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Abstract 

Reach-to-grasp is an essential part of activities of daily living (ADL’s); despite 

rehabilitation reach-to-grasp often impaired after a stroke contributing to disability.  Upper 

limb rehabilitation interventions need improvement.   A deeper understanding of 

underlying kinematic characteristics and the neural correlates of movement can be 

achieved through neuro-biomechanical assessment.  This would provide knowledge of 

the interaction of the nervous and musculoskeletal system, which may contribute to 

development of improved targeted upper limb interventions.  

A systematic review and meta-analysis was conducted investigating the kinematic 

differences in reach-to-grasp between stroke survivors and neurologically intact adults.  

The results indicate stroke survivors consistently demonstrate different kinematics to 

neurologically intact adults during reach-to-grasp in the central and ipsilateral workspace.  

There was heterogeneity of the reach-to-grasp task, and included studies demonstrated 

unclear or high potential risk of bias.   

A test-retest reliability study investigated transcranial magnetic stimulation (TMS) 

measures of corticospinal pathway excitability in the bilateral biceps, extensor carpi 

radialis (ECR), and abductor pollicis brevis (APB) in neurologically intact adults.  The 

results demonstrate variable reliability; the lower end of the confidence interval was 

below acceptable reliability (ICC < 0.70) for many measures.  The 95% confidence 

intervals (CI) and 95% limits of agreement (LOA) were wide, further indicating 

imprecision in measurement.   

A test-retest reliability study investigated TMS measures of corticospinal pathway 

excitability in the bilateral biceps, ECR and APB in stroke survivors within three months 

after stroke.  The results demonstrate variable reliability; and the lower end of the 

confidence interval was below the range of acceptable reliability (ICC < 0.70) for many 

measures.  The 95% CI and 95% LOA were wide, further indicating imprecision in 

measurement.   

Investigations into the variability of TMS measures in sub-acute stroke survivors and 

neurologically intact adults; as well as specificity of TMS measurement warrant future 

investigations to determine the use of TMS within these populations.    
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Table 1- Table of Abbreviations 

Definition  
 

Abbreviation 

Activities of Daily Living 
 

ADL 

Active Motor Threshold 
 

AMA 

Action Research Arm Test 
 

ARAT 

Brain Derived Neurotrophic Factor 
 

BDNF 

Central nervous System 
 

CNS 

Diffusion Tensor Imaging 
 

DTI 

Electromyography 
 

EMG 

Functional Magnetic Resonance Imaging 
 

fMRI 

Gamma-aminobutyric acid 
 

GABA 

Limits of Agreement 
 

LOA 

Long Term Depression 
 

LTD 

Long Term Potentiation 
 

LTP 

Magnetoencephalography 
 

MEG 

Motor Evoked Potentials 
 

MEP 

N-Methyl-D-Aspartate receptor 
 

NMDA 

Paired Associative Stimulation 
 

PAS 

Peripheral Nervous System 
 

PNS 

Paired Pulse Transcranial Magnetic Stimulation 
 

ppTMS 

Resting Motor Threshold 
 

RMT 

Repetitive Transcranial Magnetic Stimulation 
 

rTMS 

Theta Burst Stimulation 
 

TBS 

Transcranial Magnetic Stimulation 
 

TMS 

United Kingdom 
 

UK 

Wolf Motor Function Test 
 

WMFT 

 
Table 1 Describes the abbreviations and their associated definitions used within the thesis 
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1 Introduction  

1.1 Introduction to the thesis 

Stroke is a leading cause of disability world-wide, up to 65% of stroke survivors do not 

recover the ability to reach, grasp, and manipulate objects.  In the United Kingdom 

almost £9 billion is spent years on stroke rehabilitation, such as direct costs of therapy 

and informal care to assist with activities of daily living (ADL).  Progress of upper limb 

rehabilitation is needed to decrease the cost and limit disability after stroke.   

Reach-to-grasp is an essential component of ADL’s such as dressing and bathing; and 

reach-to-grasp is often impaired after a stroke.  A deeper understanding of the underlying 

kinematic components that contribute to reach-to-grasp and the kinematic differences 

between stroke survivors and neurologically intact adults is required.  The knowledge of 

which can be used as targets for improved upper limb interventions.   

The primary input from the motor cortex to the muscles of the arm and hand is through 

the corticospinal pathway.  The corticospinal pathway is essential for smooth coordinated 

arm movement and successful reach-to-grasp.  The corticospinal pathway can be 

assessed using transcranial magnetic stimulation (TMS), which is a non-invasive brain 

stimulation technique.  The knowledge gained from TMS assessment can provide insight 

into the neural correlates that drive reaching, assess change in corticospinal pathway 

excitability as a result of a therapeutic intervention, and provide age-matched normative 

data in neurologically intact adults for comparison to individuals with stroke.  This 

knowledge would be advantageous in the development and assessment of upper limb 

interventions.  To be confident in the results of TMS measures, TMs must be reliable.  

The test-retest reliability of TMS measures has been focused on investigations in 

younger adults and in stroke survivors greater than six months after stroke.   

There are age-related changes in the central nervous system that may influence TMS 

measurement and reliability of TMS measurement.  The average age of a stroke 

survivors is 75 years old, normative data in older adults would be beneficial for age-

matched comparisons.  Similarly, early after stroke there are physiological processes 

occurring in response to the stroke that are different to later after stroke.  The test-retest 

reliability in young adults and in stroke survivors’ later after stroke may not be applicable 

to older adults and stroke survivors’ within the first few months after stroke.  Therefore, 

the test-retest reliability of TMS measures needs to be determined in older adults and in 

stroke survivors early after stroke. 

These research gaps have led to the research studies that comprise the present thesis.  

The present thesis is constructed of five chapters. 
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Chapter one is the introduction and background of the literature about stroke, reach-to-

grasp, upper limb assessment, neural plasticity, and TMS measurement.     

Chapter three is the systematic review investigating the kinematic differences between 

stroke survivors and neurologically intact adults during reach-to-grasp, and the influence 

of task requirements on movement kinematics.  This chapter includes a short 

introduction, methods, results, summary of findings, strengths, limitations, and 

conclusions.    

Chapter four is a prospective test-retest reliability study of TMS measures of 

corticospinal pathway excitability in neurologically intact adults of all ages.  This chapter 

includes a short introduction, methods, results, summary of findings, limitations, 

strengths, and conclusions.   

Chapter five is a prospective test-retest reliability study of TMS measures of corticospinal 

pathway excitability in stroke survivors within the first three months after stroke.  This 

chapter includes a short introduction, methods, results, summary of findings, strengths, 

limitations, and conclusions.   

Chapter six is the discussion of the three studies in the context of the literature, the 

strengths and limitations of the thesis, future directions for research, and concluding 

remarks.  

1.2 Stroke 

Stroke is the third leading cause of disability worldwide (Hankey, 2013).  In the United 

Kingdom (UK) cardiovascular disease including stroke is the largest cause of death with 

approximately 152,000 new stroke per year (Stroke Association, 2013).  Stroke is 

damage or death of brain tissue due to an absence of oxygenated blood flow (WHO, 

2015).  There are two types of stroke; the first is an ischemic stroke in which a blood clot 

in an artery of the brain interrupts the flow of oxygenated blood to the surrounding brain 

tissue.  The second, is a haemorrhagic stroke in which blood vessel walls become thin 

and weak, eventually rupturing causing bleeding in and around the brain tissue which 

leads to swelling within and around the brain tissue (WHO 2015).  The swelling restricts 

blood flow leading to an absence of oxygenated blood flow to the surrounding brain 

tissue.  The absence of oxygenated blood to the brain tissue leads to tissue death, 

consequently, the associated function of the brain tissue (brain area) can become lost or 

impaired (Witte et al., 2000).  For example, a stroke in the area of the motor cortex 

served by the middle cerebral artery may lead to weakness of the upper or lower limb, 

trunk or face.  The weakness may impair the use of the upper or lower limb for 

movement such as reaching and walking, the trunk for stability, and the facial muscles 

for speaking and swallowing.  Risk factors associated with stroke include age, in which 
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the incidence increases from about age 55 and continues to increase, hypertension (high 

blood pressure) weakening of the artery walls, hyperlipidaemia leading to build up of 

plaque formation in blood vessel walls, smoking, increased body mass index (BMI), and 

diabetes (Xanthakis et al., 2014).  Of these risk factors, age is the only non-modifiable 

risk factor.  

Improved health care is contributing to people living longer.  It is estimated that in the UK 

in 2009 almost £ 9 billion were spent on stroke care.  Of the £ 9 billion, about 50% is in 

direct costs, 27% in indirect costs, and 24 % in informal care (Saka et al., 2009).  Direct 

costs include hospitalization and rehabilitation which accounts for about £ 4.4 billion 

about 5.5% of the total National Health System (NHS) expenditure; indirect costs are 

income loss and social benefit payments (Saka et al., 2009).  In addition to people living 

longer and having more strokes the survival rate after stroke has also improved.   

Survival after stroke has increased in part because of improved prevention programs and 

improved health services for acute stroke care.  For example, from 1990 to 2010 

mortality from stroke decreased about 46% (Feigin et al., 2014).  Improved health 

services and the advent of thrombolysis has been associated with decreased mortality 

and decreased disability after stroke (Fonarow et al., 2014, Wardlaw et al., 2012). 

Thrombolysis is intravenous administration of tissue plasminogen activator which is a 

drug that assists in dissolving or breaking up the blood clot that is contributing to 

ischemic stroke.  As the blood clot dissolves, cerebral blood flow can return to the area 

thus giving the surrounding tissue an opportunity to receive oxygen and prevent tissue 

death.  Similar to a surface wound, the neural tissue in the centre of the stroke dies as 

this is the area of the brain that has had greatest loss of blood supply and therefore 

oxygen.  The surrounding brain tissue, called the penumbra, can be lost due to cell death 

or can undergo revascularisation through return of blood flow, which may facilitate 

improved recovery (Witte et al., 2000).   Thrombolysis is time sensitive, the sooner stroke 

symptoms are noticed and medical care is received, the better the outcome (Fonarow et 

al., 2014, Wardlaw et al., 2012).  Current guidelines state that thrombolysis needs to be 

administered within three hours of onset of symptoms for all patients and can be 

administered up to six hours from symptom onset on an individual basis (Party, 2012).  

For stroke survivors there is an associated disability despite participation in rehabilitation 

(Kwakkel et al., 2003, Lai et al., 2002, Lawrence et al., 2001). 

1.3 Stroke and upper limb disability 

Of stroke survivors, up to 77% report upper limb motor deficits (Lawrence et al., 2001).  

Upper limb motor deficits can impair a stroke survivor’s ability to use their upper limb for 

ADL’s such as eating and dressing.  Approximately 65% of stroke survivors do not 

incorporate their involved upper limb into ADL’s (Dobkin, 2005).  Despite participation in 
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rehabilitation, stroke survivors continue to demonstrate upper limb deficits (Kwakkel et 

al., 2003, Langhorne et al., 2011). For example, it was estimated that in a group of 102 

participants with a middle cerebral artery stroke 62% did not regain ‘some’ dexterity of 

their more affected upper limb (Kwakkel et al., 2003).  ‘Some’ dexterity was measured by 

a score of ten or more on the Action Research Arm Test (ARAT) indicating difficulty or 

inability to reach, grasp, or transporting objects at six months after stroke.  Stroke 

survivors with mild motor deficits reported lower levels of hand function, decreased 

independence with ADL’s, and overall decreased physical function (assessed by the 

Stroke Impact Scale) compared to community dwelling older adults (Lai et al., 2002).  

Additionally, stroke survivors with mild motor deficits also reported decreased real-world 

arm use (Lum et al., 2009).  Thus, a majority of survivors are living with some level of 

disability; sub-optimal recovery can have a psychological impact on the stroke survivor 

and their family.   

Decreased independence with ADL’s can lead to increased reliance on others for 

assistance in basic activities.  There are approximately 200,000 stroke survivors that 

require assistance from professional carers or family members to complete activities of 

daily living (Di Carlo, 2009, Saka et al., 2009).  Of the £9 billion spent on stroke care in 

the UK, about 24% is in informal costs for professional carers or family members (Saka 

et al., 2009).  Assistance from family members or partners can change the dynamic of 

the relationship and put additional stress on relationships.  Assistance for mobility may 

contribute to stroke survivors not leaving their home; this may lead to social isolation and 

limited participation in activities they enjoy, which can subsequently lead to depression 

(Mayo et al., 2002).  Discharge to a nursing home or care home could further isolate the 

stroke survivors from their family, friends, and activities.  A recent systematic review 

found that approximately 31% (95% CI of 28-35%) of stroke survivors suffer from 

depression (Hackett and Pickles, 2014), and there is evidence that depression can have 

a negative effect on functional outcomes (Ahn et al., 2015).  Improved functional 

outcomes after stroke may contribute to better upper limb motor function, independence 

with ADL’s (decreased reliance on others for help), and decreased cost of rehabilitation 

through more efficient treatment.  Improved upper limb outcomes may be accomplished 

through improved targeted rehabilitation interventions.  

A recent systematic review evaluated the effectiveness of different upper limb therapies 

after stroke.  The findings were that there was not one optimal therapy (Langhorne et al., 

2009).  This may be because of heterogeneous presentation and recovery after stroke.  

As all stroke survivors have individual movement deficits, it may be more beneficial to 

have more individualised, precise, targeted therapies aimed at specific movement 

dysfunctions and specific presentations of impairments.  
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To develop more precise and targeted interventions, there needs to be a deeper 

understanding of the underlying movement components and neural control of movement 

within normal movement control in neurologically intact adults, and the deficits of 

movement in stroke survivors.  This knowledge may provide more objective and detailed 

knowledge of movement characteristics from which it may be determined where 

interventions should be targeted.   A starting point for this is a deeper understanding of 

the kinematics of reach-to-grasp. 

1.4 Reach-to-grasp 

Reach-to-grasp is an essential component of upper limb movement and part of almost all 

ADL’s, such as reaching for a cup, putting on a shirt, or brushing teeth.  We use our 

upper limbs for functional activities throughout the day.  A study by Rand and Eng, 

(2012) assessed the frequency of upper limb use in stroke survivors and age-matched 

healthy adults through wearing of wrist accelerometers.  The healthy older adults used 

their right hand on average 184,761 (131,523 to 241,819) times a day, and their left hand 

on average 159,698 (107,826 to 217,489) times a day.  In contrast, the stroke survivors 

at the start of a rehabilitation program used their paretic hand on average 37,734 (18,167 

to 84,238) times and their non-paretic hand 147,500 (90,477 to 224,835) times a day 

(Rand and Eng, 2012).  After completion of the rehabilitation program the stroke 

survivors used their paretic hand 41,541 (19,300 to 105,590) times and their non-paretic 

hand 164,185 (95,287 to 212,920) times a day.  Stroke survivors used both their paretic 

and non-paretic upper limbs 78% and 12% less than control participants (right hand) 

respectively (Rand and Eng, 2012).  Decreased use of the upper limb for functional 

activities is related to impaired motor function and associated with poorer quality of life 

(Nichols-Larsen et al., 2005).  Reaching is the target of many upper limb therapies such 

as repetitive task practice (Michaelsen et al., 2006), functional strength training (Cooke et 

al., 2010b, Donaldson et al., 2009), and constraint induced movement therapy (Wolf et 

al., 2006). 

Successful reach-to-grasp requires complex interaction between mobility and stability.  

This coordination of movement is accomplished through simultaneous activation of the 

musculoskeletal and nervous systems (McCrea et al., 2002, van Vliet et al., 2013).   

The musculoskeletal system is comprised of the muscles, tendons, bones, cartilage and 

ligaments and provides the underlying muscle power and range of motion that 

contributes to the biomechanics of movement (McCrea et al., 2002).  For neurologically 

intact individuals reaching within arm’s reach requires recruitment of the shoulder, 

elbow/forearm, wrist, and hand.  Whereas, reaching outside arm’s length requires the 

addition of the trunk and hip joints (Michaelsen et al., 2001).  During reach-to-grasp the 

muscles provide simultaneous mobility and stability across the joints of the arm and hand 
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to transport the hand to the desired location (Liu et al., 2013).  For example, the shoulder 

and elbow are active to transport the arm to the cupboard while the wrist and hand are 

stable. When the hand is at the cupboard the shoulder and elbow are stable to assist the 

wrist to extend and position the hand at the desired object.  When the hand is at the 

object the hand and wrist are active for object manipulation. The complex coordination of 

muscle activity that contributes to performance of movement is directed by the nervous 

system.  

The nervous system is comprised of the central nervous system (CNS) including the 

brain, spinal cord, and cranial nerves, and peripheral nervous system (PNS) including 

peripheral nerves.  The nervous system provides “how to” for movement.  For example 

generating the motor plan, executing the motor plan via the neural pathways which 

activate the muscles, and direct movement adjustments based on peripheral feedback. 

(McCrea et al., 2002).   

1.4.1 Neural control of reach to grasp 

Successful reach-to-grasp is accomplished by an ongoing feedback loop from the 

peripheral nervous system to the central nervous system directing movement 

adjustments to achieve the task goal.  The key connection between the nervous system 

and voluntary upper limb movement is the corticospinal pathway.  The corticospinal 

pathway is integral to the descending portion of the feedback loop, smooth coordinated 

upper limb movement, and successful reach-to-grasp (Butler and Wolf, 2007, Shumway-

Cook and Woollacott, 2007).  The corticospinal pathway originates in the anterior region 

of the motor cortex of the brain and terminates with peripheral nerves that innervate the 

muscles of the upper limb, trunk and lower limbs Figure 1.  The corticospinal pathway 

receives inputs from the primary motor cortex, supplementary motor cortex, and 

premotor cortex (dorsal and ventral) (Sharma and Cohen, 2012).   The corticospinal 

pathway has monosynaptic connections with alpha motor neurons, and polysynaptic 

connections to gamma motor neurons and spinal neurons (Shumway-Cook and 

Woollacott, 2007).   

A schematic detailing the feedback loop can be found in Figure 2.  To describe this 

process the example of grasping a cup will be used. Briefly, a motor plan to advance the 

arm and hand towards the cup is generated in the motor cortex based on previous 

experience, sensory feedback, and the environment.  The brain areas involved in 

movement planning prior to limb movement are the premotor cortex, insula, pre-

supplementary motor area, superior temporal gyrus, parietal area, and parieto-occipital 

cortex (Glover et al., 2012).  The neural impulses generated by the motor plan are 

carried out via the corticospinal pathway to activate the muscles of the arm and hand 

(Shumway-Cook and Woollacott, 2007).  The activated muscles transport the limb 
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towards the object; during limb transport peripheral feedback from the environment 

(external), and internal feedback such as movement speed, joint position, and 

somatosensory information, is sent back to the sensorimotor area of the brain.  The brain 

areas involved in control of movement are the sensorimotor cortex, cerebellum, 

supramarginal gyrus, and the superior parietal lobule (Glover et al., 2012).  These brain 

areas synthesize the peripheral feedback and modify the motor plan.  The new modified 

motor plan is again executed through the corticospinal pathway which activates the 

muscles of the arm and hand to move the hand towards the cup. This feedback loop is 

continuous until the goal is achieved, successful grasp of the cup.  

The feedback loop and process of reach-to-grasp in neurologically intact individuals is 

seamless and unconscious.  However, for a stroke survivor, reach-to-grasp may be 

challenging and for some impossible.  After a stroke there can be a disruption in any part 

of the feedback loop which will lead to impaired reach-to-grasp.  For example, a stroke 

affecting the primary motor cortex and the corticospinal pathway can lead to the neural 

impulses traveling via an alternative pathway to the muscle that is less efficient.  

Alternatively, if there is a stroke in a brain area that has connections to the motor cortex 

such as the cerebellum, may impair the processing of peripheral feedback, which 

potentially leads to decreased control of movement and imprecision.  

 

.  
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Figure 1 - Corticsospinal Pathway  

 

 

 

Figure 1 - Diagram of the corticospinal pathway; the corticospinal pathway originates in the motor 
cortex, travels through the midbrain, pons, and medulla where most fibres cross contralaterally to 
descend though the spinal cord.  The neurons then synapse with spinal motor neurons, peripheral 
neurons and terminate at the muscles of the upper limbs, lower limbs and trunk.  (Figure from 
Shumway-Cook and Woollcott, 2007) 
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Figure 2 - Schematic detailing the feedback loop during reach-to-grasp 

 

 

 

Figure 2- Schematic of neural control of reach-to-grasp.  The motor plan is developed in the motor 

cortex, the neural impulses are carried via the corticospinal pathway to activate the muscles of the 

arm and hand.  The active muscles transport the arm and hand towards the object, 

simultaneously there is ongoing peripheral feedback being sent back to the sensorimotor cortex.  

The sensorimotor cortex updates the motor plan based on this feedback; new neural impulses are 

sent via the corticospinal pathway to activate the muscles of the arm and hand.  This loop 

continues until the task goal is achieved. 
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To better understand deficits of movement during reach-to-grasp in stroke survivors, 

there needs to be a firm knowledge base of the range of normal movement during reach-

to-grasp in neurologically intact adults.  The differences in movement between stroke 

survivors and neurologically intact individuals can then be compared.  

1.5 Assessment of reach-to-grasp 

There are different instruments available to assess movement during reach-to-grasp 

including observational assessment, kinematic assessment, and electromyography 

(EMG) assessment.  Each provides different knowledge of movement and will be 

discussed individually.   

1.5.1 Clinical observational assessment  

Clinical measures are useful to determine if an individual can or cannot complete specific 

tasks, assist in clinical decision making (interventions), and monitor progress.  However, 

observational clinical measures of upper limb motor ability have low sensitivity 

(Carpinella et al., 2006, Nowak, 2008), and are not able to assess or monitor change in 

individuals with mild motor deficits (Platz et al., 1999).  Clinical observational measures 

of upper limb movement such as the ARAT or Wolf Motor Function Test (WMFT) both 

include reach-to-grasp tasks.  The ARAT includes tasks of reach-to-grasp and transport 

of blocks, tubes, and cups, as well as fine motor activities of pinching marbles and ball 

bearings. The ARAT is scored by the therapist observing arm and hand movement 

during the tasks; scores range from 0 to 3; 0 = cannot perform and 3 = performs test 

normally (Lang et al., 2006, Lyle, 1981, Nijland et al., 2010).  Similarly, the WMFT 

assesses upper limb function, dexterity, and strength through tasks such as reach-to-

grasp of everyday objects such as a can, pencil, paperclip, and checkers.  The WMFT is 

scored by the therapist through movement observation, the scores range from 0-5, 

0=“does not attempt with the involved arm” to 5= “arm does participate, movement 

appears to be normal” (Wolf et al., 2001).  Neuro-biomechanical assessment of 

movement such as kinematic assessment and electromyography assessment may 

provide more objective and sensitive measures of movement. 

1.5.2 Neuro-biomechanical assessment  

Neuro-biomechanical assessments of movement and of reach-to-grasp include kinematic 

and electromyography assessment.  Firstly, kinematic assessment provides objective 

knowledge of movement control (McCrea et al., 2002) and can determine the underlying 

kinematic mechanisms of both movement and deficit of movement (Platz et al., 1999) 

such as the joint motion, velocity, smoothness, and trajectory.  Secondly, kinematic 

assessment is reliable, sensitive to monitor change, and can distinguish between 

proximal and distal dysfunction, for example transport versus grasp respectively (Lum et 

al., 2009, Nowak, 2008, Platz et al., 1999, Caimmi et al., 2008).  Finally, kinematic 
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assessment can identify movement deficits in stroke survivors with mild upper limb motor 

impairment, who when observed have movement patterns similar to healthy controls 

(Platz et al 1999).   

EMG is the assessment of muscle activity, muscle activation patterns, and muscle 

agonist and antagonist pairs.  EMG can provide “a description of the activation patterns 

which constitute the interface between the central nervous system and the biomechanics 

of the arm” (Flanders et al., 1996).  EMG can be used during isometric muscle 

contractions to evaluate muscle activity and EMG can be used during functional activities 

such as walking or reach-to-grasp.  EMG used during functional activities can provide 

knowledge of muscle activation, sequence of activation, muscles agonists and 

antagonists to better understand how the CNS and musculoskeletal system work 

together to complete a specific activity.   

Previous research has demonstrated that in neurologically intact adults, reach-to grasp 

movements are smooth, reproducible (Cirstea and Levin, 2000, Micera et al., 2005), 

demonstrate trunk recruitment only for objects outside arm’s length (Levin et al., 2002, 

Michaelsen et al., 2001), exhibit consistent muscle activation patterns (Vandenberghe et 

al., 2010), and have coordinated reach-to-grasp (van Vliet et al., 2013). However, stroke 

survivors movements are slower (van Vliet and Sheridan, 2007), demonstrate trunk 

recruitment to reach within and outside arm’s length (Levin et al., 2002), exhibit 

segmented movement (Cirstea et al., 2003), inconsistent recruitment of muscles (Massie 

et al., 2012, McCrea et al., 2005), and impaired coordination of reach-to-grasp (van Vliet 

et al., 2013).  A deeper understanding of movement control related to specific task 

restraints such as object placement may make the interpretation of stroke survivors’ 

movement control more meaningful and assist in development of more precise targeted 

interventions which are aimed at underlying movement control.  The development of 

more precise interventions may contribute to more efficient rehabilitation, improved upper 

limb outcomes, and decreased assistance for ADL’s.  This would benefit stroke survivors 

though decreased disability, improved independence as well as would benefit the NHS 

through decreased cost of stroke services (direct, indirect, and informal costs).   

The development of more precise interventions can be achieved by combining different 

assessment tools to provide a deeper understanding of kinematic movement control 

during reach-to-grasp; through a better understanding of the interaction between the 

nervous and musculoskeletal systems.  The evaluation of the interaction between upper 

limb movement and specific interventions and the neural correlates of reach-to grasp can 

be accomplished through neuroimaging and non-invasive brain stimulation technology 

which can indirectly assess neural plasticity, which is the brains ability to adapt and form 

new connections in response to motor learning.   
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1.6 Neuroimaging and non-invasive brain stimulation 

Research in human neural plasticity is possible due to development of technology that 

can assess the central nervous system.  There are different technologies that can assess 

neuroplasticity such as functional magnetic resonance imaging (fMRI), diffusion tensor 

imaging (DTI), positron-emission tomography (PET), magneto-encephalography (MEG), 

and transcranial magnetic stimulation (TMS).  Each neuroimaging technology has 

benefits and limitations of its use and these are outlined in Table 2.  

Functional magnetic resonance imaging or fMRI can assess brain areas of activation 

during a functional task such as finger tapping.  A brain map of active areas is created by 

using an imaging technique called blood oxygen level-dependent imaging (BOLD signal), 

that map the active brain areas during a specific functional task such as finger tapping 

(Chen 2010). The active brain areas during the finger tapping task utilise increased 

oxygen, thus there is increased blood flow to those regions; and the active regions 

appear a different colour on the fMRI scan.  The brain map derived from fMRI is useful to 

determine what brain areas are active during specific tasks, and to assess neural 

plasticity by evaluating how the areas of activation change over time following a 

rehabilitation intervention. There are limitations to fMRI: it is not portable, it is expensive, 

there is a confined environment within the scanner (claustrophobia), individuals with 

implanted metal cannot participate, there can be artefact from head movement, and the 

fMRI output is unable to distinguish if the brain activation is inhibitory or facilitatory to 

function (Chen et al., 2010, Dimyan and Cohen, 2011, Schaechter, 2004). 

Diffusion tensor imaging, DTI, examines the microstructure of brain structures through 

the evaluation of diffusion of water within the brain tissue and neural pathways (Chen et 

al., 2010). Evaluation of the microstructures can determine the integrity of the neural 

pathways and motor tracts such as the corticospinal pathway that may be compromised 

by the stroke.  DTI can also evaluate neural plasticity by the change in the integrity of the 

pathway following a rehabilitation intervention.  The limitations of DTI are similar to those 

of fMRI.   
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Table 2Technology of Assessment of Neural Plasticity  

Technology How it works Use Benefits Limitations 

fMRI 

(functional magnetic resonance imaging) 

-Develops a brain map of 

active areas by mapping blood 

flow  using blood oxygen level-

dependent imaging (BOLD) 

during a chosen functional 

task such as finger tapping 

- Determine what brain areas 

are active during a specific 

functional task 

- Assess neural plasticity by how 

the areas of activation change 

following a rehabilitation 

intervention over time 

-Able to determine all brain areas that 

are active during a specific task (what 

areas work together) 

-3D image of the brain and active 

areas 

-Good spatial and temporal 

resolution, absence of ionizing 

radiation, wide availability (compared 

to PET scan) 

-Not portable 

-Confined environment in the 

scanner (claustrophobia) 

-Cannot participate if the 

person has implanted metal 

-Acoustic noise 

-Artifact from head movement 

-Less sensitive than PET 

DTI 

(diffusion tensor imaging) 

 

-Examines the microstructure 

of brain structures via diffusion 

of water in brain tissue and 

neural pathways 

-Determine the integrity of 

neural pathways that may be 

compromised by stroke 

-Assess neural plasticity 

following a rehabilitation 

intervention 

-Assess the integrity of white matter 

tracts following stroke 

-Not portable 

-Confined environment in the 

scanner (claustrophobia) 

-Cannot participate if person 

has implanted metal 

MEG 

(magnetoencephalography) 

-Records magnetic fields that 

are produced by naturally 

occurring electrical currents in 

the brain using sensitive 

magnetometers. 

-Localising brain regions 

affected by pathology 

-Determine the function of brain 

areas during a specific task 

-Neurofeedback 

-Determine sensorimotor area 

reshaping related to therapeutic 

intervention 

-Brain mapping of re-organisation 

-Determine brain areas that are active 

during a specific functional task 

-High temporal resolution (1 

millisecond)) 

- Not portable 

- Cannot participate if person 

has implanted metal 

- Poor spatial resolution 

compared to fMRI 
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Technology How it works Use Benefits Limitations 

TMS 

(Transcranial magnetic stimulation) 

-A magnetic impulse induces 

an electrical current in brain 

tissue, this indirectly stimulates 

the corticospinal pathway; the 

response is measured with 

EMG at the muscles of the 

arm and hand 

-Assess integrity and excitability 

of the corticospinal pathway 

-Assess neural plasticity 

following a rehabilitation 

intervention 

-Can be used during active muscle 

contraction or at rest which is 

beneficial for those individual with 

hemiplegia 

-Portable 

-Motor area mapping –Determine 

excitability and integrity of the 

corticospinal pathway 

-Cannot participate if a person 

has implanted metal, seizures, 

large area of brain damage, a 

cardiac 

pacemaker/defibrillator, or 

hydrocephalus shunt. 

PET 

(Positron emission tomography) 

 

-Develop a brain map by 

measuring blood flow or 

metabolic changes to the brain 

areas that are active during a 

specific functional task 

-The blood flow and metabolic 

changes are determined by 

administering a radioactive 

tracer 

-Determine what areas of the 

brain are active during a specific 

task 

-Monitor change in 

activation/neural plasticity after a 

rehabilitation intervention 

-More physiologic room for individuals 

to complete limb movement or for 

additional monitoring of movement 

such as EMG 

-No magnetic fields used, can 

participate if you have implanted 

metal 

-Requires intravenous 

injection of a radioactive 

tracer substance therefore is 

invasive 

 

Table 2 Describes the neuroimaging techniques commonly used in rehabilitation research including fMRI, DTI, MEG, TMS, and PET their uses, benefits, and limitations.  

References: (Chen et al., 2010, Schaechter, 2004).  
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PET assessed blood flow changes or metabolic changes to derive a brain map of active 

brain areas during a functional task such as finger tapping.  A radioactive tracer is 

induced to the body via an intravenous injection. The tracer is then taken up by the blood 

stream and travels throughout the body and the brain (Chen et al., 2010, Schaechter, 

2004).  Similar to fMRI, during the functional task the active brain areas will require 

increased oxygen and blood flow, thus increased tracer in the active areas can be 

tracked and mapped.  The brain map describes what areas of the brain are active during 

specific tasks and can assess neural plasticity through changes in the brain map after a 

rehabilitation intervention.  Limitations to PET scans are that they are invasive due to the 

intravenous injection of the radioactive tracer, it is not portable, and similarly to fMRI  

PET is unable to determine if the brain activation seen is facilitatory or inhibitory (Chen 

2010, Dimyan and Cohen 2011).   

MEG uses magnetic fields to record natural occurring electrical currents in the brain 

through the use of sensitive magnomoters during a functional activity such as finger 

tapping (Schaechter, 2004).  MEG is able to localise brain regions affected by the stroke, 

determine the function of brain areas during a specific task, provide neurofeedback, and 

determine sensorimotor reshaping related to rehabilitation interventions.  The limitations 

of MEG are that it is not portable, there is poor spatial resolution when compared to 

fMRI, and individuals cannot participate if they have implanted metal (Schaechter, 2004).   

1.6.1 Non-invasive brain stimulation  

TMS involves a magnetic impulse over the motor cortex which induces an electrical field 

in the brain tissue below activating the neurons within the corticospinal pathway, the 

response is a motor evoked potential, MEP (Wassermann et al., 2008, Butler and Wolf, 

2007, Schaechter, 2004).  Evaluation of the MEP can assess the integrity or excitability 

of the corticospinal pathway and can be used to assess neural plasticity following a 

rehabilitation intervention.  The limitations of TMS are that individuals with implanted 

metal, a seizure disorder, brain or spine surgery, or implanted devices such as a cardiac 

pacemaker, hydrocephalus shunt, or drug infusion pump cannot participate (Rossi et al., 

2009).  TMS can be completed during active muscle contraction or at rest, allowing 

individuals without active movement to participate.   

In summary, fMRI, PET, and DTI are assessments within enclosed spaces thus those 

with claustrophobia could not participate, are not portable, and cannot distinguish 

between inhibitory and facilitatory activation.  Individuals with implanted metal can only 

participate in PET scanning. TMS has additional contraindications including those 

individuals who have a seizure disorder, implanted devices, or brain and spine surgery 

cannot participate.  The length of time it takes to complete assessments is also a factor, 

fMRI, PET, MEG and EEG require lengthy testing, which is time away from rehabilitation.  
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Transcranial magnetic stimulation (TMS) is advantageous in both assessing neural 

plasticity and exploring the interaction between the nervous and musculoskeletal 

systems.  TMS is portable (can be used in the hospital and other clinical settings), takes 

a reasonable amount of time to complete, can be completed during active muscle 

contraction or with the muscle at rest allowing assessment of individuals with severe 

hemiparesis, and the participant is never enclosed (those with claustrophobia are able to 

participate) (Wassermann et al., 2008, Schaechter, 2004).  A limitation of TMS is that 

people with implanted metal cannot participate; however people with implanted metal 

would not be able to participate in fMRI, MEG, or DTI as these assessments also utilise 

magnetic fields    TMS has been used with neurologically intact populations (Christie et 

al., 2007, Koski et al., 2005, Malcolm et al., 2006) and with clinical populations such as 

stroke survivors to investigate the integrity of the corticospinal pathway, and neural 

plasticity (Park et al., 2004, Brouwer and Schryburt-Brown, 2006, Koski et al., 2004),  

multiple sclerosis to investigate fatigue (Liepert et al., 2005), Parkinson’s Disease to 

assess intra-cortical connections (Bareš et al., 2003), and in the diagnosis of ALS 

(Pouget et al., 2000). 

1.7 Transcranial Magnetic Stimulation 

Transcranial magnetic stimulation is non-invasive brain stimulation technique based on 

the principles of electromagnetism, such that TMS coil produces a magnetic field, the 

changing magnetic field in the coil then induces a flow of electric current in the brain 

tissue below activating the neurons (Wassermann et al., 2008, Rossini and Rossi, 2007, 

Butler and Wolf, 2007) demonstrated in Figure 3.  When the magnetic impulse occurs 

over the motor cortex, the neurons within in the corticospinal pathway are activated 

through depolarisation; the response is a brief natural muscle contraction.  The natural 

muscle contraction can be measured using EMG at the target muscle of interest for 

example a muscle in the upper limb.  The muscle response is a motor evoked potential, 

MEP.   
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Figure 3 - Schematic of TMS 

 

 

Transcranial magnetic stimulation is non-invasive brain stimulation technique based on 

the principles of electromagnetism, such that TMS coil produces a magnetic field, the 

changing magnetic field in the coil then induces a flow of electric current in the brain 

tissue below activating the neurons (Wassermann et al., 2008, Rossini and Rossi, 2007, 

Butler and Wolf, 2007) demonstrated in Figure 3.  When the magnetic impulse occurs 

over the motor cortex, the neurons within in the corticospinal pathway are activated 

through depolarisation; the response is a brief natural muscle contraction.  The natural 

muscle contraction can be measured using EMG at the target muscle of interest for 

example a muscle in the upper limb.  The muscle response is a motor evoked potential, 

MEP.   

Figure 3 - TMS; magnetic impulse over the scalp induces an electrical current in the brain tissue 

below, specifically the corticospinal pathway when the coil is over the motor cortex.  The electrical 

current in the brain tissue leads to axonal depolarisation and neuronal firing.  Neuronal firing in the 

corticospinal pathway activates the muscles of the upper or lower limb resulting in a muscle twitch 
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or contraction which can be measured with surface electromyography. (Figure from Butler and 

Wolf 2007). 
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There are different types of TMS such as single pulse TMS, repetitive TMS (rTMS) 

encompassing theta burst stimulation (TBS), paired pulse TMS (ppTMS), and paired 

associated stimulation (PAS).  These different types of TMS allow us to measure and 

investigate different properties of the corticospinal pathway and connections with the 

motor cortex. 

1.7.1 Types of transcranial magnetic stimulation  

The different types of TMS are used to investigate the excitability of the corticospinal 

pathway (single pulse TMS), can increase or decrease excitability of neurons or brain 

areas (rTMS, TBS, ppTMS), and can be used to induce neural plastic changes within a 

brain area such as the motor cortex (PAS).  

Firstly, single pulse TMS involves a single magnetic impulse at a given time and is used 

to evaluate the excitability of the corticospinal pathway.  Evaluation of the excitability of 

the corticospinal pathway allows researchers to examine physiology of movement, neural 

plasticity, and derive motor maps of specific muscle representations (Rossini et al., 2010, 

Wassermann et al., 2008, Mishra et al., 2011). Assessment of the change in 

measurement of the excitability of the corticospinal pathway before and after an 

intervention is an indirect measure of neural-plasticity within the motor cortex and 

corticospinal pathway (Koski et al., 2004, Park et al., 2004, Wolf et al., 2006).  Within 

single pulse TMS there are different elements of the MEP response that can be 

measured.  Each element provides different information about the connection between 

the brain and the muscles.  These elements will be discussed in detail in the following 

section 1.7.2. 

Secondly, rTMS delivers repetitive trains of TMS pulses in quick succession at a given 

time. Low frequency rTMS < 1 Hz can induce long term depression decreasing 

intracellular communication, whereas high frequency rTMS > 1 Hz can induce long term 

potentiation increasing intracellular communication (Mishra et al., 2011).   Repetitive 

TMS can be used to either increase or decrease excitability of a specific brain area.  For 

example, excitatory rTMS given over the motor cortex has been shown to improve motor 

function, whereas inhibitory rTMS can decrease motor function.  Repetitive TMS has 

been used in this way in healthy people to induce “virtual lesions” to probe how motor 

function changes in relation to specific brain areas (Narayana et al., 2014, Vollmer et al., 

2015). Repetitive TMS has also been used in stroke survivors; excitatory rTMS has been 

administered over the lesioned hemisphere to increase excitability and prime the motor 

system before a motor intervention.  Alternatively, inhibitory rTMS can be administered 

over the non-lesioned hemisphere to decrease excitability of the non-lesioned 

hemisphere which is thought to facilitate increased neuronal recruitment of the lesioned 

hemisphere (Fregni et al., 2006, Boggio et al., 2006).  TBS is a type of rTMS that 
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consists of short bursts of stimulation at about 50-100 Hz and repeated at a frequency of 

5Hz.  This form of stimulation is thought to resemble neuronal firing in the hippocampus 

of rats (Mishra et al., 2011, Rossini et al., 2010), and being used to increase and 

decrease excitability of specific brain regions.  

Thirdly, ppTMS involves two stimuli given in a specific sequence; first a sub threshold 

stimulus is delivered followed by a suprathreshold stimulus.  The time interval between 

stimuli has different effects on cortical tissue.  A short inter-stimulus interval such as 1-4 

milliseconds (ms) can induce intracortical inhibition, whereas a longer inter-stimulus 

stimulus interval of 7-12 ms can induce intracortical facilitation (Mishra et al., 2011, 

Rossini et al., 2010).  Paired pulse TMS can be used to investigate excitatory and 

inhibitory facilitation between the right and left hemispheres in neurologically intact 

individuals as well as in those with neurological disease (Casadio et al., 2009, 

Peinemann et al., 2001).        

Finally, PAS can induce neural plastic changes in the sensorimotor cortex through 

combining electrical stimulation of a peripheral nerve with a magnetic pulse over the 

scalp.  This type of stimulation can induce plasticity based on the interval between 

stimuli.  If the peripheral stimulus arrives at the motor cortex before the magnetic 

stimulus it can induce cortical excitability and thus facilitate neural plasticity (Carson and 

Kennedy, 2013, Rossini et al., 2010).   

The different types of TMS provide valuable knowledge to better understand the 

connection between the brain and muscles of the upper limb, induce and explore the 

relationship between brain areas and motor function, and to facilitate neural plasticity.  

The focus of this thesis is on single pulse TMS and its measurement of the MEP. 

1.7.2 Motor evoked potential  

As previously mentioned the natural response to single pulse TMS given over the motor 

cortex is a brief natural muscle contraction, a MEP that is measured using EMG at the 

target muscle of investigation.  The transient electrical field created by the magnetic field 

(impulse) causes the neurons to depolarise.  The neurons depolarise through calcium 

and sodium ions flooding the axonal membrane and potassium ions exiting the 

membrane.  The increase of calcium and sodium within the axonal membrane facilitates 

depolarisation of the axons which leads to an action potential and propagation. 

Depolarisation spreads to connecting axons resulting in a natural muscle contraction, 

MEP (Wassermann et al., 2008, Butler and Wolf, 2007). There are different aspects or 

elements of the MEP that can be investigated such as MEP amplitude, MEP latency, 

silent period, motor threshold, and a recruitment curve.  Each element provides different 

information about the connection between the brain and the muscles, and is sensitive to 
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measure neural plasticity. The individual MEP elements are summarised in Table 3 and 

each element will be discussed individually. 

Firstly, MEP amplitude is a measure of the excitability of motor neurons in the 

corticospinal pathway that are activated by the TMS stimulus (Rossini and Rossi, 2007, 

Chen, 2000).  Amplitude measured during a muscle contraction is greater than when 

measured at rest.  During muscle contraction the corticospinal pathway is pre-activated 

though the activation of spinal neurons, the TMS stimulus is thus superimposed on an 

active system resulting in a larger amplitude response (Rossini and Rossi, 2007).   

Secondly, MEP latency is a measure of conduction time which is the time from TMS 

stimulus until the onset of the MEP on the EMG recording (Rossini et al., 2010, Rossini 

and Rossi, 2007).  The latency can be influenced by the diameter of the motor fibre, 

myelination, number of connecting impulses, current direction, and background muscle 

contraction during data collection (Rossini et al., 2010).   

Thirdly, the silent period is the period of absent muscle activity on EMG after the TMS 

stimulus.  The silent period is a measure of intra-cortical integrity; the first part is thought 

to be due to spinal mechanisms, whereas the second part is thought to be due to cortical 

mechanisms (Chen, 2000, Liu and Au-Yeung, 2014, Wassermann et al., 2008).  

Fourthly, the motor threshold is the lowest TMS stimulus measured as the percentage of 

stimulator output required to elicit a MEP.  Motor threshold is a measure of excitability of 

the membrane that surrounds the neurons in the corticospinal pathway (Chen, 2000), 

and is different for each muscle of the upper limb.  The motor threshold is higher for 

proximal muscles and lower for distal muscles of the upper limb, which is thought to be 

related to mono-synaptic (corticospinal) connection with hand muscles whereas, the 

proximal muscles exhibit greater inter-neuron connections (Turton et al., 1996).  Muscle 

contraction during TMS lowers the motor threshold, as the corticospinal system is pre-

activated, the neurons need a lower magnetic impulse or stimulus to yield a response 

(Chen, 2000, Rossini et al., 2010).  

Finally, another way to investigate the corticospinal pathway is to systematically collect 

MEP’s with increasing TMS stimulus; this is called a recruitment curve, stimulus 

response curve, or input-output curve.  With an increasing TMS stimulus there is an 

increase in MEP amplitude; the recruitment curve can measure neurons that are less 

excitable and farther from the centre of TMS activation (Massie and Malcolm, 2013, 

Chen, 2000).  The slope or steepness of the curve is related to the strength of the 

intracortical and corticospinal connections with the target muscle (Liu and Au-Yeung, 

2014).  Change in the slope of the curve over time or after an upper limb intervention can 

be due to changes in the distribution of the excitability of the corticospinal pathway or 

changes within the spatial distribution of stimulated neurons (Siebner and Rothwell, 
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2003).  Thus, the slope of the recruitment curve has been used as an indirect measure of 

neural plasticity.   

Assessment of the motor evoked potential has provided researchers and clinicians with 

growing evidence of how the human brain responds to learning, and undergoes neural 

plasticity.   
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Table 3- Motor Evoked Potential Elements 

MEP Element Definition and what it measures Method of data collection 

MEP amplitude 

 

Peak to peak amplitude of one MEP (Rossini and 

Rossi, 2007);  a measure of the motor neurons in the 

corticospinal pathway that are activated by the TMS 

stimulus (Wassermann et al., 2008).  MEP amplitude 

can assess the integrity and excitability of the 

corticospinal system (Rossini and Rossi, 2007). 

Peak-to-peak amplitude, or maximum deflection-

minimum deflection in a uV on EMG after a TMS pulse 

is given (Koski et al., 2007a). 

MEP Latency 

 

The time from TMS stimulation until the onset of a 

MEP on the EMG recording (Wassermann et al., 

2008).  A measure of conduction time from TMS 

stimulation to MEP response (Rossini and Rossi, 

2007). 

Time from TMS stimulus to the first deflection in EMG 

(MEP onset – TMS onset) (Koski et al., 2007a). 

Motor Threshold  The lowest TMS stimulation intensity needed to elicit 

a MEP (Wassermann et al., 2008); a measure of 

excitability of the membrane that surrounds the 

neuron (Chen, 2000), as well as “global excitability of 

the motor pathway” (Rossini et al., 2010). 

Active threshold: minimum TMS intensity needed to 

elicit ≥ 200 µv MEP in half of the consecutive trials 

during active muscle contraction (Perez and Cohen, 

2009).  Resting threshold: minimum TMS intensity 

needed to elicit an MEP ≥ 50 µv in half the consecutive 

trials when at rest (Butler and Wolf, 2007). 
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Silent Period 

 

The period after TMS stimulation of absent muscle 

activity on the EMG recording (Wassermann et al., 

2008) The first part of the silent period may be in part 

due to spinal mechanisms, whereas the second part 

is thought to be due to cortical mechanisms; can be 

used to assess intracortical activity (Chen, 2000). 

Visual assessment of EMG output using MEP onset to 

MEP return on EMG (Damron et al., 2008). 

 

 

Incremental collection of MEP’s with increasing 

stimulus intensity (Wassermann et al., 2008); a 

measure of neurons that are less excitable and 

farther from the centre of TMS activation (Chen, 

2000). 

 Sequential collection of MEP’s.  The TMS intensity will 

begin at active motor threshold (100%) and will be 

increased by 10% of motor threshold until 130% of 

motor threshold is reached (Wassermann et al., 2008).   

Five trials obtained at each intensity. 

Table 3 Describes the individual elements of the MEP that can be measured using single pulse TMS which are MEP amplitude, MEP latency, motor threshold, silent 

period, and recruitment curve.  MEP=motor evoked potential, TMS=transcranial magnetic stimulation  

Recruitment Curve  
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1.8 Neural plasticity  

Neural plasticity is the process of re-organisation of neural connectivity as a result of 

experience or practice (Warraich and Kleim, 2010); it is an everyday occurrence and the 

process by which we learn new tasks, and re-learn old tasks.  Neural plasticity is most 

rapid in the early stages of development; the rate decreases as we age but is always 

present (Ward and Frackowiak, 2003).  Neural plasticity can occur in both healthy adults 

and those with central nervous dysfunction arising from stroke.  Neural plasticity occurs 

during novel skill learning in which the task must be complex and challenging in order for 

the brain to re-organise (Adkins et al., 2006).  When we learn new tasks or improve our 

ability at a task new neural connections within the brain are created.  One of the theories 

by which new neuronal connection are created is based on Hebian plasticity in which 

synaptic plasticity is strengthened through activation of the neuron (Takeuchi and Izumi, 

2015).  Hebian plasticity involves two processes, the first is long-term potentiation (LTP) 

and the second is long term depression (LTD).  LTP is the strengthening of neuronal 

connections which can occur during exercise, repetitive task practice, or when learning a 

new task.  Long term depression occurs when activity between neurons becomes slow or 

non-existent, these connections no longer become useful and thus become latent (Butler 

and Wolf, 2007). 

Neural plasticity and excitability of the corticospinal pathway can be influenced by 

neurotransmitters in different ways.  Examples of the neurotransmitters that influence 

neural plasticity are gamma-Aminobutyric acid GABAA which is thought to inhibit neural 

plasticity, and n-methyl-Dasparate receptor, NMDA, which is thought to increase neural 

plasticity though the passage of sodium and calcium ions into nerve cells which leads to 

neuronal depolarization (MacDermott et al., 1986, Ziemann et al., 2004). The excitability 

of the corticospinal pathway as measured by the slope of the recruitment curve was 

investigated after administration of lorazepam, which is a GABAA enhancer, lamotrigine 

which is a sodium and calcium channel inhibitor (similar to inhibiting NMDA), and d-

amphetamine which has dopaminergic effects and is a medication used to enhance 

motor performance after stroke.  Following drug administration the slope of the 

recruitment curve was enhanced by d-amphetamine, whereas, the slope was decreased 

by lorazepam and lamotrigine (Boroojerdi et al., 2001).  Similarly, after administration of 

lorazepam (GABAA enhancer) and detromethrophan (an NMDA blocker) there were 

decreases in MEP amplitude with training (Bütefisch et al., 2000). Finally, intracortical 

inhibition was increased and MEP amplitude decreased after administration of lorazepam 

(GABAA enhancer) (Di Lazzaro et al., 2000).  These findings suggest that excitability of 

the corticospinal pathway can be enhanced by dopaminergic medications, and inhibited 

by GABAA.    
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The brains capacity for neural plasticity and cortical re-organisation may be in part 

related to physiology and genetics specifically a gene called brain derived neurotrophic 

factor, BDNF.  Individuals with a morphism to the BDNF gene exhibited lower 

corticospinal excitability (measured by smaller MEP amplitudes) and decreased motor 

map re-organization after a training activity compared to individuals without the gene 

morphism (Kleim et al., 2006). 

Finally, neural plasticity is specific to task training and motor learning.  Research in 

animal models have demonstrated that general exercise without motor learning or task-

specific trainings is not associated with an increase in synapses or changes in muscle 

motor map representation.  However, general exercise demonstrated an increase in 

cortical angiogenesis (blood vessel density) (Kleim et al., 2002).  Investigations in 

humans have demonstrated after task specific training there are associated increases in 

amplitude of MEP max and a decrease in motor threshold, indicating improved 

corticospinal excitability.  In comparison there was no change in MEP max after two 

weeks of strength training, and at four weeks the amplitude of MEP max and slope of the 

stimulus-response curve decreased (Jensen et al., 2005).  Similarly, in the lower limb 

motor skill training was associated with increased slope of the recruitment curve 

whereas, there was no change observed in the individuals that participated in passive 

training (Perez and Cohen, 2009).  These findings support the theory that type and 

specificity of training influences the type of re-organisation within the brain and 

corticospinal pathway.    

Neural plasticity is essential to learning in both neurologically intact adults and in stroke 

survivors.  There are many processes that contribute to neural plasticity and cortical re-

organisation such and LTP, LTD, neurotransmitters, physiology/genetics, and is specific 

to task practice. Understanding and exploring neural plasticity has become possible with 

the development of neuroimaging technologies and non-invasive brain stimulation, 

specifically through TMS. 

1.9 Transcranial Magnetic Stimulation and neurologically 

intact populations  

Transcranial magnetic stimulation studies in the neurologically intact population have 

helped researchers understand the role of the corticospinal pathway in active movement, 

assess neural plasticity and cortical re-organisation, and provide normative data for 

comparison to those with neurological disease.   

Firstly, the findings of TMS studies in the neurologically intact population have helped 

develop an understanding of the connection between the motor cortex and the upper 

limb and cortical control of movement (Devanne et al., 2002, Levin et al., 2011, van Kuijk 
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et al., 2009a, Fujiyama et al., 2012, Pearce et al., 2000).  The assessment of motor 

performance in racket ball players found that elite players had larger hand motor maps, 

lower motor thresholds, and increased MEP amplitudes compared to less skilled players 

(Pearce et al., 2000).  This suggests improved skill level is associated with stronger 

corticospinal connections to the motor cortex.  TMS can also be used to better 

understand interhemispheric connections between the right and left sides of the brain 

through interhemipsheric inhibition or facilitation (Kossev et al., 2002, Marneweck et al., 

2011, Perez et al., 2004).  Interhemispheric balance after stroke; exploring 

interhemispheric connections in neurologically intact individuals provides a range of 

“normal” function, and a way to induce inhibition or facilitation to probe what may be 

occurring after stoke.   

Secondly, TMS has been used to evaluate neural plasticity in the neurologically intact 

brain.  For instance, after completing wrist exercises, individuals exhibited increased 

corticomotor excitability for up to 30 minutes (Narayana et al., 2014)   Individuals who 

learned a piano skill exercise demonstrated decreased motor thresholds, and increased 

cortical maps indicating increased corticospinal pathway excitability and neural plasticity.  

The decreased motor thresholds and increased cortical maps were associated with 

improved skill performance at piano playing through decreased errors (Pascual-Leone et 

al., 1995).  There have been similar findings in investigations in the lower limb.  A group 

of individuals completed thirty-two minutes of skilled ankle training involving dorsiflexion 

to move a cursor on a computer screen.  After completing the skill training individuals 

demonstrated increased MEP amplitudes and decreased short-latency intracortical 

inhibition compared to baseline (Perez et al., 2004).  

Thirdly, rTMS can be delivered to facilitate or inhibit specific brain areas; researchers can 

probe through a motor task or memory task to assess if performance has improved or 

declined.  Thus researchers can induce “virtual lesions” in a specific brain region to 

better understand the role of that brain area. For example, inhibitory rTMS delivered to 

the primary motor cortex was associated with decreased motor function in the ipsilateral 

hand of healthy subjects (Vollmer et al., 2015), whereas facilitatory rTMS was associated 

with improved motor skill learning (Narayana et al., 2014).  

TMS studies within the neurologically intact population have provided knowledge of the 

excitability of the corticospinal pathway, the role of different brain areas in motor function, 

and cortical re-organisation related to task specific training.  The knowledge gained 

through TMS studies can be used as normative data for comparison to individuals with 

neurological disease such as stroke.  However, these studies have focused on young 

neurologically intact adults, whereas the majority of stroke survivors are older adults, and 

the incidence of stroke increases with age (Xanthakis et al., 2014).  There is evidence 
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that the natural ageing process is associated with changes within the CNS and 

decreases in motor function.  Therefore, it is important to explore TMS in neurologically 

intact older adults as the response may be different to younger adults, and would provide 

age-matched comparison to those with neurological disease. 

