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Abstract

Joint modelling is the simultaneous modelling of longitudinal and survival data,

while taking into account a possible association between them. A common approach

in joint modelling studies is to assume that the repeated measurements follow a lin-

ear mixed effects model and the survival data is modelled using a Cox proportional

hazards model. The Cox model, however, requires a strong proportionality assump-

tion, which seems to be violated quite often. We, thus, propose the use of parametric

survival models. Additionally, joint modelling literature mainly deals with right-

censoring only and does not consider left-truncation, which can cause bias. The joint

model proposed here considers left-truncation and right-censoring.
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1 Literature Review

1.1 Introduction

This chapter describes the fundamentals of time-to-event and longitudinal analysis. For

time-to-event data the basic quantities, missing data mechanisms, the methods for time-

to-event data and diagnostics are described. For longitudinal analysis the missing data

mechanisms and the most common model used are mentioned. For joint analysis, different

approaches to parameter estimation and different modelling strategies are discussed. A gap

in the research of joint modelling to do with the use of parametric time-to-event models in

joint modelling is identified. This thesis will try to fill in that gap.

1.2 Time-To-Event Analysis

Survival Analysis (also known as time-to-event analysis) is the analysis of time from a start

point until the event of interest occurs (20). The survival time is the difference between

the two time-points i.e. the starting point and the endpoint (63).

1.2.1 Basic Quantities

Let T be a continuous random variable taking on values on [0,∞], which denotes time

interval until a predetermined event occurs. This event could be cancer appearance or

cancer metastasis, start time of smoking, death, etc.
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1.2.1.1 Cummulative Distribution Function The cummulative distribution func-

tion is the probability that the event will occur before time t, (85), (68):

F (t) = P (T ≤ t). (1)

This is an increasing function of t, taking values from 0 to 1.

1.2.1.2 Survival Function The survival function at time t is the probability that the

event will not occur before this time t (141), or the probability of surviving beyond time t

(9):

S(t) = P (T > t), (2)

where t ≥ 0. Survival function is a decreasing function equal to 1 at t = 0 and as the time

tends to infinity, it approaches zero (1).

The relation between the cummulative distribution function and the survival function is:

S(t) = 1− F (t). (3)

Thus, the survival function is the complement of the cummulative distribution function.

1.2.1.3 Probability Density Function The probability density function is the deriva-

tive of the cummulative distribution function(6):

f(t) =
dF (t)

dt
= −dS(t)

dt
. (4)

1.2.1.4 Hazard Function The hazard function is the instantaneous probability of an

event to occur within a small time interval t+ ∆t given that it has not occurred until time

2



t, (71), (68):

h(t) = lim
∆t→0

P [t ≤ T < t+ ∆t|T ≥ t]

∆t
. (5)

It is also called “conditional hazard rate” or “force of mortality” (73). The hazard function

can be obtained by dividing the density f(t) by the survival function S(t) (52):

h(t) =
f(t)

S(t)
. (6)

1.2.1.5 Cummulative Hazard Function The cummulative hazard function is the

integrated hazard function up to t (93) (68):

H(t) =

∫ t

0

h(u)du = − log [S(t)]. (7)

1.2.2 Missing Data Mechanisms

“Survival time” is the distance between the starting point and time when the event takes

place. There are cases, where there is a lack of observation of survival time. This lack of

observation is caused by two different mechanisms. The lack of observation may be due to

random factors (censoring) for each subject, or due to the selection process (truncation) in

the study (63). There are various cases of censoring and truncation, which are discussed

below.

Suppose that a subject takes part in a study. Suddenly, he decides to move to another

city. His last visit contains the latest information that is held about him. After he moved,

the information about what happened to him is missing. So, there is a lack of observation

on the right tail of the time-axis. This lack of observation is called right-censoring (63).

Let Ci and Ti denote the censoring and survival times respectively, observed for the ith

3



individual. Censoring indicator δi = I(Ti ≤ Ci), where I is the indicator of an event, thus

when right-censoring is present i.e. Ci < Ti, the censoring indicator δi = 0. When the

subject dies and is not right-censored Ti ≤ Ci, the censoring indicator δi = 1.

Consider a study where the subjects are interviewed about the age when they have first

used marijuana. One possible answer is that the respondents have used it, but they cannot

remember when this happened. So, the event of interest occurred at an age, prior to the

age that the interview is done. The exact age, however, is not known (71). This type of

lack of time observation is called left-censoring (63).

Another type of censoring, is the interval censoring. This happens when the subjects are

contacted at time intervals. Suppose that the individuals are contacted every two months.

The event of interest has not occurred by the second month. By the fourth month, however,

it has occurred. So, it is known that the event of interest has occurred at some time between

the second and fourth months, but the exact date is not known (63).

The left-truncation is caused by delayed entry of the individuals to the study. The most

common case of left-truncation is the retirees taking retirement from the age of 60+ and

their age is recorded at that point. However, there are individuals that died before they

retired and did not make it to the retirement. This type of incomplete observation is called

left-truncation (71). The survival of the individuals is conditional on the survival up to

point of the study entry.

The right truncation happens when the selection process of the study stops at some point.

For example, if a study deals with people who got infected within a specific time period,

there is a lack of observation for infections past this specific time period. This lack of

observation is considered to be right-truncated (71).

4



1.2.3 Non-Parametric Methods of Survival Analysis

The main characteristic of the non-parametric methods is that no explicit assumptions are

made about the distribution of the survival times (20).

1.2.3.1 Kaplan-Meier Product Limit Estimator The most common tool for non-

parametric survival analysis is the Kaplan-Meier product limit estimator, which was sug-

gested by Kaplan and Meier (1958) (69).

If there are p distinct survival time observations, they are put in ascending order t1, t2, ..., tp.

Let nti be the number of individuals at risk at each ti and let dti be the number of individuals

who died, at each ti, where i = 1, 2, ..., p. The Kaplan-Meier estimator of the survival

function is (71) (69):

Ŝ(t) =
∏

ti≤t(1−
dti
nti

), t ≥ 0. (8)

At the start of each study i.e. at t0, dt0 = 0, and the estimator is equal to one.

1.2.4 Semi-Parametric Methods of Survival Analysis

A popular statistical method used for semi-parametric survival analysis is the Cox propor-

tional hazards model, suggested by Cox (1972) (24). This is a regression modelling the

hazard as:

h(t, x, β) = h0(t) exp {xβ}, (9)

where h0(t) is the baseline hazard, x denotes a vector of covariates and β the vector of

regression coefficients, linking the covariates to the hazard function.
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The proportional hazards model leaves the baseline hazard undefined, but it assumes that

the ratio of the hazards is constant over time i.e. does not depend on time (63).

To analyse the proportional hazards model, Cox (1972) (24), suggested the partial likeli-

hood function:

Lp(β) =
n∏
i=1

[
exp {xiβ}∑

j∈R(ti)
exp {xjβ}

]δi , (10)

where δi is the censoring indicator and the summation in the denominator is over all

subjects in the set of risk (R(ti)) at time ti. (10) assumes that there are no tied times.

Breslow (1974) (14) and Efron (1977) (35) suggested approximations for the partial likeli-

hood function, taking into account tied times. These are:

Lp1(β) =
n∏
i=1

[
exp

{
x(i)+β

}
[
∑

j∈R(ti)
exp {xjβ}]δi

] (11)

and

Lp2(β) =
n∏
i=1

[
exp

{
x(i)+β

}∏di
k=1 [

∑
j∈R(t(i))

exp {xjβ} − k−1
di

∑
j∈D(t(i))

exp {xjβ}]
]. (12)

respectively. di denotes the number of subjects with survival time t(i), x(i)+ is equal to the

sum of the covariate values over the di subjects and D(t(i)) denotes the individuals that

have survival times equal to t(i).

Despite Cox proportional hazards model’s popularity, its proportionality assumption often

fails to be satisfied. Thus, there is a need for other models that do not use so strong

assumptions.
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1.2.5 Parametric Methods of Survival Analysis

Parametric methods make use of the assumption that the survival times come from a spe-

cific distribution (20) (71) (63). The main distributions used are: Exponential, Weibull,

Log-Logistic, Log-Normal, Extreme Value and Logistic. Additionally, Gompertz, Perks,

Beard, Makeham, Makeham-Perks and Makeham-Beard distributions, are popular on ac-

tuarial applications and mostly used for the cases of left-truncation and right-censoring.

These models are widely popular, especially in actuarial applications. The reasons for this

popularity are that the effect of the variables on survival time is modelled explicitly, that

full likelihood is used and that different shapes of the hazard are allowed.

In case of right-censoring the likelihood is given by (9) (20) (21) (63) (71):

L(θ, δi; ti) =
n∏
i=1

{f(ti; θ)}δi {S(ti; θ)}1−δi , (13)

or equivalently it can be also given by (138):

L(θ, δi; ti) =
n∏
i=1

{h(ti; θ)}δi {S(ti; θ)}, (14)

where n is the number of individuals, θ denotes all the parameters that need to be esti-

mated, ti is the follow-up time of the ith individual and δi is the censoring indicator of the

irh individual.

In case that left-truncation is present in the data, along with right-censoring, all proba-

bilities are changed to conditional ones. To be specific, if the truncation time for the ith

individual is denoted by Ai, the probability density and survival function are replaced by
f(ti;θ)
S(Ai;θ)

and S(ti;θ)
S(Ai;θ)

respectively (71).

7



Therefore, for left-truncation and right-censoring, the likelihood changes to (71):

L(θ, δi; ti) =
n∏
i=1

(
f(ti; θ)

S(Ai; θ)
)δi(

S(ti; θ)

S(Ai; θ)
)1−δi . (15)

The difference between the two likelihoods (13) and (15), is that the left-truncated and

right-censored likelihood is divided by the survival functions of the truncation times.

1.2.5.1 Weibull Distribution Weibull and Stockholm (1951) (146) suggested the use

of Weibull distribution. The hazard, cummulative hazard, survival and probability density

function of the Weibull distribution are given by (71) (92):

h(t;σ, γ) = γσ−1(tσ−1)γ−1, (16)

H(t;σ, γ) = (tσ−1)γ, (17)

S(t;σ, γ) = exp
{
−(tσ−1)γ

}
, (18)

and

f(t;σ, γ) = γσ−1(tσ−1)γ−1 exp
{
−(tσ−1)γ

}
, (19)

respectively. σ > 0 and γ > 0 are the distribution parameters, scale and shape, respectively,

and t is the follow-up time. Weibull is only defined for t ≥ 0. When γ = 1, the Weibull

distribution becomes Exponential distribution (87), which is a special case of it. The

hazard function (16) becomes

h(t;σ) = σ−1, (20)

i.e. h(t) is constant over time.

Weibull data can be modelled both parametrically, and semi-parametrically. This is due

to the fact that the Weibull distribution has the property of the proportional hazards i.e.

8



the Weibull hazard function can take the form

h(t, x, β) = h0(t) exp {xβ}, (21)

where h0(t) is the baseline hazard, x denotes a vector of covariates and β the vector of

regression coefficients, linking the covariates to the hazard function. Setting λ = σ−γ

and λ = exp(β0 + βx), (16) becomes h(t, x, β) = γtγ−1 exp(β0) exp(βx), where h0(t) =

γtγ−1 exp(β0)

The proportional hazards model leaves the baseline hazard undefined, but it assumes that

the ratio of the hazards is constant over time i.e. does not depend on time (63). However,

parametric methods have other advantages like making use of the assumption that the

survival times come from a specific distribution (20) (71) (63), the effect of the variables

on survival time is modelled explicitly, that full likelihood is used and that different shapes

of the hazard are allowed.

1.2.5.2 Log-Logistic Distribution The hazard, cummulative hazard, survival and

probability density functions of the Log-Logistic distribution are given by (13) (63) (71):

h(t;λ, p) = λptp−1(1 + λtp)−1, (22)

H(t;λ, p) = log[1 + λtp], (23)

S(t;λ, p) = (1 + λtp)−1, (24)

and

f(t;λ, p) = (λptp−1)(1 + λtp)−2, (25)

respectively. λ > 0 and p > 0 are the distribution parameters, scale and shape, respectively.

It is only defined for t ≥ 0.
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1.2.5.3 Log-Normal Distribution The hazard, cummulative hazard, survival and

probability density function of the Log-Normal distribution are given by (40) (63) (71):

h(t;µ, σ) = exp
{
−(log {t} − µ)22−1σ−2

}
t−1σ−1(2π)−

1
2

{
1− Φ[

log t− µ
σ

]

}−1

, (26)

H(t;µ, σ) = − log
{

1− Φ[(log t− µ)σ−1]
}
, (27)

S(t;µ, σ) = 1− Φ[(log {t} − µ)σ−1], (28)

and

f(t;µ, σ) = exp
{
−(log {t} − µ)22−1σ−2

}
(tσ)−1(2π)−

1
2 , (29)

respectively. µ ∈ < and σ > 0 are the distribution parameters, location and scale respec-

tively. Φ(z) is the cummulative distribution function of the standard normal distribution

(71).

1.2.5.4 Extreme Value Distribution The hazard, cummulative hazard, survival and

probability density function of the Extreme distribution, are given by (81) (106) (148):

h(t;µ, σ) = σ−1 exp
{

(t− µ)σ−1
}
, (30)

H(t;µ, σ) = exp
{

(t− µ)σ−1
}
, (31)

S(t;µ, σ) = exp
{
− exp

{
(t− µ)σ−1

}}
(32)

and

f(t;µ, σ) = σ−1 exp
{

(t− µ)σ−1 − exp
{

(t− µ)σ−1
}}

, (33)

respectively. µ ∈ < and σ > 0 are the distribution parameters, location and scale respec-

tively. t is defined from −∞ to ∞. We deal with log-Extreme Value, which is essentially

Weibull, see above for the Weibull.
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1.2.5.5 Logistic Distribution The hazard, cummulative hazard, survival and prob-

ability density functions of the Logistic distribution are given by (106) (148):

h(t;µ, σ) = σ−1 exp
{

(t− µ)σ−1
}

[1 + exp
{

(t− µ)σ−1
}

]−1, (34)

H(t;µ, σ) = log[1 + exp
{

(t− µ)σ−1
}

], (35)

S(t;µ, σ) = [1 + exp
{

(t− µ)σ−1
}

]−1 (36)

and

f(t;µ, σ) = σ−1 exp
{

(t− µ)σ−1
}

[1 + exp
{

(t− µ)σ−1
}

]−2, (37)

respectively. µ ∈ < and σ > 0 are the distribution parameters, location and scale respec-

tively. t is defined from −∞ to ∞. We deal with Log-Logistic, which is only defined for

t ≥ 0.

Log-Logistic is a survival distribution, but Logistic is not.

1.2.5.6 Gompertz Distribution Benjamin Gompertz, a British actuary, introduced

a law of mortality (48), which is nowadays called the Gompertz law of mortality (22)

(86). He assumed the exponential increase of mortality with age. The hazard function and

cummulative hazard function of the Gompertz law are (106) (107) (71):

h(t) = t exp(at) (38)

and

H(t) = −ta−1[1− exp (at)], (39)

respectively. t the follow-up time and a > 0 are the distribution parameters. The survival

function is given by:

S(t) = exp (ta−1[1− exp(at)]). (40)
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1.2.5.7 Perks Distribution Perks (1932) (98) found empirically that the mortality

could be approximated by a logistic curve. The hazard function, cummulative hazard

function and survival function for the Perks mortality law are given by (106) (107):

hx(t) =
exp {a+ bx}

1 + exp {a+ bx}
, (41)

Hx(t) = b−1 log

{
1 + exp {a+ b(x+ t)}

1 + exp {a+ bx}

}
(42)

and

Sx(t) =

{
1 + exp {a+ b(x+ t)}

1 + exp {a+ bx}

}−b−1

, (43)

respectively, where a, b ∈ <.

1.2.5.8 Beard Distribution Beard (1959) (10) added to Perks distribution (1932)

(98) a heterogeneity parameter ρ. The hazard, cummulative hazard and survival function

of the Beard mortality law are given by:

hx(t) =
exp {a+ bx}

1 + exp {a+ ρ+ bx}
, (44)

Hx(t) = exp {−ρ}b−1 log

{
1 + exp {a+ ρ+ b(x+ t)}

1 + exp {a+ ρ+ bx}

}
(45)

and

Sx(t) =

{
1 + exp {a+ ρ+ b(x+ t)}

1 + exp {a+ ρ+ bx}

}− exp {−ρ}b−1

, (46)

respectively, where a, b ∈ <.

1.2.5.9 Makeham Distribution Makeham (1859) (84) found that Gompertz’s law

could be improved by adding a constant term. The hazard, cummulative hazard and

survival function are given by (106) (107):

hx(t) = exp {ε}+ exp {a+ bx}, (47)
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Hx(t) = t exp {ε}+ b−1(exp {bt} − 1) exp {a+ bx} (48)

and

Sx(t) = exp
{
−[t exp {ε}+ b−1(exp {bt} − 1) exp {a+ bx}]

}
, (49)

where a, b, ε ∈ <.

1.2.5.10 Makeham-Perks Distribution Makeham-Perks distribution was empiri-

cally derived by Perks (1932) (98). Using Richards (2008) (106) and Richards (2011)

(107) notation, the hazard, cummulative hazard and survival function are given by:

hx(t) =
exp {ε}+ exp {a+ bx}

1 + exp {a+ bx}
, (50)

Hx(t) = t exp {ε}+ (1− exp {ε})b−1 log

{
1 + exp {a+ b(x+ t)}

1 + exp {a+ bx}

}
(51)

and

Sx(t) = exp {−t exp {ε}}
{

1 + exp {a+ b(x+ t)}
1 + exp {a+ bx}

}(1−exp {ε})b−1

, (52)

where a, b, ε ∈ <.

