Meta-Analysis of the Prognostic Impact of Anemia in Patients Undergoing

Percutaneous Coronary Intervention

Kwok C.S.,^{1,2} Tiong D.,³ Pradhan A.,³ Andreou A.,⁴ Nolan J.,^{1,2} Bertrand O.,⁵ Curzen N.,⁶ Urban P.,⁷ Myint P.K.,⁸ Zaman A,⁹ Loke Y.K.,¹⁰ Mamas M.A.^{1,2}

¹Keele Cardiovascular Research Group, Keele University, Stoke-on-Trent, UK.

²University Hospital of North Midlands, Stoke-on-Trent, UK.

³Royal Preston Hospital, Preston, UK.

⁴Limassol General Hospital, Cyprus.

⁵Laval University, Laval, Canada.

⁶University of Southhampton, Southampton, UK.

⁷La Tour Hospital, Geneva, Switzerland.

⁸University of Aberdeen, Aberdeen UK.

⁹Newcastle University, Newcastle, UK.

¹⁰Norwich Medical School, University of East Anglia, Norwich, UK.

Corresponding author:

Prof Mamas Mamas

Keele Cardiovascular Research Group,

Institute for Science & Technology in Medicine, Keele University,

Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB United

Kingdom

Tel.: +44 (0)1782 671652

Fax: +44 (0)1782 674467

Email: mamasmamas1@yahoo.co.uk

Abstract

Anemia is common in patients undergoing percutaneous coronary intervention (PCI), and current guidelines fail to offer recommendations for its management. This review aims to examine the relation between baseline anemia and mortality, major adverse cardiovascular events (MACE), and major bleeding in patients undergoing PCI. We searched MEDLINE and EMBASE for studies that evaluated mortality and adverse outcomes in anemic and nonanemic patients who underwent PCI. Data were collected on study design, participant characteristics, definition of anemia, follow-up, and adverse outcomes. Random effects metaanalysis of risk ratios was performed using inverse variance method. A total of 44 studies were included in the review with 230,795 participants. The prevalence of baseline anemia was 26,514 of 170,914 (16%). There was an elevated risk of mortality and MACE with anemia compared with no anemia-pooled risk ratio (RR) 2.39 (2.02 to 2.83), p < 0.001 and RR 1.51 (1.34 to 1.71), p <0.001, respectively. The risk of myocardial infarction and bleeding with anemia compared with no anemia was elevated, pooled RR 1.33 (1.07 to 1.65), p = 0.01and RR 1.97 (1.03 to 3.77), p <0.001, respectively. The risk of mortality per unit incremental decrease in hemoglobin (g/dl) was RR 1.19 (1.09 to 1.30), p <0.001 and the risk of mortality, MACE, and reinfarction per 1 unit incremental decrease in hematocrit (%) was RR 1.07 (1.05 to 1.10), p = 0.04, RR 1.09 (1.08 to 1.10) and RR 1.06 (1.03 to 1.10), respectively. The prevalence of anemia in contemporary cohorts of patients undergoing PCI is significant and is associated with significant increases in postprocedural mortality, MACE, reinfarction, and bleeding. The optimal strategy for the management of anemia in such patients remains uncertain.

Introduction

Anaemia is common amongst patients undergoing percutaneous coronary interventions (PCI) with prevalent rates reported between 10-23% in randomised controlled trials (1-3)and rates greater than 30% reported in observational registries (4,5). Current clinical guidelines fail to offer recommendations for its concurrent management in patients undergoing PCI. Patients with anaemia who undergo PCI are frequently older (5-7), with multiple co-morbidities including higher rates of renal failure (1,8-11), diabetes (1,8), previous history of myocardial infarction (12,13) and more extensive and complex coronary disease (12-14). These clinical and procedural characteristics are well known to be associated with poorer outcomes post PCI. Previous studies have reported that the presence of baseline anaemia is independently associated with mortality (5,8,9,15) and major adverse cardiac events (MACE)(5,16) and major bleeding complications(17) and several PCI risk scores have used anaemia as important predictors for both mortality (18) and bleeding outcomes (19,20). In contrast, other studies suggest that whilst these relationships exists for unadjusted data, anaemia is no longer associated with increased mortality following adjustment for potential confounders such as age, comorbidity burden and procedural demographics, (16,21-23), MACE (11,23)or ischemic complications (2). Other studies have also suggested an independent association with mortality only in males but not females (1). Anaemia may occur following major bleeding events or in the presence of chronic renal disease, or relate to the presence of a diverse range of chronic diseases(24). Whilst both major bleeding (25,26) and chronic renal disease are known to independently predict adverse outcomes following PCI(27-29), several analyses that have focussed on the prognostic impact of anaemia have not adjusted for either renal function (6,30) or major bleeding events that may further confound relationships reported.

To the best of our knowledge, there has not been a systematic review or meta-analysis of the prevalence and prognostic impact of anaemia in the setting of PCI. We have therefore undertaken a meta-analysis to systematically study the impact of anaemia in patients who have undergone PCI on mortality, MACE, major bleeding and re-infarction and attempt to dissect out whether the associations reported between anaemia and adverse clinical outcomes are independent of clinical and procedural characteristics that are more prevalent in patients with anaemia and portend to worse outcomes. Finally, we study whether the reported relationships reported between anaemia and clinical outcomes are similar irrespective of whether the PCI is undertaken in the elective or ACS setting.

Methods

Eligibility criteria

We selected studies of participants who underwent PCI and reported any of the following adverse outcomes: mortality, MACE by any definition or combination of (adverse cardiovascular events and mortality), re-infarction and bleeding among patients who were anemic and non-anemic (no restriction on cutoffs of hemoglobin). We also included studies that evaluated the risk of adverse outcomes for incremental increase or decrease in hemoglobin. Studies that did not clearly report any of the adverse outcomes by anemia status or incremental changes in hemoglobin were excluded.

Search strategy

A search of MEDLINE and EMBASE was performed on OVID SP. The exact search strategy is shown in Supplementary Data 1. There was no restriction on the search based on language and both abstracts and unpublished literature were included. The bibliography of included studies and relevant reviews were evaluated for additional studies. Authors were contacted in situations where there was uncertainty regarding the data in the studies.

Study selection and data extraction

Three reviewers (C.S.K., A.P. and A.A.) independently screened all titles and abstracts for studies potentially meeting the inclusion criteria. The full reports of these studies were retrieved, and data from each study were extracted independently by two reviewers (C.S.K. and D. T.) Data extracted included study design, participant characteristics, participant inclusion criteria, definition of anemia or incremental hemoglobin change, adverse outcomes, follow up and results.

Quality assessment

Additional data was collected on quality of studies that included ascertainment of anemia, ascertainment of outcomes, loss to follow up and use of adjustments for confounding. Publication bias was assessed using funnel plots for an analysis with >10 studies and no evidence of substantial heterogeneity(31).

Data analysis

We used RevMan (version 5.3, Nordic Cochrane Centre, Copenhagen, Demark) to perform random effects meta-analysis using inverse variance methods for pooling risk ratios. We assumed similarity between odds ratio and other relative measures such as relative risk, rate ratios and hazard rations because cardiovascular events were rare events(32). We chose to pool adjusted results were available and crude results when adjusted results were not available. For datasets with the multiple time points were chose to pool the longest timepoint in the primary analysis. The I² statistic was used to assess statistical heterogeneity.

We performed the primary analysis considering unadjusted and adjusted results for anemic and non-anemic patients for the outcomes mortality, MACE, re-infarction and bleeding. Secondary analysis was performed considering the incremental decrease in hemoglobin and the risk of adverse outcomes. For the main anemia and risk of mortality analysis, we performed sensitivity analysis considering only studies that adjusted for baseline hemoglobin, renal impairment and severity of anemia and mortality. Further analysis was performed considering the effect of elective or ACS patients on outcomes.

Results

Study selection

The process of study selection is shown in Figure 1. A total of 44 studies were included in this meta-analysis with a total of with 230,795 participants. The number of participants ranged from 100 to 73,067 and the overall prevalence of anaemia was 26,514/170,914 (16%) and for individual studies the prevalence ranged from 3% to 41%.

Description of studies included

The study design, date of study, country of origin and indications for PCI are shown in Table 1. There were 4 post hoc analyses of randomised controlled trials, 14 prospective cohort studies, 14 retrospective cohort studies and 12 cohort studies of unclear design. There were 15 studies of patients with STEMI, 1 study of just STEMI patients and 28 studies of patients undergoing PCI.

Quality assessment

Table 2 shows the risk of bias table for the included studies. All of the studies aside for one specified that blood measurements were taken prior to PCI and the single study with unclear timing of blood sampling was presumed to be prior to PCI. A variety of methods were used to ascertain adverse outcomes after PCI. These included evaluating hospital records, interviewing patients, families, personal physicians, use of national death records and use of independent events adjudication committees. A total of 15 studies did not specify how outcomes were ascertained. The loss to follow up was reported in 18 studies and was unclear in the remaining studies. All studies reported at least one adjusted analysis except for 5 studies.

Risk of adverse outcomes with anaemia compared to no anaemia

The study definitions of anaemia, follow up and results are shown in Table 3. The risk of mortality and major adverse cardiovascular events (MACE) with anaemia compared to no anaemia was RR 2.39 (2.02-2.83) (32 studies, 134,042 participants) (Figure 2) and RR 1.51 (1.34-1.71) (20 studies, 47,552 participants) (Figure 3), respectively. The risk of re-infarction and bleeding with anaemia compared to no anaemia was RR 1.33 (1.07-1.65) (13 studies, 36,316 participants) (Figure 4) and RR 1.97 (1.03-3.77) (11 studies, 34,388 participants) (Figure 5), respectively.

Incremental decrease in haemoglobin or haematocrit and adverse outcomes

The analysis for incremental decrease in haemoglobin and haematocrit is shown in Figure 6. The risk of mortality for incremental decrease in haemoglobin (g/dl) was RR 1.19 (1.09-1.30) (7 studies, 82,208 participants) and the risk of mortality, MACE and re-infarction for incremental decrease in haematocrit (%) was RR 1.07 (1.05-1.10) (3 studies, 14,519 participants), RR 1.09 (1.08-1.10) (1 study, 6,025 participants) and RR 1.06 (1.03-1.10) (1 study, 6,025 participants), respectively.

Subgroup analysis of anaemia compared to no anaemia

Sensitivity analysis was performed considering the subgroup of studies that had used adjustments for baseline haemoglobin and renal impairment and studies which evaluated severity of anaemia (Figure 7). The pooled results of 3 studies that adjusted for baseline haemoglobin showed a significant increase in mortality (RR 1.81 (1.62-2.01)) and a significantly higher mortality were observed for studies that adjusted for renal impairment of renal function (RR 2.05 (1.69-2.49)). Kitai et al was the only study of mortality outcomes which considered severity of anaemia and they reported that mild anaemia (>10 g/dL) was associated with RR 1.86 (1.42-2.43) while moderate to severe anaemia (<10 g/dL) was associated with greater mortality (RR 3.35 (2.52-4.46)).

Further analyses considering elective cases only, ACS cases only and any PCI cases separately are shown in Supplementary Figures 1-4. After adjustments, there were significant increases in mortality for patients with anaemia in both the ACS and elective setting. However, there was only a significant increase in mortality with incremental decrease in haemoglobin in elective cases but not ACS. Similarly, anaemia was independently associated with worse MACE and bleeding outcomes in both the elective and ACS PCI setting.

Discussion

To the best of our knowledge, the present analysis is the first to systematically review the prevalence of anaemia in contemporary cohorts undergoing PCI to study its prognostic impact. Our meta-analysis of 44 studies including 230,795 patients has shown that the mean prevalence of anaemia in contemporary PCI is 16% and is independently associated with a 2fold increased risk of mortality, MACE events and major bleeding with elevation in risk with incremental decreases in haemoglobin levels. This increased risk appears to be independent of the common causes of anaemia such as chronic renal disease of bleeding events sustained peri-procedurally, and the increased risk of adverse events associated with anaemia is of similar magnitude in both the elective and ACS setting.

Previous studies have reported conflicting data regarding the association between anaemia and clinical outcomes in patients undergoing PCI, with studies reporting both an independent association with increased mortality, MACE and major bleeding complications (3,5,8-10,15-17) or no increase in risk following adjustment for differences in age, comorbidity burden and procedural demographics (9,21,22), or only associated with poorer outcomes in patients with severe anaemia but not mild or moderate anaemia (11). Other studies have suggested that post-procedural anaemia is independently associated with MACE (23).

