant gains are

achieved by the application of the perceptual gain functions.
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4.1 Introduction

This chapter considers Wiener filtering for speaker separation using visual speech
information. Wiener filtering has been used extensively in speech enhancement
[56],[100]. In the time domain, if the clean speech signal x(n) is contaminated by

noise d(n), then the noisy signal y(n), is given as

y(n) = a(n) +d(n) (4.1)

The Wiener filter coefficients are computed to minimise the mean-squared estima-

tion error between the estimated #(n) and the desired (clean) signal z(n) [56].

(n) = Y wk)yln—k) n=0,1,2 .. (4.2)

where w(k) is the filter coefficient and M is the total number of coefficients. The

estimation error in the mean-square sense is given as

Ele*(n)] = El(z(n) - (n))’] (4.3)

where FJ.| is representing the expectation operator. By applying the Fourier

Transform to Equation 4.1 we get

Y(f) = X(f)+D(f) (4.4)

where X (f) is the clean signal complex spectrum and D(f) is the noise signal
complex spectrum. By taking element-wise squared magnitude and assuming that

the two signals are uncorrelated [77],[76], it can be written in the power spectrum
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domain as
Y(NHIF = XN +|D)P (4.5)

For additive noise, the Wiener filter, W(f), in the discrete Fourier transform

(DFT) domain is defined as [100]

W(f) = Pxx(f)

~ Pxx(f)+ Ppp(f) (46)

where Pxx(f) and Ppp(f) represent the clean speech and noise power spectra,
respectively.

The main challenge in the implementation of the Wiener filter is the estimation
of the power spectrum of the desired signal because the desired signal is usually
observed in noise [100] or along with competing speakers [39]. In the case of
Wiener filtering for speech enhancement, the noise power spectrum can be esti-
mated from noise only regions and at regular periods the estimate of the noise is
updated. These noise only regions can be identified using VAD techniques. These
techniques usually use features such as short-time energy, zero-crossings [38] and
periodicity [99]. Other VAD techniques have exploited visual information as well
3], [49], [91], [6], [53]. In this case the noise sources are assumed to be stationary,
examples of which can be such as train noise, office noise from fans and computers
and car engine noise. The desired signal power spectrum can be obtained using the
noise power spectrum and the noisy signal power spectrum using a method such
as spectral subtraction [100], [56]. The noise estimate is critical for the perfor-

mance of speech enhancement algorithms. Noise will remain there in the enhanced
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speech, if the noise estimate is too low. On the other hand, if the noise estimate is
too high, the enhanced signal will lose intelligibility and will be distorted [56]. In
[58], [59], minimum statistics noise estimation algorithms were used to determine
the estimate of noise. In these algorithms the noise estimate is made from the
minimum power spectrum of the noisy speech in each frequency band. In [25],
HMDMs trained on clean speech were used to provide the clean speech estimates
for the implementation of the Wiener filter.

In the case of speech separation, the speech sources are highly non-stationary.
In order to use the Wiener filter for speech separation, the clean speech estimate
and competing speech estimates must be made at frame level as speech is con-
sidered to be quasi-stationary at frame level. In this case, the Wiener filter is
called block-adaptive or segment-adaptive [100]. In [9], [70], an extended form of
Wiener filter was used for audio source separation. In this case each audio source
was characterized by a GMM. The Wiener filter coefficients were calculated using
the trained GMMs, the statistics of the mixtures of audio sources available at the
training stage and the single-channel observed audio mixture.

For application to speaker separation the Wiener filter for speech enhancement
of Equation 4.6 is modified so that the clean speech is replaced by the target
speaker, X, and the contaminating noise is replaced by the competing speaker,
X5. So the Wiener filter for extracting the target speaker for a two speaker problem

is given as

W1<f) o PXle(f)

a PX1X1 (f) + PX2X2 (f) (47)

This equation can be rearranged to extract the competing speaker by replacing

Py, x,(f) in the numerator by Px,x,(f), and the corresponding Wiener filter is
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given as

WQ(f) _ PX2X2 (f)

" Px,x,(f) + Px,x, (f) (48)

The proposed method of visually-derived Wiener filtering for speaker separa-
tion is described in Section 4.2. This requires audio estimates of the target and
competing speakers which are estimated from visual speech features and this is
discussed in Section 4.3. As a further processing stage, several perceptual gain
transforms are applied to the Wiener filter gains that improve both speech quality
and intelligibility and these transforms are discussed in Section 4.2.1. Details of
the implementation in terms of creating the time-domain target speaker’s speech
are explained in Section 4.4. Experimental results are presented in Section 6.5
to evaluate the proposed method in terms of speech quality and intelligibility.
The whole process of speaker separation using visually derived Wiener filtering is
shown in Figure 4.1 where the top panel shows the ‘separation process’ while the

bottom panel shows the ‘training process’.
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Figure 4.1: Speaker separation using visually derived Wiener filtering
including the training stage.
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4.2 Visually-derived Wiener filtering for speaker
separation

In this work, the audio-visual correlation between a speaker’s mouth shape and
the resulting audio signal is exploited. To obtain the power spectra statistics for
the target and competing speakers, it is proposed to estimate these from visual
speech features taken from the two speakers. Analysis into the correlation of audio
and visual speech features and the estimation of audio speech features from visual
speech features were discussed in detail in Chapter 2 and Chapter 3. However,
the analysis also revealed that insufficient audio-visual correlation is present to
make a fine resolution estimate, although estimation of a less spectrally detailed
filterbank vector is possible. As a consequence the speaker separation Wiener
filter to extract speaker 1, Wi, from Equation 4.7, is modified to operate in the

filterbank domain and can be defined as

~

FBiy a1 (i)
Wiy (i) = ORI (4.9)

where a;,(7) and as4(7) are filterbank estimates for the target speaker and compet-
ing speaker, 7 indicates the filterbank channel and ¢ represents the time frame. In
the same way to extract speaker 2, W5, from Equation 4.8, is modified to operate

in the filterbank domain and can be defined as

FB/: az,t(i)
Wy, (i) = o) £ 31200 (4.10)
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4.2.1 Perceptual gain transformation

A series of perceptually-motivated transformations of the Wiener gains are now
considered. The motivation behind these perceptual gain functions is to have
different gain functions resulting in different suppression behaviours at different
SNR levels. When SNR is high, lower suppression is expected but when SNR is
low, higher levels of suppression are expected. However, the higher suppression of
the competing speaker might come at the cost of distortion in the target speaker
[56]. The gain functions introduced here aim ideally to both reduce distortion
of the target speaker and improve the suppression of the competing speaker and
are implemented as a perceptual gain transform, II(.). This can be considered a
non-linear transformation of the Wiener filter gains and gives a perceptual gain

HTB(4). Note that for clarity subscripts have been dropped from notation.

H(i) = I(WFB(3)) (4.11)

Four different perceptual gain transformations have been investigated and these
can broadly be described as piecewise or parametric. Equations (4.12) to (4.15)
define the resulting gain functions, H1 to H4, and these are also plotted in Figure
4.2.

H1(i) = WFB(®) (4.12)

WFB() WFB(i) > a
H2(i) = { 0 WFB(i) < a (4.13)
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Figure 4.2: Perceptual gain functions

H3(i) = (WFB@H)® (4.14)
0 WEB(§) <
HA(D) = (WFP@)? B < WFB(i) < B (4.15)

WHE@) - WEE() > By

Gain function H1 serves as a baseline and is set equal to the Wiener filter gain,

WHB_ The second function, H2, restricts the gain so that if it falls below a
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threshold, «, then it is set to zero. This has the effect of removing any time-
frequency region where the SNR falls below a certain threshold and can be likened
to the binary mask method of speech enhancement [77], but now with the mask
estimated from visual features. Instead of removing regions with local SNRs below
0dB (corresponding to a gain of 0.5), gain cut-off values of « = 0.2, 0.4 and 0.6
have been tested in this work. Gain function H3 is the cube of the Wiener gain
and this has the effect of non-linearly reducing the Wiener gain. Lower gain values
experience a considerable downscaling while higher gains are reduced by a smaller
factor. The fourth gain function, H4, is a piecewise function that aims to capture
properties of the previous gain functions by dividing the gain into three regions
with zero gain, a squared Wiener gain and linear Wiener gain, respectively. Two
variables, 81 and s, define these regions and have been set to 0.2 and 0.5 for this

work, based on preliminary test results.

4.3 Estimation of audio features from video

In the case of experiments with the Messiah and LIPS200 databases, I = 23
channel mel-scale filterbank vectors, a;; and a; are used as the audio features
for speaker 1 and speaker 2 respectively. This dimensionality of I = 23 was found
to be optimal in [40]. Theses vectors are extracted from 20ms duration frames of
audio at 10ms intervals in accordance with the ETSI XAFE standard [28]. Visual
features, vy, and vy, for speaker 1 and speaker 2 respectively, are extracted from
an ROI centred on a speaker’s mouth at a rate of 100 frames per second. A
2D-DCT is applied and the first J coefficients are scanned in a zigzag manner

and retained as the visual vector. The estimation process involves first training
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a K clusters GMM to model the joint density of augmented audio-visual feature
vectors for each speaker. MAP estimation can then be applied to estimate the
audio features from visual features. The above same procedure of audio and visual
feature extraction, training of GMMs and estimation of audio features from visual
features is repeated for the two speakers from the GRID database. For a detailed
discussion of audio and visual features, the training and the estimation process,

please refer to Chapter 2 and Chapter 3.

4.4 Implementation

This section outlines the stages involved in applying visually-derived speaker sep-
aration to extract a target speaker. These stages were shown in the upper part

‘Separation process’ of Figure 4.1.

4.4.1 Perceptual gain calculation

The first stage involves utilising the visual speech features to calculate the per-

ceptual gain, H(7), and is summarised below:

1. Extract visual vectors, vi; and vg,, from the two video sequences corre-

sponding to target and competing speakers.

2. Estimate audio filterbank vectors, a;; and as;, for the two speakers from

the visual features using MAP estimation.
3. Construct visually-derived Wiener filter of Equation (4.9).

4. Apply perceptual gain transforms to the Wiener filter from equations (4.12)

to (1.15) to give perceptual gain, H (7).
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This gives a 23-D filterbank-domain perceptual gain function. These perceptual
gains are used in the next section for the extraction of the target speaker from the

mixed speech.

4.4.2 Speaker separation

From the single-channel audio input that comprises the mixed speech, short du-
ration frames of speech are extracted and the magnitude spectrum, |Y;(k)| and
phase, /Y;(k), are computed. The perceptual gain can now be applied to the
magnitude spectrum of the mixed speech to extract the target speaker. However,
before this can be applied the 23-D filterbank-domain perceptual gain must be
interpolated up to the dimensionality of the magnitude spectrum, which in this
work is K=128 spectral bins. The magnitude spectrum estimate of the target

speaker, | X1 ,(k)|, can now be computed as
X1 (k)| = Hy(F)| Vi (k)] (4.16)

The magnitude spectrum estimate of the target speaker is now combined with the
phase of the mixed speech, /Y;(k), and an inverse Fourier transform is applied to

obtain a short-duration frame of time-domain samples.
Z14(n) = IFFT(| X, (k)| 2Yi(k)) (4.17)

Overlap and adding of frames gives the final estimate of the target speaker. Fig-
ure 4.3, explains the extraction process of a single frame of the target speaker 1

from the mixed speech. The similarity between the extracted and the reference
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magnitude spectrums in Figure 4.3 (g), shows the effectiveness of the method.
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Figure 4.3: The process of extracting a target speaker frame from
the mixed speech using visually derived Wiener filtering: a) estimated
speaker 1 filterbank, b) estimated speaker 2 filterbank, c) interpolated
estimated speaker 1 filterbank, d) interpolated estimated mixed (noisy)
filterbank, e) Wiener filter gain, f) Mixed magnitude spectrum, g) ex-
tracted and reference magnitude spectrums.
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4.5 Experimental results

This section evaluates the effectiveness of the proposed method of visually-derived
speaker separation. First the audio-visual data and experimental set up used, are
described. Secondly, two sets of experimental results are presented that evaluate
the quality and the intelligibility of the target speaker’s speech following visually-

derived speaker separation.

4.5.1 Audio-visual data

In the case of experiments with the Messiah (male) and LIPS2008 (female) databases,
the first 200 utterances of each database were used for training while the remaining
79 utterances were used for the evaluation. The audio in both databases was down
sampled to a sampling frequency of 8 kHz and filterbank vectors extracted at 10
ms intervals as discussed in Section 4.3. The video was up sampled to 100 frames
per second to match the audio frame rate. For both speakers, video was captured
from the front of the face and the ROI was centred on the speaker’s mouth.