1.2.5.11 Makeham-Beard Distribution Makeham-Beard distribution was found em-

pirically by Perks (1932) (98). Using Richards (2008) (106) and Richards (2011) (107)

notation, the hazard, cummulative hazard and survival function are given by:

hx(t) =
exp {ε}+ exp {a+ bx}
1 + exp {a+ ρ+ bx}

, (53)

Hx(t) = t exp {ε}+ (exp {−ρ} − exp {ε})b−1 log

{
1 + exp {a+ ρ+ b(x+ t)}

1 + exp {a+ ρ+ bx}

}
(54)

and

Sx(t) = exp {−t exp {ε}}
{

1 + exp {a+ ρ+ b(x+ t)}
1 + exp {a+ ρ+ bx}

}(exp {−ρ}−exp {ε})b−1

, (55)

where a, b, ρ, ε ∈ <.
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1.2.6 Maximum Likelihood Estimation

Let n be the number of subjects. If t1, t2, ..., tn is a set of independent observations with

probability density function fi(ti; θ), where θ is a vector of J parameters, i = 1, 2, ..., n,

the likelihood function is defined as (145):

L(θ; t1, t2, ...tn) =
n∏
i=1

f(ti; θ). (56)

However, the log-likelihood function is easier to use due to the properties of the logarithms.

l(θ; t1, t2, ..., tn) = logL(θ; t1, t2, ...tn). (57)

In maximum likelihood estimation, the aim is to obtain the value of the estimates that

maximize the log-likelihood. This is done by differentiating the log-likelihood with respect

to each parameter, setting the derivative equal to zero and solving the resulting equation,

in order to obtain the maximum likelihood estimate θ̂ (78):

∂l(θ̂;t)
∂θj

= 0, j = 1, ..., J. (58)

In the above equations l(θ; t) denotes the log-likelihood, t is the set of times t = {t1, t2, ..., tn}
for the individuals, θ is the set of θj parameters, θ = {θ1, θ2, ..., θJ}.

The Hessian matrix is given by (63):

H[l(θ; y)] =



∂2l(θ;t)

∂θ21

∂2l(θ;t)
∂θ1 ∂θ2

· · · ∂2l(θ;t)
∂θ1 ∂θj

∂2l(θ;t)
∂θ2 ∂θ1

∂2l(θ;t)

∂θ22
· · · ∂2l(θ;t)

∂θ2 ∂θj

...
...

. . .
...

∂2l(θ;t)
∂θj ∂θ1

∂2l(θ;t)
∂θj ∂θ2

· · · ∂2l(θ;t)

∂θ2j


. (59)
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The information matrix is (31):

I(θ̂) = −E[H[l(θ; y)]] (60)

and the approximation of variance-covariance matrix is the inverse of the information

matrix (8) (123): ̂
V ar(θ̂) = I−1(θ̂). (61)

1.2.7 Diagnostics for Survival Analysis Models

When a model is fitted to a data, certain assumption are made. Before making any

conclusions from the model fitted, it is crucial to ensure that all the model assumptions

made are valid. In case that assumption violations do occur, then the model may provide

faulty conclusions. Thus, it is extremely important to perform the appropriate model

diagnostics.

1.2.7.1 Cox-Snell Residuals The Cox-Snell residuals are used for assessing the over-

all fit of the model (127). They are defined as (73) (127):

ĉi = Ĥ(ti) = − log Ŝ(ti), (62)

where Ŝ is the estimated survival function. After evaluating the Cox-Snell residuals, they

can define time and censoring indicator can define the events (63). Using them, Kaplan-

Meier estimator is obtained and from that the estimated cummulative hazard function of

the Cox-Snell residuals (71). If the latter is plotted against the Cox-Snell residuals, the

overall fit can be seen. If the values obtained are approximately forming a straight line

that passes through the origin and has gradient equal to one, then the model is considered

to be adequate (73) (89).
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1.2.7.2 Martingale Residuals The martingale residuals are a modification of the

Cox-Snell residuals and are defined as (63):

M̂i = δi − ĉi, (63)

where δi is the event indicator (71). Large martingale values indicate a poor fit of the

model for these points (41).

1.2.7.3 Deviance Residuals The deviance residuals are defined as (71) (32) (23)

Di = (M̂i)

√
(−2(M̂i + δi log(δi − M̂i))), (64)

(M̂i) in (64) is the signum function which is defined as follows (55):

(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

. (65)

The distribution of the deviance residuals is symmetric around zero (121) due to the

logarithm in the definition and thus, they are easier to work with than the martingale

residuals which can take values from −∞ to +1 (71) (32) (23). Generally, the deviance

residuals identify the individuals fitted inadequately by the model (121).

1.2.7.4 Score Residuals The score residuals identify which subjects are highly affect-

ing the estimation of the model (121) and they are defined as (63):

∂l(θ̂; t)

∂θj
=

n∑
i=1

L̂ij, (66)

where t is the set of ti values for i = 1, 2, ..., n, θ is the set of θj, where j = 1, 2, ..., J , pa-

rameters to be estimated. The vector of the score residuals of the ith subject corresponding

to θ parameters is denoted as L̂i = (l̂i1, l̂i2, ..., l̂iθj) (63).
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Each score equation that contributes to the sum in (66), is in fact a re-weighted Schoenfeld

residual (62).

1.2.7.5 Scaled Score Residuals The scaled score residuals are (63):

L̂′i = ̂V ar(θ)L̂i. (67)

The scaled score residuals measure how influential an observation is, in terms of parameter

estimation (scaled version of the score residuals (63)) (37).

1.2.7.6 Cook’s Distance Cook’s distance is the influence that a subject may have on

the estimation of the coefficients (83) and it can be evaluated using the score and scaled

score residuals (63):

ldi = L̂iL̂
′
i. (68)

1.3 Longitudinal Analysis

Longitudinal data consists of repeated observations (126) on the same individual. This data

is typically highly unbalanced due to the difference in number and timing of observations

for each individual (139). This is because the conditions for each measurement cannot be

fully controlled.
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1.3.1 Linear Mixed Models

Laird and Ware (1982) (72) suggested a linear model for longitudinal data which includes

the within-person and the between-person variation.

Let n be the number of individuals and mi denote the number of observations for the ith

individual, where i = 1, 2, ..., n. Let Yi be a mi×1 vector of responses for the ith individual.

Let a denote a p× 1 vector of unknown population parameters, Xi denote a known mi× p
design matrix linking a to Yi, bi be a k × 1 vector of unknown random individual effects

and Zi be a known mi × k design matrix linking bi to Yi.

For each individual i the model states that,

Yi = Xia+ Zibi + ei, (69)

where the errors ei are assumed to be independent and normally distributed N(0, Ri) (88)

i.e. they have mean zero and mi × mi covariance matrix Ri (139). The covariance is a

positive-definite matrix that depends on i, via its dimension mi.

The random effects bi ∼ N(0, D), where D is a k × k positive-definite covariance matrix

(139) and are assumed to be independent of each other and of the errors ei. The population

parameters a are treated as fixed effects.

Conditionally on random effects bi, Yi ∼ N(Xia+ Zibi, Ri) (139).

Marginally, yi ∼ N(Xia,Ri+ZiDZ
T
i ) (139). The model can be simplified when the random

effects bi are independent i.e. Ri = σ2I, where I is a mi ×mi identity matrix. Then, the
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marginal density function of Yi is (139):

f(yi) =

∫
f(yi|bi)f(bi) dbi , (70)

where f(yi|bi) and f(bi) are the density functions of Yi conditional on bi and bi respectively.

In order to fit the model and obtain the model parameters, maximum likelihood or re-

stricted maximum likelihood estimation can be used (139).

1.3.2 Missing Data Mechanisms

Little and Rubin (1987) (80) and Diggle and Kenward (1994) (33) classified the missingness

mechanisms for longitudinal measurements into three categories. These are:

1. MCAR- Missing Completely At Random: this happens when the probability of miss-

ing does not depend on observed or unobserved measurements.

2. MAR- Missing At Random: appears when the probability of missing depends on

observed measurements, but not on the unobserved ones.

3. MNAR- Missing Not At Random: arises when the probability of missing data depends

on observed and unobserved measurements.

If the drop-out (missing data) is present in the data, then ignoring the relationship be-

tween the drop-out and the response, is inappropriate (33). Hogan and Laird (1997b) (60)

concluded that when the missing observations are not missing at random, then the missing
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data has to be modelled with the longitudinal data, so that the estimates will be valid and

not biased.

1.4 Joint Analysis of Longitudinal and Survival Data

Longitudinal data include the set of repeated measurements, and survival data includes

the set of times until the event of interest, for the same patients. These two data subsets

were analyzed separately in the past, until it was realised that the longitudinal data can

be associated with the survival data (88).

A biomarker is a biological characteristic (e.g. molecule) which is used to identify a patho-

logical or physiological process (e.g. disease) (125). Biomarkers are often measured over

time and referred to as longitudinal biomarkers. They may affect survival.

The simple version of longitudinal data for joint modelling is to have one longitudinal

biomarker. There are however, more complicated scenarios where there are multiple longi-

tudinal biomarkers. Models that can handle different types of failing are called competing

risks models. These different types of failing can also be considered as informative censor-

ing. Multiple longitudinal biomarkers and competing risks models are briefly discussed in

Chapter 6.

For the simple joint modelling with only one biomarker and without any competing risks,

the first naive approaches to estimate the parameters were the last value carried forward

which is known to cause large bias, Prentice (1982) (101), and the two-stage procedure, Self

and Pawitan (1992) (118). A modern alternative is the simultaneous parameter estimation

for both processes, longitudinal and survival, which is now widely used. Different modelling
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strategies are used depending on the primary interest of the study (126).

1.4.1 Two-Stage Approach

The two-stage approach consists of estimating the longitudinal component first and then

substituting them to estimate the survival component. Tsiatis et al (1995) (135) and Albert

and Shih (2010) (4) use this approach with some variations.

Tsiatis et al (1995) (135) estimate the longitudinal components using repeated measures

random component model in the first stage. In the second stage, they estimate the pa-

rameters of a Cox proportional hazards model, using empirical Bayes estimates as in Dafni

and Tsiatis (1994) (28) and Laird and Ware (1982) (72).

Albert and Shih (2010) (4) used the two-stage approach for discrete time-to-event data.

First, they estimated the longitudinal components, then simulated the data from the lon-

gitudinal component and re-fitted the model. They related the longitudinal component to

the survival time, using a probit model. The simulation is performed to minimize bias due

to informative drop out.

The two stage approach however does not perform as well as the simultaneous parameter

estimation (129).
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1.4.2 Simultaneous Joint Modelling

The simultaneous parameter estimation, using a joint likelihood approach has become

popular due to an increased accuracy of estimation (129). The joint modelling paradigm

includes different modelling strategies such as pattern-mixture and selection models (126).

These can be extended by incorporating random effects and they are called random pattern-

mixture, random selection and an additional category called random effects models. There

are some differences in the definitions for each type of model and some overlaps between

them. For more details see Little (1995) (79), Hogan and Laird (1997b) (60), Sousa (2011)

(126) and McCrink (2013) (88).

Simple, yet detailed explanation used by Sousa (2011) (126) and McCrink (2013) (88)

for different joint modelling strategies is shown below. Let Y, T and B represent the

longitudinal, time-to-event and random effects parts.

Selection models: [Y, T,B] = [B][Y |B][T |Y ].

Pattern-Mixture models: [Y, T,B] = [B][T |B][Y |T ].

Random effects models: [Y, T,B] = [B][Y |B][T |B].

Due to a better performance of the simultaneous joint modelling compared to the other

methods such as last value carried forward or two-stage approach, this is the class of meth-

ods developed in this thesis. The primary interest is random effects (or shared parameter)

models.
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1.4.3 Pattern Mixture Models

In pattern mixture models, the main interest is centered on the longitudinal component

(126).

Wu and Bailey (1989) (149) were the first to consider a pattern-mixture model, under

informative missingness. They used a linear random effects model for the longitudinal

variable and the random effects were conditional on the event time.

Hogan and Laird (1997a) (59) described a mixture model for longitudinal and time-to-event

data. They assumed that the data is missing at random (unlike Wu and Bailey (1989)),

and that the individuals are subject to right-censoring. The longitudinal component is

modelled using a linear mixed effects model and they made no parametric assumptions

for the time-to-event distribution. Instead they estimate multinomial probabilities with

incomplete data for the survival component, as suggested by Cox and Oakes (1984) (25).

1.4.4 Selection Models

In selection models, the primary interest is the time-to-event component with the longi-

tudinal component most commonly modelled by a linear mixed effects model (126). The

time-to-event component is modelled using either a Cox proportional hazards or a probit

model.

Brown et al.(2005) (17) used a proportional hazards model for the survival component.

However, they proposed a cubic B-spline, instead of a linear mixed effects model, to model

the longitudinal data. Instead of making assumptions about the behaviour of the longi-
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tudinal component over time, they use cubic B-splines for greater flexibility. They also

extended the model to accomodate multiple longitudinal response variables.

1.4.5 Random Effects Models

In random effects models (also called shared parameter models) the two processes, longi-

tudinal and time-to-event, are linked through shared random effects, i.e. they are condi-

tionally independent given the random effects. (88) (126).

Wu and Carroll (1988) (150) suggested a linear random effects model for two-treatment

group data when informative censoring is present. They assumed that missingness pro-

cess and staggered entry are non-informative and independent of right-censoring. The

probability of being right-censored is given by a probit model conditional on the random

effects.

Follmann and Wu (1995) (45) suggested a shared parameter joint model, which is a gen-

eralization of the model suggested by Wu and Carroll (1988) (150). Suppose Yi are the

longitudinal measurements for the ith subject and Ti the time-to-event for the ith subject.

These are linked with a set of shared random effects bi, which follow a distribution with

mean zero and distribution function H(·).

The longitudinal value conditional on the random effects follows a generalized linear model:

ψ[E(yij|bi)] = awij + bizij, (71)

where ψ(·) is the link function, wij and zij are the vectors of covariates. Additionally,

it is assumed that the time-to-drop-out conditional on the random effects also follows a

generalized linear model.
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The full joint shared parameter model is:

f(Yi, Ti) =

∫
gYi(Yi|bi)gTi(Ti|bi) dH(bi) , (72)

where gYi(Yi|bi) and gTi(Ti|bi) are the conditional models and H(bi) is the distribution

function of the bi. Follmann and Wu (1995) showed that this model does not require the

data to be MAR or MCAR.

DeGruttola and Tu (1994) (30) proposed an extension of the model suggested by Wu

and Carroll (1988) (150) i.e. a model that has a more general random effect structure,

rather than two random effects only. The longitudinal component is modelled using a

more general linear random effects model and random effects follow a multivariate normal

distribution. Censoring of survival time is assumed to be non-informative. Specifically, the

probability of being censored is independent of the unobserved failure time. Additionally,

missing observations are missing at random. The relationship between the longitudinal

component and survival component is modelled via linear or nonlinear regression, e.g. Cox

proportional hazards model.

Faucett and Thomas (1996) (42) and Wulfsohn and Tsiatis (1997) (151) introduced a

random effects model with proportional hazards. The parameters are estimated by using

MCMC method of Gibbs sampling by Faucett and Thomas (1996) (42), while Wulfsohn

and Tsiatis (1997) (151) introduce an EM algorithm.

The two most common submodels used for shared parameter models are, for longitudinal

component

Yij = β0i + β1itij + εij, (73)

where Wi(tij) = β0i + β1itij is the true unobserved longitudinal value for the ith individual

at the jth time-point, while Yij are the observed longitudinal measurements. Errors εij ∼
N(0, σ2

e) while β0i and β1i have a bivariate normal distribution with means µβ0 and µβ1
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and the covariance matrix Σ =

[
σ2
β0

σβ0β1

σβ0β1 σ2
β1

]
, where σβ0β1 = ρσβ0σβ1 with ρ being the

correlation between the random effects. For survival component,

λi(t) = λ0(t)eα(β0i+β1itij), (74)

where α is the association between the longitudinal and the survival component. Addi-

tionaly, Wulfsohn and Tsiatis (1997) (151) discuss the two-stage modelling, which was

suggested in Tsiatis, De Gruttola and Wulfsohn (1995) (135). Two-stage modelling was

performed by first fitting a model to longitudinal measurements and then estimating the

Cox model by substituting the empirical Bayesian estimates by Laird and Ware (1982)

(72). This approach does not take into account the survival information, while fitting

the longitudinal model and therefore, it cannot be more efficient than performing a direct

maximization.

Henderson et al (2000) (56) extended the model used by Faucett and Thomas (1996) (42)

and Wulfsohn and Tsiatis (1997) (151). They do not use the same Wi(tij), instead they

used

W
′

i (tij) = γ1U0i + γ2U1itij + γ3(U0i + U1itij) + U2i, (75)

where U2i ∼ N(0, σ2
U2

) is independent of (U0i, U1i), while the rest remain the same as in

Wulfsohn and Tsiatis (1997) (151). γ1 and γ2 measure the association between W
′
i (tij) and

Wi(tij) through intercept and slope, while U2i models frailty. They also suggest a Monte

Carlo method for evaluating the likelihood integral for the reduction of the variance.

This type of model has as special case the model considered by Laird and Ware (1982)

(72). By extending that model, Henderson et al (2000) (56) consider more situations where

an association between longitudinal and survival component may exist. Henderson et al.

(2000) (56) assume that the time, in which the measurements are taken, is non-informative

and that censoring is also non-informative.
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Other shared parameter models considered in the literature had different characteristics.

Wang and Taylor (2001) (144) use a longitudinal model for continuous data and a pro-

portional hazards model, which includes the longitudinal biomarker (as a time-dependent

variable) and other covariates for survival component. The longitudinal model contained

fixed and random effects, independent measurement error and an integrated Ornstein-

Uhlenbeck (IOU) stochastic process. They use Bayesian techniques in order to fit the

model. Their simulation results indicate that the method gives quite accurate estimates,

except for the parameter of the IOU, for which they assume that it is due to a very skewed

distribution of the parameter.