There are a number of biological and clinical reasons why chronic anaemia may lead to worse clinical outcomes in patients undergoing PCI. Our analysis suggests that anaemia is independently associated with a two-fold increased risk of major bleeding complications, which themselves are independently associated with increased risks of peri-procedural and longer-term mortality (26). Other studies suggest that anaemia may also independently increase the risk of definite and definite or probable stent thrombosis by 250% (9), which might contribute to the increased mortality risk in this patient cohort. In support of this, an analysis of 73,067 patients from the National Cardiovascular Data Registry Acute Coronary Treatment and Intervention Outcomes Network Registry - Get With the Guidelines (ACTION-GWTG) (33) demonstrated that patients with anaemia were less likely to be prescribed dual antiplatelet therapy peri-procedurally, which might contribute to increased risks of future stent thrombosis. Furthermore, patients with haemoglobin <10 g/dl had an overall transfusion rate that was 6.5-fold higher compared with patients with haemoglobin >12 g/dl (64.2% vs 9.9%, p <0.0001). A previous meta-analysis has suggested that the receipt of a blood transfusion in the PCI setting is independently associated with a 3-fold increase in mortality and MACE, and this risk persists even in the absence of major bleeding events (34). Similarly, other studies have also reported that patients with anaemia do not receive optimal antiplatelet therapy post PCI (3) although Pilgrim et al. report that the presence of anaemia did not influence the choice of peri-procedural antithrombotic or antiplatelet regime at the

time of hospital discharge post PCI (9). Finally anaemia may merely be a marker of a greater co-morbid in frailer patients, and the statistical models may have been affected by incomplete adjustments for confounders such as co-morbid burden or frailty. Our previous work has shown that co-morbidity burden is significant in patients undergoing PCI and is independently associated with adverse shorter and longer-term clinical outcomes (35).

Whilst our meta-analysis highlights the independent association between the presence of anaemia and adverse clinical outcomes in the PCI setting, there are no current recommended guidelines for the treatment of anaemia, with no clarity as to whether there is a threshold level of anaemia at which treatment should be considered. Previous reports derived from the National Cardiovascular Data Registry dataset of transfusion practice nationally in the PCI setting have reported significant variations in the prevalence of transfusion events in hospitals across the United States, with significant differences in haemoglobin threshold that prompts transfusion(36). Furthermore, randomised trials have yielded conflicting data regarding optimal treatment of anaemia in ACS and PCI settings, for example, in the CRIT (conservative versus liberal red cell transfusion in acute myocardial infarction) randomized pilot trial, 45 patients with myocardial infarction and anaemia were randomized to either a liberal transfusion arm or a conservative arm, with worse outcomes reported in patients assigned to the liberal transfusion arm (composite endpoint of in-hospital mortality, reinfarction or heart failure (38% vs13%; p = 0.046). In contrast, in the MINT pilot study in patients presenting with anaemia undergoing cardiac catheterization, patients randomized to a liberal blood transfusion strategy had lower rates of death, myocardial infarction, and unscheduled revascularization (10.9%) compared to those patients randomized to a restrictive transfusion strategy (25.5%), with lower 30-day mortality (1.8%) compared with restrictive transfusion patients (13.0%) (p = 0.032)(37).

Our analysis has several limitations. Although our meta-analysis suggests a dose dependent association between the presence of anaemia and adverse clinical outcomes in PCI, it cannot confer a causal relationship. Whilst the papers included in this analysis have adjusted for differences in clinical and procedural characteristics, renal function and comorbidity, we cannot rule out unmeasured confounders such as frailty or chronic disease that are not fully captured by statistical models that may themselves contribute to the poorer outcomes observed. Whilst blood sampling in the majority of the studies included in this meta-analysis was undertaken prior to the PCI procedure, a small number of studies included in the analysis was unclear, although exclusion of these studies did not significantly alter the relationships reported (mortality with anaemia RR 2.39 (2.00-2.85), MACE with anaemia RR 1.55 (1.38-1.75)). Finally, our analysis does not provide insight as to whether different aetiologies of anaemia have a differential relationship with clinical outcomes.

In conclusion, our meta-analysis of 44 studies including 230,795 patients has shown that the prevalence of anaemia in contemporary PCI is significant and reported at 16% and is independently associated with a 2-foldincreased risk of mortality, MACE events and major bleeding with incremental increases in risk with decreases in haemoglobin levels. This increased risk appears to be independent of the common causes of anaemia such as chronic renal disease or major bleeding events sustained peri-procedurally, and the increased risk of adverse events associated with anaemia is of similar magnitude irrespective of whether the PCI was undertaken in the elective or ACS setting. Our data support the need for a larger definitive trial to define the optimal treatment strategies for patients with anaemia undergoing PCI.

Table 1: Study design and participant characteristics

Study ID	Date/Year	Design	Country	No. of centers	Total no. of	Participants
					participants, no.	
					anaemic (%	
					anaemic)	
Akgul 2013	Dec 2010 to May	Prospective observational	Turkey.	Single	520, 64 (12%)	Participants had PPCI for STEMI.
	2012.	study.			anemic.	
Ali 2004	Jul 2002 to May	Prospective observational	USA.	Unclear.	11,991, 4,815 (40%)	Participants who underwent PCI with bivalirudin.
	2010	study.			anemic.	
Ayhan 2011	Unclear.	Retrospective cohort	Turkey.	Single.	2,509, 616 (25%)	Participants had PPCI for STEMI.
		study.			anemic.	
Bolinska 2011	May to Dec 2005.	Retrospective cohort	Poland.	Single.	551, 61 (11%)	Participants had PPCI for STEMI.
		study.			anemic.	
Catakoglu 2007	Oct 2001 to June	Prospective cohort study.	Turkey.	Single.	100, 31 (31%)	Participants had non-urgent elective PCI.
	2002.				anemic.	
Chi 2012	Unclear.	Cohort study.	China.	Unclear.	1014, 253 (25%)	Participants were ACS patients age ≥60 years who
					anemic.	underwent PCI.
Cho 2011a	Nov 2005 to Jun	Retrospective cohort	South Korea.	Single.	739, 152 (21%)	Participants with STEMI who underwent PPCI.
	2009.	study.			anemic.	
Cho 2011b	Mar 2006 to Dec	Prospective cohort study.	South Korea.	Unclear.	2,849, 679 (24%)	Participants were patients with drug eluting stents.
	2009				anemic.	

Dada 2009	Unclear.	Cohort study.	USA.	Unclear.	6,538, 2,159 (33%)	Participants with PCI.
					anemic.	
Dunbar 2012	Jan 2006 to Apr	Retrospective cohort	Turkey.	Single center.	1,625, 395 (24%)	Participants with acute STEMI and PPCI.
	2008.	study.			anemic.	
Feldman 2009	2004 to 2005.	Cohort study.	USA.	Single.	2,504, 709 (28%)	Participants were in the 2004/2005 Cornell Angioplasty
					anemic.	Registry who underwent urgent or elective PCI.
Greenberg	Jan 2001 to Dec	Prospective cohort study.	Israel.	Single.	1,042, 208 (20%)	Participants had STEMI who underwent PPCI.
2010	2007.				anemic.	
Gurm 2004	Unclear.	Post hoc analysis of RCT.	USA.	Multicenter.	6,322, 638 (10%)	Participants were randomized to EPIC, EPILOG and EPI
					anemic.	stent trials who underwent PCI.
Hanna 2013	Jan 2007 to Dec	Cohort study.	USA.	354 centers.	73,067, 2,417 (3%)	Participants were in the ACTION-GWTG registry with
	2009.				anemic.	NSTEMI.
Hosseini 2014	Apr 2005 to Sept	Cohort study.	Iran.	Single.	2,819, 493 (17%)	Participants had elective PCI with preprocedural
	2008				anemic.	hemoglobin measured within 7 days prior to PCI.
Husemann	Jan 2001 to Dec	Retrospective cohort	Germany.	Single.	709, 128 (18%)	Participants were treated with PCI.
2007	2001.	study.			anemic.	
Jones 2010	Jan 2004 to Mar	Prospective cohort study.	UK.	Single.	1657, 331 (20%)	Participants with STEMI who underwent PPCI at a
	2009.				anemic.	London centre.
Kim 2012	Jan 2004 to Dec	Retrospective cohort	South Korea.	Single.	3,549, 1,321 (37%)	Participants received PCI with drug eluting stent in the
	2009.	study.			anemic.	CathOlic university of Korea percutAneous Coronary
						inTervention registry.

Kitai 2013	Jan 2005 to Dec	Retrospective cohort	Japan.	26 centers.	7,299, 2,209 (30%)	Participants were in the CREDO-Kyoto registry cohort-2
	2007.	study.			anemic.	who underwent first elective PCI.
Kruk 2010	Feb 2001 to Dec	Prospective cohort study.	Poland.	Unclear.	1880, 385 (20%)	Participants had STEMI in a prospective registry.
	2004.				anemic.	
Kurek 2010	Sept 2004 to Dec	Prospective cohort study.	Poland.	Single center.	1,497, 248 (17%)	Patients with AMI treated in the acute phase with PCI.
	2007.				anemic.	
Liu 2008	Jul 2003 to Sept	Cohort study.	China.	Single.	3,809, 744 (20%)	Participants were in the DESIRE-2 revascularization
	2005.				anemic.	registry.
Liu 2009	Unclear.	Cohort study.	Unclear.	Unclear.	3770.	Participants underwent PCI.
Maluenda 2009	2003 to 2007	Retrospective cohort	USA.	Single.	6,025, 210 (3%)	Participants who underwent PCI.
		study.			anemic.	
Manzano-	Unclear.	Cohort study.	Spain.	2 centers.	278, 114 (41%)	Participants with AF and indication for oral
Fernandez 2008					anemic.	anticoagulation who underwent PCI.
McKechnie	July 1997 to May	Prospective cohort study.	USA.	18 hospitals.	48,851.	Participants underwent PCI in the Blue Cross Blue Shield
2004	2003.					of Michigan Cardiovascular Consortium.
Nikolsky 2004a	Unclear.	Post hoc analysis of RCT.	International.	Multicenter.	2,027, 260 (13%)	Participants had AMI who underwent PPCI in
					anemic.	CADILLAC trial.
Nikolsky	1994 to 1999	Prospective cohort study.	USA.	Single.	6,929, 1,708 (25%)	Participants had elective PCI.
2004b					anemic.	
Oduncu 2013	Unclear.	Cohort study.	Turkey.	Single.	2,411, 623 (26%)	Participants with STEMI who underwent PPCI.
					anemic.	

Ozasa 2012	2005 to 2007	Retrospective cohort	Japan.	Unclear.	5,336, 1,788 (34%)	Participants were in the CRED-Kyoto PCI/CABG
		study.			anemic.	Registry Cohort-2 who underwent PCI with drug eluting
						stent.
Park 2012	2004 to 2010.	Cohort study.	South Korea.	Unclear.	881, 349 (40%)	Participants had acute MI treated with PCI.
					anemic.	
Poludasu 2009	Jan 2003 to Aug	Retrospective cohort	USA.	Unclear.	715.	Participants were African-Americans from a bolus-only
	2005.	study.				glycoprotein IIb/IIIa database.
Rathod 2014	Jan 2004 to Aug	Retrospective cohort	UK.	Single.	2,178, 419 (19%)	Participants had STEMI who underwent PPCI.
	2010.	study.			anemic.	
Reinecke 2003	1998 to 1999	Retrospective cohort	Germany.	Single.	689.	Participants were male who underwent elective PCI.
		study.				
Rodriguez 2013	2007 to 2011.	Prospective cohort study.	Spain.	Single.	759, 226 (30%)	Participants underwent PCI.
					anemic.	
Schroder 2013	2004 to 2006.	Retrospective cohort	Germany.	Unclear.	2,056.	Participants were ≥75 years who underwent PCI with
		study.				stent implantation.
Sgura 2010	2002 to 2008.	Cohort study.	Italy.	Single.	673.	Participants had STEMI who underwent PCI.
Shishehbor	Mar 2003 to June	Prospective cohort study.	USA.	Single.	2,172.	Participants underwent PCI who received drug eluting or
2009	2007.					bare metal stent.
Tsujita 2010	Unclear.	Post hoc analysis of RCT.	International.	Multicenter.	3,153, 331 (10%)	Participants were in HORIZONS-AMI trial who
					anemic.	underwent PCI and had STEMI.
Uchida 2013	Unclear.	Cohort study.	Japan.	Unclear.	337, 59 (18%)	Participants had STEMI who underwent PCI.

					anemic.	
Varma 2010	Apr 2003 to Dec	Retrospective cohort	USA.	Unclear.	120.	Participants with PCI.
	2005.	study.				
Vis 2010	Jan 1997 to Mar 2005.	Prospective cohort study.	Netherlands.	Single.	292.	Participants had STEMI and underwent PPCI.
Voeltz 2007	Unclear.	Post hoc analysis of RCT.	International.	Multicenter.	6,010, 1,371 (23%) anemic.	Participants were in REPLACE-2 trial who underwent PCI.
Vrslovic 2012	Unclear.	Prospective cohort study.	Croatia.	Single.	543.	Participants had STEMI who underwent PPCI.

PPCI=primary percutaneous coronary intervention, PCI=percutaneous coronary intervention, STEMI=ST elevated myocardial infarction, RCT=randomized controlled trial.