The experimental scenario investigated is of two speakers talking simultane-
ously and being located close together in space, with the male speaker the target
and the female the competing speaker. The mixed speech was created by mix-
ing the speech utterances from the two databases to get the mixed signals (noisy
speech). The Lips2008 utterances are scaled and added to the Messiah database
utterances in such a way that the resulting mixed utterances are having a signal-
to-interference ratio (SIR) of -10dB, -5dB, 0dB, 05dB, 10dB and 20dB. The SIRs
are calculated only over speech periods by removing the initial and end silence

from the utterances.
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In the case of experiments with the GRID database, the data of speaker 6
(male) and speaker 4 (female) was used. Out of the 1000 utterances, 800 were
used for training and the remaining 200 for the evaluation. The female speaker
utterances are scaled and added to the male speaker’s utterances in such a way
that the resulting mixed utterances are having a signal-to-interference ratio (SIR)
of -10dB, -5dB, 0dB, 05dB, 10dB and 20dB. The rest of the experimental set
up was kept the same as in the case of the other two databases. For a detailed

discussion of the audio-visual speech databases used, please refer to Chapter 2.

4.5.2 Speech quality

The extracted speech § (either speaker 1 or speaker 2) in the time domain, is

decomposed as [101]

S = Starget + einterf + €n0ise + eartif (418)

where s;,4e¢ Tepresents the part of s, perceived as to be coming from the tar-
get speaker, €;,.r represents the part coming from the competing speaker, €5
represents the part coming from the sensor noises (additive noise), and e, s repre-
sents the part introduced by the algorithmic processing such as musical noise. To
measure the quality of the extracted target speech, various energy ratios expressed
in decibles (dB) are calculated from the above four components of the extracted
speech. These ratios are Signal-to-Interference Ratio (SIR), Signal-to-Distortion
Ratio (SDR) and Signal-to-Artefact Ratio (SAR), and these ratios are defined as
[101]
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2
SIR = 10log,, M (4.19)
leimters|
_ ||Starget||2
SDR = 10logy, (4.20)

||eint67"f + €r0ise + eartif||2

2
S arge inter noise
SAR = 10log,, I5tars t“?"t'ffu*‘; | (4.21)

Tests were carried out at initial SIRs of -10dB, -5dB, 0dB, 5dB, 10dB and 20dB.
Visually-derived Wiener filter speaker separation was applied to the mixtures using
the four perceptual gain functions introduced in Section 4.2.1 and the resulting
SIRs, SDRs and SARs were computed using the ‘BSS evaluation’ toolbox [29] and

the results are shown in Figure 4.4, Figure 4.5, Figure 4.6.
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The SIR results in Figure 4.4, show that using the Wiener gain, H1, gives

a good increase in quality in terms of the suppression of the competing speaker,
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particularly at the lower SIRs. Applying a perceptual gain transform gives further
increases in the output SIR. The cube gain function H3 gives best performance,
with gain function H2 (with a=0.6) being very close. The perceptual gain function
H?2 (with a=0.6), corresponds to the Wiener gain with spectral masking below
an SIR of 1.8dB. Lowering the point of spectral masking reduces speech quality
in terms of the output SIR. The output SIR gains decrease with increase in input
SIRs and very little gains are obtained at 20dB.

The SDR results in Figure 4.5, show that using the Wiener gain and the various
perceptual transforms gives a good increase in SDR at lower SIRs (from -10dB to
0dB). The SDR gains decrease with an increase in input SIRs. The performance
of the various perceptual gain functions does not vary by a considerable amount
in this lower SIR region. The performance of gain function H2 (with @=0.6) and
H3 in terms of SDR gains deteriorates rapidly in the higher input SIR regions i.e.
above 10dB. Gain function H1 and H2 (with @=0.2) performs the best in this
higher input SIR region as these functions do not introduce much distortion into

the extracted speech by spectrally masking their parts.
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The SAR results in Figure 4.6, show that the cube gain function H3 and H2

(with @=0.6), give the worst performance in terms of output SAR as these func-
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tions introduce more distortion by spectrally masking more parts of the extracted
speech. H1 and H2 (with a=0.2), give the best performance in terms of SAR as

these functions introduce less processing distortion.
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The effectiveness of the speaker separation is illustrated in Figure 4.7 and

Figure 4.8. Figure 4.7 shows the spectrograms of an utterance from the target
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speaker (male), the resulting mixture with a competing speaker at an SIR of 0dB
and finally the result of visually-derived speaker separation using H2 with a=0.4.
This shows that the mixture has been processed successfully to remove most of

the unwanted components from the wanted source.
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In the same way, in Figure 4.8, the competing speaker (female) used in the

mixture in the Figure 4.7, has been extracted using the same configuration as in

Figure 4.7.
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Figure 4.8: Spectrograms of the utterance ‘Set white with v four soon’:
a) competing speaker (female), b) mixed with target speaker at an SIR
of 0dB, c¢) visually-derived speaker separation using H2 with a=0.4
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4.5.3 Speech intelligibility

In addition to speech quality it is useful to know whether the proposed visually-
derived speaker separation is able to improve the intelligibility of the target speaker.
For the Messiah database target speaker, to measure the intelligibility an uncon-
strained mono-phone speech recogniser was employed. This comprised a set of
45 mono-phone HMMs including silence that were arranged in a fully connected
grammar. The total number of states per HMM are five including the two non-
emitting states 1 and 5. For the GRID database, a whole word speech recogniser
is used. Each utterance follows a grammar containing six words of the following
structure

command— colour— preposition— letter— digit— adverb.

The total number of models including silence is 52 with eight active states per
HMM.

For the Messiah and LIPS2008 databases, the initial 200 utterances were used
for training while the remaining 79 utterance were used in the testing. Similarly
for the GRID database, out of the 1000 utterance, 800 were used for training
and 200 for testing. For both sets of results, 23-dimensional filterbank vectors
of 20ms duration at 10ms intervals from the estimates of the target speaker’s
speech were extracted to be used in the recognisers. Figure 4.9 shows mono-phone
and word recognition accuracy for the target speakers of the two sets of results
using various perceptual gain functions at SIRs from -10dB to +20dB. The entry
named ‘Mixture’, shows results when no speaker separation has been applied to

the mixture.
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Figure 4.9: Accuracy variations (%) with SNR for the target speaker
of: top) Messiah database, bottom) GRID database.

The unconstrained mono-phone accuracy for the original target speaker in

clean conditions is 49.22%. The results in Figure 4.9, for the Messiah database
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speaker (top panel), show that with no speaker separation, recognition accuracy
falls significantly as SNRs reduce with a sizeable drop observed below 20dB. Ap-
plying speaker separation using the Wiener gain (i.e. H1) gives a good increase
in recognition accuracy for the target speaker over the uncompensated case. The
perceptual gain functions give further increases in recognition accuracy. The gain
functions H2 with a=0.6 and H3 perform the worst at many times although these
functions were performing as the best in case of SIR gains. The reason for this
poor intelligibility performance is that these gain functions introduce heavy dis-
tortions into the wanted speech signals due to heavy spectral masking. It is a kind
of trade-off between the unwanted signal’s suppression and the wanted signal’s
distortion. Those gain function who remove lesser parts of the processed speech,
perform better on intelligibility but worse on SIR gains. Consistently best per-
formance is given by H2 a=0.2 at the very low SNRs of -10dB and -5dB, while
at higher SNRs, H2 with a=0.4 is better. The piecewise gain function of H4
also performs well and has highest recognition accuracy when averaged across all
SNRs. H1 performs the worst in the lower SIR region because of the presence of
unwanted speech of the competing speaker.

The word accuracy for the target speaker of the GRID database in clean con-
ditions is 99%. The results for the GRID database target speaker, Figure 4.9
(bottom panel), almost follows the same pattern, with the exception of gain func-
tion H1, which performs the best all the times for the GRID target speaker. The
difference is because of the insertion errors. H1’s, performance is heavily degraded
by insertion errors for Messiah database speaker. These insertion errors can be
attributed to the nature of the recogniser (mono-phone) and the lower levels of

audio-visual correlation in the LIPS2008 database, and also to the nature of the
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two data sets, as the GRID data set is consisting of speech of isolated words while
the Messiah and LIPS2008 data sets consist of continuous speech. Also for GRID
target speaker, the intelligibility results are better for the unprocessed mixture as
compared to H2 with a=0.4 and a=0.6 and H3 as these gains functions spectrally
mask huge portions of the mixed speech causing the loss of wanted segments of
the target speaker.

During the speaker separation process, some useful segments of the target
speaker are lost. The speech recognition accuracy can be improved by using either
AV-recogniser or by reconstructing the lost segments by using a suitable technique
such as missing data techniques [7]. But here the purpose is not the recognition
accuracy but speaker separation and the recognition results are presented just to

show the effectiveness of the method.

4.6 Summary

This chapter provided an overview of Wiener filtering for speech enhancement
and speaker separation. Clean speech and noise estimates are required for the
construction of Wiener filter for speech enhancement. While for the construction
of Wiener filter for speaker separation, the clean speech estimates of target and
competing speakers are required. Speaker separation is a more difficult problem
because of the similarity between the acoustic features of the target and competing
speakers. To exploit the higher levels of correlation between the audio and visual
speech features, it was proposed to obtain the power spectra statistics for the
target and competing speakers from the visual speech features taken from the two

speakers. The Wiener filter was constructed in the filterbank domain because the
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audio-visual correlation is found to be insufficient to give a fine resolution estimate,
although estimation of a less spectrally detailed filterbank vector is possible. The
Wiener filter gains were modified using several perceptual gain functions, in the
search for improved speech quality and intelligibility.

The results were shown for two sets of data: Messiah and LIPS2008 data set
and the GRID data set, and for different SIRs of -10dB to +20dB. The results
showed that the proposed method of Wiener filtering and the subsequent per-
ceptual gain functions, improve the speech quality in terms of the suppression of
the competing speaker and the intelligibility of the extracted target speaker. The
selection of the perceptual gain functions is a trade-off between the quality and
intelligibility. Those gain functions that try to suppress heavily the competing
speaker by spectrally masking more parts of the mixed speech, introduce more
distortion into the extracted target speech. So to keep a balance between the
quality and intelligibility, the gain functions H2 with a=0.2 and with a=0.4 and

H4 seems to be doing better.
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Chapter 5

Speaker Separation using

Visually-derived Binary Masks

Preface

This chapter proposes a solution for the problem of single-channel speaker separa-
tion and exploits visual speech information to aid the separation process. Audio
from a mixture of speakers is received from a single microphone and to supple-
ment this, video from each speaker in the mixture is also captured. The visual
features are used to create a time-frequency binary mask that identifies regions
where the target speaker dominates. These target dominant regions are retained
and form the estimate of the target speaker’s speech. While the regions where the
competing speaker is dominant, are masked and discarded. Experimental results
compare the visually-derived binary masks with ideal binary masks which shows
a useful level of accuracy. The effect of the number of filterbank channels on mask

accuracy is also studied . The effectiveness of the proposed method of speaker sep-

85



CHAPTER 5. SPEAKER SEPARATION USING VISUALLY-DERIVED
BINARY MASKS

aration using visually-derived binary masks is then evaluated through estimates
of speech quality and speech intelligibility. These results show substantial gains

in quality and intelligibility for the processed speech over the original mixture.

5.1 Introduction

Most methods of speaker separation exploit the masking property of human speech
perception. Humans have this inborn capability to either suppress the unwanted
speakers and noises or extract the target speaker or both at the same time [31].
Most of the speaker separation methods aim to identify and extract time-frequency
regions of the speech mixture that are dominated by the target speaker and mask
out the other regions. These masks are known as binary masks and each time-
frequency component is set to either one or zero depending on whether the region
is dominated by the target speaker or is to be masked. The challenge is to estimate
accurately the mask and identify time-frequency components to be retained and
those which are to be masked. Various approaches have been employed to find the
mask and these typically operate by grouping time-frequency regions according
to various criteria. Omne of the most effective is computational auditory scene
analysis (CASA) which groups regions perceptually, making use of cues such as
harmonicity and onset and offset times [102]. Alternative approaches have used
statistical approaches whereby dependencies between time-frequency regions are
established and used to form the mask. An extension of the binary mask is the
soft mask, where instead of a binary decision as to whether a time-frequency
component is masked a probability of masking is computed which thereby allows

some uncertainty to exist in the mask [77], [84].
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This work proposes using visual speech information from each speaker in the
mixture to estimate the binary mask. Significant correlation exists between audio
and visual speech features extracted from a speaker and this can be exploited to
enable audio features to be estimated from visual features [105], [4]. Given audio
feature estimates for the speakers in the mixture an estimate of the binary mask
can be made from which the target speaker can be extracted. The proposed system
uses a single microphone as the audio input which receives the mixture of speech
from the speakers. Information to enable separation of speakers is provided by
visual speech features that are extracted from the mouth region of each speaker
in the mixture.