1.10 Ageing 

The natural ageing process is associated with changes in the nervous system such as a 

decrease in white matter, interhemispheric connections via the corpus collusum, tissue 

density, myelination, and number of myelinated neurons within the corticospinal pathway 

(Seidler et al., 2010, Salat et al., 2005).  There are also decreases in motor function with 

age that are associated with changes in brain activation. The changes in motor function 

with age are decreased dexterity of both the upper (Dayanidhi and Valero-Cuevas, 2014, 

Lawrence et al., 2014) and lower limbs (Lawrence et al., 2014); decreased reaction time 

(Levin et al., 2011, Poston et al., 2009), and muscle weakness (Plow et al., 2014).  

Research using fMRI has found that older adults recruit additional brain areas (Mattay et 

al., 2002, Talelli et al., 2008a) and additional neurons (Kossev et al., 2002) to complete 

the same task as younger adults.  It is hypothesized that the additional areas and 

neurons are recruited to maintain a specific level of motor control or coordination for the 

task.  In reaction time tasks, older adults demonstrated earlier activation of the 

corticospinal pathway compared to the younger adults and also had slower reaction 

times (Levin et al., 2011).  Similarly to the over activation hypothesis, the earlier 

activation of the corticospinal pathway may be an attempt to improve or speed up 

reaction time.  Older adults that demonstrated poorer dexterity also had decreased tissue 

density and decreased myelination of the axons in the internal capsule through which the 

corticospinal pathway passes (Sullivan et al., 2010).  Muscle weakness with age has also 

been associated with TMS measurement.  In older adults the centre of gravity of the 

biceps muscles was shifted anteriorly in the motor cortex and the centre of gravity was 

predictive of biceps strength (Plow et al., 2014).  It is hypothesised that the anterior shift 

in the centre of gravity is due to compensatory mechanisms in an attempt to maintain 

strength.   These findings highlight that there may be a link between age-related changes 

in the corticospinal pathway and arm and hand function that can be measured using 

TMS.   

Transcranial magnetic stimulation in stroke survivors has been used to investigate the 

integrity and excitability of the corticospinal pathway after stroke, evaluate neural 

plasticity following a rehabilitation intervention, and in prediction of upper limb motor 

recovery such that the presence of an MEP early after stroke associated with better 

functional outcomes.  
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1.11 Motor Evoked Potential and stroke 

There are changes with the MEP elements after a stroke, and the MEP elements are 

sensitive to measure change in corticospinal pathway excitability.  Each MEP element 

will be discussed individually. 

Following a stroke, the MEP amplitude is decreased compared to neurologically intact 

adults, reflecting a smaller number of neurons are activated by the TMS stimulus 

(Cacchio et al., 2011, Tarkka et al., 2008). The amplitude is sensitive to change following 

upper limb rehabilitation in stroke survivors, such as an increase in amplitude reflects a 

greater number of activated neurons and thus neural plasticity (re-organisation) (Butler 

and Wolf, 2007).  For example, after six sessions of goal-oriented therapy MEP 

amplitude was increased 50% from the baseline assessment (Koski et al., 2004).  

Likewise, following two weeks of constraint inducted movement therapy MEP amplitude 

was increased from baseline (Park et al., 2004, Tarkka et al., 2008). 

After a stroke, the MEP latency is longer compared to neurologically intact individuals 

(Butler and Wolf, 2007, Cacchio et al., 2011, Wheaton et al., 2009).  The longer latency 

is thought to be due to damage of the fast conducting tracts of the corticospinal pathway 

as a result of the stroke (Turton et al., 1996); thus the neural impulses may use 

alternative pathways which may be inefficient, lengthening the time for the impulse to 

reach the muscle (Rossini et al., 2010).  There is conflicting evidence concerning 

whether the MEP latency changes in response to an upper limb rehabilitation 

intervention.  A longitudinal study monitored stroke survivors’ upper limb function and 

corticospinal pathway excitability, demonstrating that as participants’ strength improved 

their MEP latency decreased (Turton et al., 1996).  Conversely, participation in two 

weeks of constraint induced movement therapy led to no difference in MEP latency from 

baseline to post-therapy (Tarkka et al., 2008).   

The silent period can be lengthened after a stroke and changes over time.  Brouwer and 

Schryburt-Brown (2006) found the silent period to be lengthened on the paretic side; and 

with time (recovery) the silent period duration shortened (Brouwer and Schryburt-Brown, 

2006).  Prolonged silent period is thought to be due to an imbalance of intracortical 

inhibitory networks within the brain such that there is increased neural activity in the 

unlesioned hemisphere and decreased neural activity in the lesioned hemisphere 

(Bütefisch, 2004).   

Stroke survivors have higher motor thresholds requiring a stronger TMS stimulus to elicit 

a MEP compared to neurologically intact adults (Brouwer and Schryburt-Brown, 2006, 

Turton et al., 1996).  The higher stimulus may be needed because of damage to the 

integrity of the corticospinal pathway, use of alternative pathways, or imbalance in 

intracortical connections.  There is conflicting evidence on motor threshold response to 
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physiotherapy intervention.  Sawaki and colleagues (2008) found no change in motor 

threshold after constraint induced movement therapy (Sawaki et al., 2008).  Whereas 

Koski and colleagues (2004) found an immediate decrease in motor threshold following 

constraint induced movement therapy (Koski et al., 2004). 

After a stroke, the slope of the recruitment curve has been found to be decreased in 

hand muscles compared to neurologically intact adults (Koski et al., 2007a).  There is 

evidence that after two weeks of constraint induced movement therapy there was no 

change in the recruitment curve post therapy compared to baseline (Sawaki et al., 2008). 

In addition to TMS being used to assess the integrity of the corticospinal pathway, and its 

response to physical therapy intervention TMS is being used as a measure to predict 

upper limb motor recovery after stroke.   

1.12 Transcranial Magnetic Stimulation and prediction of 

recovery  

Stroke survivors and their family members frequently ask therapists and physicians: “Will 

I return to my prior level of function I had before the stroke?”  The answer to this question 

is also meaningful to clinicians to aid in patient and family education and in clinical 

decision making.  Prediction of motor outcomes is becoming more important for 

discharge planning, and determining the optimal physiotherapy intervention.  Previous 

research has utilised the initial level of paresis as a predictor of recovery.  For example 

the less initial paresis (better movement) of the upper limb was a strong predictor of 

regaining dexterity (Hendricks et al., 2002, Kwakkel et al., 2003). In addition to initial 

paresis there is evidence that the presence of a MEP early after stroke is associated with 

improved motor recovery (Delvaux et al., 2003, Stinear et al., 2012); this is supported by 

the findings of a systematic review that demonstrated the presence of a MEP in the first 

few days after stroke was highly predictive of motor recovery (Hendricks et al., 2002).  

Previous research utilising an MEP to predict recovery has focused on an MEP in a 

muscle of the hand, the presence of an MEP in more proximal muscles has also been 

investigated.  The findings demonstrate the presence of a MEP in the abductor digiti 

minimi was a better predictor of return of hand function versus the presence of a biceps 

MEP (van Kuijk et al., 2009b). This is not surprising as the specificity of the muscles are 

different.  Finally, combining the presence of arm movement with presence of a MEP 

was an effective predictor of function (Stinear et al., 2012, van Kuijk et al., 2009b).   

Neural plasticity after stroke is different to that of neurologically intact individuals.  After a 

stroke there are physiologic changes within the brain and central nervous system to 

assist in repair and preservation of brain function.   
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1.13 Neural plasticity after stroke  

Neural plasticity is an everyday occurrence by which the neurologically intact population 

learns new tasks, and improve skills in existing tasks.  Neural plasticity for stroke 

survivors is essential to re-gain motor function and functional use of their body through 

new neuronal connections.  The different phases of stroke recovery exhibit different rates 

of neural plasticity.  Research in neural plasticity in the early phases of stroke recovery 

has been focused on animal models due to complexities of the research in humans.  The 

use of neuroimaging and non-invasive brain-stimulation has provided knowledge of the 

underlying processes of neural plasticity in humans.   

1.13.1 Spontaneous recovery in animal models 

Spontaneous recovery is natural recovery (neural plasticity) that occurs early after stroke 

for around three months (Cramer, 2008); that can be enhanced through active 

participation in rehabilitation early after stroke (Buma et al., 2013).  The mechanisms of 

spontaneous recovery are difficult to research in humans.  However, animal research 

has provided insights into structural and molecular changes that may contribute to 

spontaneous recovery.  In rats induced with a cortical stroke, in the initial 7 days after 

stroke there was a reduction in immunoreactivity including decrease of y- aminobutyric 

acid (GABAA) receptors in the area surrounding the lesion and in connected brain 

regions with an increase in N-methyl-D-asperate (NMDA) (Redecker et al., 2002, Que et 

al., 1999).  The importance of GABAA is that it is an inhibitory neurotransmitter which 

serves to block nerve impulses.  Therefore, a decrease in GABAA in the first days after 

stroke would allow increased neuronal impulses and possibly facilitate neural re-

organization.  Along with a reduction in GABAA there is an increase in growth factor in 

the infarct area.  Following an induced stroke in the rat, there was an increase in 

fibroblast growth factors in the brain tissue surrounding the lesion that continued for at 

least two months (Finklestein et al., 1990).  Growth factors may contribute to the cellular 

processes involved in wound healing and in healing the damaged tissue surrounding 

stroke.   An inflammatory response is the body’s first defence mechanism; acutely after 

stroke there is inflammation within the peri-lesional brain tissue and there can be 

widespread inflammation throughout the brain.  Inflammation can contribute to neuronal 

loss acutely, but in the long term it may contribute to repair and recovery (Lucas et al., 

2006).  Diaschisis occurs acutely after stroke, resolving over time.  Diaschisis refers to 

any changes within the brain initiated by the stroke lesion itself but occurring in distant 

brain regions (Witte et al., 2000), such as a stroke in the primary motor cortex can be 

associated diaschisis in the cerebellum leading to decreased coordination of movement.   

The processes of immunoreactivity, influx of neurotransmitters (GABA and NMDA), 

inflammation and diaschisis may create an environment in the brain suitable for 

accelerated re-organization and neural plasticity early after stroke (Nudo, 2006).   
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1.14 Cortical-reorganization after stroke  

Different phases of recovery after stroke have been identified.  Initially after stroke there 

is the acute reaction to ischemia involving changes in blood flow, oedema, and 

inflammation in the area surrounding the lesion, which is similar to findings of animal 

studies (Wahl and Schwab, 2014).  In addition to the acute reaction, Wallerian 

degeneration can occur within the corticospinal pathway and remote connections with 

the motor cortex.  Wallerian degeneration is the disintegration of axonal structures, influx 

of macrophages, breakdown of myelin, and fibrosis leading to the atrophy of the fibre 

tract.  Wallerian degeneration can start within three days after stroke and progresses 

with time (Thomalla et al., 2005, Xie et al., 2012).  The degree of Wallerian degeneration 

is associated with motor impairment (Thomalla et al., 2004). 

The second phase starts within the first days after stroke and lasts for weeks; this phase 

includes spontaneous recovery.  This phase is characterised by hyperactivity in cortical 

areas such as motor, language, and attention areas; which decreases over time, and is 

associated with better motor outcomes (Wahl and Schwab, 2014, Cramer, 2008).  For 

example, using fMRI and PET scanning acutely after stroke, there are greater number of 

active brain areas during a dexterity task compared to healthy controls; the increased 

activation decreased over 3-6 months (Marshall et al., 2000, Calautti et al., 2001).  

Additionally, stroke survivors demonstrate over-activation of the contralesional 

hemisphere altering the interhemisphic balance (laterality index) to the contralesional 

hemisphere (Tombari et al., 2004), Marshall et al. (2000).  A recent meta-analysis 

demonstrated that stroke survivors consistently exhibited over-activation of their 

contralesional primary motor cortex, bilateral ventral premotor cortex and supplementary 

motor area compared to healthy adults (Rehme et al., 2012). Over time, cortical 

activation shifts back to the ipsilesional hemisphere and the interhemispheric balance 

(laterality index) is normalised (Marshall et al., 2000, Tombari et al., 2004).  During the 

early phase of recovery, TMS studies have demonstrated that stroke survivors have 

increased motor thresholds (Cacchio et al., 2011, Wheaton et al., 2009) , decreased 

excitability of the corticospinal pathway exhibited by smaller MEP amplitudes (Cacchio et 

al., 2011, Wheaton et al., 2009), decreased slope of the recruitment curve (Koski et al., 

2007a), and decreased intracortical inhibitiory mechanisms (Duque et al., 2005).  

Unmasking of latent pre-existing neuronal connections could contribute to cortical-

reorganization early after stroke (Butler and Wolf, 2007).  In rat models decreased 

cortical inhibition led to an increased in neuronal activity adjacent to the lesion (Jacobs 

and Donoghue, 1991).  In human studies following CIMT the centre of gravity of the 

motor map area of the hand shifted posteriorly and laterally from baseline (Park et al., 

2004); demonstrating adjacent neurons taking over the role (function) of the stroke 

impaired neurons. The processes of hyperactivity of cortical areas, decreased 
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corticospinal pathway output, and changes in inter-hemispheric balance are thought to 

be related to spontaneous recovery (Cramer, 2008, Wahl and Schwab, 2014).    

The third phase begins weeks to months after stroke and is characterised by plateauing 

of spontaneous recovery.  However neural plasticity continues into the chronic phases 

albeit more slowly (Wahl and Schwab, 2014, Cramer, 2008).  Neural plasticity or re-

organisation can occur through parallel pathways or new brain regions taking over the 

function of the damaged area (Chen et al., 2002, Wahl and Schwab, 2014). Research in 

rats has demonstrated that adjacent to the lesion there is axonal sprouting which is 

associated with improved limb use (Carmichael et al., 2001).  An example in humans of 

cortical re-organisation through activation of existing but silent synapses (Butler and 

Wolf, 2007) is after task oriented training.  Following task oriented training stroke 

survivors demonstrated increased activation contralaterally to the paretic limb (SMC) with 

associated decreased ipsilesional activation (Jang et al., 2003).  Control of the 

movement after training shifted back to the lesioned hemisphere though activation of 

new neurons possibly through the process of LTP driven by task oriented training.    

Recent research suggests that after a stroke, brain re-organisation within the lesioned 

hemisphere is associated with faster and better functional outcomes compared to re-

organisation within the contralesional hemisphere (Calautti et al., 2001, Feydy et al., 

2002, Loubinoux et al., 2003, Pundik et al., 2015, Turton et al., 1996, Ward et al., 2003).  

Additionally, individuals with damage to the corticospinal pathway were found to have 

greater motor deficits (Wenzelburger et al., 2005, Ward et al., 2007, Stinear et al., 2012).  

Patterns of activation identified with serial fMRI have provided knowledge of neural 

plasticity and functional recovery.  Thus individuals with poorer motor function 

demonstrate neural activation of the unlesioned hemisphere during movement.  

Activation of the unlesioned hemisphere can also be investigated though TMS targeting 

ipsilateral corticospinal pathways.     

1.14.1 Ipsilateral pathway 

Most fibres of the corticospinal pathway cross contra-laterally about the level of the 

medulla, resulting in the right side of the brain activating (controlling) mostly the muscles 

of the left side of the body.  In the general population the corticospinal pathway can 

contain up to about 30% of fibres that do not cross contra-laterally across the body 

leading to ipsilateral innervations of the upper limb muscles (Nathan et al 1990).  In 

neurologically intact adults the ipsilateral projections are more prominent in the proximal 

upper limb muscles (Bawa et al 2004, Jankowska & Edgley 2006).  Following 

neurological injury or pathology, ipsilateral connections to both proximal and distal 

muscles can be enhanced compared to neurologically intact adults (Bawa et al., 2004, 



50 
 

Jankowska and Edgley, 2006).  Stroke survivors with ipsilateral connections demonstrate 

poorer motor function (Feydy et al., 2002, Turton et al., 1996). 

The ability for our brains to form new connections is essential for motor recovery after 

stroke. The corticospinal pathway provides the connection between the motor cortex and 

the muscles of the arm and hand and is essential for functional use of the upper limb 

such as for reach-to-grasp.  The integrity (excitability) of the corticospinal pathway can 

influence motor function, and measurement of the integrity of corticospinal pathway can 

give insight in to the pyramidal motor system (Bütefisch, 2004).  Understanding the 

corticospinal pathway’s contribution to movement, how it is changed after a stroke, and 

neural plasticity after rehabilitation can help direct specific interventions to improve 

neural control and improve successful reach-to-grasp. All muscles of the upper limb are 

necessary for successful reach-to-grasp, however TMS research has focused on the 

distal muscles, therefore less is known about the corticospinal connections to proximal 

muscles. 

1.14.2 Assessment of upper limb muscles 

Previous TMS research in both healthy and stroke populations have focused on 

investigation of distal upper limb muscles such as the hand and forearm muscles 

(Malcolm et al., 2006, Koski et al., 2007a, Koski et al., 2005, Liu and Au-Yeung, 2014, 

Hoonhorst et al., 2014).  There has been less research on the proximal upper limb 

muscles for example the biceps.  The proximal upper limb muscles are essential to 

transport the hand to allow for grasp and object manipulation, and to maintain stability 

while the distal joints are mobile (Lum et al 2008, Alt Murphy 2015, Shumway-Cook and 

Wollacot 2007).  The biceps muscle is commonly impaired after a stroke and therefore 

the target of many upper limb interventions (Pundik et al., 2015, Donaldson et al., 2009, 

Wolf et al., 2006) thus warranting investigation.  There is evidence that the different 

muscles of the upper limb receive different corticospinal input and respond differently to 

TMS (Martin et al., 2006, Malcolm et al., 2006).  Therefore, both distal and proximal 

muscles should be investigated. 

Transcranial magnetic stimulation can provide knowledge of the integrity or excitability of 

the corticospinal pathway, cortical-reorganisation following a rehabilitation intervention, 

predictor of upper limb motor function, and determine if there are ipsilateral connections 

from the unlesioned hemisphere to the muscles of the more-affected upper limb.  It is 

important when using a measurement tool such as TMS that it is reliable within the 

population.  A reliable measurement tool ensures confidence in the results of the 

measurement and that the findings will be interpretable; this allows clinicians and 

researchers to make informed clinical decisions (Bruton et al., 2000, Portney and 

Watkins, 2009). 
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1.15 Reliability of TMS assessment of the corticospinal pathway 

to upper limb muscles  

Reliability is a measure of consistency, repeatability, or agreement of a measure or 

measurement tool over at least two separate tests (Bruton et al., 2000, Portney and 

Watkins, 2009) and is based on the “proportion of the total observed variance that is 

attributable to error” (Portney and Watkins, 2009).   There are several properties of 

reliability that can be assessed such as reliability, measurement error, and internal 

consistency (Mokkink et al., 2010).  The studies within this thesis focus on reliability.  

Within reliability there is inter-rater reliability and intra-rater or test-retest reliability.  Inter-

rater reliability encompasses different raters, the same instrument, and the same sample 

(Kottner et al., 2011, Mokkink et al., 2010, Portney and Watkins, 2009).  The inter-rater 

reliability of TMS measurement has been documented exhibiting ICC values ranging 

from 0.6 to 0.94 (Cacchio et al., 2009, Bastani and Jaberzadeh, 2012, Mylius et al., 

2013).  Intra-rater and test-retest reliability encompass the same rater, same instrument, 

and the same sample (Kottner et al., 2011, Mokkink et al., 2010, Portney and Watkins, 

2009).   Test-retest reliability is the agreement of a measurement taken on two separate 

occasions when no change in the population was expected (de Vet et al., 2006).  The 

test-retest reliability of TMS measurement is of interest in the studies presented in this 

thesis. 

A reliable measurement tool ensures confidence in the results of the measurement and 

that the findings will be interpretable; this allows clinicians and researchers to make 

informed clinical decisions based on a specific measurement (Bruton et al 2000, Luiz et 

al 2005, Portney and Watkins 2000). With any measurement there will be day-to-day 

variability and inconsistency; through statistical assessment it can be investigated if the 

variability is within acceptable limits.  There are different statistical methods that can be 

used to investigate reliability and agreement between tests; previous research has used 

Pearson’s correlation, Cohen’s Kappa, Lin’s Concordance Coefficient (CCC), Intraclass 

Correlation Coefficient (ICC), and the Limits of Agreement (LOA).  Pearson’s correlation 

evaluates the strength of the association between two measurements but is limited in 

that is does not evaluate agreement (de Vet et al., 2006), Cohen’s Kappa is useful in the 

reliability of categorical or ordinal data whereas TMS data is ratio data, and CCC is used 

to investigate two different methods, raters, or instruments (Portney and Watkins 2009). 

The ICC measures the degree of correlation and agreement between ratings making it a 

better statistical assessment of reliability than Pearson’s correlation (Bruton et al., 2000, 

de Vet et al., 2006, Portney and Watkins, 2009).  The  LOA and Bland-Altman plots 

assess agreement across tests and evaluate if there is a biased pattern of error 

(underestimating or overestimating the true score) (Portney and Watkins, 2009, Bland 

and Altman, 1986b). Interpreting the ICC and LOA together can provide information 



52 
 

about both the reliability and potential differences in TMS values between tests.  

Acceptable reliability in the studies in this thesis are interpreted such that the ICC value 

of > 0.70 for the lower end of the confidence interval is acceptable reliability (Portney and 

Watkins, 2009, Schambra et al., 2015). 

The test-retest reliability of TMS measures has been investigated in neurologically intact 

young adults, and in stroke survivors greater than six months post stroke.  There is a 

knowledge gap of the test-retest reliability in older adults and stroke survivors early after 

stroke.   

1.15.1 Reliability of TMS measures in neurologically intact adults 

In neurologically intact adults, the test-retest reliability of TMS measures is variable, 

ranging from poor to good depending on the MEP element and target muscle being 

investigated.  The findings of individual studies are in Table 4.  The motor threshold 

demonstrates the highest ICC values for example, for the first dorsal interosseous (FDI) 

the ICC ranges from an ICC=0.81 (95% Confidence Interval (CI) 0.50-0.93) (Liu and Au-

Yeung, 2014) to an ICC=0.98 (CI not reported) (Koski et al., 2005).  The MEP amplitude 

demonstrates lower ICC values, such as for the FDI ranging from ICC=0.53 at 110% 

AMT to (Ngomo et al., 2012), to ICC=0.87 (0.60-0.96) (Liu and Au-Yeung, 2014).   

There is evidence of age related changes with the brain and corticospinal pathway 

(Seidler et al., 2010, Salat et al., 2005) and associated changes in motor function 

(Dayanidhi and Valero-Cuevas, 2014, Lawrence et al., 2014, Plow et al., 2014).  In 

addition to age related changes in the CNS, there are changes within MEP element 

measurement with age, however, the evidence is inconsistent Figure 4.  It is unknown 

how age-related changes in the central nervous system may influence the reliability of 

TMS measurement.  It is possible that with age, excitability of the corticospinal pathway 

is more variable.  Therefore, the test-retest reliability in younger adults may not be 

applicable to older adults.  The test-retest reliability of TMS measure in neurologically 

intact adults of all ages needs to be explored.  Knowledge generated would provide 

understanding of how age may influence reliability of TMS measures, provide age-

matched data for comparison to individuals with neurological disease, and improve our 

understanding of the corticospinal pathway.   
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Figure 4 - The influence of age on MEP elements 

 

 

   

Figure 4 Describes the changes with the elements of the motor evoked potential within the healthy 

aging nervous system 

 

Ageing's 
influence on 
elements of 

the MEP

Amplitude

Smaller:  McGinley  
2010 & Oliviero 2006, 

Fujiyama 2009

Larger: Kossev et al., 
2001

No Difference: Stevens-
Lapsley et al., 2012

Recruitment Curve

Shifted to the right: 
Pitcher 2003 & 
Stevens-Lapsley  

2012

Silent Period

Shorter: Oliviero 2010 & 
Sale and Semmler, 2005

Longer: McGinley  2010

No difference: Stevens-
Lapsley 2012

Latency

Longer:  Sale and 
Semmler, 2005

Similar in young & 
old: Rossini 2010

Motor Threshold

Higher Resting 
threshold: McGinely  

2010 

Similar in young & old: 
Fathi Kossev  2001, 
Wasserman 2002, 

Stevens Lapsley  2012
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Table 4 - Reliability of TMS measures in neurologically intact adults 

Study Type of 
reliability 

Sessions and 
Raters 

TMS stimulator 
and coil 

Participants Muscle MEP 
amplitude 

MEP latency Silent 
Period 

Recruitment 
Curve 

Motor 
Threshold 

Liu 2014 Test-retest 1 rater: 
2 sessions 
with a week 
interval 
between 
sessions 

MagStim with a 
70mm figure-of-8 
coil 

N=14 
27.4±3.4 
years of age 

FDI (ND Peak) 
ICC=0.87 
(0.60-0.96) 

  (ND) ICC=0.75 
(0.23-0.92) 

(ND)ICC=0.81 
(0.50-0.93) 

Carroll 
2001 

Test-retest 2 sessions 
separated by 
at least 24 
hours  

MagStim 200 
figure-of-eight coil 
with 8 cm loop 

N=8 
22-36 years 
of age  

FDI (D Peak)  
ICC [A,3] 
ICC=0.82 
ICC [A,1] 
ICC=0.60 

  (D) slope 
ICC [A,3] 
ICC=0.91; 
ICC [A,1] 
ICC=0.77 
Peak slope: 
ICC [A,3] 
ICC=0.84 
ICC [A,.1] 
ICC=0.63 
X intercept  
ICC [A,3] 
ICC=0.93 
ICC [A,1] 
ICC=0.81 

ICC [A,3] 
(D) ICC= 0.96 
ICC [A,1] 
ICC=0.89 

Koski 
2005 

Test-retest 3 raters; 7 
sessions over 
10 hours (1.5 
hours between 
sessions) 

Magstim Super 
rapid biphasic 
stimulator; figure-
of-eight coil; 9 cm 
per wing 

N=17 
(19-36 years 
of age) 

FDI   (CSP) (D) 
ICC=0.99 
(ND) ICC= 
0.83 

 (D) ICC=0.98 
(ND) ICC=0.97 
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Study Type of 
reliability 

Sessions and 
Raters 

TMS stimulator 
and coil 

Participants Muscle MEP 
amplitude 

MEP latency Silent 
Period 

Recruitment 
Curve 

Motor 
Threshold 

Ngomo 
2012 

Test-retest 
Short term 
(ST) and long 
term (LT) 

3 sessions, 4 
days between 
session 1 and 
2, and 35 to 
457 days 
between 
sessions 2 and 
3 

Neuronagivated 
TMS MagStim 
BiStim 70mm 
figure-of-eight coil 

N=12 
26.5±4.3 
years of age 

FDI ST: (D) R110% 

ICC=0.70 
A 110% 
ICC=0.53 
R 120% 
ICC=0.87 
A120% 
ICC=0.66 
LT: 

 R110% 
ICC=0.20 
A 110% 
ICC=0.79 
R 120% 
ICC=0.75 
A120% 
ICC=0.63 

   (ND) rMT 
ICC=0.89 
(ND) aMT  
ICC=0.89 

Solloman 
2013 

Inter-rater 
(IER) 
Intra-rater 
(IAR) 

2 raters 
3 sessions 
(session 1 and 
2 same 
investigator) 

Neuronavigated 
TMS eCimia 4.3 
Nexstim biphasic 
figure-of-eight coil 
50 mm radius 

N=10 
24.2(22.7-
30.3 years of 
age) 
 

APB     (IER D) CCC= 
0.709 (0.244-
0.909) 
(IAR D) 
CCC=0.725 
(0.276-0.914) 

Christie 
2007 

Test-retest  2 sessions 
separated by 
20 minutes  

Cadwell 
stimulator 7 cm 
circular coil (used 
same hot spot) 

N=30 76±6.3 
years of age 

ADM 1.1x MT 
ICC=0.83 
1.2x MT 
ICC=0.65 
1.3x MT 
ICC=0.82 

    

Malcolm 
2006 

Test-retest  2 sessions 
separated by 2 
weeks  

MagStim 200 
circular coil  

N=20 
26.9±4.5 
years of age 

FDI 
APB 
EDC 
FCR 

   (D slope) 
ICC=0.82 
ICC=0.78 
ICC=0.83 
ICC=0.60 
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Study Type of 
reliability 

Sessions and 
Raters 

TMS stimulator 
and coil 

Participants Muscle MEP 
amplitude 

MEP latency Silent 
Period 

Recruitment 
Curve 

Motor 
Threshold 

Damron 
2008 

Inter-rater 2 sessions 
separated by 3 
weeks  

MagStim 2002  N=9  
Men 
22.1±0.03 
years 
Women 
24.1±1.5 
years 

FCR   (ND) 
ICC=0.91-
0.99, CV 
11.4-32.5 

  

Cacchio 
2011 

Test-retest  One rater 2 
sessions 4 
week interval 
between 
sessions  

Magstim 200 
circular coil 

N=16 
63.1±10.1 

TA (D) ICC=0.88 
(0.65-0.96) 
(ND) ICC=0.88 
(0.66-0.95) 

(D) ICC=0.95 
(0.82-0.98) 
(ND) ICC=0.90 
(0.73-0.97) 

  (D) ICC=0.95 
(0.89-0.98) 
(ND) ICC=0.93 
(0.87-0.97) 

Cacchio 
2009 

Intra-
investigator 
(IAR) inter 
(IER)-
investigator 
test-retest) 
(TRT) 
reliability  
 

Intra-
investigator 
(IAR): 2 
sessions 1.5 
hours apart, 
test-retest 4 
weeks 
between 
sessions 

Magstim 200 
circular coil  

N=50 22-74 
years of age  

TA (D) MEP max  
IAR 
ICC=0.75(0.71-
0.79) 
IER ICC=0057 
(0.64, 0.76) 
TRT ICC=0.73 
(0.71-0.75) 

(D)  
IAR ICC=0.93 
(0.88, 0.97) 
IER ICC=0.79 
(0.76,0.83) 
TRT 
ICC=0.92(0.84-
0.98) 

(D) Max:  
IAR 
ICC=0.95 
IER 
ICC=0.89 
(0.85, 0.94) 
TRT  
ICC=0.95 
(0.88-0.99) 
Min: IAR 
ICC=0.79 
(0.76,0.83) 
IER 
ICC=0.81 
(0.78, 0.84) 
TRT 
ICC=0.81 
(0.78-0.85) 

(D slope)  
IAR ICC=0.79 
(0.72-0.84) 
IER ICC=0.66 
(0.62,0.78) 
TRT ICC=0.78 
(0.72-0.83) 

(D) 
IAR 
ICC0.98(0.93-
0.99)  
IER 
ICC=0.94(0.89-
0.98) 
TRT ICC=0.97 
(0.90-0.99) 
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Study Type of 
reliability 

Sessions and 
Raters 

TMS stimulator 
and coil 

Participants Muscle MEP 
amplitude 

MEP latency Silent 
Period 

Recruitment 
Curve 

Motor 
Threshold 

Schambra 
2015 

Test-retest 1 rater 
4 sessions 1 
AM, 1 PM then 
repeated the 
next day 

Magstim BiStim2 
with phantom MRI 
70mm figure-of-
eight coil 

 FDI     Slope (left) 0.03 
(0, 0.51) (right) 
ICC=0.07 
(0,0.70) 
Plateau (left) 
ICC=0.90(0.82, 
0.094) (right) 
ICC=0.82 (0.62, 
0.94) 
S50 (left) 
ICC=0.91 (0.80, 
0.95) (right) 
ICC=0.92 
(0.82,0.96) 

(left) ICC=0.97 
(0.90,0.99) 
(right) ICC=0.98 
(0.96, 0.99) 

Carson 
2013 

Test-retest  3 session each 
separate by at 
least 24 hours  

Magstim 2000 
70mm figure-of-
eight coil  

FDI n=8; 22-
36 years of 
age 
FCR 11; 20-
56 years of 
age 
FCR n=57; 
18-47 years 
of age 

FDI 
ECR 
FCR 

(Max) 
FDI: ICC=0.85 
FCR ICC=0.35 
FCR ICC=0.06 

  Slope  
FDI: ICC=0.85 
FCR: ICC=0.76 
FCR ICC=0.36 

 

Kimiskidis 
2004 

Test-retest 1 rater 2 
sessions of 
varied length 
between from 
19 minutes to 
1867±94 days 

Magstim 200 70 
mm figure-of-
eight coil 

N=82 12-65 
years of age  

FDI     Spearman 
brown formula to 
determine 
reliability 
coefficient 
 0.928; 
measurement 
error 8 
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Study Type of 
reliability 

Sessions and 
Raters 

TMS stimulator 
and coil 

Participants Muscle MEP 
amplitude 

MEP latency Silent 
Period 

Recruitment 
Curve 

Motor 
Threshold 

Kamen 
2004 

Test-retest 3 sessions 
separate by at 
least 24 hours 

Caudwell MES-10 
9-cm focal coil 

N=14 
24.4±8.2 
years  

Biceps, 
FDI 

Rest Biceps: 
100% ICC=0.98 
85% ICC=0.99 
70% ICC=0.95 
Rest FDI: 
100% ICC=0.60 
85% ICC=0.75 
70% ICC=0.81 
Active (70% 
stim output) 
Biceps:  
25% MVC 
ICC=0.79 
50% MVC 
ICC=0.68 
75% MVC 
ICC=0.69 
100% MVC 
ICC=0.68 
 
 

    

 

Table 4 - Reliability of TMS measures in neurologically intact adults describes the findings of the test-retest reliability of TMS measures.  The table includes the type of 

stimulator and coil used for data collection, the time interval between sessions, number of sessions, number and age of participants, target muscle of assessment, and 

the ICC value of the MEP elements assessed.  If the number of raters is not specified than it is assumed there was one rater.  Acceptable reliability is interpreted such 

that an ICC value of > 0.70 for the lower end of the confidence interval is acceptable.  ICC=intraclass correlation coefficient, CCC= Lin’s concordance correlation 

coefficient, FDI= first dorsal interosseous, APB abductor pollicis brevis, ECR=extensor carpi radialis, FCR=flexor carpi radialis, EDC= extensor digitorum confundis, 

TA=tibialis anterior, ADM= adductor digiti minimi, D=dominant limb, ND=non-dominant limb, MVC=maximal voluntary contraction    



59 
 

1.15.2 Reliability of TMS measures in stroke survivors  

The test-retest reliability of TMS measures in stroke survivors has been focused in 

chronic stroke populations who are greater than six months after stroke.  There has been 

one recent study investigating the reliability of TMS measures in sub-acute stroke, 

however, it was limited to assessing only the FDI muscle.  The findings of test-retest 

reliability in chronic stroke survivors are also variable, ranging from poor-good for the 

different MEP elements (Table 5). 

The motor threshold demonstrates higher ICC values as in the FDI the ICC=0.97(0.94-

0.99) (Liu et al 2014), on the other hand the MEP amplitude demonstrates lower ICC in 

the tibialis anterior the ICC=0.38 (-0.74-0.78) (Cacchio et al., 2011).   Previous 

investigations have been limited to investigating mostly hand muscles, however, all 

muscles of the upper limb are essential for reach-to-grasp and to complete ADL’s.  In the 

first few months after stroke there are many physiological differences within the central 

nervous system including the initial inflammatory response, cortical hyperactivity, 

spontaneous recovery and rehabilitation or experience-dependent neural plasticity (Wahl 

and Schwab, 2014, Cramer, 2008, Marshall et al., 2000, Calautti et al., 2001).  Neural 

plasticity continues in chronic stroke but at a slower rate (Kwakkel et al., 2003). 

Therefore, the test-retest reliability findings in the chronic stroke population may not be 

applicable to stroke survivors within in the first three months after stroke.  It is important 

to determine the test-retest reliability of TMS within each population it is being used, to 

have confidence in the results of the measure to be able to make clinical decisions.  TMS 

is being increasingly used in stroke research as a measure of neural plasticity and to 

predict upper limb function, thus the test-retest reliability of TMS in stroke survivors within 

the first three months after stroke needs to be determined. 

1.16  Summary 

In summary, improved stroke rehabilitation specifically upper limb rehabilitation is 

needed.  Over half of stroke survivors are living with upper limb disability preventing their 

participation in ADl’s.  A deeper and more complete understanding of upper limb 

movement, the underlying movement deficits, and the neural correlates of movement is a 

first step in progressing rehabilitation.  The kinematic differences between stroke 

survivors and neurologically intact control participants is expected to provide the 

underlying movement deficits during reach-to-grasp.  Developing more targeted 

interventions aimed at the movement deficits may improve the efficiency and decrease 

the cost of rehabilitation.  Understanding the role of the corticospinal pathway to 

movement and motor control will provide the link between the CNS and the 

musculoskeletal system as well as movement control of the upper limb.  TMS can be 

used to assess corticospinal pathway excitability, integrity, and contribution of 
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movement.  Before TMS is widely used, its reliability needs to be determined.  The test-

retest reliability of previous TMS research has focused on young, neurologically intact 

adults and stroke survivors greater than six months after stroke.  There is a gap of 

research in older adults and stroke survivors within the first few months after stroke.  

There is potential that the excitability of the corticospinal pathway may be variable in 

older adults due to age related changes in the CNS and in stroke survivors early after 

stroke due to hyperactivity of motor areas, spontaneous recovery, and task-dependent 

neural plasticity.  Therefore, the reliability of TMS measures needs to be determined in 

these populations.  
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Table 5 - Test-retest reliability of TMS measures in stroke survivors 

Study Reliability 
and Raters 

Sessions 
and interval 

between 

TMS 
stimulator 
and coil 

Participants 
and time 

since stroke 

Muscle MEP amplitude MEP latency Silent 
Period 

Recruitment 
Curve 

Motor 
Threshold 

Cacchio 
2011 

Test-Retest 2 sessions, 4 
week interval 

MAGSTIM 
200 circular 
coil 

N=16 
21.6±14.8 
months 

TA (L) ICC=0.38  
(-0.74-0.78) 
(UL) ICC=0.87 
(0.76-0.92) 

(L) ICC=0.85 
(0.58-0.94) 
(UL) ICC=0.91 
(0.76-0.96) 

  (L) ICC=0.90 
(0.72-0.96) 
(UL) ICC=0.92 
(0.78-0.97) 

Harris-Love 
2013 

Test-retest 2 sessions 
separate 
days 

  Biceps and 
Triceps 

  CSP 
(L)  
Biceps 
ICC=0.57 to 
0.79 
Triceps 
ICC=0.68 to 
0.84 

  

Hoonhorst Intra-
observer (IA) 
Inter-
observer (IE) 

2 sessions 7 
day interval 

 N=18 
3.5 (3-5) 
months 

APB  TMCT 
(L) IE: 0.772 
(0.562 
to0.905) 
IA: ICC=0.638 
(0.247 to 
0.853) 
IA: ICC= 
0.585 (0.123 
to 0.834) 

   
 
 

Liu 2014 Test-retest 2 sessions, 1 
week interval 

 N=27, 7.6±3.2 
years 

FDI (Peak MEP) 
(L) 
ICC=0.96(0.91-
0.98) 
(UL) ICC=0.95 
(0.88-0.98) 

 (L) 
ICC=0.88 
(0.72-0.94) 
(UL) 
ICC=0.93 
(0.85-0.97) 

(Slope) 
(L) Slope 
ICC= 
0.95 (0.88-
0.98) 
(UL) ICC= 
0.95 (0.89-
0.98) 

(L) ICC= 0.97 
(0.94-0.99) 
(UL) ICC= 
0.95  (0.89-
0.98) 
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Study Reliability 
and Raters 

Sessions 
and interval 

between 

TMS 
stimulator 
and coil 

Participants 
and time 

since stroke 

Muscle MEP amplitude MEP latency Silent 
Period 

Recruitment 
Curve 

Motor 
Threshold 

Koski 2007 Test-retest 2 sessions, 2 
week interval 

 N=9 (mean) 
12.8; range 8-
17 months 

FDI (MEP max)  
(L) ICC=0.98; 
LLCI=0.94 
(UL) ICC=0.71 
LLCI=0.21 

  (peak slope) 
(L) ICC=0.98 
LLCI=0.93 
(UL) ICC=0.19 
LLCI=negative 
range 
(Slope) 
(L) ICC=0.87 
LLCI=0.57 
(UL) ICC=0.78 
LLCI=0.35 

(of MEP max) 
(L) 
ICC= 
0.84  
LLCI 0.49 
(UL) ICC=0.31 
LLCI=negative 
range  

Wheaton 
2009 

Test-retest 2 sessions, 
7-10 day 
interval  

MAGSTIM 
200 
double-
cone coil  

N=23 (median) 
57.6 months 

VL, VM (L) VL 
ICC= 0.205 
VM 
ICC=0.537 
(UL) VL 
ICC=0.874 
VM 
ICC=0.831 

 (L) VL 
ICC=0.689 
VM 
ICC=0.789 
(UL) VL 
ICC=0.791 
VM 
ICC=0.645 

 (L) ICC=0.798 
(UL) 
ICC=0.975 

Schambra 
2015 

Test-retest, 1 
rater 

4 sessions 
(AM. PM) 1 
day interval  

Magstim 
Bistim2 + 
phantom 
brain, 
figure-of- 
eight coil 

Subacute 
n=20, 
17.4±9.8 days 
Chronic n=21 
2617.9±3166.1 
days  

FDI    Slope 
Subacute  
(L) ICC=0.70 
(0.35, 0.84) 
(UL) ICC=0.53 
(0.26, 0.77) 
Chronic  
(L) ICC=0.18 
(0, 0.86) 
(UL) ICC=0.23 
(0, 0.71) 

Subacute  
(L) ICC=0.96 
(0.91, 0.99) 
(UL) ICC=0.99 
(0.98, 0.99) 
Chronic  
(L) 0.96 
(0.93,0.98) 
(UL) 0.98 
(0.96,0.99) 

Table 5 - Test-retest reliability of TMS measures in stroke survivors describes the findings of the test-retest reliability of TMS measures of corticospinal pathway.  The 

table includes the type of stimulator and coil used for data collection, interval between sessions, number of sessions, number of participants, times since stroke, target 

muscle, and the reliability of the MEP elements assessed.  Acceptable reliability is interpreted such that an ICC value of > 0.70 for the lower end of the confidence interval 
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is acceptable.   ICC=intraclass correlation coefficient, FDI= first dorsal interosseous, VL= vastus lateralis, VM=vastest medius, APB=abductor pollicis brevis, TA=tibialis 

anterior, L=lesioned hemisphere, UL=un-lesioned hemisphere   
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2 Statement of Aims 

2.1 Statement of aims 

The studies reported in this thesis are the need for a better understanding of the neuro-

biomechanical correlates of reach-to-grasp.  This is required because, despite 

participation in rehabilitation, up to 65% of stroke survivors do not recover the ability to 

reach, grasp, or transport objects as measured by impaired dexterity of their more-

affected hand.  As reach-to-grasp is an essential part of all activities of daily living such 

as dressing, grooming, and eating its absence clearly limits independent living.  

Consequently current rehabilitation interventions need to be improved upon.   

Taking the first steps towards more effective upper limb rehabilitation is promised by 

targeting the underlying movement deficits with the intervention most likely to re-

establish normative motor function.  Enhanced understanding of the movement deficits in 

reach-to-grasp is expected to provide clearer definition of the targets for rehabilitation 

and thus enhance the specificity of rehabilitation for better functional ability outcomes.  

Kinematic assessment can identify the underlying motor components of normal 

movement and identify changes in these which are associated with movement deficit.  

For example, velocity, smoothness, and trajectory of reach-to-grasp.  

Studies investigating the kinematics of reach-to-grasp utilise varied methodologies.  For 

instance, varied reach-to-grasp task, movement speed, trunk restraint, and methods of 

data collection and analysis, demonstrate heterogeneity.  Variation between studies 

makes it difficult for therapists to select which intervention may be the most effective for 

the individual.  Further complexity arises because it is unknown how task requirements 

such as object location may impact kinematic characteristics.  As a result erroneous 

diagnoses are possible. 

There are reviews of reach-to-grasp kinematics and neural control of reaching but these 

are narrative.  Systematic synthesis of reach-to-grasp kinematics after stroke compared 

to age-matched healthy adults with meta-analysis and consideration of risk of potential 

bias is lacking.  This is needed to inform the development of a standardised reach-to-

grasp assessment for better diagnosis and targeted interventions.   

Already known is that successful reach-to-grasp is accomplished through the interaction 

of the nervous and musculoskeletal systems. Central to the interaction between the 

nervous and musculoskeletal systems is the corticospinal pathway, connecting the motor 

cortex to the muscles of the arm and hand.  The corticospinal pathway is essential for 

smooth coordinated arm movement.  Assessment of the corticospinal pathway is 

undertaken using transcranial magnetic stimulation; which is a painless brain stimulation 

technique based on the principles of electromagnetism.  The response to a brief 
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magnetic stimulus over the primary motor cortex is a “natural” muscle contraction called 

a motor evoked potential (MEP) in the target muscle of investigation.  The MEP is 

measured using electromyography, electrodes placed on the skin over the target muscle.  

Transcranial magnetic stimulation has been used with neurologically intact and stroke 

survivor adults.  Such investigations demonstrate that after a stroke the integrity of the 

corticospinal pathway can be disrupted.  Investigation of the motor evoked potential can 

provide researchers with information about the strength or excitability of the corticospinal 

pathway, and how excitability changes in response to learning or practicing a motor task 

(neural plasticity).  Moreover, in stroke survivors the presence of a MEP early after stroke 

is being used as a research tool and is a proposed prognostic indicator of arm and hand 

recovery.  However, the reliability (repeatability) of TMS measures early after stroke 

remains uncertain.    

The reliability or repeatability of TMS measures has been investigated in young healthy 

adults.  The test-retest reliability between sessions demonstrates moderate to good 

reliability in both populations.  However, with age there are changes within the central 

nervous system such as decreased brain volume, decreased inter-hemispheric 

connections, and microstructure changes within the corticospinal pathway.  It is unclear 

how these changes may influence aspects of the MEP and the reliability of TMS 

measurement in middle-aged and older adults.  There is a paucity of TMS investigation 

of the corticospinal pathway connection with the proximal upper limb muscles such as 

the biceps that are essential for successful reach-to-grasp.  Proximal upper limb muscles 

are essential to transport the hand in space, then to stabilize the arm while the hand and 

wrist are involved in object manipulation.    Determination of the test-retest reliability of 

TMS measures in neurologically intact adults of all ages in both proximal and distal upper 

limb muscles is indicated.  The findings of this investigation will contribute to a better 

understanding of: the functionality of the corticospinal pathway over the age span, test-

retest reliability of TMS measures, and provide normative data to compare to stroke 

survivors, the majority of which are older adults. 

The test-retest reliability of TMS measures has been investigated in stroke survivors who 

are at least six months after stroke.  Extrapolation of these findings to people earlier after 

stroke is not possible because of the physiological differences in the brain such as: the 

initial inflammatory response, over activation of brain areas, and spontaneous recovery.  

It is uncertain how these processes impact the corticospinal pathway, and consequently 

TMS measures.  There is a distinct lack of investigation of the reliability of TMS 

measures in people who are less than three months after stroke.  Furthermore, just like 

the TMS investigations of corticospinal function in neurologically intact populations 

research with stroke survivors has investigated the distal muscles of the upper limb.  As 

the proximal muscles are often impaired following a stroke they require research 
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examination, not least because TMS is being used in rehabilitation studies to assess 

neural plasticity and as a predictor of function early after stroke.  Consequently, the 

reliability of TMS measurement in both proximal and distal upper limb muscles in people 

within three months after stroke needs to be determined.     

Progressing the clinical science of comprehensive assessment and subsequent 

individualized treatment for stroke survivors is expected to enhance current levels of 

upper limb recovery.  Synthesizing the knowledge of the kinematic deficits during reach 

to grasp, the corticospinal contribution to reach to grasp, the influence of targeted 

interventions on the corticospinal pathway, neural plasticity, movement kinematics, and 

upper limb function are therefore the areas of investigation of studies reported in this 

thesis.   

2.2 Research questions  

Question 1 

Are kinematic characteristics during reach-to-grasp different between stroke 

survivors and neurologically intact controls and are the kinematic differences 

influenced by task requirements such as object placement? 

This question was informed by the need to develop targeted upper limb interventions 

aimed at the underlying movement deficits of reach-to-grasp.  Reach-to-grasp is part of 

all ADL’s; improved interventions targeted at reach-to-grasp could contribute to improved 

independence with ADL’s.   

Aim 1a 

Determine if kinematic characteristics such as movement time, peak velocity, trunk 

contribution, smoothness of movement, reach path ratio, and elbow range of motion are 

statistically different during reach-to-grasp comparing stroke survivors to neurologically 

intact adults. 

Aim 1b 

Determine the influence of task requirements such as object location, the time since 

stroke, and upper limb motor function on the kinematic differences between stroke 

survivors and neurologically intact adults.   

Aim 1a and aim 1b will be investigated through a systematic review and meta-analysis 

(Chapter 3) 

 

 



67 
 

Questions 2a and 2b   

Questions 2a and 2b are regarding the test-retest reliability of TMS measures in 

neurologically intact adults. 

Question 2a 

Is TMS measurement of corticospinal pathway excitability reliable (test-retest 

reliability) in neurologically intact adults of all ages (> 18 years of age)?  

This research question was informed by the need to investigate the reliability of a 

measurement tool within all the populations that it is used.  Many stroke survivors are 

older adults; the focus of TMS research and reliability research is in young adults.  With 

age there are changes within the nervous system that may influence TMS measurement 

and its reliability; necessitating the need to investigate the reliability of TMS 

measurement in neurologically intact adults of all ages.   

Aim 2a 

Determine the reliability of the MEP elements of active and resting motor threshold, 

motor evoked potential amplitude, motor evoked potential latency, silent period, and a 

recruitment curve of the bilateral biceps brachii, extensor carpi radialis and abductor 

pollicis brevis muscles in neurologically intact adults who are at least 18 years of age.   

Question 2b  

Is the reliability of TMS measurement influenced by age, gender, or physical 

activity?    

This research question was informed by evidence that the corticospinal pathway and 

brain stimulation can be influenced by aging (decreased brain volume, decreased 

intracortical connections, decreased myelination and density of neurons within the 

corticospinal tract), physical activity (greater corticospinal excitability), and gender 

(female hormones can influence neural plasticity).  

Aim 2b  

Explore if the test retest reliability of the motor threshold is different in older adults, men 

or women, and individuals that exercise.  Furthermore, the reliability of additional TMS 

measures (MEP amplitude, MEP latency, and silent period) for each group (older adults, 

men, women, exercisers and non-exercisers) will be provided in the appendix of the 

thesis.  The study is not powered to determine a statistical difference for each group of 

individuals. The main text will discuss the reliability of TMS measures in the group as a 

whole. 
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Aim 2a and aim 2b will be investigated through a prospective correlational test-retest 

reliability study of TMS measures in neurologically intact adults, lifestyle factors 

questionnaire and the Nine Hole Peg Test (Chapter 4). 

 

Question 3 

Is TMS measurement of corticospinal pathway excitability reliable (test-retest 

reliability) in a group of sub-acute stroke survivors? 

This research question was prompted by research that the rate of neural plasticity is 

more rapid in the early months after stroke (first three months) compared to later after 

stroke (> six months after stroke).  A measurement tool must be reliable within the 

population it is being used.  The test-retest reliability findings later after stroke may not 

be applicable to stroke survivors within the first three months after stroke.  

Aim 3 

Determine the test-retest reliability of TMS measures of corticospinal pathway excitability 

such as: active and resting motor threshold, motor evoked potential amplitude, motor 

evoked potential latency, silent period, and a recruitment curve of both the more-affected 

and less-affected biceps brachii, extensor carpi radialis and abductor pollicis brevis 

muscles in stroke survivors two to sixty days after stroke 

Aim 3 will be investigated through a prospective correlational test-retest reliability study 

of TMS measures of corticospinal pathway excitability in stroke survivors who are two to 

sixty days after stroke (Chapter 5).   
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3 Getting a kinematic handle on reach-to-grasp: 
A systematic review and meta-analysis 

 

3.1 Introduction  

A recent systematic review concluded that the optimal upper limb therapy to enhance upper 

limb function after stroke remains unknown (Pelton et al., 2012).   This could be because the 

movement deficits resulting from stroke and subsequent recovery are heterogeneous 

(Kwakkel and Kollen, 2013).  Consequently, interventions targeted at specific movement 

dysfunction could be beneficial for upper limb recovery.   

Reach-to-grasp is an important focus for rehabilitation as it is a vital component of many 

activities of daily living (ADL’s) such as grooming and dressing.  Reach-to-grasp has been 

studied extensively in adults with and without neurological disease (Bennis and Roby-Brami, 

2002, Messier et al., 2006, Gilster et al., 2012, van Vliet and Sheridan, 2007, van Vliet and 

Sheridan, 2009).  Successful reach-to-grasp is achieved through coordination of the nervous 

and musculoskeletal systems.  The nervous system provides the motor plan, muscle 

activation, and directs movement adjustments based on peripheral feedback (e.g. visual, 

proprioceptive, and kinaesthetic).  The musculoskeletal system contributes the muscle 

activity and joint motion necessary for movement control (McCrea et al., 2002, Shumway-

Cook and Woollacott, 2007).   Reach-to-grasp can be quantitatively assessed using 

kinematic analysis which is a sensitive, objective, and reliable measure of upper limb 

movement (Caimmi et al., 2008, Lum et al., 2009, Nowak, 2008, McCrea et al., 2002, 

Patterson et al., 2011, Platz et al., 1999).  Kinematic analysis can provide understanding of 

movement control by determining the underlying mechanisms of movement or movement 

deficit.  In addition kinematic analysis provides sensitive measures of movement control 

(Caimmi et al., 2008, Lum et al., 2009, Nowak, 2008, McCrea et al., 2002, Platz et al., 1999).   

The focus of the systematic review reported here was to deepen understanding of the 

underlying mechanisms of reach-to-grasp by collating evidence of how kinematic 

characteristics are changed after stroke.  It is expected that such knowledge may provide 

targets for improved upper limb rehabilitation techniques.    There have been narrative 

reviews examining the biomechanics of reaching (McCrea et al., 2002), coordination and 

neural control of reach-to grasp (van Vliet et al., 2013), kinematic analysis of the upper limb 

during reaching (Alt Murphy and Häger, 2015), and the kinematics and cortical correlates of 

grasping (Nowak, 2008).  However, the kinematic characteristics of reach-to-grasp have not 

yet been synthesized in a systematic review.   
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To address the first research question within the thesis this systematic review aims to (1) 

determine if kinematic characteristics such as movement time, peak velocity, trunk 

contribution, smoothness of movement, reach path ratio, and elbow range of motion are 

different in stroke survivors compared neurologically intact adults through meta-analysis 

(where possible); and (2) determine the influence of task requirements such as object 

location, upper limb motor impairment, trunk restraint, and movement speed on reach-to-

grasp kinematics through meta-analysis.     

3.2 Methods 

The methods of this systematic review are based on the guidelines by the Cochrane 

Collaboration (Higgins et al., 2008).  The protocol for this systematic review can be found on 

the Prospero database, registration number: CRD42014009479.  Decisions about inclusion 

of studies, assessment of potential risk of bias, and extraction of data were made by two 

reviewers working independently.  The two independent reviewers compared their results for 

consistency at every stage.  For any disagreements the two reviewers met and referred to 

the source documents.  If agreement could not be reached then a third researcher was 

consulted.   

3.2.1 Search strategy 

The search strategy was formulated in collaboration with a research librarian.  The search 

terms include those related to the upper limb, reach to grasp, kinematics, biomechanics, 

electromyography, transcranial magnetic stimulation (TMS), and movement analysis; an 

example of the search strategy used in MEDLINE can be found in Table 6.  The search 

strategy was modified for each electronic database based on specific MESH terms within the 

database.  The databases searched were: MEDLINE, AMED, and Embase. Additionally, the 

reference lists of relevant papers were hand searched for relevant titles that were not 

captured in the database search.  The data bases were searched from their inception 

MEDLINE in 1946, AMED in 1986, and Embase in 1974.  The first search was completed on 

11 April 2013 and the final search was completed on 20 January 2015.  The search was 

limited to articles published in the English language.   
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Table 6 - Search Strategy used in Medline 

Tw=text word, ph=physiology 

Table 6 The search strategy used to search the database MEDLINE.  The database was searched 

from 1946 to 20 January 2015.   