Table 2: Risk of bias table

Study ID	Ascertainment of anaemia	Ascertainment of outcome and	Lost to follow up	Adjustments for confounding
	and timing of assessment	frequency of follow up		
Akgul 2013	Pre-PCI anaemia from	Hospital records or interviewing	25 patients were	Adjusted but for unclear variables, backward stepwise Cox regression
	blood sampling.	(directly of by telephone) patients,	excluded, 5 for missing	analysis with variables with P<0.1.
		families or personal physicians.	data.	
Ali 2004	Blood sampling with	In-hospital complications ascertained	27 in-patient deaths	Adjusted for age, gender, BMI, body surface area, race, indication,
	measured before PCI and	daily by trained research staff. All-	were excluded.	hypertension, diabetes, hyperlipidaemia, peripheral vascular disease,
	6 and 12 hours after PCI.	cause mortality from National Social		heart failure, coronary artery disease, chronic kidney disease, end stage
		Security Death Index and New York		renal disease, glycoprotein IIb/IIIa inhibitor use, discharge medications,
		State interventional database by		LVEF, baseline Hb, target coronary artery, number of coronary vessels
		matching patients social security		narrowed, stents and PCI successful.
		numbers to death index records.		
Ayhan 2011	Blood sampling before	Hospital records or by interviewing	Lost to follow up for 46	Adjusted but for unclear variables. Backward stepwise multivariate
	PCI.	(directly or by telephone) patients, their	patients.	Cox regression analysis was used.
		families, or their personal physicians.		
Bolinska 2011	Blood sampling on	Retrospective review of medical	Unclear.	Adjusted for age, systolic blood pressure, Hb on admission and white
	admission.	records.		blood count on admission.
Catakoglu 2007	Blood sampling was 1-3	Endpoints were adjudicated by an	Unclear.	Adjusted for age, sex, diabetes, hypertension, smoking, LDL
	days before procedure and	independent clinical-events committee.		cholesterol, GFR, previous PCI and previous CABG.
	retrieved from computer			

	database.			
Chi 2012	Pre-procedure blood sampling.	Unclear.	Unclear.	Adjusted but for unclear variables.
Cho 2011a	Blood sampling before	Data from Korean acute MI registry.	9 patients were lost to	Crude results only for anaemia and outcomes.
	PCI.	Follow up to 6 months.	follow up.	
Cho 2011b	Pre-procedure blood	Unclear ascertainment of outcomes.	Unclear.	Adjusted for baseline clinical and procedural characteristics but unclear
	sampling.	Median follow up of 2.2 years.		variables.
Dada 2009	Blood sampling before	Unclear outcome ascertainment and	Unclear.	Propensity score matched analysis likely with adjustments for age,
	PCI.	follow up to 9 months.		diabetes, hypertension, hyperlipidaemia, renal insufficiency, prior
				history of PCI or previous CABG surgery.
Dunbar 2012	Baseline haemogram and	Unclear outcome ascertainment.	Unclear.	Adjusted for age, sex, diabetes, hypertension, dyslipidaemia, smoking,
	biochemical tests were			history of COPD, cardiogenic shock, history of ACEI/ARB use,
	elicited from files and			GFR<60, history of dialysis, anterior infarct location, stent and
	computer records in			tirofiban use, ST segment resolution<70%, LVEF, inotropic drug use
	hospital. Unclear timing			and blood transfusion.
	of sampling.			
Feldman 2009	Blood sampling with	Mortality at mean follow up of 24.8	Unclear.	Adjusted but for unclear variables.
	unclear timing of	months. Unclear method of		
	sampling.	ascertainment.		
Greenberg 2010	Blood sampling at	Hospital charts and standardized	At 12 months 100%	Model included age, gender, diabetes, renal insufficiency, hypertension,
	baseline.	questionnaire completed by telephone	mortality data and 94%	smoking, previous stroke, white blood cell, peak creatinine kinase and

		or outpatient visit up to 12 months.	revascularization and	multivessel disease.
			re-infarction data.	
Gurm 2004	Blood sampling before	Mortality and MI up to 3 years. Unclear	86 patients did not have	Model with interactions between variables with significant interactions
	PCI.	method of ascertainment.	preprocedural	terms incorporated into the model p value <0.05 but unclear which
			hematocrit.	variables.
Hanna 2013	Initial admission blood	Outcomes captured in the ACTION-	579 patients were	Adjusted for age, gender, race, weight, medical history of diabetes,
	sampling.	GWTG database.	missing hemoglobin	previous peripheral arterial disease, hypertension, current or recent
			values.	smoking, previous PCI, previous CABG, previous MI, previous heart
				failure, previous stroke, insurance status, home medications, systolic
				blood pressure, heart rate, heart failure or shock on admission, ECG
				findings, troponin and serum creatinine.
Hosseini 2014	Preprocedural blood	Patients were followed up by trained	90% of patients	Adjusted for age, smoking, hypertension, diabetes, creatinine clearance
	sampling.	general practitioner or interventional	completed 12 months	and renal failure.
		cardiology fellow in clinic or through	follow up.	
		phone call by trained physician or		
		research nurse.		
Husemann 2007	Blood sampling before	Follow up with telephone calls with	61 patients had missing	Adjusted for covariates which were found to have a p-value <0.1 in
	procedure.	patients, relatives or referring	baseline hemoglobin or	univariate analyses of mortality but unclear which variables.
		physicians. If not possible then	creatinine levels.	
		questionnaire sent by mail.	Follow up 100%	
			complete for these	

			patients.	
Jones 2010	Baseline blood sampling.	Mortality was ascertained by information from the Office of National Statistics.	Unclear.	Adjusted for unclear variables.
Kim 2012	Initial and follow up	Patients were required to visit the	129 patients were	Propensity matched cohort with likely inclusion of age, sex, BMI, Hb,
KIIII 2012	_	-	-	
	blood sampling.	outpatient clinic at 1st month and every	excluded who had	GFR<60, LVEF, diabetes, hypertension, hypercholesterolemia, current
		3 months after PCI for outcomes up to a	MACE within 3 months	smoking, history of MI, PCI, CABG, cerebrovascular disease, family
		median of 25.4 months.	for the change in	history of coronary artery disease, initial diagnosis, multivessel disease
			anaemia analysis.	and ACC/AHA B2/C lesions.
Kitai 2013	Blood sampling at	Follow-up data from hospital charts or	96.9% patients had 1	Adjusted for age, male, BMI, hypertension, diabetes, current smoking,
	baseline.	by contacting patients or referring	year follow up.	heart failure, multivessel disease, mitral regurgitation grade 3/4, LVEF,
		physicians. Events adjudicated by		prior MI, prior stroke, peripheral vascular disease, eGFR, atrial
		clinical events committee.		fibrillation, platelet <100x10^9/L, COPD, liver cirrhosis, malignancy,
				number of target lesions, target proximal LAD, unprotected LMCA,
				CTO, bifurcation, total stents, stent length, minimum stent size, drug
				eluting stent, antiplatelet therapy and other medications.
Kruk 2010	Blood sampling on	Outcomes from hospital charts for	Unclear.	Adjusted for sex, age, Killip class >1, prior coronary disease, smoking,
	admission prior to	death and heart failure.		TIMI flow, multivessel disease, systolic blood pressure, heart rate,
	coronary procedure.			white cell count, hyperglycaemia and serum creatinine.
Kurek 2010	Blood sampling just after	MACE and death from computerized	Unclear.	Adjusted for diabetes, incomplete revascularization, multivessel
	admission before transfer	database and long-term outcomes from		disease, impaired renal function, advance age and left ventricular

	to catheter laboratory.	a database of the National Fund of		dysfunction.
		Health.		
Liu 2008	Pre-PCI blood sampling.	Unclear.	Unclear.	Adjusted for comorbidities but unclear variables.
Liu 2009	Pre-PCI blood sample.	Unclear.	Unclear.	Unclear.
Maluenda 2009	Blood sampling before	Independent research personnel	Unclear.	Unadjusted for haematocrit analysis.
	and after PCI.	conducted follow up via telephone or		
		office visits. All clinical events		
		adjudicated by independent physicians.		
Manzano-	Blood sampling at	Unclear.	Unclear.	Adjusted but for unclear variables.
Fernandez 2008	baseline.			
McKechnie 2004	Preprocedural blood	Outcome data collected prospective	Missing or implausible	Adjusted for unclear variables. Variables with p<0.2 in univariate
	sampling.	from standardized form.	hemoglobin for 3,686	analysis were included in stepwise regression for each outcome.
			cases.	
Nikolsky 2004a	Blood sampling at initial	Clinical follow up at 30 days, 6 months,	Unclear.	Adjusted but for unclear variables.
	presentation.	1 year and all events were adjudicated		
		by independent clinical events		
		committee.		
Nikolsky 2004b	Blood samplings before	Telephone interviews for out of hospital	1 year follow up	Adjusted for age, gender, BMI, angina class III or IV, diabetes mellitus,
	PCI and after PCI.	outcomes at 12 months.	available for 89% of	history of peripheral arterial disease, angiographic characteristics,
			patient with anaemia	creatinine clearance and anaemia.
			versus 90.2% who did	

			not have anaemia.	
Oduncu 2013	Blood sampling on admission.	Unclear method of ascertainment follow up up to 48 months.	Unclear.	Adjusted but for unclear variables.
Ozasa 2012	Unclear timing of blood	Unclear.	Unclear.	Adjusted for unclear variables.
Park 2012	sampling. Blood sampling at	Unclear followed up for up to 2 years.	Unclear.	Adjusted for unclear variables.
Poludasu 2009	baseline. Blood sampling at	Social Security Death Index for death.	131 patients did not	Adjusted for unclear variables.
	baseline.		have valid Social Security number.	
Rathod 2014	Blood sampling at	In-hospital events were recorded	240 patients excluded	Propensity score matched for age, sex, diabetes, hypertension,
	baseline.	prospectively. Long term data from British Cardiovascular Intervention	because of incomplete data sets.	hypercholesterolaemia, previous CABG, previous PCI, previous MI, multivessel disease, eGFR, ejection fraction, glycoprotein IIb/IIIa
		Society database.		inhibitor.
Reinecke 2003	Blood sampling 1 to 3	Follow up with questionnaire sent to all	11 patients had no	Adjusted for number of diseased vessels, smoking, creatinine, stent
	days before the procedure.	patients or telephone call with patients,	baseline hemoglobin	implantation, age, family history of cardiovascular disease, diabetes.
		relatives or referring physicians.	and were excluded.	
Rodriguez 2013	Blood sampling on	Unclear outcome ascertainment with	None.	Adjusted for unclear variables.
	admission.	mean follow up of 26.5 months.		

Schroder 2013	Blood sampling at time of	Follow-up questionnaire or telephone	Unclear.	Adjusted for age, gender, Hb, serum CRP, serum LDL, and serum
	hospital admission.	interview with patient or relative,		creatinine levels, and LVEF).
		contact patient's physician or registry		
		office.		
Sgura 2010	Blood sampling on	Unclear but follow up was 30 months.	Unclear.	Crude results.
	admission.			
Shishehbor 2009	Blood sample pre-PCI.	Mortality from Social Security Death	Unclear.	Adjusted for age, gender, socioeconomic class, BMI, heart rate, LVEF,
		Index at a median of 1.8 year follow up.		malignancy, depression, diabetes, family history, current smoking,
				blood markers, medical history, NYHA functional class, medications,
				type of anaemia, angiographic data, lesion location, procedural data.
Tsujita 2010	Blood sampling at initial	All events were adjudicated by an	Unclear.	Adjusted for age, gender, race, hypertension, hyperlipidaemia,
	presentation.	independent clinical events committee		smoking, diabetes mellitus, peripheral vascular disease, congestive
		blinded to treatment assignment.		heart failure, angina, PCI, MI, CABG, Killip class, BMI, anaemia,
				platelet count, white blood count, creatinine clearance <60 ml/min,
				LAD coronary artery infarct vessel, reference vessel diameter, target
				lesion length, LVEF, index hospitalization, duration from symptom
				onset to first balloon inflation, antithrombotic randomization,
				clopidogrel loading dose, randomization to paclitaxel-eluting stent vs
				bare-metal stent, number of stents, use of heparin before randomization

				and final TIMI flow grade 3.
Uchida 2013	Baseline blood sampling.	Unclear outcome ascertainment and	Unclear.	Adjusted but for unclear variables.
		follow up.		
Varma 2010	Blood was sampled 72	Mortality from Social Security database	Unclear.	Unadjusted.
	hours preintervention.	and hospital computer database with		
		follow up of median 30 months.		
Vis 2010	Admission blood sample.	Data from questionnaire, review of	165 patients had	Adjusted for glucose, Hb and CrCl on admission, LVEF<40%, age, sex,
		outpatient reports, general practitioners	missing data.	TIMI flow less than 3, the presence of multivessel disease, ischemic
		were contacted by phone or municipal		and door-to-balloon times and the presence of diabetes on admission.
		death registry were consulted.		
Voeltz 2007	Blood sampling at	End points determined by blinded	Unclear.	Adjusted for unclear variables.
	baseline.	clinical events committee.		
Vrsalovic 2012	Blood sampling on	30 day outcomes based on medical	Unclear.	Adjust for PAMI risk score, gender, peak creatinine kinase value,
	admission.	documentation, telephone interviews		admission troponin T, baseline serum creatinine, platelet count, time to
		with the patient, their family members		treatment, initial and final TIMI flows, LVEF, in hospital medications,
		or home physicians.		multivessel disease, CRP and mean platelet volume.