1.4.6 Integral Approximation and Parameter Estimation

Maximum likelihood is among the first estimation techiniques used for the joint model

(88) (120). Expectation-Maximization (EM) algorithm is another popular algorithm that

is often implemented (29) (88). It treats the random effects as missing data, see Wulfsohn

and Tsiatis (1997) (151).

Joint modelling likelihood includes integrals that cannot be solved analytically. The main

difficulty in joint modelling is the numerical integration with respect to the random effects.

Thus numerical approximations are widely used, such as Gauss-Hermite rule and its adap-

tations (88). This is used by Wulfsohn and Tsiatis (1997) (151), Henderson et al.(2000)

(56), Song et al.(2002) (124) and Rizopoulos et al.(2008) (108). However, when the di-

mension of the random effects increases, the computational complexity of the Gaussian

Quadrature increases exponentially. Rizopoulos (2012) (113) suggest to use a pseudo-

adaptive Gauss-Hermite Quadrature rule. Specifically, this is achieved, by first fitting the

mixed effects model for the longitudinal component and extracting information about the

location and the scale of the posterior distribution of the random effects. There is an issue,
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though, with the quadrature points’ location with respect to the main mass of the inte-

grand’s location and integrand spread may differ from the spread of the weight function. In

this case, even for large number of quadrature points, the approximation is poor and this is

due to the fact that quadrature is not located where the most of the mass of the integrand

is. Thus, by centering and scaling the integrand in order to make the weight-function

proportional to the density function, fewer quadrature points are required.

The centering and scaling are achieved using the location of the mode b̂i and the second

order derivative matrix Ĥi for each subject. So, after fitting the linear mixed effects model,

the empirical Bayes estimates of b̃i and H̃−1
i are extracted and used in the transformation

r̃t = b̃i+
√

2B̃−1bt, where B̃i denotes the Cholesky factor of H̃i and bt denote the absciccas.

As the number of observations for each individual increases, it is sufficient to use the

information from the mixed effects model, i.e. the maximum likelihood estimates for the

joint model will be close to the maximum likelihood estimates of the linear mixed model.

Thus, this procedure is only required to be implemented once, at the start of optimization,

and not at every quadrature point like the adaptive Gauss-Hermite rule. So, there is

no need for computational relocation at each iteration. Using simulations, Rizopoulos

(2012) (113) found that this pseudo-adaptive quadrature rule performs well, even when

the number of observations is quite small.

Laplace Approximations are also used to make the computational approach easier (88).

Rizopoulos et al.(2009) (109) suggest a new computational approach which requires fewer

repetitions than the often used Monte Carlo and Gaussian Quadrature. For these the

amount of time needed for the integral evaluation increases as the dimensions of the in-

tegral increase. Thus, they use the Laplace approximation for integrals and develop an

EM algorithm for the estimates. This is made under the assumption that censoring and

visiting processes (for the longitudinal measurements) are non-informative i.e. that they

are independent of the random effects, survival time and longitudinal measurement, similar

to Tsiatis and Davidian (2004) (134).
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Bayesian methods are also used to estimate parameters. Faucett and Thomas (1996) (42)

used a Markov Chain Monte Carlo (MCMC), while other authors use MCMC algorithm

with a Gibbs sampler, Faucett et al.(2002) (43), Xu and Zeger (2001) (152), Brown et

al.(2005) (17), Guo and Carlin (2004) (51).

Hsieh, Tseng and Wang (2006) (64) suggest bootstrapping for the estimation of standard

errors, while they notice that the EM estimates given in Wulfsohn and Tsiatis (1997) (151)

are efficient and robust as long as the longitudinal data contains a lot of information (i.e.

not have large measurement errors or are not too dispersed).

Sweeting and Thompson (2011) (129) have given a comparison of maximum likelihood

and Bayesian estimation of the joint modelling and concluded that despite the computa-

tional advantages of Bayesian approaches, the need to choose prior distributions requires

a sensitivity analysis.

Further estimation techniques include the conditional score approach proposed by Tsiatis

and Davidian (2001) (133) and the Dimension Reduction Method by Bianconcini (2015)

(12).

This thesis will work with Gauss-Hermite approximation and maximum likelihood estima-

tion will be used because Bayesian approaches depend on a prior and require a sensitivity

analysis, Sweeting and Thompson (2011) (129). Besides maximum likelihood, bootstrap-

ping will also be used for the estimation of the parameters and their standard errors.
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1.4.7 Accelerated Failure Time Models

Despite Cox proportional hazards model’s popularity in conjuction with joint modelling,

its proportionality assumption often fails to be satisfied. Thus, there is a need for other

models that do not use this assumption. Parametric models make use of the assumption

that the survival times come from a specific distribution (20) (71) (63).

Accelerated failure time models are the models that are linearly-related with the log sur-

vival time (63). In this section, the joint models that use accelerated failure time models

for the survival sub-model are considered.

Pantazis et al. (2005) (95) suggested a bivariate linear mixed model for longitudinal

measurements and a log-normal model for time-to-event. Additionally, they assume that

the individual level random coefficients and survival residuals follow jointly a multivarite

normal distribution with zero mean. Pantazis and Touloumi (2007) (94) found that the

model suggested by Pantazis et al. (2005) (95) is quite robust, but the standard errors

may be underestimated, especially under heavily skewed distributions.

Vonesh et al. (2006) (142) proposed a shared random parameter model for the joint

distribution of longitudinal and time-to-event data. The submodels are generalized non-

linear mixed model for longitudinal and accelerated failure time model for the survival

data.

Tseng, Hsieh and Wang (2005) (132) proposed a joint modelling approach that includes

an accelerated failure time model for the survival submodel and a linear mixed model for

the longitudinal submodel. This can be used when the proportionality assumption of the

Cox model fails.
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A general parametric survival family including the accelerated failure time models is con-

sidered in this thesis.

1.4.8 Left-Truncated Survival Data

The majority of researchers working either with survival data on its own, or in joint mod-

elling, consider only right-censoring. Left-truncation is often neglected. However, if left-

truncation is not taken into account in joint modelling then subjects with shorter survival

times are excluded from the sample, and thus longitudinal measurements are sampled with

bias. An exclusion is the paper by Su and Wang (2012) (128), who suggested an approach

for joint modelling that overcomes the bias caused by left-truncation. They developed

an approach to left-truncated and right-censored survival data with longitudinal covari-

ates. For the longitudinal component, they use a linear mixed effects model, while for the

survival part they use a proportional hazards model.

The subject i is enrolled into a study only if the survival time is greater or equal to the

truncation time. They use the standard assumption that the survival time of the ith subject,

the truncation time of the ith subject and the difference between the censoring time and

truncation time for the ith individual are conditionally independent given the covariates,

which is equivalent to assuming conditional independence of survival time, truncation

time and the difference between truncation and censoring time, given the random effects.

Additionally, they assume that the survival time and the difference between truncation

time and censoring time are independent of the random effects.

They found that the full likelihood can be simplified to a conditional likelihood. Left-

truncation, though, makes score equations more complicated, and thus they use a modified

likelihood in order to simplify the estimation.
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This thesis will also use left-truncation since not taking it into account when fitting a

model, causes bias.

1.5 Summary

Joint Modelling is the simultaneous modelling of longitudinal and survival data. There are

two different factorizations for this type of modelling: pattern-mixture and selection models

(more details in Chapter 2). For both factorizations random effects can be incorporated

resulting in random pattern-mixture and random selection models. Additionally there is

another category of models, random effects models (or shared parameter models) in which

the longitudinal and survival submodels are independent conditional on the random effects.

This thesis considers a shared parameter model.

The two processes, longitudinal and time-to-event, can be analyzed separately, but the

association between them can be used to increase the efficiency of the joint analysis, aimed

at the evaluation of the effects of longitudinal covariates on the occurrence of the events.

The longitudinal covariates are typically observed in a set of patient-specific time-points

and can include missing values. Historically, the first, naive approaches were based on

the last value carried forward method which is known to cause substantial biases, and the

two-stage estimation procedure. A simultaneous parameter estimation for both processes,

longitudinal and survival is the widely used modern alternative. The modelling strategies

used in the joint modelling differ depending on the primary interest of the research. The

thesis primary interest is the association of the longitudinal component to the survival

time.
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Up to date, all published joint modelling models consider joint models for right-censoring

only, neglecting left-truncation. However, data often includes left-truncation which can

cause bias to estimates of the parameters, since the survival of the individuals in a study

is conditional on the survival up to the point of entry. This thesis considers not only

shared parameter model for right-censoring case, but also for the case of left-truncation

and right-censoring.

The majority of joint modelling literature considers Cox proportional hazards model for the

time-to-event data. The proportional hazards model leaves the baseline hazard undefined,

but it assumes that the hazard functions are multiplicatively related which means that

their ratio is constant over time. Despite Cox proportional hazards model’s popularity, its

proportionality assumption often fails to be satisfied. Thus, there is a need for alternative

models that do not use this assumption. Parametric methods assume that the survival

times come from a specific distribution. The main distributions used are: Weibull, Log-

Logistic, Log-Normal, Extreme Value, Logistic, Gompertz, Perks and Beard. These models

are widely popular, especially in actuarial applications. The reasons for their popularity

include the direct inference of the effect that the variables have on survival time, the use

of maximum likelihood estimation and the ability to incorporate different shapes of the

hazard.

Statistical inference in parametric modelling is mostly likelihood-based. The joint likeli-

hood is easy to write out but the integrals that are part of it cannot be solved analytically.

Approximations used include Gauss-Hermite approximation, Laplace approximation and

the Dimension Reduction Method. This thesis uses a Gauss-Hermite approximation for

the integral.

The estimation techniques include Bayesian methods based on Markov Chain Monte Carlo,

or frequentist methods such as conditional score approach, maximum likelihood, and max-
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imum likelihood with bootstrap estimation for standard errors. In this thesis maximum

likelihood estimation, bootstrap, and maximum likelihood estimation with bootstrap for

standard errors are used.

Reviews of joint modelling approaches for this field can be found in Tsiatis and Davidian

(2004) (134), Sousa (2011)(126) and McCrink et al (2013) (88). Software available in R

include the JM package (110) and the the joineR package, (99). The joint modelling soft-

ware is also available in stata (27), matlab (105), winBUGS and SAS, using the NLMixed

Procedure by (51).

Chapter 3 contains the main theoretical considerations of the thesis. It presents the joint

modelling framework, the sub-models and the log-likelihood for right-censoring and left-

truncation, describes the Gauss-Hermite and Laplace approximation that are applied to

the likelihood integral, and the maximum likelihood and the bootstrap estimation of the

parameters. Chapter 4 includes a simulation study for the joint modelling presented in

Chapter 3. Chapter 5 describes the applications of the developed methods to two medical

problems, prostate cancer and primary biliary cirrhosis (PBC) dataset from the JM package

(110). Chapter 6 presents the future extensions of the joint modelling approach presented

on Chapter 3.
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2 Joint Modelling of Longitudinal and Survival Data

2.1 Introduction

The previous chapter described joint modelling methods for longitudinal and survival data,

and also longitudinal and survival analysis separately. There was no research so far on left-

truncation and right-censoring joint modelling using parametric survival models and this

is what this chapter will describe.

First, the necessary notation is introduced, and then the linear mixed model that is used

for the longitudinal component and a general class of models for the survival component

are described. Then, the shared parameter likelihood for two cases, right-censoring and

right-censoring and left-truncation, is obtained. Due to the difficulty in evaluating the like-

lihood integral analytically, integral approximations are applied and a Weibull application

is described in detail. Finally, the methods of maximum likelihood and boostrap to obtain

the estimates of the parameters are explained.

2.2 Notation

Let Ai, T
∗
i and Ci denote the left-truncation time, true survival time and censoring time

respectively, for the ith individual, i = 1, ..., n. The observed survival time for the ith in-

dividual is given by Ti = min(T ∗i , Ci). δi = I(T ∗i ≤ Ci) is the censoring indicator (1-dead,

0-alive). Let ti = {tij, j = 1, 2, ...,mi}, be the set of mi time-points, at which the ith indi-

vidual is observed, these could differ for each individual, and Yi(ti) = {Yi(tij), j = 1, ...,mi}
be a vector of the observed values of a longitudinal biomarker.
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Xi(t), Zi(t) and Yi(t) are matrix functions of time t. These are not observed at all time-

points, but only at tij, j = {1, ...,mi}. Xi(ti), Zi(ti) are the matrices of the p fixed and q

random time-dependent covariates, respectively, with xTi (t), zTi (t) being their row vectors

at time t. Let Ui be the set of time-independent covariates for the ith patient and uTi

be a row vector at all times t. Let MT
i be the vector of the s time-independent survival

covariates, related only to survival.

2.3 Longitudinal Sub-Model

The subject-specific observed values of the longitudinal biomarker are

Yi(ti) = XT
i (ti)β + ZT

i (ti)bi + UT
i λ+ ei(ti), (76)

((109),(139)) where β is a vector denoting time-dependent fixed effects, λ a vector de-

noting a time-independent fixed effects and bi a vector denoting the random effects for

the ith individual. ei(ti) is a mi × 1 vector of the measurement errors, independent of all

other variables. The errors are normally distributed N(0, σ2
e) ((109),(139)) and correlation

between repeated measurements in longitudinal process is (ei(tij), ei(tij′)) = 0 for j 6= j′,

((109),(139)).

Assume that there are p time-dependent fixed parameters. Then β is p × 1 vector and

XT
i (ti) is a mi× p design matrix for time-dependent fixed effects. Assuming there are q

random effects, bi is a q×1 vector, and ZT
i (ti) is a mi× q design matrix for random effects.

The elements of bi ∼MVN(0, D) and D is a q× q variance-covariance matrix. If there are

r time-independent fixed parameters, λ is a r × 1 vector of time-independent fixed effects

that links a mi × r matrix, UT
i , to the longitudinal observations Yi(ti).

The conditional expectation of Yi(ti) given bi, is denoted byWi(ti) = {Wi(tij), j = 1, ...,mi}.
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It is given by

E[Yi(ti)|bi] = Wi(ti) = XT
i (ti)β + ZT

i (ti)bi + UT
i λ, (77)

((109),(139)), and thus the longitudinal biomarker is given by

Yi(ti) = Wi(ti) + ei(ti). (78)

2.4 Survival Sub-Model

Let h(t) be a function of time. Two important cases are

h(t) =

log(t), if accelerated failure time model

t, for the rest of the parametric models.
(79)

For the ith individual h(t) can be written as

h(ti) = µi(ti) + σ × εi, (80)

where σ is the scale parameter, εi are the errors from the appropriate survival distribution

and µi(t) is given by

µi(t) = αWi(t) +MT
i γ, (81)

((63),(90),(97)), where α is the univariate association parameter between the longitudinal

and the survival sub-models, ((109),(113)). When α = 0, there is no relation between the

two processes ((113),(109)). In equation (145), γ is the regression coefficient which links

the time-independent covariates, MT
i . For s time-independent survival covariates, γ is s×1

vector of regression coefficients for 1 × s vector of time-independent survival covariates,

MT
i .

Therefore, the joint model survival hi(t) for the ith individual at an arbitrary time-point t

is given by

hi(t) = α[xTi (t)β + zTi (t)bi + uTi λ] +MT
i γ + σ × εi. (82)
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2.5 Likelihood for Joint Modelling

Censoring and drop-out mechanisms are assumed to be non-informative, i.e. independent

of the random effects, survival time and longitudinal measurements.

For a shared parameter model, the conditional independence assumption is needed ((113),(109)).

The two processes, longitudinal and survival, are assumed to be independent given the ran-

dom effects bi, i.e. the only association between them is induced by the random effects

((113),(109)).

2.5.1 Joint Modelling Parameterization

Let Y and T denote the longitudinal and survival component of the joint modelling likeli-

hood. To ease notation, let us not include any other quantities such as parameters.

The likelihood of observed response data is given by L(Y, T ) =
∫
L((Y, T )|b)L(b)db. Y and

T are both conditional on b.

Let us assume that b underlies both processes Y and T ie those two components are

independent conditional on b and so the full likelihood of a shared-random effects model

is given by L(Y, T ) =
∫
L(Y |b)L(T |b)L(b)db.
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2.5.2 Likelihood under Right-Censoring

The likelihood of the shared parameter model is defined by

L(Yi, Ti, δi; θ) =
∫
L(Yi|bi; (θy, σ

2
e))L(Ti, δi|bi; (θt, σ

2))φq(bi;D)dbi, (83)

where φq(·;D) is the q-variate normal density with zero mean and the variance-covariance

matrix D, and L(·) denote the appropriate likelihood functions. θy = (β, λ) and θt =

(θy, γ, α).

Since the longitudinal measurements, Yi(tij), j = {1, ...,mi}, conditional on bi are inde-

pendent,

L(Yi|bi; (θy, σ
2
e)) =

∏mi
j=1 φ (Yi(tij);Wi(tij), σ

2
e) , (84)

where φ(·, µ, σ2) is the univariate Gaussian density with the mean µ and the variance σ2.

Denote f(·) and S(·) the probability density function and the survival function, respec-

tively, for the appropriate survival distribution. Then

L(Ti, δi|bi; (θt, σ
2)) =

[
f(Ti|bi; θt, σ2)

]δi [S(Ti|bi; θt, σ2)
]1−δi .

The joint likelihood contribution for right-censoring is given by

L(Yi, Ti, δi; θ) =
∏n

i=1

∫∞
−∞
∏mi

j=1 φ(Yi(tij);Wi(tij), σ
2
e)×

[f(Ti|bi; θt, σ2)]
δi [S(Ti|bi; θt, σ2)]

1−δi φq(bi;D) dbi
(85)

2.5.3 Likelihood under Left-Truncation and Right-Censoring

The same considerations apply for likelihood under left-truncation and right-censoring.