 

 

 

 

 

  

1. Upper extremity OR arm OR hand 
2. (upper limb).tw 
3. Stroke.tw 
4. “range of motion, articular”/ph 
5. Movement/ph 
6. Muscle, skeletal/ph 
7. Motor skills/ph 
8. arm/ph 

9. Exp Muscle contraction (includes isotonic contraction, isometric contraction and 
excitation contraction coupling) 

10. (muscle activation OR co?contraction OR motor control).tw 

11. (grasp* OR reach*  OR grip* OR pinch* OR limb transport).tw 
12. Exp psychomotor performance (includes motor skills and performance analysis) 

13. Electromyograph* OR transcranial magnetic stimulation OR biomechanics 

14. (co?contraction OR EMG OR motor evoked potential OR biomechanic* OR 
electromyograph* or kinematic* OR object manipulation).tw 

15. (1) OR (2) 

16. (15)AND (3) 

17. (4) OR (5) …OR (11) 

18. (12) OR (13) OR (14) 

19. (16) AND (17) AND (18) 

Limits: individuals > 18 years of age; human; English Language 
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Table 7 Search Strategy used in the AMED Database 

1. Upper extremity OR arm OR hand 
2. (upper limb).tw 
3. Stroke -map to subject heading (cerebral hemorrhage OR cerebral infarction OR 

cerebral ischemia OR cerebrovascular accident OR stroke] 
4. Range of motion (map to subject heading) 
5. Movement - map to subject heading > movement OR motor activity  
6. Muscle, skeletal  
7. Motor skills- map to subject heading > motor skills OR reaching 
8. Exp muscle contraction (isometric contraction, isotonic contraction) 
9. (muscle activation OR co?contraction OR motor control).tw 
10. (grasp* OR reach*  OR grip* OR pinch* OR limb transport).tw 
11. Exp psychomotor performance (includes motor skills or reaching) 
12. (task performance analysis).tw 
13. Electromyograph* OR transcranial magnetic stimulation OR biomechanics OR 

kinematics  
14. (co?contraction OR EMG OR motor evoked potential OR kinematic* biomechanic* 

OR    electromyograph* OR object manipulation).tw 
15. (1) OR (2) 
16. (15) AND 3 
17. (4) OR (5) ….OR (10) 
18. (11) OR (12) OR (13) OR (14) 
19. (16) AND (17) AND (18) 

 

Table 7 The search strategy used in the AMED database.  The data base was searched 

from 1985 to 20 January 2015.   
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Table 8 Search strategy used in the Embase database  

1. Arm OR hand 
2. (upper extremity OR upper limb).tw 
3. Stroke.tw 
4. Exp “Range of motion” includes range of motion, articular and movement(physiology) 
5. Movement (physiology) includes limb movement OR musculoskeletal function 
6. Skeletal muscle > skeletal muscle or arm muscle or hand muscle  
7. Motor performance  
8. Muscle contraction 
9. (muscle activation OR co?contraction OR motor control).tw 
10. (grasp* OR reach*  OR grip* OR pinch* OR limb transport).tw 
11. Psychomotor performance includes psychomotor activity OR task performance  
12. Electromyograph* OR transcranial magnetic stimulation OR biomechanics 
13. (co?contraction OR EMG OR motor evoked potential OR kinematic* biomechanic* 

OR electromyograph* OR object manipulation OR motor skills).tw 
14. (1) OR (2) 
15. (14) AND (3) 
16. (4) OR ….(10) 
17. (11) OR (12) OR (13) 
18. (16) AND (17) AND (18) 

 

Table 8 The search strategy used to search the Embase database.  The database was 

searched from 1974 to 20 January 2015. 
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3.2.2 Types of studies 

Studies in which both the stroke and control participants completed identical reach-to-grasp 

tasks were considered for inclusion in this review.  Single case study designs were excluded.  

3.2.3 Types of participants 

Participants included in potential studies had to be at least 18 years of age and have had a 

stroke.  There were no limitations placed on stroke location, time since stroke or number of 

strokes.  The control participants had to have no neurological or musculoskeletal disorder. 

3.2.4 Types of reach-to-grasp tasks 

The study had to assess reach-to-grasp and lift, or reach-to-grasp and transport of an object. 

Specific exclusion criteria includes: reach to a target, pointing, tracing, and drawing tasks.   

3.2.5 Types of outcome measures 

The outcomes assessed had to be a kinematic measure e.g. velocity, smoothness, arm 

trajectory; or an electromyography (EMG) measure e.g. muscle activation patterns, muscle 

synergies, or a measure of corticospinal excitability e.g. motor evoked potential.  The same 

outcomes had to be measured in both the stroke survivors and controls within each study.  

3.2.6 Identification of relevant studies   

Two reviewers independently assessed potential studies for relevance based on the pre-

specified study criteria described in Table 9.  Studies were assessed as not relevant, 

probably relevant, and relevant.  Title and abstract were screened together.  Then those 

potential studies deemed relevant or probably relevant underwent full text screening  

(Mateen et al., 2013, Higgins et al., 2008).   
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Table 9 - Inclusion and Exclusion Criteria 

Inclusion Criteria  Exclusion Criteria  

1. Assess reach to grasp using the contra-
lesional limb via motion analysis, EMG, or 
TMS 

Robot-assisted reaching 

Reaching against a load 

Reach with the Ipsilesional limb 

2. Reaching task must involve reach to grasp 
of an object, reach to grasp and lift, or 
reach to grasp and transport of an object 
 
Reach defined as transport of the hand 
across a distance 

 

A  task involving reach/point to a target, 
tapping movement, drawing movement, 
tracking movement, scaling of grip force, 
or assessment of torque 

 

3. Study includes healthy adults and stroke 
survivors who complete the same reach-to-
grasp task 

 

4. Assess level arm motor ability of the 
contra-lesional upper limb using a clinical 
measure for example the Action Research 
Arm Test (ARAT), Fugl-Meyer, or Wolf 
Motor Function Test 

 

5. Participants aged  > 18 years of age  

6. Study design that includes comparison 
between stroke survivor and healthy 
control 

Single case study design  

 

Table 9 Inclusion and exclusion criteria utilised to identify relevant primary studies for inclusion in the 

review.  The criteria were used at title and abstract stage and full text stage. 
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3.2.7 Potential risk of bias 

One of the strengths of a systematic review compared to a narrative review is assessing the 

methodological quality or potential risk of bias of included studies (Higgins et al., 2008).   A 

systematic review of studies of lower potential risk of bias can ensure confidence in the 

results.  Methodological quality can refer to study design that protects against bias such as 

systematic, non-systematic or inferential error (Mallen et al., 2006).  There are a variety of 

tools available to assess the potential risk of bias and methodological quality of studies.  For 

example some tools are designed specifically for randomized controlled trials (RCT) such as 

the Cochrane Collaboration tool (Higgins et al., 2008) Jadad Scale, and the PEDro Scale 

(Olivo et al., 2008).   The studies included in this review were mostly of observational design.  

Therefore, the Down’s and Black Tool was used in this review as it is applicable to both RCT 

and non-RCT studies (Downs and Black, 1998).  The Down’s and Black tool has 

documented validity, inter-rater, and test-retest reliability (Downs and Black, 1998).  

Furthermore, The Down’s and Black Tool has been used in previous systematic reviews of 

observational studies with modifications to be applicable to the individual reviews (Gorber et 

al., 2007, Monteiro and Victora, 2005).  The Down’s and Black Tool was modified to be 

applicable to the studies in this systematic review based on core criteria pertinent to assess 

methodological quality such as internal validity (study design, conduct, and analysis), and 

external validity (sample, generalizability)  (Higgins et al., 2008, Mallen et al., 2006).  

Example modifications made were removing questions relating to group concealment and 

allocation as that is specific to RCT’s.  Blinding of participants was not removed from the 

Down’s and Black tool.  Blinding is a key aspect to study design and potential bias.  

Observational study design falls lower on the hierarchy of studies due to the lack of blinding 

(Higgins et al 2008).  The studies included in the systematic review were mainly of one 

session assessments and blinding participants to the activity was not possible.  Despite the 

impossibility of blinding it is a feature that places observational studies lower than RCT’s, 

can induce bias, and can be a confounder thus is important to incorporate into the review.  

The Down’s and Black tool with the modifications and rationale for modifications is in 

Appendix 1; the final tool used for assessment of potential risk of bias is shown in Appendix 

2.   

The original Down’s and Black Tool was scored as yes (the paper fulfilled the question) no, 

(the paper did not fulfil the question), or unclear/partially (unable to determine if the paper 

fulfilled the question); points were assigned to each answer yes=1-2, unclear/partially =0-1 

and no =0.  As the tool was modified a number score was not assigned.  Questions were 

answered low risk (the paper fulfilled the question), unclear risk (unable to determine if the 

paper fulfilled the question or insufficient evidence) and high risk (the paper did not fulfil the 
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question).  Additionally, items were not weighted as there is a lack of empirical basis to give 

weights to the questions or domains; weighting of items can induce bias into the findings 

(Greenland and Morgenstern, 2001). 

3.2.8 Data extraction 

Data extracted include: number of participants, age, and time since stroke, reach-to-grasp 

task, trunk restraint, upper limb motor ability, and kinematic characteristics (e.g. velocity).  

For studies in which the data were unclear, the authors were emailed requesting the relevant 

data.  In studies involving an intervention, only the baseline data was extracted for both 

stroke and control participants to exclude any influence of the intervention on reach-to-grasp. 

3.2.9 Synthesis and interpretation 

Where meta-analysis was indicated it was conducted using the Cochrane Statistical package 

RevMan 5.2.  If meta-analysis was not indicated a narrative synthesis was planned to further 

describe the kinematic differences between stroke survivors and healthy control participants.  

As data were continuous the meta-analysis was undertaken using the standardized mean 

difference of kinematic characteristics between stroke survivors and control participants 

(Higgins et al., 2008).  Where possible, subgroups were formed based on specific task 

requirement such as object location in the workspace.  To determine if a fixed-effect or 

random effects model was appropriate heterogeneity of data was assessed.  Heterogeneity 

of data was assessed using the I2 statistic and interpreted such that an I2 value of < 25% 

was low, 50% moderate, and 70% was high heterogeneity.  If I2 was < 25% a fixed effect 

model was used, if not a random effects model was used (Higgins et al., 2008). 

Where more than one reach-to-grasp task was included within the same study, with the 

same individuals, then each separate task was included in the meta-analysis and the 

participants were divided among the tasks to ensure that each individual only counted once 

in the analysis.  For example, if a study included three reaching tasks, with n=9 in the control 

and n= 9 in the stroke group then three control and three stroke participants would have 

been included in each of the three tasks in the meta-analysis (Higgins et al., 2008).  In the 

case of multiple tasks within one study, participants were equally divided between the tasks 

to prevent bias in the findings.  If there were an odd number of participants, such as seven 

participants and two tasks, three would have been allocated to one task and four to another.   

The participants included in this review had varied level of upper limb function from mild 

motor deficits to moderate-severe motor deficits, and a range in time since stroke from 2 

days to 9.4 years.  Sensitivity analysis was used to assess the robustness of the results of 



78 
 

the meta-analysis based on severity of paresis and time since stroke (Chang et al., 2004, 

Higgins et al., 2008).   

The meta-analysis was interpreted with regard to the potential risk of bias of the individual 

studies. 

3.3 Results 

3.3.1 Relevant studies 

The electronic database search identified 2,111 potential references, and a further 74 

references were identified from the reference list of relevant papers.  Of these 2,185 

references, 33 studies met the inclusion and exclusion criteria.  Full details are provided in 

the PRISMA flowchart (Figure 5).   
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Figure 5 - PRISMA Diagram 

   
Records identified though database 

searching MEDLINE (921), AMED 

(227), EMBASE (963) 

n=2111 

Records identified though reference 

list of relevant studies 

n=74 

Records after duplicates removed 

n=1466 

Titles and abstracts screened by 1st 
and 2nd reviewer independently 

n= 1466 

Full text articles independently 
assessed by 1st and 2st reviewers for 

eligibility  

n= 144 

Studies included in synthesis 

n= 33 

Records excluded 

n= 1322 

Full-text articles excluded  
(n =111)  

Did not assess reaching kinematics        

n= 43 

No assessment of upper limb motor function 
n=5 

Assessment of ipsilesional limb n= 7 

Included dx other than stroke n=1 

Included only healthy adults 

N=3 

Included only stroke participants n = 2 

Robotics assisted reaching n=4 

Reaching against loads n=1 

Poster abstract n=1 

Virtual Reality only n=1 
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3.3.2 Description of studies 

No articles were identified that utilized TMS during reaching. One article was identified that 

utilized EMG so there was not a comparison study.  Therefore, the remainder of the reported 

review refers only to kinematic characteristics. 

3.3.3 Participants  

Reach-to-grasp was assessed with 488 participants with stroke, and 350 healthy control 

participants.  The participant characteristics for each study can be found in Table 10 and 

Table 11, at the end of this chapter.  The age of the participants with stroke ranged from 24-

94 years of age; with mean age and standard deviation being 60.23±7.3 years; the healthy 

control participants age range was 22-87 years and mean age and standard deviation was 

55.8±9.2 years.  The mean time of assessment post stroke was 865.54 days (2.37 years) 

with a range of 2 days to 9.4 years post stroke across included studies. The stroke 

participants were reported to have a range of upper limb motor function categorised from 

mild to severe.  In studies published by the same authors it is possible that the same 

participants were involved in multiple studies.    For example, Dejong et al. (2012 A) and 

Dejong et al. (2012 B) have one participant different in the stroke group, Roby Brami et al. 

(2003 A) and Roby-Brami et al. (2003 B) may have used the same control group, and Levin 

et al. (2002) and Michaelsen et al. (2001) the peak velocity and movement time share the 

same mean and standard deviation for two reaching tasks.  Where there was thought to be 

overlapping participants, the meta-analysis was conducted with and without the studies 

under question. Neurologically intact control participants were not consistently age matched 

to the stroke participants in included studies.   

3.3.4 Reach-to-grasp task  

The reach-to-grasp tasks varied across studies. Full details can be found in Table 10 and 

Table 11.  The variation in tasks were: reach and grasp e.g. (Michaelsen et al., 2004, 

Patterson et al., 2011); reach and lift of an object e.g. (Chang et al., 2008, Dejong and Lang, 

2012); reach-to-grasp and transport of an object e.g. (Alt Murphy et al., 2011, Aruin, 2005); 

object location (central vs ipsilateral workspace); reaching speed (self-selected vs fast 

speeds); trunk restrained or unrestrained; movement initiation to a cue or self-directed; and 

assessment of the dominant and non-dominant limbs of the control participants. Authors of 

multiple studies utilised the same or a similar task across their own studies.   

3.3.5 Outcome measures 

Motor function of the upper limb of stroke participants was assessed using a variety of 

observational clinical assessments.  A few examples are the Fugl-Meyer Motor Assessment; 

Chedoke McMaster Stroke Assessment Scale; and the Functional Independence Measure. 
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The diversity in assessment creates difficulty for comparisons between participants’ 

functional ability. 

Similar to motor function, methods of data collection, data processing and analysis of 

kinematic characteristics investigated varied across studies.  The most common kinematic 

characteristics measured were: movement time, velocity, movement smoothness, reach path 

ratio/trajectory, range of motion, and trunk contribution to reaching.   
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Table 10- Reach-to-Grasp Studies in the Ipsilateral Workspace 

Study Participants Time Since 
Stroke 

Reach-to-Grasp Task Object 
Placement 

Movement Speed Trunk 
Restraint 

   
Grasp 

Grasp 
and Lift 

Grasp 
and 

Transport 
 

Self-
Selected 

Fast 
Not 

Reported 

 

Aruin et al. 
2005 

S: 6; Age: 

67.6, ±15.8 
C: 6; Age: 
64.7±18.8 

20.8±6.6 days   √ Final object 
placement was 
0.25m from start 

√   Not reported  

Chang et al. 
2008 

S: 17; Age: 

60.7 (28-86)   
C: 17; Age: 

61.9 (35-87) 

˃ 6 months  √  A distance the 
length of the arm 

√   Yes  

DeJong et al. 
2012 A 

S: 16; Age: 

58±11 (33-
88)             
C: 12; Age: 

53.0±15.8 
(32-81) 

1.2±2.7 (0.04-
9.2) years 

 √  90% of arm’s 
length 

√   Not reported  

De Jong et al. 
2012 B  

S: 16; Age: 

59±11(39-
88)             
C: 11; Age: 

55±15(34-
81) 

1.2 months (2 
weeks to 9.4 
years) 

 √  90% of arm’s 
length 

√   Not reported  

Kilbreath et 
al. 2006 

S: 13; Age 
67.9(8.3) 55-
77               
C: 13; Age 
69.6(9.9) 57-
86 

36.1±18.0 
months 

  √ 150mm to grasp 
the tray and final 
position located 
an additional 110 
mm 

√   Yes 
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Study Participants Time Since 
Stroke 

Reach-to-Grasp Task Object 
Placement 

Movement Speed Trunk 
Restraint 

   
Grasp 

Grasp 
and Lift 

Grasp 
and 

Transport 
 

Self-
Selected 

Fast 
Not 

Reported 

 

Lang et al. 
2005 

S: 39; Age: 

65.0±13.4 
(39-94)     C: 

10; Age: 
59.1±12.5 

9.6±4.5 days 
(2-25) 

  √ 90% of arm’s 
length  

  √ Yes 

Lum et al. 
2009  

S: 4; Age 

not reported 
C: 3; Age 
not reported 

1-3 months   √ Not reported  √   Not reported 

Nowak et al. 
2007 

S: 16; Age: 

55 (24-85) 
(R stroke: 
58±17; L 
stroke: 
51±16       
C: 8; Age: 

56±17 

1-8 months  √  30 cm from start 
position  

√   Not reported 

Patterson et 
al. 2011 

S: 18; Age: 

67.6±8.1    
C: 9; Age: 
57.2±6.7 

7 -174 months √   80% of arm’s 
length  

√   No (backless 
chair) 

Raghavan et 
al. 2010 

S: 8; Age: 
27-79       C: 

8; Age: ±2 
years of the 
stroke 
participants 

3-109 months  √  75% of arm’s 
length  

  √ Not reported 
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Study Participants Time Since 
Stroke 

Reach-to-Grasp Task Object 
Placement 

Movement Speed Trunk 
Restraint 

   
Grasp 

Grasp 
and Lift 

Grasp 
and 

Transport 
 

Self-
Selected 

Fast 
Not 

Reported 

 

Sangole et al. 
2009 

S: 10; Age 

65±9 (51-79)           
C: 8; Age: 

55±10 (41-
68) 

1.4-9 years 

 

  √ 90% of arm’s 
length then 
transferred object 
medially 

√   Not reported 

Silva et al. 
2014 

S: 9; Age: 

55.0±9.6   
C: 9; Age: 

52.3(Van 
Kordelaar et 
al., 2012, 
van et al., 
2012)±4.9 

1-8 years √   Anatomical 
reaching distance 

  √ No 

Van-
Kordelaar et 
al. 2012 A 

 

S: 46; Age 

60.30±12.59  
C: 12; Age 

52.75±5.88 

mild group: 
6.4±2.2 years, 
moderate-
severe group: 
6.1±4.3 years 

  √ Not reported √   No 

Van 
Kordelaar et 
al. 2012 B 

S: 1; Age: 

41             
C: 1; Age 43 

   √ Maximal reaching 
distance 

√   No 

Van 
Kordelaar et 
al. 2013 

S: 31; Age: 
60.0 ±11.2 

C: 12; Age: 

52.8±5.9 

Serial 
measurements 
(weeks) 

M1 14±6     
M2 25±       
M3 38±5      
M4 57±10    
M5 92±14    
M6 189±11 

  √ Not reported  √   No 
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Study Participants Time Since 
Stroke 

Reach-to-Grasp Task Object 
Placement 

Movement Speed Trunk 
Restraint 

   
Grasp 

Grasp 
and Lift 

Grasp 
and 

Transport 
 

Self-
Selected 

Fast 
Not 

Reported 

 

Van Vliet et 
al. 2007 

S: 12 ; Age: 

mean 66.9  
C: 12; Age: 
mean 64.8 

3-113 weeks √   20 cm anterior to 
start position  

  √ Not reported 

Van Vliet et 
al. 2009 

S: 9; Age: 

71.4 (41-89)  
C: 9; Age: 
68.5 

0.5-22 weeks   √ 8 cm, 13 cm and 
18 cm from start 
position of the 
hand 

  √ No 

Viau et al. 

2004 

S: 7; Age: 

48.9±18.6  
C: 8; Age: 
56.8±17.1 

43.7±15.3 
months 

  √ 13 cm anterior to 
the hand, final 
position  31 cm in 
front of shoulder, 
12.5 cm above 
and 14 cm to the 
right of the initial 
ball position  

  √ Not reported 

Wenzelburger 
et al. 2005 

S: 18; Age: 

60.9 ±10.7 
(40-81)      
C: 18; Age 

(mean) 62 

 

2.4 ±1.9  years  √ √ 34 cm above the 
table and 50 cm 
from the body  

√   Not reported 

Wu et al. 
2000 

S: 14; Age: 

61.79 (39-
84)             
C: 25; Age: 

63.80 (37-
81) 

5-174.5 
months 

  √ 16.5 cm     √ Not reported 
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Table 10Table 10 Summary of characteristics of individual studies in which reach-to-grasp occurred in the ipsilateral workspace.  Summary of participants, 

time since stroke, reach to grasp task (grasp, grasp and lift, or grasp and transport, object distance, movement speed, and if trunk restraint was used during 

the task.  
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Table 11 - Reach to-Grasp studies in the Central Workspace 

Study Participants Time Since 
Stroke 

Reach-to-Grasp Task Object Placement Movement Speed Trunk Restraint 

   
Grasp 

Grasp 
and Lift 

Grasp and 
Transport 

 
Self-

Selected 
Fast 

Not 
Reported 

 

Alt Murphy et al. 
2011 

S: 19; Age: 

61±11.1             
C: 19; Age: 57.3 

(41-78) 

18.9±16.4 
(4-63) 
months 

  √ 30 cm from edge of 
table 

√   No 

Aprile et al. 2014 S: 6; Age: 78 (64-

84)                     
C: 6; Age: 64.5 

(52-74) 

1-6  months   √ 400 mm from edge of 
table 

√   Not reported  

Levin et al. 2002 S: 11; Age: 

54.8±13.9          
C: 11; Age: 

55.0±13.7 

5-72 
months 

  √ 4 locations: T1 ½ 
arm’s length, T2 
arm’s length, T3 1 & 
1/3 arm’s length, T4 
2x arm’s length  

√   No 

Messier et al. 
2006 

S: 15; Age: 

69.4±12.0           
C: 15; Age: 

69.4±12.0 

3-132 
months 

  √ Distal target was 20 
cm from initial cone 
position  

√   Not reported 

Michaelsen et al. 
2004 

S: 19; Age: 52±19 
C: 7; Age: 53±24 

31±22 (6-
82) months 

√   90% of arm’s length  √   No 

Michaelsen et al. 
2001 

S: 11; Age: 

54.8±13.9            
C: 11; Age: 

55.0±13.7 

5-69 
months 

√   2 locations: T1 ½ 
arm’s length, T2: 
arm’s length  

√   Trials with and 
without trunk 
restraint? 

Roby-Brami et al. 
2003 A  

S: 15; Age: 55.8 

(36-69)                
C: 7; Age: 35.8 

(22-53) 

confusing p 
370; 9-153 
days; or  
maybe 24- 
224 days 
(time of 
functional 

  √ One of 7 locations in 
a 20 x 20 cm board 
(25-45 cm in front of 
participant) the far 
targets were just 
beyond arm’s reach  

√   Not reported 
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Study Participants Time Since 
Stroke 

Reach-to-Grasp Task Object Placement Movement Speed Trunk Restraint 

   
Grasp 

Grasp 
and Lift 

Grasp and 
Transport 

 
Self-

Selected 
Fast 

Not 
Reported 

 

assessment 
p 371) 

Roby-Brami et al. 
2003 B  

S: 8; Age: 55.7 

(36-68) 

C: 7; Age: 35.8 

(22-53) 

48-153 
days 

  √ One of 7 locations in 
a 20x20 cm board, 
the far locations were 
103-121% of arm’s 
length  

  √ Not reported 

Roby-Brami et al. 
1997 

S: 17; Age: 51.2 

(35-75)               
C: 6; Age: 51.8 

(41-58) 

1-18 
months 

  √ One of six locations in 
a wooden board 
about 15 cm from 
abdomen 

√   Not reported 

Schaefer et al. 
2012 

S: 16; Age: 58±11 
C: 12; Age: 53±16 

657±1287 
days 

 √  90% of arm’s length √   Not reported 

Van Dokkum et al. 
2013 

S: 13; Age 

63.9±9.4            
C: 12; Age: 

32.5±11.4 

13-30 days   √ Initial positon 20 cm 
anterior to participant 
end position 5 cm 
from edge of table 

√   Yes 

Wu et al. 2009 S: 14; Age: 

60.0±9.1            
C: 13; Age: 

59.1±10.6 

23.0±26.7 
(2.3-78.6) 
months 

  √ Initial position 80% of 
arm’s length, end 
location 1/3 the 
distance of 80% of 
arm’s length  

√   Yes 

Wu et al. 2008 S: 14; Age: 

60.70±10.00       
C: 13; Age: 

59.14±10.59 

31.23 (6.6-
84) months 

  √ Initial position 80% of 
arm’s length, end 
location 1/3 the 
distance of 80% of 
arm’s length 

√   Yes 

 

Table 11 Summary of characteristics of individual studies in which reach-to-grasp occurred in the central workspace.  Summary of participants, time since 

stroke, reach to grasp task (grasp, grasp and lift, or grasp and transport, object distance, movement speed, and if trunk restraint was used during the task.



89 
 

Table 12 - Summary of studies included 

Ipsilateral Workspace 

Movement Speed Grasp Grasp and Lift Grasp and Transport 

Self-Selected l 4 8 

Fast Speeds 0 0 0 

Speed Not Reported 2 0 4 

 

Central Workspace 

Movement Speed Grasp Grasp and Lift Grasp and Transport 

Self-selected 2 1 9 

Fast Speeds 0 0 0 

Speed not reported 0 0 1 

Table 12 - Summary of studies included in the systematic review based on type of task: grasp, 

grasp and lift, grasp and transport, speed: self-selected or fast, and area of the workspace.  A 

majority of studies included tasks at self-selected speeds and grasp and transport of objects. 

 

3.3.6 Potential risk of bias 

All of the studies included were assessed as having unclear or high potential risk of bias.  

The full details of the potential risk of bias are provided in Table 13.  The areas in which 

potential risk of bias were most evident were in the: in the reporting of adverse events; 

reporting of attrition; blinding of participants; and blinding of assessors.  Of great 

importance for this review the reproducibility of the reach-to-grasp task for study 

replication and the description of stroke survivors for sufficient interpretation of the 

findings and generalizability.  The blinding of assessors is also important as this can 

induce bias in the results.  Of less importance is the blinding of participants; participants 

were not able to be blinded as they were participating in the reach-to-grasp activity.  

Studies with higher potential risk of bias are therefore those in which the reach-to-grasp 

task was not reproducible, or the stroke survivors were not adequately described limiting 

the interpretation and generalizability of the findings.  The studies with lower potential 

risk of bias had insufficient information regarding reporting of adverse events, attrition, or 

lack of blinding. Four studies demonstrated unclear or high potential risk of bias in 

reproducibility of the reach-to-grasp task and description of participant characteristics 

(Aprile et al., 2014, Chang et al., 2008, Wu et al., 2000, Lum et al., 2009).   
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A sensitivity analysis was not conducted based on potential risk of bias of included 

studies.  Threshold for high potential risk of bias is arbitrary and could induce bias into 

the findings; alternatively not including all studies in the analysis may contribute to 

imprecise findings (Higgins et al., 2008).  There were four studies in which higher 

potential risk of bias was present in reproducibility of reach-to-grasp task and description 

of stroke survivors.  The only common kinematic outcome assessed by three of the four 

studies was movement time; aside from movement time the studies measured different 

outcomes.  The findings of the three studies with higher potential risk of bias are line with 

the findings of the studies of lower potential risk of bias as demonstrated by the forest 

plots (mean difference on the same side of the line of no difference and similar 

confidence intervals (Higgins et al., 2008).   
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.  

  

Table 13 - Potential Risk of Bias of Included Studies.  The potential risk of bias was assessed 

using the modified Down’s and Black Tool in Appendix 2: Modified Downs and Black Tool - for 

Assessment of Potential Risk of Bias.  All studies exhibit unclear or high potential risk of bias.  
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Table 13 - Potential Risk of Bias of Included Studies 

Table.. Potential Risk of Bias of included studies 
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3.3.7 Synthesis  

3.3.7.1 Meta-analysis 

Data were sufficiently similar to undertake a meta-analysis for: peak velocity; movement 

time; reach path ratio (trajectory); trunk displacement; movement smoothness; and elbow 

range of motion.  Meta-analysis used the standardized mean difference between stroke 

survivors and neurologically intact control participants.  

3.3.7.2 Research Aim 1a: Determine the differences in kinematic characteristics 

between stroke survivors and neurologically intact adults during reach to 

grasp 

The findings of the meta-analyses are summarised in Table 14 the Forest Plots are in 

Figure 6 through Figure 17.  Based on the I2 statistic heterogeneity was low < 25% for 

peak velocity (ipsilateral workspace), reach path ratio (central workspace), trunk 

displacement (ipsilateral workspace), smoothness of movement (central workspace); 

heterogeneity was moderate to high for all other meta-analyses I2 > 25%.   Eleven meta-

analyses were completed the individual forest plots are in Figure 6 through Figure 17.  

Stroke survivors’ kinematic characteristics were found to be significantly different from 

control participants in nine of the eleven meta-analyses.  Stroke participants 

demonstrated significantly: lower peak velocity (SMD and 95% CI) central: -1.48(-1.94, -

1.02), ipsilateral: -1.41 (-1.75, -1.08); longer movement time central: 1.97 (1.23, 2.72), 

ipsilateral: 1.66 (1.22, 2.09); greater trunk displacement central: 1.55 (0.85, 2.25), 

ipsilateral: 1.58 (0.88, 2.27); decreased smoothness central: 1.81 (1.19, 2.43); less elbow 

extension -0.94 (-1.80, -0.08); and a more curved reach path ratio ipsilateral: 1.68 (1.22, 

2.13).  The other meta-analyses were not significant reach path ration central: 0.57 (-

0.09, 1.23); smoothness of movement ipsilateral: 0.65 (-0.54, 1.85).  There was 

moderate to high heterogeneity (I2 > 25%) six of eleven meta-analyses, and there was 

unclear or high potential risk of bias for all studies; thus the findings of the meta-analyses 

should be interpreted with caution.   

3.3.7.3 Research Aim 1b: Determine the influence of task requirements, upper 

limb paresis and time since stroke on kinematic characteristics, meta-

analysis  

Meta-analyses investigating kinematic differences based on object location identified, 

significant differences in kinematics in all but two meta-analyses.  The non-significant 

differences between stroke survivors’ kinematics and neurologically intact controls were 

in were reach path ratio in the central workspace, and smoothness of movement in the 

ipsilateral workspace.   The other meta-analyses in the central and ipsilateral workspace 

were all significant (peak velocity, movement time, reach path ratio, trunk contribution, 

smoothness of movement and elbow extension).  There were no significant differences 

between meta-analyses when reaching in the ipsilateral or central workspace.  
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Insufficient data was provided to complete a meta-analysis investigating the influence of 

trunk restraint and movement speed on kinematics.   

Sensitivity analyses were completed on upper limb motor impairment, and time since 

stroke.  There were no differences in findings of the meta-analyses when excluding 

studies that included mild stroke, moderate stroke or participants who were less than 

three months after stroke.    

  



9
4
 

 

Table 14 - Summary of Meta-Analyses 

Kinematic Characteristic Examined Number of Participants SMD [95% CI] Stroke Survivors compared to 

Neurologically Intact Controls 

Peak Velocity Central Workspace (all participants) Stroke=106 Control=75 -1.4  [-1.94, -1.02] ↓ 

Peak Velocity Ipsilateral Workspace Stroke=143 Control=80 -1.41 [-1.75, -1.08] ↓ 

Movement Time Central Workspace Stroke=143 Control=80 1.97 [1.23, 2.72] ↑ 

Movement time Ipsilateral workspace Stroke=240 Control=162 1.68 [1.22, 2.13] ↑ 

Reach Path Ratio Central Workspace  (all participants) Stroke=22 Control=22 0.57 [-0.09, 1.23] = 

Reach Path Ratio Ipsilateral Workspace  Stroke=110 Control=64 1.79 [1.06, 2.52] ↑ 

Trunk Contribution Central Workspace Stroke=72 Control=52 1.55 [0.85, 2.25] ↑ 

Trunk Contribution Ipsilateral Workspace  Stroke=37 Control=16 1.58 [0.88, 2.27] ↑ 

Smoothness of Movement Central Workspace Stroke=36 Control=36 1.81 [1.19, 2.43] ↓ 

Smoothness of Movement Ipsilateral Workspace Stroke=31 Control=30 0.65 [-0.54, 1.85] = 

Elbow Range of Motion Stroke=79 Control=70 -0.94 [-1.80, -0.08] ↓ 

 

Table 14 - Summary of the meta-analysis: standardised mean difference (SMD) and 95% CI, number of participants included in the meta-analysis, outcome of meta-

analysis of kinematic characteristics comparing stroke survivors and neurologically intact participants reaching in the central and ipsilateral workspace.  A fixed effect 

model was used if I2 < 25%, and a random effects model was used if I2 > 25 %.  The fourth column describes the outcome of the meta-analysis of kinematic 

characteristics comparing stroke survivors to neurologically intact control participants.  Twometa-analyses demonstrated non-significant findings, reach path ratio in the 

central workspace, and smoothness of movement in the ipsilateral workspace. 
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Figure 6 - Forest Plots of Peak Velocity 

Figure 6A                

 

 

 

 

 

 

Figure 6A. SMD of peak velocity in the central workspace, all studies 

Figure 6B 

                       

 

 

 

 

 

 

Figure 6B. SMD of peak velocity in the central workspace, excluding potentially overlapping participants 

Figure 6C 

 

 

 

 

 

 

 

 

Figure 6C. SMD of peak velocity in the ipsilateral workspace 

Figure 6A, B, C - Meta-analyses of standardised mean difference (SMD) comparing peak velocity 

of stroke survivors to neurologically intact control participants reaching in the central and 

ipsilateral workspace; Studies with an * indicate potentially overlapping participants.  A fixed 

effects model was used if I2 <25%, random effects model if I2 > 25 %.  The left side of the forest 

plot indicates lower peak velocity; the right side indicate higher peak velocity.   Stroke survivors 

demonstrate significantly lower peak velocity. SMD=standardised mean difference

Figure 2 C Forest plot of the SMD of peak 
velocity during reach-to-grasp in the ipsilateral 
workspace comparing stroke survivors to 
neurologically intact control participants  
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Figure 7 - Sensitivity Analysis of Peak Velocity 

Figure 7A 

 

 

 

 

 

 

Figure 7 A. Sensitivity analysis of peak velocity excluding participants with mild stroke  

Figure 7B 

 

 

 

 

 

 

Figure 7 B. Sensitivity analysis of peak velocity excluding participants with moderate stroke 

Figure 7C  

 

 

 

 

 

 

 

 

Figure 7C. Sensitivity analysis in the ipsilateral workspace excluding participants < 3 months after stroke 

Figure 7A, B, C - Sensitivity analyses of the SMD comparing peak velocity of stroke survivors to 

neurologically intact control participants based on upper limb motor impairment and time since 

stroke respectively.  A fixed model was used if I2 < 25%, and random effects if I2 > 25%.  The left 

side of the forest plot indicates lower peak velocity; the right side indicates higher peak velocity. 

Studies with an * indicate potentially overlapping participants.  Stroke survivors demonstrate 

significantly lower peak velocity.  SMD=standardised mean difference  
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Figure 8 - Forest Plot of Movement Time 

Figure 8A  

 

 

 

 

Figure 8A. SMD of movement time in the central workspace 

Figure 8B 

 

 

 

 

 

 

 

 

 

 

Figure 8B. SMD of movement time in the ipsilateral workspace 

Figure 8A, B - Forest Plots of the SMD of movement time during reach-to-grasp comparing stroke 

survivors to neurologically intact control participants.  A fixed effects model was used if I2 < 25%, 

a random effects model was used if I2 > 25%.  The left side of the forest plot indicates shorter 

movement time, the right side of the plot indicates longer movement time.  Stroke survivors 

demonstrate significantly longer movement times during reach-to-grasp in both the central and 

ipsilateral workspace.  SMD=standardised mean difference 
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Figure 9 - Sensitivity Analyses Movement Time 

Figure 9A 

 

 

 

 

Figure 9A. SMD of MT in the central workspace excluding participants with mild stroke 

Figure 9B  

 

 

 

 

 Figure 9B. SMD of MT in the central workspace excluding participants with moderate stroke  

Figure 9C 

 

 

 

 

 

 

 

 

 

 

Figure 9C. SMD of MT in the ipsilateral workspace excluding participants  < 3 months after stroke  

Figure 9A, B, C - Sensitivity analyses (SMD) of movement time during reach-to-grasp comparing 

stroke survivors to neurologically intact controls based on upper limb motor impairment and time 

since stroke.  A fixed effects model was used if I2 < 25%, a random effects model was used if I2 > 

25%.  The left side of the forest plot indicates a shorter movement time; the left side indicates 

longer movement time.  Stroke survivors demonstrate significantly longer movement times in the 

central and ipsilateral workspace.  MT=movement time, SMD=standardised mean difference  
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Figure 10 - Reach Path Ratio (object distance/path distance; 1 = straight path) 

Figure 10A 

 

 

 

 

Figure 10A. SMD of RPR in the central workspace, all studies 

Figure 10B 

.    

 

 

 

Figure 10B. SMD of RPR in the central workspace excluding potentially overlapping participants  

Figure 10C  

 

 

 

 

 

Figure 10C. SMD of RPR in the ipsilateral workspace  

 

Figure 10A, B, C - Forest plots of the SMD of the reach path ratio comparing stroke survivors to 

neurologically intact participants reaching in the central and ipsilateral workspace.  Studies with 

an * indicate potentially overlapping participants.  A fixed effects model was used if I2 < 25%, a 

random effects model was used if I2 > 25%.  The left of the forest plot indicates a straighter reach 

(exhibited by neurologically intact adults); the right side of the forest plot indicates a more curved 

reach path.  Stroke survivors demonstrate a more curved reach path compared to neurologically 

intact control participants, with significant differences in the ipsilateral workspace.  RPR=reach 

path ratio, SMD=standardised mean difference   
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Figure 11 - Sensitivity Analysis of Reach Path Ratio (object distance/path distance;    1 = 
straight path) 

 

Figure 11 - Sensitivity analysis (SMD) of reach path ratio in the ipsilateral workspace comparing 

stroke survivors to neurologically intact control participants, excluding stroke survivors < 3 months 

after stroke.  A fixed effects model was used if I2 < 25%, a random effects model was used if I2 > 

25%.  The left side of the forest plot indicates a straighter reach path to the object (similar to 

neurologically intact reaching), the right side indicates a more curved path.  Stroke survivors 

demonstrate a significantly more curved reach path.   
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Figure 12 - Trunk Contribution during Reach-to-Grasp 

Figure 12A 

  

Figure 12 A. SMD of trunk contribution in the central workspace 

Figure 12B 

 

Figure 12B. SMD of trunk contribution in the ipsilateral workspace  

Figure 12A, B.  Forest plots of the SMD of trunk contribution during reach-to-grasp comparing 

stroke survivors to neurologically intact control participants in the central and ipsilateral 

workspace.  A fixed effects model was used if I2 < 25%, a random effects model if I2 > 25%.  The 

left side of the forest plot indicates less trunk movement during reach-to-grasp, the right side 

indicates more trunk movement during reach to grasp.  Stroke survivors demonstrate significantly 

greater trunk displacement compared to neurologically intact control participants. 
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Figure 13 - Sensitivity Analysis Trunk Contribution during Reach-to-Grasp 

Figure 13A 

Figure 13A. Sensitivity analysis excluding stroke survivors with mild motor deficits 

Figure 13B 

 

Figure 13B. Sensitivity analysis excluding stroke survivors with moderate motor deficits  

Figure 13A, B. Sensitivity analysis (SMD) of trunk contribution during reach-to-grasp comparing 

stroke survivors to neurologically intact controls based on level of upper limb motor impairment.  A 

fixed effects model was used if I2 < 25%, a random effects model was used if I2 > 25 %.  The left 

side of the forest plot indicates less trunk movement (displacement) during reach to grasp, the 

right side of the plot indicates greater trunk movement (displacement).   Stroke survivors exhibit 

greater trunk displacement.   
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Figure 14 - Smoothness of Movement 

Figure 14A 

Figure 14A. SMD of movement smoothness in the central workspace 

Figure 14B 

Figure 14B. SMD of movement smoothness in the ipsilateral workspace  

Figure 14A, B - Forest plot of the SMD of movement smoothness during reach-to-grasp 

comparing stroke survivors to neurologically intact control participants in the central and ipsilateral 

workspace.  A fixed effects model was used if I2 < 25 %, a random effects model was used if I2 > 

25%.  The left side of the forest plot indicates smoother movement, the right side indicates less 

smooth movement (greater number movement units).  Stroke survivors demonstrate significantly 

less smooth movement during reach-to-grasp in the central workspace.  
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Figure 15 - Sensitivity Analysis of Smoothness of Movement 

Figure 15A 

Figure 15A. Sensitivity analysis central workspace excluding participants with mild stroke  

Figure 15B  

Figure 15B. Sensitivity analysis, central workspace excluding participants with moderate stroke  

Figure 15A, B - Sensitivity analysis of smoothness of movement during reach-to-grasp comparing 

stroke survivors and neurologically intact control participants, based on level of upper limb motor 

impairment.  A fixed effects model was used if I2 < 25 %, a random effects model was used if I2 > 

25%.  The left side of the forest plot indicates smoother movement, the right side indicates less 

smooth movement (greater movement units).  Stroke survivors demonstrate less smooth 

movement during reach-to-grasp when both stroke survivors with mild and moderate motor 

deficits are removed from the analyses.  
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Figure 16 - Forest Plots of Elbow Extension Range of Motion 

Figure 16A 

Figure 16A. SMD of elbow ROM in the central workspace, all studies 

Figure 16B 

Figure 16B. SMD of elbow ROM in the central workspace excluding potentially overlapping participants  

 

Figure 16A, B - Forest Plots of the SMD of elbow range of motion during reach-to-grasp 

comparing stroke survivors and neurologically intact control participants.  A fixed effect model was 

used if I2 < 25%, a random effects model was used if I2 > 25%.  The left side of the forest plot 

indicates a smaller range of motion, the right side of the plot indicates greater range of motion.  

Studies with an * indicate potentially overlapping participants.  Stroke survivors demonstrate 

significantly less elbow range of motion than neurologically intact adults when reaching in the 

central workspace.  
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Figure 17 - Sensitivity Analysis Elbow Extension Range of Motion 

Figure 17A 

Figure 17A. Sensitivity analysis in the central workspace excluding participants with mild stroke 

Figure 17B    

Figure 17B. Sensitivity analysis excluding participants with moderate motor deficits  

 

Figure 17A, B - Sensitivity analysis of elbow range of motion during reach-to-grasp in the central 

workspace comparing stroke survivors to neurologically intact controls.  The left side of the forest 

plot indicates smaller elbow range of motion, the right side indicates greater elbow range of 

motion.  A fixed effect model was used if I2 < 25%, a random effects model was used if I2 > 25%.  

Studies with an * indicate potentially overlapping participants.  Stroke survivors demonstrate less 

elbow extension than neurologically intact control when stroke survivors with both mild and 

moderate motor deficits are removed from the analysis.   

                                                                                                                                                                

 

 

.  
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Key to Forest Plots 

a. Trunk free target 1 (1/2 arm’s length) 

b. Trunk free target 2 (arm’s length) 

c. Trunk restrained target 1 (1/2 arm’s length) 

d. Trunk restrained target 2 (arm’s length) 

e. T1 1/2 arm’s length 

f. T2  arm's length 

g. 1 1/3 arm’s length 

h. 2x arm’s length 

i. Good motor function 

j. Poor motor function 

k. Small object 

l. Large object 

m. Distance of 8 cm 

n. Distance of 13 cm 

o. Distance of 18 cm 

p. Control R hand, stroke L hemisphere 

q. Control L hand, stroke R hemisphere 

r. Unilateral palmar grasp 

s. Unilateral 3-finger grasp 

t. Spherical 

u. Cylindrical  

v. Dominant arm of control group 

w. 3-finger grasp hold 

x. 3-finger grasp lift 

y. Palmar grasp hold 

z. Palmar grasp lift 
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3.4 Discussion and interpretation  

The findings of the meta-analysis demonstrate that stroke survivors exhibit significantly 

lower peak velocity, longer movement time, decreased smoothness (exception ipsilateral 

workspace), increased curvature of reach path ratio (exception central workspace), 

greater trunk displacement, and less elbow extension compared to neurologically intact 

control participants during reach-to-grasp tasks.  However, the primary studies included 

in the meta-analysis exhibited unclear or high potential risk of bias therefore the findings 

of the meta-analysis may also contain bias and should be interpreted with caution.  

The findings of the meta-analysis are in line with earlier narrative reviews (Alt Murphy 

and Häger, 2015, McCrea et al., 2002, van Vliet et al., 2013), and extend these findings  

by providing statistical evidence of the differences in kinematics between stroke survivors 

and neurologically intact adults.  Additionally, the meta-analyses have demonstrated that 

the kinematic differences between stroke survivors and neurologically intact adults are 

consistent when reaching in the central workspace or ipsilateral workspace (exception 

reach path ratio and movement smoothness).  The search did not identify any studies 

that investigated reach-to-grasp in the contralateral workspace; reaching across midline 

into the contralateral workspace is commonly part of upper limb rehabilitation. It remains 

unknown how the kinematics during reach-to-grasp in the contralateral workspace may 

differ from the central or ipsilateral. This review has highlighted the heterogeneity of 

reach-to-grasp research and the need for standardisation of tasks and methods to ease 

comparison between studies 

3.4.1 Potential risk of bias 

The studies included in this review had unclear and high potential risk of bias.  The 

observational study design utilized by a majority of the studies lends itself to more 

potential bias than randomized controlled trials.  However observational design was an 

appropriate design choice for questions being addressed.  Study designs would have 

been strengthened by the use of blinding. In rehabilitation research it is difficult to blind 

participants because they are actively participating in the intervention or in the case of 

this review the reach-to-grasp task.  Probably of more importance for these studies is 

that there was insufficient attempt to blind the assessors.  Although, kinematic and 

neurophysiologic outcomes are less susceptible to assessor bias compared to clinician 

administered standardised clinical measures such as the Wolf Motor Function Test. The 

potential for bias remains.  This is because there is an interaction between assessor and 

the participants being assessed.  For example, an assessor may give extra 

encouragement to a participant they get along with or connect with.  The extra 

encouragement will decrease the standardization of the task and may influence the 
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results.  The blinding of participants and of assessors is a key component of potential 

risk of bias assessments and a possible confounder.  

Assessment of the potential risk of bias in systematic reviews of observational studies is 

a recent development.  Mallen et al (2006) reported that systematic reviews of 

observational studies published between1999-2000, had only 22% of reviews assessing 

the quality (potential risk of bias) of included studies, compared to 50% of systematic 

reviews published in between 2003-2004.  There exists a lack of potential risk of bias 

tools designed specifically for observational studies, and lack of consensus of which 

current tools would best assess potential risk of bias of non-RCT study designs.  The 

lack of tools and consensus of observational studies is problematic in the assessment 

and interpretation of potential risk of bias, and in comparing potential risk of bias with 

other systematic reviews.   

3.4.2 Heterogeneity  

The studies included in this review were heterogeneous in nature such as variation in 

reaching task, upper limb motor ability, time since stroke, movement speed, trunk 

restraint, and methods of data collection and analysis.  The heterogeneity can be both a 

positive and a negative.  A possible negative of the heterogeneity is the complexity of 

combining the results of such varied tasks and participants within a meta-analysis 

(Higgins et al., 2008); the results of which may be biased.  Alternatively, the 

heterogeneity may be positive.  Firstly, despite heterogeneity the stroke participants’ 

kinematics showed consistent patterns that were different to neurologically intact control 

participants’ kinematics.  Secondly, the variation may allow the findings of the meta-

analysis to be generalizable to the wider stroke population.  In future research the 

heterogeneity of reach-to-grasp research should be addressed.   A consensus as to 

which reach-to-grasp tasks most replicate ADL’s, which tasks are most sensitive to 

change, and the most appropriate methods of data collection and analysis is needed to 

develop a standardized assessment. The standardization of reach-to-grasp tasks and 

methods of data collection may lead to kinematic assessment becoming more 

commonplace in the clinical setting, not only in research.  

3.4.3 Limitations 

A limitation of this review is that it was limited to studies published in the English 

language contributing to a potential publication bias.  The prerequisite ability to complete 

reach-to-grasp may potentially bias the findings towards stroke survivors with moderate 

to mild motor deficits.  The search strategy was comprehensive; however it is possible 

that relevant studies were not identified. 

A second limitation is the combination of heterogeneous studies within a meta-analysis 

(Higgins et al., 2008).  The studies included in the review exhibited clinical diversity 
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(variability in participants) and methodological diversity (variability in reach-to-grasp task 

and methods of data collection and analysis (Higgins et al., 2008).  Despite the 

heterogeneity the findings of the individuals studies were similar; previous systematic 

reviews have combined heterogeneous studies (Lohse et al., 2014, Cooke et al., 2010a).  

The I2 statistic demonstrated 0% heterogeneity for five meta-analyses, less than 25% 

heterogeneity for one meta-analysis, between 25% and 70% heterogeneity for ten meta-

analysis and only one meta-analysis demonstrated an I2 value of > 70% exhibiting high 

heterogeneity (Higgins et al., 2008, Ried, 2006).   Evaluation of the forest plots 

demonstrates that many of the confidence intervals overlap and the mean differences all 

fall on the same side of the line of no effect (Higgins et al., 2008) suggesting the findings 

of the studies are comparable.   

3.4.4 Clinical implications for physical therapy 

Implementing a treatment plan for the upper limb is complex.  There are many facets that 

therapists must consider when planning a reach-to-grasp activity to create and maintain 

an appropriate level of complexity and challenge.  For example, therapists need to 

determine what task (goal), body positioning, object placement, movement speed, trunk 

use or trunk restriction, and type of feedback. The kinematic differences between stroke 

survivors and neurologically intact adults are consistent during reach-to-grasp in the 

ipsilateral or central workspace.  This finding will allow therapists to focus on other 

aspects of the reach-to-grasp task such as movement speed, object size, trunk restraint 

and type of feedback to increase or decrease challenge.  There was substantial potential 

risk of bias and heterogeneity of included studies, thus definitive targets for interventions 

cannot be determined.  Future investigations could evaluate if interventions targeted at 

the kinematic differences may improve the underlying movement deficits, improve reach-

to-grasp, and increase independence with ADL’s.  Furthermore, of importance to stroke 

survivors as well as clinicians is the ability of a measurement to tool to be able to identify 

and measure a meaningful functional change in upper limb function.    

It is useful to identify understand the kinematic differences in reach-to-grasp after stroke.  

Yet, the clinical and functional relevance of the differences is also important such as 

establishing the minimal clinically important difference (MCID).  The MCID is the amount 

of change in a kinematic characteristic that is clinically important to stroke survivors 

(Portney and Watkins, 2009).  The MCID of walking speed has been estimated in 

individuals 20-60 days after stroke that a change greater than 0.16 m/s of comfortable 

walking speed is clinically important (Tilson et al., 2010).  There is a lack of research in 

the MCID of upper limb kinematic characteristics.  Research has identified the minimal 

detectable change (MDC), the minimal amount of change that is not attributable to 

chance in upper limb kinematics.   The findings revealed that reach path ratio, endpoint 

error, and inter-joint coordination demonstrated smaller MDC and thus may be better 
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suited to detect real change in upper limb movement (Wagner et al., 2008).   Building on 

the present research future investigation of the MCID of kinematic characteristics is 

needed for upper limb therapy to have functional relevance for stroke survivors as well 

as improve assessment and interpretation of longitudinal change in kinematics.  

3.3.1 Conclusion  

In summary kinematic characteristics between stroke survivors and neurologically intact 

controls are consistently different during reach-to-grasp in central and ipsilateral 

workspace.  Therefore, therapists can focus on the other aspects of the reach-to-grasp 

task to maintain challenge.   

Future research should address standardisation of reach-to-grasp task and of data 

collection and analysis.  Investigations combining the assessment of observational 

clinical measures, and kinematic assessment and assessment of the neural correlates of 

reach to grasp may provide comprehensive knowledge of the interaction between clinical 

impairments, kinematics, and neural control of movement. 
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4 Test-Retest Reliability of TMS Measures of 
Corticospinal Pathway Excitability Across the 
Lifespan  

 

4.1 Introduction 
Transcranial magnetic stimulation has been used with neurologically intact adults to 

develop knowledge of the connection between the motor cortex and the muscles of the 

arm and hand e.g. (Devanne et al., 2002, Levin et al., 2011, Ridding and Rothwell, 1997, 

Pearce et al., 2000), to investigate neural plasticity e.g.(Pearce et al., 2000, Pascual-

Leone et al., 1995, Perez et al., 2004), and to induce virtual lesions to probe the 

contribution of specific brain areas to movement (Vollmer et al., 2015, Narayana et al., 

2014).  TMS studies in neurologically intact adults have been mainly focused on young 

adults, typically younger than forty years old (Boroojerdi et al., 2001, Civardi et al., 2001, 

Kamen, 2004, Carroll et al., 2001) with a lack of research in older adults.  Although the 

research is useful, there is a possible limitation to the concentration in younger adults, 

such as using their data as normative data to compare to stroke survivors in which the 

incidence increases with age (Xanthakis et al., 2014). The aging process is associated 

with changes within the body’s systems, specifically the nervous system and is 

associated with decreases in motor control.  

Normal aging is accompanied by a decrease in white matter within the brain, decreases 

inter-hemispheric connections via the corpus collusum and decreased density and 

number of myelinated neurons within the corticospinal pathway (Seidler et al., 2010, 

Salat et al., 2005). The changes within the nervous system and aging are associated 

with older adults, demonstrating different areas of brain and corticospinal activation 

compared to younger adults completing the same motor task. For example, older adults 

recruit additional brain areas (McGregor et al., 2011, Sailer et al., 2000, Talelli et al., 

2008b), additional neurons, (Kossev et al., 2002), demonstrate earlier activation of the 

corticospinal pathway (in preparation for movement) (Levin et al., 2011), and decreased 

inter-hemispheric inhibition (Marneweck et al., 2011, Talelli et al., 2008b), compared to 

younger adults. Older adults also exhibit decreased motor control; such as decreased 

coordination/dexterity (Marneweck et al., 2011, Sullivan et al., 2010), decreased reaction 

time (Levin et al., 2011), and decreased strength (Plow et al., 2014).  