PCI= percutaneous coronary intervention, BMI=body mass index, Hb=haemoglobin, LDL=low density lipids, GFR=glomerular filtration rate, CABG=coronary artery bypass graft,

MI=myocardial infarction, LVEF=left ventricular ejection fraction.

Table 3: Study results

Study ID	Definition of	Outcomes and	No. of events in anemic group	No. of events in non-anemic	Results
	anaemia/hemoglobin/	timepoint of follow up		group	
	hematocrit groups				
Akgul 2013	Anaemia defined by Hb	6 month cardiovascular	Unclear. 64 anemic patients.	Unclear. 456 non-anemic	6 month cardiovascular mortality:
	<13 mg/dl in men and <12	mortality.		patients.	Multivariate OR: 3.9 (1.52-10.2).
	mg/dl in women.				
Ali 2004	Anaemia defined as Hb	Median follow up of	Major bleed 159/4,815.	Major bleed 51/7,176.	Long term (median 2.6 years)
	<13 g/dl in men, <12 g/dl	2.6 years for mortality.			mortality with anaemia: multivariate
	in women. Bloods before				OR: 1.8 (1.6-2.0). In-hospital major
	PCI, 6 and 12 hours post				bleeding and anaemia: multivariate
	PCI.				OR: 3.3 (2.3-4.6).
Ayhan 2011	Anaemia defined by Hb	In-hospital: mortality,	Crude events in-hospital:	Crude events in-hospital:	Long term cardiovascular mortality
	<13 g/dl for men and <12	re-infarction, MACE	mortality 31/616, re-infarction	mortality 35/1893, re-	with anaemia: multivariate OR 2.2
	g/dl for women.	(cardiac death, re-	14/616, MACE 61/616, major	infarction 36/1893, MACE	(1.2-4.0).
		infarction, target vessel	bleeding requiring transfusion	104/1893, major bleeding	
		revascularization),	65/616. Long term cardiac	requiring transfusion 27/1893.	
		major bleeding	events: 56/574, re-infarction	Long term cardiac events:	
		requiring transfusion.	47/574, MACE 157/574.	72/1823, re-infarction	
		Long term		175/1823, MACE 430/1823.	
		cardiovascular			

		mortality, re-infarction			
		and MACE.			
Bolinska 2011	Anaemia defined by Hb,	In-hospital death and	In-hospital death: 5/61. CV	In-hospital death: 3/490. CV	Risk factor for death or
	<12 g/dl for women and	cardiovascular events.	complications 20/61 (33%).	complications: 83/490 (17%).	cardiovascular complication:
	<13 g/dl for men.				multivariate Hb on admission OR
					0.89 (0.754-1.051).
Catakoglu 2007	Anaemia defined by	Nonfatal coronary	Non-fatal coronary events:	Non-fatal coronary events:	Nonfatal coronary events with
	hematocrit <39% for men	events (MI, CABG or	23/31.	26/69.	anaemia: multivariate OR 2.507
	and <36% for women.	repeat PCI) during 1			(1.379-4.555).
		year follow up.			
Chi 2012	Anaemia defined by Hb	Long term mortality at	Unclear.	Unclear.	Long term mortality with anaemia:
	<130 g/l in men, <120 g/l	follow up of 528 days.			RR 3.293 (1.431-7.578).
	in women.				
Cho 2011a	Anaemia defined by Hb	Death or MACE at 1	1 month: MACE 22/182,	1 month: MACE 29/557,	See crude results.
	<13 mg/dl in men and <12	month and 6 months.	death 16/182. 6 months:	death 17/557. 6 months:	
	mg/dl in women.		MACE 43/182, death 23/182.	MACE 76/557, death 22/557.	
Cho 2011b	Anaemia defined by Hb	Mortality and MACE at	Mortality: 34/679. MACE	Mortality: 39/2170. MACE:	Anaemia and risk of mortality:
	<12 g/dl for women, <13	2 years.	44/679.	52/2170.	multivariate HR 1.52 (0.90-2.56).
	g/dl for men.				Anaemia and risk of MACE:
					multivariate HR 1.78 (1.14-2.78).
Dada 2009	Anaemia defined by Hb	In-hospital and 9 month	Unclear.	Unclear.	Anaemia and in-hospital mortality:

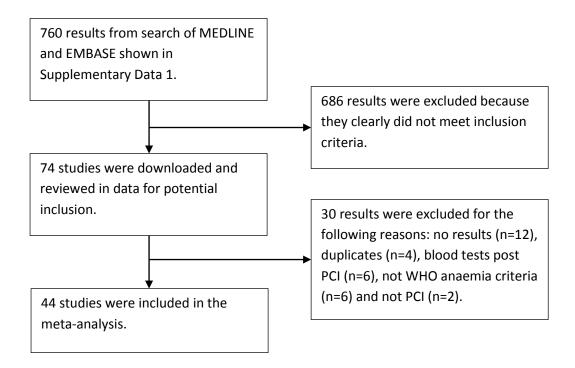
	<13 g/dl for men and <12	mortality.			propensity matched OR 2.87 (1.58-
	g/dl for women.				6.23). Anaemia and 9 month
					mortality: propensity matched OR
					1.46 (1.07-1.99).
Dunbar 2012	Not WHO criteria.	In-hospital events:	Unclear.	Unclear.	Adjusted risk of in-hospital mortality
		mortality, re-infarction,			per 1 g/dl decrease: OR 1.28 (1.01-
		congestive heart failure,			1.63).
		TIMI major bleeding.			
Feldman 2009	Anaemia defined by Hb	In-hospital: death MI,	Anemic and bleed total 53. In-	Not anemic and bleed total	See crude results.
	≤12 g/dl. Post-PCI bleed	MACE. 1 year death.	hospital death 3/53 (5.7%),	290. In-hospital death 0/290	
	defined yb drop in Hb ≥ 2	Death followed up for	MI 7/53 (13.2%), MACE 9/53	(0%), MI 38/290 (12.4%),	
	g/dl.	mean of 24.8 months.	(17.0%). 1 year death 8/53	MACE 38/290 (13.1%). 1	
			(15.1%). Long term death	year death 13/290 (4.5%).	
			13/53 (24.5%). Anemic and	Long term death: 16/290	
			no bleed total 656. In-hospital	(5.5%). Not anemic and no	
			death 2/656 (0.3%), MI	bleed total 1505. In-hospital	
			40/656 (6.1%), MACE 42/656	death 2/1505 (0.1%), MI	
			(6.4%). 1 year death 30/656	99/1505 (6.6%), MACE	
			(4.6%). Long term death	101/1505 (6.7%). 1 year death	
			53/656 (8.1%).	26/1505 (1.7%). Long term	
				death: 47/1505 (3.1%).	

Greenberg 2010	3 groups: Anemic <36%	Mortality, re-infarction,	1 month: mortality 15/208, re-	1 month: mortality 22/834, re-	Anaemia and 1 month mortality: OR
	women, <39% men,	MACE up to 12	infarction 16/208. 6 month	infarction 19/834. 6 month	3.5 (1.6-7.5).
	Normal 36-46 women, 39-	months.	mortality 19/208, re-infarction	mortality 37/834, re-	
	47% men, Erythrocytosis		23/208. 12 month mortality	infarction 34/834. 12 month	
	>46% women, >47% men.		15/208, re-infarction 27/208,	mortality 52/834, re-	
			MACE: 65/208.	infarction 49/834, MACE:	
				181/834.	
Gurm 2004	Continuous hematocrit.	30 day and 6 month	Unclear.	Unclear.	Continuous hematocrit and 3 year
		MI/mortality. 3 year			mortality: multivariate HR 0.953
		mortality.			(0.930-0.977).
Hanna 2013	Not WHO criteria.	In-hospital death.	Unclear.	Unclear.	Death per 1 g/dl decrease in
					hemoglobin <15 g/dl: multivariate
					OR 1.07 (1.02-1.11)
Hosseini 2014	Anaemia defined by Hb	In-hospital MACE, MI,	In-hospital: 2/493 MACE,	In-hospital: 11/2326 MACE,	Adjusted risk of 12 month MACE:
	>12 g/dl for women, >13	death.	1/493 MI, 0/493 death. 12	8/2326 MI, 2/2326 death. 12	mild anaemia HR 1.249 (0.652-
	g/dl for men.		month: 24/493 MACE,	month: 71/2326 MACE,	2.390), moderate anaemia HR 1.462
			11/493 MI, 4/493 death.	20/2326 MI, 13/2326 death.	(0.584-3.660), severe anaemia HR
					4.623 (1.642-13.021).
Husemann 2007	Continuous Hb.	In-hospital and long	Unclear.	Unclear.	Multivariate hazard ratio for mortality
		term mortality and MI.			per unit increase in hemoglobin
					concentration: HR 0.711 (0.616-

					0.819).
Jones 2010	Anaemia defined by <12	Mortality at 3 years.	Mortality at 3 years: 64/331.	Mortality at 3 years:	Anaemia and mortality at 3 years:
	g/dl for women and <13			166/1326.	multivariate OR 2.4 (1.1-3.7).
	g/dl for men.				
Kim 2012	Anaemia defined by Hb	MACE, MI, death at	Unclear.	Unclear.	Anaemia and MACE (death, MI,
	<12 g/dl in women and <13	median follow up of			stroke): multivariate HR 1.479
	g/dl in men. Also grouped	25.4 months.			(1.025-2.134). Anaemia and death:
	as sustained or improved				multivariate HR 1.943 (1.241-3.043).
	anaemia at 3 months.				Anaemia and MI: multivariate HR
					1.182 (0.476-2.936).
Kitai 2013	Anaemia defined by Hb	3 years MACE, death,	3 years: MACE 466/2206,	3 years: MACE 348/5093,	Mild anaemia and moderate to severe
	<12.0 g/dl for women,	MI.	death 274/2206, MI 77/2206.	death 150/5093, MI	anaemia: MACE HR 1.77 (1.47-
	<13.0 g/dl for men.			112/5093.	2.15), HR 2.53 (2.03-3.14), death HR
					1.86 (1.42-2.42), HR 3.35 (2.52-
					4.47), MI HR 1.14 (0.74-1.75), HR
					1.87 (1.13-3.09).
Kruk 2010	Anaemia defined by	In-hospital death and	Unclear.	Unclear.	Anaemia and death: HR 2.03 (1.19-
	hematocrit <39% for men	heart failure.			3.46). Anaemia and heart failure: HR
	and <36% for women.				1.09 (0.79-1.51). Anaemia and death
					and heart failure: HR 1.34 (0.98-
					1.82). Anaemia and bleeding: HR

					1.67 (1.12-2.45).
Kurek 2010	Anaemia defined by Hb <13 g/dl for men and <12 g/dl for women.	MACE and death mean follow up of 18.5 months.	Unclear.	Unclear.	Anaemia and in-hospital death: multivariate HR 1.30 (1.09-1.21). Anaemia and 30 day death: multivariate HR 1.19 (0.98-1.40). Anaemia and 1 year death: 1.31 (1.14-1.48). Anaemia and long term
					mortality: multivariate HR 1.45 (1.29- 1.61). MACE 30 days: multivariate HR 1.35 (1.17-1.53). MACE 1 year: multivariate HR 1.14 (1.03-1.25).
Liu 2008	Anaemia defined by <120 g/l in women, <130 g/l in men.	Mortality and MACE (nonfatal MI, stroke and revascularization).	Mortality: 35/744 (4.7%). MACE: 104/744 (14.0%).	Mortality: 46/3065 (1.5%). MACE: 331/3065 (10.8%).	Anaemia and mortality: multivariate RR 2.216 (1.019-4.428)
Liu 2009	Continuous Hb.	Mortality with unclear follow up.	Unclear.	Unclear.	Hemoglobin and long term mortality: HR 0.952 (0.921-0.984).
Maluenda 2009	Continuous hematocrit.	1 year mortality or nonfatal MI.	Unclear.	Unclear.	Unadjusted baseline hematocrit and 1 year outcome: death HR 0.92 (0.91- 0.93), MI HR 0.94 (0.91-0.97), death or MI HR 0.92 (0.91-0.93).
Manzano-	Anaemia defined by Hb	Major bleeding with	Major bleed: 23/114 (20%).	Major bleed: 18/164 (10.7%).	Anaemia and major bleed:

Fernandez 2008	<12.0 g/dl for women and	median follow up 19.2			multivariate HR 2.15 (1.08-4.30).
	<13/0 g/dl for men.	months.			
McKechnie	Anaemia defined by Hb	In-hospital MACE,	Unclear.	Unclear.	Multivariate anaemia and in-hospital
2004	<12.0 g/dl in women and	mortality and MI.			mortality: OR 2.29 (1.79-2.92).
	<13.0 g/dl in men.				Multivariate anaemia and in-hospital
					MACE: OR 1.2 (1.05-1.34).
					Decreasing hemoglobin and in-
					hospital mortality: men adjusted OR
					1.21 (1.14-1.28), women adjusted OR
					1.05 (0.97-1.14).
Nikolsky 2004a	Anaemia defined by	Follow up 30 days, 6	Mortality: in-hospital 12/260	Mortality: in-hospital	Baseline anaemia and in-hospital
	hematocrit <39% for men	months and 1 year.	(4.6%), 30 day 15/260 (5.8%),	19/1,767 (1.1%), 30 day	mortality: multivariate HR 3.26 (1.01-
	and <36% for women.		1 year 27/260 (10.2%).	27/1,767 (1.5%), 1 year	10.52). Baseline anaemia and 1 year
			Cardiac mortality: in-hospital	62/1,767 (3.5%). Cardiac	mortality: multivariate HR 2.38 (1.18-
			6/260 (2.4%), 30 day	mortality: in-hospital	4.81).
			mortality 7/260 (2.8%), 1 year	18/1,767 (1.0%), 30 day	
			mortality 16/260 (6.1%). Re-	25/1,767 (1.4%), 1 year	
			infarction: in-hospital 2/260	44/1,767 (2.5%). Re-	
			(0.8%), 30 day 4/260 (1.6%),	infarction: in-hospital 4/1,767	
			1 year 8/260 (2.9%). MACE:	(0.2%), 30 day 12/1,767	
			in-hospital 20/260 (7.7%), 30	(0.7%), 1 year 41/1,767	


			day 27/260 (10.4%), 1 year	(2.3%). MACE: in-hospital	
			53/260 (20.3%).	64/1,767 (3.6%), 30 day	
				92/1,767 (5.2%), 1 year	
				306/1,767 (17.3%).	
Nikolsky 2004b	Anaemia defined by	In-hospital and 1 year	In-hospital mortality 32/1,708	In-hospital mortality 21/5,221	Anaemia and 1 year mortality:
	hematocrit <39% for men	mortality and MI.	(1.9%), cardiac mortality	(0.4%), cardiac mortality	multivariate OR 1.88 (1.46-2.43).
	and <36% for women.		20/1,708 (1.2%), 1 year MI	16/5,221 (0.3%), 1 year MI	
			132/1,708 (7.7%).	271/5,221 (5.2%).	
Oduncu 2013	Anaemia defined by Hb	Mortality, major	In-hospital mortality 49/623	In-hospital mortality 41/1,788	Anaemia and MACE: multivariate
	<13 mg/dl in men and <12	bleeding and MACE up	(7.9%), major bleeding	(2.3%), major bleeding	HR 3.12 (1.15-6.59).
	mg/dl in women.	to 48 months.	43/623 (6.9%). Long term	45/1,788 (2.5%). Long term	
			mortality 165/623 (26.5%),	mortality 191/1,788 (10.7%),	
			heart failure 55/623 (8.9%),	heart failure 88/1,788 (4.9%),	
			re-infarction 67/623 (10.8%).	re-infarction 141/1,788	
				(7.9%).	
Ozasa 2012	Anaemia defined by Hb	All-cause and cardiac	All-cause mortality 293/1,788	All-cause mortality 128/3,548	Anaemia and all-cause mortality:
	<13 g/dl for men and <12	death unclear follow up.	(16.4%), cardiac mortality	(3.6%), cardiac mortality	multivariate HR 1.96 (1.49-2.58).
	g/dl for women.		127/1,788 (7.1%).	60/3,548 (1.7%).	Anaemia and cardiac mortality:
					multivariate HR 1.36 (0.90-2.06).
Park 2012	Anaemia defined by Hb	Mortality, cardiac	Mortality 46/349, cardiac	Mortality 21/532, cardiac	Anaemia and 2 year mortality: OR
	<13 g/dl for men and <12	death, MI and MACE	death 36/349, MI 14/349,	death 17/532, MI 10/532,	3.78 (2.19-6.52).

	g/dl for women.	up to 2 years.	MACE 78/349.	MACE 78/532.	
Poludasu 2009	Anaemia defined by Hb	In-hospital MACE,	In-hospital: MACE 22/313,	In-hospital: MACE 27/402,	Use crude results.
	<13 g/dl for men and <12	death, MI and bleeding	death 0/313, MI 13/313,	death 0/402, MI 19/402,	
	g/dl for women. Also	and mortality at 3.2	bleeding 9/313. Long term	bleeding 8/402. Long term	
	grouped by Hb <11.1 and	years.	mortality 50/313.	mortality 24/402.	
	≥ 11.1 to <12.6.				
Rathod 2014	Anaemia defined by Hb	MACE, MI and death at	In-hospital: major bleeding	In-hospital: major bleeding	Anaemia and mortality with
	<12 g/dl for women, <13	3 years.	19/419, mortality 35/419. 3	30/1,759, mortality 51/1,759.	propensity score match: HR 1.14
	g/dl for men.		year: MACE 101/419, MI	3 year: MACE 228/1,759, MI	(0.52-2.49).
			23/419, death 75/419.	61/1,759, death 106/1,759.	
Reinecke 2003	Anaemia defined by Hb	In-hospital mortality, at	In-hospital death: 1/144.	In-hospital death: 2/545.	Unadjusted hemoglobin and death at
	<13.0 g/dl (only male	median 697 day follow	Follow up death 30/144,	Follow up death 32/545,	follow up: HR 0.68 (0.59-0.78).
	participants studied)	up death, cardiac death,	cardiac death 19/144, nonfatal	cardiac death 25/545, nonfatal	Anaemia and mortality: HR 4.09
		nonfatal MI.	MI 4/144.	MI 22/545.	(1.52-11.05).
Rodriguez 2013	Anaemia defined by <13	Bleeding, cardiac	Bleeding 44/226 (19.5%),	Bleeding 46/533 (8.6%),	Anaemia and mortality: multivariate
	g/dl for men and <12 g/dl	mortality, all-cause	mortality 120/226 (5.3%). At	mortality 8/533 (1.5%). At	HR 2.1 (1.1-4.1)
	for women.	mortality at follow up	follow up cardiac mortality	follow up cardiac mortality	
		of 26.5 months.	18/226 (8%), all-cause	15/533 (2.8%), all cause	
			mortality 46/226 (20.4%).	morality 26/533 (4.9%).	
Schroder 2013	Continuous Hb.	Mortality at mean	Unclear.	Unclear.	Hemoglobin and mortality:
		follow up of 137 weeks.			multivariate HR 0.784 (0.62-0.991).

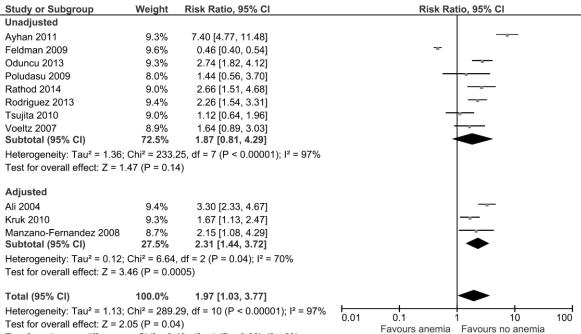
Sgura 2010	Anaemia defined by Hb	Mortality and MACE at	Mortality 26/128 (20.3%),	Mortality 57/545 (10.5%),	See crude results.
	<12 g/dl for women and	mean of 30 months.	MACCE 40/128 (31.2%).	MACCE 118/545 (21.6%).	
	<13 g/dl for men.				
Shishehbor 2009	Continuous hematocrit.	Mortality and study	Unclear.	Unclear.	Continuous hematocrit and mortality:
		took place over 4.5 year			multivariate HR 0.93 (0.91-0.96).
		interval.			
Tsujita 2010	Anaemia defined by	Death, cardiac death,	30 day: death 16/331(4.8%),	30 day: death 62/2,822	Multivariate anaemia and mortality at
	hematocrit <39% for men	re-infarction, TIMI	cardiac death 28/331 (8.5%),	(2.2%), cardiac death	1 year: HR 1.98 (1.05-3.73).
	and <36% for women.	major bleed, MACE up	re-infarction 6/331 (1.9%),	56/2,822 (2.0%), re-infarction	Multivariate anaemia and major
	Anaemia at presentation.	to 1 year.	TIMI major bleeding 13/331	56/2,822 (2.0%), TIMI major	bleeding: HR 2.15 (1.43-3.24).
			(4%), MACE 27/331 (8.2%).	bleeding 99/2,822 (3.5%),	
			1 year: death 28/331 (8.5%),	MACE 141/2,822 (5.0%). 1	
			cardiac mortality 19/331	year: death 102/2,822 (3.6%),	
			(5.8%), re-infarction 15/331	cardiac death 73/2,822	
			(4.5%), TIMI major bleeding	(2.6%), re-infarction	
			15/331 (4.6%), MACE 61/331	119/2,822 (4.2%), TIMI	
			(18.4%).	major bleeding 104/2,822	
				(3.7%), MACE 325/2,822	
				(11.5%).	
Uchida 2013	Anaemia defined by Hb	Cardiac death or	Unclear.	Unclear.	Anaemia and adverse events:
	<13 g/dl for men and <12	hospitalization for			multivariate HR 2.58 (1.01-6.60).

	g/dl for women.	congestive heart failure.			
Varma 2010	Anaemia defined by Hb	Mortality at median of	Death 8/30 (25%), cardiac	Death 5/90 (6%), cardiac	See crude results.
	<13.0 g/dl for men and Hb	30 months.	death 2/30 (8%).	death 1/90 (1%).	
	<12.0 g/dl for women.				
Vis 2010	Continuous Hb.	1 year mortality.	Unclear.	Unclear.	1 year mortality by hemoglobin:
					multivariate OR 0.992 (0.992-1.423).
Voeltz 2007	Anaemia defined by Hb	Major bleeding, MACE	TIMI major bleeding 15/1,371	TIMI major bleeding	Multivariate anaemia and 1 year
	<12.0 g/dl for women and	(death MI,	(1.1%), MACE 30 days	30/4,499 (0.7%), MACE 30	mortality adjusted for transfusions:
	<13.0 g/dl for men.	revascularization),	104/1371 (7.6%), MI 30 days	days 328/4498 (7.3%), MI 30	HR 1.84 (1.22-2.78).
		mortality and MI.	95/1371 (6.9%), death 30	days 292/4498 (6.5%), death	
			days 12/1371 (0.9%). death 6	30 days 9/4498 (0.2%), death	
			months 36/1371 (2.6%), death	6 months 31/4498 (0.7%),	
			1 year 59/1371 (4.3%).	death 1 year 67/4498 (1.5%).	
Vrsalovic 2012	Anaemia defined by Hb	Mortality at 30 days.	Unclear.	Unclear.	Multivariate 30 day mortality with
	<13 g/dl for men and <12				anaemia: OR 2.69 (1.24-5.86).
	g/dl for women.				

Figure 1: Flow diagram of study selection

Study or Subgroup	Weight	Risk Ratio, 95% Cl		Risk Ra	tio, 95% Cl
Jnadjusted					
3olinska 2011	1.1%	13.39 [3.28, 54.65]			
Cho 2011a	2.9%	2.88 [1.49, 5.57]			
eldman 2009	0.9%	6.33 [1.23, 32.56]			
losseini 2014	0.3%	0.94 [0.05, 18.61]			
Oduncu 2013	4.0%	3.43 [2.29, 5.14]			
Poludasu 2009	3.8%	2.68 [1.68, 4.26]			
Sgura 2010	3.9%	1.94 [1.27, 2.96]			
/arma 2010	4.6%	4.80 [3.64, 6.33]			
Subtotal (95% CI)	21.5%	3.35 [2.36, 4.75]			•
Heterogeneity: Tau ² = Fest for overall effect:	,	= 18.81, df = 7 (P = 0.009); l ² = 63%			
	2 0.70 (1	- 0.0000 1)			
Adjusted	0.00/				
Akgul 2013	2.0%	3.90 [1.51, 10.10]			
Ali 2004	5.1%	1.80 [1.61, 2.01]			
Ayhan 2011	3.1%	2.20 [1.20, 4.02]			
Chi 2012	2.3%	3.29 [1.43, 7.58]			
Cho 2011b	3.5%	1.52 [0.90, 2.56]			<u>– </u>
Dada 2009	2.8%	2.87 [1.45, 5.70]			
Greenberg 2010	2.5%	3.50 [1.62, 7.58]			
Jones 2010	3.1%	2.40 [1.31, 4.40]			—.—
Kim 2012	3.8%	1.94 [1.24, 3.04]			
Kitai 2013	3.3%	2.49 [1.40, 4.43]			
Kruk 2010	3.4%	2.03 [1.19, 3.46]			
Kurek 2010	5.2%	1.30 [1.23, 1.37]			-
_iu 2008	2.6%	2.22 [1.06, 4.62]			
VicKechnie 2004	4.7%	2.29 [1.79, 2.92]			
Vikolsky 2004a	1.5%	3.26 [1.01, 10.52]			
Nikolsky 2004b	4.7%	1.88 [1.46, 2.43]			
Ozasa 2012	4.6%	1.96 [1.49, 2.58]			
Park 2012	3.4%	3.78 [2.19, 6.52]			
Rathod 2014	2.5%	1.14 [0.52, 2.49]			+
Reinecke 2003	1.9%	4.09 [1.52, 11.03]			
Rodriguez 2013	2.9%	2.10 [1.09, 4.05]			
Tsujita 2010	3.0%	1.98 [1.05, 3.73]			
/oeltz 2007	4.0%	1.84 [1.22, 2.78]			
/rsalovic 2012	2.5%	2.69 [1.24, 5.85]			
Subtotal (95% CI)	78.5%	2.12 [1.81, 2.48]			♦
Heterogeneity: Tau ² = Fest for overall effect:		= 104.92, df = 23 (P < 0.00001); l ² = 78%	1		
	,				
Fotal (95% CI)	100.0%	2.39 [2.02, 2.83]	L		
Heterogeneity: Tau ² = Fest for overall effect:	,	= 208.55, df = 31 (P < 0.00001); l² = 85% P < 0.00001)	0.01	0.1 Eavours anaomia	1 10 10 Favours no anaemia