The only difference is that the survival part includes truncation times.
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Subjects are part of the study only if the survival time is greater or equal to the truncation,

i.e. the truncation time is the starting point and survival time will now be T ′i = Ti + Ai

for the ith subject, where Ai and Ti are the truncation and the un-adjusted survival time.

Survival time, truncation time and difference between censoring and truncation time are

conditionally independent given the covariates.

The likelihood of the shared parameter model is defined by

L(Yi, Ti, Ai, δi; θ) =
∫
L(Yi|bi; (θy, σ

2
e))L(Ti, Ai, δi|bi; (θt, σ

2))φq(bi;D)dbi, (86)

where φq(·;D) is the q-variate normal density with zero mean and the variance-covariance

matrix D, and L(·) denote the appropriate likelihood functions.

Denote f(·) and S(·) the probability density function and the survival function, respec-

tively, for the appropriate survival distribution and T ′i = Ti + Ai. Then

L(Ti, Ai, δi|bi; (θt, σ
2)) =

[
f(T ′i |bi; θt, σ2)

f(Ai|bi; θt, σ2)

]δi [S(T ′i |bi; θt, σ2)

S(Ai|bi; θt, σ2)

]1−δi
.

The joint likelihood contribution for left-truncation and right-censoring is given by

L(Yi, Ti, Ai, δi; θ) =
∏n

i=1

∫∞
−∞
∏mi

j=1 φ(Yi(tij);Wi(tij), σ
2
e)×[

f(T ′i |bi;θt,σ2)

f(Ai|bi;θt,σ2)

]δi [ S(T ′i |bi;θt,σ2)

S(Ai|bi;θt,σ2)

]1−δi
φq(bi;D) dbi

(87)

2.6 Approximations to Likelihood

The integrals for the likelihood of a shared parameter model (85) or (87) are complicated

and it is difficult to evaluate them analytically. Thus, an integral approximation is needed.
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Two possible approximations, Gauss-Hermite and Laplace approximation, are considered

in this section. The Gauss-Hermite approximation was used in our R program described

in the next Chapter.

2.6.1 Gauss-Hermite Approximation

For univariate integrals, the following relationship holds∫ ∞
−∞

f(x)exp(−x2)dx ≈
m∑
i=1

wif(xi), (88)

where the xi are zeros of the mth order Hermite polynomial and wi are suitably corre-

sponding weights (82).

In the case where the integrals are multi-dimensional it is easier to expand around a single

mode. The variables should be transformed and centered at the mode and scaled by the

inverse of the second derivatives matrix, in order to center the quadrature rule near the

mode and to make variables’ scaling similar (50) (113) (137).

Suppose that the integral has the form
∫
RL
q(Θ) exp {h(Θ)} dΘ , where Θ is a L-dimensional.

Assuming that Θ̂ is the mode of h, denote H = −∂2h(Θ̂)

∂Θ∂Θ′
and let B

′
B = H be the Cholesky

factorization of H (50) (113) (137).

The Gauss-Hermite weight function is proportional to a N(0, 2−1I) density, and thus a

function that is proportional to that is preferred, in order to use a Gauss-Hermite rule.

Considering Θ as random quantity with log-density given by h(Θ), the first order normal

approximation to this distribution is the N(Θ̂, H−1) distribution. Parameterizing Θ as

A = 2−1/2B(Θ− Θ̂), the A variable has an approximate N(0, 2−1I) distribution (50) (113)
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(137).

Therefore, the integral becomes 2L/2|B|−1
∫

exp(−A′A)f(A)dA, where

f(A) = q(21/2B−1A+Θ̂) exp[h(21/2B−1AΘ̂)+A
′
A]. The integral now can be approximated

using a Q-point Gauss-Hermite rule by 2L/2|B|−1
∑Q

q1=1 ωqLf(Ξql).

2.6.2 Gauss-Hermite Approximation to Likelihood Integral

The integrals in the likelihoods (85) and (87) have the form
∫
g(bi)φ(bi;D)dbi. They are

difficult to evaluate analytically, and a Gauss-Hermite approximation with p nodes can be

used. The Gauss-Hermite weight function is proportional to N(0, 2−1I) density, where I

is the identity matrix. Therefore a scaling transformation a(bi) = 2−
1
2Bbi, where B is the

Cholesky factorisation of D, is used.

The Gauss-Hermite approximation to the likelihood of the random shared model with

right-censoring given by integral (85) is given by the weighted sum

L̃(Yi, Ti, δi; θ) = 2
qn
2 |B|−n

∏n
i=1

∑p
li=1 ωli exp {E ′iEi}

∏mi
j=1 φ(Yi(tij); Ŵi(tij), σ

2
e)[

f(Ti|21/2B−1Ei; θt, σ
2)
]δi [S(Ti|21/2B−1Ei; θt, σ

2)
]1−δi φq(21/2B−1Ei;D),

(89)

where Ei are the abscissas, ω are the weights, p is the number of nodes, and

Ŵi(tij) = XT
i (tij)β + ZT

i (tij)(2
1
2B−1Eili) + UT

i λ.

The Gauss-Hermite approximation to the likelihood of the random shared model with
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left-truncation and right-censoring given by integral (87) is given by the weighted sum

L̃(Yi, Ti, Ai, δi; θ) = 2
qn
2 |B|−n

∏n
i=1

∑p
li=1 ωli exp {E ′iEi}

∏mi
j=1 φ(Yi(tij); Ŵi(tij), σ

2
e)[

f(T ′i |21/2B−1Ei;θt,σ
2)

f(Ai|21/2B−1Ei;θt,σ2)

]δi [ S(T ′i |21/2B−1Ei;θt,σ
2)

S(Ai|21/2B−1Ei;θt,σ2)

]1−δi
φq(2

1/2B−1Ei;D),

(90)

where Ei are the abscissas, ω are the weights, p is the number of nodes, and

Ŵi(tij) = XT
i (tij)β + ZT

i (tij)(2
1
2B−1Eili) + UT

i λ.

2.6.3 Laplace Approximation

Suppose there is an integral
∫

[exp l(t)] dt . The main goal is to approximate l(t) by a

Taylor series expansion about the maximum l(t)

l(t) ≈ l(t̂) +
∂l(t)T

∂t
|t=t̂(t− t̂) +

1

2
(t− t̂)T l′′(t̂)(t− t̂), (91)

where l
′′
(t̂) is the Hessian matrix evaluated at the maximum

l
′′
(t̂) = ∂2l(t)

∂t∂tT
|t=t̂ (50) (137).

At the maximum of l(t), the first derivative is zero. So, substituting l(t) by its Taylor

series expansion∫
exp[l(t)] dt ≈

∫
exp[l(t̂) + 1

2
(t− t̂)T l′′(t̂)(t− t̂)] dt = exp[l(t̂)]

∫
exp[1

2
(t− t̂)T l′′(t̂)(t− t̂)] dt .

Thus, ∫
[exp l(t)] dt ≈ (2π)

Q
2 det

{
−l′′(t̂)

}− 1
2

exp[l(t̂)], (92)

where Q is the dimension of t (50) (137).
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2.6.4 Laplace Approximation to Likelihood Integral

Suppose there is an integral
∫

[exph(bi)] dbi . The main goal is to approximate h(bi) by a

Taylor series expansion about the maximum h(bi):

h(bi) ≈ ˆh(bi) +
∂h(bi)

T

∂bi
|b=b̂(bi − b̂) +

1

2
(bi − b̂)Th

′′
(b̂)(bi − b̂), (93)

((50),(137)), where h
′′
(b̂) is the Hessian matrix evaluated at the maximum: h

′′
(b̂) =

∂2h(bi)

∂bi∂bTi
|b=b̂. At the maximum of h(bi), the first derivative is zero. So, substituting h(bi)

by its Taylor series expansion∫
exp[h(bi)] dbi ≈

∫
exp[h(b̂) + 1

2
(bi − b̂)Th

′′
(b̂)(bi − b̂)] dbi

= exp[h(b̂)]
∫

exp[1
2
(bi − b̂)Th

′′
(b̂)(bi − b̂)] dbi

= (2π)
q
2 det

{
−h′′(b̂i)

}− 1
2

exp[h(b̂)],

(94)

((50),(137)), where q is the dimension of b.

Laplace Approximation to likelihoods (83) and (86) is applied by using h(bi) = log bi to

change the form of the integrals.

The adjusted likelihood for (83) is

L(Yi, Ti, δi; θ) =
∫

exp [log [L(Yi|bi; (θy, σ
2
e))L(Ti, δi|bi; (θt, σ

2))φq(bi;D)]]dbi, (95)

Applying Laplace approximation to (95), the likelihood becomes

L̃(Yi, Ti, δi; θ) = (2π)
nq
2 Ω̂−

n
2

∏n
i=1 φ(Yi(tij); Ŵi(tij), σ

2
e)L(Ti, δi|b̂; (θt, σ

2))φq(b̂;D), (96)

where Ω̂ = (−Ĥ)−1 is the asymptotic variance-covariance of Ĥ evaluated at mode b̂.
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Similarly, the adjusted likelihood for (86) is

L(Yi, Ti, Ai, δi; θ) =
∫

exp [log [L(Yi|bi; (θy, σ
2
e))L(Ti, Ai, δi|bi; (θt, σ

2))φq(bi;D)]]dbi, (97)

Applying Laplace approximation to (97), the approximate likelihood is

L̃(Yi, Ti, Ai, δi; θ) = (2π)
nq
2 Ω̂−

n
2

∏n
i=1 φ(Yi(tij); Ŵi(tij), σ

2
e)L(Ti, Ai, δi|b̂; (θt, σ

2))φq(b̂;D),

(98)

2.7 Applications to particular survival distributions

The main survival distributions that are used in practice are shown in Table 1 below.

Three of the survival distributions, Gompertz, Beard and Perks can be obtained from the

distributions in Table 1 by using transformations (see Appendices F, H and I for more

details).
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Table 1: Main Survival Distributions

Distributions Probability

Density Func-

tion

Cummulative

Distribution

Function

Survival

Function

Hazard

Function

Cummulative Haz-

ard Function

Weibull γ
n ( tn )γ−1e−( tn )γ 1− e−( tn )γ e−( tn )γ γ

n ( tn )γ−1 ( tn )γ

Log-Logistic λptp−1

(1+λtp)2
λtp

1+λtp
1

1+λtp
λptp−1

1+λtp log[1 + λtp]

Log-Normal e
− (log t−µ)2

2σ2

tσ(2π)
1
2

Φ[ log t−µ
σ ] 1−Φ[ log t−µ

σ ]

e
− (log t−µ)2

2σ2

tσ(2π)
1
2

1−Φ[ log t−µσ ]
− log(1−Φ[ log t−µ

σ ])

Extreme

Value

1
σ e

t−µ
σ −e

t−µ
σ 1− e−e

t−µ
σ e−e

t−µ
σ 1

σ e
t−µ
σ e

t−µ
σ

Logistic 1
σ

e
t−µ
σ

[1+e
t−µ
σ ]2

e
t−µ
σ

1+e
t−µ
σ

1

1+e
t−µ
σ

1
σ

e
t−µ
σ

[1+e
t−µ
σ ]

log[1 + e
t−µ
σ ]

2.7.1 Shared parameter model with Weibull survival distribution

As an example of a parametric shared parameter model, the Weibull survival distribution

is considered. The longitudinal component is modelled with a linear mixed effects model.

The survival component is modelled using Weibull distribution. Theory required in joint

modelling distributions is provided in the Appendices (B)-(I).
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2.7.1.1 From Weibull distribution to model As can be seen from Table 1 the

survival function of Weibull distribution is given by

S(t;σ, γ) = exp
{
−(tn−1)γ

}
, (99)

Write λ = n−γ, thus

S(t;λ, γ) = exp {−λtγ} . (100)

Take the log transformation of time (s = log t)

S(s;λ, γ) = exp {−λ exp {γs}} . (101)

Redefine parameters, γ = σ−1 and λ = exp {−µσ−1}, then the random variable s = log T

s = log T = µ+ σW, (102)

where W is the Extreme Value distribution with probability density function

fW (w) = σ−1 exp {w − exp {w}} (103)

and survival function

SW (w) = exp {− exp {w}} . (104)

Substitute W = σ−1(s− µ) to obtain the probability density and the survival function of

log survival time. Therefore, the probability density function for s, for the ith individual

is:

f(si;µi, σ) = σ−1 exp
{
σ−1(si − µi)− exp

{
σ−1(si − µi)

}}
(105)

and the survival function for the ith individual is:

S(si;µi, σ) = exp
{
− exp

{
σ−1(si − µi)

}}
. (106)

2.7.1.2 Joint Modelling with Weibull survival sub-model The log survival time

for the ith individual, following Weibull distribution is given by

log Ti(ti) = µi(ti) + σ × εi, (107)
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where εi comes from Extreme Value distribution, σ is the scale and µi(ti) is given by

µi(ti) = αWi(t) +MT
i γ, (108)

where γ is the regression coefficient that links the time-independent covariates, MT
i , related

only to survival and Wi(t) is the longitudinal component.

The probability density and survival function of Weibull model are given by

f(Ti|bi; θ, t) = (t exp[µi(ti)])
exp(1/σ−(t exp[µi(ti)])

exp(1/σ)) (109)

and

S(Ti|bi; θ, t) = exp[−(t exp[µi(ti)])
exp(1/σ)], (110)

respectively ((15),(63),(90)). For the longitudinal submodel, the probability density func-

tions of biomarker Yi(tij) conditional on random effects, and that of random effects bi are

given by

p(Yi|bi; θ) = (2πσ2
e)
− 1

2 exp[−(Yi(tij)−Wi(tij))
2(2σ2

e)
−1], (111)

and

p(bi; θ) = (2π|D|)−
1
2 exp(−2−1b

′

iD
−1bi), (112)

respectively, (139).

2.7.1.3 Joint Likelihood The Weibull joint likelihood contribution for right-censoring

only is

L(Yi, Ti, δi; θ) =
∏n

i=1 [
∫∞
−∞
∏mi

j=1 [(2πσ2
e)
− 1

2 exp[−(Yi(tij)−Wi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1b

′
iD
−1bi)((ti exp[θx])exp(1/σ−(ti exp[µi(ti)])

exp(1/σ)))δi

×(exp[−(ti exp[µi(ti)])
exp(1/σ)])1−δi dbi ].

(113)
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Applying Gauss-Hermite approximation, the likelihood becomes

L̃(Yi, Ti, δi; θ) = 2
qn
2 |B|−n

∏n
i=1

∑p
li=1 ωli exp {E ′iEi}

∏mi
j=1 [(2πσ2

e)
− 1

2

× exp[−(Yi(tij)− Ŵi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1/2B−1EiD

−121/2B−1Ei)

×((ti exp[µi(ti)])
exp(1/σ−(ti exp[µi(ti)])

exp(1/σ)))δi

×(exp[−(ti exp[µi(ti)])
exp(1/σ)])1−δi ,

(114)

where Ŵi(tij) = XT
i (tij)β + ZT

i (tij)(2
1
2B−1Eili) + UT

i λ and µ̂i(ti) = αŴi(t) +MT
i γ.

Applying Laplace approximation the likelihood becomes

L̃(Yi, Ti, δi; θ) = (2π)
nq
2 Ω̂−

n
2

∏n
i=1

∏mi
j=1 [(2πσ2

e)
− 1

2 exp[−(Yi(tij)− Ŵi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1b̂

′
iD
−1b̂i)

×((ti exp[µi(ti)])
exp(1/σ−(ti exp[µi(ti)])

exp(1/σ)))δi

×(exp[−(ti exp[µi(ti)])
exp(1/σ)])1−δi ,

(115)

where Ŵi(tij) = XT
i (tij)β + ZT

i (tij)b̂+ UT
i λ and µ̂i(t) = αŴi(t) +MT

i γ.

For the data with left-truncation and right-censoring, the likelihood is more complicated.

In this case,

L(Yi, Ti, Ai, δi; θ) =
∏n

i=1 [
∫∞
−∞
∏mi

j=1 [(2πσ2
e)
− 1

2 exp[−(Yi(tij)−Wi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1b

′
iD
−1bi)

×( ((ti+Ai) exp[µi(ti)])
exp(1/σ−((ti+Ai) exp[µi(ti)])

exp(1/σ))

(ti exp[µi(ti)])exp(1/σ−(ti exp[µi(ti)])
exp(1/σ))

)δi

×( exp[−((ti+Ai) exp[µi(ti)])
exp(1/σ)]

exp[−(ti exp[µi(ti)])exp(1/σ)]
)1−δi dbi ].

(116)

When Gauss-Hermite approximation is applied, the likelihood becomes

L̃(Yi, Ti, Ai, δi; θ) = 2
qn
2 |B|−n

∏n
i=1

∑p
li=1 ωli exp {E ′iEi}

∏mi
j=1 [(2πσ2

e)
− 1

2

× exp[−(Yi(tij)− Ŵi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1/2B−1EiD

−121/2B−1Ei)

×( ((ti+Ai) exp[µi(ti)])
exp(1/σ−((ti+Ai) exp[µi(ti)])

exp(1/σ))

(ti exp[µi(ti)])exp(1/σ−(ti exp[µi(ti)])
exp(1/σ))

)δi

×( exp[−((ti+Ai) exp[µi(ti)])
exp(1/σ)]

exp[−(ti exp[µi(ti)])exp(1/σ)]
)1−δi ,

(117)
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where Ŵi(tij) = XT
i (tij)β + ZT

i (tij)(2
1
2B−1Eili) + UT

i λ and µ̂i(t) = αŴi(t) +MT
i γ.