The recruitment of additional brain areas as well as neurons and earlier activation of the 

corticospinal pathway in older adults is hypothesized to be a means of compensation to 

maintain a specific level of motor control or coordination to complete the task. The age-

related changes within the CNS and suggest that TMS findings within young adults may 

not be applicable to older adults; this is evident in TMS measurement of the elements of 

the MEP.  
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The measurement of MEP elements yields different findings in older adults compared to 

younger adults, however the evidence is inconsistent. For example, previous research 

has exhibited the MEP amplitude in older adults to be smaller (McGinley et al., 2010, 

Oliviero et al., 2006); larger (Kossev et al., 2001); and no different to younger adults 

(Stevens-Lapsley et al., 2012). Despite the inconsistent findings, there is evidence of 

changes within the corticospinal pathway and its measurement with aging. The changes 

within TMS measurement of the MEP further support that TMS measurement in young 

adults may not be applicable to older adults. TMS measurement in neurologically intact 

adults is used to develop normative data for comparison to individuals with neurological 

disease such as stroke. The current normative TMS data has been investigated with 

young adults.  However, individuals with neurological disease such as stroke tend to be 

older adults (Xanthakis et al., 2014). TMS measurement in older adults is lacking and 

necessary for age-matched comparison with stroke survivors.  If inferences about the 

nervous system are going to be drawn from TMS measurement it is important that the 

measurement be stable.  

An important aspect of measurement is the reliability of a measure or measurement tool 

within the population that it is being used or investigated.  The test-retest reliability of 

TMS measures has been investigated in young healthy adults demonstrating moderate 

to good reliability e.g. (Carroll et al., 2001, Malcolm et al., 2006, Ngomo et al., 2012). The 

reliability findings from individual studies are in Table 4 in Chapter 0 page 51.  Age 

related changes in the brain and corticospinal pathway, and the changes in the MEP 

elements, may influence the test-retest reliability of TMS measures. There is a lack of 

TMS reliability research in older adults. Two studies have investigated the test-retest 

reliability of TMS measures in older adults (Christie et al., 2007, Schambra et al., 2015). 

However, these studies were limited to assessment of hand muscles such as adductor 

digiti minimi (Christie et al., 2007) and first dorsal interosseous (Schambra et al., 2015), 

as well as limited to  assessment of MEP amplitude (Christie et al., 2007), motor 

threshold, and the recruitment curve (Schambra et al., 2015).  It is known that not all 

muscles respond equally to TMS, for example the distal proximal gradient (Martin et al., 

2006).  It is expected that the reliability of TMS measurement will be different for different 

muscles.  It is therefore essential to expand investigations beyond the hand muscles to 

the muscles of the forearm and upper arm muscles as all the muscles of the upper limb 

work together to have functional use of the arm and hand (Shumway-Cook and 

Woollacott, 2007).  It remains unknown how the aging nervous system may influence the 

test-retest reliability of other MEP elements and other upper limb muscles, which are 

necessary for ADL’s.  

In addition to age there are other factors that may contribute to variability in TMS 

measurement. There is evidence that caffeine, physical activity, cortisol (time of day) and 
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nicotine can influence corticospinal excitability and magnetic stimulation.  However this 

evidence in inconsistent. Caffeine has been found in some research to increase MEP 

amplitude (Specterman et al., 2005) and lengthen the silent period (Cerqueira et al., 

2006), yet other research found caffeine had no influence on these elements (Orth et al., 

2005). Physical activity was found to be beneficial for brain-muscle connectivity; 

physically active older adults exhibited silent periods that were more similar to younger 

adults compared to sedentary older adults (McGregor et al., 2011). Cortisol is a hormone 

associated with circadian rhythms (sleep/awake cycles), when levels are low such as in 

the afternoon and evening neural plasticity is enhanced and the MEP response is more 

reliable (Sale et al., 2008, Sale et al., 2007). Finally, nicotine has also been associated 

with neural plasticity.  When nicotine was withdrawn in a group of smokers neural 

plasticity was decreased (Grundey et al., 2012). It would be a challenge to attempt to 

control for all of these factors in research.  If all of the above factors were controlled for 

the sample, it may not be representative of the general population or individuals with 

neurological disease.  

The aim of this study is to answer research question 2a “Is TMS measurement of 

corticospinal pathway excitability reliable (test-retest reliability) in neurologically intact 

adults of all ages (> 18 years of age)”?  This study will determine the test-retest reliability 

of TMS measures of corticospinal pathway excitability, investigating: the motor threshold, 

MEP amplitude, MEP latency, silent period, and recruitment curve of the bilateral biceps, 

extensor carpi radialis, and abductor pollicis brevis. A secondary aim of this study is to 

answer research question 2b “Is the reliability of TMS measurement influenced by age, 

gender, physical activity or dexterity?” This study will determine if age, dexterity, and 

other factors such as physical activity influence the test-retest reliability of TMS 

measures of corticospinal pathway excitability (listed above).  
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4.2 Methods  

4.2.1 Ethical approval and informed consent  

Ethical approval was provided by the UEA Faculty of Medicine and Health Ethics 

Committee.  Ethical approval was granted on 6 February 2014, reference 2013/2014-20.  

Associated approval letters are in Appendix 3 and 4.  An amendment was approved on 

20 June 2014 to include pregnancy on the medical screening questionnaire as an 

exclusion criteria to participating in TMS.  All data was stored on a password protected 

computer that only the researcher and her supervisors had access to. 

All participants provided written informed consent prior to taking part in the project 

(Appendix 5).  Participants were given at least 24 hours to read the information sheet 

before agreeing to take part in the study.  Any questions participants had regarding TMS 

or the procedures were answered via email, telephone conversation, or in person.  Upon 

arrival to the first session the procedures were reviewed with participants and any 

questions answered.  Written informed consent was obtained after participants questions 

were answered satisfactorily.   A copy of the signed informed consent form was given to 

each participant.  Upon arrival to the second session, the procedures were again 

reviewed and any questions answered.  Participants were asked if they wished to 

continue with the second session, if they answered “yes” the second session of TMS was 

conducted.   

4.2.2 Research design 

This study uses a prospective correlational test-retest reliability study design.  The test-

retest reliability of TMS measures of corticospinal pathway were assessed over two 

identical TMS sessions.  The two TMS sessions were identical and separated by 5-7 

days (Julkunen et al., 2009, Liu and Au-Yeung, 2014). 

4.2.3 Participants 

Participants were recruited from the local community via posters (Appendix 6).  The 

posters were placed around the UEA campus and sent electronically in the staff and 

school bulletin emails.  In addition, the poster was displayed in public spaces such as the 

(city) library and also in the public areas of charities such as Age UK.  The researcher 

spoke about the research project at Age UK, the Norfolk Older People’s Forum, and the 

Positive about Aging conference.   Interested participants contacted the researcher via 

email or phone call.  Interested participants were then emailed a summary of the 

research project and the participant information sheet detailing the purpose and 

procedures of the research project (Appendix 7).  TMS suitability questions were 

included in the participant information sheet in the form of a health screening 

questionnaire (Appendix 8).  The health screening questions were based on the 

contraindications to TMS such as implanted metal, pacemaker, drug infusion pump, 
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hydrocephalus shunt, epilepsy, and pregnancy (Rossi et al., 2009).  An answer of ‘yes’ to 

any of the health screening questions meant participants were not suitable to participate 

in TMS.  Participants that met the inclusion criteria and wanted to take part after reading 

the participant information sheet, had TMS arranged at a convenient time for them.  All 

questions were answered prior to obtaining informed consent.  

The participants in the TMS reliability study of neurologically intact adults were not age 

matched to those in the reliability study of stroke survivors early after stroke (Chapter 5).  

Both studies were run as pragmatic studies.  Age-matching was not feasible as the 

studies were running in parallel and recruitment of stroke survivors was dependent on 

the FAST INdICATE trial.  Additionally, the methods were slightly different for the 

neurologically intact adults maintaining a specific percentage of their MVC during data 

collection compared to the stroke survivors maintaining a slight contraction monitored by 

the researcher.  

4.2.4 Power Calculation 

The power calculation is based on the estimation of the ICC to within a pre-specified 

level of confidence via the estimation of a confidence interval (Portney and Watkins, 

2009, de Vet et al., 2006). As the lower limit for “acceptable reliability” is 0.7 this was set 

to be the lower bound of the confidence interval, the other parameter required is the 

estimated value of the ICC.  Previous literature has estimated the ICC to be between 0.6 

and 0.94 (Mylius et al., 2013, Bastani and Jaberzadeh, 2012, Cacchio et al., 2009), it 

was decided to use 0.8 as this is within the limits of previous research and represents an 

acceptable level of reliability. This means that the confidence interval should have a 

width of 0.2 (from 0.7 to 0.9) and using standard formulae this gives the required number 

as 51 per group.  
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Table 15 - Inclusion and Exclusion Criteria 

Inclusion Criteria Exclusion Criteria 

1. At least 18 years of age 

 

1. Younger than 18 years of age 

2. No known neurological disorder 
 

2. Known neurological disorder 

3. Ability to participate in TMS 
assessed by completion of the 
health screening questionnaire 
(Appendix 8) 

3. Not suitable to participate in TMS 
assessed via health screening 
questionnaire (Appendix 8) 
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Table 15 - Inclusion and exclusion criteria to determine suitability to participate in the study. 
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4.2.5 Equipment 

The following sections describe the equipment used during a TMS session. 

4.2.5.1 TMS Equipment 

Single pulse TMS was delivered using a Magstim 2002 (Magstim Company Ltd, 

Carmarthenshire, UK) stimulator with a figure of 8 coil (90 mm in diameter), see Figure 

18A and B.  The EMG/MEP data was collected using surface EMG electrodes.  ConMed 

Cleartrace ECG surface electrodes (ConMed Patient Care, Utica NY, USA) 20 mm in 

diameter (Figure 18C), were used to collect data from the biceps brachii (BB) and 

extensor carpi radialis (ECR) muscles.  

Nicolette cup electrodes (Figure 18D) with conducting gel/electrode cream (Grass EC2 

electrode cream, Grass Products Natus Neurology Middleton WI, USA) were used to 

collect data from the abductor pollicis brevis (APB).  

The EMG signals were pre-amplified filtered and sampled using a Digitimer Ltd. Pre-

amplifier (Digitimer Ltd, Hertfordshire, UK), as seen in Figure 18E, the CED (Cambridge 

Electronic Design) Micro 1401 (Cambridge Electronic Design Limited, Cambridge UK), 

and the Neurolog System (Digitimer Ltd, Hertfordshire, UK) both displayed in Figure 18F.  
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Figure 18 - Equipment used during TMS Session 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 - Equipment used during a TMS session A: TMS machine, B: figure-of-8 coil, C: surface 

EMG electrodes, D: cup electrodes, E: Digitimer, Neurolog, and F: Cambridge Electronic design 

(CED) Micro 1401. TMS=transcranial magnetic stimulation 

 

Figure 18C. ConMed Cleartrace 

electrodes used to collected 

muscle activity from the BB and 

ECR  

Figure 18D. Cup Electrodes 

used to collect muscle activity 

from the APB 

Figure 18A.  Magstim 2002 

Stimulator 

Figure 18B. Figure-of-8 TMS 

coil 

Figure 18E. Digitimer Ltd  Pre-

amplifier 

Figure 18F.  Neurolog (top 

shelf) and Cambridge 

ElectronicDesign (CED) Micro 

1401 (bottom shelf) 
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4.2.5.2 Myometer  

Participants’ maximal voluntary contraction (MVC) was assessed using the MTE Medical 

Research limited myomometer displayed in  Figure 19.  The myomometer was also used 

during active TMS conditions to provide a visual cue target for participants to maintain 

20% of their individual MVC (Talelli et al., 2008b, Rothkegel et al., 2010, Liu and Au-

Yeung, 2014, Cacchio et al., 2009).    

 

 Figure 19 - MTE Myometer 

  

 

 

 

 

 

 

 

  

 Figure 19 - MTE myometer being 

used to assess the strength of a 

biceps contraction.  
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4.2.6 Muscles of investigation 

The muscles of investigation were the biceps brachii, extensor carpi radialis, and 

abductor pollicis brevis of both the dominant and non-dominant upper limbs. These 

muscles were selected because they are essential for completion of activities of daily 

living such as dressing and grooming.  The biceps assists in transport of the arm in 

space and flexing the elbow.  The extensor carpi radialis stabilizes and extends the wrist 

enabling finger dexterity.  The abductor pollicis brevis abducts the thumb to allow for 

grasp and object manipulation (Nowak, 2008, Shumway-Cook and Woollacott, 2007). 

The distal upper limb muscles such as the ECR and APB, have been frequently studied 

in previous research, (Corneal et al., 2005, Massie and Malcolm, 2013, Malcolm et al., 

2006, Sollmann et al., 2013, Wassermann, 2002); whereas the biceps are less frequently 

studied (Harris-Love et al., 2015) but essential to reach to grasp and functional use of the 

upper limb.  There is evidence that the upper limb muscles respond differently to TMS 

(Martin et al., 2006) and the reliability of TMS measures is different in different muscles.  

The reliability of the motor map of the EDC (ICC=0.86) and FCR (ICC=0.85) were higher 

than for the APB (ICC=0.68) and FDI (ICC=0.63) (Malcolm et al., 2006); the reliability of 

the recruitment curve also demonstrated higher ICC values for the FDI (ICC=0.85) 

compared to the FCR (ICC0.36-0.76) (Carson et al., 2013).    

The dominant limb has been most frequently studied in previous research (Malcolm et 

al., 2006, Sollmann et al., 2013, Wassermann, 2002); however a number of recent 

studies have investigated both dominant and non-dominant upper limbs (Koski et al., 

2005, Kimiskidis et al., 2004) and non-dominant limbs (Ngomo et al., 2012).  Individuals 

use both their dominant and non-dominant limbs throughout the day to complete 

activities of daily living.  Research by Koski et. al. (2005) found that when using TMS, the 

coefficient of variation of both the motor threshold and silent period were different in the 

dominant compared to the non-dominant hemispheres/limbs.  Corticospinal projections 

may be different to the dominant and non-dominant limb.   

  



123 
 

4.2.7 Procedures 

Procedures for session 1 and session 2 were identical and detailed in Figure 20. 

 Figure 20 - Procedures during TMS Session 

   

Informed Consent 

•Participant arrived at the laboratory

•Review of procedures, questions answered

•Written informed consent obtained (session 1); verbal consent to continue at session 2

Questionnaire

•Particpant seated comfortably in a chair with arm rests

•Complete Medical Screening quetsionnaire (Appendix 8)

•Complete Lifestyle and Environmental Factors questionnaire (Appendix 9)

TMS preparation

•Skin preparation over the muscles of investigation (biceps, ECR, APB)

•Surface electrode placement over the muscles of investigation

•Measurement of the head to locate the general area of the motor cortex, location marked with a 
semi-premament marker

TMS Data 
collection

•Biceps muscle assessment

•Assessment of MVC of the dominant then non-dominant limb

•Determine hot spot for the domiannt biceps > active motor threshold > collect active recruitment 
curve > resting motor threshold > collect resting recuritment curve (domiant limb only)

•Identical process repeated for the other muscles (non-domiant biceps, dominant ECR, non-
dominant ECR, dominant APB, non-dominant APB)

•At the conclusion of TMS data collection the eletrodes were removed and the skin was cleansed

Nine Hole Peg Test

•Participants completed the Nine Hole Peg Test, dominant limb then non-dominant limb

•Session complete

Figure 20 Details the procedures during the TMS sessions.   
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4.2.7.1 Health screening and lifestyle factors questionnaire  

Participants were seated comfortably in a chair with arm rests for the duration of the TMS 

session.  Participants completed a health screening questionnaire (Appendix 8) to 

determine their suitability to participate in TMS described in section 4.1.3 page 115. 

Once suitability to participate in TMS was determined participants then completed a 

lifestyle and environmental factors questionnaire (Appendix 9). This questionnaire 

included questions relating to age, handedness, exercise participation, medications, 

occupation, caffeine intake, and smoking; all of which have been found to influence the 

corticospinal pathway and neural plasticity.  Assistance was given as needed to 

complete the questionnaires. 

4.2.7.2 Electrode placement  

Next, the skin over the muscles of investigation were cleansed with NuPrep gel (Weaver 

and Company, Aurora, Colorado 80011) and an alcohol swab.  Participants were 

requested to gently contract their muscle to identify the muscle belly.  Electrodes were 

placed in parallel along the muscle fibres of the biceps, extensor carpi radialis, and 

abductor pollicis brevis of both the dominant and non-dominant limbs (Ngomo et al., 

2012); Figure 21.  A ground electrode was placed on the olecranon process.  The 

electrodes were connected to the pre-amplifier with leads. 

 

Figure 21 - Surface EMG Electrode Placement 

 

3.3.1.1  

3.3.1.2  

3.3.1.3  

3.3.1.4  

3.3.1.5  

 

 

3.3.1.6  

3.3.1.7 a 

 

Figure 21 - Placement of the surface electrodes for the biceps, ECR, and APB during TMS. 

ECR=extensor carpi radialis, APB=abductor pollicis brevis, TMS=transcranial magnetic 

stimulation 

 

 

  

Figure 21A. EMG electrode 

placement on the biceps 

muscle. 

Figure 21B. EMG electrode 

placement on the extensor 

carpi radialis muscle. 

Figure 21C. EMG 

electrode placement on the 

abductor pollicis brevis 

.muscle  
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4.2.7.3 Location of the motor cortex 

To determine the general location of the motor cortex the participant’s head was 

measured using a soft tape measure Figure 22.  The head was measured anterior to 

posterior, the median distance marked on the scalp with a marker.  The head was then 

measured from ear to ear, the median distance again marked on the scalp with a marker.  

From the middle of both marks a distance of six centimetres laterally and two centimetres 

anteriorly is measured and marked on the scalp with a marker.  This is the general area 

of the motor cortex which corresponds with the upper limb muscles.  

 

Figure 22 - Measurement of the Head for Locating the Motor Cortex 
 

 

 

 

 

 

 

 

 

 

Figure 22 - A, B, C Picture representation of the process of measuring the head to determine the 

general area of the motor cortex.  This is the starting point to determining the hotspot of the 

muscles of the upper limb.   

  

Figure 22A. Measure the 

head anterior (between the 

eyebrows) to posterior 

(base of skull).  The 

median distance was 

marked on the scalp. 

Figure 22B. Measure the 

head laterally from mid ear 

to mid ear.  The median 

distance was  marked on 

the scalp. 

Figure 22C. Starting at the 

midpoint between the two 

measurements, another 

mark was placed on the 

scalp 6 cm laterally and 2 

cm anteriorly.   
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4.2.7.4 Data collection 

TMS data collection was initiated once determination of the general area of the motor 

cortex was complete.  The muscles were investigated in the following order: dominant 

biceps, non-dominant biceps, dominant extensor carpi radialis, non-dominant extensor 

carpi radialis, dominant abductor pollicis brevis, and non-dominant abductor pollicis 

brevis.  The procedures of data collection were identical for each muscle and are 

described below Figure 23. 

 

Figure 23 - Processes of TMS data collection 

 

Figure 23 - Flow chart describing the processes of TMS during a session.  Processes were 

identical at session 1 and session 2.  The maximal voluntary contraction was assessed, 20% of 

the average MVC was maintained during active TMS conditions via visual feedback from the 

myometer.  TMS data was then collecting starting with the AMT, active recruitment curve, RMT 

resting recruitment curve (dominant limb only), this process was repeated for all muscles. 

 

  

MVC
•3 maximal contractions

•Determine 20% of the average of the 3 contractions

TMS

•Determine hotspot 

•Determine AMT (dominant then non-dominant limb)

•Collect active recuritemnt curve dominant then non-dominant limb

TMS
•Determine RMT (dominant then non-dominant)

•Collect resting recuritment curve (dominant limb only)

TMS
•Process repeated in the same manner for all muscles (biceps > ECR > APB)

•Surface EMG elelctrodes removed at the end of TMS and skin cleansed
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 Maximal Voluntary Contraction 

o The researcher demonstrated each movement prior to the participant 

completing the movement.   

o Participants sat in front of a table; table height at mid-abdomen.   

o To assess the biceps maximal voluntary contraction (MVC), the 

participant placed their elbow on the table, with their elbow stabilised on 

the table, elbow flexed, and palm facing them.   

o The myometer strap was placed around the ventral surface of the 

forearm.   

o The participants were instructed to pull the strap towards them as hard as 

they could, generating a maximal biceps contraction ( Figure 24 A).   

o The maximum value of Newtons was recorded.  This process was 

repeated three times.  The mean of the three trials was used as the MVC.    

 

 Figure 24 - Myometer Positioning 

  

  

 

 

Figure 24 - Picture demonstration of maximal voluntary contraction (MVC) assessment of the 

biceps muscles (A), ECR (B), and APB (C).  The same positions were maintained during active 

trials of TMS in which participants maintained 20% of their individual MVC.  

 

 TMS 

o The EMG signals were pre-amplified at 10 Hz, 1 k gain, and filtered at 10-

50 Hz.  Motor evoked potentials were collected and saved for offline 

analysis using Signal 5.7 software.   

o The EMG data was collected in 500 ms samples, 100 ms prior to the TMS 

stimulus and 400 ms after the TMS stimulus.   

o The TMS coil was placed tangentially to the scalp over the area of the 

motor cortex contralateral to the muscle of interest with the handle 

 Figure 24A. Positioning for 

assessment of biceps 

strength and during TMS 

data collection. 

Figure 24B. Positioning for 

assessment of extensor 

carpi radialis strength and 

during TMS data collection. 

Figure 24C. Positioning for 

assessment of abductor 

pollicis brevis strength and 

during TMS data collection. 
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pointing backward to obtain a posterior-anterior current flow to the motor 

cortex, as illustrated in  Figure 25 (Wassermann, 2002, Koski et al., 2005).   

 

 Figure 25 - Coil Position during TMS Data Collection 

 

 

 

 

 

 Figure 25 - Coil placement on scalp during TMS collection; tangential to the scalp to obtain a 

posterior to anterior current flow. 

 

o Using the mark on the head as a guide (moving the coil when necessary 

to determine the hot spot) the hot spot for the dominant biceps muscles 

was determined.  During muscle contraction the hot spot for the biceps 

was determined. The hot spot is the coil location on the scalp that the 

largest and most consistent MEP’s are obtained from the muscle of 

interest (Carroll et al., 2001).  Once the hot spot was determined the 

location was marked on the scalp with semi-permanent marker.  All data 

related to the dominant biceps was collected from this scalp location. 

o During active trials of TMS, participants arm was positioned on the table 

with the elbow supported and the myometer strap around the ventral 

surface of the forearm identical to the positioning during determination of 

the MVC. Participants were requested to maintain about 20% MVC (Talelli 

et al., 2008b, Rothkegel et al., 2010, Liu and Au-Yeung, 2014, Cacchio et 

al., 2009), using the Newtons on the myometer as visual feedback of their 

muscle contraction.  

o The active motor threshold was determined while participants maintained 

a biceps contraction which was about 20% of their MVC. The stimulator 

output was initially placed at a suprathreshold level and was decreased in 

5% increments, then when closer to the threshold stimulator output was 

decreased in 1-2% increments until half of the successive trials produced 

an MEP > 200 µv (Liu and Au-Yeung, 2014, Rossini and Rossi, 2007, 

Koski et al., 2007a). 
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o Once the active motor threshold was determined a recruitment curve was 

obtained (while participants maintained 20% MVC).  Stimulation 

intensities in the recruitment curve were 100%, 110%, 120%, and 130% of 

active motor threshold; five TMS pulses were delivered at each intensity 

(Massie and Malcolm, 2013).  Rest breaks were given as needed.  

Collecting data during active muscle contraction may decrease the 

potential for variability in excitability of the corticospinal pathway due to 

normal fluctuations (Koski et al., 2007a, Kiers et al., 1993).  Often TMS 

studies investigating stroke survivors are conducted during active muscle 

contraction; thus having active muscle contraction data in neurologically 

intact adults is beneficial for comparison.   

o Next, the resting motor threshold was determined in the same manner as 

the active motor threshold.  The resting motor threshold was the threshold 

that half of consecutive trials had a MEP amplitude of > 50 µv (Ngomo et 

al., 2012, Rossini and Rossi, 2007).  A resting recruitment curve was then 

collected at stimulation intensities of 90%, 100%, 110%, 120%, and 130% 

of resting motor threshold; five TMS pulses were delivered at each 

intensity.  The resting recruitment was only collected on the dominant 

limb.   

o This exact process was then repeated for the non-dominant limb and 

bilateral extensor carpi radialis and abductor pollicis brevis muscles. 

o At completion of TMS the electrodes were removed and the skin was 

cleansed.  

o All data was saved in Signal 5.7 software for offline analysis  

 

 Nine Hole Peg Test (NHPT)  

o The NHPT is an assessment of hand dexterity. Published normative data 

can be found in a paper by Grice et al. 2003 

o The test involves taking pegs individually from a container and placing 

them into holes on the pegboard as quickly as possible.  Once all of the 

pegs are placed in the holes the pegs are immediately removed 

individually and placed back into the container as quickly as possible 

o Figure 26) (Grice et al., 2003).   

o The test is timed; starting from when the participant touches the first peg 

till the last peg is placed back in the container.   

o Instructions for the NHPT were explained and moving the pegs was 

demonstrated by the researcher. 
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o Each hand was tested separately starting with the dominant hand. One 

practice trial was given and then one test trial 

 

Figure 26 - Nine Hole Peg Test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 - Nine Hole Peg Test; placing of pegs from the well into the holes  

 

 

 At completion of the NHPT the session was complete 

 The second session was identical to the first session except that verbal consent 

to continue with the procedures was obtained 

4.2.8 Data processing 

The MEP elements investigated were active and resting motor threshold, recruitment 

curve slope, MEP latency, MEP amplitude, and the silent period.  All MEP data was 

saved in Signal 5.7 software and analysed off-line.  The researcher visually assessed 

each trial of TMS stimulation.  Visual inspection involved determination if there was an 

MEP present, or if there was electrical noise that would inhibit analysis.  Trials without an 

MEP or with electrical noise were not analysed.  Frames that were appropriate for 

analysis were then tagged in the software. 

4.2.8.1 Motor threshold 

Determination of the motor threshold has been detailed in section 4.2.7.4 page 126.  In 

summary the motor threshold was the stimulator output in which half the trials yielded an 

MEP of > 50 µv at rest and > 200 µv with a muscle contraction (Koski et al., 2005, Liu 

and Au-Yeung, 2014, Rossini and Rossi, 2007). 
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4.2.8.2 MEP amplitude 

The MEP amplitude was the peak to peak amplitude or the maximum deflection- 

minimum deflection in µv of the MEP (Koski et al., 2007a).  Frames to be analysed were 

tagged, and cursors placed on either side of the MEP Figure 27 - MEP amplitude.  The 

maximum-minimum deflection between the two cursors was determined using a pre-

written script in the Signal 5.4 software.  The MEP max was the largest amplitude MEP 

within the recruitment curve.  

 

Figure 27 - MEP amplitude 

 

Figure 27 - Example of EMG following TMS stimulus; between the two grey vertical cursors is the 

MEP.  The X axis is the time in ms, the y axis is the amplitude of EMG in mV, and the arrow is 

pointing to the TMS stimulus which occurs at 0.00 ms.   

 

4.2.8.3 MEP latency 

The MEP latency was determined by placing a cursor at the onset of the MEP.  MEP 

onset was defined as the first sustained crossing of the rectified EMG trace prior to the 

first MEP peak Figure 28 (Rossini et al., 2010, Daniel et al., 2015, Koski et al., 2007b, 

Cacchio et al., 2009, Wassermann et al., 2008).  Visual assessment of the first sustained 

crossing of the rectified EMG is common commonly used to determine the start of the 

MEP (Rossini et al., 2010, Daniel et al., 2015, Koski et al., 2007b, Cacchio et al., 2009, 

Wassermann et al., 2008).  Alternatively, the start of the MEP can be determined using a 

mathematical approach such that the first crossing is three standard deviations above 

pre-stimulus EMG reflecting the start of the MEP (Cacchio et al., 2011). The time in 

milliseconds (ms) from TMS stimulus to the cursor is the MEP latency (MEP onset- TMS 

onset) (Koski et al., 2007a).    A second researcher assessed 10% of participants for 

agreement in MEP latency, the researchers needed to be in agreement on at least 80% 

of trials.  The two researchers’ latencies were in agreement within 2 milliseconds of each 

other in 84% of the trials. Two milliseconds was selected based on previous research of 

the standard error of measurement and the minimal detectable change of MEP latency 

(Cacchio et al., 2011, Fisher et al., 2013).  In instances in which the difference was 

greater than two seconds the two researchers met, investigated the data, and agreed 
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upon the value.  Despite the variability in measurement of the MEP latencies, the 

latencies identified in this study were generally comparable to previous research 

(Julkunen et al., 2009, Furby et al., 1992, Eisen and Shtybel, 1990, Kossev et al., 2001).   

 

Figure 28 - MEP Latency 

 

Figure 28- Example of EMG following TMS stimulus.  The MEP latency is the time from TMS 

stimulation (arrow) 0.00 ms to the dotted grey cursor measured in ms (14.9 ms)  The end of MEP 

latency is the start of the MEP.  The x axis is the time in ms the y axis is the amplitude of EMG in 

mV.  ms=milliseconds, EMG=electromyography, MEP=motor evoked potential  

 

4.2.8.4 Recruitment curve  

Recruitment Curve also known as the input-output curve, is a graph that depicts the 

increase in TMS stimulus against the increase in MEP size.  The recruitment curve was 

plotted in Stata 12.1 using a sigmoidal function (Carroll et al., 2001, Carson et al., 2013, 

Liu and Au-Yeung, 2014).  The elements of the recruitment curve that were analysed 

include the x intercept, slope, and area under the curve.   

Figure 29- Recruitment Curve 

 

Figure 29 Example recruitment curve.  The x-axis is the increasing stimulus intensity      and the y-
axis is the increasing MEP amplitude.   
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4.2.8.5 Silent period 

The onset of the silent period was defined as MEP onset, the offset was return of EMG 

Figure 30 (Damron et al., 2008, Liu and Au-Yeung, 2014).  The silent period was 

analysed via visual assessment (Damron et al., 2008).  The silent period was assessed 

on all participants by one researcher, a second researcher independently assessed the 

silent period of 10% of participants.  The two researchers were in agreement within 2 ms 

for 84% of trials.  

 

Figure 30 - Silent Period 

 

Figure 30 - Example of EMG after TMS stimulus.  The silent period is the period is the duration 

between the two grey dotted cursors and measured in ms from onset of MEP (1st cursor) to return 

of EMG (2nd cursor).  The x axis is the time in ms, the y axis is the amplitude of EMG in mV. 

mV=millivolts, MEP=motor evoked potential, ms=milliseconds TMS=transcranial magnetic 

stimulation 

 

4.2.9 Statistical analysis 

To answer research question 2a “Is TMS measurement of corticospinal pathway 

excitability reliable (test-retest reliability) in neurologically intact adults of all ages (> 18 

years of age)?” the test-retest reliability was determined by the findings from session 1 to 

the findings of session 2.   

The test-retest reliability was assessed using the Intraclass Correlation Coefficient (ICC), 

which reflects the degree of correlation as well as agreement between ratings; in other 

words how close the two scores are (Bruton et al., 2000, de Vet et al., 2006, Portney and 

Watkins, 2009). The ICC has the advantage that it supports generalizability in which the 

measured value is representative of the infinite distribution of possible values; thus the 

findings will be generalizable to the population (Portney and Watkins, 2009). The ICC 

has advantages over using a correlation coefficient such as Pearson’s product moment 

correlation (r). Pearson’s product moment correlation is limited in that it only measures 

the strength or degree of association between two variables, is unable to determine the 

agreement between the variables, and does not support generalizability.  
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As the total variance of the population studied gets larger the error component will 

account for a smaller proportion of the variance.  For example, if the measurement error 

is small compared to the variability between individuals, the reliability parameter will be 

closer to one (de Vet et al., 2006, Portney and Watkins, 2009).  However, the ICC is 

limited in that it cannot determine absolute agreement only the percentage of variance 

(Bruton et al., 2000, Portney and Watkins, 2009).  Therefore, the Limits of Agreement 

(LOA) will also be used.  

The LOA examines both agreement across multiple tests, as well as if there is a biased 

pattern of error such as systematic or random error (Bland and Altman, 1986b, Bruton et 

al., 2000, Portney and Watkins, 2009). Systematic error is predictable and occurs 

consistently in one direction; overestimating or underestimating the true score. Random 

error is error due to chance and is unpredictable (Bland and Altman, 1986b)  

This study used the combination of the ICC and LOA to robustly determine the test-retest 

reliability of TMS measures. The ICC model [2,1] will be used to determine the test-retest 

reliability of the observations (de Vet et al., 2006, Portney and Watkins, 2009). The 

interpretation of ICC values was based on guidelines by Portney and Watkins (2009) 

(Table 16). Acceptable reliability for this study was an ICC of > 0.70; the lower end of the 

confidence interval used to determine acceptable reliability and the reliability category 

assigned within the results tables.   

Other ways of investigating the reliability and agreement are through Cohen’s kappa 

coefficient, Lin’s Concordance Coefficient (CCC), standard error of measurement (SEM), 

coefficient of repeatability (CR).  Cohen’s Kappa is used to determine the agreement of 

categorical or ordinal data, and Lin’s Concordance Coefficient determining the 

agreement between two different methods or raters (Portney and Watkins, 2009).  In the 

present study the data were ratio and there was one assessor thus Cohen’s kappa and 

CCC were not applicable.  The SEM is related to response stability and measurement 

error; SEM is investigating how a repeated measure using the same instrument is 

distributed around the true score. A measure that has higher reliability will have smaller 

measurement error, and less variable distribution; thus the standard deviation of the 

measurement reflects the reliability of the response (SEM).  A shortcoming of using SEM 

is that it is scale dependent, and there is a lack of guidance as to what value would be 

associated with acceptable reliability.  Measurement error can be assessed from the 

Bland-Altman Plots and 95% Limits of Agreement which were used in this study (Portney 

and Watkins, 2009).  The CR also referred to as the smallest real difference quantifies 

absolute reliability in measurement error and is directly related to LOA (Vaz et al., 2013). 

Identifying the smallest real difference is of value for TMS measurement.  However, the 

step prior to determining the smallest real difference is determining if the measurement 
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tool provides reliable data that can be used to make clinical decisions.  If the tool is not 

reliable then the smallest real difference may not need to be investigated.  The present 

study was an exploratory study exploring the question is TMS reliable in neurologically 

intact adults of all ages.  If TMS is found to be reliable the next steps would be to 

investigate the smallest real difference and minimal clinically important difference in 

future research; which would strengthen and refine the use of TMS to evaluate 

corticospinal pathway excitability and neural plasticity. The limits of agreement were 

used in the present study to investigate absolute reliability as well as provide a visual 

assessment of any potential bias in the difference in measurement between sessions 

(Bland and Altman, 1986a).  Interpreting the ICC simultaneously with the LOA can 

provide both the correlation and agreement between sessions and the distribution of the 

differences. 

Sub-group analysis will be completed for all MEP elements based on gender, age (≤ 49 

years of age or ≥ 50 years of age), exercisers, and non-exercisers, dominant and non-

dominant limbs.  Individuals who exercise will be determined by self-report on the 

lifestyle and environmental factors questionnaire (Appendix 9).  The study is not powered 

to statistically investigate differences in the reliability of the sub-groups of participants 

thus these analyses should be treated as exploratory.  The sub-group analysis was 

conducted to better understand how the factors (exercise, hand dominance, age) may 

influence corticospinal pathway excitability and any potential trends in the reliability of 

TMS measures. 

Statistical analysis was completed using STATA SE version 12.1 software. 

 

Table 16 - Reliability Coefficient guidelines based on Portney and Watkins (2009) 

Reliability Coefficient Interpretation 

< 0.50 Poor reliability 

0.50 to 0.70 Moderate reliability 

>0.70 Good reliability 

    

                                       Table 16 Guide to interpretation of the ICC  
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4.3 Results 

4.3.1 Participants 

Recruitment began in March 2014 and ended in June 2015. There were 54 individuals 

who showed interest in the study (Figure 31). One participant was prescribed 

psychotropic drugs that are known to influence brain stimulation studies and the MEP 

elements (Ziemann, 2004), thus he was excluded. A second participant gave informed 

consent but did not like TMS, no data was collected and the participant withdrew 

consent. A third participant was unable to attend the second session due to family 

commitments and thus their data was not analysed. Data was analysed on 51 

participants. The mean age and standard deviation of participants was 43.7±16.4 years; 

there were 21 men and 30 women, further participant description is in Table 17, and the 

medications participants were taking in Table 18. 

4.3.2  Adverse events 

There were no adverse events as a result of TMS.  

4.3.3 Nine Hole Peg Test 

All participants completed the NHPT within the normal range associated with their age 

category (Grice et al., 2003). 

4.3.4 Trials not included 

There were 8% of trials were not included in the analysis due to an MEP not being 

present, or there was electrical noise inhibiting the analysis of the MEP.   
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Figure 31 - Flowchart of Recruitment  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 - Flow chart describing recruitment to the study.  Fifty-four participants exhibited interest 

in the study, however one participant was on psychotropic medication which is known to influence 

brain stimulation thus was excluded.  A second participant did not like TMS and withdrew consent 

and a third participant was unable to attend the second session and was therefore loss to follow 

up.  Fifty-one participants were included in analysis.  

  

Interested participants assessed 

for eligibility n= 54 

Informed Consent Obtained n=53 

Participants excluded  

n=1 psychotropic medications 

Data collected n=52 

Included in analysis n=51 

Lost to Follow up n=1 

Participant unable to attend 

second session due to family 

circumstances 

Withdrew consent n=1 

Participant did not like TMS no 

data collected 
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Table 17 - Demographic & Lifestyle Questionnaire Responses and Nine Hole Peg Test 
Results 

Questionnaire Question Response  

Participant age (mean and SD)  43.7±16.4 years (range: 21-74) 

Gender  Male n=21 

Female n= 30 

Handedness Right n=47 

Left n= 4 

Consume Caffeine   n=44 

Participates in Exercise  

≤ 3x a week 

˃ 3x a week 

n=40 

n=25 

n=15 

Medication (see Table 18 for medication 
list and uses) 

n=20 

Smoking n=1 

Nine Hole Peg Test Time To Complete 

 Session 1 Dominant hand: 20.63±2.34 seconds 

Non-Dominant hand: 21.35±2.37 seconds 

 
Table 17 - Participant responses to the lifestyle and environmental factors questions such as age, 

gender, handedness, consumption of caffeine, participation in exercise, and if they take 

medications.   
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Table 18 - Medications and Purpose 

Medication 
Number of 

Participants 
Purpose 

Amias n=1 Candesartan, Anti-hypertensive  

Novo-Serum RT n=1 
Collagen serum used externally on the 
skin 

Thyroxine n=1 Thyroid hormone supplement  

Contraceptive Pill n=4 
Estrogen and progesterone used to 
prevent pregnancy  

Nasal Steroid Spray n=1 Corticosteroid nasal spray 

Beclomethasone Inhaler n=1 Asthma inhaler, corticosteroid 

Fluoxetine n=1 
Serotonin reuptake inhibitor (SSRI) 
antidepressant  

Bendroflumethiazide n=1 
Thiazide diuretic; anti-hypertensive and 
diuretic to reduce fluid  

Lisinopril  n=1 
ACE (angiotensin converting enzyme) 
inhibitor; anti-hypertensive 

Metformin n=1 
Glucophage, antidiabetic treatment for 
type II diabetes (lowers blood sugar) 

Simvastatin  n=1 Lipid (cholesterol) lowering medication 

Terbinafine  n=1 
Treatment of fungi, cream used 
externally on the skin  

Venlafaxine n=1 SSRI antidepressant  

Lansoprazole n=1 
Proton pump inhibitor inhibiting 
stomachs production of gastric acid, 
treatment of ulcers  

Chondroitin n=2 
Polysaccharide, treatment of 
osteoarthritis  

Glucosamine n=1 Amino sugar, treatment of osteoarthritis  

Ventolin inhaler n=2 
Albuterol, bronchodilator, prevents 
bronchospasm in asthma  

Ramipril n=1 ACE inhibitor, anti-hypertensive  

Ferritin n=1 
Intracellular protein that stores iron, 
treatment of anemia  

Table 18 Describes the medications taken by participants included in the study and the number of 

participants taking the medication.   
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4.3.5 MEP Elements 

The descriptive statistics (mean and standard deviation) of the MEP elements at session 

one and session two are in Table 19 for the motor threshold, MEP latency, silent period 

and the recruitment curve, Table 20 for the MEP amplitude 100% AMT to 130% AMT, 

and Table 21 for the MEP max amplitude.  The data were roughly normally distributed. 

Example histograms for the motor threshold of the dominant and non-dominant ECR, 

and the MEP amplitude of the ECR assessed at 120% AMT are in   
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Figure 32 A to C respectively. 
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Figure 32 Histograms of Data Distribution 

A. Active motor threshold dominant ECR  

 

B. Active Motor Threshold Non-dominant Biceps 

  

C.  MEP amplitude of the non-dominant ECR at 120% AMT 

  

Figure 32 Histograms of data distribution demonstrating roughly normal distribution for the 

active motor threshold of the non-dominant biceps (A), dominant ECR (B) and MEP 

amplitude of the ECR at 120% AMT (C).  
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Table 19 Descriptive Statistics for MEP elements  

Muscle Dominant vs 

non-dominant  

Testing 

Conditions 

Motor 

Threshold 

Session 1 

Motor 

Threshold 

Session 2 

MEP 

Latency 

Session 1 

MEP 

Latency 

Session 2 

Silent Period 

Session 1 

Silent Period 

Session 2 

RC Slope 

Session 1 

RC Slope 

Session 2 

Biceps Dominant Resting 62 ±8.47 62 ±7.06 13.61±2.75 12.98±2.44   0.10±0.52 0.30±0.53 

  Active 48 ±7.26 47 ±7.10 12.48±1.01 12.65±0.98 103.47±25.04 110.74±22.85 0.12±0.11 0.10±0.08 

 Non-Dominant Resting  62 ±6.84 63 ±6.60       

  Active 48 ±7.32 47 ±7.06 12.39±1.30 12.56±1.16 105.27±25.61 109.13±27.36 0.23±0.26 0.11±0.05 

ECR Dominant Resting 48 ±6.87 49 ±8.01 17.90±1.51 17.65±2.16   0.13±0.070 0.42±0.50 

  Active 38 ±4.86 38 ±5.03 16.48±1.52 16.40±1.48 98.03±28.21 100.61±28.66 0.21±0.38 0.09±0.07 

 Non-Dominant Resting 50 ±6.83 50 ±6.90       

  Active 40 ±4.92 40 ±5.27 16.38±1.57 16.08±1.21 107.45±35.43 106.33±37.27 0.14±0.07 0.12±0.063 

APB Dominant Resting 49 ±7.07 49 ±7.31 23.65±2.76 23.24±2.38   0.20±0.15 0.16±0.12 

  Active 41 ±5.24 40 ±4.55 22.93±1.87 22.59±1.72 126.56±31.05 137.48±33.05 0.17±0.12 0.19±0.20 

 Non-Dominant Resting 51±6.77 50 ±6.19       

  Active  42 ±4.95 41 ±4.43 22.31±2.22 22.49±2.30 133.29±40.03 131.79±39.25 0.17±0.16 0.14±0.12 

Table 19 Describes the mean and standard deviation for the motor threshold, MEP latency, silent period, and slope of the RC at session one and session 

two for the biceps, ECR and APB. ECR=extensor carpi radialis, APB=abductor pollicis brevis, MEP=motor evoked potential, RC=recruitment curve    
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Table 20 Descriptive Statistics of the average MEP amplitude  

Muscle Dominant or Non-
Dominant  

% AMT Average MEP 
Amplitude Session 1 

Average MEP 
Amplitude Session 2 

Biceps Dominant 100 0.98 ±0.66 1.07 ±0.78 

  110 1.22 ±0.77 1.54 ±0.75 

  120 1.60 ±1.00 2.00 ±1.04 

  130 1.97 ±1.13 2.37 ±1.30 

 Non-Dominant 100 1.21 ±1.09 1.07 ±0.68 

  110 1.66 ±1.37 1.54 ±0.94 

  120 2.15 ±1.49 1.89 ±1.31 

  130 2.62 ±1.98 2.20 ±1.43 

ECR Dominant 100 2.12 ±1.96 1.98 ±1.78 

  110 2.55 ±2.11 2.42 ±2.03 

  120 2.87 ±2.24 2.80 ±2.00 

  130 3.05 ±2.21 3.30 ±1.97 

 Non-Dominant 100 1.42 ±0.78 1.56 ±0.98 

  110 1.84 ±1.04 1.91 ±1.09 

  120 2.17 ±1.12 2.12 ±1.11 

  130 2.38 ±1.14 2.34 ±1.23 

APB Dominant 100 1.43 ±1.28 1.06 ±0.55 

  110 1.89 ±1.60 1.76 ±1.17 

  120 2.54 ±1.86 2.53 ±1.58 

  130 2.92 ±1.83 3.12 ±1.85 

APB  Non-Dominant 100 1.97 ±1.88 1.61 ±1.51 

  110 2.82 ±2.43 2.15 ±1.76 

  120 3.54 ±2.58 2.81 ±2.16 

  130 3.92 ±2.71 3.46 ±2.31 

Table 20 Describes the mean and standard deviation of the average MEP amplitude at 

100%AMT to 130% AMT for the biceps, ECR and APB.  ECR=extensor carpi radailis, 

APB=abductor pollicis brevis, MEP=motor evoked potential, AMT=active motor 

threshold.   
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Table 21 Descriptive statistics of the MEP max amplitude 

Muscle Limb Assessed Testing Conditions MEP Max 
Amplitude Session 
1 

MEP Max 
Amplitude 
Session 2 

Biceps Dominant Resting 1.68 ±1.36 1.26 ±0.96 

  Active 2.55 ±1.51 2.92 ±1.64 

 Non-Dominant Resting    

  Active 3.21 ±2.17 2.71 ±1.73 

ECR Dominant Resting 1.74 ±1.35 1.82 ±1.21 

  Active 3.89 ±2.52 3.96 ±2.67 

 Non-Dominant Resting   

  Active 3.07 ±1.36 3.05 ±1.44 

APB Dominant Resting 3.18 ±1.95 3.12 ±1.92 

  Active 3.85 ±2.13 4.09 ±2.11 

 Non-Dominant Resting   

  Active  4.99 ±2.95 4.51 ±2.46 

 

Table 21 Describes the mean and standard deviation of the MEP max amplitude for the 

biceps, ECR and APB during session one and session 2.  ECR=extensor carpi radialis, 

APB=abductor pollicis brevis, MEP= motor evoked potential  
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4.3.6 Reliability of MEP elements 

The reliability of the MEP elements investigated is variable within and among MEP 

elements.  Each MEP element will be discussed individually.   

4.3.6.1 Motor threshold 

The test-retest reliability of the motor threshold for each individual muscle can be found 

in Table 22 to Table 24; the Bland-Altman Plots are in  Figure 33 to  Figure 38.  Two 

participants found the higher stimulation intensities uncomfortable thus the motor 

threshold for the biceps was determined on 49 participants. 

The motor threshold of the biceps muscle for all participants ranges from an ICC= 0.776 

(0.639, 0.865) for the AMT of the non-dominant biceps to an ICC=0.676 (0.489, 0.804) 

for the RMT of the dominant biceps ICC= 0.676 (0.489, 0.804).  The lower end of the 

95% confidence interval falls within the moderate to poor range.  The 95% CI and 95% 

LOA are wide indicating variability and imprecision in the measurement.  The narrowest 

LOA are for the motor threshold of the non-dominant limb.  The AMT tended to 

demonstrate higher ICC values than the RMT.  