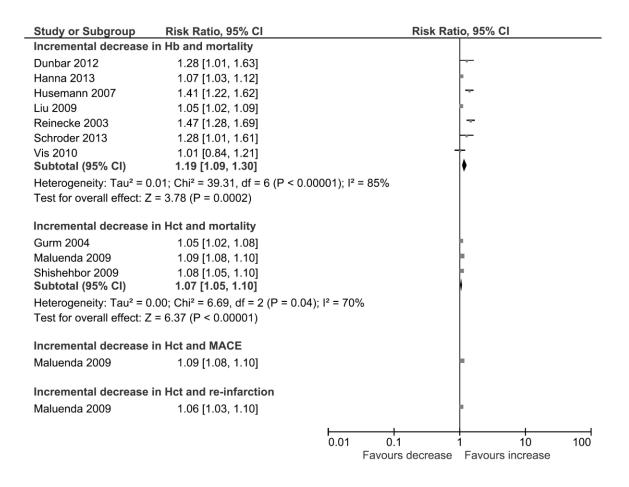
Figure 2:Risk of mortality with anaemia compared to no anaemia


Figure 3:Risk of major adverse cardiovascular events with anaemia compared to no anaemia

Study or Subgroup	Weight	Risk Ratio, 95% Cl	Risk Ratio, 95% Cl
Unadjusted			
Ayhan 2011	6.0%	1.80 [1.33, 2.44]	
Bolinska 2011	4.6%	1.94 [1.29, 2.91]	
Cho 2011a	3.4%	2.32 [1.37, 3.93]	——
Feldman 2009	5.8%	0.93 [0.68, 1.27]	
Greenberg 2010	6.9%	1.44 [1.13, 1.83]	
Liu 2008	7.4%	1.29 [1.05, 1.59]	~-
Nikolsky 2004a	3.8%	2.12 [1.31, 3.44]	
Park 2012	6.3%	1.52 [1.15, 2.01]	
Poludasu 2009	3.3%	1.05 [0.61, 1.80]	_ _
Rathod 2014	7.4%	1.86 [1.51, 2.29]	
Sgura 2010	4.9%	0.94 [0.64, 1.38]	
Tsujita 2010	4.7%	1.63 [1.10, 2.42]	
Voeltz 2007	7.3%	1.04 [0.84, 1.29]	+
Subtotal (95% CI)	71.8%	1.44 [1.23, 1.68]	♦
Heterogeneity: Tau ² =	0.05; Chi ² =	= 39.37, df = 12 (P < 0.0001); l ² = 70%	
Test for overall effect:	Z = 4.55 (P	< 0.00001)	
Adjusted			
Cho 2011b	4.2%	1.78 [1.14, 2.78]	
Hosseini 2014	2.1%	1.89 [0.89, 4.00]	<u>+</u>
Kim 2012	5.1%	1.48 [1.03, 2.13]	<u>–</u> –
Kitai 2013	5.3%	2.11 [1.49, 2.99]	
Kurek 2010	8.5%	1.35 [1.18, 1.54]	~
Oduncu 2013	1.6%	3.12 [1.30, 7.47]	
Uchida 2013	1.4%	2.58 [1.01, 6.60]	
Subtotal (95% CI)	28.2%	1.71 [1.38, 2.12]	•
Heterogeneity: Tau ² =	0.03; Chi ² =	= 10.98, df = 6 (P = 0.09); l ² = 45%	
Test for overall effect:	Z = 4.89 (P	< 0.00001)	
Total (95% CI)	100.0%	1.51 [1.34, 1.71]	♥
()		1.51 [1.34, 1.71] 51.04, df = 19 (P < 0.0001); l ² = 63%	
()	0.04; Chi² =	51.04, df = 19 (P < 0.0001); l ² = 63%	0.01 0.1 1 10 10 Favours anemia Favours no anemia

Figure 4: Risk of re-infarction	with anaemia	compared to no anaemia

Unadjusted			
Autor 0011			
Ayhan 2011	7.4%	1.20 [0.65, 2.21]	
Feldman 2009	12.7%	0.87 [0.63, 1.20]	
Greenberg 2010	6.9%	3.38 [1.77, 6.45]	
Hosseini 2014	1.0%	0.59 [0.07, 4.83]	
Nikolsky 2004a	1.5%	3.40 [0.63, 18.40]	
Oduncu 2013	13.7%	1.36 [1.03, 1.80]	
Poludasu 2009	6.3%	0.88 [0.44, 1.75]	——
Rathod 2014	9.7%	1.58 [0.99, 2.53]	——
Tsujita 2010	4.9%	0.91 [0.40, 2.09]	
Voeltz 2007	14.9%	1.07 [0.86, 1.34]	
Subtotal (95% CI)	78.9%	1.25 [0.98, 1.58]	•
Heterogeneity: Tau ² = 0	0.06; Chi² :	= 19.83, df = 9 (P = 0.02); l² = 55%	
Test for overall effect: 2	Z = 1.82 (P	= 0.07)	
Adjusted			
Catakoglu 2007	7.5%	2.51 [1.38, 4.56]	
Kim 2012	4.3%	1.18 [0.48, 2.94]	
Kitai 2013	9.3%	1.43 [0.88, 2.33]	<u>+</u>
Subtotal (95% CI)	21.1%	1.68 [1.11, 2.57]	\bullet
Heterogeneity: Tau ² = 0	0.04; Chi² :	= 2.72, df = 2 (P = 0.26); l² = 26%	
Test for overall effect: 2	Z = 2.42 (P	= 0.02)	
Total (95% CI)	100.0%	1.33 [1.07, 1.65]	•
Heterogeneity: Tau ² = 0	0.07; Chi² :	= 26.02, df = 12 (P = 0.01); l ² = 54%	
Test for overall effect: Z	<u>z</u> = 2.59 (P	= 0.010)	0.01 0.1 1 10 100 Favours anemia Favours no anemia
Test for subgroup differ	ences: Ch	i ² = 1.47, df = 1 (P = 0.23), l ² = 32.0%	Favours anemia Favours no anemia


Figure 5:Risk of bleeding with anaemia compared to no anaemia

Test for subgroup differences: $Chi^2 = 0.19$, df = 1 (P = 0.66), $I^2 = 0\%$

Figure 6:Risk of adverse outcomes by incremental decrease in haemoglobin (Hb) or

haematocrit (Hct)

	Risk Ratio	Risk Ratio
Study or Subgroup	IV, Random, 95% CI	IV, Random, 95% CI
Adjustment for base	line Hb	
Ali 2004	1.80 [1.61, 2.01]	-
Kim 2012	1.94 [1.24, 3.04]	
Subtotal (95% CI)	1.81 [1.62, 2.01]	•
Heterogeneity: Tau ² =	0.00; Chi ² = 0.11, df = 1 (P = 0.75); I ² = 0%	
Test for overall effect:	Z = 10.72 (P < 0.00001)	
Adjustment for renal	impairment or renal function	
Akgul 2013	3.90 [1.51, 10.10]	
Ali 2004	1.80 [1.61, 2.01]	-
Ayhan 2011	2.20 [1.20, 4.02]	—————
Dada 2009	2.87 [1.45, 5.70]	
Kim 2012	3.50 [1.62, 7.58]	
Kitai 2013	1.94 [1.24, 3.04]	
Kruk 2010	2.49 [1.40, 4.43]	
Kurek 2010	2.03 [1.19, 3.46]	
McKechnie 2004	1.30 [1.23, 1.37]	
Nikolsky 2004a	2.29 [1.79, 2.92]	
Nikolsky 2004b	3.26 [1.01, 10.52]	
Rathod 2014	1.88 [1.46, 2.43]	
Reinecke 2003	1.14 [0.52, 2.49]	
Tsujita 2010	4.09 [1.52, 11.03]	
Vrsalovic 2012	1.98 [1.05, 3.73]	
Subtotal (95% CI)	2.05 [1.69, 2.49]	•
Heterogeneity: Tau ² =	0.07; Chi ² = 77.30, df = 14 (P < 0.00001); l ² = 82%	
0,	Z = 7.32 (P < 0.00001)	
Mild anemia (>10 g/d	L)	
Kitai 2013	1.86 [1.42, 2.43]	
Subtotal (95% CI)	1.86 [1.42, 2.43]	•
Heterogeneity: Not ap	plicable	
Test for overall effect:	Z = 4.56 (P < 0.00001)	
Moderate to severe a	naemia (<10 g/dL)	
Kitai 2013	3.35 [2.52, 4.46]	
Subtotal (95% CI)	3.35 [2.52, 4.46]	•
Heterogeneity: Not ap	plicable	
Test for overall effect:	Z = 8.27 (P < 0.00001)	
Total (95% CI)	2.08 [1.77, 2.44]	•
Heterogeneity: Tau ² =	0.07; Chi ² = 122.75, df = 18 (P < 0.00001); l ² = 85%	
• •	Z = 8.88 (P < 0.00001)	0.01 0.1 1 10 100
	erences: Chi ² = 15.95, df = 3 (P = 0.001), $ ^2$ = 81.2%	Favours anaemia Favours no anaemia

Figure 7: Subgroup analysis of risk of mortality with anaemia compared to no anaemia

Supplementary Data 1:Search strategy

No.	Search terms	Results
1	PCI.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, dv, kw, nm, kf, px, rx, ui]	41063
2	coronary-intervention.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, dv, kw, nm, kf, px, rx, ui]	59810
3	coronary-angioplasty.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, dv, kw, nm, kf, px, rx, ui]	42063
4	1 or 2 or 3	110471
5	anaemia.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, dv, kw, nm, kf, px, rx, an, ui]	57957
6	anaemia.mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, dv, kw, nm, kf, px, rx, an, ui]	377829
7	5 or 6	394945
8	4 and 7	896
9	Deduplication	760

Sensitivity analysis for mortality by indication	No. of studies	Risk ratio [95% CI]
Unadjusted mortality in ACS only	4	3.12 [1.89, 5.16]
Unadjusted mortality in any PCI	4	3.76 [2.35, 6.00]
Adjusted mortality in ACS only	12	2.33 [1.69, 3.21]
Adjusted mortality in elective only	4	2.00 [1.64, 2.43]
Adjusted mortality in any PCI	8	1.90 [1.74, 2.08]
Incremental decrease in Hb and mortality in ACS only	3	1.08 [1.00, 1.17]
Incremental decrease in Hb mortality in elective only	1	1.47 [1.28, 1.69]
Incremental decrease Hb in any PCI	3	1.22 [0.98, 1.52]
Continuous hematocrit mortality in any PCI	3	1.07 [1.05, 1.10]
	1	
Sensitivity analysis for MACE by indication	No. of studies	Risk ratio [95% CI]
Unadjusted MACE in ACS only	9	1.64 [1.41, 1.91]
Unadjusted MACE in elective only	1	1.04 [0.84, 1.29]
Unadjusted MACE in any PCI	3	1.12 [0.89, 1.41]
Adjusted MACE in ACS only	3	1.93 [1.06, 3.50]
Adjusted MACE in elective only	1	2.11 [1.49, 2.99]
Adjusted MACE in any PCI	3	1.63 [1.25, 2.12]
Incremental decrease in Hb MACE in any PCI	1	1.09 [1.08, 1.10]
Sensitivity analysis for reinfarction by indication	No. of studies	Risk ratio [95% CI]
Unadjusted reinfarction in ACS only	6	1.57 [1.13, 2.18]
Unadjusted reinfarction in elective only	1	1.07 [0.86, 1.34]
Unadjusted reinfarction in any PCI	3	0.87 [0.65, 1.16]
Adjusted reinfarction in elective only	2	1.84 [1.07, 3.18]
Adjusted reinfarction in any PCI	1	1.18 [0.48, 2.94]
Incremental decrease in Hb reinfarction in any PCI	1	1.06 [1.03, 1.10]
Sensitivity analysis for bleeding by indication	No. of studies	Risk ratio [95% CI]
Unadjusted bleeding in ACS only	4	2.82 [1.34, 5.96]
Unadjusted bleeding in elective only	1	1.64 [0.89, 3.03]
Unadjusted bleeding in any PCI	3	1.12 [0.32, 3.88]
Adjusted bleeding in ACS only	1	1.67 [1.13, 2.47]
Adjusted bleeding in any PCI	2	2.97 [2.07, 4.26]

Supplementary Table 2: Sensitivity analysis by indication

Supplementary Figure 1: Effect of anaemia and low haemoglobin on 30-day mortality by indication