When Laplace approximation is applied, the likelihood becomes

L̃(Yi, Ti, δi; θ) = (2π)
nq
2 Ω̂−

n
2

∏n
i=1

∏mi
j=1 [(2πσ2

e)
− 1

2 exp[−(Yi(tij)− Ŵi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1b̂

′
iD
−1b̂i)

×( ((ti+Ai) exp[µi(ti)])
exp(1/σ−((ti+Ai) exp[µi(ti)])

exp(1/σ))

(ti exp[µi(ti)])exp(1/σ−(ti exp[µi(ti)])
exp(1/σ))

)δi

×( exp[−((ti+Ai) exp[µi(ti)])
exp(1/σ)]

exp[−(ti exp[µi(ti)])exp(1/σ)]
)1−δi ,

(118)

where Ŵi(tij) = XT
i (tij)β + ZT

i (tij)b̂+ UT
i λ and µ̂i(t) = αŴi(t) +MT

i γ.

2.8 Maximum Likelihood estimation of the parameters

The estimates of the parameters are obtained using maximum likelihood estimation. To

achieve this, the log-likelihood is differentiated with respect to each parameter, the deriva-

tive is set equal to zero and the resulting equations are solved in respect to each parameter

to obtain the maximum likelihood estimate θ̂, where θ = {θ1, ..., θK} is the set of all K

parameters, (63). The maximum likelihood equations are given by

∂l(θ̂; ti)

∂θk
= 0. (119)

In the above equation l(θ; t) denotes the log-likelihood, t is the set of time-points for

the ith individual, where i = 1, 2, ..., n and θk is the kth parameter to be estimated, θ =

{θ1, θ2, ..., θK}.
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The Hessian matrix is given by

H[l(θ; y)] =



∂2l(θ;t)

∂θ21

∂2l(θ;t)
∂θ1 ∂θ2

· · · ∂2l(θ;t)
∂θ1 ∂θK

∂2l(θ;t)
∂θ2 ∂θ1

∂2l(θ;t)

∂θ22
· · · ∂2l(θ;t)

∂θ2 ∂θK

...
...

. . .
...

∂2l(θ;t)
∂θK ∂θ1

∂2l(θ;t)
∂θK ∂θ2

· · · ∂2l(θ;t)

∂θ2K


, (120)

(63). The information matrix is

I(θ̂) = −E[H[l(θ; y)]], (121)

(31) and the variance-covariance matrix is approximated by the inverse of the information

matrix ̂
V ar(θ̂) = I−1(θ̂), (122)

((8),(123)). The square roots of the diagonal elements of this matrix are the estimates

of the standard errors (ŜE(θ̂)) of each parameter, (63). The confidence intervals for the

estimates θ̂ are obtained using θ̂ ± z1−a/2ŜE(θ̂), where z1−a/2 is the upper a/2 percentile

of the normal distribution, (63).

2.9 Bootstrap estimation of the parameters

Bootstrap is an approach to statistical inference by resampling the data, (46). The idea

behind bootstrap is that the sample is to bootstrap samples what the population is to

sample, (46). There are different forms of bootstrap, but here the nonparametric bootstrap

is used, because it allows to estimate the sampling distribution empirically without making

assumptions about the population, (46).
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The algorithm for non-parametric resampling is as follows, (19):

1. Sample s observations randomly, with replacement, to create a bootstrap set Y ∗b out

of the original sample yobs.

2. Calculate the bootstrap version of the statistics ψ∗b = ψ(Y ∗b )

3. Repeat the first two steps B times to obtain a boostrap estimate.

The estimates can be obtained by using

ψ̂∗ =
B∑
b=1

ψ̂∗(b)

B
(123)

((34),(36)) and their standard errors are

ŝeB =

√√√√ 1

B − 1

B∑
b=1

[ψ̂∗(b)− ψ̂∗]2, (124)

((34),(36)).

These are used to estimate the parameters, the standard errors of the parameters and then

the confidence intervals.

For bootstrap confidence intervals, there exist many different methods (46). This the-

sis is using the percentile method, which uses the empirical quantiles of ψ̂∗(b) to form

the confidence interval and does not requite the evaluation of standard errors (46). Let

ψ̂∗(1)(b), ψ̂
∗
(2)(b), ..., ψ̂

∗
(B)(b) be the ordered bootstrap estimates, the lower limit of the confi-

dence interval is ψ̂∗[(B+1)a/2] and the upper limit is ψ̂∗[(B+1)(1−a/2)]. (46).

52



2.10 Summary

This chapter described a shared parameter model for longitudinal and survival data under

left-truncation and right-censoring. A linear mixed effects model was described to model

the longitudinal component and a general class of parametric survival models to model the

survival component. Two approximations were explored for the likelihood integral of the

model. The two methods, maximum likelihood and bootstrap are described for the estima-

tion of the parameters. Even though both Gauss-Hermite and Laplace approximations are

described, only Gauss-Hermite approximation is used in my R program which implements

joint modelling.

The next chapter describes the simulations for the joint model with a Weibull survival sub-

model, as presented in this chapter and the R program written to implement this method

and used for simulations.
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3 Simulation Study

3.1 Introduction

In the previous section, a shared parameter model for longitudinal and time-to-event data,

under left-truncation and right-censoring was introduced. As stated in the previous chap-

ter, Gauss-Hermite approximation was applied to obtain the parameters.

In this chapter, the estimation quality for the proposed ML and the bootstrap methods

for a Weibull survival sub-model is assessed. Estimates of the mean and the median bias

of the estimators, the standard errors, and the actual coverage at 95% nominal level are

calculated. The results from the lme (100), package for the longitudinal component, and

from the survreg (130) and aftreg (15) survival packages for the survival component are

compared with those from the joint model, and the results from jointModel (110) are also

compared to assess the model fit in comparison with other joint models. For survreg only

the first observation on the time-dependent covariate was used as it cannot handle time-

dependent covariates. On the contrary, aftreg can handle time-dependent covariates, but

it cannot handle random effects. lme can only handle longitudinal data and not survival

data. R documentation is provided for the programs that were created to fit the models

and to simulate the data in the Appendix J.

3.2 Design

The joint model framework is a rather complex framework and thus, the simulations needed

to be quite simple for the computers to handle. This was mainly the criterion for the
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simulations described below.

The simulations are based on the Weibull survival sub-model for n = 100 and n = 500

patients, using 500 replications for each scenario. Ten Gauss-Hermite points were used for

ML estimation, and 100 bootstrap samples for bootstrap-based estimation.

The left-truncation time ti0 is taken to be zero, and the first observation for each patient

was made at 0. The subsequent observation times for each patient were generated from

the Poisson process with intensity 3 or 23, right-censored at 1. This resulted in 1 to 4 and

1 to 24 observations per patient, respectively.

For simplicity, time-dependent covariate XT
i (tij) = tij and for each time-point tij, the

biomarker values Yi(tij) are simulated as

Yi(tij) = tijβ + bi + λ+ eij, (125)

where the univariate random effects bi are generated from N (0, D) and the errors ei(tij)

are independently generated from N (0, σ2
e). The variances were chosen as D = 0.1 and

σ2
e = (0.1)2.

For survival, the time-independent covariates MT
i include an intercept (taken to be zero)

and a binary (0 or 1) factor gi such as gender, with the values generated from the Bernoulli

distribution with the probability of success 0.5.

Leemis et al.(1989) denote the cummulative link function as Ψ(t) = ψ(F (T ); η), where

F (T ) is the covariate history and η is the set of covariate parameters, and generate survival

time T using the algorithm Ψ−1(H−1
0 (−log(1 − u))), for u ∼ Unif(0, 1). H−1

0 (t) is the

inverse cummulative baseline hazard function of H0(t) = (tσ−1)γ. The model here is

log(T ) = α(tijβ + bi + λ) + γ1 + γ2M
T
i + σε, where ε comes from the Extreme Value
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distribution and thus the baseline distribution is Weibull.

So, Ψ(T ) =
∫ T

0
exp[α(tijβ + bi + λ) + γ1 + γ2M

T
i + σε]dt

= (αβ)−1 exp[αβ](exp[α(Tβ + bi + λ) + γ1 + γ2M
T
i + σε]− 1).

The inverse function is Ψ−1(z) = (αβ)−1 log[1 + exp[−(α(λ+ bi) + γ1 + γ2M
T
i )]βαz].

The baseline hazard for Weibull distribution is H0(t) = (tσ−1)γ and the inverse function is

H−1
0 (z) = σzγ.

Generating Weibull survival time T = Ψ−1[H−1(− log(1− u))] = Ψ−1[σ(− log (1− u))γ]

Thus, the time T ∗ is simulated as

T ∗ = (αβ)−1 log(1 + exp(−(α(λ+ bi) + γ1 + γ2M
T
i ))αβσ(− log(1− u))γ, (126)

where u ∼ Unif(0, 1).

We aimed at no more than 20% of the total data to be censored. First, we have used

Bernoulli random number generator with probability of success 0.2 to select censored pa-

tients. For censored patients, the censoring times Ci are simulated from the uniform

distribution (0, T ∗i ). Otherwise Ci =∞.

The observed survival time is Ti = min(T ∗i , Ci).

Scenario 1 has only the longitudinal component i.e. α = 1, β = 1, λ = 1, γ1 = 0, γ2 = 0.

Scenario 2 includes both longitudinal and survival parts, with the parameters α = 1, β = 1,

λ = 1, γ1 = 0, γ2 = 1. These scenarios were chosen because the joint model needed to be

assessed when one of its two parts (longitudinal or survival) was zero and when both of
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them were not zero.

Simulations were comparatively slow and needed large memory. The time needed for the

task to complete was increasing exponentially with the number of patients and the number

of observations. Personal computers could not handle the simulations. Therefore, they

were run on a high performance compute cluster (HPC) that is available at University

of East Anglia. Many dedicated nodes were assigned for this task because of previous

attempts failing on shared nodes. Even then, the scenario with 500 patients and up to 24

observations, took more than two months to complete. The scenario for 100 patients with

up to 4 observations, took around 2 weeks.

3.3 Results

Results of our simulations are presented in Tables 2 to 9.

For survreg, most of the estimates are considerably biased. This is as expected because

it cannot handle time-dependent covariates. However, it estimates the survival slope γ2

in scenarios 1 quite accurately, and provides fair coverage for it. It is not clear why it

performs much worse in scenario 1. It does not estimate the survival error variance log(σ)

well in any of the scenarios.

For aftreg, survival slope γ2 is estimated accurately in scenario 1, with a reasonable cover-

age. The rest of the estimates are biased in all scenarios. This is probably due to the fact

that aftreg cannot handle random effects.

For lme, the point estimation of all longitudinal parameters is very accurate, including the

variance components, but the coverage of β seems to drop when the number of patients
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increases.

In the joint modelling, the analytical point estimators for all regression parameters are quite

accurate in both scenarios with the exception of γ1, β when the the number of patients is

500 and the number of observations=23 for both scenarios, α when the number of patients

is 100 and the variance of the random effects. In bootstrap, all estimates are not good

with the variances being the exception.

All analytical coverage is bad, with the exception of the coverages for survival intercept γ1,

survival slope γ2 and shared parameter α. Coverage, however, from analytical estimates

and bootstrap errors always includes the actual value. Using analytical point estimators

with bootstrap standard errors results in reliable though mostly too conservative coverage

for all parameters.

Coming to the estimation of the association parameter α, there is a clear difference between

analytical and bootstrap estimation. Analytical estimation results in a really small bias for

both scenarios when the number of patients is relatively small, while bootstrap estimation

is always biased for both scenarios. To summarise, it appears that the safest option is to

use analytic estimation with bootstrap standard errors.

JM provides unbiased estimates for both scenarios with really good coverage. The only

exception is the survival intercept γ1 which is biased in all scenarios, but still has a good

coverage when the number of patients is 100 and a fair coverage when the number of

patients is 500.

It is fair to say that JM program is indeed the ’gold standard’ of joint modelling and

definitely better from our program.
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3.4 Summary

In the previous chapter, a shared parameter model for longitudinal and time-to-event data,

under left-truncation and right-censoring was introduced. Gauss-Hermite approximation

was applied for maximum likelihood estimation. This chapter described the simulation

scenarios and the estimation quality of the parameters for the model described in the

previous chapter, using a Weibull survival sub-model.

The estimation quality for the proposed maximum-likelihood and the bootstrap method

were assessed in respect to the mean bias of the estimators, the standard errors, and the

actual coverage at 95% nominal level for a Weibull survival sub-model. Median was not

used as it provided no different results than the mean. Results were compared to the

results from the lme package for the longitudinal component, and to the results from the

survreg, aftreg survival packages for the survival component and the joint modelling JM

package.

The program implementing this method and providing two estimation procedures (an-

alytical and bootstrap) was assessed by simulation using 10 nodes for Weibull survival

distribution.

Overrall, the analytical procedure is quite good, though the variance components are not

estimated with sufficient quality. This could be due to a fair number of nodes, but it should

be noted that the increase in number of nodes increased the computing time exponentially.

The most trustworthy method is to combine the analytic point estimation with bootstrap

standard errors. Rizopoulos program, however, is more reliable in providing more accurate

estimates.
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The details enabling the application of the joint modelling theory to other parametric

distributions can be found in the Appendices C-I. However, it should be noted that the

quality of our procedure for other parametric models needs to be assessed by simulation.

The next chapter will provide two medical applications of the shared parameter model

with Weibull survival distribution.
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4 Applications

4.1 Introduction

In the previous chapter, the estimation quality for the proposed maximum-likelihood and

the bootstrap methods in respect to the mean bias of the estimators, the standard errors,

and the actual coverage at 95% nominal level for a Weibull survival sub-model were assessed

and compared with the results from the lme package for the longitudinal component, and

from the survreg and aftreg survival packages for the survival component.

In this chapter the shared parameter model with the Weibull survival submodel presented

in this thesis will be used to analyse two medical datasets, the Prostate Cancer data and

Primary Biliary Cirrhosis data.

4.2 Prostate Cancer Data

4.2.1 Introduction

Prostate cancer (PCa) is the growth of cancerous cells in the prostate (26). The easiest

clinical way to diagnose it is through PSA (Prostate-Specific Antigen) screening.

The human-specific prostate antigens were identified in 1960, but they could not be isolated

(44). Later on, investigations on human semen led to the discovery of a unique antigen,

similar to PSA (53) (54) and in 1980 it was found that PSA in prostate was similar to the
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PSA in serum. From that point prostate cancer could be diagnosed by a serum test (96).

Thus, PSA can be used as a longitudinal biomarker for prostate cancer and therefore it

can be used as an example for the joint modelling methodology that is developed in this

thesis. PSA can be used as a diagnostic biomarker for prostate cancer screening, and also

as a prognostic biomarker, to ascertain the possible course of cancer and its treatment.

Prostate cancer screening has been controversial, however, and randomized trials gave

conflicting results. Schroder et al (2009) (117) and Welch and Albertsen (2009) (147)

found that PSA screening leads to overdiagnosis, but Schroder et al (2009) (117) also

found that PSA screening decreased the death rate, while Andriole et al (2009) (7) and

Sandblom et al (2011) found that for both male groups in their study, the screening group

and the control group, the rate of death from prostate cancer did not differ significantly.

PSA value boundary for prostate cancer is even more controversial. Some researchers found

that no PSA value boundary can be set and that new biomarkers need to be associated

with prostate cancer (57) (61), while others concluded that limit values for PSA can be

set, but only when there are no additional risk factors (116). In the presence of other risk

factors, the PSA values cannot be considered as accurate diagnostic tools (116). Other

researchers provide more specific PSA limits for different ages. Vickers et al. (140) found

that 60-year-old males that have PSA less than 1 nm/ml might develop a prostate cancer,

but it will not possibly be fatal and thus, no further screenings are required. Other authors

categorized the PSA values into 3 different categories for males at the age of 60 (18). They

concluded that males that have a PSA level more than 2 ng/mL, should undergo further

screening, while those with PSA level less than 1 ng/mL do not need to do this. For PSA

levels of 1-2 ng/mL it is not clear what the best strategy is (18).
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4.2.2 Data Description

The data on PCa were provided by Bettencourt-Silva et al.(2011) (11). These data were

collected from multiple hospital information systems in Norfolk and Norwich University

Hospitals (administration, biochemistry, histopathology, radiotherapy, radiology, oncology)

and were validated and complemented with data from the local cancer registry. Further

information on data collection methods can be found in Bettencourt-Silva et al.(2011) (11).

The data collection covered the period from 6/1/2004 to 26/7/2014. The entry age is up

to 75 years (inclusive). The initial number of patients was 1154. 7 patients that had had

other cancers, before they were treated for prostate cancer were removed from the data,

resulting in the total sample size of 1147.

We have grouped the treatments into the following four types on the intention to treat

basis: Hormone therapy (H), Hormone and Radiotherapy (HR), Surgery (S) or Watchful

Waiting (W).

A list of pre-existing comorbidities was compiled from hospital records. These were subdi-

vided into the following three classes: Heart (CVA/CVD-Ischaemic heart and Cerebrovas-

cular diseases), Respiratory (Chronic Lower Respiratory diseases and Infuenza and Pneu-

monia), and Prostate diseases (Inflammatory disease of Prostate, Prostate hyperplasia and

other disorders of the Prostate). For more details see Table 11.

A comprehensive list of blood test results up to one year prior to prostate cancer treatment

was compiled by Bettencourt-Silva et al.(2011) (11). The blood test results used in further

survival modelling included: urea, white blood count (WBC), creatinine, haemoglobin

(Hg), Mean Corpuscular Volume (MCV), Mean Corpuscular Haemoglobin (MCH) and
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Sodium. See Table 12 for details.

Multivariate survival modelling included patients at cancer stage 2 with treatments H, HR,

S and W; cancer stage 3 with treatments H, HR and S, and cancer stage 4 with treatment

H. There were not enough patients and/or events for other stage/treatment combinations.

For instance, there were only 9 deaths in 124 patients at cancer stage 1. We also excluded

26 patients at cancer stage 4, 34 patients at stage 2 and 34 patients at stage 3 who received

‘atypical’ treatments. These 218 patients in total were excluded from survival modelling.