The Bland-Altman plots for the biceps demonstrate random error in agreement between 

measurements.  The line of mean difference falls close to zero (no change between 

tests) for the group as a whole.   
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Table 22 - Test-retest reliability ICC and LOA of the motor threshold for the biceps muscle 

Muscle Participants Active/Resting 
Dominant/ 

Non-dominant 
ICC (95% CI) Reliability Category 95% Limits of Agreement 

Biceps Whole Group 
n=49 

Resting Dominant n=49 

Non-dominant n=46 

0.676, (0.489, 0.804) 

0.756, (0.599, 0.858) 

Poor 

Moderate 

-12.675 to 12.231 

-9.466 to 9.027 

Active Dominant n=51 

Non-dominant n=51 

0.757, (0.612, 0.854) 

0.776, (0.639, 0.865) 

Moderate 

Moderate 

-9.303 to 10.895 

-9.089 to 10.477 

Biceps  < 50 y/o 

n=31 

Resting Dominant 

Non-dominant 

0.650 (0.394, 0.813) 

0.705 (0.480, 0.843) 

Poor 

Poor 

-13.220 to 11.220 

-10.661 to  8.861 

Active Dominant 

Non-dominant  

0.797 (0.627, 0.895) 

0.782 (0.603, 0.887) 

Moderate 

Moderate 

-8.889 to  9.592 

-8.503 to  9.476 

Biceps ˃ 50 y/o 

n=18 

Resting Dominant  

Non-Dominant 

0.725, (0.390, 0.891) 

0.868, (0.522, 0.960) 

Poor 

Moderate 

-10.302 to 14.666 

-5.073 to  8.346 

Active Dominant 

Non-dominant  

0.651, (0.250, 0.857) 

0.771, (0.451, 0.911) 

Poor 

Poor 

-10.275 to 14.608 

-10.946 to 13.613 

Biceps Women 

n=29 

Resting Dominant 

Non-dominant 

0.666, (0.392, 0.831) 

0.735, (0.489, 0.872) 

Poor 

Poor 

-13.351 to 12.791 

-10.572 to  9.663 

Active Dominant 

Non-dominant 

0.780, (0.577, 0.892) 

0.722, (0.490, 0.859) 

Moderate 

Poor 

-10.008 to 13.222 

-8.859 to 12.145 

Biceps Men 

n=20 

Resting Dominant 

Non-dominant 

0.655 (0.303, 0.848) 

0.784 (0.524, 0.911) 

Poor 

Moderate 

-12.120 to 11.820 

-8.313 to  8.419 

Active Dominant 

Non-dominant 

0.730 (0.442, 0.881) 

0.862 (0.693, 0.942) 

Poor 

Moderate 

-7.638 to  7.067 

-8.880 to  7.737 
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Muscle Participants Active/Resting 
Dominant/ 

Non-dominant 
ICC (95% CI) Reliability Category 95% Limits of Agreement 

Biceps Non-exercisers 

n=11 

Resting 

 

Dominant n=11 

Non-dominant n=11 

0.570, (0, 0.864) 

0.707, (0.223, 0.911) 

Poor  

Poor 

-10.770 to 10.952 

-10.770 to 10.952 

Active 

 

Dominant 

Non-Dominant 

0.778, (0.368, 0.935) 

0.788, (0.381, 0.938) 

Poor 

Poor 

-13.390 to 14.556 

-12.074 to 15.240 

Biceps Exercisers 

n=38 

 

Resting Dominant n=38 

Non-Dominant n=38 

0.683, (0.469, 0.822) 

0.764, (0.580, 0.874) 

Poor 

Moderate 

-13.394 to 12.747 

-9.295 to  8.134 

Active Dominant 

Non-Dominant 

0.707, (0.509, 0.834) 

0.701, (0.504, 0.829) 

Moderate 

Moderate 

-7.868 to  9.597 

-7.914 to  8.725 

Table 22 - The test-retest reliability of the motor threshold of the bilateral biceps brachii muscle of the whole group and subgroups based on age, gender, and participation 

in exercise.  Reliability was assessed using the ICC and LOA.  The ICC model used was [ 2,1] and the associated 95% CI, acceptable reliability is an ICC > 0.70.  The 

95% LOA were determined using Bland and Altman’s 95% lower and upper limits of agreement; the difference between sessions was session 1 minus session 2, 

acceptable reliability is an ICC > 0.70.  The lower end of the CI is in the range of poor reliability for most groups.  ICC=intraclass correlation coefficient, LOA=limits of 

agreement, CI=confidence interval  
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 Figure 33 - Bland-Altman Plots Resting Motor Threshold Biceps 

    A.                                                                                                        B. 

           

 Figure 33 A. Bland-Altman plot of RMT of the dominant biceps    Figure 33 B. Bland-Altman plot of RMT of the non-dominant biceps  

n=49 n=46 

Figure 33A & B - Bland-Altman plots of the RMT for the bilateral biceps muscle.  The x axis is the average RMT of session 1 and 2 plotted against (y-axis) the difference 

in RMT between session 1 minus session 2, the red line indicates the mean difference between sessions.  Plots A and B demonstrate random error in agreement 

between ratings.  RMT=Resting motor threshold 
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Figure 34 - Bland-Altman Plots of Active Motor Threshold of the Biceps Muscle 

A. B. 

 
Figure 34 A. 95% LOA plot of AMT of the dominant biceps Figure 34 B. 95% LOA plot of the AMT non-dominant biceps 

n=51 n=51 

Figure 34 A & B - Bland-Altman plots of AMT of the bilateral biceps muscle assessed during 20% MVC background contraction.  The x axis is the average AMT of 

session 1 and 2 plotted against the difference in AMT between session 1 minus session 2, the red line indicates the mean difference between sessions.  Plots A and B 

demonstrate random error in agreement between ratings.  AMT=active motor threshold 
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The test-retest reliability of the ECR for the whole group ranges from an ICC=0.590 

(0.378, 0.743) for the AMT of the dominant limb to an ICC=0.710 (0.543, 0.823) for the 

RMT of the dominant limb.  The lower end of the confidence interval falls within the range 

of poor reliability for most conditions.  The 95% CI and 95% LOA are wide for all 

conditions indicating variability and imprecision in the measurement.  The ICC values 

tend to be higher for the RMT compared to the AMT.  The Bland-Altman plots 

demonstrate random error in agreement between tests.  The line of mean difference falls 

close to zero (no change between tests) for the group as a whole.  
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Table 23 - Test-Retest Reliability ICC and LOA of the Motor Threshold for the Extensor Carpi Radialis Muscle 

Muscle Participant Active/resting 
Dominant/ 

non-dominant 
ICC (95% CI) Reliability Category  95% Limits of Agreement 

ECR Whole group 

n=51 

Resting Dominant n=50 

Non-dominant n=51 

0.710, (0.543, 0.823) 

0.688, (0.507, 0.810) 

Moderate 

Moderate 

-12.165 to 10.818 

-11.051 to 10.785 

Active Dominant n=51 

Non-dominant n=51 

0.590, (0.378, 0.743) 

0.670, (0.485, 0.798) 

Poor 

Poor  

-8.594 to 9.574 

-8.246 to 8.735 

ECR < 50 y/o 

n=33 

Resting  Dominant  

Non-dominant 

0.702 (0.476, 0.841) 

0.665 (0.415, 0.882) 

Poor 

Poor 

-12.714 to 10.390 

-10.811 to 10.296 

Active Dominant 

Non-dominant 

0.570 (0.288, 0.761) 

0.651 (0.398, 0.811) 

Poor 

Poor 

-8.756 to  9.783 

-7.236 to  7.074 

ECR  ˃ 50 y/o 

n=18 

Resting Dominant  

Non-dominant 

0.735, (0.420, 0.892) 

0.705, (0.360, 0.879) 

Poor 

Poor 

-10.411 to 12.077 

12.386 to 12.986 

Active Dominant  

Non-dominant 

0.661, (0.293, 0.858) 

0.699, (0.352, 0.876) 

Poor 

Poor 

-8.465 to  9.298 

-10.632 to 13.132 

ECR Women 

n=30 

Resting Dominant 

Non-dominant 

0.675, (0.419, 0.832) 

0.569, (0.262, 0.773) 

Poor 

Poor 

-12.422 to 11.564 

-12.529 to 12.279 

Active Dominant 

Non-dominant 

0.547, (0.241, 0.757) 

0.663, (0.396, 0.826) 

Poor 

Poor 

-8.741 to 11.669 

-7.668 to  9.454 

ECR  Men 

n=21 

Resting Dominant 

Non-dominant 

0.740 (0.468 ,0.885) 

0.861 (0.654, 0.944) 

Poor 

Moderate 

-12.045 to 10.045 

-9.379 to  9.094 

Active Dominant 

Non-dominant 

0.526 (0.127, 0.777) 

0.624 (0.275, 0.828) 

Poor 

Poor 

-7.521 to  5.902 

-8.901 to  7.663 
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Muscle Participant Active/resting 
Dominant/ 

non-dominant 
ICC (95% CI) Reliability Category  95% Limits of Agreement 

ECR Non-exercisers 

n=11 

Resting 

 

Dominant n=11 

Non-Dominant n=11 

0.775, (0.363, 0.934) 

0.872, (0.569, 0.966) 

Poor 

Moderate 

-19.903 to 16.736 

-11.402 to 10.402 

Active 

 

Dominant n=11 

Non-Dominant n=11 

0.565, (0.040, 0.856) 

0.759, (0.292, 0.930) 

Poor 

Poor 

-9.566 to 12.232 

-9.198 to 11.198 

ECR Exercisers 

n=40 

 

Resting Dominant 

Non-Dominant 

0.663, (0.444, 0.807) 

0.601, (0.357, 0.767) 

Poor 

Poor 

-8.868 to  8.112 

-11.119 to 11.011 

Active Dominant 

Non-Dominant 

0.589, (0.339, 0.760) 

0.605, (0.370, 0.769) 

Poor 

Poor 

-8.297 to  8.729 

-7.958 to  7.958 

Table 23 - The reliability of the motor threshold of the bilateral ECR of the whole group and subgroups based on age, gender, and participation in exercise.  Reliability 

was assessed using the ICC and LOA.  The ICC model used was ICC[ 2,1] and the associated 95% CI acceptable reliability is an ICC > 0.70.  The 95% LOA were 

determined using Bland and Altman’s 95% lower and upper limits of agreement and difference between measurement was calculated session 1 minus session 2.  The 

lower end of the confidence interval falls within the range of poor reliability for most groups, the estimated ICC values falls within the moderate to good 

range.ECR=extensor carpi radailis, ICC=intraclass correlation coefficient, CI=confidence interval, LOA=limits of agreement 
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Figure 35 - Bland Altman Plots of the RMT of the Extensor Carpi Radialis Muscle 

     A.                                                                                                        B. 

 

Figure 35 A. 95% LOA plot of RMT of the dominant ECR Figure 35B. 95% LOA Plot of RMT of the non-dominant ECR 

n=50 n=51 

 

Figure 35 A & B - Bland-Altman plots for the RMT of the ECR.  The x axis is the average RMT of session 1 and 2 plotted against the difference in RMT between session 1 

minus session 2, the red line indicates the mean difference between sessions.   Plots A and B demonstrate random error in agreement between sessions. RMT= Resting 

motor threshold, ECR= extensor carpi radailis muscle
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Figure 36 - Bland-Altman Plots of the AMT Extensor Carpi Radialis 

     A.                                                                                                        B. 

 

Figure 36 A. Bland-Altman plot of AMT of the dominant ECR Figure 36 B. Bland-Altman plot of AMT of the non-dominant ECR  

n=51 n=51 

 

Figure 36 A & B - Bland-Altman plots for the AMT of the ECR assessed during 20% MVC background contraction.  The x axis is the average AMT of session 1 and 2 

plotted against (y-axis) the difference in AMT between session 1 and session 2, the red line indicates the mean difference between sessions.  Plots A and B demonstrate 

random error in agreement between sessions.  RMT= Resting motor threshold, ECR= extensor carpi radailis muscle
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The test-retest reliability of the APB for the whole group ranges from an ICC=0.547 

(0.322, 0.714) for the AMT of the dominant limb to an ICC=0.693 (0.517, 0.813) for the 

RMT of the dominant limb.  The lower end of the confidence interval falls within the range 

of poor reliability for most conditions.  The 95% CI and 95% LOA are wide indicating 

variability and imprecision in TMS measurement.  The RMT tends to exhibit higher ICC 

values than the active motor threshold.  The Bland-Altman plots exhibit random error in 

agreement between sessions.  The line of mean difference falls close to zero (no change 

between tests) for the group as a whole.  
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Table 24 - Test-Retest Reliability ICC and LOA of the Motor Threshold for the Abductor Pollicis Brevis 

Muscle Participant Active/Resting 
Dominant/ 

non-dominant 
ICC (95%CI) 

Reliability 
Category  

95% Limits of Agreement 

APB Whole group 

n=51 

Resting Dominant n=51 

Non-dominant n= 50 

0.693 ( 0.517, 0.813) 

0.680 (0.498, 0.805) 

Moderate 

Poor 

-11.121 to 11.329 

-9.820 to 0.910 

Active Dominant n= 51 

Non-Dominant n=51 

0.547 (0.322, 0.714) 

0.556 (0.337, 0.719) 

Poor 

Poor 

-9.102 to 9.959 

-7.976 to 9.893 

APB  < 50 y/o 

n=33 

Resting Dominant  

Non-Dominant 

0.706 (0.484, 0.843) 

0.658 (0.412, 0.815) 

Poor 

Poor 

-11.718 to 10.551 

-9.916 to  9.674 

Active Dominant 

Non-Dominant 

0.662 (0.414, 0.818) 

0.561 (0.281, 0.755) 

Poor 

Poor 

-9.280 to  8.037 

-7.408 to  8.519 

APB ˃ 50 y/o 

n=18 

Resting Dominant 

Non-dominant 

0.657 (0.279, 0.857) 

0.689 (0.338, 0.874) 

Poor 

Poor 

-8.749 to 13.082 

-8.921 to 14.012 

Active Dominant 

Non-dominant 

0.123 (0, 0.544)  

0.457 (0,0.757) 

Poor 

Poor 

-5.842 to 13.176 

-9.270 to 13.603 

APB Women 

n=30 

Resting Dominant 

Non-dominant 

0.686 (0.434, 0.839) 

0.684 (0.428, 0.839) 

Poor 

Poor 

-10.152 to 12.077 

-10.361 to 12.921 

Active Dominant 

Non-Dominant   

0.527 (0.206, 0.745) 

0.558 (0.252, 0.764) 

Poor 

Poor 

-9.776 to 11.419 

-8.100 to 11.433 

APB Men 

n=21 

Resting Dominant 

Non-Dominant 

0.696 (0.381, 0.865) 

0.683 (0.362, 0.858)  

Poor 

Poor 

-12.243 to 10.243 

-8.729 to  7.887 

Active Dominant 

Non-Dominant 

0.554 (0.163, 0.793) 

0.555 (0.190, 0.789) 

Poor 

Poor 

-8.118 to  7.927 

-7.528 to  7.623 

APB Non-
Exercisers 

N=11 

Resting 

 

Dominant n=11 

Non-Dominant n=11 

0.760, (0.316,  0.930) 

0.732, (0.250, 0.921) 

Poor 

Poor 

-11.188 to 14.021 

-7.721 to  8.521 

Active 

 

Dominant n=11 

Non-Dominant n=11 

0.678, (0.151, 0.903) 

0.759, (0.334, 0.929) 

Poor 

Poor 

-7.804 to 11.138 

-7.323 to 12.990 
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Muscle Participant Active/Resting 
Dominant/ 

non-dominant 
ICC (95%CI) 

Reliability 
Category  

95% Limits of Agreement 

APB Exercisers 

N=40 

 

Resting Dominant n=40 

Non-Dominant n=40 

0.663 (0.445, 0.807) 

0.669 (0.454, 0.811) 

Poor 

Poor 

-11.109 to 10.442 

-10.456 to 11.632 

Active Dominant n=40 

Non-Dominant n=40 

0.480 (0.203, 0.687) 

0.477 (0.206, 0.682) 

Poor 

Poor 

-9.512 to  9.566 

-7.934 to  8.600 

Table 24 - The reliability of the motor threshold of the bilateral APB of the whole group and subgroups based on age, gender, and participation in exercise.  Reliability was 

assessed using the ICC and LOA.  The ICC model used was ICC [2, 1] and the associated 95% CI, acceptable reliability is an ICC > 0.70.  The 95% LOA were 

determined using Bland and Altman’s 95% lower and upper limits of agreement, the difference between tests was determined by session 1 minus session 2, The lower 

end of the 95% CI falls within the range of poor reliability for most measures.  APB=abductor pollicis brevis,  ICC=intraclass correlation coefficient, CI=confidence interval, 

LOA=limits of agreement  
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Figure 37 - Bland-Altman Plots of the Motor Threshold for the Abductor Pollicis Brevis 

A. B.  

Figure 37 A. Bland-Altman Plot of RMT for the dominant APB Figure 37 B. Bland-Altman Plot of the RMT for the non-dominant APB 

n=51 n=50 

 

Figure 37A & B - Bland-Altman Plot of the RMT of the bilateral ABP.  The x axis is the average RMT measured of session 1 and session 2 plotted against (y-axis) the 

difference in resting motor threshold between session 1 minus session 2.   The red line is the mean difference between sessions.  Plots A and B represent random error 

in agreement between sessions.   
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  Figure 38 - Bland-Altman Plots of the Active Motor Threshold for the Abductor Pollicis Brevis 

A. B.  

  Figure 38 A. Bland-Altman Plot of AMT of the dominant APB   Figure 38 B. -Altman plot of AMT of the non-dominant APB 
   n=51    n=51 

  Figure 38A & B - 95% LOA Plot (Bland-Altman Plot) of the AMT of the bilateral ABP.  The x axis is the average AMT of session 1 and session 2 plotted against (y-axis) 

the difference in AMT between session 1 minus session 2.   The red line is the mean difference between sessions.  Plots A and B demonstrate random error in 

agreement between sessions.  AMT= active motor threshold, APB=abductor pollicis brevis, LOA=limits of agreement



161 
 

 The 95% confidence intervals and 95% LOA were wide for all muscles indicating 

variability and imprecision in the measurement.  The lower end of the confidence interval 

fell within the range of poor reliability for most muscles and conditions. 

4.3.6.2 Older and younger adults  

Younger and older adults demonstrated similar ICC values for the biceps muscle.  The 

younger adults exhibited values of an ICC > 0.650 (0.394, 0.813) (RMT dominant biceps) 

and older adults exhibited values of an ICC > 0.651, (0.250, 0.857) (AMT dominant 

biceps), however older adults exhibited wider confidence intervals.   Similar reliability and 

confidence intervals were found for both older and younger adults for the ECR, for 

example younger adults exhibited ICC values > 0.570 (0.288, 0.761) (AMT dominant 

ECR) and older adults exhibited ICC values > 0.661 (0.293, 0.858) (AMT non-dominant 

biceps).  The older adults demonstrated wider confidence intervals compared to the 

group as a whole biceps dominant AMT ICC=0.651 (0.250, 0.857), whole group 

ICC=0.757 (0.612, 0.854).  The younger adults demonstrated higher ICC values for the 

APB ICC values > 0.561 (0.382, 0.755) (AMT non-dominant APB).  On the other hand, 

older adults demonstrated lower ICC values ICC > 0.123 (-0.338, 0.544) of the AMT for 

the dominant ECR.    

4.3.6.3 Women and men 

The sub-groups of men and women demonstrated similar ICC values for the motor 

threshold of the biceps, ECR and APB muscles, Table 22 to Table 24.  For example, 

women demonstrate ICC > 0.666, (0.392, 0.831) for the RMT of the dominant biceps and 

men ICC > 0.655 (0.303, 0.848) RMT dominant biceps.  

4.3.6.4 Exercisers and non-exercisers  

Individuals who engaged in exercise demonstrated lower ICC values for the reliability of 

the APB and the ECR, compared to demonstrating greater ICC values for the biceps, 

Table 22 to Table 24. Exercisers demonstrated an ICC > 0.683, (0.469, 0.822) (RMT 

dominant biceps) compared to non-exercisers demonstrating lower values ICC > 0.570, 

(0, 0.864) (RMT dominant Biceps).   
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4.3.6.5 Motor Evoked Potential amplitude  

The test-retest reliability (ICC and LOA) of the average MEP amplitude at 100%, 110%, 

120%, and 130% of AMT is in Table 22 to Table 24 for the group as a whole; sub-group 

analysis is in Appendix 10.  Example Bland-Altman plots are in Figure 39 and all Bland-

Altman plots and Bland-Altman plots for all muscles are in Appendix 11.  

During active conditions the reliability is variable ranging from ICC=0.126 (0, 0.377) for 

the dominant APB at 100% AMT to ICC=0.763 (0.618, 0.857) for the dominant ECR at 

130% AMT.  The lower end of the confidence interval falls within the range of poor 

reliability for most measures (excluding the dominant ECR 110%-130% AMT).  The 95% 

CI and 95% LOA are wide, indicating variability in the measurement.  The dominant ECR 

muscle exhibited the most consistent estimated ICC values (ICC > 0.70; estimated 

value) at 110%, 120%, and 130% of AMT.    

The Bland-Altman plots demonstrate a potential association between MEP amplitude 

and agreement between sessions; as the average MEP amplitude increases the 

difference in amplitude between sessions also increases during resting and active 

conditions. Additionally, the mean difference for the group as a whole between sessions 

for the biceps is above the zero difference line suggesting the MEP amplitude was 

smaller at the second session; the line of mean difference for the ECR and APB fall close 

to zero (no difference between sessions).   
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Table 25 - Reliability ICC and LOA of MEP Amplitude 20% MVC Contraction All 
Participants 

Muscle % of AMT ICC (95% CI) 95 % LOA 
Reliability 
Category 

Dominant 
Biceps 

100  0.426, (0.173, 0.626) -1.606 to 1.428 Poor 

  110  0.465, (0.223, 0.654) -2.168 to 1.533 Poor 

  120 0.453, (0.209, 0.645) -2.771 to 1.982 Poor 

  130 0.499, (0.265, 0.678) -3.091 to 2.289 Poor 

Non-Dominant 
Biceps 

100 0.539, (0.314, 0.707) -1.599 to 1.876 Poor 

  110 0.526, (0.299, 0.698) -2.067 to 2.488 Poor 

  120 0.626, (0.428, 0.767) -2.141 to 2.665 Poor 

  130 0.493, (0.258, 0.674) -3.024 to 3.870 Poor 

Dominant ECR 100 0.641, (0.445, 0.778) -3.022 to 3.321 Poor 

  110 0.747, (0.596, 0.848) -2.824 to 3.069 Moderate 

  120 0.759, (0.613, 0.855) -2.878 to 3.026 Moderate 

  130 0.763, (0.618, 0.857) -2.860 to 2.925 Moderate 

Non-Dominant 
ECR 

100 0.510, (0.277, 0.687) -1.887 to 1.615 Poor 

  110 0.507, (0.270, 0.685) -2.201 to 2.058 Poor 

  120 0.556, (0.332, 0.720) -2.062 to 2.166 Poor 

  130 0.475, (0.230, 0.663) -2.412 to 2.476 Poor 

Dominant APB 100 0.126, (0,0.377) -2.214 to 2.967 Poor 

  110 0.441, (0.191, 0.638) -2.783 to 3.092 Poor 

  120 0.325 (0.053, 0.551) -4.011 to 4.010 Poor 

  130 0.306, (0.034, 0.536) -4.498 to 4.163 Poor 

Non-Dominant 
APB 

100 0.459, (0.213, 0.652) -3.179 to 3.787 Poor 

  110 0.280, (0.011, 0.513) -4.452 to 5.581 Poor 

  120 0.506, (0.272, 0.685) -3.929 to 5.282 Poor 

  130 0.549, (0.324, 0.716) -4.311 to 5.136 Poor 

 

Table 25 - Reliability of average MEP amplitude assessed during 20% MVC at each interval of the 

recruitment curve of the bilateral biceps, ECR, and APB.  The ICC model used was ICC [2, 1] and 

the associated 95% CI, acceptable reliability is an ICC > 0.70.  The 95% LOA were determined 

using Bland and Altman’s 95% lower and upper limits of agreement; the difference between 

sessions was determined as session 1 minus session 2. The lower end of the confidence interval 

falls within the poor range for most muscles for all intervals of the recruitment curve. AMT=active 

motor threshold, APB=abductor pollicis brevis, ECR=extensor carpi radialis, CI=confidence 

interval, ICC=intraclass correlation coefficient, LOA=limits of agreement 
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During resting conditions, the test-retest reliability of the average MEP amplitude is 

overall poor ICC < 0.50 . The 95% CI and 95% LOA are wide for all muscles indicating 

variability in the measurement.   

 

Table 26 - Reliability ICC and LOA for the Average MEP Amplitude, Rest Conditions 

Muscle  % of RMT ICC (95% CI) 95% LOA 
Reliability 
Category 

Dominant 
Biceps 

90 -0.056, (0, 0.225) -1.198 to 1.861 Poor 

 100 -0.058, (0, 0.218) -1.927 to 2.727 Poor 

 110 0.139, (0, 0.403) -1.833 to 2.357 Poor 

 120 -0.076, (0, 0.214) -2.001 to 2.757 Poor 

 130 -0.005, (0, 0.336) -2.188 to 2.115 Poor 

Dominant ECR 90 0.477, (0.230, 0.667) -1.037 to 1.0468 Poor 

 100 0.343, (0.075, 0.565) -1.551 to 1.351 Poor 

 110 0.457, (0.209, 0.650) -1.814 to 1.571 Poor 

 120 0.505, (0.264, 0.686) -1.856 to 1.778 Poor 

 130 0.491, (0.248, 0.676) -1.690 to 1.811 Poor 

Dominant APB 90 0.155, (0, 0.420) -1.948 to 2.170 Poor 

 100 0.302, (0.030, 0.535) -2.144 to 2.695 Poor 

 110 0.388, (0.125, 0.601) -2.347 to 2.777 Poor 

 120 0.190, (0, 0.446) -3.520 to 3.859 Poor 

 130 0.427, (0.159, 0.636) -3.242 to 3.240 Poor 

 

Table 26 - Reliability (ICC and LOA) of the average MEP amplitude assessed at rest; 90%, 100%, 

110%, 120%, 130% of RMT.  The ICC model used was ICC [ 2,1] and the associated 95% 

confidence intervals acceptable reliability is an ICC > 0.70.  The 95% LOA were determined using 

Bland and Altman’s 95% lower and upper limits of agreement; the difference between sessions 

was determined as session 1 minus session 2. The lower end of the confidence interval falls 

within poor reliability for all muscles.  APB=abductor pollicis brevis, ECR=extensor carpi radialis, 

CI=confidence interval, ICC=intraclass correlation coefficient, LOA=limits of agreement, 

RMT=resting motor threshold  
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Figure 39 - Bland-Altman Plots of the Average MEP Amplitude 

A.    
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Figure 39 A. Bland-Altman plot of the average MEP amplitude 
               of the dominant biceps assessed at 90% of RMT n=38 

 

B.  
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Figure 39 B Bland-Altman plot of the average MEP amplitude  
                       of the dominant ECR assessed at 120% RMT n= 49                                                                          
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Figure 39 A, B - Bland-Altman plot of the average MEP amplitude of the A) dominant biceps at 

90% RMT, and B) dominant ECR assessed at 120% RMT.  The x-axis represents the average 

MEP amplitude of session one and two, the y-axis represents the difference in MEP amplitude 

session one minus session two; the red line is the mean difference between sessions.  Plots A 

demonstrates a trend towards a potential association such that the agreement between sessions 

is related to the magnitude of the measurement. Plot B suggests that as the MEP amplitude 

increases the difference between sessions also increases.   
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4.3.6.6  Reliability of maximum motor evoked potential 

The reliability of the maximum MEP amplitude of all muscles is in Table 27, subgroup 

analysis is in Appendix 12. Example Bland-Altman plots are in Figure 40 and Bland-

Altman plots for all muscles are Appendix 13. 

The reliability of MEP max amplitude was generally poor, ranging from ICC=0.180 (0, 

0.436) for the dominant biceps at rest to ICC=0.596 (0.385, 0.747) for the non-dominant 

biceps during active conditions. There were similar ranges of reliability for the ECR and 

the APB.  The dominant ECR during active conditions demonstrated the highest ICC 

value ICC=0.781 (0.646, 0.869). The lower end of the confidence was in the range of 

poor reliability for all muscles and condition except the dominant ECR at rest.  The 95% 

CI and 95% LOA were wide for all muscles and conditions indicating variability and 

imprecision in the measurement.  

The Bland-Altman plots demonstrate random error in agreement between tests for the 

APB.  The Bland-Altman plots for the ER and APB tend to demonstrate greater 

differences between sessions with larger MEP max amplitudes suggesting a possible 

association.   The mean difference line for the group as a whole falls close to zero for all 

muscles (no difference between sessions). 
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Table 27 - Reliability (ICC and LOA) of the Maximum MEP Amplitude 

Muscle  
Number of 
Participants 

ICC (95% CI) 95% LOA 
Reliability 
Category 

Dominant 
Biceps Rest 

N=47 0.180 (0, 0.436) -2.554 to 3.394 Poor 

Dominant 
Biceps Active 

N=51 0.574, (0.360, 0.732) -3.243 to 2.501 Poor 

Non-Dominant 
Biceps Active 

N=51 0.596, (0.385, 0.747) -2.968 to 3.957 Poor 

Dominant ECR 
Rest 

N=50 0.487, (0.242, 0.673) -3.243 to 2.501 Poor 

Dominant ECR 
Active 

N=51 0.781, (0.646, 0.869) -2.701 to 2.507 Moderate 

Non-Dominant 
ECR Active 

N=51 0.451, (0.199, 0.645) -2.942 to 2.967 Poor 

Dominant APB 
Rest 

N=49 0.330, (0.053, 0.559) -4.391 to 4.564 Poor 

Dominant APB 
Active 

N=51 0.380, (0.118, 0.592) -4.907 to 4.522 Poor 

Non-Dominant 
APB Active 

N=50 0.581, (0.367, 0.738) -4.421 to 5.349 Poor  

Table 27-Test-retest reliability of the MEP max amplitude of the dominant and non-dominant 

biceps, ECR and APB muscles.  The ICC was determined using model ICC [2,1] and associated 

95% CI, acceptable reliability is an ICC > 0.70.  The 95% LOA were determined using Bland and 

Altman’s 95% lower and upper limits of agreement; the difference between sessions was 

determined as session 1 minus session 2.  The lower end of the confidence interval was within 

poor reliability for all muscles except the dominant ECR.  APB=abductor pollics brevis, 

ECR=extensor carpi radialis, CI=confidence interval, ICC=intraclass correlation coefficient, 

LOA=limits of agreement, MEP=motor evoked potential 
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Figure 40 - Bland-Altman Plot of MEP Max Amplitude of the Dominant ECR 

 

          
Figure 40-Bland-Altman plot of the dominant ECR MEP max amplitude assessed during resting 
conditions.  The x-axis represents the average MEP max amplitude of session one and two, the y-
axis represents the difference in MEP max amplitude of session one minus session two; the red 
line is the mean difference between session one minus session two.  The plot demonstrates a 
trend towards larger differences between sessions with larger amplitudes. n=51 
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4.3.6.7 Motor Evoked Potential Latency 

The test-retest reliability of MEP latency for each muscle was assessed at 120% and 

130% of AMT, the results are in Table 28 and subgroups analysis is in Appendix 16.  The 

MEP latency was also assessed at 120% of RMT and the results are in Table 29, sub-

group analysis is in Appendix 15.  Example Bland-Altman plots are in Figure 41, and 

Bland-Altman plots for all muscles are in Appendix 17.  

The test-retest reliability during active conditions demonstrates variable reliability ranging 

from ICC=0.472(0.231, 0.660) for the dominant biceps at 130% AMT to an ICC=0.726 

(0.560, 0.835) for the non-dominant APB at 130% AMT.  

Table 28 - Reliability ICC and LOA of the MEP Latency during Active Conditions (120% 
AMT) 

Muscle 
120% AMT     
ICC (95% 
CI)  

95% LOA 
Reliability 
Category 

130% AMT  

ICC (95% 
CI)  

95% LOA 
Reliability 
Category 

Dominant 
Biceps  

0.589 (0.375 
to 0.743) 

-2.708 to 
2.603 

Poor 0.472, 
(0.231, 
0.660) 

-4.141 to 
3.303 

Poor 

Non-
Dominant 
Biceps  

0.614 (0.410  
to 0.760) 

-2.338 to 
2.123 

Poor 0.659, 
(0.473, 
0.790) 

-2.219to 
1.816 

Poor 

Dominant 
ECR Active 

0.653 (0.464 
to 0.786) 

-2.398 to 
3.030 

Poor 0.510, 
(0.275, 
0.687) 

-2.786 to 
3.113 

Poor 

Non-
Dominant 
ECR  

0.560 (0.337 
to 0.723) 

-2.242 to 
3.126 

Poor 0.433, 
(0.185, 
0.631) 

-2.643 to 
3.216 

Poor 

Dominant 
APB Active 

0.563 (0.345 
to 0.725) 

-4.754 to 
4.068 

Poor 0.459, 
(0.212, 
0.651) 

-3.477 to 
3.909 

Poor 

Non-
Dominant 
APB  

0.697 (0.523 
to 0.815) 

-3.388 to 
3.512 

Moderate 0.726, 
(0.560, 
0.835) 

-3.474 to 
3.193 

Moderate  

Table 28 - The test-retest reliability of MEP latency assessed during active conditions (20% MVC) 

at 120%, and 130% of AMT of the bicep, ECR, and APB. The ICC was determined using model 

ICC [2,1], acceptable reliability is an ICC > 0.70.  .  The 95% LOA were determined using Bland 

and Altman’s 95% lower and upper limits of agreement; the difference between sessions was 

determined as session 1 minus session 2. The lower end of the confidence interval is within the 

range of poor reliability for most muscles. AMT=active motor threshold, APB=abductor pollics 

brevis, ECR=extensor carpi radialis, CI=confidence interval, ICC=intraclass correlation coefficient, 

LOA=limits of agreement, MEP=motor evoked potential 
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The test-retest reliability during resting conditions (120% RMT) was also variable ranging 

from an ICC=0.436 (0.152 to 0.653) for the dominant biceps to an ICC=0.631 (0.426 to 

0.774) for the dominant APB.  

 

Table 29 - Reliability ICC and LOA of MEP Latency during Resting Conditions (120% of 
RMT) 

Muscle ICC 95% LOA Reliability Category 

Dominant Biceps Rest 0.436 (0.152 to 0.653) -5.215 to 5.498 Poor 

Dominant ECR Rest 0.492 (0.251 to 0.675) -3.497 to 4.041 Poor 

Dominant APB Rest 0.631 (0.426 to 0.774) -4.228 to 4.278 Poor  

 

Table 29 - The test-retest reliability of MEP latency assessed during resting conditions at 120% 

RMT.  The ICC was determined using model ICC [2,1], acceptable reliability is an ICC > 0.70.  

The 95% LOA were determined using Bland and Altman’s 95% lower and upper limits of 

agreement; the difference between sessions was determined as session 1 minus session 2. The 

lower end of the confidence interval is within the range of poor reliability for all muscles. 

APB=abductor pollics brevis, ECR=extensor carpi radialis, CI=confidence interval, ICC=intraclass 

correlation coefficient, LOA=limits of agreement, MEP=motor evoked potential 

 

The 95% CI and 95% LOA were wide for both MEP latency assessed during active 

conditions and resting conditions indicating variability and imprecision in the 

measurement.  The lower end of the confidence interval falls within the range of poor 

reliability for all muscles and conditions (resting and active) with the exception of the 

dominant APB during active conditions at 130% of AMT.   

The Bland-Altman plots indicate random error in agreement between tests for all muscles 

(dominant and non-dominant) during resting and active conditions. The mean difference 

line for the group as a whole for the biceps falls slightly below zero suggesting a longer 

latency the second session, on the other hand the mean difference line for the ECR is 

slightly above zero suggesting a shorter latency the second session.   
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Figure 41 - Bland-Altman Plots of MEP Latency Assessed at 130% AMT of the ECR  

A.  

                      
                      Figure 41 A. Bland-Altman plot of the dominant ECR 
                        MEP latency assessed at 130% of AMT n=50 

 

B.  

                        
                       Figure 41 Figure 40B. Bland-Altman plot of the non-dominant  

                       ECR MEP latency assessed at 130% AMT n=51 
                         

Figure 41 A & B - Bland-Altman plots of the MEP latency of the A) dominant ECR and B) non-

dominant ECR assessed at 130% AMT.  The x-axis represents the average latency of session 

one and session two, the y-axis represents the difference in latency session one minus session 

two; the red line is the mean difference between sessions.  Plots A and B represent random error 

in agreement between sessions. 
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4.3.6.8 Silent Period 

The test-rest reliability of the silent period was assessed at 130% of AMT, the reliability 

of individual muscles is in  

Table 30 sub-group analysis is in Appendix 14.  Example Bland-Altman plots are in 

Figure 42 and Bland-Altman plots for all muscles are in Appendix 15.  

The reliability was variable ranging from an ICC=0.537 (0.311, 0.706) for the non-

dominant biceps to ICC=0.769 (0.589, 0.870) for the non-dominant APB.  The lower end 

of the confidence interval was in the range of poor reliability for most muscles and 

conditions excluding the non-dominant ECR and non-dominant APB.  The 95% CI and 

95% LOA are wide for all muscles indicating variability and imprecision in measurement. 

The distal muscles demonstrate higher ICC values than the biceps.     

The Bland-Altman plots demonstrate random error in agreement between tests for all 

muscles. The line of mean difference for the group as a whole for the biceps muscle and 

dominant APB is below zero suggesting a longer silent period the second session, for the 

ECR  and non-dominant APB the mean difference line falls close to zero (no difference 

between sessions).  

 

Table 30 - Reliability of the Silent Period assessed at 130% of AMT all Participants 

Muscle ICC (95%CI) 
95% LOA (lower to upper 
limits) 

Reliability 
Category 

Dominant Biceps 0.614, (0.412, 0.759) -47.343105 to 36.131371 Poor 

Non-Dominant 
Biceps  

0.537, (0.311, 0.706) 53.808777 to 46.421604 Poor 

Dominant ECR 0.656, (0.465, 0.788) -47.725487 to 46.062153 Poor 

Non-Dominant ECR 0.750, (0.598, 0.850) -52.759476 to 49.966129 Moderate 

Dominant APB 0.647, (0.423, 0.791) -61.976463 to 39.809525 Poor 

Non-Dominant APB 0.769, (0.589, 0.870) -69.658699 to 66.889076 Moderate 

 

 

Table 30 - The reliability of the silent period assessed at 130% of AMT with 20% MVC 

background contraction (assessed individually for each participant at each session).  The ICC was 

determined using model ICC [2,1], acceptable reliability is an ICC > 0.70 determined by the lower 

end of the confidence interval.  The 95% LOA were determined using Bland and Altman’s 95% 

lower and upper limits of agreement; the difference between sessions was determined as session 

1 minus session 2.  The lower end of the confidence interval is within the range of poor reliability 

for most muscles, additionally the 95% LOA are wide for all muscles.  AMT=active motor 

threshold, APB=abductor pollics brevis, ECR=extensor carpi radialis, CI=confidence interval, 

ICC=intraclass correlation coefficient, LOA=limits of agreement, MEP=motor evoked potential 
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Figure 42 - Bland Altman Plots of the Silent Period 

A. 

 

 

B. 

 
 
 
 
 
Figure 42A & B - Bland-Altman plots of the dominant biceps SP assessed at 130% of AMT.  The 
x-axis represents the average SP between the two sessions and the y axis the difference in SP 
between the two sessions, the red line is the mean difference in SP between sessions.  Plots A 
and B demonstrate random error in agreement between sessions. SP=silent period 

 

  

Figure 42A. Bland-Altman plot of the silent period of the dominant 
biceps muscle assessed at 130% AMT n=50 

Figure 42B. Bland-Altman plot of the silent period of the non-dominant 
biceps muscle assessed at 130% AMT n=50 
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4.3.7 Recruitment Curve  

The test-retest reliability of the slope of the recruitment curve is in Table 31; example 

Bland-Altman plots are in Figure 43, and all Bland-Altman plots are in Appendix 18.  The 

recruitment curve was fitted with a sigmoidal function; however the curve was not able to 

be fitted for all participants.  The recruitment curve of the biceps was able to be fitted for 

5/51 participants during resting conditions, 31/51 for active conditions; the ECR 15/51 for 

resting conditions, 23/51 for active conditions; and the APB 16/51 participants during 

resting conditions, and 29/51 for active conditions.  Potential reasons the recruitment 

curve could not be fit for all participants was 1) not enough data points (less data points 

at high stimulation intensities because of uncomfortable stimulus) and 2) not all 

participants demonstrated an increase in MEP amplitude with increasing stimulus 

intensity (biceps rest n=7, active n=11, ECR rest n=7, active n=15, APB rest n=2, active 

n=19).  Previous studies have also reported that not all participants data were able to be 

fitted with a sigmoidal function such as Schambra et al (2015) in which 5.9% of older 

adult participants did not fit a sigmoidal function and Massie and Malcolm (2013).   

The test-retest reliability of the slope of the recruitment curve was poor for all muscles 

and all conditions ICC < 0.50. 

The Bland-Altman plots demonstrate both random and systematic error in agreement 

between test occasions.  The plot of the biceps muscle at rest demonstrates systematic 

error such that the second session had a lower slope. 

The biceps muscle during active conditions and the dominant ECR during rest conditions 

tend to have a greater number of differences between sessions below the mean 

difference line, suggesting steeper slope on the second session.  The Bland-Altman plot 

of the non-dominant APB suggests a possible linear association of the slope of the 

recruitment curve and the differences between sessions Figure 86.  The line of mean 

difference for the group as a whole falls close to zero for the dominant ECR and 

dominant APB.   
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Table 31 - Test-Retest Reliability ICC and LOA for the Recruitment Curve 

Muscle Participants ICC (95%CI)  95% LOA  
Reliability 
Category 

Dominant Biceps 
Rest  

N=5 -0.017 (0, 0.816) -1.270 to .873 Poor 

Dominant Biceps 
active 

N=16 0.031 (0, 0.487) -0.640 to 0.938 Poor 

Non-Dominant 
Biceps Active 

N=15 0.052 (0, 0.503) -0.390 to 0.628 Poor 

Dominant ECR 
Rest 

N=11 -0.116 (0, 0.521) -3.058 to 3.412 Poor 

Dominant ECR 
Active 

N=11 -0.178 (0 0.459) -3.266 to 4.197 Poor 

Non-Dominant 
ECR Active 

N=12 -0.009 (0, 0.553) -7.048 to 5.539 Poor 

Dominant APB 
Rest 

N=16 0.026 (0, 0.480) -1.313 to 1.971 Poor 

Dominant APB 
active 

N=16 

 

-0.076 (0, 0.441) -1.311 to 1.366 Poor 

Non-Dominant 
APB 

N=13 0.056 (0, 0.563) -1.719 to 2.414 Poor 

 

 

Table 31 - The test-retest reliability of the slope of the recruitment curve fitted with a sigmoidal 

function.  The ICC was determined using model ICC [2,1], acceptable reliability was an ICC > 

0.70.  The 95% LOA were determined using Bland and Altman’s 95% lower and upper limits of 

agreement; the difference between sessions was determined as session 1 minus session 2. The 

reliability is poor for all muscles 
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Figure 43 - Bland-Altman Plots of the Slope of the Recruitment Curve 

A.  

                      
                      Figure 43 A. Bland-Altman plot of the recruitment curve of  
                        the non-dominant biceps muscle during background  
                        contraction of 20% MVC, n=16 

B. 

                     Figure 43 B. Bland-Altman plot of the recruitment curve 
                       of the dominant APB during resting conditions n=16 

 

Figure 43 A & B - Bland-Altman plots of the recruitment curve of the A) dominant biceps muscle 

assessed during 20% MVC background contraction, and B) dominant APB during resting 

conditions.  The x-axis is the average slope of the recruitment curve of session one and session 

two, the y-axis is the difference in slope of the recruitment curve of session one minus session 

two; the red line is the mean difference between session 1 minus session 2.  Plots A and B 

demonstrate a possible linear association between the slope of the recruitment curve and the 

difference between sessions.  
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4.4 Discussion 

In summary, the findings of this study indicate that the test-retest reliability of TMS 

measures of corticospinal pathway excitability are variable within individual MEP 

elements and among elements in this population. The lower end of the confidence 

interval was below the acceptable range of reliability (ICC < 0.70) for most measures. 

The wide confidence intervals and 95% LOA demonstrate lack of precision in the 

measurement. These findings suggest that TMS may not be suitable to detect change in 

corticospinal pathway excitability in individual participants.  However, the Bland-Altman 

plots demonstrate that overall the line of mean difference for the group as a whole falls 

close to zero no difference between sessions.  This suggests that TMS may be more 

suitable to evaluate groups of participants compared to individual differences in 

corticospinal pathway excitability.   

4.4.1 MEP Elements 

Overall, a majority of the MEP elements evaluated in this study were comparable to 

previous research.  The ability to make direct muscle comparisons was not possible for 

all muscles and all MEP elements due to previous studies assessing different muscles, 

MEP elements and differing TMS methodology limiting comparisons between studies.   

The mean motor thresholds for the APB in the present study (dominant limb: 49 ±7.07 (% 

of stimulator output), non-dominant limb: 51±6.77) are comparable to the findings by 

Corneal et al (2005) 48.46±14.07, but higher than other research using navigated (38±6 ) 

and non-navigated (39±5) TMS (Julkunen et al., 2009).  Of note the age of participants in 

the study by Julkunen (2009) was not reported and thus the findings may not be 

comparable.  The motor threshold of the ECR 48±6.87 to 50±6.90 is comparable to 

previous work yielding a motor threshold of 51.73±6.6 to 53.67±8.9 (Kossev et al., 2002). 

The MEP amplitude of the APB in the present study assessed at motor threshold ranged 

from 1.06 ±0.55 mV for the non-dominant APB to 1.97±1.88 mV for the dominant APB at 

100% AMT.  The smaller MEP amplitudes found in this study are similar to earlier 

research exhibiting an APB amplitude of 1.13±0.80 mV (non-navigated TMS) (Julkunen 

et al., 2009). Of note the present study assessed amplitude during 20% MVC whereas 

Julkunen et al (2009) assessed the amplitude at rest which may explain the larger end of 

the range of amplitudes identified in in this study (1.97±1.88 mV). It is known that 

background muscle contraction increases MEP amplitude (Di Lazzaro et al., 2004) and 

thus may contribute to the differences identified. The amplitude of the first dorsal 

interosseous (FDI) another thenar muscle was comparable to the present study 

demonstrating an amplitude of 2.1±1.8 mV in women and 1.7±1.2 mV in men (Pitcher et 

al., 2003).  



181 
 

In general the MEP latencies in the present study are in line with previous research.  The 

MEP latency of the APB in the present study (22.24±2.38 to 23.65±2.76 ms) for the APB 

is comparable to the latency exhibited by Julkunen et al (2009) (22.9±1.2 ms); however 

the standard deviation is greater in the present study.  The latency of the biceps muscle 

is comparable to work by Furby et al (1992) yielding latencies of 12.5±1.1 ms with slight 

contraction to 14.4±1.4 ms at rest (Furby et al., 1992).  Alternatively, the biceps latency 

in this study is 2-3 ms slower than others (Eisen and Shtybel, 1990).  The ECR latency 

identified in this study (16.08±1.21ms to 17.90±1.51 ms)  is comparable to earlier 

findings (16.96±1.27 ms to 17.56±0.93 ms)  (Kossev et al., 2001).  

The closest comparison for the silent period of the APB is a study by Koski in which the 

silent period of the FDI was investigated.  The silent period in the present study was 

about 20 ms longer (118±32 ms) than the study by Koski et al (2005).  However, the 

study by Koski and colleagues (2005) assessed the silent period during 10% MVC and at 

105% of MT whereas in the present study the silent period was assessed during 20% 

MVC and at 130% of MT thus direct comparisons cannot be made.  There is evidence 

that the as the strength of the TMS stimulus increases the length of the silent period also 

increases (Orth and Rothwell, 2004, Säisänen et al., 2008, Inghilleri et al., 1993) which 

may contribute to the longer silent period found in this study. 

4.4.2 Reliability of MEP elements   

The reliability of the motor threshold of the APB found in the present study is similar to 

the findings by Solloman and colleagues (2013) demonstrating a Lin’s concordance 

correlation coefficient,(CCC) of 0.709 to (0.244,  0.909) (Sollmann et al., 2013).  The 

biceps MEP amplitude and motor threshold ICC point estimate are similar to findings by 

Sankarasubramanian et al (2015) demonstrating motor threshold ICC= 0.745, MEP 

amplitude ICC=0.163.  The present study demonstrated lower ICC values compared to 

previous research of upper limb muscles for most other measures such as MEP 

amplitude, silent period, and MEP latency (Carroll et al., 2001, Koski et al., 2005, Christie 

et al., 2007, Liu and Au-Yeung, 2014, Ngomo et al., 2012, Schambra et al., 2015).  

The older adults exhibited similar ICC values to younger adults on most MEP elements 

with the exception of the ECR MEP amplitude in which older adults demonstrated higher 

ICC values.  Additionally, older adults demonstrated wider confidence intervals when 

compared to younger adults suggesting greater variability an imprecision in 

measurement.  Of note there were a larger number of participants 49 years of age and 

younger (n=34) which may have also contributed to the differences in confidence 

intervals.  The ICC values of older adults in comparison to previous studies are 

comparable for the ICC of the slope of the recruitment curve (Schambra et al., 2015); 

and lower for the ICC of the motor threshold (Schambra et al., 2015) and MEP amplitude 
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(Christie et al., 2007).  There were differences in TMS methods used between the 

studies which may have contributed to differences in ICC values. For example, neuro-

navigated TMS was utilized by Schambra (2015) and a different coil location was used 

by Christie (2007).  The age threshold used to determine an “older adult” was quantified 

differently.  For example, Schambra and colleagues (2015) included participants ≥ 40 

years of age, Christie and colleagues (2007) included participants ≥ 65 years of age; and 

this study designated participants’ ≥ 50 years of age as older adults.  There is evidence 

that from about age 50 age-related changes begin within the CNS and corticospinal 

pathway (Sullivan et al., 2010).  Finally, the two studies investigating the reliability of 

TMS measures in older adults investigated the abductor digiti minimi and first dorsal 

interosseous respectively, whereas the present study investigated the biceps, ECR and 

APB.  There is limited comparable research in the reliability of TMS measures in older 

adults.   

The reliability of TMS measures for the group as a whole varied within and between MEP 

elements based on the target muscle of investigation.  These findings of varied reliability 

for different muscles is similar to previous test-retest reliability research (Carson et al., 

2013, Kamen, 2004, Malcolm et al., 2006).  This finding is not surprising as there is 

evidence that the muscles of the upper limb respond differently to brain stimulation and 

demonstrate different reliability  (Martin et al., 2006, Malcolm et al., 2006).  There are 

additional factors that can influence reliability such as background muscle contraction, 

type of coil, direction of current, and physiological processes that will be discussed in 

detail in Chapter 6. 

The lifestyle and environmental factors questionnaire highlighted that 44/51 participants 

consumed caffeine, 40/51 participated in exercise, 20/51 took prescribed medication, 

1/51 participants smoked and 47/51 were right handed.  There is evidence that these 

factors can influence neural plasticity and corticospinal pathway excitability (Specterman 

et al., 2005, Cerqueira et al., 2006, McGregor et al., 2011, Grundey et al., 2012).  These 

factors were not controlled for in the study as the study was designed to be pragmatic.  It 

is likely that a group of stroke survivors would also have participated in exercise, or 

consumed caffeine prior to the stroke or before their TMS session.  Previous studies 

have documented their participants caffeine intake at 0.7±0.6 cups and 23.6±15.4 

minutes of exercise (Schambra et al., 2015). Collecting information regarding lifestyle 

and environmental factors that can influence brain stimulation studies is pertinent to 

understanding the reliability of TMS without controlling for the factors. 
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4.4.3 Strengths  

TMS measures were collected during resting conditions and during background muscle 

contraction. Research in non-neurologically intact populations such as stroke commonly 

utilise background muscle contraction to facilitate an MEP during data collection. 

Maintaining a contraction during TMS is beneficial in stroke survivors for a few reasons:  

1) It is easier to determine a motor threshold (the corticospinal pathway is already 

stimulated by the contraction). 

 2) Stimulation may be more comfortable because a lower TMS stimulus is needed 

during muscle contraction. 

3) More data points may be able to be collected for a recruitment curve if the threshold is 

lower 

4) Decreased fluctuation in corticospinal pathway excitability 

5) Standardisation of attention across all participants  

It is beneficial to have normative reliability data that was collected with a background 

contraction in older adults for comparison with stroke survivors.  

4.4.4 Limitations  

The TMS methods used within this study may result in the findings not being comparable 

to other studies that utilised different methodologies. TMS data was collected during 

background muscle contraction which may not be comparable to earlier studies in 

neurologically intact adults in which TMS data is collected at rest. TMS data was 

collected at rest in the dominant limb only; this is in line with previous TMS research.  

However, limiting the data collected on the non-dominant limb which may respond 

differently to TMS.   

The amount of arm use prior to the TMS session was not restricted nor was it recorded. 

There could have been varying levels of corticospinal pathway excitability prior to each 

session.  

There was not 100% agreement of the two raters for the MEP latency.  The raters were 

in agreement 84% of the time, despite the variability the latencies identified in this study 

were generally comparable to previous research (Julkunen et al., 2009, Furby et al., 

1992, Eisen and Shtybel, 1990, Kossev et al., 2001).  Because the MEP latency was 

variable before investigating the test-retest reliability, the inherent variability could have 

influenced the reliability, contributing to lower reliability and wide confidence intervals and 

95% limits of agreement.   
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The recruitment curve was not able to be fitted for all participants, thus the analysis of 

test-retest reliability of the slope of the recruitment curve was underpowered. 

4.4.5 Conclusion  

This study determined that, within the population assessed, the test-retest reliability of 

TMS measures is variable, as well as demonstrating wide 95% CI and 95% LOA 

suggesting imprecision in TMS measurement. Further investigation in the reliability of 

TMS measures and methods of data collection is desirable.  
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5 Test-retest reliability of TMS measures of 

corticospinal pathway excitability early after 

stroke 

5.1 Introduction 

Transcranial magnetic stimulation (TMS) is being increasingly used as a clinical 

neurophysiology measure in stroke research to assess the connection between the 

motor cortex and the muscles of the arm and hand via the corticospinal pathway 

(Brouwer and Schryburt-Brown, 2006, Talelli et al., 2006, Park et al., 2004, Sawaki et al., 

2008). Transcranial magnetic stimulation has been used in stroke rehabilitation research 

as an overall measure of excitability of the corticospinal pathway (or extent of damage) 

(Talelli et al., 2006), a measure of neural plasticity in response to a physical therapy 

intervention (Koski et al., 2004, Park et al., 2004, Sawaki et al., 2008), as a predictor of 

upper limb functional outcomes (Delvaux et al., 2003, Stinear et al., 2012), and repetitive 

TMS has been used as a priming therapy to promote neural re-organization (Dimyan and 

Cohen, 2011, Talelli et al., 2006). There is evidence that the degree of damage to the 

corticospinal pathway is correlated with motor recovery; for example the lesser the 

damage to the pathway the better the motor function and recovery outcome (Feydy et al., 

2002, Ward and Cohen, 2004, Talelli et al., 2006, Wenzelburger et al., 2005).  

Developing a better understanding of the corticospinal pathway (via TMS measurement) 

can provide knowledge of the contribution of the corticospinal pathway to movement, 

motor control, and assess neural plasticity.  This knowledge can be used to inform the 

development of interventions and assess the neural response to current and developing 

interventions.   

The use of TMS in stroke research in the first few months after stroke is becoming more 

commonplace (Huynh et al., 2013, Manganotti et al., 2008, Stinear et al., 2012).  TMS is 

being used in acute stroke to predict upper limb function (Stinear et al., 2012), to assess 

longitudinal neural plasticity in the first three months after stroke (Huynh et al., 2013), 

and to investigate long-term potentiation (LTP) like processes (Di Lazzaro et al., 2010).  

The use of TMS early after stroke is providing valuable information for clinical decision-

making.  An important aspect of measurement is agreement in the measurement when 

taken on separate occasions in which the individuals being assessed are not expected to 

change, test-retest reliability. Furthermore it is important that a measurement tool be 

reliable within the population it is being used to have confidence in the results to make 

appropriate clinical decisions.  An example of an important clinical decision based on 

TMS is the presence or absence of a motor evoked potential (MEP) early after stroke, 
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which is being used as a predictor motor recovery (Stinear et al., 2012).  However, 

previous research of the test-retest reliability of TMS measures has focused on 

investigations in people who are at least six months after stroke (chronic stroke) (Koski et 

al., 2007a, Liu and Au-Yeung, 2014, Cacchio et al., 2011). The results of the test-retest 

reliability in stroke survivors six months after stroke are variable and range from poor to 

good in the upper and lower limbs.  The test-retest reliability findings in stroke survivors 

later after stroke may not be applicable to those earlier after stroke.  The reliability 

findings of the individual studies can be found in Section 1.15.2 Table 5 page 61. The 

reliability of the motor threshold and silent period demonstrate more consistent reliability; 

intraclass correlation coefficient (ICC) ranging from ICC=0.57 of the biceps (Harris-Love 

et al., 2013) to ICC=0.97 (0.94 to 0.99) for the FDI (Liu and Au-Yeung, 2014). The MEP 

amplitude demonstrated the most variable findings, ICC values ranging from ICC=0.205 

in the vastus lateralis (Cacchio et al., 2011) to an ICC= 0.98 (lower level of the 90% 

confidence interval 0.94) in the (first dorsal interosseous) FDI muscle (Koski et al., 

2007a).  The difference in reliability of the biceps and FDI may be due to the different 

corticospinal projections to the proximal and distal upper limb muscles (Martin et al., 

2006).  The reliability findings later after stroke may not be applicable to stroke survivors 

early after stroke because there are physiological differences in the nervous system early 

after stroke (within the first three months) compared to later after stroke (> 6 months).  

The physiological differences early after stroke within the central nervous system are: the 

initial inflammatory response to stroke (Wahl and Schwab, 2014), spontaneous recovery, 

(Cramer, 2008), hyperexcitability of motor areas (Marshall et al., 2000, Calautti et al., 

2001) and task-specific re-organization through participation in rehabilitation (Buma et 

al., 2013).  Neural plasticity continues in the chronic stages of recovery however at a 

slower rate (Wahl and Schwab, 2014), and is more likely due to task-specific re-

organization.  It is thought that the physiological processes happening within the central 

nervous system (CNS) contribute to accelerated motor recovery early after stroke (Wahl 

and Schwab, 2014, Kwakkel and Kollen, 2013, Langhorne et al., 2011).   The 

accelerated motor recovery may be associated with accelerated changes in corticospinal 

pathway excitability and neural plasticity measured using TMS.   

 There is reason to believe there may be variability in corticospinal pathway excitability 

early after stroke due to spontaneous recovery, hyperexcitability, and the potential 

accelerated rate of neural plasticity in the acute and sub-acute phases of stroke 

recovery. The reliability of TMS measures in stroke survivors later after stroke may not 

be applicable to those early after stroke. It is unknown how this rapid rate of 

neuroplasticity may influence corticospinal pathway excitability and the reliability of TMS 
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measurement. It is important to determine the reliability of TMS measures in stroke 

survivors early after stroke, as TMS is being increasingly used within this population.  

The aim of this study is to answer research question number three: “Is TMS 

measurement of the coritcospinal pathway reliable in a group of sub-acute stroke 

survivors?” The study will determine the test-retest reliability of TMS measures of 

coritcospinal pathway excitability such as active and resting motor threshold, motor 

evoked potential amplitude, motor evoked potential latency, silent period, and a 

recruitment curve of both the more-affected and less-affected biceps brachii, extensor 

carpi radialis and abductor pollicis brevis muscles in a group of stroke survivors who are 

2-60 days after a stroke.  
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5.2 Methods 

5.2.1 Ethics and informed consent 

Ethical approval for this project was obtained from the NRES Committee East of 

England-Norfolk as a substantial amendment to the FAST INdICATE randomized clinical 

trial which was ongoing.  The IRAS project ID is 79063, REC reference number is 

11/EE/0524.  The ethical approval letters can be found in Appendix 19.  This study was 

conducted in accordance with the Declaration of Helsinki.   Separate additional informed 

consent from the FAST INdICATE trial consent was obtained for each participant prior to 

participation in this study.   

At the conclusion of the baseline FAST INdICATE session participants were given a 

participant information sheet detailing the purpose and procedures of the study.  

Participants were then given at least 24 hours to decide if they wanted to take part.  

Interested participants then returned to the research lab for the additional TMS session. 

When participants arrived for the additional session of TMS the TMS procedures were 

reviewed and all questions answered to the person’s satisfaction.  Separate written 

informed consent was obtained before initiating TMS.  If a participant was unable to 

write, they could choose an independent witness to complete the form as the participant 

gave their verbal consent to participate in the study.  An independent witness was not 

part of the research team, or managed by a member of the research team.  The original 

signed consent was kept in the research file, one copy was kept in the participant’s 

medical notes, and a third copy was given to the participant.  

Data was collected and stored on a password protected computer that only the 

researcher and her supervisors had access to. 

5.2.2 Research design 

This study is a prospective correlational test-retest reliability design.  This study was 

embedded within a larger randomized controlled trial, the FAST INdICATE trial.  The 

FAST INdICATE trial is investigating how stroke survivors respond to functional strength 

training and movement performance therapy in the first months after stroke.  The 

measurement battery of the FAST INdICATE trial comprises clinical observational 

measures, the Action Research Arm Test, Wolf Motor Function Test, hand dynamometry, 

the EQ-5D, neuroimaging using functional magnetic resonance imaging (fMRI), and non-

invasive brain stimulation using TMS Table 32.  The aim of the fMRI and TMS within 

FAST INdICATE is to investigate the neural correlates of improved upper limb motor 

function in response to functional strength training and movement performance therapy.  

The test-retest reliability was assessed over two identical TMS sessions; the baseline 

FAST INdICATE TMS session and an additional TMS session.      
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The two TMS sessions were separated by one to three days.  The time frame of one to 

three days was selected based on several factors.  The reliability was being investigated 

in a group of participants within the first 3 months after stroke which is the time of most 

rapid spontaneous recovery and neural plasticity (Cramer, 2008).  All participants were 

actively participating in a rehabilitation program during the TMS assessments, and neural 

plasticity can be enhanced through participation in rehabilitation and reflected in TMS 

measurement (Buma et al., 2013, Koski et al., 2004) The neural plastic changes 

occurring due to spontaneous recovery and rehabilitation driven recovery can be 

reflected in the TMS measurement (Koski et al., 2004).  The short time span of one to 

three days between testing sessions was chosen to limit the influence of neural plasticity 

on the TMS measurement.  

5.2.3 Participants and recruitment 

The participants were recruited from the FAST INdICATE trial.  The inclusion criteria for 

this study were identical to the inclusion criteria for the FAST INdICATE trial with the 

addition of: the participant must be able to participate in TMS, all inclusion criteria are in   
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 Box 1.  Participants’ suitability to participate in TMS was assessed via a health 

screening questionnaire which can be found in Appendix 8.  The health screening 

questionnaire included questions that necessitated a yes or no answer.  The questions 

addressed the contraindications to TMS including: implanted metal in the head, epilepsy, 

syncope, implantation of a device (cochlear implant, nerve stimulator, or hydrocephalus 

shunt, drug infusion pump), and any previous surgery to the head, neck or spine (Rossi 

et al 2009).  If the answer to all the questions was ‘no’ than the person was able to 

participate in TMS.   