The proposed method of visually-derived binary masks estimation for speaker
separation is described in Section 5.2. To compute the binary masks, audio esti-
mates of the target and competing speakers are required and these estimates are
made from the corresponding visual speech features and this estimatition process
is discussed in Section 5.3. Experimental results are presented in Section 5.4 which
first examine the accuracy of the visually-derived binary masks and then evaluate
the extracted target speaker’s speech in terms of speech quality and intelligibility.
The entire process of speaker separation using visually derived binary masking is
shown in Figure 5.1, where the top panel shows the ‘separation process’ while the

bottom panel shows the ‘training process’.
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Figure 5.1: Speaker separation using visually derived binary masking
including the training stage.
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5.2 Visually-derived binary masks

In this chapter, the audio-visual correlation between a speaker’s mouth shape and
the resulting audio signal is exploited for deriving binary masks to be used for the
single channel speaker separation task. Speaker separation using binary masks
involves first the estimation of a time-frequency mask where each component sig-
nifies whether that time-frequency component is dominated by either the target
speaker or interfering speakers. Areas where the binary mask indicates the region
is target-dominated are retained, while regions that are dominated by interfering
speakers are masked and discarded. This work exploits audio-visual correlation
and proposes a method of estimating the binary mask using visual speech infor-

mation.

5.2.1 Mixing model

In the time-domain it is assumed that a mixed signal, y(n), is made from the
addition of speech from a target speaker and an interfering speaker, x;(n) and
x9(n), where

y(n) = x1(n) + xo(n) (5.1)

By applying the Fourier Transform we get

Y(f) = Xu(f)+Xa(f) (5.2)

where X;(f) and X,(f) are the complex spectrums of speaker 1 and speaker 2
respectively. By taking element-wise squared magnitude and assuming that the

two signals are uncorrelated [77],[75], it can be written in the power spectrum
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domain as

Y (AP = [X(HP+ X)) (5:3)

where |Y'(f)|?, | X1(f)[* and | X3(f)]? are the power spectra of the mixture and the

two speech signals respectively, where f represents the spectral bin.

5.2.2 Estimation of binary mask

The proposal in this work is to use information from visual speech features taken
from both the target speaker and interfering speaker to estimate the binary mask.
Analysis of audio and visual speech features has shown that significant correlation
exists between the two, enabling audio speech features to be estimated from vi-
sual speech features [4]. In particular, broad spectral envelope features such as log
filterbank or MFCC features can be estimated from 2D-DCT or AAM visual fea-
tures with good accuracy [2]. An advantage of such a visually-derived estimate is
that the resulting audio features are free from any interference from other speakers
or any other sound sources. Estimation of fine spectral detail, such as harmonic
frequencies, is not possible from the visual features as they do not contain source
information but a smoothed spectral representation is attainable.

From the target and interfering speaker, visual features, vy () and vy (t) are ex-
tracted at each time frame, t. From the visual features, estimates of corresponding

audio features, a;(t) and as(t), are made using MAP estimation

a,(t) = MAP(v, (1))

as(t) = MAP(v, (1)) (5.4)

90



CHAPTER 5. SPEAKER SEPARATION USING VISUALLY-DERIVED
BINARY MASKS

where the estimation is shown by the function M AP(). The process of estimating
audio features from visual features is explained in Section 5.3. In this work the
visual features are formed from a 2D-DCT of an ROI centred around each speaker’s
mouth, while the audio features are from a D-dimensional log filterbank.

To compute the binary mask, the estimated D-dimensional log filterbank vector
must be interpolated to the dimensionality of the power spectral features which in
this work is F'=128, and D < 128. This is achieved by cubic spline interpolation to

give time-frequency spectral representations for the target and interfering speakers,

Al (t, f) and Ag(t, f)

Aq(t, f) = interp(a;(t))

Aa(t, f) = interp(ay(t)) 1<t<T,1<f<F (5.5)

where T is the number of time frames in the utterance. The binary mask, m(¢, f),
is now computed by comparing the spectral values at the corresponding T-F units
of the target and competing speakers as shown in Equation 5.6, where the value
of binary mask is set to 1 when the target speaker’s energy is greater than that
of the interfering speaker, or in other words when the local signal-to-noise ratio

(SNR) is greater than 0dB typically.

R 1 Al(t7f) ZAQ(t7f>
0 Al(t> f)<A2(t> f)
This is based on the log-max assumption which assumes that in any particular

frequency band at any time, the energy contribution of one speaker in the mixture

is dominant and masks the other speakers in the mixture [84].
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5.2.3 Time-domain reconstruction

From the time-frequency representation of the mixed signal magnitude spectrum,
Y (¢, f)], an estimate of the magnitude spectrum of the target speaker, | X; (¢, f)|,

can be made using the estimated binary mask
X Nl =i HIY ()l 1<t<T 1< f<F (5.7)

The sequence of magnitude spectral frames of the filtered target speech must now
be transformed into a discrete time-domain speech signal, Z;(n). This is achieved
by first combining each magnitude spectrum estimate with the phase of the original
mixed speech signal, /Y (¢, f), and then applying an inverse Fourier transform to

obtain a short-duration frame of time-domain samples.
Z14(n) = IFFT(|IX1 (¢, £)|2Y (¢, £)) (5.8)

These frames are then overlapped by 50% and added together to create the esti-

mate of the target speaker’s speech.

5.3 Estimation of audio features from video

The correlation between audio and visual features is exploited to estimate audio
features from visual features. The estimation process involves first training a GMM
to model the joint density of audio and visual speech features. MAP estimation
can then be applied to estimate audio features, a;(t), from visual features. For

the details of the estimation process please refer to Chapter 3.
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5.3.1 Awudio and visual features

D-channel mel-scale filterbank features, a;, are used as the audio features. These
are extracted from 20ms duration frames of audio at 10ms intervals in accordance
with the ETSI XAFE standard [28]. The dimensionality of the filterbank, D, is an
important parameter and its effects on mask estimation accuracy and filterbank
estimation errors are examined in Section 5.4.2 and Section 5.4.4 respectively.
Visual features, vy, are extracted from an ROI centered on a speaker’s mouth. A
2D-DCT is then applied to the ROI and the first 15 coefficients are retained in
a zigzag manner as the 2D-DCT visual vector. For a detailed discussion of these

audio and visual features, please refer to Chapter 2.

5.4 Experimental results

An evaluation of the effectiveness of the visually-derived binary masks for speaker
separation is made in this section. First, the audio-visual data and experimental
set up used, are described. Second, an analysis of the accuracy of the visually-
derived binary masks is presented. Finally, experimental results are presented on
the quality and the intelligibility of the target speaker’s speech following visually-

derived speaker separation.

5.4.1 Awudio-visual data

In the case of experiments with the Messiah (male) and LIPS2008 (female) databases,
the first 200 utterances of each database were used for training while the remain-

ing 79 utterances were used for the evaluation. The audio in both databases was
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down sampled to a sampling frequency of 8 kHz and he video was up sampled to
100 frames per second to match the audio frame rate.

The experimental scenario investigated is of two speakers talking simultane-
ously and being located close together in space, with the male speaker the target
and the female the competing speaker. The mixed speech was created by mix-
ing the speech utterances from the two databases to get the mixed signals (noisy
speech). The LIPS2008 utterances are scaled and added to the Messiah database
utterances in such a way that the resulting mixed utterances are having a signal-
to-interference ratio (SIR) of -10dB, -5dB, 0dB, 05dB, 10dB and 20dB. The SIRs
are calculated only over speech periods by ignoring the initial and end silence from
the utterances.

In the case of experiments with the GRID database, the data of speaker 6
(male) and speaker 4 (female) were used. Out of the 1000 utterances, 800 were
used for training and the remaining 200 for the evaluation. The female speaker
utterances are scaled and added to the male speaker’s utterances in such a way
that the resulting mixed utterances are having a signal-to-interference ratio (SIR)
of -10dB, -5dB, 0dB, 05dB, 10dB and 20dB. The rest of the experimental set
up was kept the same as in the case of the other two databases. For a detailed

discussion of the audio-visual speech databases used, please refer to chapter 2.

5.4.2 Mask accuracy

The accuracy of the visually-derived binary mask is evaluated by comparing it
with the ideal binary mask. The ideal binary mask is computed from the actual

energy levels in the target and interfering speakers at each time-frequency point
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for the clean reference data before mixing. The metric used for evaluation is
the percentage of components in the visually-derived mask that were estimated

correctly and is defined as

77A/Ltotal (ta f) - mincorrect (ta f)

A x 100 5.9
mtotal(ta f) ( )

Accuracy =

where Miycorrect (t, f) and My (t, f) are the incorrectly identified and total binary
masks respectively and the ‘Accuracy’ is representing the percentage of correctly
identified binary masks.

The experiments examine the effect of different numbers of filterbank channels
(from D =2 to D = 50) and at SIRs from -10dB to +20dB, which are reported in
Table 5.1. The results show that mask accuracy improves slightly with increasing
numbers of filterbank channels but this improvement varies only by at most at

around 3%.

SIR -10dB | -5dB | 0dB 5dB | 10dB | 20dB
D=2 71.57 | 66.27 | 67.07 | 70.37 | 74.53 | 82.79
D=6 72.06 | 67.49 | 67.60 | 69.86 | 74.49 | 83.20
D=12 || 73.05 | 67.43 | 67.74 | 70.08 | 73.95 | 83.20
D=18 || 73.76 | 68.33 | 67.96 | 70.39 | 74.13 | 83.14
D=23 || 72.03 | 66.88 | 68.30 | 69.32 | 74.03 | 82.04
D=27 || 73.21 | 68.44 | 68.42 | 70.96 | 74.80 | 83.23
D=30 || 73.19 | 68.38 | 68.32 | 71.54 | 75.57 | 83.04
D=50 || 72.95 | 68.66 | 68.96 | 71.93 | 75.30 | 83.09

Table 5.1:  Visually-derived mask estimation accuracy (%) at SIRs
from -10dB to +20dB and filterbank sizes from 2 to 50 channels for
Messiah database .
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5.4.3 Effect of number of channels on visually-derived and

ideal binary masks

To investigate further the effect of varying the number of filterbank channels, an
artificial test was carried out that took the ideal binary masks calculated from
the D-dimensional ideal filterbank features interpolated to 128 dimensions. The
accuracy of these ideal binary masks from the D-dimensional ideal filterbank fea-
tures was measured by comparing it with the ideal binary masks computed from
the ideal 128-dimensional filterbank features. Table 5.2 compares the accuracy of
these ideal filtered binary masks to the visually-derived binary masks extracted

at an SIR of 0dB. The results for the filtered ideal mask show that the process

Number of channels || Accuracy of Visually-derived | Accuracy of Filtered ideal
D=2 67.07 82.01
D=6 67.60 84.94
D=12 67.74 86.97
D=18 67.96 87.70
D=23 68.30 88.62
D=27 68.42 88.84
D=30 68.32 88.94
D=50 68.96 91.06

Table 5.2:  Comparison of the accuracy (%) of the visually-derived
binary masks and ideal binary masks subject to filterbank quantisation,
for filterbank sizes from 2 to 50 channels at an SIR of 0dB for Messiah

database.

of filterbank quantisation introduces a substantial reduction in mask accuracy —
with quantisation to 2 channels, accuracy is reduced by almost 18%. However, ac-
curacy of the filtered ideal mask does recover rapidly as more filterbank channels
are introduced. In comparison, recovery of the visually-derived binary mask is

much less — by only 2% in comparison to 10% when moving from 2 to 50 channels
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in case of ideal binary masks. This suggests that there is a fairly low limit on the

amount of spectral detail that can be extracted from visual features.

5.4.4 Filterbank estimation accuracy

The effect of varying the number of filterbank channels was further studied using
filterbank estimation errors for the filterbank audio features estimated from the
visual features. The mean filterbank estimation error in percentage, E, was defined
in Chapter 3 in Equation 3.10. These estimation errors are shown in Table 5.3
along with the filterbank estimation errors for the ideal filterbank audio features

for various number of channels. The results show huge estimation errors for both

Number of channels || Errors for visually derived | Errors for Filtered ideal
D=2 44.22 39.77
D=6 36.61 31.68
D=12 29.13 23.77
D=18 24.69 19.20
D=23 22.45 16.32
D=27 21.00 14.59
D=30 20.08 13.48
D=50 16.56 8.33

Table 5.3:  Comparison of the filterbank estimation errors (%) of the
visually-derived filterbank audio features and ideal filterbank audio fea-

tures subject to filterbank quantisation, for filterbank sizes from 2 to 50
channels at an SIR of 0dB for Messiah database.

the visually-derived and ideal filterbank audio features at the lower number of
filterbank channels. The decrease in estimation errors is very rapid as the number
of channels are increased from D = 2 to D = 23 channels. For the visually derived
filterbank features, the estimation errors drop from 44.22% for D = 2 channels to

16.56% for D = 50 channels, giving a decrease of 27.66% in estimation errors. For
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the ideal filterbank features, the estimation errors drop from 39.77% for D = 2

channels to 8.33% for D = 50 channels, giving a decrease of 31.44% in estimation
erTors.