The final dataset also includes cancer staging (2 to 4) which shows how far the cancer has

spread. For patients with cancer stage 2 (Total: 662) there are 87 patients that take H

treatment, 212 that take HR treatment, 272 that take S treatment and 91 that take W. For

the patients that have cancer stage 3 (Total: 206), 31 receive H treatment, 39 are under

HR treatment and 136 took S treatment. The 67 patients that have cancer stage 4 are

under H treatment. See Table 10 for more details.

Table 10 also includes information on PSA measurements (these are right-skewed, and

some are missing), and death (165 patients out of the 935 patients died i.e. 17.65%).

Most of the 935 remaining patients (91.97% of the patients) are also ascribed a Gleason

score. This is based on a biopsy and it shows how aggresive the cancer is, i.e. how likely

the tumour it is to grow and spread outside the prostate (67). For a patient, Primary

and Secondary Gleason scores are recorded, but the medical professionals often use sum

Gleason, i.e. if the Primary and the Secondary Gleason are 3, then the sum Gleason would

be 6. Sum Gleason is divided into two categories, where the sum is ”6 or 7” for 701 patients

(74.97%), or ”8 to 10” for 159 patients (17.01%). See Table 13 for more details.

PSA measurements are right-skewed with minimal missing percentage (Check Table 10).
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4.2.3 Methods for standard Survival Analysis of Prostate Cancer Data

In this and the next section we consider the values of predictors recorded up to a year

before treatment. The reason behind that is because treatment may affect some of the

blood value like PSA and because not all patients had blood measurements right before

treatment.

Kaplan-Meier survival curves were used to estimate survival by treatment and by stage.

Cox proportional hazards regression was used to model the survival time of the cancer

patients. Survival package (130) in R statistical software (103) was used for analysis.

We have considered the following list of possible predictors of survival: age at diagnosis,

stage and Gleason score, treatment type on the intention to treat basis, pre-existing co-

morbidities by class, PSA and various blood test results (see above). All these predictors

were initially included in the model.

Backward elimination at 0.1 significance level was used to obtain the final model.

Proportional hazards assumption was tested by using a chi-square test of 4 different survival

time transformations (identity, log, Kaplan-Meier and rank) with the scaled Schoenfeld

residuals. The quality of the model was assessed by using the Akaike Information Criterion,

Cook’s distance (63), O’ Quigleys R2 (70) and Concordance (49). The values of these

parameters for the final model are AIC=994.61, 0% of the data has Cook’s distance larger

than 1, O’ Quigleys R2 = 0.63and Concordance = 0.75.
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Figure 1: Kaplan-Meier Plot for Prostate Cancer Survival by Cancer Stage and Treatment

74



Figure 2: Kaplan-Meier Plot for Prostate Cancer Survival by Sum Gleason Scores
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Figure 3: Kaplan-Meier Plot for Prostate Cancer Survival by PSA

Figure 1 shows the Kaplan-Meier Plot for Prostate Cancer Survival by Cancer Stage and

Treatment. All groups include censored and dead people by the end of the study. Not all

curves, however, drop to zero. When the survival curve drops to zero, it does not mean that

all patients in the study died. The curve drops to zero when there is a death after the last

censoring and it remains higher when there is no death after the last censoring. So, W2, S2,

H3 and H4 groups drop to zero because there were deaths within remaining patients, after

the last censoring. H2, HR2, HR3, S3 do not drop to zero because after the last censoring

there were no deaths and there are still people alive that haven’t being censored or died,

making the probability of surviving higher than zero. It should be noted that when there

are censored patients, the bottom point of the Kaplan-Meier survival curve is not equal to
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the fraction of the patients that have survived. A patient, contributes to this fraction up

until he is censored. After censoring the patient does not affect the calculations.

4.2.4 Results of the standard Survival Analysis of the Prostate Cancer Data

Kaplan-Meier plots for Prostate Cancer are given in Figures 1-3. They show that Hor-

mone treatment at all stages seems to have the lowest survival compared with the other

treatments, Gleason level 8 to 10 results in worse survival than 6 or 7 and this is also true

for PSA larger or equal to 10 compared to PSA less than 10.

In the Cox modelling, the continuous PSA was found not to be significant and we used

PSA categorised into two categories in further analysis.

The final Cox regression for survival of the prostate cancer patients is given below. The

model includes age at diagnosis, Gleason score category, treatment and stage, PSA cat-

egory, urea and WBC. The model is based on 666 patients with 96 events. 269 patients

were excluded due to missing values in some of the predictors.

Comparing Hormonal treatment across stages we can see the deleterious effect of a higher

cancer stage. Survival with hormonal treatment does not differ between stages 2 and 3,

but both are significantly better than survival at stage 4 (the baseline), with hazard ratios

of survival 2.11 and 2.15, respectively. Hormonal treatment results in the worst survival at

all stages, and we shall treat this treatment as the baseline for further comparisons within

each stage. At stage 2, Surgery provides 1.320 times better hazard of survival, the HR

therapy provides 2.381 times better hazard of survival. The Watchful Waiting provides

1.161 times better hazard of survival. At stage 3, Surgery provides 2.400 times better
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hazard of survival and HR provides 1.257 times better hazard of survival. Higher age of

diagnosis results in worse survival, the hazard of death increasing 1.04 times per year of

age. Combined Gleason score above 7 results in 2.5 times higher hazard of death. The

PSA of 10 or above prior to diagnosis results in 1.74 times higher hazard of death. Urea

and WBC count are also significant, resulting in 43.380 and 6.890 times higher hazards

per unit, respectively.

Table 14: Cox Proportional Hazards Model for PCa
estimates coef se(coef) p

age 0.039 0.023 0.085

treatment and stage H2 -0.746 0.375 0.046

treatment and stage H3 -0.764 0.479 0.111

treatment and stage HR2 -1.614 0.411 0.000

treatment and stage HR3 -0.992 0.492 0.044

treatment and stage S2 -1.024 0.410 0.012

treatment and stage S3 -1.639 0.531 0.002

treatment and stage W2 -0.896 0.538 0.096

PSA 10andmore 0.554 0.262 0.035

gleason 8to10 0.915 0.255 0.000

log(Urea) 1.328 0.392 0.001

log(White Blood Count) 0.655 0.392 0.095

4.2.5 Time-dependent and Joint modelling of Prostate Cancer Data

On average there were 23 longitudinal observations of PSA per patient (Total: 839 pa-

tients).

Initially a survival model with time-dependent covariates was fitted using aftreg program

from eha R package (15). When a main-effects model (see below) was fitted the results
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were similar with standard survival analysis. But PSA as factor was not signifficant and

PSA continuous had a coefficient of −0.001 (see Table 15). The program failed to estimate

numerous standard errors and therefore, the p-values were not available (for PSA inclusive).

Blood tests and comorbidities were not signifficant.

Table 15: Time-Dependent Main-Effects aftreg Model for PCa
Covariate Coef se(Coef) p

age -0.074 NaN NaN

gleason -0.799 0.089 0.000

treatment and stage H2 0 (reference)

treatment and stage H3 -0.122 0.252 0.628

treatment and stage H4 -0.344 0.229 0.133

treatment and stage HR2 0.276 0.200 0.168

treatment and stage HR3 0.020 0.238 0.933

treatment and stage S2 0.249 0.241 0.301

treatment and stage S3 0.231 0.281 0.411

treatment and stage W2 0.061 0.268 0.821

PSA -0.001 NaN NaN

log(scale) 13.854 NaN NaN

log(shape) 0.359 NaN NaN

When an interaction of PSA with stage and treatment and sum of Gleason scores was

introduced, the results made no sense even though all terms were signifficant (see Table

16). One of the problems is that the higher the PSA was, the higher the log survival

time was. To understand this in terms of the interactions, let two patients have a PSA

value 5 and 10, with treatment and cancer stage S3 and sum Gleason scores 8 to 10

being the same. For the patient with PSA= 5, the log(survival time)= 5 × (−0.012 +

0.011+0.247)+0.159−0.603 = 0.786, while for the patient with PSA= 10 the log(survival

time)= 10 × (−0.012 + 0.011 + 0.247) + 0.159 − 0.603 = 2.016. This shows that the

patient with higher PSA has a higher log(survival time), which contradicts established

view. Another problem is that surgery in stage 2, S2 seems to have the worse log(survival
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time) than W2, when in the Cox proportional hazards model it was the other way around.

Table 16: Model with Time-Dependent Covariates with interactions for PCa obtained by

aftreg
Covariate Coef se(Coef) p

age -0.054 0.013 0.000

gleason -0.603 0.140 0.000

treatment and stage H2 0 (reference)

treatment and stage H3 -0.090 0.232 0.698

treatment and stage H4 -0.301 0.214 0.161

treatment and stage HR2 0.265 0.184 0.150

treatment and stage HR3 0.058 0.230 0.801

treatment and stage S2 0.192 0.212 0.365

treatment and stage S3 0.159 0.283 0.574

treatment and stage W2 -0.024 0.432 0.956

PSA -0.012 0.001 0.000

gleason : PSA 0.011 0.001 0.000

treatment and stage H3: PSA -0.001 0.000 0.000

treatment and stage H4: PSA 0.001 0.000 0.000

treatment and stage HR2: PSA -0.012 0.002 0.000

treatment and stage HR3: PSA -0.001 0.001 0.029

treatment and stage S2: PSA -0.001 0.000 0.000

treatment and stage S3: PSA 0.247 0.353 0.485

treatment and stage W2: PSA 0.045 0.053 0.391

log(scale) 12.413 0.970 0.000

log(shape) 0.578 NaN NaN

The analyses using the JM package (with a Cox proportional hazards sub-model and a

Weibull sub-model in accelerated failure time form), have not converged. The joint model

presented in Chapter 3 also gave odd results. The model found a positive relation between

log(PSA) and log(survival time), i.e. increase of log(PSA) by 1, increases log(survival time)

by 0.217, see Table 17. There were also an attempt to fit the ratio of the PSA value at each
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time point over the first PSA measurement and different PSA transformations, but this

led nowhere. A possible reason for the peculiar results of the time-dependent analysis and

joint analysis is that PSA is not a good biomarker and indicator of the Prostate Cancer.

Table 17: Analytical Joint Model for PCa
analytical estimates parameters se p

sigma.e 0.921 NA NA

alpha 0.217 NA NA

log.sigma 0.844 NA NA

time 0.000 NA NA

longitudinal intercept 3.932 NA NA

gleason -0.439 NA NA

treatment and stage H2 -0.512 NA NA

treatment and stage H3 -0.061 NA NA

treatment and stage HR2 -0.131 NA NA

treatment and stage HR3 1.005 NA NA

treatment and stage S2 -0.300 NA NA

treatment and stage S3 -0.079 NA NA

treatment and stage W2 -0.063 NA NA

survival intercept -0.414 NA NA

D11 0.283 NA NA
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Table 18: Bootstrap Joint Model for PCa
bootstrap estimates parameters se p

sigma.e 0.918 0.001 0.000

alpha 0.090 0.022 0.000

log.sigma 0.842 0.003 0.000

time 0.001 0.000 0.000

longitudinal intercept 3.864 0.019 0.000

gleason -0.554 0.019 0.000

treatment and stage H2 -0.507 0.012 0.000

treatment and stage H3 -0.027 0.022 0.220

treatment and stage HR2 -0.159 0.029 0.000

treatment and stage HR3 1.137 0.020 0.000

treatment and stage S2 -0.107 0.031 0.001

treatment and stage S3 0.030 0.023 0.178

treatment and stage W2 0.160 0.020 0.000

survival intercept -0.176 0.020 0.000

D11 0.281 0.001 0.000

4.3 Primary biliary cirrhosis (PBC2) data

4.3.1 Data Explanation

Primary Biliary Cirrhosis (PBC) is an autoimmune disease of the liver, see (58) for more

details. The Mayo Clinic conducted a follow-up study of 312 patients with the diagnosis of

PBC from 1974 to 1984, (91) to compare a drug D-penicillamine (158 patients) to placebo

(154 patients). The PBC dataset used here was taken from the JM package, (110). It

contains 1945 total observations, i.e. 6.23 observations per patient on average over time,

spanning from year 1 to year 11. The median follow-up time was 6.3 years. At each patient
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visit the serum bilirubin (a biomarker) measurement (in mg/dl) was taken. Higher values

of serum bilirubin are considered to be a strong indicator for the disease progression.

Instead of working with serum bilirubin, we are using its log transformation due to its

right-skewneness. The patient’s age in years at registration (26 to 78 years) is considered

to be the truncation time for our model with left-truncation and right-censoring. Time of

each visit is counted from registration. The right censoring is due to liver transplantation

or the end of the study. By the end of the study 140 patients were dead (69 and 71 in

placebo and treatment arms, respectively), and 172 were censored out. See Tables 19 and

20 for more details.
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4.3.2 Methods

A Weibull-based analytical model with bootstrap errors for the case of left-truncation and

right-censoring was fitted to the data. In this model, the log survival time is given by

log Ti = α[βt+ bi + λ] + γ1 +M ∗ γ2 + σ × εi. (127)

In the above model, the biomarker Y (t) (log serum bilirubin) depends on the time of

its measurement t (a time-dependent covariate), the patient id (as a random effect bi)

and includes an intercept λ. The survival submodel additionally includes the binary factor

treatment denoted by M and taking on values 0 and 1, and an intercept γ1. The association

of log(serum bilirubin) with log(survival time) is denoted by α, and log σ is the scale.

We are mainly interested in the effect that serum bilirubin has on survival time and the

changes in serum bilirubin over time, i.e. the association α of the longitudinal biomarker

with the log survival time and β.

4.3.3 Results

The coefficients of the fitted model are given in Table 21. The results show that log(survival

time) is associated with log(serum bilirubin) negatively, with the slope of α = −0.386.

Every additional year of the PBC progression decreases the survival time exp(0.386 ×
3.934) = 4.57 times on average. When the patient is on D-penicillamine, the survival time

increases exp(0.51) = 1.67 times, compared to being on placebo.
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Table 21: PBC Left-Truncated and Right-Censored Model
estimates parameters se p lower upper

sigma.e 0.555

alpha -0.386 0.021 0.000 -0.428 -0.344

log.sigma 0.685 0.003 0.000 0.679 0.691

year(β) 3.934 0.023 0.000 3.888 3.979

intercept within longitudinal(λ) -0.265 0.016 0.000 -0.297 -0.233

intercept within survival(γ1) -0.319 0.013 0.000 -0.346 -0.293

drug(γ2) 0.510 0.012 0.000 0.488 0.533

D11 0.103
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4.3.4 Regression Diagnostics

There are no known regression diagnostics methods for parametric joint modelling. Even

though this research was not about the regression diagnostics of this type of models, there is

a need for developing such tools, and it will be explored in the future. A first thought and a

preliminary work on this is to plot scaled score residuals, Cook’s distance versus Martingale

residuals and cummulative Kaplan-Meier versus Cox-Snell residuals. These were explained

in Chapter 2 and they are used for assessing the fit of a parametric survival model, but a

further investigation needs to be done for their use in parametric joint modelling.

For a plot of a cummulative Kaplan-Meier versus Cox-Snell residuals the closer the step

function is to the line passing from point (0, 0) with gradient 1, the better the fit is. In

the PBC example, the joint model seems to be fitting the data really well, except perhaps

near (0, 0). See Figure 4. Figure 5 should provide an indication of poorly fitted influential

observations. There are 7 patients that have larger absolute martingale values than the

rest, but these values are not too large to conclude that they are poorly fitted. Overall,

the Cook’s distance seems to be well under 1, which indicates that no patient affects the

estimates more than the other patients. In Figures 6 to 10, the scaled score residuals seem

quite dispersed, but in fact they are not too far away from each other taking into account

the scale of the graphs.

Overall, based on these 3 diagnostic methods the model seems to fit well to the data.

However, it should be noted that, to the author’s knowledge, there is no research indicating

how well these 3 methods can perform for a parametric joint model. This is an area for a

future research.

It should be noted that there were not any diagnostics for the joint model for PCa, because
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it made no sense.

Figure 4: Cummulative Kaplan-Meier Vs Cox-Snell Residuals
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Figure 5: Cooks Distance Vs Martingale Residuals

Figure 6: Scaled Score Residuals for association
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Figure 7: Scaled Score Residuals for drug

Figure 8: Scaled Score Residuals for log(sigma)
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Figure 9: Scaled Score Residuals for longitudinal intercept

Figure 10: Scaled Score Residuals for survival intercept
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4.4 Summary

In this chapter the shared parameter model with Weibull survival sub-model presented in

Chapter 3, was applied to two datasets. For prostate cancer data, the joint model did

not work well possibly due to the fact that PSA is not a reliable biomarker. For the

primary biliary cirrhosis data, the joint model provided reasonable results explaining the

data well. The regression diagnostics also indicated that the model fits well to the data,

but further investigation needs to be done for the use of diagnostic methods on parametric

joint modelling.

In the next chapter the future extensions of the joint model are presented.
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5 Future Developments

The simple version of longitudinal data for joint modellling is to have one longitudinal

biomarker. There are however, more complicated scenarios where there are multiple longi-

tudinal biomarkers. Additionally, there may be different types of failing. Models that can

handle different types of failing are called competing risks models. These different types

of failing can also be considered as informative censoring.

Rizopoulos and Ghosh (2011) (114) suggested a joint model relating multiple longitudinal

biomarkers to time-to-event data. They assumed that the baseline risk function is piecewise

constant and they used a spline-based method for longitudinal outcomes.

Albert and Shih (2011) (5) extended the two-stage regression calibration approach, used in

Albert and Shih (2010), for multiple longitudinal measurements and discrete time-to-event

data. First, they fitted a longitudinal model for multiple longitudinal measurements and

then this model was related to the survival model, while informative drop-out was dealt

by regression calibration. They used a two-staged procedure. At first, they fit multivariate

linear mixed models to the longitudinal data and then they estimate the time-to-event

model by replacing the random effects with corresponding Bayes estimates. For standard

errors the bootstrap procedure is used.