Recruitment from the FAST INdICATE trial occurred at the baseline assessment, Figure 

44 shows the recruitment process.  The baseline assessment for the FAST INdICATE 

trial included completion of the Action Research Arm Test (ARAT), Wolf Motor Function 

Test (WMFT), EQ-5D, with the addition of TMS and fMRI if participants were suitable, a 

brief description of each assessment can be found in Table 32.  At the conclusion of the 

baseline TMS assessment for the FAST INdICATE trial participants were invited to 

participate in this study; involving one additional session of TMS identical to that which 

was completed at the baseline FAST INdICATE assessment.  The rationale and purpose 

of this study was explained and participants were given a Participant Information Sheet 

(Appendix 20) which further detailed the study purpose and procedures.  Any questions 

participants had were answered.  Participants were then given at least 24 hours to read 

over the Participant Information Sheet and decide if they wanted to take part in the study.  

Participants were called at home or visited by the researcher in the rehabilitation unit 

after the twenty-four hour period to inquire if they were interested in participating.  Those 

participants who were interested in taking part in the study attended an additional TMS 

session within three working days of the baseline TMS assessment.   

Participants were not age-matched to participants in Chapter 4 (reliability of TMS in 

neurologically intact adults) as the studies were run in parallel and recruitment for this 

study was dependent on the FAST Indicate trial.  A more detailed explanation is in 

Chapter 4 Section 2.3.4 on page 115.   
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 Box 1 - Inclusion Criteria for the FAST INdICATE Trial  

 

Box 1 The inclusion criteria that were used for recruitment to the FAST INdICATE trial, 
additionally participants had to be suitable to participate in TMS, participate in the FAST 
INdICATE TMS to be invited to participate in the Reliability of TMS study and additional TMS 
session.  

 

 

 

 

 

 

 

 

 

 

 

 Box 1 - Inclusion and exclusion criteria used to determine suitable participants for the FAST 

INdICATE trial and TMS.   

Inclusion Criteria for FAST INdICATE 

 Adult > 18 years of age 

 2-60 days post stroke when informed consent is obtained 

 Cerebral Infarction in anterior cerebral circulation territory, cortical and/or 

subcortical, confirmed by neuroimaging 

 Sufficient voluntary muscle contraction in the paretic upper limb to generate the 

beginning of prehension (for example a score of at least 11/33 on the Motricity 

Index pinch section) 

 Unable to complete the Nine Hole Peg Test in 50 seconds or less (max time for 

test) 

 No obvious motor dyspraxia or communication deficits as assessed by the ability 

to imitate action with the non-paretic upper limb.  The accuracy of imitation of 

observed activity will be assessed on the 3-point scale used by Decety: 

2=correctly reproduced action, 1= incorrectly reproduced action, 0=not 

reproduced.  Those scoring greater than or equal to 8/10 will be considered to 

have the ability to imitate and included in the trial 

 Prior to the stroke participants were able to use the paretic upper limb to lift a cup 

and drink from it 

Additional Inclusion Criteria to participate in Reliability of TMS  

 Suitable to participate in TMS assessed through a medical screening 

questionnaire Appendix 8. 
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5.2.3.1 Power Calculation  

A power calculation was completed to achieve an ICC=0.8 with a CI of 0.7 to 0.9, 51 

participants will be recruited. An ICC of 0.8 was selected based on previous findings of 

TMS reliability (Cacchio et al., 2009, Cacchio et al., 2011, Koski et al., 2007b, Portney 

and Watkins, 2009).  A confidence interval of 0.7 to 0.9 was selected such that the lower 

end of the confidence interval 0.70 would be within the range of acceptable reliability ICC 

>0.70 (Portney and Watkins, 2009, de Vet et al., 2006). 
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 Figure 44 - Recruitment Procedures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44 - Flow diagram representing the process of recruiting participants from the FAST 

INdICATE trial to the TMS reliability study. Participation in the TMS reliability study had no impact 

on the participants’ participation in the rest of the trial. 

 

  

Participants give consent to 
participate in the FAST INdiCATE 

(FI) Trial 

Participants invited to participate 
supplementary TMS session to 

investigate reliability of TMS 
measures 

Baseline FI Assessment 
including TMS 

(Session 1 of TMS) 

Randomization and continue 
with FI trial  

Functional 
Strength Training 

Movement 
Performance 

Therapy 

6 weeks of therapy; 5 days a week 

Attend, Session 2 of TMS 
between 1-3 days following the 

baseline assessment.  

Baseline measures repeated (6 weeks) 

Baseline measures repeated 
(6 months) 

No, continue 

with FI trial 
Yes 
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Table 32 -Tests included at the Baseline Session of the FAST INdICATE Trial 

Test Description Interpretation of Results 

ARAT (Action Research 
Arm Test) 

Observational test comprising 
19 items assessing grasp, 
grip, pinch and gross arm 
movement.  Participants have 
to grasp different sized and 
shaped objects (blocks, 
tubes, ball bearings, cup, and 
marbles) and transfer them to 
another surface (elevated 
shelf). 

Scoring is from 0 to 3; 0 = 
cannot perform and 3 = 
performs test normally.  The 
maximum score is 57 points. 

 

Higher scores indicate better 
upper limb function.  

Wolf Motor Function Test 
WMFT (Wolf Motor Function 
Test) 

Quantitative test comprising 
21 timed functional tasks, in 
which movement quality is 
analysed.  Participants have 
to grasp different functional 
objects (can, pencil, 
paperclip, checkers, towel, 
key and basket) and move 
the arm in various positions 
such as elbow extension, and 
placing the arm on an 
elevated shelf. 

Each task is timed and 
participants are allowed up to 
120 seconds to complete the 
task.  Scoring is on a scale 
from 0-5; 0 “does not attempt 
with the involved arm” to 5 
“arm does participate; 
movement appears to be 
normal”  

EQ-5D Standardized measure of 
health outcome assessing 5 
domains, mobility, self-care, 
usual activities, 
pain/discomfort, and 
anxiety/depression.  The 
participants then rate their 
health state from 0-100. 

Participants score each 
domain with “no problems”, 
“some problems”, or “unable”.   

The higher the participants 
rate their health state the 
better they view their health 
state.  

TMS (Transcranial Magnetic 
Stimulation) 

Neurophysiologic assessment 
of the excitability/integrity of 
the corticospinal pathway. 
Change in excitability is a 
measure of neural plasticity.   

Motor threshold 

Motor evoked potential (MEP) 
and measurement of its 
properties: amplitude, latency, 
silent period, recruitment 
curve.  Changes in these 
properties can measure 
neural plasticity  

fMRI (Functional Magnetic 
Resonance Imaging) 

Neurophysiologic assessment 
of blood flow within the brain 
during a functional task used 
to create brain maps of active 
brain regions. 

Brain maps display the active 
brain areas during a specific 
task, when repeated after a 
physiotherapy intervention 
change in the areas of activity 
are a measurement of neural 
plasticity. 

 

Table 32- The assessments that are completed at the baseline session of the FAST INdICATE 

trial and are repeated at the 6 week, and 6 month follow up sessions. The ARAT and WFMT 

assess upper limb motor control, the EQ-5D assesses health outcomes, and TMS and fMRI 

assess neural plasticity. References: (Schaechter, 2004, Wolf et al., 2001, Lang et al., 2006)   
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5.2.4 Equipment 

The equipment used for TMS was identical to the equipment for the previous TMS study 

Chapter 4). Single pulse TMS was delivered using a Magstim 200 2 (Magstim Company 

Ltd, Carmarthenshire, UK) stimulator with a figure-of-eight coil 90 mm in diameter. The 

EMG/MEP data was collected from the biceps brachii and extensor carpi radialis using 

pre-prepared Ag-CL ConMed Cleartrace ECG round electrodes that were 20 mm in 

diameter (ConMed Patient Care, Utica NY, USA), and from the abductor pollicis brevis 

using Nicolet cup electrodes (CareFusion Nicolet P.O. Box 44994, Madison, WI, 53744-

4994) with conducting gel/electrode cream (Grass EC2 electrode cream, Grass 

Products, Natus Neurology Middleton WI, USA). The EMG signals were pre-amplified 

and sampled using a Digitmier Ltd ( Digitimer Ltd, Hertfordshire, UK) pre-amplifier, the 

CED (Cambridge Electronic Design) Micro 1401 (Cambridge Electronic Design Limited, 

Cambridge, UK), and the Neurolog System (Digitimer Ltd, Hertfordshire, UK). Please 

refer to section 0 Figure 18 page 120 for pictures of the equipment. 

 Muscles of investigation 

The muscles of investigation were the biceps brachii, extensor carpi radialis (ECR), and 

abductor pollicis brevis (APB) of both the less affected and more-affected limbs. These 

muscles were selected because they are vital for successful reach to grasp and 

completion of ADL’s.  The biceps transports the arm in space, the ECR stabilises and 

extends the wrist enabling finger dexterity, and the APB abducts the thumb to allow for 

grasp and object manipulation (Shumway-Cook and Woollacott, 2007, Ngomo et al., 

2012).  These muscles are often paretic after a stroke and the target of many upper limb 

therapies (Donaldson et al., 2009, Wolf et al., 2006). The muscles investigated in the 

FAST INdICATE trial were the bilateral biceps and ECR.  It is known that the different 

upper limb muscles have different corticospinal projections (Chen, 2000), respond 

differently to TMS (Martin et al., 2006), and have varying reliability of motor map area 

and slope of the recruitment curve (Carson et al., 2013, Malcolm et al., 2006).  

Therefore, due to the contribution of all muscles to functional use of the upper limb, 

different corticospinal projections, and response to stimulation the addition of the APB 

was included to investigate test-retest reliability of a muscle of the upper arm, forearm 

and hand.     
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5.2.5 Procedures 

The procedures of the session can be found in Figure 45.  Briefly, the procedures were 

reviewed, informed consent obtained, and then participants completed an identical TMS 

session to the baseline FAST INdICATE session.  

 

Figure 45 - Procedures of Session 

  

 

Figure 45- Procedures that occur during the TMS sessions  

 

 

 

 

 

 

Informed 

Consent

• Review procedures

• Questions answered 

• Written informed consent obtained 

Skin 
Preparation 

and 
Electrode 
Placement

• Participants seated comfortably in a chair with arm rests

• Skin preparation over muscles of investigation with NuPrep and alcohol swab

• Placement of electrodes in parallel over the BB, ECR, and APB; ground electrode placed on 
olecranon process 

TMS 
preparation

• Measurement of the head with a soft tape measure to determine the vertex 

• Hot spot determined

TMS data 
collection

• Order of data collection: active motor threshold determined, then recuritment curve (5 
stimuli at each intensity)

• Less affected BB, ECR, APB

• More affected BB, ECR, APB

• Ipsilateral biceps

• Resting motor threshold of less affected BB, ECR, APB, then more affected BB, ECR, APB
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5.2.5.1 Skin preparation and electrode placement 

The processes of skin preparation and electrode placement were identical to the 

procedures in section 4.2.7  page 123. Participants were seated comfortably in a chair 

with armrests.  Participants were requested to make a muscle contraction if possible to 

locate the muscle belly.  The skin over the muscles of investigation were abraded using 

Nuprep and alcohol swabs.  Once the skin was dry, surface EMG electrodes were placed 

in parallel along the muscle fibres of the biceps, ECR and APB (Konrad, 2005); Figure 21 

- Surface EMG Electrode Placement page 124 demonstrates electrode placement on 

each of the three muscles.  A ground electrode was placed on the olecranon process.  

The electrodes were connected to the pre-amplifier with electrode leads. 

5.2.5.2 Data collection 

TMS data was collected in the same manner at both TMS sessions. The muscles were 

investigated in order starting with the non-paretic biceps, non-paretic ECR, paretic 

biceps, paretic ECR, paretic ipsilateral biceps, non-paretic APB, and finally the paretic 

APB.  The process of data collection was identical for each muscle; and is described 

below for the paretic biceps. The process was similar to that of the data collection in the 

previous chapter. 

 The EMG signals were pre-amplified at 10 Hz and 1 k gain, filtered at 10-50 Hz 

using the Neurolog system.  Motor evoked potentials were collected using Signal 

5.7 software and saved for offline analysis.  EMG data was collected in 500 ms 

samples, 100 ms prior to the TMS stimulus and 400 ms after the TMS stimulus.     

 The participants head was measured using a soft tape measure to determine the 

general area of the motor cortex, the vertex, and marked with permanent marker 

on the scalp Figure 22 - Measurement of the Head for Locating the  page 125. 

 Single-pulse TMS was delivered to the motor cortex contralateral to the muscles 

of interest.  The TMS coil was placed tangentially to the scalp over the area of the 

motor cortex and vertex; with the handle pointing backwards to obtain a posterior- 

anterior current flow into the motor cortex (Koski et al., 2007a, Wassermann, 

2002);  Figure 25 - Coil Position during TMS Data Collection page 128. 

 Participants maintained a slight biceps contraction as demonstrated in Figure 46. 

Assistance and cues (verbal/manual) were provided if participants needed 

assistance to maintain a muscle contraction.  During active contraction there is a 

decrease in variability in the MEP caused by random fluctuations (Kiers et al., 

1993), and maintaining a muscle contraction gives the participants a focus which 

may standardize the level of alertness during testing (Koski et al., 2007a).  
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Figure 46 - Slight Muscle Contraction 

 

 

 

 

Figure 46 - Slight muscle contraction maintained during determination of the active       motor 

threshold and data collection of the recruitment curve.  Figure A is the biceps muscle, figure B the 

ECR, and figure C the APB.  TMS=transcranial magnetic stimulation, EMG=electromyography, 

ECR=extensor carpi radialis muscle, APB= abductor pollicis brevis muscle  

 

 During slight contraction the hot spot for the biceps was determined. The hot spot 

is the coil location on the scalp that the largest and most consistent MEP’s are 

obtained from the muscle of interest (Carroll et al., 2001).  Once the hot spot was 

determined it was marked on the scalp with a semi- permanent marker.  All data 

related to the biceps brachii of the less-affected limb was collected from this 

point.   

 The active motor threshold was then determined.  The stimulator output was 

initially placed at a suprathreshold level and was decreased in 5% increments, 

then when closer to the threshold stimulator output was decreased in 1-2% 

increments until half of the successive trials produced an MEP > 200 µv (Koski et 

al., 2007a, Liu and Au-Yeung, 2014, Rossini and Rossi, 2007).   

 Once the active motor threshold was determined a recruitment curve was 

obtained during a slight muscle contraction.  Stimulation intensities included 

100%, 110%, 120%, and 130% of active motor threshold; five TMS pulses were 

delivered at each intensity (Massie and Malcolm, 2013).  Rest breaks were given 

as needed.  Obtaining the recruitment curve during active conditions allows the 

motor threshold to be lower (lower stimulator output) enabling a greater 

percentage of the recruitment curve to be obtained because stroke survivors 

typically demonstrate higher motor thresholds (Massie and Malcolm, 2013, Koski 

Figure 46A. Slight biceps 

contraction during TMS 

data collection (with EMG 

leads). 

Figure 46B. Slight ECR 

contraction during TMS 

data collection (with EMG 

leads). 

Figure 46C. Slight APB 

contraction during TMS 

data Collection (with EMG 

leads) 
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et al., 2007a).  The process of determining the active motor threshold and 

obtaining a recruitment curve was repeated for all muscles. 

 Next, the resting motor threshold was determined in the same manner as the 

active motor threshold. The resting motor threshold was the stimulator output in 

which half of successive trials elicited a MEP amplitude of > 50 µv (Rossini and 

Rossi, 2007, Ngomo et al., 2012).     

 At the conclusion of active conditions and determining the resting motor threshold 

ipsilateral biceps responses were collected.  TMS pulses were delivered over the 

hot spot for the less involved biceps while a slight biceps contraction was 

maintained; EMG responses were recorded from the more-affected biceps.  TMS 

pulses were delivered at 120%, 140% and 160% of the active motor threshold of 

the less-affected biceps; five TMS pulses were given at each intensity.  

 At the conclusion of the TMS session the electrodes were removed and the skin 

was cleansed.   
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Figure 47 - Processes during TMS Data Collection 

 

Figure 47 - Describes the processes completed during TMS data collection.  The processes were 

identical at each session.  The muscles were investigated in order starting with the non-paretic 

biceps, non-paretic ECR, paretic biceps, paretic ECR, ipsilateral biceps, non-paretic APB, and 

paretic APB. 

 

5.2.6 Data processing 

Signal Software was used to process the MEP amplitude, MEP latency, and the silent 

period; the recruitment curve was processed in Stata 12.1 software.  The researcher 

visually assessed each MEP frame for appropriateness for analysis; taking into 

consideration presence of an MEP, quality of EMG/MEP, and presence of electrical 

noise.  Trials without an MEP or with electrical noise were not analysed.  The frames that 

were appropriate for analysis were “tagged” in signal.   The processing of the MEP 

elements was identical to the processes used in the previous chapter ’Reliability of TMS 

measures of corticospinal excitability across the lifespan’.  Briefly, the motor threshold 

was determined as the percentage of stimulator output needed to obtain an MEP in half 

of successive trial of at least 50 mV or 200mV for the resting and active motor thresholds 

respectively.  The MEP amplitude was determined using a pre-written script in Signal 

Prep
•Skin cleansed 

•Surface electrodes placed over muscle belly (biceps, ECR, APB)

TMS
•Measurement of the head

•Determination of the hot spot (each muscle individually)

TMS

•Determine active motor threhsold (slight muscle contraction)

•Collect recruitment curve during slight contraction

•Process repeated for all muscles

•Collect ipsilateral biceps responses

TMS 

•Determine resting motor threhsold (muscle at rest)

•Remove electrode, cleanse skin

•Session complete 
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software (5.7) to measure the peak-to-peak amplitude in millivolts.  The MEP max was 

the largest MEP amplitude (produced by the script) for the muscle of interest that was 

assessed by the researcher (MEP amplitude output from Signal).  The silent period and 

MEP latency were assessed visually.  The MEP latency was the time from stimulus to 

the first deflection of the MEP in milliseconds.  The silent period was the time from MEP 

onset to return of EMG measured in milliseconds.  The recruitment curve was plotted as 

the stimulator intensity again the MEP amplitude in Stata 12.1 software.  For complete 

details of the data processing please refer to section 4.2.8 page 130.    

5.2.7 Statistical analysis 

The test-retest reliability was determined by comparing the findings from session one 

(baseline FAST INdICATE TMS) to the findings of session two (additional TMS session). 

Statistical analysis of the test-retest reliability was identical to the statistical analysis in 

Chapter 4.  The test-retest reliability was robustly determined using the combination of 

the ICC model [2, 1] and Bland-Altman’s 95% LOA (Bland and Altman, 1986b, Portney 

and Watkins, 2009, de Vet et al., 2006).  The ICC assesses the agreement between 

measures from session one to session two; an ICC closer to one indicates better 

agreement.  The ICC will be interpreted such that an ICC > 0.70 is acceptable reliability 

(Portney and Watkins, 2009), and interpreted with reference to the 95% CI.  The lower 

end of the 95% CI was used to determine the test-retest reliability.  The Bland-Altman 

plots assessed if there is error in agreement in the measurement from session one to 

session two as well as the variance between sessions (Bland and Altman, 1986b).  For a 

more detailed description of statistical analysis please refer to section 4.2.9 page 133.  

The ICC and LOA will be determined individually for each muscle of the paretic and non-

paretic limbs.  

Statistical analysis was completed using STATA SE version 12.1 software.  
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5.3  Results 

5.3.1 Participants 

Participants were recruited to participate in this study from the FAST INdICATE trial 

starting in February 2014 and ending in May 2015 Figure 48.  During the time period of 

recruitment 41 individuals participated in FAST INdICATE baseline TMS.  The 41 

participants who completed baseline FAST INdICATE TMS were invited to participate in 

an additional session of TMS to investigate the test-retest reliability.   Of the 41 

individuals invited to participate 34 agreed to take part.  Data was collected on 28 

participants during a second TMS session.  Reasons for not completing the second 

session are in Figure 48; briefly there were medical reasons or there were unforeseen 

circumstances preventing return to the second session.  This study aimed to recruit 51 

participants and recruited twenty-eight, however, 68% of the individuals invited to take 

part completed the second TMS session. 

The mean age and SD of participants was 74±11 years, 15 men and 13 women.  The 

mean time since stroke to the first TMS session was 38.6±19.8 days after stroke.   

5.3.2 Trials analysed 

There were 9.7% of trials that were not analysed because a MEP was not present or 

there was electrical noise preventing processing and analysis.   
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Figure 48 - Recruitment 

  

Figure 48 - Flow diagram of participants from the FAST INdICATE trial who were eligible to 

participate in TMS, invited to participate in the additional TMS session, and the participants who 

participated in the additional TMS session.  The reasons for not participating in the additional TMS 

session are provided in the box on the right.   

Did not participate in TMS n=24 

TMS contraindicated n=12 

Withdrew consent for TMS n= 5 

Distance to Lab too far n=7 

 

Participants recruited to the FAST 

INdICATE trial in Norfolk from February 

2014 to June 2015 

N=65 

Participants who participated in FAST 

INdICATE baseline TMS and invited to 

participate in additional TMS to assess 

test-retest reliability 

N=41 

Individuals who agreed to participate in 

additional TMS 

N=34 

Participants in which additional TMS 

data was collected on  

N=28 

Loss to Follow up n=6 

Placed on contact precautions 
n=1 

Medical Reasons n=2 

Not able to return to the lab for 
the second session n=3  

Not interested in participating in 

second session n=7 

Too busy with other health care 
workers n= 6 

Too fatigued n= l 
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5.3.3 Reliability of TMS measures 

Descriptive statistics for the MEP elements are in Table 33 to Table 35.  Table 33 

describes the mean and standard deviation of the motor threshold, MEP latency, silent 

period and slope of the recruitment curve from session one and session two.  Table 34 

and Table 35 demonstrate the mean and standard deviation of the average MEP 

amplitude and Max MEP amplitude respectively.  Data were roughly normally distributed, 

example histograms are in Figure 49 A and B demonstrating the active motor threshold 

of the non-paretic and paretic ECR.   
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Table 33 Descriptive Statistics of the MEP elements in stroke survivors 

Muscle Limb 
assessed 

AMT 
Session 
1 

AMT 
Session 
2 

RMT 
Session 
1 

RMT 
Session 
2 

MEP 
latency 
130% AMT 
Session 1 

MEP 
latency 
130% AMT 
Session 2 

Silent Period 
session 1 

Silent Period 
Session 2 

Recruitment 
Curve Slope 
Session 1 

Recruitment 
Curve Slope 
Session 2  

Biceps Non-
paretic 

52±7 53±8 69±11 69±11 13.70±2.33 13.48±2.22 117.83±45.79 132.98±44.18 0.12±0.05 0.28±0.56 

 Paretic 62±10 64±9 76±15 80±9 14.75±3.00 13.86±2.69 134.67±36.71 142.82±34.10   

ECR Non-
Paretic 

40±5 41±6 53±11 53±10 16.59±1.80 17.13±4.60 112.39±36.81 127.81±41.12 0.20±0.12 0.047±0.17 

 Paretic 54±13 57±12 66±14 72±12 18.87±5.62 18.53±1.89 154.21±41.08 160.72±40.50 0.06±0.05 0.06±0.05 

APB Non-
paretic 

42±6 43±7 50±11 50±15 23.58±2.55 23.01±2.04 151.58±51.20 152.62±37.72 0.10±0.07 0.12±0.07 

 Paretic  53±15 58± 14 59±9 65±10 24.53±2.03 24.22±1.92 156.68±52.03 161.75±40.96 0.20±0.13 0.58±0.60 

 

Table 33 Describes the mean and standard deviation of the MEP elements AMT, RMT, MEP latency, silent period and the slope of the recruitment curve 

for both session one and session two. AMT=active motor threshold, RMT= resting motor threshold, MEP =motor evoked potential, ECR=extensor carpi 

radialis, APB= abductor pollicis brevis  
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Table 34 Descriptive Statistics for the average MEP amplitude in stroke survivors 

Muscle Limb Assessed  % AMT Average MEP 
Amplitude Session 1 

Average MEP 
Amplitude Session 2 

Biceps Non-Paretic 100 0.72±0.48 0.53±0.27 

  110 0.89±0.62 0.64±0.35 

  120 1.06±0.80 0.81±0.48 

  130 1.26±0.95 0.94±0.66 

  Paretic 100 0.47±0.40 0.44±2.24 

  110 0.76±1.34 0.48±0.27 

  120 0.83±1.10 0.56±0.29 

  130 1.08±1.72 0.63±0.37 

ECR Non-Paretic 100 1.52±0.91 1.92±1.46 

  110 1.64±0.88 2.31±1.62 

  120 2.01±1.01 2.72±1.67 

  130 2.19±0.84 2.82±1.71 

 Paretic 100 0.80±0.56 0.86±0.48 

  110 0.92±0.65 0.99±0.67 

  120 1.08±0.66 1.12±0.67 

  130 1.25±0.73 1.25±0.67 

APB Non-Paretic 100 1.57±1.08 1.60±1.25 

  110 1.80±1.25 2.22±1.28 

  120 2.41±1.43 2.50±1.67 

  130 2.65±1.63 2.75±1.65 

 Paretic  100 1.11±0.78 1.36±1.79 

  110 1.66±1.53 1.67±1.20 

  120 1.84±1.91 1.80±2.01 

  130 2.42±2.25 2.47±2.25 

 

Table 34 Mean and standard deviation of the average MEP amplitude at 100%, 110%, 

120% and 130% of AMT during slight muscle contraction.  AMT=active motor threshold, 

MEP=motor evoked potential, ECR= extensor carpi radialis, APB=abductor pollicis brevis  
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Table 35 Descriptive Statistics of the MEP Max Amplitude in stroke survivors 

Muscle Limb Assessed MEP Max 
Amplitude Session 
1 

MEP Max 
Amplitude 
Session 2 

Biceps Non-Paretic 1.83±1.14 1.26±0.79 

 Paretic 1.23±1.75 0.85±0.43 

ECR Non-Paretic 3.10±1.35 3.94±2.30 

 Paretic 1.60±1.07 1.79±1.00 

APB Non-Paretic 3.60±1.90 3.62±1.89 

 Paretic 2.99±2.27 3.27±4.14 

Table 35 Describes the mean and standard deviation of MEP max of the biceps, ECR 

and APB of both the paretic and non-paretic limbs.  ECR=extensor carpi radialis, 

APB=abductor pollicis brevis  

 

Figure 49 Histogram of Data Distribution 

A. Active motor threshold non-paretic ECR  

B. Active motor Threshold paretic ECR   

Figure 49 Histogram of data distribution of the active motor threshold of the 

paretic and non-paretic ECR demonstrating roughly normally distributed data 
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5.3.3.1 Active Motor Threshold (AMT) 

The active motor threshold was able to be determined on non-paretic limb of all 

participants excluding the APB in one participant due to electrical noise.  The motor 

threshold was not able to be determined for all participants paretic limb; the threshold 

was determined for the biceps 27/28, ECR 27/28, and APB 24/27 participant’s paretic 

limb.  

The ICC values and 95% LOA for the AMT of the bilateral biceps brachii, extensor carpi 

radialis, and abductor pollicis brevis are in Table 36; example Bland-Altman plots are in 

Figure 50 and in Appendix 21 for all muscles.  The ICC estimated values for the active 

motor threshold range from ICC=0.586 (0.277 to 0.785) of the non-paretic biceps to 

ICC=0.837 (0.655 to 0.926) for the paretic APB.  The lower end of the confidence interval 

falls within the range of poor reliability for the biceps and non-paretic APB. The 95% 

confidence interval and 95% LOA are wide indicating variability and imprecision in the 

results. 

The Bland-Altman plots demonstrate random error in agreement between tests for both 

paretic and non-paretic muscles.  

 

Table 36 - Reliability ICC and Limits of Agreement for the Active Motor Threshold 

Muscle Participants ICC (95% CI) 95% LOA 
Reliability 
Category 

Non-Paretic 
Biceps 

N=28 0.586 (0.277, 0.785) -14.166 to 12.880 Poor 

Paretic Biceps N=27 0.602, (0.303, 0.795) -19.259 to 14.815 Poor 

Non-Paretic 
ECR 

N=28 0.749, (0.529, 0.875) -8.350 to 7.136 Moderate 

Paretic ECR  N=27 0.826, (0.631, 0.922) -16.668 to 11.608 Moderate 

Non-Paretic 
APB 

N=27 0.633, (0.346, 0.813) -12.585 to 9.945 Poor 

Paretic APB N=24 0.837, (0.655, 0.926) -18.440 to 12.531 Moderate 

Table 36 - Reliability ICC and Limits of Agreement for the Active Motor Threshold assessed 

during slight muscle contraction of the paretic and non-paretic biceps, ECR, and APB. Reliability 

was assessed using the ICC model [2, 1], acceptable reliability is an ICC >0.70 (determined by 

the lower end of the confidence interval), and Bland-Altman’s 95% LOA. In instances where the n 

< 28 the participants not included in the analysis were ones in which researcher was unable to 

determine a motor threshold within that muscle with the stimulator output up to 100% or as high 

as the participant could tolerate. ICC=intraclass correlation coefficient, LOA=limits of agreement, 

ECR=extensor carpi radialis muscle, APB=abductor pollicis brevis muscle   
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Figure 50- Bland-Altman Plots of the Active Motor Threshold  

A.  

      

                 Figure 50 A Bland-Altman Plot of the AMT of the non-paretic 
                 Biceps muscle n=28 

 

B.  

                 Figure 50 B Bland-Altman plot of the AMT of the paretic biceps   
                 Muscle, n=27     
 
 
Figure 50 A & B - Bland-Altman plots of the AMT of the A) non-Paretic biceps muscle and B) the 
paretic biceps muscles.  The x-axis represents the average MT of session one and session two, 
the y-axis represents the difference in MT of session one minus session two, the red line is the 
mean difference between sessions.  Plots A and B represent random error in agreement between 
testing sessions.  AMT=active motor threshold, MT=motor threshold  
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5.3.3.2 Resting Motor Threshold 

The resting motor threshold was able to be determined on the non-paretic limb for all 

participants, with the exception of one participant’s non-paretic APB due to electrical 

noise.  The resting motor threshold was determined for the paretic biceps in 22/28 

participants, ECR in 25/28 participants and the APB in 23/27 participants.  

The reliability ICC and LOA of resting motor threshold for individual muscles can be 

found in Table 37, and example Bland-Altman plots are in Figure 51, the Bland-Altman 

plots for all muscles are in Appendix 21. The reliability is variable ranging from an 

ICC=0.418 (0.064 to 0.680) for the non-paretic biceps to ICC =0.806 (0.623 to 0.906) for 

the non-paretic extensor carpi radialis.  The lower end of the confidence interval falls 

within the range of poor reliability with the exception of the non-paretic ECR and paretic 

APB.  Furthermore, the 95% CI and 95% LOA are wide indicating variability and 

imprecision in the measurement.   

The Bland-Altman plots demonstrate random error in agreement between tests for both 

paretic and non-paretic muscles, as well as outliers beyond the 95% LOA for all plots.  

 

Table 37 - Reliability ICC and LOA of Resting Motor Threshold 

Muscle Participants ICC 95 % LOA 
Reliability 
Category 

Non-paretic 
Biceps 

N=28 0.418, (0.064,0.680) -20.043 to 20.350 Poor 

Paretic Biceps N=22 0.627, (0.300, 0.824) -27.267 to 19.933 Poor 

Non-paretic ECR N=28 0.806, (0.623, 0.906) -14.367 to 14.219 Moderate 

Paretic ECR   N=25 0.695, (0.422, 0.853) -31.773 to 19.686 Poor 

Non-Paretic APB N=27 0.679, (0.402, 0.842) -11.239 to 8.656 Poor 

Paretic APB N=23 0.765, (0.527, 0.892) -25.369 to 15.035 Moderate  

Table 37 - Reliability ICC and LOA of Resting Motor Threshold.  The reliability of the resting motor 

threshold of the paretic and non-paretic biceps, ECR, and APB muscles.  Reliability was assessed 

using the ICC model [2, 1] and Bland-Altman’s 95% LOA. An ICC > 0.7 is acceptable reliability, 

was determined by the lower end of the confidence interval. In instances where the n < 28 the 

participants not included in the analysis were ones in which researcher was unable to determine a 

motor threshold within that muscle with the stimulator output up to 100% or as high as the 

participant could tolerate. ICC=intraclass correlation coefficient, LOA=limits of agreement, 

ECR=extensor carpi radialis muscle, APB=abductor pollicis brevis muscle 
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Figure 51 - Bland-Altman Plots of the Resting Motor Threshold  

A.  

                  Figure 51A. Bland-Altman plot of the RMT of the  
                  Non-paretic ECR muscle, n=28 

 

B.  

                      Figure 51B. Bland-Altman plot of the RMT of the paretic 
                         ECR muscle, n=25 
 
 
Figure 51A & B - Bland-Altman plots of the RMT of the A) non-paretic ECR muscle and B) the 

paretic ECRs muscles.  The x-axis represents the average MT of session one and session two, 

the y-axis represents the difference in MT of session one minus session two, the red line is the 

mean difference between sessions.  Plots A and B represent random error in agreement between 

testing sessions.   MT=motor threshold, RMT=resting motor threshold, ECR=extensor carpi 

radilias  

   



212 
 

5.3.3.3 MEP amplitude 

The reliability of MEP amplitude for each individual muscle is in Table 38.  The reliability 

is poor with the exception of the APB in whit the lower end of the confidence interval is 

within the range of moderate reliability ICC= 0.860 (0.699, 0.938) for the non-paretic 

APB. The 95 CI and 95% LOA are wide indicating variability and imprecision in the 

measurement.   

Example Bland-Altman plots for the biceps are in Figure 52 - Bland-Altman Plots of 

Average MEP Amplitude and all plots are in Appendix 22.  The Bland-Altman plots for 

biceps appear to have a greater proportion of differences between sessions that are 

below the mean difference line, indicating larger MEP amplitude on the second session. 

Additionally there appears to be a possible linear association such that the larger the 

MEP amplitude the greater the difference in amplitude between sessions for the paretic 

muscles.  The Bland-Altman plots for the non-paretic ECR and APB demonstrate random 

error.  
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Table 38 - Reliability, ICC and LOA for the Average MEP Amplitude 100% to 130% AMT 

Muscle % of MT ICC (95% CI) 
95% Lower to Upper 
LOA 

Reliability 
Category  

NP Biceps n=28 100 0.493, (0.153, 0.729)  -0.564 to 0.937 Poor 

 N=28 110 0.553, (0.191, 0.774) -0.618 to 1.144  Poor 

 N=28 120 0.369, (0.025, 0.642) -1.204 to 1.708  Poor 

 N=28 130 0.300, (0, 0.593) -1.582 to 2.236  Poor 

P Biceps n=27 100 0.345, (0, 0.639) -0.718  to 0.787  Poor 

 N=27 110 0.253, (0, 0.569) -2.067 to 2.680  Poor 

 N=27 120 0.248, (0, 0.564) -1.161 to 2.186  Poor 

 N=23 130 0.129, (0, 0.498) -2.791 to 3.928  Poor 

NP ECR n=28 100 0.470, (0.139, 0.711) -2.865 to 2.067  Poor 

 N=28 110 0.439, (0.095, 0.692) -3.312 to 1.978  Poor 

 N=28 120 0.361, (0.022, 0.635) -3.468 to 2.218  Poor 

 N=28 130 0.411, (0.072, 0.670) -3.468 to 2.218  Poor 

P ECR n=23 100 0.398,( 0.007, 0.682) -1.217 to 1.076  Poor 

 N=25 110 0.543, (0.193, 0.770) -1.335 to 1.195  Poor 

 N=23 120 0.461, (0.062, 0.731) -1.450 to 1.323  Poor 

 N=22 130 0.441, (0.021, 0.725) -1.500 to 1.451  Poor 

NP APB n=27 100 0.775, (0.563, 0.891) -1.541 to 1.582 Moderate 

 N=27 110 0.593, (0.203, 0.764) -2.571 to 1.842  Poor 

 N=27 120 0.568, (0.291, 0.790) -3.202 to 2.927  Poor 

 N=27 130 0.588, (0.273, 0.789) -3.233 to 3.044  Poor 

P APB n=24 100 0.306, (0, 0.627) -3.511 to 2.998  Poor 

 N=24 110 0.723, (0.457, 0.870) -2.713 to 2.463  Poor 

 N=21 120 0.860, (0.699, 0.938) -2.140 to 1.952  Moderate 

 N=19 130 0.754, (0.461, 0.898) -3.105 to 3.130  Poor 

Table 38 - The test-retest reliability of the average MEP amplitude of the non-paretic and paretic 

biceps, ECR and APB at 100%, 110%, 120%, and 130% of AMT.  The test-retest reliability was 

assessed using the ICC model [2,1] and associated 95% CI acceptable reliability is an ICC > 

0.70, and the Bland-Altman 95% LOA.  In instances where there are less than 28 participants 

included in the analysis the researcher was unable to determine a motor threshold with the 

stimulator up to 100%, or with increasing % of AMT the stimulator output was > 100% or the 

increasing stimulator output was uncomfortable thus not completed.  MEP=motor evoked 

potential, ECR=extensor carpi radilalis muscle, APB=abductor pollicis brevis muscle, P=paretic 

muscle, NP=non-paretic muscle ICC=intraclass correlation coefficient, LOA=limits of agreement, 

MT=motor threshold 
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Figure 52 - Bland-Altman Plots of Average MEP Amplitude 

A.  

                     Figure 52A. Bland-Altman plot of the average MEP amplitude 
                     of the non- paretic biceps muscle at 110% AMT n=28 

 

B.  

                     Figure 52 B. Bland-Altman plot of the average MEP amplitude 
                       Of the paretic biceps muscle at 110% AMT n=27 
 
Figure 52 - Bland-Altman Plots of Average MEP Amplitude of the A non- paretic biceps muscle 
and B paretic biceps muscle assessed at 100% AMT.  The x-axis represents the average MEP 
amplitude of session one and session two, the y-axis represents the difference in average MEP 
amplitude of session one minus session two, the red line is the mean difference in amplitude 
between session one and session two.  Plot A demonstrates a potential association between MEP 
amplitude and difference between sessions.  Plot B represents systematic error suggesting that 
the MEP amplitude of the second session was greater than the first session, and there is a 
potential linear association between MEP amplitude and agreement between sessions.   
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5.3.3.4 Amplitude of MEP max 

The MEP max was the largest MEP amplitude collected for the muscle of interest.  The 

reliability of the amplitude of MEP max for each individual muscle is in Table 39.  

Example Bland-Altman plots are in Figure 53 plots for all muscles are in Appendix 23.  

The reliability is poor for all muscles.   

The Bland-Altman plots demonstrate random a potential association between increasing 

amplitude and a greater difference in amplitude between sessions.  The plot for the 

paretic biceps demonstrates a greater number of differences below the mean difference 

line suggesting a larger amplitude at the second session.   

 

Table 39 - Reliability of the Amplitude of MEP Max 

Muscle Participants ICC (95% CI) 95% Limits of Agreement Reliability 
Category 

Non-Paretic 
Biceps 

N=28 0.208 (0, 0.515) -1.861 to 2.989 Poor 

Paretic 
Biceps 

N=27 0.232 (0, 0.553) -2.774 to 3.535 Poor 

Non-Paretic 
ECR 

N=28 0.463 (0.127, 0.706) -4.622 to 2.928 Poor 

*Paretic ECR N=25 0.701 (0.435, 0.855) -1.761 to 1.410 Poor 

*Non-Paretic 
APB 

N=27 0.733 (0.451, 0.865) -2.813 to 2.715 Poor 

Paretic APB N=24 0.198 (0, 555) -9.008 to 8.104 Poor 

Table 39 - The reliability of the maximum MEP amplitude during slight muscle contraction of 

paretic and non-paretic biceps, ECR, and APB.  The test-retest reliability was assessed using the 

ICC model [2,1] and associated 95% CI acceptable reliability is an ICC >0.70, and the Bland-

Altman 95% LOA.  In instances where there are less than 28 participants included in the analysis 

the researcher was unable to determine an motor threshold with the stimulator up to 100%, or 

with increasing % of AMT the stimulator output was > 100% or the increasing stimulator output 

was uncomfortable thus not completed.  MEP=motor evoked potential, ECR=extensor carpi 

radilalis muscle, APB=abductor pollicis brevis muscle, P=paretic muscle, NP=non-paretic muscle 

ICC=intraclass correlation coefficient, LOA=limits of agreement, MT=motor threshold, ECR= 

extensor carpi radialis, APB= abductor pollicis brevis  
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Figure 53- Bland-Altman Plot of MEP Max Amplitude 

A.  

                     Figure 53 A-  Bland-Altman plot of the non-paretic biceps 
                     MEP max amplitude n=28 
 

 

B,    

                        Figure 53 B Bland-Altman plot of the paretic biceps 
                     MEP max amplitude n=27 

 

Figure 53 A, B- Bland-Altman plots of MEP max amplitude of the A) non-paretic biceps and B) paretic 

biceps.  The x-axis represents the average MEP max amplitude of session one and session two, 
the y-axis represents the difference in average MEP max amplitude of session one minus session 
two, the red line is the mean difference in amplitude between sessions.  Plot A demonstrates a 
potential association between MEP max amplitude and difference between sessions.  Plot B 
demonstrates a great number of differences between sessions are below the mean difference 
(larger amplitude second session) and there is a potential association between MEP amplitude 
and agreement between sessions.    
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5.3.3.5 Reliability of MEP latency 

The researcher visually assessed the MEP latency, another researcher assessed 10% of 

trials.  The researchers were in agreement within 2 seconds on 84% of trials.  The test-

retest reliability of MEP latency at 120% and 130% of AMT is in Table 40 demonstrating 

reliability is variable.  The lowest ICC value is for the paretic ECR at 130% of AMT ICC = 

0.299, (0, 0.645), the highest ICC value is for the paretic biceps ICC=0.844 (0.685, 

0.927).   The lower end of the confidence interval falls within the poor range for most 

muscles excluding the non-paretic APB and the paretic biceps at 120% AMT.  The 95% 

CI and 95% LOA are wide indicating variability and imprecision in measurement.  The 

95% LOA are wider when the latency is assessed at 130% AMT suggesting greater 

variability and imprecision in measurement 130% AMT compared to 120% AMT.   

Example Bland-Altman plots are in Figure 54, plots for all muscles are in Appendix 24.  

The Bland-Altman plots of the latency assessed at 120% demonstrate random error in 

agreement between sessions. 

The Bland-Altman plots of MEP latency of the non-paretic APB assessed at 130% AMT 

demonstrates systematic such that the latency was shorter the second session. The 

latency of the paretic ECR at 130% AMT demonstrates a trend towards the latency being 

longer the second session.  
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Table 40 - Reliability ICC and LOA of MEP Latency at 120% and 1305 AMT 

Muscle 
120% AMT 
ICC (95% 
CI) 

95% LOA 
Reliability 
Category  

130% AMT 
ICC 95% CI 

95% LOA 
Reliability 
Category 

Non-
Paretic 
Biceps 
n=26 

0.499, 
(0.170, 
0.730) 

-3.133 to  
2.461 

Poor 0.715, 
(0.463, 
0.860) 

-5.250 to  
4.501 

Poor 

Paretic 
Biceps 
n=21 

0.844 
(0.685, 
0.927) 

-3.623 to  
4.14 

Moderate 0.658, 
(0.321, 
0.846) 

-6.871 to  
7.225 

Poor 

Non-
Paretic 
ECR  n=26 

0.494 
(0.154, 
0.729 

-4.396 to  
3.798 

Poor 0.392, 
(0.030, 
0.669) 

-4.414 to  
3.210 

Poor 

Paretic 
ECR     
n=21 

0.539 
(0.168, 
0.775) 

-7.104 to  
6.345 

Poor 0.299, (0, 
0.645) 

-10.396 to 
11.505 

Poor 

Non-
Paretic 
APB n=25 

0.762 
(0.526, 
0.889) 

--3.328 to  
3.870 

Moderate 0.668, 
(0.386, 
0.838) 

-22.960 to 
19.548 

Poor 

Paretic 
APB n=22 

0.451 
(0.035, 
0.730) 

-5.442 to  
5.785 

Poor  0.774, 
(0.473, 
0.912 

-3.366 to  
3.508 

Poor 

Table 40 - Test-retest reliability of MEP latency of the paretic and non-paretic biceps, ECR, and 

APB muscles assessed at 120% and 130% of AMT. The test-retest reliability was assessed using 

the ICC model [2,1] and associated 95% CI acceptable reliability is an ICC >0.70, and the Bland-

Altman 95% LOA.  In instances where there are less than 26 participants included in the analysis 

the researcher was unable to determine a motor threshold with the stimulator up to 100%, or with 

increasing % of MT the stimulator output was > 100% or the increasing stimulator output was 

uncomfortable thus not completed. ECR= extensor carpi radialis, APB= abductor pollicis brevis, 

AMT=active motor threshold, LOA=limits of agreement, ICC=intraclass correlation coefficient, 

MEP=motor evoked potential  
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Figure 54- Bland Altman Plots of MEP Latency 

A.  

                       
                       Figure 54 A. Bland-Altman plot of the MEP latency of the     
                         Non- paretic APB assessed at 130% of AMT n=25                                                      

 

B.  

                                 Figure 54 B. Bland-Altman plot of the MEP latency of 
                                 the paretic APB assessed at 120% AMT n=22 
 
Figure 54- Bland Altman Plots of MEP Latency of A the non-paretic APB assessed at 130% AMT 

and the paretic APB assessed at 120% AMT.   The x-axis is the average latency of session one 

and session two, the y-axis is the difference in latency from session one minus session two, the 

red line is the mean difference between session one and session two.  Plot A demonstrates 

systematic error such that the latency was shorter at the second session. Plot B demonstrates a 

potential linear association between latency duration and difference between sessions.  
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5.3.3.6 Recruitment Curve 

The reliability of the slope of the recruitment curve is in Table 41, example Bland-Altman 

plots are in Figure 55, and plots for all muscles are in Appendix 26.  Not all participants’ 

data was able to be fitted with a sigmoidal function. The sigmoidal function was fitted for 

9/28 participants for their non-paretic biceps, 1/27 for their paretic biceps, 2/28 for their 

non-paretic ECR, 4/24 for the paretic ECR, 8/27 for the non-paretic APB, and 6/22 for the 

paretic APB. The varied number of participants (denominator) is the number of 

participants in which an active threshold was able to be determined.  Some participants 

did not demonstrate increasing MEP amplitude with increasing stimulus intensity non-

paretic biceps 7/26, non-paretic ECR n=5/28, non-paretic APB 4/27, paretic biceps 

n=8/25, paretic ECR n=6/22, and paretic APB n=3/20).  Previous studies have also 

reported that not all participants’ data were able to be fitted to a sigmoidal function for 

example Schambra et al (2015) reported that 12.7% of chronic stroke survivors and 9.4% 

of sub-acute stroke survivors did not fit a sigmoidal function.  

The reliability of the slope of the recruitment curve was poor for all muscles.  

The Bland-Altman plot of the slope of the recruitment curve of the non-paretic APB 

demonstrates a lesser slope at the second session.    
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Table 41 - Reliability (ICC and LOA) of Slope of the Recruitment Curve 

Muscle Participants ICC (95% CI) 95% LOA Reliability 
Category 

Non-Paretic 
Biceps 

N=9 0.058, (0, 0.628) -1.5117675 to 
1.5126896 

Poor  

Paretic Biceps N=1 Not completed Not completed Not completed  

Non-Paretic 
ECR 

N=2 0.194, (0, 0.998) -3.2706015 to 
1.6643126 

Poor  

Paretic ECR N=4 0.780, (0, 0.985) -.07392636 to 
.07112499 

Poor 

Non-Paretic 
APB 

N=8 0.032, (0, 0.618) -2.9913301 to 
1.7774199 

Poor 

Paretic APB  N=6 0.598, (0, 0.476) -2.1103892 to 
1.7585417 

Poor     

Table 41 - Test-retest reliability of the slope of the recruitment curve of the paretic and non-paretic 

biceps, ECR and APB muscles. The test-retest reliability was assessed using the ICC model [2,1] 

and associated 95% CI, ICC >0.70 acceptable reliability is an ICC > 0.7, and the Bland-Altman 

95% LOA. The reliability of the slope of the RC poor all muscles, and the 95% CI span negative 

reliability.   Not all participants’ data were able to be fitted with a sigmoidal function, the number of 

participants data that were able to be fitted is reported in the participant column. ECR= extensor 

carpi radialis, APB= abductor pollicis brevis, AMT=active motor threshold, LOA=limits of 

agreement, ICC=intraclass correlation coefficient, MEP=motor evoked potential 

 

Figure 55 - Bland-Altman Plot of the Recruitment Curve  

Figure 55 - Bland-Altman plot of the slope of the recruitment curve of the non-paretic APB muscle.  
The x-axis represents the average slope of the RC of session one and session two, the y-axis 
represents the difference in slope of the RC of session one minus session two, the red line is the 
mean difference between session one and session two.  The plots represents a greater number of 
differences between sessions has a less steep slope at session two. n=8  
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5.3.3.7 Silent Period 

The test-retest reliability of the silent period assessed at 130% of AMT is in  
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Table 42, example Bland-Altman plots are in   
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Figure 56, all plots are in Appendix 25.  Not every participant demonstrated a clear silent 

period.  The silent period of the non-paretic biceps was determined in 24/28 participants, 

the paretic biceps in 22/27, the non-paretic in ECR 24/28, paretic in ECR 22/23, non-

paretic in APB: 22/27, and paretic in APB: 16/24 participants.  

The test-retest reliability of the silent period is variable ranging from poor to good.  The 

lower end of the confidence interval falls within the range of poor for all muscles with the 

exception of the paretic APB which falls within moderate reliability.  The ICC ranges from 

an ICC= 0.165 (0, 0.500) for the non-paretic ECR to ICC= 0.866 (0.662, 0.951) for the 

paretic APB.  The 95% CI and 95% LOA are wide for all muscles indicating variability 

and imprecision in the measurement. 

The Bland-Altman plots of the paretic ECR and APB demonstrate a potential association 

between the length of the silent period and greater differences between sessions.  The 

plots of the other muscles demonstrate random error in agreement between sessions.   
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Table 42 - Reliability ICC and LOA of the Silent Period Assessed during 130% AMT 

Muscle Participants ICC (95% CI) 95% LOA 
Reliability 
Category 

Non-Paretic 
Biceps 

N=24 0.536, ( 0.199, 
0.760) 

-91.006 to 78.159 Poor 

Non-Paretic ECR N=24 0.165, (0.500) -96.228 to 78.796 Poor 

Non-Paretic APB N=26 0.656, (0.360, 
0.834) 

-88.526 to 84.572 Poor 

Paretic Biceps N=22 0.458, ( 0.043, 
0.735) 

-107.579 to 100.494 Poor  

Paretic ECR N=22 0.820, ( 0.619, 
0.920) 

-54.594 to 40.653 Moderate 

Paretic APB  N=16 

 

0.866,  (0.662, 
0.951) 

-47.516 to 38.512 Moderate 
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Table 42 - ICC (95% CI) and 95% LOA of the silent period assessed during 130% AMT, with 

slight background muscle contraction of the paretic and non-paretic biceps, ECR and APB 

muscles. The test-retest reliability was assessed using the ICC model [2,1] and associated 95% 

CI, acceptable reliability is an ICC > 0.7 and the Bland-Altman 95% LOA. In instances where 

there are less than 28 participants included in the analysis the researcher was unable to 

determine an motor threshold with the stimulator up to 100%, or with increasing % of MT the 

stimulator output was > 100% or the increasing stimulator output was uncomfortable thus not 

completed. ECR= extensor carpi radialis, APB= abductor pollicis brevis, AMT=active motor 

threshold, LOA=limits of agreement, ICC=intraclass correlation coefficient, MEP=motor evoked 

potential 
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Figure 56-Bland-Altman Plot of the Silent Period 

A.  
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Figure 56 A Bland-Altman plot of the silent period of  
                   the non-paretic ECR n=26 

 

B.  

                           



229 
 

Figure 56- Bland-Altman plot of the silent period  
   of the paretic ECR n=22 
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Figure 56 A, B Bland-Altman Plot of the silent period of the A) non-paretic ECR and B) paretic 

ECR assessed at 130% AMT.  The x-axis represents the average SP of session one and session 

two, the y-axis represents the difference in SP of session one minus session two, the red line is 

the mean difference between sessions.  Plot A demonstrates random error in agreement between 

sessions.  Plot B demonstrates a potential association between SP duration and difference 

between sessions.  AMT=active motor threshold, ECR=extensor carpi radialis, SP=silent period    

 

 

 

 

5.4 Discussion 

In summary the findings demonstrate that in this population of stroke survivors in the first 

three months after stroke the test-retest reliability of TMS measures of corticospinal 

excitability is variable; the lower end of the confidence interval was below acceptable 

reliability on most measures (ICC <0.70).  The 95% confidence intervals and limits of 

agreement are wide further demonstrating imprecision in the measurement. The Bland-

Altman plots demonstrate random error between tests for most measures, excluding the 

MEP amplitude in which there is a trend towards a greater difference between measures 

as MEP amplitude increases.  This suggests there may be an association between 

measurement error and the magnitude of the measurement.  These findings suggest that 

TMS may not be suitable to detect change in corticospinal pathway excitability in 

individual participants.   

The excitability of the corticospinal pathway in this group of stroke survivors is 

comparable to some previously published data.  The motor threshold for the APB (42±6 

to 50±11 (% of stimulator output) non-paretic, and 53±15 for the non-paretic) was 

comparable to previous findings of the motor threshold of the FDI another thenar muscle 

in a group of sub-acute stroke survivors (51.15±12.65 for the paretic and 47.22±10.46 

non-paretic) (Schambra et al., 2015).  Alternatively, the motor threshold for the APB was 

lower than the FDI in other research of chronic and subacute stroke survivors (Brouwer 

and Schryburt-Brown, 2006).  The MEP max amplitude is smaller in the present study for 

the non-paretic limb and larger for the paretic limb than earlier findings of the FDI (Koski 

et al., 2007b). Whereas, the average MEP amplitude of the paretic limb is larger than 

other studies of the FDI amplitude (Brouwer and Schryburt-Brown, 2006).  The ABP 

latency was comparable to that of the FDI in a group of subacute stroke survivors, but 

the silent period was shorter in the present study (Brouwer and Schryburt-Brown, 2006). 

The present findings of the ECR RMT are higher than earlier investigations (MT=54-55 

% of stimulator output) in stroke survivors one month after stroke, however the ECR 
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amplitude identified in this study was smaller than earlier research  (Castel-Lacanal et 

al., 2009).   There is limited research of corticospinal pathway excitability of the biceps 

muscle in stroke survivors.  The differences found between the findings of this study and 

previous studies may be due to the rate of neural plasticity/spontaneous recovery 

(Cramer 2008), the different muscles assessed such as comparing the APB to the FDI as 

they receive different corticospinal pathway inputs (Martin et al., 2006) as well as the 

differing TMS methodology which will be discussed further in Chapter 6.    