By comparing the results for mask accuracy and filterbank estimation errors,
from Table 5.2 and Table 5.3, an observation is drawn. The comparison show that
by increasing the numbers of filterbank channels from 2 to 50 channels for the
visually derived cases, the mask accuracy improves slightly by at most at around
3% but the reduction in filterbank estimation errors is huge and is 27.66%. The
reason for this is that the reduction of estimation errors require an accurate es-
timate of the filterbank features which is not possible from just 2 channels and
as the number of channels are increased, the estimate of the filterbank features
becomes more accurate and results in less estimation errors. While the estima-
tion of binary masks only requires a rough estimate of the energy levels of the
estimated features, and an even lower number of filterbank channels also provide
good information to estimate the binary masks with a reasonable accuracy.

Figure 5.2, Figure 5.3 and Figure 5.4, provide further insight into mask esti-
mation and show the ideal binary masks and then binary masks computed for 2,
23 and 50 channel filterbanks, with each showing the ideal and visually-derived
masks. White regions indicate regions that are dominated by the target speaker
and are to be retained. Examination reveals that at low numbers of channels the
entire time frame is often classed as either target or interfering speaker due to the
lack of spectral details available. As the number of channels increases, spectral
details improve and so more frequency discrimination is possible. This is certainly
evident in the filtered ideal masks, but less discrimination is available from the

visually-derived masks as fine spectral details are not present in the visual features.
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5.4.5 Speech quality

To estimate the quality of the target speaker’s speech, SIR is used as the measures.
In case of experiments with the Messiah and LIPS2008 databases, tests used the
set of 79 mixed sentences and were carried out at initial SIRs of -10dB, -5dB,
0dB, 5dB, 10dB and 20dB. The visually-derived binary masks were applied to
the mixtures and the resulting SIRs computed using the BSS toolbox [29]. The

SIR results are shown in Table 5.4. The results show that the visually-derived

| Input SIR || -10dB | -5dB | 0dB | 5dB | 10dB | 20dB |

D=2 0.06 | 2.19 | 482 | 8.07 | 11.73 | 20.36
D=6 -0.11 | 1.97 | 5.03 | 8.13 | 11.91 | 20.19
D=12 -0.78 | 1.16 | 4.47 | 7.81 | 11.53 | 19.95
D=18 -0.54 | 1.49 | 429 | 7.68 | 11.41 | 19.82
D=23 -0.19 | 1.77 | 3.50 | 8.03 | 11.91 | 19.86
D=27 -2.46 | -0.03 | 3.41 | 7.38 | 10.94 | 19.29
D=30 -2.30 1 -0.26 | 3.11 | 741 | 11.34 | 1943
D=50 -3.32 | -1.02 | 2.70 | 6.75 | 10.83 | 19.48

Table 5.4: Comparison of input and output SIRs for filterbank sizes
from 2 to 50 channels.

binary masks are able to extract the target speaker from the mixture and thereby
increase the SIRs. Largest gains in SIR occur at the lower input SIRs. The results
also show that the number of filterbank channels does not have a large effect on
the output SIR which is supported by the findings in Table 5.1, that showed little
differences in binary masks accuracy for varying the number of channels. The
results also show that higher SIR gains are obtained at lower number of channels.

Tests were also carried out using the GRID database. The set of 200 mixed
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sentences was used and the tests carried out at initial SIRs of -10dB, -5dB, 0dB,

5dB, 10dB and 20dB using D = 23 channels. As the results in Table 5.1 show
that higher SIR gains are obtained at lower number of channels and the results in
Table 5.6, show that higher recognition accuracy is achieved at higher number of
filterbank channels, therefore to keep a balance between quality and intelligibility,
D = 23 channels is a good option. The SIR results for the GRID database target

speaker are shown in Table 5.5

Input SIR -10dB | -5dB | 0dB | 5dB | 10dB | 20dB
Output SIR(dB) 1.67 | 4.51 | 7.64 | 10.90 | 14.60 | 22.34

Table 5.5: Comparison of input and output SIRs for the target speaker
of GRID database for D = 23 channels.

The effectiveness of the speaker separation is illustrated in Figure 5.5, Figure
5.6 and Figure 5.7, which show spectrograms of an utterance from the target
speaker, the interfering speaker, the resulting mixture at an SIR of 0dB, and finally
the results of the visually-derived binary masking using 2, 23 and 50 filterbank
channels. The results show many of the attributes of the target speaker to have

been successfully extracted from the mixture.

5.4.6 Speech intelligibility

This section investigates the effectiveness of speaker separation using the visually-
derived binary masks in terms of speech intelligibility. In this work an estimate of
speech intelligibility is made using an unconstrained monophone speech recogniser.
This comprised a set of 44 monophone HMMs that were arranged in a fully con-

nected grammar. From the masked time-domain estimates of the target speaker’s
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Figure 5.5: Spectrograms showing: a) target speaker saying ‘Higher oil
prices may amaze those thinking of investing their money’, b) interfering
speaker saying ‘Zulu warriors have sure ideas when watching a video yeti
eat pure nectarines’ c) target speaker mized with interfering speaker at

an SIR of 0dB , d) target speaker extracted using D=2 channels.
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Figure 5.6: Spectrograms showing: a) target speaker saying ‘Higher oil
prices may amaze those thinking of investing their money’, b) interfering
speaker saying ‘Zulu warriors have sure ideas when watching a video yeti
eat pure nectarines’ ¢) target speaker mized with interfering speaker at

an SIR of 0dB , d) target speaker extracted using D=23 channels.
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Figure 5.7: Spectrograms showing: a) target speaker saying ‘Higher oil
prices may amaze those thinking of investing their money’, b) interfering
speaker saying ‘Zulu warriors have sure ideas when watching a video yeti
eat pure nectarines’ ¢) target speaker mized with interfering speaker at
an SIR of 0dB , d) target speaker extracted using D=50 channels.
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speech, MFCC vectors were extracted in accordance with the ETSI XAFE stan-

dard [28]. Table 5.6 shows recognition accuracy for the target speaker’s speech
extracted using from 2 to 50 channel filterbanks and at SIRs from -10dB to +20dB.
The table also shows baseline performance when no speaker separation (NSS) is
applied. Unconstrained monophone accuracy for the original target speaker in
clean conditions is 49.22%. These speech recognition tests are included to provide
an indication of intelligibility and not as a proposed method of speaker separa-
tion for speech recognition. For this task, effective methods have been developed
that operate on the features themselves without reconstructing an audio signal

[8]. With no speaker separation (NSS), recognition accuracy falls significantly as

SIR -10dB | -5dB | 0dB 5dB | 10dB | 20dB
NSS -7.34 | =773 | -3.30 | 2.71 8.88 | 28.84
D=2 6.81 8.82 | 11.83 | 15.10 | 21.50 | 35.00
D=6 7.17 | 10.79 | 12.42 | 15.07 | 21.68 | 33.88
D=12 || 7.99 997 | 13.18 | 16.18 | 21.82 | 34.95
D=18 | 820 | 10.23 | 13.71 | 17.16 | 23.83 | 35.06
D=23 | 9.70 | 12.53 | 14.57 | 18.67 | 23.27 | 35.06
D=27 | 9.73 | 12.33 | 15.92 | 18.87 | 24.59 | 35.03
D=30 | 9.35 | 13.24 | 16.16 | 19.43 | 24.30 | 34.97
D=50 || 10.97 | 13.74 | 16.90 | 18.76 | 24.39 | 35.21

Table 5.6:  Target speaker monophone recognition accuracy (%) at
SIRs from -10dB to +20dB for filterbank sizes from 2 to 50 channels.

SIRs reduce with a sizeable drop observed below 20dB. Applying speaker separa-
tion using the visually-derived binary mask improves recognition accuracy for the
target speaker over the uncompensated case. Recognition accuracy consistently
increases with larger numbers of filterbank channels up to 27, but in most of the
cases best recognition accuracy was achieved with 50 channels.

Intelligibility tests were also carried out using the GRID database data. The
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set of 200 mixed sentences was used and the tests were carried out at initial
SIRs of -10dB, -5dB, 0dB, 5dB, 10dB and 20dB using D = 23 channels. For the
GRID database, a whole word speech recogniser is used. Each utterance follows
a grammar containing six words of the following structure

command— colour— preposition— letter— digit— adverb.

The total number of models including silence is 52 with eight active states per
HMM. The results are shown in Table 5.7 where NSS represents when no speaker
separation is applied and SS represents when speaker separation using binary

masking is applied. The intelligibility results for the GRID database in Table

SIR || -10dB | -5dB | 0dB | 5dB | 10dB | 20dB
NSS || 34.67 | 45.25 | 55.92 | 72.5 | 82.92 | 95.42
SS 18.50 | 21.00 | 31.75 | 61.25 | 79.33 | 90.33

Table 5.7: GRID database target speaker word accuracy (%) at SIRs
from -10dB to +20dB for filterbank sizes of 23 channels.

5.7 show larger decrease in word recognition accuracy at lower SNRs and smaller
decrease in word recognition accuracy at higher SNRs. This is because of the
reason that larger segments are dominated by the competing speaker at lower
SNRs and are discarded. The results in Table 5.6 and Table 5.7 also prove that
the word recognition accuracy is much more sensitive to the discarding of spectral

segments than the monophone recognition accuracy.

5.5 Summary

This chapter provided an overview of speaker separation using binary masking.

Instead of using purely audio information for deriving the binary masks, visual
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speech features were proposed to provide the information for the derivation of the
binary masks. The experimental results in terms of masks accuracy, extracted
speech quality and the intelligibility, confirmed that visual speech features can
provide sufficient spectral information that can be used to create binary masks for
speaker separation purposes. It is observed that the number of filterbank channels
does not affect significantly either the mask estimation accuracy or the output SIRs
following speaker separation. However, in terms of speech recognition accuracy
and especially the filterbank estimation errors, the method is more sensitive to
the number of filterbank channels. The reason for this is that the reduction of
estimation errors require an accurate estimate of the filterbank features which is
not possible from just 2 channels and as the number of channels are increased,
the estimate of the filterbank features becomes more accurate and results in less
estimation errors. While the estimation of binary masks only requires a rough
estimate of the energy levels of the estimated features and even lower number of
filterbank channels also provide good information to estimate the binary masks
with reasonable accuracy.

At present the proposed method uses speaker-dependent models, and while
this seems typical of single channel speaker separation methods, it would be desir-
able to have a speaker-independent system. The high levels of speaker variability
in the visual domain make this challenging, but methods of speaker adaptation
and speaker-independent visual features are currently being investigated [46]. At
present the requirement of speaker-specific GMMs is necessary to attain good

audio feature estimates as speaker variability is high for visual features [46].
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Chapter 6

Exploiting audio and visual
information for single-channel

speaker separation

Preface

This chapter proposes a method to exploit both audio and visual speech infor-
mation to extract a target speaker from a mixture of competing speakers. The
chapter begins by taking an effective audio-only method of speaker separation,
namely the soft mask method, and modifying its operation to allow visual speech
information to improve the separation process. The audio input is taken from a
single channel and includes the mixture of speakers, and a separate set of visual
features is extracted from each speaker. This allows modification of the separa-
tion process to include not only the audio speech but also visual speech from each

speaker in the mixture. Experimental results are presented that compare the pro-
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posed audio-visual speaker separation method with the audio-only method using

both speech quality and intelligibility metrics.

6.1 Introduction

This chapter addresses the problem of single-channel speaker separation by using
information from both audio and visual sources. Humans are very good at ex-
tracting a target speaker from a mixture of interfering speakers. Having two ears
is beneficial but humans also exploit other cues such as observing visual speech
information from a target speaker. Many audio-only methods of speaker separa-
tion have been proposed and have varying levels of success [102],[77],[84],[70]. A
smaller number of visual-only methods of speaker separation have also been pro-
posed [39],[40],[33]. However, few approaches have examined whether the audio
and visual information can be combined to further improve separation of speakers.

Audio-only speaker separation can be very effective when multiple microphones
are used. Techniques such as deconvolution and blind source separation (BSS)
make assumptions that the signals in the mixture are independent and exploit the
input signals to extract the individual audio sources [68],[102]. Speaker separation
from just a single audio channel is substantially more difficult making it necessary
to employ knowledge of the way humans perceive speech and to make various
assumptions about the speech signals. Most methods exploit the masking property
of human speech perception and aim to identify and extract time-frequency regions
of the speech mixture that are dominated by the target speaker and mask or
attenuate other regions. Binary masking involves determining whether each time-

frequency component represents the target speaker or not and is subsequently
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retained or removed [82],[48]. Soft masking [77], [84], [104], can be better as

uncertainty in the mask is allowed, where rather than retaining or removing a
time-frequency component, a fraction of the component is retained, generally in
proportion to the local SNR. With both methods a major challenge is to estimate
accurately the mask and identify time-frequency components to be retained and
those which are to be masked. Many approaches have been employed and these
typically operate by grouping time-frequency regions according to various criteria.
One of the most effective is computational auditory scene analysis (CASA) which
groups regions perceptually, making use of cues such as harmonicity and onset
and offset times [102]. Alternative approaches have used statistical approaches
whereby dependencies between time-frequency regions are established and used to
form the mask [70].