Elashoff, Li and Li (2007) (38) extended the work of Henderson et al (2000) (56). They

suggested a joint model for repeated measurements and competing risks failure time data,

which considers more than one failure types. The longitudinal components and the com-

peting risks failure time data are linked together by latent random variables. They assume

that each subject can experience one of g distinct failure types or can be right-censored.

Their joint model consists of a linear mixed effects model for the longitudinal component, a
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marginal probability of the ith subject failing from kth risk and a conditional cause-specific

hazard model for the kth risk.

In this chapter future extensions of the shared parameter model presented in chapter 3 are

presented. These are a shared parameter model with multiple biomarkers and competing

risks, under left-truncation and right-censoring.

5.1 Joint Modelling with Multiple Longitudinal Markers

5.1.1 Longitudinal Sub-Model

Suppose there are n individuals which we observe at mi time points each. These could

be different for each individual. Let β be a vector denoting time-dependent fixed effects

and bi be a vector denoting the random effects for the ith individual, where i = 1, 2, ..., n.

Let λ be a vector denoting the time-independent fixed effects. Suppose Yik(tijk) is the

observed value of the kth longitudinal biomarker for the ith individual at the jth time point,

where j = 1, 2, ...,mi, k = 1, 2, ..., K. All biomarkers may not have the same timepoints.

Wik(tijk) is the conditional expectation of the kth longitudinal biomarker Yik(tijk) for the

ith individual at the jth time-point, given bik. bi = bi1, ..., biK are the random effects for the

ith individual for the kth biomarker.

The observed values of the longitudinal biomarkers are

Yik(tijk) = XT
ik(tijk)β + ZT

ik(tijk)bik + UT
ikλ+ eik(tijk). (128)

Let Yik = {Yi1, Yi2, ..., YiK} be the set of the kth longitudinal biomarkers for the ith in-

dividual that includes all time points, to make notation easier. eik(tijk) is a mik × 1
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vector that denotes measurements errors. eik(tijk) is independent of all variables and

has independent marginal distribution N(0, σ2
e). The correlation between repeated mea-

surements, for the same kth longitudinal biomarker, in longitudinal process is given by

cov(ei(tijk), ei(tij′k)) = 0 for j 6= j′. For each kth longitudinal biomarker, suppose, there

exist r time-independent fixed parameters and thus, λ is a r×1 vector of time-independent

fixed effects that links UT
i , a mi×r matrix to the longitudinal observations Yi(tij). If there

are q random effects, then bi is a q × 1 vector, while ZT
i (tij) is a mi × q design matrix for

random effects. bi ∼ MVN(0, D) and D is a q × q variance-covariance matrix. Assuming

that there are p time-dependent fixed parameters, β is p× 1 vector and XT
i (tij) is a mi× p

design matrix for time-dependent fixed effects.

Now, let

Wik(tijk) = XT
ik(tijk)β + ZT

ik(tijk)bik + UT
ikλ. (129)

Thus, the model is given by

Yik(tijk) = Wik(tijk) + eik(tijk). (130)

5.1.2 Survival Sub-Model

Let T ∗i denote the true survival time for the ith individual. Let Ci and Ai denote the

censoring and truncation time for the ith individual. The observed survival time for the ith

individual is given by Ti = min(T ∗i , Ci). δi = I(T ∗i ≤ Ci) is the censoring indicator, which

is equal to 0 if the individual is censored and equal to 1 if the survival time was observed.

Now, the longitudinal regression is related to the survival via α in equation (133), where α =

{α1, ..., αK}, with αk denoting the relation of the kth longitudinal biomarker to survival.

If αk = 0, then this means that there is no relation between the survival time and the kth
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longitudinal biomarker.

Let h(t) be an arbitrary function of the survival time. Two important cases are:

h(t) =

log(t), for an accelerated failure time model

t, for the other parametric models.
(131)

For the ith individual the survival is modelled as

h(ti) = µi(ti) + σ × εi, (132)

where σ is the log(scale) and µi(t) is given by

µi(t) =
∑

αkWik(t) +MT
i γ, (133)

where γ is the regression coefficient that links the time-independent covariates, MT
i , related

only to survival.

Denote by xTi (ttijk) and zTi (tijk) the rows of the design matrices XT (tijk) and ZT (tijk) from

equation (128). These vectors for the kth biomarker are observed at particular time points

tijk. Let tik, be the set of all time-points for the ith individual and for the kth biomarker, i.e.

tik = {ti1k, ti2k, timik} with j = 1, · · · ,mi. Let us extend this notation to an arbitrary time

point t, to include the p× k matrix xTik(t), the q× k matrix zTik(t) and the kth longitudinal

biomarker Yik(tik).

Then, the joint model survival hi(t) for the ith individual at an arbitrary (single) time-point

t is given by

hi(t) = αk[x
T
ik(t)β + zTik(t)bik + uTikλ] +MT

i γ + σ × εi. (134)

εi is a vector of n×1, σ and α are numeric. Again, it is assumed that censoring and drop-out

mechanisms are non-informative. Specificaly, these two mechanisms are considered to be

independent of the random effects, the survival time and the longitudinal measurements,

(134).
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The joint likelihood contribution is given by

L(Yi, Ti, Ai, δi; θ) =
∫
L(Yi|bi; (θy, σ

2
e))L(Ti, Ai, δi|bi; (θt, σ

2))φq(bi;D)dbi, (135)

where L(Yi|bi; (θy, σ
2
e)) =

∏K
k=1

{∏mi
j=1 φ (Yijk(tijk);Wijk(tijk), σ

2
e)
}
, (114).

The likelihood includes integral which is difficult to solve analytically, and thus an integral

approximation is needed. Gauss-Hermite or Laplace approximation can be applied and a

maximum likelihood can be used to estimate the parameters.

The next step is the development of a program implementing this methodology.

5.2 Competing Risks

In this section, let us assume that there are G− 1 distinct failure types.

5.2.1 Longitudinal Sub-model

Let ti = {tij, j = 1, 2, ...,mi}, be the set of mi time-points, at which the ith individual is

observed, these could differ for each individual, and Yi(ti) = {Yi(tij), j = 1, ...,mi} be a

vector of the observed values of a longitudinal biomarker.

Consider the following mixed linear model for the subject-specific observed values of the

longitudinal biomarker:

Yi(ti) = XT
1i(ti)β1 + ZT

1i(ti)b1i + UT
1iλ1 + ei(ti), (136)
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where β1, λ1 and b1i are the vectors of p time-dependent fixed effects, r time-independent

fixed effects, and q random effects for the ith individual with the corresponding design

matrices XT
1i(ti), U

T
1i, and ZT

1i(ti), respectively. The matrix UT
1i has m1i identical rows

uT1i. An m1i-vector of the independent and normally distributed measurement errors

e1i(tij) ∼ N (0, σ2
1e), so that the correlation between repeated measurements in the longitu-

dinal process is (e1i(tij), e1i(tij′)) = 0 for j 6= j′. The random effects b1i have multivariate

normal distribution, so that

b1i ∼MVN(0, D1), (137)

with a q1 × q1 variance-covariance matrix D1. The errors ei and the random effects bi are

mutually independent.

Denote by W1i(ti) = {W1i(tij), j = 1, ...,mi} the conditional expectation of the longitu-

dinal biomarker Yi(ti) given b1i. Then

E[Yi(ti)|b1i] = W1i(ti) = XT
1i(ti)β1 + ZT

1i(ti)b1i + UT
1iλ1, (138)

and the longitudinal biomarker is given by

Yi(ti) = W1i(ti) + e1i(ti). (139)

Therefore conditionally on bi, the biomarker is normally distributed

Yi(tij)|b1i ∼ N (W1i(tij), σ
2
1e) (140)

5.2.2 Marginal Failure Probability

The marginal probability of the ith subject failing from kth risk is given by:

πg(X2i,Wki; θ) =
exp

{
XT

2i(ti)β2 + ZT
2i(ti)b2i + UT

2iλ2

}
)

1 +
∑G−1

g=1 exp {XT
2i(ti)β2 + ZT

2i(ti)b2i + UT
2iλ2}

, (141)
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for g = 1, ..., G− 1, ((38),(39),(74),(65)).

β2, λ2 and b2i are the vectors of p2 time-dependent fixed effects, r2 time-independent fixed

effects, and q2 random effects for the ith individual with the corresponding design matrices

XT
2i(ti), U

T
2i, and ZT

2i(ti), respectively. The matrix UT
2i has m2i identical rows uT2i. The

random effects b2i have multivariate normal distribution, so that

b2i ∼MVN(0, D2), (142)

with a q2 × q2 variance-covariance matrix D2. All covariates here are denoted by XT
2i(ti),

UT
2i, and ZT

2i(ti) because they may or may not differ than their corresponding XT
1i(ti), U

T
1i,

and ZT
1i(ti).

5.2.3 Cause-Specific Survival Sub-Model

For a specific survival component, let Ai, T
∗
i and Ci denote the left-truncation time, true

survival time and censoring time respectively, for the ith individual, i = 1, ..., n. The

observed survival time is given by Ti = min(T ∗i , Ci). Denote by δi = I(T ∗i ≤ Ci) the

censoring indicator (1-dead, 0-alive). Let MT
i be the vector of the s time-independent

survival covariates, related only to survival.

Let h(t) be an arbitrary function of the survival time. Two important cases are:

h(t) =

log(t), for an accelerated failure time model

t, for the other parametric models.
(143)

For the ith individual the survival is modelled as

h(ti) = µi(ti) + σ × εi, (144)
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where σ is the scale parameter and εi ∼ G(t) is an error term. The mean survival µi(t) is

given by

µi(t) = α1W1i(t) +MT
i γ, (145)

where α is the association between the longitudinal and the survival sub-models, γ is the

s-vector of the regression coefficients, and MT
i is the design matrix of s time-independent

survival covariates. When α = 0, there is no relation between the longitudinal and the

survival processes.

Denote by xT1i(ttij) and zT1i(tij) the rows of the design matrices XT
1 (ti) and ZT

1 (ti) from

the equation (136). These vector functions are observed at particular time points tij, j =

1, · · · ,mi but we extend this notation to an arbitrary time point t, to include the p-vector

xT1i(t), the q-vector zT1i(t) and the longitudinal biomarker Yi(t).

Then, the joint model survival hi(t) for the ith individual at an arbitrary (single) time-point

t is given by

hi(t) = α[xT1i(t)β1 + zT1i(t)b1i + uT1iλ1] +MT
i γ + σ × εi. (146)

5.2.4 Joint Likelihood for Competing Risks

The joint likelihood for competing risks is given by:

L(Yi, Ti, Ai, δi; θ) =
∫
L(Yi|bi; (θy, σ

2
e))L(Ti, Ai, δi|bi; (θt, σ

2))φq(bi;D)dbi, (147)

where

L(Ti, Ai, δi|bi; (θt, σ
2)) =

g∏
k=1

{
f(t)πk(X2i,Wki; a))δi(S(tπk(X2i,Wki; a))1−δi

}
, (148)

((38),(39),(65),(74)), where f(t) and S(t) are the appropriate probability density and sur-

vival functions for the survival distribution under right-censoring or left-truncation and
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right-censoring.

This likelihood also includes integral which is difficult to solve analytically, and thus an

integral approximation is needed. Gauss-Hermite or Laplace approximation can be applied

and a maximum likelihood can be used to estimate the parameters.

A program to implement this methodology is yet to be written.

5.3 Summary

In this chapter the future extensions of the shared parameter model developed in this

thesis are presented. These are a shared parameter model with multiple biomarkers and

competing risks, under left-truncation and right-censoring. These two, multiple biomarkers

and competing risks, are more complicated versions of the simple joint model presented in

this thesis. First of all, specific likelihoods for the appropriate survival distribution need

to be constructed. These likelihoods include integrals which cannot be solved analytically,

thus Gauss-Hermite or Laplace approximations can be applied. An R-program will be

developed for these two methods, multiple biomarkers and competing risks, and will be

tested using simulations.

It needs to be noted that there is no known methods for assessing the fit of a parametric

shared parameter model (even though there is some work for a shared parameter model

using a Cox proportional hazards survival sub-model), and this is also an issue that needs

to be investigated. First thoughts on this matter are to use the plot of a cumulative hazard

function of the Cox-Snell residuals against the Cox-Snell for assessing the overall fit of the

model, plot the scaled score residuals to identify how influential an observation is and
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plot the Cook’s distance to identify influential subjects in respect to the estimation of the

parameters. These were discussed on Chapter 2 for assessing a parametric survival model’s

fit, but may or may not be suitable for a parametric shared parameter model.
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A Proof of fundamental survival analysis relations

The cumulative distribution function is given by

F (t) = P (T ≤ t), (A.1)

and the survival function is

S(t) = P (T > t). (A.2)

From (A.1) and (A.2):

S(t) = 1− F (t). (A.3)

The probability density function is related to the probability distribution by

f(t) =
d

dt
(F (t)). (A.4)

Differentiating the survival function,

S
′
(t) =

d

dt
(S(t)) =

d

dt
(1− F (t)) = −f(t). (A.5)

The hazard function is given by:

h(t) = lim
∆t→0

P [t ≤ T < t+ ∆t|T ≥ t]

∆t
. (A.6)

P [t ≤ T < t+ ∆t|T ≥ t] is the probability that t is in the interval (t+∆t)i.e.

P[t ≤ T < t+ ∆t|T ≥ t] = f(t), while P [T ≥ t] is the survival function (A.2). Thus,

h(t) =
f(t)

S(t)
. (A.7)
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The cumulative hazard function is the sum of all individual hazards over time. It can be

expressed as an area under the curve h(u). So,

H(t) =
∫ t

0
h(u)du

=
∫ t

0

A.7︷ ︸︸ ︷
f(u)

S(u)
du

=
∫ t

0

A.5︷ ︸︸ ︷
−S ′(u)

S(u)
du

=
∫ t

0

︷ ︸︸ ︷
d

du
(− log(S(u)))

d
du

(log(S(u)))=
S
′
(u)

S(u)

= − log(S(t))

(A.8)
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B Transformations from distributions to models

B.1 Transformation from Log-Logistic distribution to Log-Logistic

Model

The survival function for the Log-Logistic distribution is given by:

S(t;λ, p) = (1 + λtp)−1. (B.1)

Taking the log transformation of time (y = log t) and redefining the parameters p = σ−1

and λ = exp {−σ−1µ}:
S(y;λ, p) = (1 + λ exp {py})−1 (B.2)

and Y follows a linear model:

Y = log T = µ+ σW, (B.3)

where W is the random variable from the standard logistic distribution with probability

density function:

fW (w) = exp {w}σ−1(1 + exp {w})−2 (B.4)

and survival function:

SW (w) = (1 + exp {w})−1. (B.5)

Thus, the probability density function of Y for the ith individual is:

f(yi;µi, σ) = exp
{
σ−1(yi − µi)

}
σ−1(1 + exp

{
σ−1(yi − µi)

}
)−2 (B.6)

and the survival function for the ith individual is:

S(yi;µi, σ) = [1 + exp
{
σ−1(yi − µi)

}
]−1. (B.7)
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C Application of Joint Modelling with Log-Logistic

Sub-model

The longitudinal component is modelled with a linear mixed effects model and the survival

component is modelled using Log-Logistic distribution.

The log survival time for the ith individual, following Log-Logistic distribution is given by

log Ti(ti) = µi(ti) + σ × εi, (C.1)

where εi comes from Logistic distribution, σ is the scale and µi(ti) is given by

µi(t) = αWi(t) +MT
i γ, (C.2)

where γ is the regression coefficient that links the time-independent covariates, MT
i , related

only to survival and Wi(t) is the longitudinal component.

The probability density and survival function of Log-Logistic model are given by (B.6)

and (B.7) respectively. For the longitudinal parts, the probability density functions of

Yi(tij) conditional on random effects bi and of random effects are given by (111) and (112)

respectively.
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C.1 Likelihood for Application of Joint Modelling with Log-Logistic

Sub-Model

C.1.1 Right-Censoring Likelihood for Application of Joint Modelling with

Log-Logistic Sub-Model

The Log-Logistic joint likelihood contribution for right-censoring only is

L(Yi, Ti, δi; θ) =
∏n

i=1 [
∫∞
−∞
∏mi

j=1 [(2πσ2
e)
− 1

2 exp[−(Yi(tij)−Wi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1b

′
iD
−1bi)

×(exp {σ−1(log Ti(ti)− µi(ti))}σ−1(1 + exp {σ−1(log Ti(ti)− µi(ti))})−2)δi

×([1 + exp {σ−1(log Ti(ti)− µi(ti))}]−1)1−δi dbi ].

(C.3)

When Gauss-Hermite approximation is applied the likelihood becomes

L̃(Yi, Ti, δi; θ) = 2
qn
2 |B|−n

∏n
i=1

∑p
li=1 ωli exp {E ′iEi}

∏mi
j=1 [(2πσ2

e)
− 1

2

× exp[−(Yi(tij)− Ŵi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1/2B−1EiD

−121/2B−1Ei)

×(exp {σ−1(log Ti(ti)− µ̂i(ti))}σ−1(1 + exp {σ−1(log Ti(ti)− µ̂i(ti))})−2)δi

×([1 + exp {σ−1(log Ti(ti)− µ̂i(ti))}]−1)1−δi ,

(C.4)

where Ŵi(tij) = XT
i (tij)β +ZT

i (tij)(2
1
2B−1Eili) +UT

i λ and µ̂i(ti) = αŴi(t) +MT
i γ. When

Laplace approximation is applied the likelihood becomes

L̃(Yi, Ti, δi; θ) = (2π)
nq
2 Ω̂−

n
2

∏n
i=1

∏mi
j=1 [(2πσ2

e)
− 1

2 exp[−(Yi(tij)− Ŵi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1b̂

′
iD
−1b̂i)

×(exp {σ−1(log Ti(ti)− µ̂i(ti))}σ−1(1 + exp {σ−1(log Ti(ti)− µ̂i(ti))})−2)δi

×([1 + exp {σ−1(log Ti(ti)− µ̂i(ti))}]−1)1−δi ,

(C.5)

where Ŵi(tij) = XT
i (tij)β + ZT

i (tij)b̂+ UT
i λ and µ̂i(ti) = αŴi(t) +MT

i γ.
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C.1.2 Left-Truncation and Right-Censoring Likelihood for Application of Joint

Modelling with Log-Logistic Sub-Model

For the case of left-truncation and right-censoring, the likelihood becomes more compli-

cated.