Comparing the values of corticospinal pathway excitability of the stroke survivors within 

this chapter to the neurologically intact stroke survivors in Chapter 4, in general the non-

paretic limb is comparable to the neurologically intact adults while the paretic limb 

demonstrates less corticospinal pathway excitability.  For example, the active and resting 

motor thresholds of the non-paretic limb are comparable to all three muscles of the 

neurologically intact adults, however the non-paretic limb demonstrates wider confidence 

intervals suggesting greater variability.  The motor thresholds for the paretic limb are 

higher for all three muscles compared to the non-paretic limb and neurologically intact 

adults e.g. ECR AMT 57±12 paretic limb, 40±5 neurologically intact adults, 40±15 non-

paretic limb.  The MEP latency of the paretic limb was about 2 ms slower than the 

neurologically intact adults, whereas the latency of the non-paretic limb was similar to 

neurologically intact adults.  The silent period was longer in both the paretic and non-

paretic limbs compared to neurologically intact adults; the paretic limb demonstrated 

longer silent periods compared to the non-paretic limb.  The silent period was between 6-

60 ms longer in stroke survivors, for example the silent period of the paretic ECR was 

154.21±41.08 paretic limb, 112.39±36.81 non-paretic limb, and 98.03±28.21 for the 

dominant limb of neurologically intact adults.  The MEP amplitude of stroke survivors’ 

non-paretic limb was comparable for the ECR and APB, however the biceps amplitude 

was smaller.  The MEP amplitude of stroke survivors’ paretic limb was smaller for all 

three muscles compared to neurologically intact adults e.g. biceps at 110% AMT 1.22 

±0.77 in neurologically intact adults, 0.48±0.27 for stroke survivors’ paretic limb, and 

0.64±0.35 for the non-paretic limb.  These findings of changes in corticospinal pathway 

excitability in stroke survivors compared to neurologically intact adults is in line with 

earlier research (Cacchio et al., 2011, Brouwer and Schryburt-Brown, 2006, Schambra et 

al., 2015). 

Overall, the distal muscles tend to demonstrate higher ICC values for motor threshold, 

MEP amplitude, and MEP max amplitude compared to the proximal biceps muscle.  

Previous research has demonstrated that distal muscles have a greater response to 

brain stimulation compared to proximal muscles (Martin et al., 2006); the greater 

response (of distal muscles) to stimulation may be a contributing factor to their reliability.  
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Additionally, the paretic muscles tended to demonstrate higher ICC values for the motor 

threshold, MEP max and silent period, whereas, the non-paretic muscles demonstrated 

higher ICC values for the average MEP amplitude however the differences were not 

significant.  The higher ICC values in the paretic muscles demonstrating higher ICC has 

been demonstrated previously (Koski et al., 2007a).  The difference in reliability suggests 

that specific TMS measures may be better used for the paretic and non-paretic upper 

limbs to measure corticospinal pathway excitability.    

A challenge to the experimental set up was that some stroke survivors had difficulty 

maintaining a sufficient muscle contraction during data collection.  The muscle 

contraction was monitored by the researcher though vision, palpation, and assessment 

of the 100 ms of EMG prior to TMS stimulus. In instances in which participants fatigued 

they were given rest breaks, or if there was too a strong muscle contraction, participants 

rested and then the slight contraction was re-demonstrated and explained.  Varied or 

fluctuating strength of muscle contraction can influence MEP amplitude (Rösler et al., 

2002) and thus could have influenced the reliability of the MEP elements.   

An inclusion criteria of the FAST INdICATE trial was: “no obvious motor dyspraxia or 

communication deficits as assessed by the ability to imitate action with the non-paretic 

upper limb.  The accuracy of imitation of observed activity will be assessed on the 3-point 

scale used by Decety: 2=correctly reproduced action, 1= incorrectly reproduced action, 

0=not reproduced.  Those scoring greater than or equal to 8/10 will be considered to 

have the ability to imitate and included in the trial” therefore individuals with severe 

dyspraxia or communication deficits were not included in the study.  There were 

participants that exhibited neglect or decreased attention to the paretic side; those 

participants were given extra cues and assistance as needed.  Additionally, participants 

had varying levels of alertness and fatigue on the two different days as well as 

throughout the session.  There is evidence that attention and level of alertness can 

influence corticospinal pathway excitability (Abbruzzese et al., 1996, Darling et al., 2006, 

Kiers et al., 1993).  The fluctuating muscle contraction, attention and fatigue may have 

influenced all MEP elements and the reliability of the MEP elements. 

 

5.4.1 Strengths of the Study  

This study was one of few studies to investigate the test-retest reliability of TMS 

measures in a group of sub-acute stroke survivors.   
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The strengths of the study include the investigation of test-retest reliability of multiple 

TMS measures such as active and resting motor threshold, MEP latency, silent period, 

MEP amplitude, MEP max amplitude, and the recruitment curve. 

The present study investigated the test-retest reliability of TMS measures in three upper 

limb muscles the biceps, ECR and APB.   Previous research has limited test-retest 

reliability investigations to mainly the hand muscles.   

The present findings have expanded on previous research of the test-retest reliability 

measures by providing evidence of the reliability in a range of muscles and MEP 

elements in stroke survivors early after stroke. 

The Bland-Altman plots demonstrate a possible association between magnitude of MEP 

amplitude and agreement between sessions.  The larger the MEP amplitude the greater 

the difference in amplitude between sessions; this is in line with similar findings of the 

biceps MEP amplitude (Sankarasubramanian et al., 2015) warranting future 

investigation.  Measurement of MEP amplitude at lower stimulation intensities or lower 

percentage of motor threshold would yield smaller amplitudes and may be beneficial to 

decrease variability and improve agreement in TMS measurement between sessions.      

5.4.2 Limitations  

The TMS data was collected during active muscle contraction however there was not a 

specific percentage of muscle contraction maintained.  Participants were instructed to 

maintain a slight muscle contraction that was monitored by the researcher. It is possible 

there was variability in muscle contraction within and between sessions contributing to 

variability in MEP amplitude, latency, motor threshold, recruitment curve and 

subsequently the lower ICC values obtained.   

The time interval between the two sessions may have been too long, resulting in 

spontaneous recovery and task-dependent neural plasticity being reflected in the TMS 

measurement.  Therefore the interval between sessions may have contributed to lower 

ICC values and variability in the results.   

The study was underpowered; there may not have been enough participants included in 

the analysis to have statistical power.  A power calculation was completed prior to study 

initiation; based on the power calculation fifty-one participants needed to be recruited to 

the study; however 28 participants were recruited.  This study recruited participants from 

a larger clinical trial, thus was dependent on recruitment to the larger trial. Over the 

course of recruitment 63 participants were recruited into the FAST INdICATE trial at the 

Norfolk site, 62% were eligible to participate in TMS.  Of the participants that were invited 

to participate in the additional TMS, 68% of them agreed take part.  
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The amount of upper limb use prior to TMS assessment was not controlled for. 

Participants completed upper limb motor assessments (45-60 minutes of upper limb use) 

prior to session one but not session two.  However, this study was designed to be 

pragmatic; if TMS is to be used in the clinical setting it is unlikely that the amount of 

upper limb use will be controlled for prior to TMS assessment.     

5.5 Conclusions  

In summary the test-retest reliability is variable ranging from good to poor in this sample 

of stroke survivors early after stroke.  The reliability could have been influenced by many 

factors such as physiological changes within the CNS early after stroke, amount of upper 

limb use prior to TMS assessment, neural plasticity, task-dependent re-organization, time 

period between assessments, and TMS methods utilized.  Further investigation in the 

reliability of TMS measures within this population, the methods used, and the target 

muscles of investigation is needed.   
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6 Discussion  

The studies within this thesis addressed the need for a better understanding of the 

neuro-biomechanical correlates of reach-to-grasp.  This knowledge can be used to 

develop more sensitive and targeted upper limb rehabilitation interventions. 

6.1 Summary of results 

The first research question was:  

“Are the kinematic characteristics during reach-to-grasp different between stroke 

survivors and neurologically intact control participants and are the kinematic 

differences influenced by task requirements such as object placement?” 

The first research question was addressed through a systematic review of the literature 

and meta-analysis.  The results of the meta-analysis demonstrated that stroke survivors 

exhibit lower peak velocity; longer movement time; more segmented movement; 

increased reach-path curvature; increased trunk contribution and decreased elbow 

extension during reach-to-grasp in the anterior workspace compared to neurologically 

intact control participants.  The studies included in the meta-analysis demonstrated 

unclear and high potential risk of bias, it may therefore be possible that there is bias in 

the results. The new knowledge derived from the meta-analysis is that the kinematic 

differences between stroke survivors and neurologically intact controls are consistent 

when reaching in the ipsilateral or central workspace.  The findings suggest that object 

location does not alter the differences in kinematic characteristics during reach-to-grasp.  

This finding will allow therapists to focus on other aspects of reach-to-grasp such as 

movement speed to maintain complexity and challenge. 

The second research question had two parts:  

a) “Is TMS measurement of corticospinal pathway excitability reliable (test-

retest reliability) in neurologically intact adults of all ages (≥ 18 years of 

age)?” 

b) “Is the reliability of TMS measurement influenced by age, gender, physical 

activity or dexterity?” 

The second question of this thesis was addressed through a prospective observational 

test-retest reliability study of TMS measures of corticospinal pathway excitability in 

neurologically intact adults of all ages.  The reliability of TMS measures was variable; the 

lower end of the 95% CI was below the level of acceptable reliability (ICC < 0.70) for 

most measures.  The 95% CI and 95% LOA were wide further indicating imprecision in 

the measurement.  The Bland-Altman plots overall demonstrated random error in 
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measurement between tests.  However, MEP amplitude demonstrated a trend towards a 

greater difference in amplitude between sessions the larger the amplitude.  The motor 

threshold demonstrated the highest ICC values (ICC=0.547 (0.322, 0.714) to ICC=0.776 

(0.639, 0.865), whereas the average MEP amplitude and the recruitment curve.  Older 

adults (greater than 50 years of age) demonstrated wider confidence intervals and LOA 

compared to the groups as a whole indicating greater variability in response to TMS.  

The subgroup analysis of men and women did not demonstrate any differences in the 

reliability between the two groups.  Both men and women demonstrated variability in 

reliability.   

The third research question was: 

“Is TMS measurement of corticospinal pathway excitability reliable (test-retest 

reliability) in a group of sub-acute stroke survivors?” 

The third research question of this thesis was addressed through a prospective 

observational test-retest reliability study investigating the reliability of TMS measures of 

corticospinal pathway excitability in stroke survivors in the first three months after stroke.  

The findings demonstrate variable reliability; the lower end of the CI was below 

acceptable reliability (ICC < 0.70) for most measures.  Similar to the study in 

neurologically intact adults, the 95% CI and 95% LOA were wide, further indicating 

imprecision in measurement.   Overall, the Bland-Altman plots demonstrate random error 

in agreement between sessions for most measures.  However, the MEP amplitude and 

latency demonstrated a trend for a greater difference between sessions, the larger the 

amplitude, and the longer latency (ECR and APB); this is similar to the findings in the 

neurologically intact adults.  The stroke survivors’ results demonstrated wide confidence 

intervals and LOA compared to the group of neurologically intact control participants 

suggesting greater variability in corticospinal pathway excitability and imprecision in 

measurement. 

6.2 All findings in the context of the literature 

6.2.1 Reach-to-Grasp 

A starting place for improving upper limb rehabilitation interventions is a better 

understanding of the neuro-biomechanical correlates of reach-to-grasp.  The systematic 

review identified kinematic characteristics that are consistently different between stroke 

survivors and neurologically intact control participants during reach-to-grasp in the 

central and ipsilateral workspace.  The kinematic characteristics identified in the present 

review are in line with conclusions of previous narrative reviews; such as stroke survivors 

demonstrate lower peak velocities, longer movement times, and decreased smoothness 

of movement compared to control participants (Alt Murphy and Häger, 2015, McCrea et 
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al., 2002, van Vliet et al., 2013).  Previous reviews have combined the kinematics of 

reach-to-grasp with reach-to-target when examining the differences between stroke 

survivors and neurologically intact adults (Alt Murphy and Häger, 2015).  However, there 

is evidence that upper limb kinematics are different during goal oriented reaching such 

as reach-to-grasp (Wu et al., 2000), thus suggesting the kinematics of reach-to-grasp 

and reach-to-target should be synthesised separately.  The meta-analyses conducted in 

this review extends the findings of the narrative reviews by providing novel evidence that 

object location in the central or ipsilateral workspace does not change the differences in 

kinematics of movement between stroke survivors and neurologically intact adults. 

Therefore therapists can focus on other aspects of the reach-to-grasp task to maintain 

challenge and complexity.   

The reach path ratio was not significantly different between stroke survivors and 

neurologically intact control participants during reach-to-grasp in the central workspace.  

A reach in the central workspace combines shoulder flexion and adduction with elbow 

flexion, this combination of joint movements is part of the flexor synergy pattern, and an 

easier combination of joint movements for stroke survivors (Cirstea and Levin, 2000).  

Additionally, a reach in the central workspace requires a more curved path to reach the 

object compared to reach in the ipsilateral workspace in which the arm extends in a 

straighter path.  The specific joint combinations and more curved reach path to the object 

during reach in the central workspace may have contributed to the non-significant 

findings in the meta-analysis.   

Movement smoothness was not significantly different between stroke survivors and 

neurologically intact control participants when reaching in the ipsilateral workspace.  

There were two studies that assessed movement smoothness in the ipsilateral 

workspace, one demonstrating statistically significant findings the other demonstrating 

non-significant findings, both with relatively small sample sizes.  It is possible that the 

limited number of studies (two) in the meta-analysis did not provide enough participants 

to examine a potential difference in kinematics.   

The studies included in the review demonstrate unclear or high potential risk of bias, thus 

there is the potential that the findings of the meta-analyses also contain bias.  There was 

insufficient attempt to blind assessors.  The kinematic outcomes measures are less 

susceptible to assessor bias, however the potential for bias remains due to an interaction 

between the assessor and the participant.  The blinding of assessors is a key component 

of potential risk of bias assessments and a possible confounder.  

There was substantial heterogeneity between studies such as type of reach-to-grasp 

task, upper limb motor ability, time since stroke, movement speed, trunk restraint, and 
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methods of data collection and analysis.  The heterogeneity may allow the results of the 

meta-analyses to be generalizable to the wider stroke population.  However, 

standardisation of reach-to-grasp tasks would be advantageous in future research.  The 

standardisation of reach-to-grasp tasks would ease direct comparisons in kinematics 

between studies, and may make kinematic analysis more applicable in the clinical 

setting. 

6.2.2 Upper limb motor function  

The stroke survivors included within the studies in the systematic review and in the TMS 

reliability study demonstrated a range of upper limb motor function.  Many studies in the 

systematic review did not include subgroup distinction based on upper limb motor 

function.   

There are findings that suggest stroke survivors with moderate motor deficits 

demonstrate different kinematics to those with mild motor deficits, such as longer 

movement time and decreased elbow extension (Alt Murphy et al., 2011, Roby-Brami et 

al., 2003b), lower peak velocity (Alt Murphy et al., 2011) and greater trunk displacement 

(Alt Murphy et al., 2011, Levin et al., 2002, Michaelsen et al., 2004, Roby-Brami et al., 

2003b, Roby-Brami et al., 2003a, Roby-Brami et al., 1997).  However, the findings of the 

present sensitivity analysis (in the systematic review) demonstrated that when 

participants with mild motor deficits and moderate motor deficits were removed from the 

meta-analysis the differences in kinematics did not change.  However, the confidence 

intervals of the stroke survivors with mild motor deficits were narrower than those with 

moderate motor deficits (e.g. sensitivity analysis of peak velocity, movement time, and 

trunk contribution) suggesting that stroke survivors with moderate motor deficits have 

greater movement variability.   

The increased movement variability in stroke survivors with moderate to severe motor 

deficits may be due to degrees of freedom available, decreased muscle strength, and 

utilising different joint combinations.  These factors that contribute to impaired movement 

may be due to decreased or fluctuating corticospinal pathway input to the muscles of the 

paretic upper limb.  The confidence intervals and limits of agreement of the reliability of 

TMS measures were wider for the stroke survivors compared to neurologically intact 

adults.  For example, in the neurologically intact participants the non-dominant biceps 

RMT ICC=0.756 (0.599, 0.858), and the 95% LOA= -9.466 to 9.027 (% of stimulator 

output); compared to stroke survivors the non-paretic biceps RMT 95% ICC=0.434 

(0.066, 0.698), 95% LOA= -20.053 to 20.853 and paretic biceps 95% ICC=0.665 (0.337, 

0.851), 95% LOA= -26.230 to 20.659.  The range of differences between sessions for 

stroke survivors was greater than 10% of stimulator output compared to neurologically 

intact adults. 
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The greater variability observed in stroke survivors movement and corticospinal pathway 

excitability may be due to the differences of upper limb motor function between 

participants, size and exact location of the stroke, and amount of corticospinal damage. It 

is known that stroke survivors with poorer motor function have greater damage to their 

corticospinal pathway (Feydy et al., 2002, Ward and Cohen, 2004, Talelli et al., 2006).  

Furthermore, stroke survivors with poorer motor function exhibit increased bilateral 

activation during movement, greater recruitment of ipsilateral pathways, and possibly 

recruitment of alternative pathways (reticulospinal pathway) (Calautti et al., 2001, Feydy 

et al., 2002, Turton et al., 1996, Jankowska and Edgley, 2006). This suggests that stroke 

survivors with poorer motor function may demonstrate inconsistent corticospinal pathway 

excitability contributing to variability in movement kinematics and TMS measurement.  

The confidence intervals related to the systematic review and TMS reliability as well as 

the LOA were wider for the stroke survivors compared to neurologically intact adults.  

The data regarding upper limb motor function of the stroke survivors in the TMS reliability 

study can be investigated at the conclusion of the FAST INdICATE trial when data 

analysis can commence.   

6.2.3 Older adults  

Differences exist in the classification of older adults between studies, as well as 

inconsistent age-matching of neurologically intact control participants in the studies 

included in the systematic review.  The different classifications of older adults 

complicates direct comparisons between studies and to stroke survivors of whom many 

are older adults; the mean age of a stroke survivor is 75 years of age (Stroke 

Association, 2013). 

Neurologically intact control participants in the primary studies included in the systematic 

review were not consistently age matched to the stroke survivors potentially biasing the 

findings of the meta-analyses.  Utilizing age-matched control participants is important as 

upper limb biomechanics changes from around age 50 (Barnes et al., 2001, Rundquist et 

al., 2009).  The risk of stroke increases with age from 50 years, and the mean age of a 

stroke survivor is 75 years (Xanthakis et al., 2014, Stroke Association, 2013); thus 

comparing the kinematics of stroke survivors to younger adults may have a potential 

impact on the kinematic differences found.  For example, if neurologically intact older 

adults move at a reduced speed and use different joint motions (compared to younger 

adults) the findings of the meta-analyses could have overestimated the differences in 

kinematics, thus potentially inducing bias in the findings.   

The ICC values of older adults in comparison to previous studies of older adults are 

comparable for some measures, such as the slope of the recruitment curve (Schambra 

et al., 2015); and lower for other measures such as the motor threshold (Schambra et al., 
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2015) and MEP amplitude (Christie et al., 2007).  The previous TMS test-retest reliability 

studies included “older” participants however the term “older” was quantified differently. 

The present thesis classified individuals 50 years of age and older as “older”, compared 

to other studies classifying individuals as older if greater than 40 years of age (Schambra 

et al., 2015) and if greater than 65 years of age (Christie et al., 2007).  Age-related 

changes in the corticospinal pathway (decreased myelination) were present comparing 

adults 21-37 years of age (young) to  adults 42-59 years of age (middle aged), and there 

were further decreases in myelination noted in adults 65-76 years olds (older-adults) 

(Salat et al., 2005).  The varied age threshold used to determine “older” adults may be a 

contributing factor to the differences in the ICC values between studies.   

The older adults in the present thesis also exhibited wider confidence intervals and limits 

of agreement in comparison to the group as a whole in some MEP elements.  The 

dominant biceps AMT for the whole group was ICC=0.757 (0.612, 0.854), 95% LOA= -

9.303 to 10.895 (% stimulator output), whereas older adults ICC=0.651 (0.250, 0.857), 

95% LOA= -10.275 to 14.608 (% stimulator output).  On the other hand, for the average 

MEP amplitude of the non-dominant APB assessed at 120% AMT for the whole group 

the ICC=0.506 (0.272, 0.685), 95% LOA -3.929 to 5.282, which exhibits wider CI and 

LOA than the older adults which have an ICC=0.750 (0.440, 0.899), 95% LOA=-3.645 to 

4.150.  The variability demonstrated may be partly due to deceased myelination of the 

corticospinal pathway neurons (Salat et al., 2005), resulting in differing numbers of 

neurons being activated by the TMS stimulus. The activation of different groups of 

neurons may lead to variable corticospinal response to the TMS stimulus and decreased 

measurement agreement between sessions.  The varying reliability for the different 

elements in older adults compared to the whole group suggests a more specific use of 

TMS may be needed.  Specific TMS measures may be better suited for specific age 

groups to examine the corticospinal pathway.  Future investigations with a larger sample 

of middle age to older adults and further distinction between age groups is needed.   

6.2.4 Stroke survivors  

Overall, the ICC values found for the stroke survivors in this thesis demonstrated wider 

confidence intervals and 95% limits of agreement compared to the neurologically intact 

adults in this thesis.  Additionally, the ICC values for the stroke survivors in this thesis 

were lower compared to reliability findings in chronic stroke survivors for most measures 

(Koski et al., 2007a, Liu and Au-Yeung, 2014, Schambra et al., 2015).  The ICC values 

for the slope of the recruitment curve were comparable to previous research in sub-acute 

stroke survivors (Schambra et al., 2015).  The difference in ICC values found in this 

thesis compared to research in chronic stroke survivors may be due to fluctuations in 

corticospinal pathway excitability that are a result of the physiological processes 
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occurring in the first few months after stroke.  The physiological processes are the initial 

inflammatory response; immune response; spontaneous recovery; hyper-excitability 

within the motor areas and accelerated motor recovery (Wahl and Schwab, 2014, Que et 

al., 1999, Redecker et al., 2002, Marshall et al., 2000, Kwakkel and Kollen, 2013, 

Calautti et al., 2001, Cramer, 2008).  Daily assessment of the corticospinal pathway in 

the first few weeks after stroke demonstrated significant differences in the active motor 

threshold between days, as well as substantial variability within subject and between 

subject variability (Swayne et al., 2008).  The physiological processes and the significant 

differences in motor (Liepert et al., 2000b) threshold suggests that the corticospinal 

pathway may exhibit fluctuating excitability, neural plasticity may be reflected in TMS 

measurement and subsequently the ICC values as well as the 95% confidence intervals 

and the LOA. 

The ICC values for the paretic muscles (lesioned hemisphere) were higher than the non-

paretic muscles (non-lesioned hemisphere) for motor threshold, silent period and MEP 

max.  On the other hand, the silent period demonstrated lower ICC values compared to 

stroke survivors greater than six months after stroke (Wheaton et al., 2009, Liu and Au-

Yeung, 2014).  The higher ICC values for paretic muscles are similar to the findings of 

Koski et al (2007), alternatively, there is evidence of lower ICC values in the lesioned 

hemisphere (Hoonhorst et al., 2014).  The higher ICC values in the lesioned hemisphere 

may be related to the non-lesioned hemisphere exhibiting cortical disinhibition early 

(13.8±4.6 days) after stroke (Liepert et al., 2000b), shifting activation to the non-lesioned 

hemisphere (Marshall et al., 2000, Tombari et al., 2004). The increased activation of the 

non-lesioned hemisphere may contribute to variability in corticospinal pathway excitability 

and thus the lower ICC values in the non-paretic upper limb as well as for the silent 

period which is a measure of intra-cortical activity.  Future research investigating cortical 

inhibition in conjunction with single pulse measurements could provide knowledge of the 

cortical processes contributing to the variability of TMS measurement.   

Overall, the biceps muscle of stroke survivors tended to demonstrate lower ICC values 

compared to the distal muscles (ECR and APB).  This is possibly due to fluctuations in 

corticospinal connections related to motor recovery.  There is evidence that upper limb 

stroke recovery occurs in a proximal to distal gradient (TTl, 1951).  Conversely, there is 

also evidence that the emergence of a biceps MEP was not different to the emergence of 

a FDI MEP (Schambra et al., 2014).  Despite not finding a difference in emergence of the 

MEP; in the present study the MEP was already present.  The Bland-Altman plots of the 

paretic biceps muscle demonstrate a greater number of differences in measurement are 

below the mean difference line indicating the amplitude was larger the second session, 

which may potentially be reflecting neural plasticity.   Thus, the biceps may have 
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potentially been receiving greater corticospinal input, or variable corticospinal input 

related to motor recovery; which contributed to the lower ICC values.   

In the present study the interval between assessments (one to three days) to determine 

the test-retest reliability of TMS measures in stroke survivors was potentially too long, 

contributing to neural plasticity being reflected in the measurement. The Bland-Altman 

plots of the paretic biceps muscle demonstrate a greater number of differences below the 

mean difference line suggesting larger MEP amplitudes at the second session.  The ICC 

values of the motor threshold found in the present study were lower than previous 

studies of sub-acute stroke survivors (Schambra et al., 2015) in which the interval 

between assessments was one day.  There is evidence of significant  day to day 

changes in the active motor threshold in the first weeks after stroke (Swayne et al., 

2008).  Furthermore, one day of physical therapy has been associated with an increase 

in muscle motor map area (Liepert et al., 2000a).  It may be possible that during the 

three days between assessments the corticospinal pathway excitability changed as a 

result of participation in rehab and was reflected in the reliability of TMS measurement.  

6.2.5 Women 

The present study included participants ≥ 18 years of age and both men and women. 

The ICC values exhibited in this thesis demonstrate that women tended to have lower 

ICC values for some measurements, such as motor threshold and MEP amplitude, 

compared to men.  There is evidence that women demonstrate greater variability in 

response to TMS compared to men (Pitcher et al., 2003, Smith et al., 2011). It is thought 

that the increased variability found in women is due to female hormones during the 

menstrual cycle and menopause such as progesterone (Smith et al., 2002, Smith et al., 

1999, Wassermann, 2002).  Progesterone is associated with GABA which acts as an 

inhibitory neurotransmitter during the menstrual cycle phase, when progesterone is high, 

there is greater inhibition in response to paired-pulse TMS (Smith et al., 1999).  In a 

group of older and younger men, there was no difference in the motor threshold, MEP 

amplitude or slope of the recruitment curve between the groups (Smith et al., 2011).  It is 

possible that some of the women were in the high progesterone phase of their menstrual 

cycle at one of the testing sessions, potentially influencing the agreement between tests.  

Additionally, the menopausal women may have had low levels of progesterone 

influencing their response to TMS and possibly the reliability. The hormones may affect 

specific TMS measures such as motor threshold and MEP amplitude but have less 

influence on MEP latency. This would be of interest to investigate in a larger population 

of women.   
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6.2.6 Target muscle of investigation 

The reliability of the MEP elements differed between muscles for both neurologically 

intact adults and stroke survivors, which is similar to findings of previous reliability 

studies (Malcolm et al., 2006, Kamen, 2004, Carson et al., 2013).  The biceps muscle 

demonstrated higher estimated ICC values for the motor threshold and lower estimated 

ICC values for MEP amplitude for the neurologically intact individuals, whereas the distal 

muscles demonstrated higher ICC values for the stroke survivors across all measures.  

The ECR demonstrated the most consistent ICC values across all MEP elements for 

both neurologically intact adults and stroke survivors.   

It is known that the individual muscles of the upper limb respond differently to brain 

stimulation (Martin et al., 2006).  It may be possible that specific MEP elements are more 

reliable in specific muscles, warranting further research.    

6.2.7 Upper limb use 

The amount of arm use prior to TMS assessment could have contributed to the variability 

in TMS measurement in both stroke survivors and in the neurologically intact adults.  It is 

known that arm use can change the excitability of the corticospinal pathway (Pascual-

Leone et al., 1995); and task-dependent neural re-organisation (rehabilitation) can be 

reflected in TMS measurement (Koski et al., 2004, Liepert et al., 2000a, Brouwer and 

Schryburt-Brown, 2006).  The amount of arm use prior to TMS assessment was not 

controlled for in this thesis.   

The stroke survivors participated in clinical assessment of upper limb motor function (45-

60 minutes of arm activity) prior to TMS assessment at the baseline session but not at 

the second session.  The varying amount of activity prior to TMS could have contributed 

to differing levels of corticospinal pathway excitability.  The Bland-Altman plots 

demonstrate that the MEP latency of the paretic ECR tended to be shorter at the first 

session. The shorter latency at the first session may be due to repetitive use during 

upper limb assessment.   

The neurologically intact adults could have been using their upper limb for typing, writing, 

or their occupation at different amounts prior to each TMS session contributing to varying 

corticospinal pathway excitability at each TMS session. 

The type and amount of arm use could also have influenced the findings of the 

systematic review. The sensitivity analysis found no differences in the kinematics of 

stroke survivors early after stroke (< three months) compared to later after stroke.  

However, there were a limited number of studies (three) that included stroke survivors 

less than three months since stroke, and they all measured different kinematic 

characteristics.  The possibility remains, that time since stroke may influence kinematics 
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as a result of repetitive arm use during rehabilitation.   Earlier after stroke individuals are 

most likely participating in rehabilitation, demonstrating greater use of their paretic arm, 

and the rate of change in motor function is more rapid than later after stroke (Kwakkel et 

al., 2003).  During participation in rehabilitation, participants will be focusing on re-

training of reach-to-grasp and movement control of the paretic upper limb.  On the other 

hand, later after stroke participants are less likely to be participating in a rehabilitation 

program and will have developed individual techniques or compensation to accomplish 

reach-to-grasp out of necessity, or will use their non-paretic arm because it may be 

quicker. There are limited studies of the kinematics of stroke survivors early after stroke. 

Understanding how kinematics change with recovery may provide knowledge of which 

interventions provide lasting change.   

The amount of arm use is difficult to control for, since we use our arm and hand 

throughout the day for almost all activities.  The use of a diary for participants to note 

how they used their arm and hand in the time leading up to TMS and between 

assessments may be a useful way to evaluate if daily arm use influences TMS 

measurement.  

6.2.8 Individual variability 

There is inter-individual variability in response to TMS that can contribute to the wide 

95% confidence intervals and LOA.  Factors that can influence inter-individual 

differences are BDNF (brain derived neurotrophic factor) and handedness. 

Briefly, BDNF is a gene that contributes to neural plasticity and has been found to be 

increased in response to motor training.  Individuals with a morphism to the BDNF gene 

demonstrate decreased neural plasticity in response to TMS and motor training (Kleim et 

al., 2006).  Additionally, individuals with a BDNF morphism demonstrated less brain 

activation in response to learning a motor task, greater number of errors in the motor 

task, and decreased retention compared to individuals without the morphism (McHughen 

et al., 2010).  It may be conceivable that a BDNF morphism may also influence reliable 

activation of the corticospinal pathway and contribute to variability in measurement.    

Handedness, or limb dominance might also be a contributing factor to variability within 

corticospinal pathway excitability, its measurement, and movement kinematics.   

This thesis demonstrated a trend towards higher estimated ICC values for the non-

dominant limb motor threshold, silent period, MEP max, and MEP amplitude (biceps).  

Previous research has demonstrated that the coefficient of variation differed for the 

motor threshold and silent period of the dominant and non-dominant limbs (Koski et al., 

2005).  There is evidence that the dominant motor cortex demonstrates greater 

intercortical connections, lower motor thresholds, and varied muscle motor map size 



245 
 

(Hammond, 2002).  These findings suggest the corticospinal pathway projections to the 

dominant and non-dominant limbs differ, which may contribute to variability within and 

the difference in ICC values. 

Hand dominance can also influence movement kinematics during reach-to-grasp, and 

potentially the findings of the meta-analyses. The movement of the dominant limb is 

directed by proximal control (shoulder) compared to movement of the non-dominant limb, 

which is directed by elbow torque (Sainburg and Kalakanis, 2000).  The neurologically 

intact controls used both their dominant limb (Lang et al., 2005, Michaelsen et al., 2004), 

non-dominant limb (Messier et al., 2006), or a mixture of both (Alt Murphy et al., 2011, 

Aruin, 2005) to complete the reach-to-grasp task. Comparing stroke survivors’ movement 

to neurologically intact controls movement of the dominant limb may result in greater 

differences in kinematic characteristics compared to the non-dominant limb.  Therefore, 

utilising the dominant limb may potentially overestimate the findings of some studies, and 

contributing to potential bias in the findings of the meta-analyses.  

 

6.2.9 MEP facilitation 

TMS data collected during background contraction can influence the motor threshold; 

MEP amplitude; MEP latency and the silent period can influence individual muscles 

differently.   

The reliability study of TMS measures in stroke survivors did not designate a specific 

percentage of muscle contraction to maintain during data collection.  Participants were 

instructed to maintain a slight contraction which was monitored by the researcher.  

Despite not maintaining a specific muscle contraction, stroke survivors’ estimated ICC 

value was comparable to neurologically intact controls for the active motor threshold, 

silent period, and the recruitment curve.  However, the estimated ICC values were lower 

for other measures.  It may be possible that fluctuating level of background contraction 

contributed to the lower ICC values as well as wider confidence interval and 95% LOA 

demonstrated in the stroke survivors. 

The ICC values in this thesis demonstrated higher estimated ICC values of MEP 

amplitude measured during active contraction compared to values at rest for both stroke 

survivors and neurologically intact control participants.  These results are comparable to 

previous studies of long-term reliability of MEP amplitude. However the short-term 

reliability demonstrated the opposite effect (higher ICC values for the resting MEP 

amplitude) (Ngomo et al., 2012).  The Bland-Altman plots for both neurologically intact 

adults and stroke survivors demonstrate that with increasing average MEP amplitude 

there is a greater difference between measurements.  This suggests there may be an 
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association between the agreement between sessions and the magnitude of the 

measurement, warranting investigation in the future.   

There is evidence that maintaining background contraction during data collection 

decreases fluctuations in corticospinal excitability, decreases sub-threshold muscle 

activation, and focuses attention to the task (standardised attention across all 

participants) (Kiers et al., 1993, Koski et al., 2007a, Darling et al., 2006).  The variability 

in MEP amplitude decreases with increasing muscle activation (5% to 10% MVC) and 

the intensity of the stimulus (Darling et al., 2006, Pitcher et al., 2003).  The trend for 

decreased variability at higher stimulus intensity was only weakly demonstrated by the 

dominant ECR, non-dominant APB and paretic APB in this thesis.  With increasing 

stimulus intensity, neurons that are farther from the stimulus will be activated (Chen, 

2000).  It may be that the distant neurons are not reliably activated contributing to the 

variability demonstrated at higher stimulus intensities for some muscles in this thesis.   

The motor threshold may also be a possible contributing factor to variability of MEP 

amplitude.  Previous research has demonstrated that individuals with lower resting motor 

thresholds demonstrated greater MEP coefficient of variation within the recruitment curve 

(Smith et al., 2011).  The motor threshold in association with MEP variability was not 

explored in the present study. However, it may be possible that individuals with lower 

motor thresholds exhibited greater MEP amplitude contributing to low ICC values and 

wide 95% CI as well as 95% LOA.    

The relationship between motor threshold; strength of background contraction; strength 

of stimulus intensity and variability of MEP amplitude should be explored in future 

research to better understand corticospinal pathway excitability and factors that may 

influence the reliability of MEP amplitude.      

6.2.10 TMS 

The reliability of MEP amplitude in the present study was below acceptable reliability for 

most muscles.  The MEP amplitude is used to determine the motor threshold and also in 

plotting of the recruitment curve.  Therefore if the amplitude is variable then subsequently 

the motor threshold and recruitment curve may also be variable.  The variability of the 

MEP amplitude could have contributed to the variability found in the other TMS 

measures in this thesis.  

The type of coil, neuro-navigated TMS, coil position, and current direction into the motor 

cortex can all influence TMS measurement and possible agreement between tests. 
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6.2.10.1 TMS coil  

The MEP amplitude, latency, and silent period are susceptible to differences in 

measurement based on a stimulus delivered by a circular coil or a figure of eight coil, as 

well as current direction.  Small movements of the coil and changes in current flow could 

have contributed to variability of TMS measures in the present study.  

Previous studies used a mixture of circular coils and figure-of-eight coils.  A circular coil 

delivers a more diffuse magnetic impulse such that small movements of the coil on the 

scalp will not influence the MEP size.  Alternatively, a figure-of-8 coil (utilized in this 

thesis) delivers more focal stimulation to an area about 35 cm2 (Wassermann, 2002, 

Rivadulla et al., 2014). The figure-of-eight coil is susceptible to small changes in coil 

position or angle during data collection which can alter the direction of current through 

the motor cortex activating different clusters of neurons (Conforto et al., 2004).   

The circular coil more easily activates d-waves (which contribute to the MEP amplitude) 

compared to a figure-of-eight coil (Di Lazzaro et al., 2004). Therefore, if d-waves are 

more consistently activated when using a round coil the MEP amplitude may be less 

variable than when using a figure-of-8 coil.  A figure-of-eight coil may activate d-waves 

when tilted (medial-lateral), but not when positioned posterior-anteriorly.  Change in 

current direction due to coil tilt can also influence the MEP latency and the silent period. 

For example, current in a lateral-medial orientation decreases the latency by 1-2 ms 

because of easier recruitment of d-waves compared to current flow in the posterior-

anterior direction (Di Lazzaro et al., 2004).  The silent period is shortest when the current 

flows in a posterior-anterior direction (mean and SD: 108.0±38.1 ms), and longest when 

the current flows in the anterior-posterior direction (139.2±.30.8 ms); additionally the 

coefficient of variation was larger for current flow in the posterior-anterior direction 

CV=35.3 (versus CV=22.1 for anterior-posterior) (Orth and Rothwell, 2004).  A figure-of-

eight coil was used in this thesis because it delivers more focal stimulation to activate the 

upper limb area of the motor cortex. 

The researcher held the coil in place during data collection; small movements or tilts of 

the coil on the head, or if the participants move their head on the coil this could have 

activated different clusters of neurons or d-waves.  The activation of different clusters of 

neurons may have altered the amplitude, latency, and silent period contributing to 

variability in measurement within and between sessions.   The accuracy of maintaining 

the optimal coil position may have been enhanced through the use of a coil holder.   

To improve coil placement and maintain optimal coil position, neuro-navigated TMS has 

been used.  
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6.2.10.2 Neuro-navigated TMS 

Neuro-navigated TMS combines TMS with MRI.  The MRI is used to determine the “hand 

knob” area of the motor cortex, and once determined the researcher then uses the MRI 

image to guide TMS coil placement.  Neuro-navigated TMS allows the individual 

administering the TMS to identify when the coil angle has changed so it can be 

repositioned to avoid changes in current flow and neuronal activation (Cincotta et al., 

2010).  Three studies utilized neuro-navigated TMS (Ngomo et al., 2012, Sollmann et al., 

2013) and a phantom MRI image (Schambra et al., 2015).   

There is evidence that using neuro-navigated TMS improves the spatial accuracy of TMS 

coil placement on the hotspot compared to “blind” trials in which standard methods of hot 

spot determination are used (Cincotta et al., 2010, Sollmann et al., 2013, Gugino et al., 

2001).  Similarly, MEP amplitude demonstrated a lower coefficient of variation during 

neuro-navigated TMS 71±14%, compared to non-navigated 91±15% (Julkunen et al., 

2009).  By not using neuro-navigated TMS the individual administering the TMS may not 

be aware of small changes or tilts of the coil that could alter current direction and activate 

different neurons resulting in measurement variability.   

The present findings (ICC values) of the motor threshold and slope of the recruitment 

curve were similar to two of the studies that utilised neuro-navigated TMS (Ngomo et al., 

2012, Schambra et al., 2015), whereas, the ICC values of the present study were lower 

than others (Sollmann et al., 2013, Schambra et al., 2015).   The impact of neuro-

navigated TMS on the reliability of TMS measurement warrants future research to 

determine its benefit; as some ICC values are comparable to studies without neuro-

navigated TMS.   

6.2.11 Hot spot and motor threshold determination 

The hot spot can be determined utilizing visual assessment of the MEP on the EMG or 

using a standard position five cm lateral to the vertex; the first method has demonstrated 

lower motor thresholds (Conforto et al., 2004).  The benefits of using a standard coil 

position are that the same group of neurons will be activated every time, however a 

limitation is that the standard position may not be the optimal position to collect data for a 

specific muscle, as each muscle representation is a specific location in the motor cortex.  

Previous studies have used the same hot spot for all sessions (Cacchio et al., 2011), 

whereas others determined the hot spot each session (based on MEP on EMG) (Koski et 

al., 2007a, Liu and Au-Yeung, 2014).  Arm use can influence corticospinal pathway 

excitability, thus determining the hot spot at each session may be more representative of 

the optimal location to collect data which may fluctuate over the course of the day.  

However, determining a new hot spot each session will result in different groups of 

neurons being activated which may have contributed to variability in MEP amplitude and 
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motor threshold in the present study.  The differing methodologies complicates 

comparison between studies because different groups of neurons will be activated.  

The processes used to determine the motor threshold in the present study could have 

contributed to the variability, and measurement agreement between sessions.  The 

processes implemented to determine a motor threshold were in line with previous 

research using the presence of an MEP in half of successive trials > 50mV resting 

threshold, and > 200 mV for active threshold (Rossini and Rossi, 2007, Koski et al., 

2007a).  However, the program used to collect MEPs did not provide an exact value of 

milliamps of the MEP.  Hence, it is possible that a true motor threshold was not found, 

thus contributing to the variability between sessions.   

6.2.12 Methods of data processing and analysis 

6.2.12.1 Intraclass correlation coefficient  

The ICC is a useful measurement of reliability, however there are also limitations.  The 

ICC can be influenced by interpretation, model used, population being studied, variance 

within the population, and the range of the scale of measurement (de Vet et al., 2006, 

Portney and Watkins, 2009, Müller and Büttner, 1994).  

Firstly, assigning a value of acceptable reliability (ICC>0.70) was arbitrarily selected and 

has no absolute meaning in terms of the measurement used (de Vet et al., 2006, Portney 

and Watkins, 2009, Müller and Büttner, 1994).  There are different values that can be 

used to determine acceptable reliability; assigning a different value would change the 

interpretation of the reliability and the results.  For example, Eliasziw and colleagues 

(1994) suggested interpretation of the ICC as follows: 0.0-0.2=slight, 0.21-0.40=fair, 

0.41-0.60=moderate, 0.61-0.80=substantial, 0.81-1.00=almost perfect reliability (Eliasziw 

et al., 1994).  Had the ICC values been interpreted in this way in the present study the 

interpretation of the reliability would have been different.  An   ICC > 0.70 was selected 

as acceptable reliability because it has been commonly used in previous TMS reliability 

research (Schambra et al., 2015, Malcolm et al., 2006).  However, if previous research 

utilised a different interpretation the findings of the reliability of this thesis may be 

comparable.   

Secondly, the ICC is sensitive to “unreliable” measurements, which can lower reliability 

by lowering the ICC value (closer to 0) (de Vet et al., 2006, Müller and Büttner, 1994, 

Portney and Watkins, 2009).  The Bland-Altman plots demonstrated some differences in 

agreement between sessions were very far from the mean difference, potentially greater 

than three standard deviations from the mean.  It may be possible that the differences far 

from the mean difference contributed to lower ICC values in this thesis.   
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Thirdly, the ICC is sensitive to the measurement scale of the tool being investigated; the 

wider the range of measurement the higher the ICC values (Müller and Büttner, 1994).  

Muller and Buttner (1994) use the example of measuring blood pressure. Systolic blood 

pressure has a wider measurement range compared to diastolic blood pressure.  The 

ICC values for measuring systolic blood pressure are therefore higher giving the 

impression that diastolic blood pressure is more difficult to assess, which is not the case 

(Müller and Büttner, 1994).  The narrow measurement range of the MEP elements could 

have contributed to the lower ICC values.  For example the MEP latency and silent 

period are measured in milliseconds, a change of a few milliseconds may influence the 

agreement between sessions.  However, it is likely the measurement range may have 

also influenced the reliability of earlier studies, and thus may not be a contributing factor 

to the ICC values found in this thesis.    

Finally, the ICC model used can influence reliability and the ICC values. The ICC model 

[2,k] is the reliability of the mean of observations; whereas ICC model [2,1] is the 

reliability of individual observations (Portney and Watkins, 2009).  Model ICC [2,1] can be 

influenced by systematic differences inherent in measurement error; whereas model ICC 

[2,k]  does not account for systematic differences (de Vet et al., 2006).  Therefore the 

ICC values resulting from model ICC [2,1] will be lower than those of ICC [2,k] (de Vet et 

al., 2006, Portney and Watkins, 2009).  This is important to note when interpreting ICC 

values as well as comparing the ICC values between studies.  The ICC model used in 

the present study was ICC [2,1] which demonstrated lower ICC values than research that 

utilised model ICC [2,k] (Schambra et al., 2015, Malcolm et al., 2006).  It may be the ICC 

model used is contributing to the difference in ICC values between studies, not the 

agreement between tests.  Furthermore previous studies did not consistently report the 

ICC model used (Ngomo et al., 2012, Christie et al., 2007) or the associated 95% 

confidence intervals (Carroll et al., 2001, Ngomo et al., 2012).   

The confidence interval is a measure of the variance in measurement (de Vet et al., 

2006), thus it should be provided to fully interpret the reliability. To have confidence in a 

measure there should be agreement between measurements and the variance of the 

agreement should be within specific limits. The lower end of the confidence interval 

should be within the range of acceptable reliability to have confidence in the result 

(Portney and Watkins, 2009).  This can impact health research and the use of specific 

measures to assist in clinical decision making.  For example the presence of an MEP in 

conjunction with active movement is used to predict upper limb functional outcomes after 

stroke and possibly to determine level of care such as rehabilitation (Stinear et al., 2012, 

Hendricks et al., 2002).  However, if single measurements of the MEP are variable early 

after stroke as the present results suggest, and significant differences in motor threshold 
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have been identified in daily assessment early after stroke (Swayne et al., 2008) possibly 

more than one TMS assessment is needed to predict motor function.  The lack of 

reporting of confidence intervals may potentially lead to overestimating the reliability of a 

measure or measurement tool, its usefulness in the clinical setting, and comparisons 

between studies variance is not possible.    

6.2.12.2 Electrode placement 

The placement of the surface electrodes in the optimal position to monitor muscle activity 

is essential to data collection (Wassermann, 2002), thus if electrode placement differs 

between sessions, then the muscle activity recorded will be different and may contribute 

to variability in measurement.    For example, the EMG activity of the biceps was 

recorded using surface electrodes placed in the middle, upper, and lower sections of the 

muscle belly.  The lower section of the muscle was found to demonstrate the greatest 

muscle activity; and muscle activity decreased as electrode placement became more 

proximal (Ahamed et al., 2012). Exact electrode placement was attempted at both 

sessions. However if the electrodes were placed slightly proximal, the muscle activity 

recorded may have been different, possibly contributing to variability in the 

measurement.  Electrode placement can also influence data collection in the hand 

muscles.   

The hand muscles are small, the muscles and motor units are densely packed (Malcolm 

et al., 2006). The electrodes over the APB had a small inter-electrode distance, thus the 

possibility of cross-talk arises (Konrad, 2005).  Cross talk can result in the surface 

electrode reading if the muscle activity of an adjacent muscle is measured (Farina et al., 

2004).  Cross talk can contribute to varying muscle data and possibly varying amplitude 

between TMS stimuli if different muscles are being recorded, since different muscles 

respond differently to TMS (Martin et al., 2006).  The surface electrodes on the APB and 

ECR demonstrate greater likelihood of cross talk due to close proximity of adjacent 

muscles, which may have contributed to the variability in MEP amplitude and TMS 

measurement of the APB and ECR. 

6.2.12.3 Silent Period 

The reliability of the silent period in the present study was poor to moderate for both 

stroke survivors and neurologically intact adults.  The ICC values of the biceps muscle 

was comparable to previous studies of the biceps (Harris-Love et al., 2013); the reliability 

of the ECR and APB were lower than previous studies (Koski et al., 2005, Cacchio et al., 

2009, Liu and Au-Yeung, 2014).  The differences in ICC values may be due to the 

methods used to determine the duration of the silent period. 
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The start of the silent period can be defined as the start of the MEP (e.g. Koski et al., 

2005, Damron et al., 2008) or from TMS stimulus (e.g. Koski et al., 2007, Cacchio et al., 

2009,).  The start of the TMS stimulus is constant (0.00 milliseconds) whereas the start 

of the MEP varies.  The silent period can be determined visually or mathematically.  

Damron (2008) demonstrated that visual analysis of the silent period was as reliable as 

mathematical analysis (running a script) r > 0.96; the coefficient of variation was similar 

CV=16.0% (visual assessment) and CV=16.5% (mathematical assessment) (Damron et 

al., 2008).  Despite the CV being similar for visual and mathematical assessment there is 

the potential for assessor error during visual assessment.   

In the present study the MEP latency and the silent period were assessed visually.  To 

determine the MEP latency a cursor was placed at the onset of the MEP.  The time from 

TMS stimulus (0.00 seconds) to onset of MEP was the MEP latency in ms.  The duration 

of the silent period was determined as MEP onset to the return of EMG.  

To account for potential human error, a second researcher with TMS experience 

independently assessed the MEP latency and silent period of 10% of trials.  The 

researchers were in agreement within two milliseconds 84% of the time.  It is likely there 

was an element of human error in visual assessment contributing to the wide 95% CI and 

95% LOA as well as the reliability of the measurement.  Likewise, the test-retest 

reliability of MEP latency was below acceptable reliability for most muscles; therefore if 

the starting point of silent period measurement was not reliable this could have 

influenced the reliability of silent period.  Further research in the reliability of visual 

assessment of MEP latency and the silent period would be beneficial in determining 

optimal methods of data analysis.   

6.2.12.4 Recruitment Curve 

The ICC values of the slope of the recruitment curve in the present thesis were below 

acceptable limits (ICC < 0.70) for all muscles in both neurologically intact individuals and 

stroke survivors.  The slope of the recruitment curve was comparable to a previous 

investigation in older adults (Schambra et al., 2015), however the present finding were 

lower than previous studies (Malcolm et al., 2006, Liu and Au-Yeung, 2014, Koski et al., 

2007a, Carroll et al., 2001). The low ICC values for the slope of the recruitment curve 

could be due to the variability in MEP amplitude found within the present sample 

(Malcolm et al., 2006).  The reliability of MEP amplitude was below acceptable levels for 

most intervals of the recruitment curve.  The MEP amplitude is the basis for plotting the 

recruitment curve, if the amplitude is variable than the relationship between the 

amplitude and stimulator output may also be variable.  
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The recruitment curve is traditionally fitted with a sigmoidal function (Carroll et al., 2001, 

Carson et al., 2013, Malcolm et al., 2006) which is based on the concept of least squares 

taking the shape of an “s” curve (Massie and Malcolm, 2013).  In this thesis not all of the 

participants’ recruitment curve data were able to be fitted with a sigmoidal function.  The 

sigmoidal function was able to be fitted for neurologically intact individuals resting biceps 

in 10% of participants, active biceps=60%, resting ECR=29%, active ECR=45%, resting 

APB=31%, active APB=57% of participants; and for stroke survivors non-paretic 

biceps=35%, paretic biceps=4%, non-paretic ECR=8%, paretic ECR=18%, non-paretic 

APB=32%, and the paretic APB=30%.  The percentage of participants that could not be 

fitted with a sigmoidal function was higher in the present study than earlier studies in 

which 5.9% of neurologically intact participants, 9.4% of subacute, and 12.7 % of chronic 

participants demonstrated inappropriate recruitment curve model fits (Schambra et al., 

2015).    

A possible reason for inappropriate fits could have been enough data points due to some 

stimulation intensities were above 100% of the stimulator output or high stimulation 

intensities were uncomfortable.  Furthermore, not all individuals demonstrated an 

increase in MEP amplitude with increasing intensity (neurologically intact participants: 

biceps rest n=7, active n=11, ECR rest n=7, active n=15, APB rest n=2, active n=19: 

stroke survivors non-paretic biceps 7/26, non-paretic ECR n=5/26, non-paretic APB 4/25, 

paretic biceps n=8/25, paretic ECR n=6/22, and paretic APB n=3/20).  The recruitment 

curve obtained in the stroke survivors and in the active conditions of the neurologically 

intact participants included 100%, 110%, 120%, 130% of AMT.  It may be possible that 

there were not enough intervals in the recruitment curve to collect sufficient data.  

Potentially including 90% in the active conditions as was done during the resting 

conditions, or increasing in 5% increments, might have improved the plotting of the 

recruitment curve.  The lack of increasing amplitude could be due to small movements of 

the coil or participant head movement changing the direction of current and activating 

different clusters of neurons varying the MEP amplitude.  The stroke survivors may have 

been experiencing fatigue from generating a muscle contraction thus their contraction 

could have become weaker towards the end of the recruitment curve.  If there was less 

corticospinal pathway excitability (decreasing strength of muscle contraction) the MEP 

would not have increased.  

Previous studies also reported inappropriate model fits using the sigmoidal function 

(Schambra et al., 2015, Massie and Malcolm, 2013, Ray et al., 2002).  An alternative to 

the sigmoidal curve is to fit the data with a linear regression using the line of best fit 

(Koski et al., 2007a, Massie and Malcolm, 2013, Ward et al., 2007).  There is evidence 

that a linear function was the most valid and accurate fitting of the recruitment curve for 
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the biceps and the APB (Ray et al., 2002). In contrast, there is evidence that sigmoidal 

curves best fit the recruitment curve of hand muscles, and linear functions are a better fit 

for other muscles (Siebner and Rothwell, 2003).   The peak slope of the sigmoidal 

function has been found to be correlated (r=0.9) with the linear slope of the linear 

function (Massie and Malcolm, 2013).   

The benefits to using a linear regression are that it requires less data points which may 

be of use in stroke survivors with decreased corticospinal pathway excitability when the 

upper end of the recruitment curve may be above the stimulator output (Massie and 

Malcolm, 2013, Ray et al., 2002).  In the present study data up to 130% of AMT was 

unable to be collected for all stroke survivors.  Data up to 130% of AMT was not 

collected for the paretic biceps in 8/28 participants, 3/28 for the paretic ECR and 8/27 for 

the paretic APB because the percentage of AMT increased above the stimulator output.  

Some of the neurologically intact adults found the stimulus at higher intensities 

uncomfortable; the researcher was unable to collect data up to 130% of MT in 23/51 

participants for the biceps muscle at rest, and 10/51 for the APB at rest.  Therefore, 

incomplete data was collected in some participants.  Incomplete data could have 

contributed to the difficulties fitting the recruitment curve with a sigmodal function.    

The reliability of the recruitment curve could have been influenced by the method of 

curve fitting (sigmoidal versus linear), number of data points collected, the reliability of 

the MEP amplitude, and the associated factors that can influence MEP amplitude.  The 

different muscles of the upper limb have different corticospinal projections, methods of 

data collection or curve fitting may be better if individualized to specific muscles, 

warranting further investigation.     

6.2.13 Reliability of physiotherapy measurement tools 

The test-retest reliability of TMS measures demonstrated in the studies in this thesis are 

variable, with the lower end of the confidence interval falling within the range of poor 

reliability.  The ICC point estimates demonstrate poor to good reliability.  The reliability of 

TMS is similar to the reliability of other measurement tools and outcome measures used 

in physiotherapy practice.  For example the reliability of individual items on the WMFT 

range from an ICC of 0.50 to 0.93 (Morris et al., 2001), the reliability of manual muscle 

testing ICC’s range from 0.69 to 1.00 (Fan et al., 2010), assessment of grip strength 

ICC’s range from 0.68 to 0.90 (Heller et al., 1987), and the functional independence 

measure reliability ranges from an ICC of 0.124 to 0.661 (Kohler et al., 2009).  Many 

studies did not report confidence intervals therefore the variability of the measurement is 

not known.  In the context of the reliability of measurement tool available and widely used 

in clinical practice the reliability of TMS measurement falls within the range of reliability 

for measures such as the motor threshold.  It may be that TMS is better suited to assess 
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a group as a whole versus individual change in corticospinal pathway excitability as the 

mean difference between tests identified by the limits of agreement was close to zero.   