There are substantially fewer visual-only methods of speaker separation. These
rely on correlation existing between the visual and audio speech features to provide
an estimate of the audio feature given a visual feature [105],[4]. Visually-derived
audio feature estimates have been used to form a perceptually motivated filter
that can extract a target speaker from the mixture [39]. An alternative method
uses visually-derived audio features from both speakers in a mixture to estimate
a binary mask that extracts the target speaker from the audio mixture [40]. In
other applications visual features have been used to improve hidden Markov model
(HMM) decoding of input speech signals where the HMMs provide statistics on
the speech to be separated [33].

Some work on using both audio and visual speech information for speaker sepa-
ration has been reported although this is applied to multiple audio channels rather

than to a single channel which is the focus of this work. In [50] a target speaker
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is first extracted from a speech mixture using audio BSS. Visual information from
speakers is then used to address permutation and scaling ambiguities present after
BSS.

This work proposes combining the audio-only soft mask method with visual
speech information to improve speaker separation. A review of the soft-mask
method of speaker separation is presented in Section 6.2. The combination of this
audio only method with the visual speech information is presented in Section 6.3.
Section 6.4 explains how the necessary audio features are estimated from visual
features. Experimental results in terms of quality and intelligibility are presented

in Section 6.5.

6.2 Audio-only speaker separation

In this section a review is presented of the soft mask audio-only method of speaker
separation [70]. The experimental results produced by this method have been
shown to outperform both audio-only binary masking and audio-only Wiener fil-
tering methods for single-channel speaker separation. Consequently, this method
forms the basis for the proposed combined audio-visual method of speaker sepa-
ration.

In the time-domain, speech from the target speaker, xi(n), and competing

speaker, xs(n), are assumed to be additive to create the time-domain mixture,

y(n).

y(n) = x1(n) + x2(n) (6.1)
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From the time-domain signals, short-time log spectral vectors are extracted. By

applying Fourier Transform to the above equation we get

Y(f) = Xu(f)+ Xa(f) (6.2)

where X;(f) is the complex spectrum of speaker 1 and X,(f) is the complex
spectrum of speaker 2. By taking element-wise squared magnitude and assuming
that the two signals are uncorrelated [77],[75], it can be written in the power

spectrum domain as

Y(HIP = [Xi(HF + X)) (6.3)

IFY'(f), X;(f) and X,(f) represent the logarithm of |Y (f)|?, | X1(f)|? and | X2 (f)[?,

then Equation 6.3 can be written as

Y'(f) = Xi(f)+ X5(f) (6.4)

Adopting the same notation as in [70], Equation 6.4 can be written as

Yqg = T14 + Tag d=1,...D (6.5)

where x14, Toq and y; are the d elements in the D=128 dimensional vectors of
speaker 1, speaker 2 and the mixture of the two speakers respectively in the log
spectral domain. The extraction process of the log spectral vectors was described
in detail in Chapter 2.

The soft mask method makes an element-wise mixture-maximisation assump-
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tion of the log spectral vectors from the speakers in the mixture [14] and Equation

6.5 can be written as

Ya = max (T14, T24) + €4 (6.6)

where ey is the error in the mix-max approximation.
An MMSE estimate of each element of the target speaker’s log spectral vector,

214, is made from the conditional expectation given the mixed signal y

T1g = E (114]ly) = / r1ap(T14|ly)dzrg d=1,...,D (6.7)

T1d

The log spectral features of each speaker are modelled using a GMM that comprises
I Gaussian subsources for speaker 1, s, and J subsources for speaker 2, s,. Each
subsource from the target speaker has a prior probability, ps, (s1 = ili = 1,2,..., 1)
and for the competing speaker p,(ss = jlj = 1,2,...,J). The subsources are

modelled using Gaussian distributions as

D
Parfsr (@1]51 = 1) = [T N (@1, 1}y, 1) (6.8)
d=1
D . .
Pxs|so (w2‘32 = ]) = H N <w2a :uj2d7 E%d) (69)
d=1

where i, pid,, 2t and ¥J, are the means and variances of speakers 1 and 2 and
subsources i and j respectively. Again, adopting the same notation as in [70], 3%,
and Zéd are written as o7 and Jgé.

Modelling the subsources allows the MMSE estimate of Equation 6.7 to be
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conditioned on each combination of the subsources, i and j.

Ty = Z/ T1ap(T14|Y, 51 =1, $2 = j)dy,, X p(s1 =1, 52 = jly) (6.10)
Z1d

i,J

Factorll
Factorl

This comprises of two factors. Factor I is an MMSE estimate of x4 given y for a
particular combination, ¢ and j, of the subsources. The second factor, Factor II,
is the posterior probability of the two subsources given y. This can be viewed as
a weighted summation, according to the probability of each pair of subsources, of
the conditional estimate of x14 from y according to the subsources i and j which,

following [70] is evaluated as

21

1d+02 Ya + = ﬂ,z phy i iy >

b= Sl = 52 = jlu) x | (6:11)

b fia if g < i3

where 0%} is the variances of speakers 1 for subsource i and o2 is the variance of
the mixture. The variance of the mixture is calculated across the training data

set. Following from Equation 6.6
eq = Yq — Max (14, Toq) (6.12)

If T represent the total number of frames in the training data set then

T
€dT = Z(yd,t — max (ifld,t, ZBQd,t)) (6-13)
t=1
T
Z Yo — Max (T144, Tags))” (6.14)
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The variance of the mixture o2 is given as (note the subscript T is dropped for
simplicity purpose)

0-3 = H’EZ!T - (:ued,T)2 (615)

where fhez . and i, , Tepresent the means of eiT and eq 7.

For the reduction of computational complexity, it was further shown in [70]
following [26] that instead of using the weighted summation of all the subsources,
the MMSE estimate can instead be made from the two most probable subsources

that maximize p(s; = i, $3 = jly) and is computed as

U%g o3 o J*
020 452 Ya + 20 {52 Hig L Hig > Haq
T1d 1d d 1d d (616)

Hid if piig < 1124
where ¢* and j* are representing the two most probable subsources that maximize

p(sl = ia Sg = jly)
{i*, 7} = afgﬂgfjixp(sl = 1,59 = jly) (6.17)

It was further shown in [70] that the most probable subsources can be determined

as

ydfmaag(uid,ﬂéd)y (6.18)

dmax

{i*, 7"} = arg min, ; % > (

+ logadmax - logp(sl = Z) — lng(52 = ])

Thus Equation 6.16, in conjunction with Equation 6.18 is used to estimate Z14.
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6.2.1 Relation to binary masking

The conditional estimate is computed in two ways depending on whether the mean
component of the target speaker from the i*th subsource, u';,, is greater or less
than the mean of the competing speaker from the j** subsource, p’%,. If the
target mean, '}, is greater than the competing mean, p’3;, then the soft mask
method assumes that the target speaker can be extracted from the mixed audio.
But when target mean is less than the competing mean, the soft mask method
assumes that no information about the target can be obtained from the audio
mixture.

This can be likened to binary masking which would set the output to zero
when the target mean is less than than the competing mean. However, with this
soft mask method the output is set to the mean of the target rather than zero.
Similarly, when the target mean is greater than the competing mean in binary
masking the output is set to y4. Instead, with this soft masking method, the
output is set to a weighted combination of y4 and the target mean using a variant

of a Wiener filter. In the same way an estimate of the competing speaker (speaker

2) can be made as

25%*
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: . (6.19)
13q if pig > 1134

The method using Equation 6.16 and Equation 6.19 for the estimation of the

speakers is referred to as ‘audio-only’ (A-only) method in the rest of the work.
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6.3 Audio-visual speaker separation

The audio-only soft mask method presented in Section 6.2, can be extended to
utilise visual information with the aim of improving the estimation of the speakers’
spectral components, 214 and Zo4, from the mixture. Following on from Equations

6.16 and 6.19, the visual information is introduced in three different ways.

1. The visual speech information is introduced only when the target mean com-
ponent is less than the competing speaker mean component (i.e. u'f, < p/s,).
In this case, a weighting term, « is also introduced to control the contribu-
tion of visual and audio speech information in the estimation process. This
variation of the soft mask method is to be referred as ‘audio-visual-Alpha’

(AV-Alpha) method in the rest of the work.

2. In addition to the variation discussed for AV-Alpha method, visual informa-
tion and a weighting term [, are introduced in the situation when the target
mean component is greater than the competing speaker mean component
(i.e. u't; > p?%,). This second variation of the soft mask method is to be

referred as ‘audio-visual-Beta’ (AV-Beta) method in the rest of the work.

3. A visually derived Wiener filter as described in Chapter 4, is introduced along
with the weighting term «, in the situation when the target mean component
is less than the competing speaker mean component (i.e. u';; < p’/%;). This
variation is to be referred as ‘audio-visual visual Wiener’ (AV-VW) method

in the rest of the work.
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These three methods are discussed in detail in the next sections.

6.3.1 AV-Alpha

In Equation 6.16, of the A-only method, the target speaker estimate Z4, is deter-
mined differently for the two conditions: When the target mean is less that the
competing mean and when the target mean is greater than the competing mean.
In the same way, the introduction of the visual information in the two conditional

parts of the AV-Alpha method, is discussed separately.

Target mean less than competing mean : u'}, < 173,

In binary masking when the target mean is less than the competing mean (u'%,; <
w'h,), it is assumed that no information about the target can be obtained from
the audio mixture and the estimate is set to zero. The A-only soft mask method,
improves on this limitation of binary masking by setting the estimate equal to the
target mean, u'j, as shown in Equation 6.16.

In the condition when the target mean is less than the competing mean (u'*, <
w's,), although the A-only method gives an improvement over binary masking by
setting the target estimate equal to the target mean, p'*,, instead of setting it
equal to zero. But again this has drawback as the observed mixed signal is not
used /filtered directly to determine the estimate of the target instead the estimate
of the target is set equal to the target mean, p'*,, which is determined from the
trained GMMs using the observed mixed signal for determining the most likely
subsource. Thus the observed mixed signal is contributing to the final target

estimate only indirectly by contributing in the determination of the most likely
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subsource.

In AV-Alpha method, the visual information is introduced in the condition
when the target mean is less than the competing mean (u';; < p/3;). The aim
is to improve on the drawback of the A-only method by using the multi-modal
observed mixed signal in making the final target estimate. This is achieved by
modifying the A-only method of Equation 6.16, by making the estimate a weighted
combination of the target mean y'};, and an estimate of the target audio in log
spectral domain, aq4, that is derived from a visual speech feature, v14, extracted
from the video of the target speaker’s mouth. Thus in the AV-Alpha method, the
audio-visual mixed signal is contributing in the following two ways to the final

estimate of the target speaker.

1. The mixed audio only signal is used in determining the most likely subsource,

whose means p'%,, is to be used in the calculation of the target estimate.

2. The corresponding visual signal v14, for the target speaker in the mixture, is

used in determining the audio log spectral estimate of the target speaker, a14.

The final target estimate is given by Equation 6.20

o I
R 020 {52 Yd + 021‘*+02M1d I g Z Hag
F1q = id 7% id 7%

4 (6.20)
apig + (1 —a)ag if pig < ting

The weighting term, «, adjusts the contributions made by the target mean and

the visual component in the estimate, Z14. The procedure for obtaining the audio

estimate a4, from visual speech feature, vi4, extracted from the videos of the

speaker’s mouth region, is explained in section 6.4.
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Target mean greater than competing mean : p'%, > /%,

In binary masking when the target mean is greater than the competing mean
(u'%, > p’s,), the estimate is set equal to the input mixture, y,4, without processing
it. The audio-only soft mask method again improves on this and the estimate of
the target is made from a Wiener-type weighting of the target mean and input
mixture of speakers, y,; as shown in Equation 6.16. In the AV-Alpha method, it
is assumed that when the target mean is greater than the competing mean, then
the information contained in the audio component is sufficient for the estimation
of the target speaker and the visual speech information is not needed. Hence no

modifications are introduced in this conditional part of the of the A-only method.

6.3.2 AV-Beta

The introduction of the visual information in the two conditional parts of the

AV-Beta method, is discussed separately in the next two sections.