L(Yi, Ti, Ai, δi; θ) =
∏n

i=1 [
∫∞
−∞
∏mi

j=1 [(2πσ2
e)
− 1

2 exp[−(Yi(tij)−Wi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1b

′
iD
−1bi)

×([Ai(log(Ti(ti)) + Ai)]
σ−1

[1 + exp[ logAi−µi(ti)
σ

]]2

×[1 + exp[ log (Ti(ti)+Ai)−µi(ti)
σ

]]−2)δi

×[([1 + exp[ logAi−µi(ti)
σ

]][1 + exp[ log(Ti(ti)−Ai)−µi(ti)
σ

]]−1]1−δi dbi ].

(C.6)

When Gauss-Hermite approximation is applied the likelihood becomes

L̃(Yi, Ti, Ai, δi; θ) = 2
qn
2 |B|−n

∏n
i=1

∑p
li=1 ωli exp {E ′iEi}

∏mi
j=1 [(2πσ2

e)
− 1

2

× exp[−(Yi(tij)− Ŵi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1/2B−1EiD

−121/2B−1Ei)

×([Ai(log(Ti(ti)) + Ai)]
σ−1

[1 + exp[ logAi−µ̂i(ti)
σ

]]2

×[1 + exp[ log (Ti(ti)+Ai)−µ̂i(ti)
σ

]]−2)δi

×[([1 + exp[ logAi−µ̂i(ti)
σ

]][1 + exp[ log(Ti(ti)−Ai)−µ̂i(ti)
σ

]]−1]1−δi ,

(C.7)

where Ŵi(tij) = XT
i (tij)β +ZT

i (tij)(2
1
2B−1Eili) +UT

i λ and µ̂i(ti) = αŴi(t) +MT
i γ. When

Laplace approximation is applied the likelihood becomes

L̃(Yi, Ti, δi; θ) = (2π)
nq
2 Ω̂−

n
2

∏n
i=1

∏mi
j=1 [(2πσ2

e)
− 1

2 exp[−(Yi(tij)− Ŵi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1b̂

′
iD
−1b̂i)

×([Ai(log(Ti(ti)) + Ai)]
σ−1

[1 + exp[ logAi−µ̂i(ti)
σ

]]2

×[1 + exp[ log (Ti(ti)+Ai)−µ̂i(ti)
σ

]]−2)δi

×[([1 + exp[ logAi−µ̂i(ti)
σ

]][1 + exp[ log(Ti(ti)−Ai)−µ̂i(ti)
σ

]]−1]1−δi ,

(C.8)
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where Ŵi(tij) = XT
i (tij)β + ZT

i (tij)b̂+ UT
i λ and µ̂i(ti) = αŴi(t) +MT

i γ.

D Application of Joint Modelling with Log-Normal

Sub-Model

The longitudinal component is modelled with a linear mixed effects model and the survival

component is modelled using Log-Normal distribution.

The log survival time for the ith individual, following Log-Normal distribution is given by

log Ti(ti) = µi(ti) + σ × εi, (D.1)

where εi comes from Normal distribution, σ is the scale and µi(ti) is given by

µi(t) = αWi(t) +MT
i γ, (D.2)

where γ is the regression coefficient that links the time-independent covariates, MT
i , related

only to survival and Wi(t) is the longitudinal component.

The probability density and survival function of Log-Normal model are given in Table

(1). For the longitudinal parts, the probability density functions of Yi(tij) conditional on

random effects bi and of random effects are given by (111) and (112) respectively.
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D.1 Likelihood for Application of Joint Modelling with Log-

Normal Sub-Model

D.1.1 Right-Censoring Likelihood for Application of Joint Modelling with

Log-Normal Sub-Model

The Log-Normal joint likelihood contribution for right-censoring only is

L(Yi, Ti, δi; θ) =
∏n

i=1 [
∫∞
−∞
∏mi

j=1 [(2πσ2
e)
− 1

2 exp[−(Yi(tij)−Wi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1b

′
iD
−1bi)

×[exp[−(Ti(ti)σ(2π)1/2)−1[log Ti(ti)−µi(ti)]2
2σ2 ]]δi

×[1− Φ( log(Ti(ti))−µi(ti)
σ

)]1−δi dbi ].

(D.3)

When Gauss-Hermite approximation is applied the likelihood becomes

L̃(Yi, Ti, δi; θ) = 2
qn
2 |B|−n

∏n
i=1

∑p
li=1 ωli exp {E ′iEi}

∏mi
j=1 [(2πσ2

e)
− 1

2

× exp[−(Yi(tij)− Ŵi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1/2B−1EiD

−121/2B−1Ei)

×[exp[−(Ti(ti)σ(2π)1/2)−1[log Ti(ti)−µ̂i(ti)]2
2σ2 ]]δi

×[1− Φ( log(Ti(ti))−µ̂i(ti)
σ

)]1−δi ,

(D.4)

where Ŵi(tij) = XT
i (tij)β +ZT

i (tij)(2
1
2B−1Eili) +UT

i λ and µ̂i(ti) = αŴi(t) +MT
i γ. When

Laplace approximation is applied the likelihood becomes

L̃(Yi, Ti, δi; θ) = (2π)
nq
2 Ω̂−

n
2

∏n
i=1

∏mi
j=1 [(2πσ2

e)
− 1

2 exp[−(Yi(tij)− Ŵi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1b̂

′
iD
−1b̂i)

×[exp[−(Ti(ti)σ(2π)1/2)−1[log Ti(ti)−µ̂i(ti)]2
2σ2 ]]δi

×[1− Φ( log(Ti(ti))−µ̂i(ti)
σ

)]1−δi ,

(D.5)

where Ŵi(tij) = XT
i (tij)β + ZT

i (tij)b̂+ UT
i λ and µ̂i(ti) = αŴi(t) +MT

i γ.
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D.1.2 Left-Truncation and Right-Censoring Likelihood for Application of Joint

Modelling with Log-Normal Sub-Model

For left-truncation and right-censoring case, the likelihood becomes more complicated.

L(Yi, Ti, Ai, δi; θ) =
∏n

i=1 [
∫∞
−∞
∏mi

j=1 [(2πσ2
e)
− 1

2 exp[−(Yi(tij)−Wi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1b

′
iD
−1bi)

×[exp[(logAi − µi(ti))2 − (log (Ai + Ti(ti))− µi(ti))2]]δi

×[[1− Φ( log (Ti(ti)+Ai)−µi(ti)
σ

)][1− Φ( logAi−µi(ti)
σ

)]−1]1−δi dbi ].

(D.6)

When Gauss-Hermite approximation is applied the likelihood becomes

L̃(Yi, Ti, Ai, δi; θ) = 2
qn
2 |B|−n

∏n
i=1

∑p
li=1 ωli exp {E ′iEi}

∏mi
j=1 [(2πσ2

e)
− 1

2

× exp[−(Yi(tij)− Ŵi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1/2B−1EiD

−121/2B−1Ei)

×[exp[(logAi − µ̂i(ti))2 − (log (Ai + Ti(ti))− µ̂i(ti))2]]δi

×[[1− Φ( log (Ti(ti)+Ai)−µ̂i(ti)
σ

)][1− Φ( logAi−µ̂i(ti)
σ

)]−1]1−δi ,

(D.7)

where Ŵi(tij) = XT
i (tij)β +ZT

i (tij)(2
1
2B−1Eili) +UT

i λ and µ̂i(ti) = αŴi(t) +MT
i γ. When

Laplace approximation is applied the likelihood becomes

L̃(Yi, Ti, δi; θ) = (2π)
nq
2 Ω̂−

n
2

∏n
i=1

∏mi
j=1 [(2πσ2

e)
− 1

2 exp[−(Yi(tij)− Ŵi(tij))
2(2σ2

e)
−1]]

×(2π|D|)− 1
2 exp(−2−1b̂

′
iD
−1b̂i)

×[exp[(logAi − µ̂i(ti))2 − (log (Ai + Ti(ti))− µ̂i(ti))2]]δi

×[[1− Φ( log (Ti(ti)+Ai)−µ̂i(ti)
σ

)][1− Φ( logAi−µ̂i(ti)
σ

)]−1]1−δi ,

(D.8)

where Ŵi(tij) = XT
i (tij)β + ZT

i (tij)b̂+ UT
i λ and µ̂i(ti) = αŴi(t) +MT

i γ.
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E Joint Modelling with Extreme Value for Survival

Sub-model

If the Extreme Value distribution, is preferred to be used for the survival sub-model,

it should be noted that when covariates are present, the log-likelihood, the probability

density function and the survival function (along with other quantities) of the extreme

value distribution have the same formulas as those for Weibull’s distribution. The only

difference is that there is no log tranformation of time ((63),(90), (97)).

F Joint Modelling with Gompertz Survival Sub-model

If Gompertz distribution is needed to fit the data, it can be achieved by using the Extreme

Value model. Under the transformations a = − log {σ}−µσ−1 and b = σ−1, the Gompertz

hazard function, becomes the Extreme hazard function. Thus, by fitting the Extreme

Value model, and using the above transformation, the Gompertz model is obtained ((3),

(97),(106)).

G Joint Modelling with Logistic Survival Sub-model

If the Logistic distribution, is preferred to be used for the survival sub-model, it should be

noted that when covariates are present, the log-likelihood, the probability density function

and the survival function (along with other quantities) of the Logistic model have the same
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formulas as those for Log-Logistic’s distribution. The only difference is that there is no log

tranformation of time ((63),(90),(97)).

H Joint Modelling with Beard Survival Submodel

If Beard model is needed to fit the data, it can be achieved by using the Logistic model.

Under the transformations a = − log {σ}−µσ−1, b = σ−1 and ρ = log σ, the Beard hazard

function becomes the Logistic hazard function. Thus, by fitting the Logistic model, and

using the above transformation, the Beard model is obtained, ((3),(97),(106)).

I Joint Modelling with Perks Survival Submodel

If Perks model is needed to fit the data, it can be achieved by using the Beard (and

thus the Logistic) model. Under the transformation ρ = 0, the Beard hazard function,

becomes the Perks hazard function. Thus, by fitting the Beard model, and using the above

transformation, the Perks model is obtained, ((3),(97),(106)).
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J R documentation

J.1 Fitting Parametric Joint Models

Description

This function fits parametric joint models to right-censored data, and left-truncated and

right-censored data for Weibull, Log-Logistic, Log-Normal, Extreme and Logistic survival

distributions. Gompertz, Beard and Perks distributions can be obtained using the models

mentioned before as shown in the Appendix F, H and I respectively.

It obtains the maximum likelihood estimates, by maximizing the log-likelihood, using

Newton-Raphson algorithm i.e. xn+1 = xn− f
′
(x)

f(x)
. The algorithm uses starting parameters

obtained from survreg(), aftreg() and lme() functions.

Usage

fit.joint.model(dist="weibull",random=2,censored="right",

truncation="no",patient.in.longitudinal.form,

start.time.longitudinal,end.time.longitudinal,X1,Z1,U1,

censoring.longitudinal,M.longitudinal,

patient.in.survival.form,X2,Z2,U2,M,age=NULL,follow.up.time.for.survival,censoring.survival,

Y,nnodes,bootstrap=F,B)
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Arguments

patient.in.longitudinal.form: vector containing the patient id in a longitudinal form

X1: vector or matrix that includes all time-depedenent variables in a longitudinal form

Z1: vector or matrix with the random effects in a longitudinal form. It can only take up

to 2 random effects

U1: vector or matrix with time-independent variables in a longitudinal form

patient.in.survival.form: vector showing the patient id in a simple survival form

X2: vector or matrix that includes all time-dependent variable in a simple survival form

Z2: vector or matrix with the random effects in a survival form

U2: vector or matrix with time-independent variables in a survival form

M: vector or matrix with the survival covariates in a simple survival form

follow.up.time.for.survival: vector with the follow-up time for each patient in a simple

survival form

start.time.longitudinal: vector with the starting time for each patient in a longitudinal
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form for each new observation

end.time.longitudinal: vector with the ending time for each patient in a longitudinal

form before the next observation

censoring.longitudinal: vector showing the status of the patient in a longitudinal form

(1-died,0-alive)

M.longitudinal: vector or matrix with the survival covariates in a longitudinal form

censoring.survival: vector showing the status of the patient in a survival form (1-died,0-

alive)

Y: vector showing the value of the longitudinal biomarker in a longitudinal form

random: 2 indicating 2 type of random effects, 1 indicating for 1 type of random effects

nnodes: the number of nodes to be used in Gauss-Hermite approximation

bootstrap: If TRUE, it performs a boostrap analysis with B number of replications

dist=”weibull”: One of the distributions Weibull, Log-Logistic, Log-Normal, Extreme,

Logistic. Additionally, Gompertz, Perks, Beard distributions can be obtained by using the

transformations mentioned in the Appendix.

censored=”right”: right-censoring only
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truncation=”no”: ”no” or ”yes” (left-truncation only)

age=NULL: If truncation=”yes”, a vector with the starting ages of all individuals

Example

#taking a data that will be used from a library in R

>library(JM)

>Long=pbc2

>Surv=pbc2.id

>patient.in.longitudinal.form=Long$id

#patient id in longitudinal form

>patient.in.survival.form=Surv$id

#patient id in survival form

>X1=Long$year

#time in longitudinal form

>X2=Surv$year

#time in survival form

>Z1=Long$id

#random intercept in longitudinal form

>Z2=Surv$id
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#random intercept in survival form

>U1=rep(1,length(X1))

#longitudinal intercept in longitudinal form

>U2=rep(1,length(X2))

#longitudinal intercept in survival form

>M=rep(1,length(X2))

#survival intercept in survival form

>M.longitudinal=rep(1,length(X1))

#survival intercept in survival form

>follow.up.time.for.survival=Surv$years

#follow up time in survival form

>start.time.longitudinal=Long$year

#time for each longitudinal measurement

>end.time.longitudinal=Long$years

#time before the next longitudinal measurements

>censoring.longitudinal=Long$status2

#censoring in longitudinal form

>censoring.survival=Surv$status2

#censoring in survival form
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>Y=Long$serBilir

#longitudinal biomarker in longitudinal form

>nnodes=2

#nodes for Gauss-Hermite

>B=100

#bootstrap samples

>age=pbc2.id$age

#age used for truncation time in left-truncated model

#fitting a left-truncated and right censored Weibull model

> fit.joint.model(dist="weibull",random=2,censored="right",

truncation="left",patient.in.longitudinal.form,

start.time.longitudinal,end.time.longitudinal,X1,Z1,U1,

censoring.longitudinal,M.longitudinal,

patient.in.survival.form,X2,Z2,U2,M,age=age,follow.up.time.for.survival,censoring.survival,

Y,nnodes,bootstrap=F,B)

J.2 Simulations

Description

This function simulates Weibull shared parameter model with patient observations 1 to 4

or 1 to 24. The a Weibull shared parameter model is fitted using analytical and bootstrap
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methods.

It obtains the maximum likelihood estimates, by maximizing the log-likelihood, using

Newton-Raphson algorithm i.e. xn+1 = xn− f
′
(x)

f(x)
. The algorithm uses starting parameters

obtained from survreg(), aftreg() and lme() commands applied to the data.

Usage

autosimulation.generate(numberOfPatients,averageObservationCount,D,

alpha,beta,lambda,gamma,log.sigma,sigma.e,nnodes,B,

Simulations,Total.Simulations)

Arguments

numberOfPatients: the number of patients the user wants to simulate for the data

averageObservationCount: the number of observations the user wants to simulate. It

takes 3 and 23 which simulates 1to4 and 1to24 observations for each patient.

nnodes: the number of nodes the user wants to use for the Gauss-Hermite approximation

B: the number of bootstrap analyses to perform

Simulations: the number of successful simulations that is required for the program to
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stop

Total.Simulations: the number of the total simulations that need to be performed until

the program will stop

The rest of the arguments D,alpha,beta,lambda,gamma,log.sigma, sigma.e would be D, α,

β, λ, γ and log σ respectively, that form the shared parameter model T ∗i (tij) = exp[α(tijβ+

bi + λ) + γ1 + γ2gi + σ × εi], where the univariate random effects bi are generated from

N (0, D) and the errors ei(tij) are independently generated from N (0, σ2
e) and γ = c(γ1, γ2).

Example

#Defining the actual values of the parameters

>D.1=0.1

#variance-covariance for the random effects

#constant

>alpha.1=1.0

#association between the longitudinal

#and survival procedures

>beta.1=1.0

#time-dependent longitudinal covariate

>lambda.1=1.0

#time-independent longitudinal covariate
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>gamma.1=1.0

#survival covariate

>log.sigma.1=0.1

#log(scale) for the survival model

>sigma.e.1=0.1

#longitudinal variance for the longitudinal model

>nnodes.1=2

#Gauss-Hermite nodes to be used

>numberOfPatients.1=100

#number of patients to be simulated

>averageObservationCount.1=3

#average observations for the patients

#when it is 3, they have observation from 1 to 4

>B.1=100

#bootstrap samples

>Simulations.1=500

#total replications until the simulation are finished

>Total.Simulations.1=500

#total replications for the simulations
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#begin the simulations program

>SKEVI1=autosimulation.generate(numberOfPatients.1,

averageObservationCount.1,D.1,alpha.1,beta.1,

lambda.1,gamma.1,log..sigma.1,sigma.e.1,nnodes.1,

B.1,Simulations.1,Total.Simulations.1)
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