	Risk Ratio	Risk Ratio
Study or Subgroup	IV, Random, 95% Cl	IV, Random, 95% Cl
Unadjusted mortality i Bolinska 2011		
Cho 2011a	13.39 [3.28, 54.65] 2.88 [1.49, 5.57]	
Oduncu 2013	3.43 [2.29, 5.14]	
Sgura 2010	1.94 [1.27, 2.96]	
Subtotal (95% CI)	3.12 [1.89, 5.16]	
Heterogeneity: Tau ² = 0 Test for overall effect: Z	.16; Chi ² = 8.62, df = 3 (P = 0.03); l ² = 65% = 4.44 (P < 0.00001)	
Unadjusted mortality i	-	
Feldman 2009	6.33 [1.23, 32.56]	
Hosseini 2014 Poludasu 2009	0.94 [0.05, 18.61] 2.68 [1.68, 4.26]]
Varma 2010	4.80 [3.64, 6.33]	
Subtotal (95% CI)	3.76 [2.35, 6.00]	◆
• •	.09; $Chi^2 = 5.67$, $df = 3$ (P = 0.13); $l^2 = 47\%$	
Test for overall effect: Z	= 5.53 (P < 0.00001)	
Adjusted mortality in	ACS only	
Akgul 2013	3.90 [1.51, 10.10]	
Ayhan 2011	2.20 [1.20, 4.02]	
Chi 2012 Greenberg 2010	3.29 [1.43, 7.58]	
Greenberg 2010 Jones 2010	3.50 [1.62, 7.58] 2.40 [1.31, 4.40]	
Kruk 2010	2.03 [1.19, 3.46]	
Kurek 2010	1.30 [1.23, 1.37]	•
Nikolsky 2004a	3.26 [1.01, 10.52]	
Park 2012	3.78 [2.19, 6.52]	
Rathod 2014 Tsujita 2010	1.14 [0.52, 2.49] 1.98 [1.05, 3.73]	
Vrsalovic 2012	2.69 [1.24, 5.85]	
Subtotal (95% CI)	2.33 [1.69, 3.21]	•
	.20; Chi ² = 45.72, df = 11 (P < 0.00001); l ² = 76%	
Test for overall effect: Z	= 5.15 (P < 0.00001)	
Adjusted mortality in e	elective only	
Kitai 2013	2.49 [1.40, 4.43]	
Nikolsky 2004b	1.88 [1.46, 2.43]	
Reinecke 2003	4.09 [1.52, 11.03]	
Voeltz 2007 Subtotal (95% CI)	1.84 [1.22, 2.78] 2.00 [1.64, 2.43]	
	.00; $Chi^2 = 2.94$, $df = 3$ (P = 0.40); $I^2 = 0\%$	•
Test for overall effect: Z		
Adjusted mortality in a Ali 2004	-	
Cho 2011b	1.80 [1.61, 2.01] 1.52 [0.90, 2.56]	
Dada 2009	2.87 [1.45, 5.70]	
Kim 2012	1.94 [1.24, 3.04]	
Liu 2008	2.22 [1.06, 4.62]	
McKechnie 2004	2.29 [1.79, 2.92]	
Ozasa 2012 Rodriguez 2013	1.96 [1.49, 2.58] 2.10 [1.09, 4.05]	
Subtotal (95% CI)	1.90 [1.74, 2.08]	•
Heterogeneity: Tau ² = 0	.00; Chi ² = 5.54, df = 7 (P = 0.59); I ² = 0%	
Test for overall effect: Z	= 14.06 (P < 0.00001)	
Incremental decrease	in Hb and mortality in ACS only	
Dunbar 2012	1.28 [1.01, 1.63]	
Hanna 2013	1.07 [1.03, 1.12]	-
Vis 2010	1.01 [0.84, 1.21]	t
Subtotal (95% CI)	1.08 [1.00, 1.17]	ł
Test for overall effect: Z	.00; $Chi^2 = 2.56$, $df = 2$ (P = 0.28); $I^2 = 22\%$ = 1.91 (P = 0.06)	
	- 1.01 (1 - 0.00)	
	in Hb mortality in elective only	
Reinecke 2003	1.47 [1.28, 1.69]	₩
Subtotal (95% CI) Heterogeneity: Not appli	1.47 [1.28, 1.69]	•
• • •	= 5.42 (P < 0.00001)	
Incremental decrease		_
Incremental decrease Husemann 2007	1.41 [1.22, 1.62]	-
Incremental decrease	1.41 [1.22, 1.62] 1.05 [1.02, 1.09]	-
Incremental decrease Husemann 2007 Liu 2009	1.41 [1.22, 1.62]	, ♦
Incremental decrease Husemann 2007 Liu 2009 Schroder 2013 Subtotal (95% CI) Heterogeneity: Tau ² = 0	1.4 ¹ [1.22, 1.62] 1.05 [1.02, 1.09] 1.28 [1.01, 1.61] 1.22 [0.98, 1.52] 03; Chi ² = 17.51, df = 2 (P = 0.0002); l ² = 89%	•
Incremental decrease Husemann 2007 Liu 2009 Schroder 2013 Subtotal (95% CI)	1.4 ¹ [1.22, 1.62] 1.05 [1.02, 1.09] 1.28 [1.01, 1.61] 1.22 [0.98, 1.52] 03; Chi ² = 17.51, df = 2 (P = 0.0002); l ² = 89%	,- -
Incremental decrease Husemann 2007 Liu 2009 Schroder 2013 Subtotal (95% CI) Heterogeneity: Tau ² = 0	1.4 [1.22, 1.62] 1.05 [1.02, 1.09] 1.28 [1.01, 1.61] 1.22 [0.98, 1.52] 03; Chi ² = 17.51, df = 2 (P = 0.0002); i ² = 89% = 1.79 (P = 0.07)	•
Incremental decrease Husemann 2007 Liu 2009 Schroder 2013 Subtotal (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z	1.4 [1.22, 1.62] 1.05 [1.02, 1.09] 1.28 [1.01, 1.61] 1.22 [0.98, 1.52] 03; Chi ² = 17.51, df = 2 (P = 0.0002); i ² = 89% = 1.79 (P = 0.07)	
Incremental decrease Husemann 2007 Liu 2009 Schroder 2013 Subtotal (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z Continuous hematocri Gurm 2004 Maluenda 2009	1.4 ¹ [1.22, 1.62] 1.05 [1.02, 1.09] 1.28 [1.01, 1.61] 1.22 [0.98, 1.52] 03; Chi ² = 17.51, df = 2 (P = 0.0002); l ² = 89% = 1.79 (P = 0.07) t mortality in any PCI 1.05 [1.02, 1.08] 1.09 [1.08, 1.10]	- • •
Incremental decrease Husemann 2007 Liu 2009 Schroder 2013 Subtotal (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z Continuous hematocri Gurm 2004 Maluenda 2009 Shishehbor 2009	1.4 [1.22, 1.62] 1.05 [1.02, 1.09] 1.28 [1.01, 1.61] 1.22 [0.98, 1.52] 03; Chi ² = 17.51, df = 2 (P = 0.0002); l ² = 89% = 1.79 (P = 0.07) t mortality in any PCI 1.05 [1.02, 1.08] 1.09 [1.08, 1.10] 1.08 [1.05, 1.10]	
Incremental decrease Husemann 2007 Liu 2009 Schroder 2013 Subtotal (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z Continuous hematocri Gurm 2004 Maluenda 2009 Shishehbor 2009 Subtotal (95% CI)	1.4 [1.22, 1.62] 1.05 [1.02, 1.09] 1.28 [1.01, 1.61] 1.22 [0.98, 1.52] 03; Chi ² = 17.51, df = 2 (P = 0.0002); l ² = 89% = 1.79 (P = 0.07) t mortality in any PCI 1.05 [1.02, 1.08] 1.09 [1.08, 1.10] 1.09 [1.05, 1.10] 1.07 [1.05, 1.10]	• • •
Incremental decrease Husemann 2007 Liu 2009 Schroder 2013 Subtotal (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z Continuous hematocri Gurm 2004 Maluenda 2009 Shishehbor 2009 Subtotal (95% CI)	1.4 [1.22, 1.62] 1.05 [1.02, 1.09] 1.28 [1.01, 1.61] 1.22 [0.88, 1.52] 03; Chi ² = 17.51, df = 2 (P = 0.0002); l ² = 89% = 1.79 (P = 0.07) t mortality in any PCI 1.05 [1.02, 1.08] 1.09 [1.08, 1.10] 1.08 [1.05, 1.10] 1.07 [1.05, 1.10] 00; Chi ² = 6.69, df = 2 (P = 0.04); l ² = 70%	•
Incremental decrease Husemann 2007 Liu 2009 Schroder 2013 Subtotal (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z Continuous hematocri Gurm 2004 Maluenda 2009 Shishelbor 2009 Subtotal (95% CI) Heterogeneity: Tau ² = 0	1.4 [1.22, 1.62] 1.05 [1.02, 1.09] 1.28 [1.01, 1.61] 1.22 [0.88, 1.52] 03; Chi ² = 17.51, df = 2 (P = 0.0002); l ² = 89% = 1.79 (P = 0.07) t mortality in any PCI 1.05 [1.02, 1.08] 1.09 [1.08, 1.10] 1.08 [1.05, 1.10] 1.07 [1.05, 1.10] 00; Chi ² = 6.69, df = 2 (P = 0.04); l ² = 70%	0.01 0.1 1 10 100 Favours higher Hb Favours lower Hb

dication			
	Risk Ratio	Risk Ratio	
	, Random, 95% Cl	IV, Random, 95% CI	
Unadjusted MACE in ACS	Sonly		
Ayhan 2011	1.80 [1.33, 2.44]		
Bolinska 2011	1.94 [1.29, 2.91]		
Cho 2011a	2.32 [1.37, 3.93]		
Greenberg 2010	1.44 [1.13, 1.83]		
Nikolsky 2004a	2.12 [1.31, 3.44]		
Park 2012	1.52 [1.15, 2.01]		
Rathod 2014	1.86 [1.51, 2.29]		
Sgura 2010	0.94 [0.64, 1.38]		
Tsujita 2010	1.63 [1.10, 2.42]		
Subtotal (95% Cl)	1.64 [1.41, 1.91]	♥	
Heterogeneity: Tau² = 0.02 Test for overall effect: Z = 6	; Chi² = 14.77, df = 8 (P = 0.06); l² = 46% 5.48 (P < 0.00001)		
Unadjusted MACE in elec	tive only		
Voeltz 2007	1.04 [0.84, 1.29]	t	
Subtotal (95% CI)	1.04 [0.84, 1.29]	•	
Heterogeneity: Not applicat Test for overall effect: Z = 0			
Unadjusted MACE in any	PCI		
Feldman 2009	0.93 [0.68, 1.27]	-+	
Liu 2008	1.29 [1.05, 1.59]		
Poludasu 2009	1.05 [0.61, 1.80]		
Subtotal (95% CI)	1.12 [0.89, 1.41]	•	
Heterogeneity: Tau² = 0.01 Test for overall effect: Z = 1	; Chi² = 3.06, df = 2 (P = 0.22); l² = 35% 1.00 (P = 0.32)		
Adjusted MACE in ACS o	nly		
Kurek 2010	1.35 [1.18, 1.54]	~	
Oduncu 2013	3.12 [1.30, 7.47]		
Uchida 2013	2.58 [1.01, 6.60]		
Subtotal (95% CI)	1.93 [1.06, 3.50]		
Heterogeneity: Tau² = 0.17 Test for overall effect: Z = 2	; Chi² = 5.14, df = 2 (P = 0.08); l² = 61% 2.16 (P = 0.03)		
Adjusted MACE in electiv	e only		
Kitai 2013	2.11 [1.49, 2.99]		
Subtotal (95% CI)	2.11 [1.49, 2.99]		
Heterogeneity: Not applicat Test for overall effect: Z = 4			
Adjusted MACE in any PC			
Cho 2011b	1.78 [1.14, 2.78]		
Hosseini 2014	1.89 [0.89, 4.00]	<u> </u>	
Kim 2012	1.48 [1.03, 2.13]		
Subtotal (95% CI)	1.63 [1.25, 2.12]		
Heterogeneity: Tau² = 0.00 Test for overall effect: Z = 3	; Chi² = 0.57, df = 2 (P = 0.75); l² = 0% 8.61 (P = 0.0003)		
Incremental decrease in I	Ib MACE in any PCI		
Maluenda 2009 Subtotal (95% Cl)	1.09 [1.08, 1.10] 1.09 [1.08, 1.10]	ľ	
Heterogeneity: Not applicat	ble		
Test for overall effect: Z = 1	5.02 (P < 0.00001)	0.01 0.1 1 10) 10
		Favours higher Hb Favours lowe	

Supplementary Figure 2: Effect of anaemia and low haemoglobin on in-hospital MACE by indication