Target mean less than competing mean : u'}, < u/3,

In AV-Alpha method of Equation 6.20, for the condition when the target mean
is less than the competing mean, the target estimate was determined using the
target mean and the estimate a4, from the visual features and their contribution
was set by the weighting term «. In the same way for AV-Beta method, this
conditional part is kept the same as in AV-Alpha method with the only difference
that the optimal constant value of « is used that was determined for AV-Alpha

method.
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Target mean greater than competing mean : p'%, > /%,

When the target mean is greater than the competing mean, then in the A-only
method of Equation 6.16, the estimate of the target is made from a Wiener-type
weighting of the target mean and input mixture of speakers, y4. In the AV-Alpha
method, it was assumed that when the target mean is greater than the competing
mean, then the information contained in the audio component is sufficient for the
estimation of the target speaker and the visual speech information is not needed.
Hence no modifications were introduced in this conditional part of the of the AV-
Alpha method. In AV-Beta method, the visually-derived estimate of the target,
14, is introduced in this conditional part also using another weighting term [ as

shown in Equation 6.21

2¢*

z o3 i ~ . o -
~ . { /8 <g%3’}ia—§yd + a’%?j—agﬂid) + (]_ — /B)ald 1f /’Llld Z M;d

| (6.21)
apig + (1 — )i if pig < g

6.3.3 AV-VW

The introduction of the visual information in the two conditional parts of the

AV-VW method, is discussed in the next two sections.

Target mean less than competing mean : u'}, < p/3,

The previous three methods: A-only, AV-Alpha and AV-Beta, do not use the
observed mixed signal directly in the final estimate of the target speaker. Instead,
the observed audio mixture, y4, is used to identify the most likely subsource whose

mean is used in the calculation of the final estimate of the target speaker or the
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corresponding visual information is used to give a visually derived estimate, a4,
that is used in the final estimate of the target,z,4, through weighting terms o and
B. In AV-VW method, the observed mixture is directly used in the final estimate
of the target speaker. The A-only method of the Equation 6.16, is modified by
making the estimate a weighted combination of the target mean and an estimate
of the target from the mixture using visually derived Wiener filter described in

Chapter 4 and the final estimate of the target is given as in Equation 6.22

2i* 2 -

q*ld _fd it f i* > J
b= { o7 g2 Yd + o2 grHia W Mg = Hag (6.22)

apig+ (1 —a)Wig ya if gy < phy

where Wiy, is defined as
a1d

W = —— 6.23
(14 + 24 (6.23)

where a4 and a9q are the log spectral estimates for the target speaker 1 and
competing speaker 2 from their corresponding visual features. The estimation of

the audio features from visual features is explained in section 6.4.

Target mean greater than competing mean : ', > u’s,

When the target mean is greater than the competing mean in Equation 6.22,
the estimate of the target is made from a Wiener-type weighting of the target
mean and input mixture of speakers, 74, as in the A-only method where no visual
information is introduced in this conditional part. This decision of not introducing
the visual information in this conditional part is based on the findings of the AV-

Beta method. Hence in the AV-VW method, it is concluded that when the target
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mean is greater than the competing mean, then the information contained in the
audio component is sufficient for the estimation of the target speaker and the
visual speech information is not needed. Hence no modifications are introduced

in this conditional part of the of the AV-VW method as shown in Equation 6.22.

6.4 Estimation of audio features from video

D = 128 channel log spectral vectors, x; and x5 are used as the audio features
for speaker 1 and speaker 2 respectively. These are extracted from 20ms dura-
tion frames of audio at 10ms intervals in accordance with the ETSI XAFE stan-
dard [28]. Visual features, v and vs, for speaker 1 and speaker 2 respectively, are
extracted from an ROI centred on a speaker’s mouth at a rate of 100 frames per
second. A 2D-DCT is applied and the first J coefficients are scanned in a zigzag
manner and retained as the visual vector. The estimation process involves first
training a K-cluster GMM to model the joint density of augmented audio-visual
feature vectors for each speaker. MAP estimation can then be applied to estimate
the audio features, a; and a,, from the visual features, vi and vy. For a de-
tailed discussion of the audio and visual features, the training and the estimation

processes, please refer to Chapter 2 and Chapter 3.

6.5 Experimental results

The performance of audio-visual speaker separation for the proposed methods, is
evaluated in this section. First, the experimental set up is described. Second,

the speaker separation results in terms of quality and intelligibility, are presented,
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compared and discussed, for the different methods. Three metrics; SIR, SDR and

SAR, are used to measure the speech quality while the intelligibility is measured
in terms of word accuracy, of the separated speech. To measure the intelligibility
a whole word speech recogniser trained on the GRID database [15] is used. In
GRID database, each utterance follows a grammar containing six words of the
structure

command— colour— preposition— letter— digit— adverb.

From the estimates of the target speaker’s speech, MFCC vectors were ex-
tracted and the resulting word accuracy used as an estimate of intelligibility. It
should be noted that these recognition tests are used to provide an indication of
intelligibility. The methods presented in this work are not the proposed meth-
ods of speaker separation for speech recognition. For this task, effective methods
have been developed that operate on the features themselves without the need to

reconstruct an audio signal [8].

6.5.1 Experimental set up

The GRID audio-visual speech database is used in these experiments [15]. A male
speaker (speaker 6) is used as the target and a female speaker (speaker 4) as the
competing speaker. Of the 1000 utterances spoken by each speaker, 800 are used
for training and the remaining 200 for testing. The audio for both the speakers was
down-sampled to a sampling frequency of 8KHz and log spectral vectors extracted
at 10ms intervals. The video was up-sampled to 100 frames per second to match
the audio frame rate. For both speakers, 2D-DCT visual features were captured

from the mouth region centred on the speaker’s mouth. The extraction process of
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the audio and visual features, and the GRID database were described in detail in
Chapter 2.

The test scenario assumes that the two speakers are talking simultaneously and
are located close together. Video is captured from each speaker with a separate
camera. The mixed audio is created by taking speech from the target speaker and
mixing it with the speech from the competing speaker that is scaled to create the
desired SNR levels of -20dB, -10dB, -5dB, 0dB, 5dB, 10dB and 20dB. For the tests
reported, the male speaker is the target and the female the competing speaker.
The 200 test utterances from the male speaker were mixed with the 200 utterances
from the female speaker with the restriction that no mixture used the same two
sentences. Similar results were obtained when considering the female as the target

and the male as the competing speaker.

6.5.2 AV-Alpha

This section examines the results for AV-Alpha method where visual information
is introduced into the A-only soft mask method when the target mean is less than
the interfering mean as described by Equation 6.20. The variable o controls the
ratio of target mean, u'%,, to the visually derived log spectral estimate, ;4. When
a = 1, no visual information is used and so the estimate is purely the A-only soft
mask result. While when a = 0 the output is purely the visual estimate in the
conditional part when when the target mean is less than the interfering mean.
Figure 6.1, shows the SIR variations when varying a from 0 to 1 for different
SNRs of -20dB to +20dB. For the lower SNRs (-20dB to -5dB), SIR peaks when

most of the contributions are made by the visual componentsi.e. 80%. Asthe SNR
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Figure 6.1: SIR when varying o from 0 to 1 in Equation 6.20. The
small red circles are showing the peak values.

increases, the SIR gains are increasing when decreasing the visual contributions
although at 0dB and +5dB the visual contribution for the maximum SIRs are
60% i.e @ = 0.4. The figure is showing that AV-Alpha method is giving significant
gains in SIR over the A-only method i.e. when «a is 1.

Figure 6.2, shows the SDR variations when varying a from 0 to 1. These
variations also follow the same trends as in SIR’s case i.e. as the SNR increases
the visual contributions need to be decreased to obtain maximum gains in SDR.
Contrary to the SIR gains, for SDR gains, the audio and visual contributions are
almost balanced from -20dB to 0dB, while in case of SIR, most of the contributions
were made by the visual component in this region. At higher SNRs of +10dB

and +20dB, the visual component’s contributions towards SDR gains are zero.
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Figure 6.2: SDR when varying o from 0 to 1 in Equation 6.20. The
small red circles are showing the peak values.

Hence it is concluded that as the target becomes more dominant, the information

contained in the audio speech component becomes more useful than the the visual

speech component.

Figure 6.3, shows the SAR variations when varying « from 0 to 1. The SAR
variations are very flat and are not significant. This suggests that for the various
values of «a, the introduced algorithmic distortions are almost of the same level.

The SIR and SDR gains are a trade-off, i.e. larger SIR gains are obtained at

the cost of reduction in SDR gains. Therefore, the selected optimal value of «
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Figure 6.3: SAR when varying o from 0 to 1 in Equation 6.20.

should keep a balance between SIR and SDR gains.

6.5.3 AV-Beta

This section examines the results for the AV-Beta method that introduces visual
information in both the conditional parts of the A-only soft mask method as
described in Equation 6.21. The effect of varying the visual contributions was

investigated at an SNR of 0dB. In these tests the optimal value of o was used and
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« was not varied when varying 3. Figure 6.4 shows the SIR, SDR and recognition

accuracy when varying the visual contribution, £, from 0 to 1.
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Figure 6.4: SIR, SDR and recognition accuracy when o = 0.35 and
varying B from 0 to 1 in FEquation 6.21.

The results suggest that in situations when the target mean is less than the
competing mean, the value a=0.35 is used that was determined to be the opti-
mal in the previous experiments for the AV-Alpha method. For reference, the
performance at 8 = 1 corresponds to the situation when no visual information is
included in the estimate when target mean is greater than the competing mean
and the target spectral estimate is made from audio only which is the original

soft mask. At this point (5 = 1 and a = 0.35), performance is equal to the best
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obtained for the AV-Alpha method. As (8 reduces, the visual information makes
more contribution to the estimate. For SIR, SDR and recognition accuracy as
more visual information is included, and thereby audio information reduced, per-
formance falls. All three metrics reach minimum levels when the target estimate
is based only on visual information, i.e. g = 0. Therefore an optimal value of
[ is one. Hence it is concluded that the introduction of # does not give any im-
provements in terms of quality or intelligibility and is dropped from any further
investigation in this work. This suggests that in times when the target speaker is

dominant then the audio information is more useful than the visual information.

6.54 AV-VW

This section examines the results for AV-VW method that introduces visual infor-
mation only in the conditional part when the target mean is less than the compet-
ing mean as described in Equation 6.22. The introduction of visual information
in the form of 3, in the conditional part when the target mean is greater than the
competing mean, did not give any improvements in terms of quality and/or intel-
ligibility, as was shown in the results for AV-Beta method. Therefore, in AV-VW
method, no visual information is introduced in the conditional part when the tar-
get mean is greater than the competing mean. The previously discussed methods:
A-only, AV-Alpha and AV-Beta, none of these uses/filters directly the observed
mixed audio speech y,4, to estimate the target speaker, 214, in the conditional part
when target mean is less than the competing mean. The AV-VW method, filters
directly the mixed audio speech using the visually derived Wiener filter as shown

in Equation 6.22.
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Figure 6.5: SIR when varying o from 0 to 1 in Equation 6.22. The
small red circles are showing the peak values.

Figure 6.5, shows the SIR variations when varying a from 0 to 1 in Equation
6.22, for different SNRs of -20dB to +20dB. For all the SNRs (-20dB to +20dB),
SIR peaks when all the contributions are made by the directly filtered observed
mixed audio using the visually derived Wiener filter, W4, without taking any
contributions from the target mean. The SIR gains keep on decreasing slightly till
a = 0.6, i.e. when the contributions of the visually derived Wiener filter are from

100% till 40%, but beyond this point, the decrease in SIR gains is rapid and drops
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to the lowest when o = 1, i.e. when the contributions of the visual Wiener filter
are zero. These results show that in terms of the SIR gains, the direct filtering
of the mixed audio speech using the visually derived Wiener filter, is more useful
than using the target mean of the most likely subsource. The figure is also showing
that AV-VW method is giving significant gains in SIR over the A-only method i.e.

when oo = 1.
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Figure 6.6: SDR when varying o from 0 to 1 in Equation 6.22. The
small red circles are showing the peak values.

Figure 6.6, shows the SDR variations when varying « from 0 to 1. The SDR
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variations are very flat and are not significant although the SDR very slightly
peaks when most of the contributions (80%) are made by the target mean rather
than the mixed audio filtered through the visually derived Wiener filter. These
results show that the visually derived Wiener filter does not give any significant

improvements in SDR for the different values of «.
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Figure 6.7: SAR when varying o from 0 to 1 in Equation 6.22.

Figure 6.7, shows the SAR variations when varying « from 0 to 1. The SAR

variations are also not significant although the SAR slightly peaks when no visual
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information is used i.e. when o = 1. This shows that the introduction of visual
information introduces a smaller amount of algorithmic distortion as compared to

the A-only processing.

6.5.5 Comparison of A-only, AV-Alpha and AV-VW meth-

ods

In this section, a brief comparison is made of the three mentioned methods that
were described just above, in terms of estimated speech quality and intelligibility.
SIR, SDR and SAR are used as the measures of estimated quality and words
recognition accuracy is used as the measure of estimated intelligibility. A detailed
comparison of the different methods is to follow in Chapter 7.

Figure 6.8 shows the SIR gains for the three mentioned methods. The AV-VW
method gives significant gains in terms of SIR over the A-only soft mask method
and AV-Alpha method, at all SNRs.