Supplementary Figure 3: Effect of anaemia and low haemoglobin on in-hospital reinfarction by indication

interestion by me		
	Risk Ratio	Risk Ratio
Study or Subgroup	IV, Random, 95% CI	IV, Random, 95% Cl
Unadjusted reinfarction		
Ayhan 2011	1.20 [0.65, 2.21]	
Greenberg 2010	3.38 [1.77, 6.45]	
Nikolsky 2004a	3.40 [0.63, 18.40]	
Oduncu 2013	1.36 [1.03, 1.80]	
Rathod 2014	1.58 [0.99, 2.53]	
Tsujita 2010 Subtotal (95% Cl)	0.91 [0.40, 2.09] 1.57 [1.13, 2.18]	•
Heterogeneity: Tau ² = 0. Test for overall effect: Z	.07; Chi ² = 9.40, df = 5 (P = 0.09); l ² = 47% = 2.67 (P = 0.008)	
Unadjusted reinfarctio	n in elective only	
Voeltz 2007 Subtotal (95% CI)	1.07 [0.86, 1.34] 1.07 [0.86, 1.34]	
Heterogeneity: Not appli Test for overall effect: Z		
Unadjusted reinfarction	n in any PCI	
Feldman 2009	0.87 [0.63, 1.20]	-+
Hosseini 2014	0.59 [0.07, 4.83]	
Poludasu 2009 Subtotal (95% CI)	0.88 [0.44, 1.75] 0.87 [0.65, 1.16]	•
Heterogeneity: Tau ² = 0. Test for overall effect: Z	.00; Chi² = 0.13, df = 2 (P = 0.94); l² = 0% = 0.98 (P = 0.33)	
Adjusted reinfarction i	n elective only	
Catakoglu 2007	2.51 [1.38, 4.56]	
Kitai 2013 Subtotal (95% CI)	1.43 [0.88, 2.33] 1.84 [1.07, 3.18]	t <u>~</u>
	.08; Chi ² = 2.04, df = 1 (P = 0.15); l ² = 51%	\bullet
Test for overall effect: Z		
Adjusted reinfarction i	n any PCI	
Kim 2012 Subtotal (95% CI)	1.18 [0.48, 2.94] 1.18 [0.48, 2.94]	
Heterogeneity: Not appli	icable	
Test for overall effect: Z	= 0.36 (P = 0.72)	
Incremental decrease i	in Hb reinfarction in any PCI	
Maluenda 2009 Subtotal (95% CI)	1.06 [1.03, 1.10] 1.06 [1.03, 1.10]	
Heterogeneity: Not appli	icable	
Test for overall effect: Z	= 3.80 (P = 0.0001)	0.01 0.1 1 10 10 Favours higher Hb Favours lower Hb

Supplementary Figure 4: Effect of anaemia and low haemoglobin on in-hospital bleeding by indication

	Risk Ratio	Risk Ratio
Study or Subgroup	IV, Random, 95% Cl	IV, Random, 95% CI
Unadjusted bleeding in AC	S only	
Ayhan 2011	7.40 [4.77, 11.48]	
Oduncu 2013	2.74 [1.82, 4.12]	
Rathod 2014	2.66 [1.51, 4.68]	
Tsujita 2010	1.12 [0.64, 1.96]	
Subtotal (95% CI)	2.82 [1.34, 5.96]	
Heterogeneity: Tau ² = 0.52;	Chi ² = 28.31, df = 3 (P < 0.00001); l ² = 89%	
Test for overall effect: Z = 2.	72 (P = 0.006)	
Unadjusted bleeding in ele	ctive only	
Voeltz 2007	1.64 [0.89, 3.03]	+
Subtotal (95% CI)	1.64 [0.89, 3.03]	★
Heterogeneity: Not applicabl	е	
Test for overall effect: Z = 1.	58 (P = 0.11)	
Unadjusted bleeding in an	y PCI	
Feldman 2009	0.46 [0.40, 0.54]	-
Poludasu 2009	1.44 [0.56, 3.70]	
Rodriguez 2013	2.26 [1.54, 3.31]	
Subtotal (95% CI)	1.12 [0.32, 3.88]	
Heterogeneity: Tau ² = 1.12;	Chi ² = 61.03, df = 2 (P < 0.00001); l ² = 97%	
Test for overall effect: Z = 0.		
Adjusted bleeding in ACS	only	
Kruk 2010	1.67 [1.13, 2.47]	
Subtotal (95% CI)	1.67 [1.13, 2.47]	◆
Heterogeneity: Not applicable	e	
Test for overall effect: Z = 2.	57 (P = 0.01)	
Adjusted bleeding in any P	PCI	
Ali 2004	3.30 [2.33, 4.67]	
Manzano-Fernandez 2008	2.15 [1.08, 4.29]	
Subtotal (95% CI)	2.97 [2.07, 4.26]	◆
Heterogeneity: Tau ² = 0.01;	Chi² = 1.18, df = 1 (P = 0.28); l² = 15%	
Test for overall effect: Z = 5.	89 (P < 0.00001)	
		0.01 0.1 1 10 10
		Favours higher Hb Favours lower Hb

REFERENCES

- 1. Tsujita K, Nikolsky E, Lansky AJ et al. Impact of anemia on clinical outcomes of patients with ST-segment elevation myocardial infarction in relation to gender and adjunctive antithrombotic therapy (from the HORIZONS-AMI trial). The American journal of cardiology 2010;105:1385-94.
- 2. Voeltz MD, Patel AD, Feit F, Fazel R, Lincoff AM, Manoukian SV. Effect of anemia on hemorrhagic complications and mortality following percutaneous coronary intervention. The American journal of cardiology 2007;99:1513-7.
- 3. Nikolsky E, Aymong ED, Halkin A et al. Impact of anemia in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention: analysis from the Controlled Abciximab and Device Investigation to Lower Late Angioplasty Complications (CADILLAC) Trial. Journal of the American College of Cardiology 2004;44:547-53.
- 4. Kim TH, Koh YS, Chang K et al. Improved anemia is associated with favorable long-term clinical outcomes in patients undergoing PCI. Coronary artery disease 2012;23:391-9.
- Kitai Y, Ozasa N, Morimoto T et al. Prognostic implications of anemia with or without chronic kidney disease in patients undergoing elective percutaneous coronary intervention. International journal of cardiology 2013;168:5221-8.
- 6. Greenberg G, Assali A, Vaknin-Assa H et al. Hematocrit level as a marker of outcome in STsegment elevation myocardial infarction. The American journal of cardiology 2010;105:435-40.
- 7. Dundar C, Oduncu V, Erkol A et al. In-hospital prognostic value of hemoglobin levels on admission in patients with acute ST segment elevation myocardial infarction undergoing primary angioplasty. Clin Res Cardiol 2012;101:37-44.
- 8. Nikolsky E, Mehran R, Aymong ED et al. Impact of anemia on outcomes of patients undergoing percutaneous coronary interventions. The American journal of cardiology 2004;94:1023-7.
- 9. Pilgrim T, Vetterli F, Kalesan B et al. The impact of anemia on long-term clinical outcome in patients undergoing revascularization with the unrestricted use of drug-eluting stents. Circulation Cardiovascular interventions 2012;5:202-10.
- 10. Maluenda G, Lemesle G, Collins SD et al. The clinical significance of hematocrit values before and after percutaneous coronary intervention. American heart journal 2009;158:1024-30.
- 11. Hosseini SK, Ansari MJ, Lotfi Tokaldany M, Sharafi A, Hakki Kazazi E, Poorhosseini H. Association between preprocedural hemoglobin level and 1-year outcome of elective percutaneous coronary intervention. Journal of cardiovascular medicine 2014;15:331-5.
- 12. Lee PC, Kini AS, Ahsan C, Fisher E, Sharma SK. Anemia is an independent predictor of mortality after percutaneous coronary intervention. Journal of the American College of Cardiology 2004;44:541-6.
- Valente S, Lazzeri C, Chiostri M, Sori A, Giglioli C, Gensini GF. Prior and new onset anemia in ST-elevation myocardial infarction: a different prognostic role? Intern Emerg Med 2011;6:329-36.
- 14. Kurek T, Lenarczyk R, Kowalczyk J et al. Effect of anemia in high-risk groups of patients with acute myocardial infarction treated with percutaneous coronary intervention. The American journal of cardiology 2010;105:611-8.
- 15. Poludasu S, Marmur JD, Weedon J, Khan W, Cavusoglu E. Effect of hemoglobin level on longterm all-cause mortality after percutaneous coronary intervention in African-Americans. The American journal of cardiology 2009;103:1078-82.
- 16. Matsue Y, Matsumura A, Abe M et al. Prognostic implications of chronic kidney disease and anemia after percutaneous coronary intervention in acute myocardial infarction patients. Heart Vessels 2013;28:19-26.

- 17. Manzano-Fernandez S, Marin F, Martinez JA et al. Anaemia as predictor of gastrointestinal bleeding in atrial fibrillation patients undergoing percutaneous coronary artery stenting. QJM : monthly journal of the Association of Physicians 2008;101:749-51.
- 18. Halkin A, Singh M, Nikolsky E et al. Prediction of mortality after primary percutaneous coronary intervention for acute myocardial infarction: the CADILLAC risk score. Journal of the American College of Cardiology 2005;45:1397-405.
- 19. Rao SV, McCoy LA, Spertus JA et al. An updated bleeding model to predict the risk of postprocedure bleeding among patients undergoing percutaneous coronary intervention: a report using an expanded bleeding definition from the National Cardiovascular Data Registry CathPCI Registry. JACC Cardiovascular interventions 2013;6:897-904.
- 20. Mehta SK, Frutkin AD, Lindsey JB et al. Bleeding in patients undergoing percutaneous coronary intervention: the development of a clinical risk algorithm from the National Cardiovascular Data Registry. Circulation Cardiovascular interventions 2009;2:222-9.
- Rathod KS, Jones DA, Rathod VS et al. Prognostic impact of anaemia on patients with STelevation myocardial infarction treated by primary PCI. Coronary artery disease 2014;25:52-9.
- 22. Bolinska S, Sobkowicz B, Zaniewska J et al. The significance of anaemia in patients with acute ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Kardiologia polska 2011;69:33-9.
- 23. Bertrand OF, Larose E, Rodes-Cabau J et al. Incidence, range, and clinical effect of hemoglobin changes within 24 hours after transradial coronary stenting. The American journal of cardiology 2010;106:155-61.
- 24. Bross MH, Soch K, Smith-Knuppel T. Anemia in older persons. Am Fam Physician 2010;82:480-7.
- 25. Kwok CS, Khan MA, Rao SV et al. Access and non-access site bleeding after percutaneous coronary intervention and risk of subsequent mortality and major adverse cardiovascular events: systematic review and meta-analysis. Circulation Cardiovascular interventions 2015;8.
- 26. Kwok CS, Rao SV, Myint PK et al. Major bleeding after percutaneous coronary intervention and risk of subsequent mortality: a systematic review and meta-analysis. Open heart 2014;1:e000021.
- 27. Farooq V, van Klaveren D, Steyerberg EW et al. Anatomical and clinical characteristics to guide decision making between coronary artery bypass surgery and percutaneous coronary intervention for individual patients: development and validation of SYNTAX score II. Lancet 2013;381:639-50.
- 28. Parsh J, Seth M, Aronow H et al. Choice of Estimated Glomerular Filtration Rate Equation Impacts Drug-Dosing Recommendations and Risk Stratification in Patients With Chronic Kidney Disease Undergoing Percutaneous Coronary Interventions. Journal of the American College of Cardiology 2015;65:2714-23.
- 29. Wu C, Camacho FT, King SB, 3rd et al. Risk Stratification for Long-Term Mortality After Percutaneous Coronary Intervention. Circulation Cardiovascular interventions 2014.
- 30. Cho KH, Jeong MH, Ahmed K et al. Value of early risk stratification using hemoglobin level and neutrophil-to-lymphocyte ratio in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. The American journal of cardiology 2011;107:849-56.
- 31. Ioannidis JP, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne 2007;176:1091-6.
- 32. Davies HT, Crombie IK, Tavakoli M. When can odds ratios mislead? Bmj 1998;316:989-91.
- 33. Hanna EB, Alexander KP, Chen AY, Roe MT, Funk M, Saucedo JF. Characteristics and inhospital outcomes of patients with non-ST-segment elevation myocardial infarction

undergoing an invasive strategy according to hemoglobin levels. The American journal of cardiology 2013;111:1099-103.

- 34. Kwok CS, Sherwood MW, Watson SM et al. Blood transfusion after percutaneous coronary intervention and risk of subsequent adverse outcomes: a systematic review and meta-analysis. JACC Cardiovascular interventions 2015;8:436-46.
- 35. Mamas MA, Fath-Ordoubadi F, Danzi GB et al. Prevalence and Impact of Co-morbidity Burden as Defined by the Charlson Co-morbidity Index on 30-Day and 1- and 5-Year Outcomes After Coronary Stent Implantation (from the Nobori-2 Study). The American journal of cardiology 2015;116:364-71.
- 36. Sherwood MW, Wang Y, Curtis JP, Peterson ED, Rao SV. Patterns and outcomes of red blood cell transfusion in patients undergoing percutaneous coronary intervention. JAMA : the journal of the American Medical Association 2014;311:836-43.
- 37. Carson JL, Brooks MM, Abbott JD et al. Liberal versus restrictive transfusion thresholds for patients with symptomatic coronary artery disease. American heart journal 2013;165:964-971 e1.