Figure 6.9 shows the SDR gains for the three mentioned methods. Although
the SIR gains of AV-VW are very significant, but in terms of SDR gains, the three
methods are performing at almost the same level. In terms of SAR gains, the
A-only and AV-Alpha are performing slightly better than the AV-VW method as
shown in Figure 6.10

Figure 6.11 shows the word recognition accuracy results for the three mentioned
methods. The AV-Alpha method is giving significant gains in recognition accuracy
over the A-only and AV-VW methods, in particular, in the lower SNR regions (-
20dB to 0dB). The decrease in recognition accuracy of AV-VW method can be

compensated by using higher values of «, as in these comparison plots, a = 0, for
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Figure 6.8: Comparisons of SIR gains for A-only, AV-Alpha and AV-
VW methods, for optimal values of o, for SNRs of -20dB to +20dB.

the AV-VW method, but this will cause a decrease in SIR gains of the method.
So depending on the application in hand, whether quality enhancement is more

desirable or intelligibility improvements, different values of o can be used.

6.6 Summary

This chapter provided an overview of the A-only soft mask method. This method
estimates the target speaker in two different ways for the two conditions. When

the target mean is greater than the competing mean, the soft mask method is
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Figure 6.9: Comparisons of SDR gains for A-only, AV-Alpha and AV-
VW methods, for optimal values of o, for SNRs of -20dB to +20dB.

confident to extract the target speaker from the observed mixture using a Wiener
type filter of the mixed speech and the most likely subsource. When the target
mean is less than the competing mean, the soft mask method, assumes that no
useful information can be extracted from the mixed speech and the estimate of
the target speaker is made from the most likely subsource instead.

To improve the performance of this A-only method, three different methods
were introduced based upon the work carried out in the previous chapters. The
AV-Alpha method, introduced visual information in the condition when the target

mean is less than the competing mean. Significant gains are obtained in SIR
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Figure 6.10: Comparisons of SAR gains for A-only, AV-Alpha and
AV-VW methods, for optimal values of o, for SNRs of -20dB to +20dB.

and SDR over the A-only method. While the SAR variations are flat and not
significant.

The AV-Beta method introduced the visual information in the condition when
the target mean is greater that the competing mean as well. But this caused
the quality and intelligibility to drop. This proves the assumption that when the
target becomes more dominant, the information contained in the audio speech
component becomes more useful than the the visual speech component.

The AV-VW method, introduced the visually derived Wiener filter to filter

the observed mixed speech in the condition when the target mean is less than
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Figure 6.11: Comparisons of word recognition accuracy (%) for A-
only, AV-Alpha and AV-VW methods, for optimal values of o, for SNRs
of -20dB to +20dB.

the competing mean. AV-VW gives significant gains in SIR for higher visual
contributions than audio contributions, but the gains in SDR are not significant.
Intelligibility decreases at the cost of increase in SIR.

The SIR and SDR gains and intelligibility are trade-offs i.e. larger SIR gains
are obtained at the cost of reduction in SDR gains and intelligibility. Therefore,
the selected optimal value of a should keep a balance between SIR and SDR gains
and intelligibility. So depending on the application in hand, whether quality en-

hancement is more desirable or intelligibility improvements, different values of «
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can be used. Also it is noted that at higher SNRs, the visual component’s contribu-

tions towards improvement in quality and intelligibility decreases. It is concluded
that as the target becomes more dominant, the information contained in the audio

speech component becomes more useful than the visual speech component.
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Chapter 7

Comparsions of proposed and

existing methods

Preface

This chapter presents a comparison of the objective and subjective evaluations
of the proposed and existing methods. The objective evaluation methods use
the previously used criteria of SIR, SDR and SAR to measure the quality of the
extracted speech and word recognition accuracy is used as the measure of estimated
intelligibility. For subjective evaluation, listening tests are conducted and the
subjects are asked to rate the quality of the extracted speech. The three proposed
methods and two existing methods were compared along with the reference and

unprocessed speech.
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7.1 Introduction

The aim of speech processing applications like speech enhancement and speaker
separation is to enhance the quality and intelligibility of the processed speech [56].
The perceived quality of speech is the perception of a listener about the speech
that how “good” its quality is. The definition of “good” is dependant on the
listener [43]. However the natural clean speech in daily life provides a reference
point and the listeners rate the quality of any speech in relation to this reference.
According to [56], enhancement in speech quality results in reduction of listener
fatigue. The accuracy with which listeners hear what is being said to them is
called the speech intelligibility and is measured in terms of correctly identified
responses [43].

Speech quality and intelligibility are measured using objective and subjective
measures. In subjective evaluations, listeners rate the quality of speech according
to some reference. While in objective evaluations, a particular physical measure
is computed from a reference and a processed speech [43].

This chapter measures the speech quality and intelligibility using both ob-
jective and subjective measures. Section 7.1.1 and Section 7.1.2 describes the
proposed and existing methods to be compared using objective and subjective
evaluation. This is followed by Section 7.2 that explains the audio and visual
data used in this chapter, experimental set up for the listening tests and then the
actual results of speech quality and intelligibility using objective and subjective

measures.
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7.1.1 Proposed methods

In this work, three methods for speaker separation were proposed. These were
presented in detail in Chapters 4, 5 and 6. Each of these methods have different
variants. One variant of each of these methods was selected for the comparison
testing based on its performance measured previously. These methods along with

the selected variants are described below.

1. Speaker separation using Wiener filtering and perceptual gain func-
tions: This method was discussed in detail in Chapter 4 along with its vari-
ants in the form of perceptual gain functions H1, H2, H3 and H4. H1 as
shown in Equation 4.12 was selected for final testing because of its higher

SDR and SAR gains and higher recognition accuracy.

2. Speaker separation using visually-derived binary masks: This method
was discussed in detail in Chapter 5 along with the effects of different num-
bers of filterbank channels on speech quality and intelligibility. This method
with variant when number of filterbank channels D = 23, was selected for
the final testing because it gives a good balance between quality and intel-

ligibility improvements.

3. Audio-visual method of speaker separation: This method was dis-
cussed in detail in Chapter 6 along with its variants AV-Alpha, AV-Beta
and AV-VW. These variants were further studied using different contribu-
tions of audio and visual information through o and 5. AV-VW method as
shown in Equation 6.22 with o = 0 was selected for the final testing because

of its huge SIR gains and comparable intelligibility scores.
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7.1.2 Existing methods

The three above mentioned proposed methods were compared with the following

two existing methods.

1. A-only method: This audio-only soft-mask method [70] was discussed
in detail in Chapter 6. This method gives the final audio estimate of the
target speaker as the weighted combination of the Wiener type filtering of
the observed mixed speech and the target mean as shown in Equation 6.16

in Chapter 6.

2. CASA method: This CASA method [36], uses the traditional CASA ap-
proach of segmentation and grouping. The segmentation and grouping for
voiced speech is based on fundamental frequencies. While the unvoiced

speech segregation is based on onset /offset analysis.

7.2 Experimental Results

In this section, the performance of the proposed and existing methods of speaker
separation, is compared. First, the experimental set up is described along with
the audio and visual features. Second, the speaker separation results in terms of
quality and intelligibility for the different methods are compared and discussed

using objective and subjective measures.

7.2.1 Audio and visual data

The GRID audio-visual speech database is used in these experiments [15]. A male

speaker (speaker 6) is used as the target and a female speaker (speaker 4) as the
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competing speaker. Of the 1000 utterances spoken by each speaker, 800 are used
for training and the remaining 200 for testing. The audio for both the speakers was
down-sampled to a sampling frequency of 8KHz and log spectral vectors extracted
at 10ms intervals. The video was up-sampled to 100 frames per second to match
the audio frame rate. For both speakers, 2D-DCT visual features were captured
from the mouth region centred on the speaker’s mouth. The extraction process of
the audio and visual features, and the GRID database were described in detail in
chapter 2.

The test scenario assumes that the two speakers are talking simultaneously and
are located close together. Video is captured from each speaker with a separate
camera. The mixed audio is created by taking speech from the target speaker and
mixing it with the speech from the competing speaker that is scaled to create the
desired SNR levels of -20dB, -10dB, -5dB, 0dB, 5dB, 10dB and 20dB. For the tests
reported, the male speaker is the target and the female the competing speaker.
The 200 test utterances from the male speaker were mixed with the 200 utterances
from the female speaker with the restriction that no mixture used the same two
sentences. Similar results were obtained when considering the female as the target

and the male as the competing speaker.

7.2.2 Experimental set up for subjective tests

In the subjective quality assessment of speech quality, 20 human listeners partic-
ipated. The listening test were carried out in a sound proof room. The listeners
used headphones and only the computer screen and mouse were inside the room

while rest of the computer was outside to avoid any noise coming from the com-
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puter fans. Out of the 200 hundred test utterance, 10 different utterance were
chosen for each subject at random. The tests were carried out for SNR levels of
-10dB, -5dB, 0dB, 5dB and 10dB. The following guidelines and instructions as in
[23], were provided and explained to the subjects. These are copied here as they

are in [23] with slight variations and added figures.

“GUIDELINES FOR LISTENING TEST

This listening test aims to rate the quality of a set of signals produced by source
separation systems. Source separation aims to extract the signal of a target source
from a mixture of several sound sources as shown in Figure 7.1. The resulting
signals may include several types of degradations compared to the clean target
source, including distortions of the target source and remaining sounds from other
sources. The test is in three parts:

Test 1

To rate the quality in terms of the amount of suppression of the interfering (female)

speaker.

Test 2

To rate the quality in terms of the preservation of the target (male) speaker.

Test 3

To rate the overall quality of the speech compared to the reference signal.

Each test has a training part and the training GUI is shown in Figure 7.2,
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where you can listen to examples of the speech signals. Once comfortable, the
actual evaluation takes place.

Each test involves 10 experiments and the evaluation GUI is shown in Figure
7.3. For each experiment you will need to rate the quality of seven test sounds
compared to the reference sound and mixture on a scale of 0 to 100. Larger
numbers indicate higher quality. You can listen to the sounds as many times as

you wish. You should make sure that

e The ratings between pairs of sounds are consistent, i.e. if one sound has

better quality than another, it should be rated better.

e The ratings between different experiments are consistent, i.e. if two sounds
from different experiments have the same quality, they should be rated

equally.

e The whole rating scale is used, i.e. sounds with perfect quality should be
rated 100 and the worst test sound over all experiments (but not necessarily

the worst test sound in each experiment) should be rated close to 0.

The expected total duration of the test is 30 minutes that is 10 minutes per

test”.
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Figure 7.1: Speaker separation task: To extract the target male
speaker and suppress the competing female speaker.

B MUSHRAM - Training phase

Training on the suppression of other sources in each test signal
- Tagt |

Proceed to evaluation

Figure 7.2: GUI for the training phase of the listening test.
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Figure 7.3: GUI for the evaluation phase of the listening test.

7.2.3 Objective measures

In this section the results for the evaluation of the objective measures of speech

quality and intelligibility are presented.

Speech Quality

SIR, SDR and SAR measures are used as the objective measures for the evaluation
of speech quality. These measures were discussed in detail in Chapter 4 and are
computed using the ‘BSS evaluation’ toolbox [29].

The SIR gains comparisons for the different methods at input SIRs of -20dB,
-10dB, -5dB, 0dB, 5dB, 10dB and 20dB are shown in Figure 7.4.
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Figure 7.4: SIR gains comparisons for the various methods at the
shown input SNRs for the target speaker.

At the lower input SNRs of -20dB to -5dB, AV-VW method is giving the highest
SIR gains while in the higher input SNRs region of 0dB to +10dB, the CASA
method gives higher SIR gains and at +20dB the three methods i.e. CASA, A-
only and AV-VW method gives the same SIR gains. The SIR gains of the visually-
derived binary masking method and perceptual Wiener method are very low at
the lower input SIRs but at higher input SIRs, their SIR gains are comparable to
the other three methods. The AV-VW and the A-only methods, give consistently

good SIR gains at all input SIRs although the AV-VW method is leading all the
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time and at huge margin in the lower input SIRs region.

The reason for the consistently good SIR gains of AV-VW over the A-only
method especially in the lower SNR regions is the use of visual information as
was shown in Chapter 6 that when the competing speaker dominates the target
speaker then the visual stream plays more important role. The CASA method
is also based on audio information only and its performance is poor in the lower
SNR region. The SIR gains of the visually-derived binary masking method and
perceptual Wiener method are very low as compared to the other three methods.
As these methods rely totally on the visual information for separation, it becomes
obvious here that the audio information is also required for a better separation.

The SDR comparisons for the different methods at input SIRs of -20dB, -10dB,
-5dB, 0dB, 5dB, 10dB and 20dB are shown in Figure 7.5. AV-VW and A-only
methods perform consistently better at all input SIRs in terms of SDR gains and
the AV-VW method leading by a small margin in the lower input SIRs region of
-20dB to 0dB. The CASA method is performing slightly better than the AV-VW
and A-only methods at 0dB and +5dB. The SDR results almost follow the same
pattern as the SIR gains.

The SAR comparisons for the different methods at input SIRs of -20dB, -
10dB, -5dB, 0dB, 5dB, 10dB and 20dB are shown in Figure 7.6. AV-VW and
A-only methods perform consistently better at all input SIRs in terms of SAR
gains and the A-only method is leading by a very small margin almost all the
time. The reason for the slight gains of the A-only method in SAR is the not
spectrally detailed coarse estimates of the audio features from the visual features.
The visually-derived binary mask is performing the worst because it removes any

segment that is identified as the masker dominated causing the target to lose its
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Figure 7.5: SDR comparisons for the various methods at the shown
mput SNRs for the target speaker.

segments and it leads to larger algorithmic distortions in the target in binary
masking.

Looking at the SIR, SDR and SAR results, it is concluded that in terms of
overall quality, AV-VW is proving to be the best followed by the A-only and CASA

methods.
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Figure 7.6: SAR comparisons for the various methods at the shown
imput SNRs.

Intelligibility

To measure the intelligibility, a whole word speech recogniser was used. In GRID
database, Of the 1000 utterances spoken by each speaker, 800 were used for train-
ing and the remaining 200 for testing. Each utterance follows a grammar contain-
ing six words of the structure

command— colour— preposition—s letter— digit— adverb.

From the estimates of the target speaker’s speech, filterbank vectors were ex-

tracted and the resulting word accuracy was used as an estimate of intelligibility.
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The intelligibility comparisons for the different methods at input SIRs of -20dB,

-10dB, -5dB, 0dB, 5dB, 10dB and 20dB are shown in Figure 7.7.
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Figure 7.7: Word recognition accuracy for the various methods at the
shown input SNRs for the target speaker.

The AV-VW method is giving the best intelligibility scores followed by the
A-only method. The reason for the consistently high accuracy of AV-VW over the
A-only method especially in the lower SNR regions is the use of visual information
as was shown in Chapter 6 that when the competing speaker dominates the target
speaker then the visual stream plays more important role. The visually-derived

binary mask is performing the worst at the lower input SNRs because of the
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largely masked segments at the lower input SIRs. The poor performance of CASA

is because of mismatch between the training and test data.

7.2.4 Subjective measures

In this section the subjective evaluation results of speech quality are presented in
terms of the suppression of the competing speaker, preservation of the target and
the overall quality of the extracted speech.

The quality ratings in terms of the suppression of competing speakers for the
different methods at input SIRs of -10dB, -5dB, 0dB, 5dB and 10dB are shown in
Figure 7.8. The results show that the CASA methods is performing the best in
terms of the suppression of the competing speaker followed by the AV-VW method
and the results produced by these two methods are comparable at the lower SIRs.
The results also show that all the methods are giving huge suppression of the
competing speaker over the unprocessed mixed speech.

The quality ratings in terms of the preservation of the target speaker for the
different methods at input SIRs of -10dB, -5dB, 0dB, 5dB and 10dB are shown in
Figure 7.9. The preservation results show that the unprocessed mixed speech is
performing the best. One reason for this is that suppression and preservation are
trade-offs i.e. improvements in suppression introduces degradation in preservation
and vice versa. As the mixed speech is not processed for suppression therefore
there is no degradation introduced in it and the target speaker is preserved in
the mixture. The second reason is the layout of the listening test where the
listeners have access to the reference target speech as well. Thus any degradation

introduced in the target speech by the competing speaker is compensated by the
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Speech quality rating in terms of the suppression of the

competing speaker for the different methods at various input SNRs.

listeners by listening to the reference speech. The performance of perceptual
Wiener, AV-VW and A-only method are comparable. While the visually-derived

binary mask and CASA are performing the worst because of the masking effects

in these methods.

The quality ratings in terms of the overall quality of the target speaker for the
different methods at input SIRs of -10dB, -5dB, 0dB, 5dB and 10dB are shown
in Figure 7.10. The overall quality rating results show that the AV-VW method

is performing the best most of the time except at +5dB and +10dB where the
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Figure 7.9: Speech quality rating in terms of the preservation of the
target speaker for the different methods at various input SNRs.

CASA method is performing slightly better. The AV-VW method is followed in
performance by the A-only and CASA methods. While the perceptual Wiener

and the visually-derived binary masks are performing the worst.

7.3 Summary

This chapter briefly described the proposed and existing methods that were used

in the comparison testing. The objective and subjective measures used for the
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Figure 7.10: Qwverall quality ratings of the target speaker for the dif-
ferent methods at various input SNRs.

quality and intelligibility assessment of the extracted target speech were introduced
followed by the detailed experimental set up for the listening tests. SIR, SDR and
SAR were used as objective measure to assess the quality of the extracted target
speech while word recognition accuracy was used as an objective measure of the
intelligibility of the extracted target speech. For subjective quality assessment,
listeners were recruited and they rated the quality in terms of the suppression of
the competing speaker, preservation of the target and the overall quality of the

extracted speech.
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The AV-VW and the A-only methods, perform consistently better for SIR,

SDR, SAR and the word accuracy measures as compared to the other methods.
The AV-VW method gave gains over the A-only method especially in the lower
SNR regions for all the measures except SAR. The reason for these gains of AV-
VW over the A-only method is that when the competing speaker dominates the
target speaker then the visual stream plays more important role and provides
useful information for the separation process. The SIR gains of the visually-
derived binary masking method and perceptual Wiener method are very low as
compared to the other three methods. As these methods rely totally on the visual
information for separation, it becomes obvious here that the audio information is
also required for a better separation.

The subjective test results correlate heavily with the objective results. The
AV-VW and the A-only methods perform consistently better in subjective tests

as well and the AV-VW getting gains over the A-only method.
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Conclusions and future work

Preface

This chapter gives a review of the work carried out in this thesis in Section 8.1. The
important conclusions drawn from the work are presented in Section 8.2. Finally,

in Section 8.3, some suggestions and directions for future work are discussed.

8.1 Review

This section gives a review of the work in this thesis. The introductory chapter
explained the aims and motivations for this thesis. The bimodal nature of speech
and its importance in human speech perception and in speech processing appli-
cations was highlighted. Then an overview of speaker separation methods both
in audio only and audio-visual domains was presented. An overview of the thesis
structure was also presented in this chapter.

Chapter 2 started with a description of the human speech production process
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along with the functioning of the main organs involved. The relation between audio
and visual speech units was described in terms of phonemes to visemes mapping.
The three AV speech databases used in this work were described. Then methods
for the extraction of the audio and visual speech features from these databases
were discussed. Then correlation between these audio and visual features was
discussed. And finally the correlation results for these three databases used were
presented. Maximum average correlation for filterbank features were found to
be 0.84 for speaker 6 of GRID database, 0.77 for speaker 4 of GRID database,
0.77 for Messiah database and 0.58 for LIPS2008 database. In the same way the
maximum average correlation for the log power spectral features were found to be
0.80 speaker 6 of GRID database and 0.73 for speaker 4 of GRID database.
Chapter 3 discussed the estimation of clean audio speech features from visual
speech features. 2D-DCT features were used as the visual features and log fil-
terbank and log power spectral features were used as the audio speech features.
The joint density of the audio-visual vectors of each speaker was modelled using
a GMM with various number of clusters. Then using these trained models, a
MAP estimate of the acoustic speech features from the visual speech features was
made. The accuracy of the estimation was measured in terms of mean percentage
filterbank estimation errors and mean percentage log power spectral estimation
errors. The results showed that the number of dimensions in the visual vector and
the number of clusters in the GMM affect the accuracy of estimation. The lowest
mean percentage filterbank estimation errors were found to be 9.44 for speaker 6 of
GRID database, 10.41 for speaker 4 of GRID database, 8.12 for Messiah database
and 12.85 for LIPS2008 database. In the same way the lowest mean percentage

log power spectral estimation errors were found to be 15.91 for speaker 6 of GRID
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database and 17.18 for speaker 4 of GRID database.

Chapter 4 proposed a method of single-channel audio speaker separation that
used visual speech information to extract a target speaker’s speech from a mixture
of speakers. The method required a single audio input and visual inputs from each
speaker in the mixture. The visual information from speakers was used to create
a visually-derived Wiener filter. The Wiener filter gains were then non-linearly
adjusted by a perceptual gain transform to improve the quality and intelligibility of
the target speech. Experimental results were presented that measured the quality
and intelligibility of the extracted target speaker and a comparison was made of
the different perceptual gain transforms. These showed that significant gains are
achieved with the visually-derived Wiener filtering over the original mixture and
the gains are further improved by the application of the perceptual gain functions.

Chapter 5 proposed another solution for the problem of single-channel speaker
separation and exploited the visual speech information to aid the separation pro-
cess. The visual features were used to create a time-frequency binary mask that
identifies regions where the target speaker dominates. These target dominant re-
gions were retained and formed the estimate of the target speaker’s speech. While
the regions where the competing speaker was dominant, are masked and discarded.
Experimental results compared the visually-derived binary masks with ideal bi-
nary masks which showed a useful level of accuracy. The effect of the number of
filterbank channels on mask accuracy was also studied. The accuracies of binary
mask estimation were found to be 73.76% at -10dB and 83.23% at +20dB. The
effectiveness of the proposed method of speaker separation using visually-derived
binary masks was then evaluated through estimates of speech quality and speech

intelligibility. These results showed substantial gains in quality and intelligibility
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for the processed speech over the original mixture.

Chapter 6 proposed another method to exploit both audio and visual speech
information to extract a target speaker from a mixture of competing speakers.
The chapter began by taking an effective audio-only method of speaker separa-
tion, namely the soft mask method, and modified its operation to allow visual
speech information to improve the separation process. Experimental results were
presented that compared the proposed audio-visual speaker separation method
with the audio-only soft mask method using both speech quality and intelligibility
metrics.

Chapter 7 presented a comparison of the objective and subjective evaluations
of the developed and existing methods. The objective evaluation methods used
SIR, SDR and SAR to measure the quality of the extracted speech and word
recognition accuracy was used as the measure of estimated intelligibility. For
subjective evaluation, listening tests were conducted and the subjects were asked
to rate the quality of the extracted speech. The three developed methods and two

existing methods were compared along with the reference and unprocessed speech.

8.2 Conclusions

The following important conclusions can be drawn from the work carried out in

this thesis:

e High levels of correlation exist between audio and visual speech features
that confirms that communication using speech (both audio and video) is
an audio-visual experience. This bimodal (audio-visual) nature of speech

can be exploited for speaker separation.
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e The correlation between audio and visual speech features for a particular
speaker is dependant on how well the speech articulators are visible and

how well and clearly the speech is articulated.

e The correlation between audio and visual speech features is of significant
levels which make the estimation of less spectrally detailed audio features

vectors possible from the visual features vectors using GMMs.

e Visual speech features have several limitation. For example the mapping
from phonemes to visemes is not unique as several phonemes have the same
viseme representation. Also visual speech features for the open mouth in the
silence region can mislead the estimation process and the non-speech regions

are taken as speech regions because of the mouth opening.

e The estimated audio features vectors from the visual vectors can be used
in the construction of visually derived Wiener filter for speaker separation
and in the computation of visually derived binary masks that can identify
the regions dominated by the target speaker and hence these regions can be

used in the final estimate of the target speaker from the mixed speech.

e The visual speech features are more important when the SNR level drops
because the audio speech features are much susceptible to acoustic noise but

the visual features are not.

e Audio only speaker separation is more efficient in the regions where the
target speaker dominates while visual information is more efficient in the
regions where the competing speaker dominates and no useful information

can be derived from the mixed audio.
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e The SIR and SDR gains and intelligibility are trade-offs i.e. larger SIR
gains are obtained at the cost of reduction in SDR gains and intelligibility.
Therefore, the parameters affecting these measures should be selected in such
a way to keep a balance between SIR and SDR gains and intelligibility. Or
depending on the application in hand, whether quality enhancement is more
desirable or intelligibility improvements, different values of the parameters
can be used. For example in sensitive communication like the one used by

military, intelligibility is more important than quality.

8.3 Future work

Following from the findings and conclusions of the work carried out some future

work directions are suggested here as:

e looking at the correlation levels between audio and visual speech features and
the estimation errors of estimated audio features from the visual features,
it is obvious that there is a space for improvements. Hence better visual

features can be investigated that can increase the correlation levels.

e Better estimation models can be investigated that will reduce the estimation
errors like recently deep neural networks (DNN) are becoming more popular

[34).

e At present the proposed methods use speaker-dependent models, which is
typical of model-based single channel speaker separation methods, it would
be desirable to have a speaker-independent system. The high levels of

speaker variability in the visual domain make this challenging, but meth-
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ods of speaker adaptation and speaker-independent visual features could be

investigated.

e At present the number of speakers in the mixture is two which can be in-

creased along with some other acoustic noises.

e The speech mixtures created in this work are instantaneous and reverbera-

tion can be introduced in it that could be investigated further.
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