6.2.14 Summary  

In summary, there are many factors that can influence measurement.  The stroke 

location, size, and upper limb motor function may contribute to variability of movement 

kinematics, differences in excitability of the corticospinal pathway and subsequently in 

TMS measurement.  The physiological processes occurring in the CNS early after stroke 

and in older adults, as well as gender differences due to hormones may also contribute 

to variability in TMS measurement as demonstrated by the wide confidence intervals and 

95% limits of agreement.  Furthermore, the measurement tools such as type of coil or 

stimulator may also influence which groups of neurons are activated by the TMS 

stimulus, leading to fluctuation in measurement and variable reliability.   
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6.3 Limitations of this thesis 

The systematic review was limited to studies published in the English Language which 

could potentially induce reporting bias in the results.  The search included multiple 

databases and the reference lists of relevant papers were hand searched for relevant 

titles; however, it is still possible that relevant studies were missed.  There were 

challenges to the systematic review.  There was unclear and high potential risk of bias in 

included studies which may induce bias into the results of the meta-analysis.  The reach-

to-grasp studies were heterogeneous utilising different tasks, objects, movement speeds, 

and grasps, complicating the synthesis of the findings.   

A limitation of the TMS studies is the amount of upper limb use may have been different 

prior to the two sessions.  The stroke survivors participated in upper limb motor 

assessments prior to TMS assessment at the first session but not the second, thus the 

excitability of the corticospinal pathway could have been different at the two sessions.  

The neurologically intact adults could have had varied upper limb use prior to the TMS 

sessions. 

The time interval between TMS assessments for the stroke survivors could have been 

too long a period of time.  There is evidence that one day of rehabilitation can lead to 

change in muscle motor map representation (Liepert et al., 2000a), and there are 

significant changes in motor threshold when assessed daily early after stroke (Swayne et 

al., 2008).  A shorter time interval between assessments may have decreased the 

likelihood of neural-plasticity being reflected in the TMS measurement. 

The stroke survivors did not use a specific percentage of muscle contraction during data 

collection, thus muscle activity was not standardised across all participants.  There is the 

possibility that participants demonstrated fluctuating muscle contractions and 

subsequently fluctuating corticospinal pathway excitability contributing to the lower ICC 

values. 

The test-retest reliability investigation early after stroke was underpowered; there were 

not enough participants included in the analysis to have statistical power.  Furthermore, 

in the investigation of test-retest reliability in neurologically intact adults the sub-group 

analyses were underpowered; there may not have been enough participants to have 

statistical power.  

The limitations of the test-retest reliability investigations of TMS are that the methods 

used may not be comparable with previous research and the methods may have induced 
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variability in the measurement influencing the reliability. Resting TMS data was only 

completed on the dominant limb of the neurologically intact participants.  

The recruitment curve was not able to be fitted for all participants with a sigmoidal 

function.  Data collection of additional intervals within the recruitment curve, or plotting 

the curve using a linear function may have improved curve fitting. 

6.4 Strengths of this Thesis 

The systematic review provided novel findings that object placement in the central or 

ipsilateral workspace does not alter kinematics of movement.  This finding will allow 

therapists to focus on other aspects of the reach-to-grasp task to maintain complexity 

and challenge. 

The test-retest reliability studies investigated a range of MEP elements such as the 

active motor threshold; resting motor threshold; MEP amplitude; MEP max amplitude; 

MEP latency; silent period and the recruitment curve of bilateral biceps, ECR, and APB.  

This was the first study to investigate the reliability of TMS measures in these muscles in 

a group of sub-acute stroke survivors, and one of a few studies in neurologically intact 

adults.  This work has expanded the current reliability research which has focused solely 

on distal upper limb muscles.  All muscles of the upper limb are essential to reach-to-

grasp and functional use of upper limb, therefore understanding the corticospinal 

projections to these muscles is essential.   

The TMS measures in the neurologically intact adults were assessed at rest (dominant 

limb) and during background contraction (dominant and non-dominant).  The TMS data 

during active conditions will provide age-matched comparisons for stroke survivors in 

which TMS measures are often taken during background contraction to facilitate a MEP. 

The reliability findings have highlighted areas in which variability may exist in TMS 

measurement or within the methods of data collection and analysis leading to future 

research questions. 

6.5 Reflections on study design 

Upon completion of the TMS studies, reflection of the study design and methods, and 

what I have learned there are aspects that could have been done differently which may 

improve TMS study design and implementation in the future.  

Study design in the future could include investigating the test-retest reliability over three 

sessions in stroke survivors.  The first two sessions being two consecutive days, the third 

session occurring a week after the first. This design would limit neural plasticity between 

the first and second session but allow for exploration of change in corticospinal pathway 
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excitability and reliability at the third sessions.  The three sessions would allow for short 

term and longer term reliability.   

The recruitment curve in the studies in this thesis did not successfully fit all participants 

with a sigmoidal function.  Future research investigating different methods of plotting the 

recruitment curve (sigmoidal versus linear) and investigating the area under the curve for 

the different muscles of the upper limb would provide knowledge of if specific methods 

are better suited for specific muscles.  Collecting additional data points such as 

increasing in 5% increments versus 10% increments (as done in the present study) or 

stimulating up to 150% of motor threshold if tolerated may improve curve fitting with a 

sigmoidal function. 

It is known that strength of background muscle contraction can influence many MEP 

elements such as shorten the latency, decrease motor threshold, and increase amplitude 

(Wassermann et al., 2008, Di Lazzaro et al., 2004, Kiers et al., 1993).  Furthermore, the 

strength of muscle contraction can influence proximal and distal muscles differently 

(Rösler et al., 2002, Turton et al., 1996).  Utilizing different strengths of background 

contraction for different muscles may strengthen the study design and contribute to less 

variability in TMS measurement.   

Assessment of background muscle contraction of the stroke survivors was completed 

using visual assessment, palpation, and assessment of 100 ms of EMG prior to TMS 

stimulus.  Assessment of the maximal voluntary contraction and use of a specific 

percentage of muscle contraction may have decreased fluctuation of the muscle 

contraction and standardized corticospinal pathway excitability.  A challenge of this 

method is that the some of the stroke survivors may have difficulty generating a maximal 

contraction, as well as maintaining a specific percentage of contraction due to stroke 

related changes in motor control and neural input (via the corticospinal pathway).  

Utilizing a coil holder would improve stability of the TMS coil during data collection.  This 

would decrease any potential movements of the coil by the researcher and may improve 

localization of the TMS pulse and decrease variability in measurement. Beyond a coil 

holder utilizing neuro-navigated TMS would provide visual confirmation of stimulation of 

the appropriate location which may also contribute to decreased variability in TMS 

measurement.   

In future research applying these changes to study design may strength TMS methods 

and contribute to more reliable TMS measurement. 
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6.6 Future directions 

The studies within this thesis addressed the need for a better understanding of the 

neuro-biomechanical correlates of reach-to-grasp, the results of which have generated 

directions for future research.  

The systematic review highlighted the heterogeneity of reach-to-grasp tasks and 

literature.  Progressing forward, a standardised reach-to-grasp task would be 

advantageous.  Firstly, it would allow more direct comparisons between studies.  

Secondly, using a standardised task to measure change following an upper limb 

intervention would permit more direct comparisons between different interventions by 

comparing the underlying movement patterns.  Future investigations utilising the 

kinematic differences identified in the systematic review as targets for upper limb 

interventions needs to be evaluated. Upper limb interventions targeted at specific 

movement deficits may improve the specificity of upper limb rehabilitation and decrease 

disability after stroke.    

The reliability of the TMS measures investigated in the present thesis have expanded on 

previous reliability studies which focused on distal muscles, through investigating the 

reliability of more proximal arm muscles.  This thesis found the test-retest reliability of 

TMS measures was variable in neurologically intact adults and in stroke survivors.  The 

different muscles of the upper limb demonstrated varied reliability within and among MEP 

elements, muscles, and limbs (dominant, non-dominant, paretic, non-paretic). Future 

investigations examining the potential sources of variability such as target muscle, 

strength of background contraction, coil placement, as well as methods of data collection 

and analysis are needed.   

Investigating the reliability of MEP elements during a range of background contractions 

may provide evidence of which elements are most reliable during specific muscle 

activation, and in a variety of muscles.  Future research investigating the specificity of 

background contraction to individual muscles and MEP elements is needed. 

One of the aims of this thesis was to investigate the reliability of TMS measures in older 

adults.  The estimated ICC values of older adults were similar to the values for the whole 

group, however older adults demonstrated wider confidence intervals than the 

neurologically intact group as a whole for some measures.  The wider confidence 

intervals could have been due to the smaller number of participants included in the 

analysis, or greater fluctuation within the corticospinal pathway with aging.  Future 

investigations specifically in middle age and older adults and distinction between age 

groups would provide knowledge of how the nervous system changes over time.   
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Research combining the use of single pulse TMS with measures of intercortical 

facilitation and inhibition may provide insights into cortical processes that may influence 

the ICC values and variability of TMS measurement.  

If TMS is to be used to assess neural plasticity within rehabilitation studies, researchers 

and clinicians need to know that the observed change is greater than day-today 

variability.   Future research to determine the minimal clinically important difference of 

TMS measures, as well as determine if change in TMS measures is associated with 

change in upper limb motor function is needed.  

A direction forward is a more specific use of TMS targeting specific MEP elements to 

measure specific muscles under specific conditions, which may be a more precise use of 

TMS measurement.   

 

6.7 Concluding remarks  

This thesis explored neuro-biomechanical assessment of the upper limb.  The results of 

this thesis demonstrated that object placement in the central or ipsilateral workspace 

does not alter differences in kinematics between stroke survivors and neurologically 

intact controls.  Future reach-to-grasp research would benefit from standardisation of 

tasks to ease direct comparisons between studies.  Secondly, this thesis demonstrated 

that the test-retest reliability of TMS measures in neurologically intact adults and stroke 

survivors early after stroke is variable.  There may be an association between MEP 

amplitude and agreement in measurement in both neurologically intact adults and in 

stroke survivors.  The test-retest reliability findings suggest that TMS may not be suitable 

to detect change in corticospinal pathway excitability in individual participants.  Future 

investigations to determine the source of variability in TMS measurement are warranted 

as the knowledge provided by TMS measurement is valuable in understanding motor 

recovery after stroke.  
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Appendix 1: Downs and Black Tool 

 

Question 

 

Rationale for Amendment 

Reporting  

1) Is the hypothesis/aim/objective of the study clearly described?  

2) Are the main outcomes to be measured clearly described in the Introduction or Methods 
section?  

 

3) Are the characteristics of the patients included in the study clearly described?   

4) Are the interventions of interest clearly described? Is the reaching task clearly defined and 
reproducible?   

Observational studies of reaching will not include an 
intervention thus it is the reaching task that is most 
relevant for assessment.   

5) Are the distributions of principal confounders in each group of subjects to be compared clearly 
described? Remove 

Stroke vs Healthy control 

6) Are the main findings of the study clearly described?  

7) Does the study provide estimates of the random variability in the data for the main outcomes?   

8) Have all important adverse events/reactions that may be a consequence of the intervention 
been reported?  

Any adverse event or reaction is important  

9) Have the characteristics of patients lost to follow-up been described?  Has loss to follow up, 
attrition been described? 

Has attrition been described and accounted for 

10) Have actual probability values been reported (e.g. 0.035 rather than <0.05) for the main 
outcomes except where the probability value is less than 0.001?  Remove 

N/A as observational studies of reaching will not include 
risk ratios or odds ratios.   

External validity  
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11) Were the subjects asked to participate in the study representative of the entire population 
from which they were recruited? Remove 

Very similar to the next question, will only keep # 12 as it 
refers to the participants in the study  

12) Were those subjects who were prepared to participate included representative of the entire 
population from which they were recruited? For example are participants of varying degrees of 
function and of varied stroke location included? 

To be representative of the population of stroke survivors 
the sample must include those with mild to severe 
impairment and of varied stroke location.  This will improve 
the generalizability of the findings of the systematic review.  
The control group should be made up of age matched 
controls to those stroke survivors as there are 
neuromuscular changes with age. 

13) Were the staff, places, and facilities where the patients were treated, representative of the 
treatment the majority of patients receive  Remove 

This is not relevant to a one-time assessment in a 
laboratory setting. 

Internal validity - bias  

14) If appropriate was an attempt made to blind study subjects to the intervention they have 
received? 

Will only be relevant to studies that are investigating a 
change in reaching due to an intervention, not relevant to 
one session observational study. 

15) If appropriate was an attempt made to blind those measuring the main outcomes of the 
intervention?  

Not applicable to instrumented measurement as it is 
objective and not biased such as: movement speed 
recorded via a motion capture system, or muscle activity 
recorded via EMG, or MEP recorded via TMS.  In addition 
a researchers approach can affect behavioral outcomes, 
but if the same researcher completes all assessments for 
all participants than it would not be a confounding factor. 

16) If any of the results of the study were based on “data dredging”, was this made clear?  
Remove 

The studies included in the systematic review are 
experimental studies, not hypothesis testing or hypothesis 
driven questions such as clinical trials.   

17) In trials and cohort studies, do the analyses adjust for different lengths of follow-up of 
patients, or in case-control studies, Is the time period between the intervention and outcome the 
same for cases and controls? 

Was the same protocol implemented with both the stroke 
participants as with the healthy controls?   

18) Were the statistical tests used to assess the main outcomes appropriate?    
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19) Was compliance with the intervention/s reliable?  Was the experimental task the same for all 
participants? 

The same reaching task and protocol implemented with 
both the stroke participants and healthy participants to 
allow comparison of reaching characteristics.   

20) Were the main outcome measures used accurate (valid and reliable)?  Were all outcome 
measures reported on, and no new outcome measures added in with limits, for example do the 
methods and results match? 

Was there bias in selective reporting of results? 

Internal validity – confounding (selection bias)  

21) Were the patients in different intervention groups (trials and cohort studies) or were the 
cases and controls (case-control studies) recruited from the same population?  Remove 

N/A for observational studies both groups would have 
completed the same reaching task. 

22) Were study subjects in different intervention groups (trials and cohort studies) or were the 
cases and controls (case-control studies) recruited over the same period of time?  Remove 

N/A for observational studies one-time assessment. 

23) Were study subjects randomised to intervention groups?  Remove N/A for one-time lab assessment, and both groups would 
be completing the same reaching task. 

24) Was the randomised intervention assignment concealed from both patients and health care 
staff until recruitment was complete and irrevocable?  Remove 

N/A participants wouldn’t have been randomized for a one 
time observational assessment, completing the same 
reaching task. 

25) Was there adequate adjustment for confounding in the analyses from which the main 
findings were drawn?  Remove 

N/A for observational studies one time instrumentation 
assessment. 

26) Were losses of patients to follow-up taken into account?  Remove N/A for one-time lab assessment.  

27) Did the study have sufficient power to detect a clinically important effect where the 
probability value for a difference being due to chance is less than 5%?  Remove  

N/A for observational studies. 

 

Amendments to the Down’s and Black tool were based on the following references: Brouwers et al 2005, Gorber et al 2007, Higgins et al 2008, Mallen et 

al 2006, and Monterio and Victora 2005.   
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Appendix 2: Modified Downs and Black Tool - for Assessment of Potential Risk of Bias  

Question YES / NO / UNCLEAR 

Reporting  

1) Is the hypothesis/aim/objective of the study clearly described?  

2) Are the main outcomes to be measured clearly described in the Introduction or Methods section?  

 If the main outcomes are first mentioned in the results section, the question should be answered ‘no’. 

 

3) Are the characteristics of the patients included in the study clearly described?  

 For example: type of stroke, stroke location, time since stroke, level of current function/disability. 

 In cohort studies and trials, inclusion and/or exclusion criteria should be given.  In case-control studies, a case-definition and 
the source for controls should be given. 

 

4) Is the reaching task clearly defined and reproducible?    

5) Are the main findings of the study clearly described? 

 Simple outcome data (including denominators and numerators) should be reported for all major findings so that the reader 
can check the major analyses and conclusions. 

 This question does not cover statistical tests which are considered below. 

 

6) Does the study provide estimates of the random variability in the data for the main outcomes?  

In non-normally distributed data the inter-quartile range of results should be reported.  In normally distributed data the standard 
error, standard deviation or confidence intervals should be reported.  If the distribution of the data is not described, it must be 
assumed that the estimates used were appropriate and the question should be answered ‘yes’. 

 

7) Have adverse events or adverse reactions that may be a consequence of the intervention been reported? Such as pain during 
reaching activity. 

 This should be answered ‘yes’ if the study demonstrates that there was a comprehensive attempt to measure adverse events 
(a list of possible adverse events is provided). 
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Question YES / NO / UNCLEAR 

8) Has loss to follow up been described, attrition?  

 ‘No’, if attrition is not explained.  ‘No’ if number of participants does not match the number analysed in the results. ‘Yes’ if 
mention, or not mentioned and all participants are analysed. 

 This should be answered ‘yes’ where there were no losses to follow-up or where losses to follow-up were so small that 
findings would be unaffected by their inclusion. 

 This should be answered ‘no’ where a study does not report the number of patients lost to follow up. 

 

External validity  

9) Were those subjects who were included representative of the entire population from which they were recruited?  

 Is the sample representative of the target population stated in the background?  For example are participants of varying 
degrees of function and of varied stroke location included as well as age matched controls? 

 The study must identify the source population for patients and describe how the patients were selected. 

 Patients would be representative if they comprised the entire source population, an unselected sample of consecutive 
patients, or a random sample.  Random sampling is only feasible where a list of all members of the relevant population 
exists. 

 Where a study does not report the proportion of the source population from which the patients are derived, the question 
should be answered as ‘unclear’. 

 The proportion of those asked who agreed should be stated.  Validation that the sample was representative would include 
demonstrating that the distribution of the main confounding factors was the same in the study sample and the source 
population. 

 

Internal validity - bias  

10) If appropriate, was an attempt made to blind study subjects to the intervention they have received? 

 For studies where the patients would have no way of knowing which intervention they received, this should be answered 
’yes’. 

 

11) If appropriate, was an attempt made to blind those measuring the main outcomes of the intervention? 
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Question YES / NO / UNCLEAR 

12) Is the time period between the intervention and outcome the same for cases and controls? 

 For example, was the same protocol implemented with both the stroke participants as with the healthy controls? 

 Where follow-up was the same for all study patients the answer should be ‘yes’. 

 If different lengths of follow-up were adjusted for by, for example, survival analysis the answer should be ‘yes’. 

 Studies where difference in follow-up are ignored should be answered ‘no’. 

 

13) Was the experimental task the same for all participants?  

14) Were all outcome measures valid and reliable, reported on, and no new outcome measures added in with limits?  

 For example, do the methods and results match and are the conclusions supported by the findings? 

 

15)  Were the statistical tests used to assess the main outcomes appropriate? 

 The statistical techniques used must be appropriate to the data.  For example, non-parametric methods should be used for 
small sample sizes. 

 Where little statistical analysis has been undertaken but where there is no evidence of bias, the question should be answered 
‘yes’. 

  If the distribution of the data (normal or not) is not described, it must be assumed that the estimates used were appropriate 
and the question should be answered ‘yes’. 

 

Internal validity – confounding (selection bias) – N/A  
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Appendix 3: Ethical Approval “Test-Retest 

Reliability of TMS Measures of the Corticospinal 

Pathway in Neurologically Intact Adults of all 

Ages” 
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Appendix 4: Ethical Approval of Amendments 

“Test-Retest Reliability of TMS Measures of the 

Corticospinal Pathway in Neurologically Intact 

Adults of all Ages”  
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Appendix 5: Consent Form 

  



 

 270 
 

Appendix 6: Recruitment Poster  
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Appendix 7: Participant Information Sheet 

 Participant Information Sheet  

Participant Information Sheet version 3.0 associated with protocol version 3.0 dated 

30 April 2014  

Participant Information Sheet  

Title of Project: The reliability of brain-muscle-connectivity across the lifespan  

  

Researchers: Kathryn Collins, PhD Student   

            Professor Valerie Pomeroy  

            Dr. Niamh Kennedy  

            Dr. Allan Clark  

  

We would like to invite you to take part in this project.  Before you decide we would like 

you understand why the research is being done and what it would involve.  We will go 

through the information sheet with you and answer any questions you may have.  This 

will take about 10 minutes.   

You may discuss the research with others and take time to decide if you would like to 

take part.   

Taking part in the research is completely voluntary.  

 •  What is the purpose of the project?  

  

This project is part of a PhD thesis, looking at the connection between your brain 

and your muscles.  The brain-muscle connection provides smooth arm movement 

which allows you to complete everyday tasks such as eating and dressing.  When 

we learn new activities our brain form new connections, these connections can be 

measured though the assessment of the brain-muscle connection.  .    
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The brain-muscle connection can be measured using Transcranial Magnetic 

Stimulation (TMS).  TMS is a painless brain stimulation technique; it involves, a 

magnetic impulse given over the scalp, the response is measured at the muscles  

 

 

of your arm and hand.  The muscle response is measured by placing electrodes 

on the skin over the muscles.    

It is important that any measurement tool must be reliable.  Reliability is a 

measure of day to day change or stability of a measurement. The reliability of 

TMS has been studied in the healthy population of mainly younger adults 

demonstrating good results.  Recent research has found many factors may 

influence the brain-muscle connection for example aging, time of day, exercise, 

caffeine, and smoking.  As age and other factors may influence the brain-muscle 

connection the results in the younger adults may not be relevant to individuals of 

all ages.     

 

By looking at the reliability within individuals of all ages it can provide knowledge 

on how reliability changes with age or the influence of the other factors. The 

results will provide a comparison to those older adults who have had a stroke.  

This project aims to determine the reliability of brain-muscle connection 

measurement across the lifespan, and determine if the brain muscle connection 

is influenced by factors such as age, physical activity, caffeine, & smoking.  

• Why have I been invited?  

  

• You have been invited because you are a healthy adult who is at least 18 

years of age and has expressed interest in the research.  If you decide to 

take part you will be one of 51 participants in the study.  

  

• Do I have to take part?  

  

• It is up to you to decide to take part.  Participation is voluntary and you do 

not have to participate.  We will describe the assessments and go through 

this information sheet.  If you agree to take part, we will then ask you to 

sign a consent form.  You are free to withdraw from this research at any 

time without giving a reason.  

  

• What will happen to me if I take part?  
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• Once you have shown interest in the project you will be contacted by the 

researcher.  We will go through the participant information sheet and 

answer any questions you may have.  If you would like to continue and 

are suitable for the project then we will arrange a convenient time for you 

to attend the Movement Laboratory in the Medical School Building at the 

University of East Anglia, UEA.    

 

 

• Please see the map at the end of this participant information sheet, or you 

can find a map at www.uea.ac.uk .  The Medical School building has been 

circled (K, 17).  If you plan to drive you will be given a permit to park in the 

car park behind the Medical School building.  

• This project will require you to attend 2 sessions between 5 and 7 days 

apart at the Movement Laboratory within the Medical School Building at 

UEA.  Each session will last approximately 60 minutes.  

• When you arrive at the lab we will review the procedures and equipment 

and answer any questions you may have.  If you are suitable and happy to 

proceed with the experiment we will obtain written informed consent 

before initiating the experiment.   

  

 Am I suitable to take part in the experiment?  

• I am a healthy (no known neurological condition) adult at least 18 

years of age.   

• The following questions are to determine if you are suitable to participate 

in TMS.    

• If you have any implanted metal you will not be able to participate in 

this project.  

  

 

Medical Screening Questions   

  

1. Do you have a heart pacemaker, artificial heart valves, pacing wires or 

defibrillator?  

2. Do you have any implanted devices (e.g. programmable hydrocephalus 

shunt; nerve stimulator; cochlear implant; aneurysm clip; insulin, drug or 

infusion pump)?  

3. Have you had any surgery to your head (including ears/eyes/brain), neck or 

spine?  

4. Have you ever sustained any injuries involving metal to the eyes or any other 

part of the body?  

5. Have you ever had a fit or blackout, or do you have epilepsy?  

6. Are you pregnant?   
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If you answered yes to any of the above questions you will be asked to not take 

part in the project.  If you are unsure or have any questions please ask the 

researcher.   
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• What will happen during the experiment?  

                                                   Flow Chart of Sessions  

    

 

Session 1 

Assessment of brain-muscle connectivity 

via transcranial magnetic stimulation 

(TMS) (detailed below), will take 40-50 

minutes 

Assessment of hand function with the 

Nine Hole Peg Test (below), will take < 5 

minutes 

Lifestyle and biological factors 

questionnaire (detailed below) will take 

less than 5 minutes  

5-7 days 

Session 2 

Assessment of brain muscle connectivity 

via Transcranial Magnetic Stimulation 

(TMS) identical to the TMS completed at 

session 1 (detailed below) will take 40-50 

minutes 

Lifestyle and biological factors 

questionnaire (detailed below) will take 

less than five minutes  



 

The reliability of brain-muscle connectivity across the lifespan, Form version 3.0, 30 April 2014  

 276 

 

           

Transcranial Magnetic Stimulation- timing 40-50 minutes  

• In order to assess brain muscle connectivity we will use Transcranial 

Magnetic Stimulation, TMS, the response will be measured at the muscle 

using electrodes (see photo 2)  

  

• Transcranial Magnetic Stimulation is an assessment involving the use of a 

device for producing pain-free stimulation of the areas of the brain that 

control movement.  In response to this stimulation, muscles of the body 

generate a natural brief contraction. This muscle activity can be recorded 

from muscles with electrodes using a method called electromyography 

(EMG). The examination of the EMG muscle recordings following TMS 

can provide information on how well signals sent from the brain connect to 

muscles in the arm and hand.    

  

                                                                      Photo 1  

  
                                                           A participant receiving TMS  

  

• Throughout the experiment you will be seated comfortably in chair.  

  

• The first step involves cleansing the skin over the muscles of your arm, 

forearm and hand.  This is done with a recommended gel, wiping it, and 

letting it dry.    

  

• Once the skin is dry adhesive electrodes will be placed on the skin over 

the muscles of your arm, forearm and hand.  These electrodes send 

signals via wires to the computer about your muscle activity during TMS.  

You will not feel anything from the electrodes during the experiment.    
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                                                                              Photo 2  

  
                                                       Electrode placement on the arm  

  

• You will then be asked to make three maximum effort contractions of a 

muscle in your arm, forearm, and hand.  This contraction will be used to 

determine the strength of the contraction that will be used throughout the 

assessment.  

  

• Next we will use TMS to investigate the connection between the brain and 

muscle, and measure the response at your muscle while you maintain a 

slight muscle contraction.  This will be repeated for the muscles of your 

arm, forearm and hand.   

The stimulation is painless.  You can stop stimulation at any time.   

Clinical Assessment- timing less than 10 minutes  

•  Nine Hole Peg Test- timing 5 minutes o To assess dexterity 

(coordination of your fingers) you will complete the Nine Hole Peg 

Test.  This involves taking pegs one at a time from a container and 

placing them into holes, then returning the pegs one at a time to the 

container.  This will be completed with each hand.  

                                                                 Photo 3  

                  

 

 

 

 

 

                              

                                      A participant completing the Nine Hole Peg Test  
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Questionnaire- timing 5 minutes 

• Finally, you will be asked to complete a questionnaire about lifestyle and 

biological factors that previous research has found to influence brain-

muscle connectivity.  This will take less than 5 minutes; if you need 

assistance completing the questionnaire the researcher will assist you.    

 

If you require transportation to the Movement Lab at UEA a taxi will be arranged for 

you at no cost.  

  

 What are the possible disadvantages and risks of taking part?  

  

• The researchers do not anticipate any major disadvantages to taking part 

in this project.   

  

• There is a small risk that you may experience discomfort from the 

stimulation.  The stimulation can be stopped at any time.  If you would like 

the experiment to stop tell the researcher and the experiment will end.    

  

 What will happen if I don’t want to carry on with the study?  

• You may stop the experiment at any time, simply ask the researcher to 

stop.  You do not need to provide a reason.  

  

• You may withdraw from the study at any time without giving a reason..    

  

 What are the benefits to taking part in the research?  

  

• Your data and information will help us better understand brain-muscle 

connectivity across the lifespan, and how lifestyle and biological factors 

may influence the connection.  

  

 What may prevent me from taking part?  

  

• You will complete a medical history screening questionnaire to determine 

if you are suitable for TMS.  If you have implanted metal, a pacemaker, 

other implanted devices or conditions such as epilepsy it is recommended 

that you do not have brain stimulation.  Individuals with a skin condition 

such as eczema cannot participate due to the skin preparation used in 

EMG.    
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 Will my participation in the project be kept confidential?  

  

• All of the information and data collected will be anonymous and kept 

confidential.   

• Your name or other identifiable information will not be used on any of the 

forms.     

• You will be given a unique ID number that only the researchers can match 

with your name.  The data will be stored in a locked cabinet in which only 

the researchers have  access to.  All data from the muscle recordings will 

be kept securely on a laptop with a passcode that only the researchers 

have access to.  The only time confidentiality may be broken is if you tell 

us something that may cause us concern for your welfare.  According to 

UEA Faculty of Medicine and Health guidelines, data will be stored 

securely for five years.  

  

 What will happen to the results of the project?  

  

• This project is part of a PhD thesis and will be written up by the PhD 

student.  The results may be published in academic journals and 

presented at professional conferences.  All data will remain confidential 

and individuals will not be identifiable if the results are published.  You can 

receive feedback on the projects findings by request.  

  

 What if any issues arise during my involvement in the project that causes 

me concern?  

  

• If you have a concern or issue during the assessments you should ask to 

speak to your researcher who will answer any questions or find someone 

who can.    

• You may also contact Nick Leavey; his contact details are:  

Nick Leavey, School of Rehabilitation Sciences  

University of East Anglia  

Norwich Research Park  

Norwich   

NR4 7TJ  

Phone:  01603 591263  

Email: n.leavey@uea.ac.uk  

 Participation in this research is voluntary, and completely up to you; you may withdraw 

at any time without giving a reason.  

Thank you for taking the time to read this.  



 

The reliability of brain-muscle connectivity across the lifespan, Form version 3.0, 30 April 2014  

 280 

 

If you have any further questions please contact:  

Kathryn Collins  

School of Rehabilitation Sciences  

University of East Anglia  

Phone: 01603 593093  

Email: Kathryn.collins@uea.ac.uk   
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Appendix 8: Health Screening Questionnaire  

 

 

 

 

Medical Screening Questionnaire  

Please answer the following questions.  When you are finished the researcher will go over the 

answers with you.  

Thank you. 

 

Question Yes No 

1. Do you have a heart pacemaker, artificial heart valves, 

pacing wires or defibrillator? 

  

2. Do you have any implanted devices (e.g. programmable 

hydrocephalus shunt; nerve stimulator; cochlear 

implant; aneurysm clip; insulin, drug or infusion 

pump)? 

  

3. Have you had any surgery to your head (including 

ears/eyes/brain), neck or spine? 

  

4. Have you ever sustained any injuries involving metal to 

the eyes or any other part of the body? 

  

5. Have you ever had a fit or blackout, or do you have 

epilepsy? 

  

6. Have you ever had an MRI?   

7. Are you pregnant?    

 

 

 

  



 

282 
 

Appendix 9: Lifestyle and Environmental Factors 

Questionnaire 
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Appendix 10: Tables of MEP Amplitude Subgroup 

Analysis 

Table 43 - Reliability of Active MEP Amplitude of Dominant Biceps - Resting Conditions 

Participant subgroup 
% of 
RMT 

ICC     (95% CI) 95% LOA 
Reliability 
Category 

Whole group n=27 90 -0.056 (0, 0.225) -1.198 to 1.861 Poor 

Women n=17 90 -0.018 (0, 0.351) -0.867 to 1.197 Poor 

Men n=20 90 -0.137, (0, 0.331) -1.439 to 2.586 Poor 

≥  50 years of age =8 90 0.126, (0, 0.551) -0.770 to 1.649 Poor 

≤ 49 years of age n=29 90 -0.140, (0, 0.229) -1.253 to 2.170 Poor 

Exercisers n=29 90 -0.179, (0, 0.146) -1.251 to 2.010 Poor 

Non-exercisers n=8 90 0.124, (0, 0.710) -0.504 to  0.616 Poor 

Whole group n=36 100 -0.058 (0, 0.218) 
-1.9269842 to 
2.7274501 

Poor 

Women n=21  100 0.002, (0, 0.369) -1.875 to 2.375 Poor 

Men n=15 100 -0.155, (0, 0.279) -1.998 to 3.139 Poor 

≥  50 years of age =11 100 0.251, (0, 0.652) -1.423 to  2.315 Poor 

≤ 49 years of age n=25 100 -0.220, (0, 0.130) -2.038 to  3.108 Poor 

Exercisers n=25 100 -0.204, (0, 0.121) -2.071 to 3.037  Poor 

Non-exercisers n=11 100 0.121, (0, 0.647) -0.396 to  0.479 Poor 

Whole group n=38 110 0.139, (0, 0.403) -1.833 to 2.357 Poor 

Women n=23 110 0.174 (0, 0.514) -0.938 to 1.477 Poor 

Men n=16 110 0.096, (0, 0.500) -2.765 to  3.268 Poor 

≥  50 years of age =10 110 0.353, (0, 0.711) -1.023 to  1.852 Poor 

≤ 49 years of age n=28 110 0.097, (0, 0.427) -1.943 to  2.640 Poor 

Exercisers n=27 110 0.102, (0, 0.405) -1.914 to  2.724 Poor 

Non-exercisers n=11 110 0.201, (0, 0.708) -1.180 to 0.935 Poor 

Whole group n= 38 120 -0.076, (0, 0.214) -2.001 to 2.757 Poor 

Women n=21 120 -0.131, (0, 0.242) -1.795 to 2.535 Poor 

Men n=17 120 0.129, (0, 0.569) -2.477 to 3.262 Poor 

≥ 50 years of age n=7 120 0.692, (0.212, 0.898) -0.890 to 0.558 Poor 

≤ 49 years of age n=31 120 -0.181, (0, 0.175) -2.072 to  3.173 Poor 

Exercisers n=28 120 -0.107, (0, 0.213) -2.118 to 3.294 Poor 

Non-exercisers n=10 120 0.648, (0.123, 0.897) -1.087 to  0.908 Poor 

Whole group n=22  130 -0.005 (0, 0.336) -2.188 to 2.115 Poor 

Women n= 10 130 -0.119 (0,0.325) -1.896 to 2.365 Poor 

Men n=12 130 0.451, (0, 0.804) -2.417 to 1.081 Poor 

≥ 50 years of age n=4 130 0.791, (0, 0.948) -0.452 to  0.928 Poor 

≤ 49 years of age n=18 130 -0.078, ( 0, 0.330) -2.103 to  2.362 Poor 

Exercisers n=15 130 -0.196, (0, 0.190) -2.568 to 2.638 Poor 
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Participant subgroup 
% of 
RMT 

ICC     (95% CI) 95% LOA 
Reliability 
Category 

Non-exercisers n=7 130 0.550, (0, 0.936) -1.162 to  0.823 Poor 
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Table 44 - Reliability of Active MEP Amplitude of Dominant Biceps - Active Conditions 
20% MVC 

Participant subgroup 
% of 
AMT 

ICC     (95% CI) 95% LOA 
Reliability 
Category 

Whole group n=51 100 0.426, (0.173, 0.626) -1.606 to 1.428 Poor 

Women n= 30 100 0.578 (0.283, 0.774) -1.917 to 1.746 Poor 

Men n=21 100 0.237, (-0.225, 0.604) -1.148 to 0.960 Poor 

≥  50 years of age 
n=17 

100 0.196, (-0.316, 0.606) -0.997 to  0.964 Poor 

≤ 49 years of age n=34 100 0.405, (0.079, 0.654) -1.701 to 1.543 Poor 

Exercisers n=40 100 0.444, (0.158, 0.661) -1.579 to 1.493 Poor 

Non-exercisers n=11 100 0.233, (-0.471, 0.724) -1.714 to  1.236 Poor 

Whole group n= 51 110 0.465 (0.223, 0.654) -2.168 to 1.533 Poor 

Women n=30 110 0.559 (0.234, 0.767) -2.441 to 1.803 Poor 

Men n=21 110 0.320, (-0.123, 0.655) -1.817 to 1.187 Poor 

≥  50 years of age 
n=17 

110 0.392, (-0.083, 0.720) -1.027 to  0.732 Poor 

≤ 49 years of age n=34 110 0.426, (0.115, 0.664) -2.304 to 1.648 Poor 

Exercisers n=40 110 0.443, (0.165, 0.658) -1.919 to 1.559 Poor 

Non-exercisers n=11 110 0.564, (-0.031, 0.863) -2.759 to  1.229 Poor 

Whole group n= 51 120 0.453, (0.209, 0.645) -2.771 to 1.982 Poor 

Women n=30 120 0.531 (0.214, 0.746) -3.073 to 2.312 Poor 

Men n=21 120 0.363, (-0.066, 0.680) -2.396 to 1.573 Poor 

≥ 50 years of age n=17 120 0.463, (0.008, 0.759) -2.187 to 1.234 Poor 

≤ 49 years of age n=34 120 0.425, (0.115, 0.664) -2.933 to 2.195 Poor 

Exercisers n=40 120 0.432, (0.152, 0.650) -2.649 to 2.151 Poor 

Non-exercisers n=11 120 0.525, (-0.021, 0.841) -2.989 to  1.257 Poor 

Whole group n=51 130 0.499, (0.265, 0.678) -3.091 to 2.289 Poor 

Women n= 30 130 0.573 (0.263, 0.773) -3.368 to 2.631 Poor 

Men n=21 130 0.422, (-0.005, 0.718) -2.763 to 1.882 Poor 

≥ 50 years of age n=17 130 0.591, (0.179, 0.825) -2.370 to 1.347 Poor 

≤ 49 years of age n=34 130 0.465, (0.161, 0.691) -3.283 to  2.549 Poor 

Exercisers n=40 130 0.497, (0.229, 0.697) -2.748 to 2.387 Poor 

Non-exercisers n=11 130 0.384, (-0.118, 0.769) -3.799 to  1.563 Poor 
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Table 45 - Reliability of Average MEP Amplitude of Non-Dominant Biceps - Active 
Conditions 

Participant subgroup 
% of 
AMT 

ICC     (95% CI) 95% LOA 
Reliability 
Category 

Whole group n=51 100 0.539, (0.314, 0.707) -1.599 to 1.876 Poor 

Women n= 30 100 0.353, (-0.011, 0.632) -2.013 to 2.381 Poor 

Men n=21 100 0.629, (0.292, 0.830) -0.874 to 1.039 Poor 

≥  50 years of age 
n=17 

100 0.419, (-0.013, 0.728) -1.027 to 0.695 Poor 

≤ 49 years of age n=34 100 0.577, (0.293, 0.766) -1.667 to  2.131 Poor 

Exercisers n=40 100 0.573, (0.320, 0.749) -1.748 to 2.022 Poor 

Non-exercisers n=11 100 0.227, (-0.329, 0.698) -1.060 to  1.348 Poor 

Whole group n=51 110 0.526, (0.299, 0.698) -2.067 to 2.488 Poor 

Women n= 30 110 0.227, (-0.152, 0.542) -2.524 to 3.076 Poor 

Men n=21 110 0.682, (0.361, 0.858) -1.326 to  1.587 Poor 

≥  50 years of age 
n=17 

110 0.337, (-0.091, 0.676) -1.136 to 0.786 Poor 

≤ 49 years of age n=34 110 0.568, (0.282, 0.761) -2.184 to  2.842 Poor 

Exercisers n=40 110 0.560, (0.304, 0.740) -2.237 to 2.761 Poor 

Non-exercisers n=11 110 0.112, (-0.432, 0.632) -1.318 to  1.407 Poor 

Whole group n=51 120 0.626, (0.428, 0.767) -2.141 to 2.665 Poor 

Women n= 30 120 0.425, (0.081, 0.679) -2.552 to 3.004 Poor 

Men n=21 120 0.766, (0.510, 0.898) -1.602 to 2.215 Poor 

≥ 50 years of age n=17 120 0.483, (0.059, 0.766) -1.001 to 0.908 Poor 

≤ 49 years of age n=34 120 0.649, (0.400, 0.809) -2.323 to  3.036 Poor 

Exercisers n=40 120 0.657, (0.438, 0.802) -2.277 to 2.855 Poor 

Non-exercisers n=11 120 0.254, (-0.239, 0.700) -1.688 to  2.038 Poor 

Whole group n=51 130 0.493, (0.258, 0.674) -3.024 to 3.870 Poor 

Women n= 30 130 0.222, (-0.142, 0.534) -3.512 to 4.241 Poor 

Men n=21 130 0.712, (0.420, 0.871) -2.426 to 3.413 Poor 

≥ 50 years of age n=17 130 0.456, (0.036, 0.749) -2.349  to 2.716 Poor 

≤ 49 years of age n=34 130 0.490, (0.185, 0.710) -3.202 to  4.195 Poor 

Exercisers n=40 130 0.463, (0.186, 0.674) -3.123 to 4.231 Poor 

Non-exercisers n=11 130 0.476, (-0.057, 0.818) -2.503 to  2.494 Poor 
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Table 46 - Reliability of Average MEP Amplitude of Dominant ECR - Resting Conditions 

Participant subgroup 
% of 
RMT 

ICC     (95% CI) 95% LOA 
Reliability 
Category 

Whole group n=42 90 0.477 (0.230, 0.667) -1.037 to 1.046 Poor 

Women n=24 90 0.431 (0.080, 0.686) -0.863 to 0.929 Poor 

Men n=18 90 0.539, (0.169, 0.780) -1.247 to  1.188 Poor 

≥  50 years of age 
n=13 

90 0.123, (0, 0.570) 0.988 to 0.914 Poor 

≤ 49 years of age n=29 90 0.529, (0.227, 0.737) -1.060 to  1.089 Poor 

Exercisers n=33 90 0.523, (0.250, 0.718) -1.034 to 0.907 Poor 

Non-exercisers n=9 90 0.163, (0, 0.682)  -0.987 to  1.382 Poor 

Whole group n=47 100 0.343 (0.075, 0.565) -1.551 to 1.351 Poor 

Women n=28 100 0.352 (0, 0.635) -1.207 to 1.033 Poor 

Men n=19 100 0.315, (-0, 0.637) -1.924 to 1.694 Poor 

≥  50 years of age 
n=15 

100 0.440, (0, 0.753) -1.673 to 1.472 Poor 

≤ 49 years of age n=32 100 0.319, (0, 0.590) -1.531 to  1.332 Poor 

Exercisers n=38 100 0.370, (0.061, 0.613) -1.127 to 0.891 Poor 

Non-exercisers n=9 100 0.288, (0, 0.731) -2.508 to  2.432 Poor 

Whole group n=49 110 0.457 (0.209, 0.650) -1.814 to 1.571 Poor 

Women n=29 110 0.452 (0.103, 0.700) -1.574 to 1.282 Poor 

Men n=20 110 0.510, (0.116, 0.767) -2.094 to 1.912 Poor 

≥  50 years of age 
n=16 

110 0.447, (-0.033, 0.758) -0.990 to 1.458 Poor 

≤ 49 years of age n=33 110 0.457, (0.140, 0.689) -1.932 to  1.677 Poor 

Exercisers n=38 110 0.497, (0.215, 0.701) -1.580 to 1.080 Poor 

Non-exercisers n=11 110 0.416, (0, 0.788) -2.130 to  2.683 Poor 

Whole group n=49 120 0.505 (0.264, 0.686) -1.856 to 1.778 Poor 

Women n=29 120 0.490 (0.165, 0.721) -1.301 to  1.175 Poor 

Men n=20 120 0.583, (0.193, 0.810) -2.384 to 2.366 Poor 

≥ 50 years of age n=16 120 0.504, (0.035, 0.788) -1.880 to 1.922 Poor 

≤ 49 years of age n=33 120 0.513, (0.210, 0.726) -2.060 to  1.951 Poor 

Exercisers n=38 120 0.487, (0.204, 0.695) -1.322 to 0.981 Poor 

Non-exercisers n=11 120 0.570, (0.043, 0.859) -2.653 to  3.386 Poor 

Whole group =46 130 0.491 (0.248, 0.676) -1.690 to 1.811 Poor 

Women n=28  130 0.549 (0.240, 0.758) -1.717 to  1.701 Poor 

Men n=18 130 0.450, (0.061, 0.728) -1.678 to 1.995 Poor 

≥ 50 years of age n=15 130 0.350, (-0.167, 0.708) -1.325 to 1.832 Poor 

≤ 49 years of age n=31 130 0.545, (0.252, 0.747) -1.805 to  1.805 Poor 

Exercisers n=35 130 0.581, (0.328, 0.756) -1.537 to 1.291 Poor 

Non-exercisers n=11 130 0.367, (-0.272, 0.779) -1.595 to  2.885 Poor 
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Table 47 - Reliability of Average MEP Amplitude of Dominant ECR - Active Conditions 

Participant subgroup 
% of 
AMT 

ICC     (95% CI) 95% LOA 
Reliability 
Category 

Whole group= 50 100 0.641 (0.445, 0.778) -3.022 to 3.321 Poor 

Women n= 30 100 0.578 (0.282, 0.774) -3.579 to 3.467 Poor 

Men n=20 100 0.808, (0.584, 0.918) -2.310 to 3.090 Moderate 

≥  50 years of age n=17 100 0.858, (0.664, 0.944) -2.043 to 3.937 Moderate 

≤ 49 years of age n=33 100 0.517, (0.211, 0.729) -3.197 to  2.993 Poor 

Exercisers n=39 100 0.593, (0.351, 0.762) -1.688 to 2.048 Poor 

Non-exercisers n=1 100 0.761, (0.358, 0.928) -5.694 to  5.798 Poor 

Whole group n=50 110 0.747 (0.596, 0.848) -2.824 to 3.069 Poor 

Women n= 30 110 0.709 (0.472, 0.850) -3.217 to 3.177 Poor 

Men n=20 110 0.842, (0.653, 0.933) -2.363 to 2.943 Moderate 

≥  50 years of age n=17 110 0.938, (0.845, 0.976) -1.527 to 3.160 Good 

≤ 49 years of age n=33 110 0.665, (0.420, 0.820) -3.103 to  2.910 Poor 

Exercisers n=39 110 0.693, (0.491, 0.825) -1.649 to 2.163 Poor 

Non-exercisers n=11 110 0.811, (0.462, 0.945) -5.343 to  4.736 Poor 

Whole group n=50 120 0.759 (0.613, 0.855) -2.878 to 3.026 Poor 

Women n= 30 120 0.733 (0.508, 0.863) -3.126 to 3.263 Poor 

Men n=20 120 0.829, (0.626, 0.927) -2.631 to  2.791 Moderate 

≥ 50 years of age n=17 120 0.820, (0.586, 0.928) -1.520 to 2.486 Moderate 

≤ 49 years of age n=33 120 0.721, (0.505, 0.852) -3.228 to  3.116 Moderate 

Exercisers n=39 120 0.734, (0.550, 0.850) -2.026 to 2.562 Moderate 

Non-exercisers n=11 120 0.765, (0.337, 0.931) -4.894 to  3.810 Poor 

Whole group n=50 130 0.763 (0.618, 0.857) -2.860 to 2.925 Moderate 

Women n= 30 130 0.723 (0.493, 0.858) -3.273 to 3.094 Poor 

Men n=20 130 0.867, (0.700, 0.944) -2.373 to 2.725 Good 

≥ 50 years of age n=17 130 0.826, (0.596, 0.931) -1.346 to 2.289 Moderate 

≤ 49 years of age n=33 130 0.720, (0.502, 0.851) -3.231 to  3.019 Moderate 

Exercisers n=39 130 0.741, (0.559, 0.854) -1.923 to 2.227 Moderate 

Non-exercisers n=11 130 0.765, (0.328, 0.931) -5.031 to  4.342 Poor 
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Table 48 - Reliability of Average MEP Amplitude of Non-Dominant ECR - Active 
Conditions 

Participant subgroup 
% of 
RMT 

ICC     (95% CI) 95% LOA 
Reliability 
Category 

Whole group n=51 100 0.510, (0.277, 0.687) -1.887 to 1.615 Poor 

Women n= 30 100 0.642, (0.373, 0.812) -1.813 to 1.729 Poor 

Men n=21 100 0.151, (0, 0.542) -1.989 to 1.488 Poor 

≥  50 years of age n=17 100 0.461, (0.010, 0.757) -1.463 to 0.949 Poor 

≤ 49 years of age n=34 100 0.523, (0.232, 0.730) -1.994 to  1.796 Poor 

Exercisers n=40 100 0.465, (0.180, 0.677) -1.640 to 1.502 Poor 

Non-exercisers n=11 100 0.629, (0.127, 0.882) -2.623 to  1.915 Poor 

Whole group n= n=51 110 0.507, (0.270, 0.685) -2.201 to 2.058 Poor 

Women n= 30 110 0.543, (0.238, 0.752) -2.177 to 2.155 Poor 

Men n=21 110 0.446, (0.026, 0.731) -2.269 to 1.977 Poor 

≥  50 years of age n=17 110 0.577, (0.180, 0.816) -2.315 to  1.651 Poor 

≤ 49 years of age n=34 110 0.502, (0.205, 0.717) -2.164 to  2.180 Poor 

Exercisers n=40 110 0.426, (0.132, 0.650) -1.903 to 1.951 Poor 

Non-exercisers n=11 110 0.729, (0.281, 0.918) -3.073 to  2.304 Poor 

Whole group n=51 120 0.556, (0.332, 0.720) -2.062 to 2.166 Poor 

Women n= 30 120 0.639, (0.371, 0.809) -1.833 to 1.981 Poor 

Men n=21 120 0.434, (0.041, 0.719) -2.359 to  2.411 Poor 

≥ 50 years of age n=17 120 0.724, (0.333, 0.893) -1.921 to 1.618 Poor 

≤ 49 years of age n=34 120 0.505, (0.200, 0.721) -2.100 to  2.330 Poor 

Exercisers n=40 120 0.416, (0.123, 0.642) -1.845 to 2.181 Poor 

Non-exercisers n=11 120 0.804, (0.418, 0.943) -2.671 to  2.024 Poor 

Whole group n=51 130 0.475, (0.230, 0.663) -2.412 to 2.476 Poor 

Women n= 30 130 0.532, (0.220, 0.745) -2.123 to 2.123 Poor 

Men n=21 130 0.365, (0, 0.677) -2.762 to 2.905 Poor 

≥ 50 years of age n=17 130 0.627, (0.199, 0.847) -1.998 to  1.930 Poor 

≤ 49 years of age n=34 130 0.437, (0.118, 0.675) -2.543 to  2.648 Poor 

Exercisers n=40 130 0.281, (0, 0.544) -2.039 to  2.399 Poor 

Non-exercisers n=11 130 0.836, (0.497, 0.953) -3.419 to  2.522 Poor 
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Table 49 - Reliability of Average MEP Amplitude of Dominant APB - Resting Conditions  

Participant subgroup 
% of 
RMT 

ICC     (95% CI) 95% LOA 
Reliability 
Category 

Whole group n=38 90 0.155, (0, 0.420) -1.948 to 2.170 Poor 

Women n= 23 90 0.135, (0, 0.472) -1.762 to 1.728 Poor 

Men n=15 90 0.215, (0, 0.598) -2.113 to 2.590 Poor 

≥  50 years of age n=14 90 -0.147, (0, 0.363) -2.555 to 2.356 Poor 

≤ 49 years of age n=24 90 0.454, (0.120, 0.694) -1.740 to  2.112 Poor 

Exercisers n=32 90 0.231, (0, 0.512) -1.925 to  2.061 Poor 

Non-exercisers n=6 90 0.298, (0, 0.769) -2.136 to  2.678 Poor 

Whole group n=46 100 0.302, (0.030, 0.535) -2.144 to 2.695 Poor 

Women n= 27 100 0.257, (0, 0.562) -1.719 to 1.708 Poor 

Men n=19 100 0.398, (0, 0.715) -2.345 to 3.511 Poor 

≥  50 years of age n=16 100 -0.030, (0, 0.450) -1.766 to 1.563 Poor 

≤ 49 years of age n=30 100 0.532, (0.232, 0.741) -2.193 to  2.981 Poor 

Exercisers n=38 100 0.202, (0, 0.481) -2.316 to  2.700 Poor 

Non-exercisers n=8 100 0.381, (0., 0.818) -1.592 to  2.675 Poor 

Whole group n=47 110 0.388, (0.125, 0.601) -2.347 to 2.777 Poor 

Women n=27 110 0.347, (0.001, 0.624) -2.138 to 2.470 Poor 

Men n=20 110 0.438, (0., 0.734) -2.628 to 3.180 Poor 

≥  50 years of age n=16 110 -0.192, (0, 0.326) -2.907 to 2.180 Poor 

≤ 49 years of age n=31 110 0.569, (0.285, 0.762) -2.067 to  2.894 Poor 

Exercisers n=37 110 0.361, (0.054, 0.606) -2.436 to  2.747 Poor 

Non-exercisers n=10 110 0.041, (0, 0.643) -2.131 to  2.952 Poor 

Whole group n=45 120 0.190, (0, 0.446) -3.520 to 3.859 Poor 

Women n= 27 120 0.086, (0, 0.433) -3.557 to 2.830 Poor 

Men n=18 120 0.394, (0, 0.708) -3.073 to 4.745 Poor 

≥ 50 years of age n=15 120 0.018, (0, 0.488) -4.021 to 3.022 Poor 

≤ 49 years of age n=30 120 0.276, (0, 0.569) -3.302 to  4.074 Poor 

Exercisers n=37 120 0.162, (0, 0.455) -3.227 to  3.525 Poor 

Non-exercisers n=8 120 0.026, (0, 0.615) -4.602 to  5.084 Poor 

Whole group n=40  130 0.427, (0.159, 0.636) -3.242 to 3.240 Poor 

Women n= 24 130 0.354, (0, 0.641) -3.285 to 2.622 Poor 

Men n=16 130 0.537, (0.110, 0.794) -2.996 to 3.986 Poor 

≥ 50 years of age n=13 130 0.716, (0.357, 0.893) -3.914 to 2.317 Poor 

≤ 49 years of age 

n=27 

130 0.301, (0, 0.586) -2.827 to  3.430 Poor 

Exercisers n=33 130 0.432, (0.134, 0.658) -2.685 to  2.500 Poor 

Non-exercisers n=7 130 0.152, (0, 0.723) -4.925 to  5.656 Poor 
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Table 50 - Reliability of Average MEP Amplitude of Dominant APB – Active Conditions  

Participant subgroup 
% of 
RMT 

ICC     (95% CI) 95% LOA 
Reliability 
Category 

Whole group n=47 100 0.126, (-0.136,0.377) -2.214 to 2.967 Poor 

Women n= 27 100 0.148 (-0.196, 0.469) -1.860 to  2.410 Poor 

Men n=20 100 0.022, (-0.394, 0.437) -2.598 to  3.602 Poor 

≥  50 years of age 
n=16 

100 -0.007, (-0.426, 0.436) -1.615 to 2.310 Poor 

≤ 49 years of age 
n=31 

100 0.215, (-0.122, 0.512) -2.412 to  3.184 Poor 

Exercisers n=39 100 0.016, (-0.289, 0.320) -1.741 to  2.185 Poor 

Non-exercisers n=8 100 0.360, (-0.192, 0.765) -3.107 to  4.870 Poor 

Whole group n=48 110 0.441, (0.191, 0.638) -2.783 to 3.092 Poor 

Women n= 27 110 0.397 (0.047, 0.660) -2.808 to 2.697  Poor 

Men n=21 110 0.531, (0.130, 0.780) -2.719 to 3.569 Poor 

≥  50 years of age 
n=16 

110 0.349, (-0.110, 0.691) -2.203 to 2.167 Poor 

≤ 49 years of age 
n=32 

110 0.483, (0.167, 0.708) -2.955 to  3.379 Poor 

Exercisers n=40 110 0.358, (0.051, 0.602) -2.586 to  2.560 Poor 

Non-exercisers n=8 110 0.673, (0.174, 0.899) -3.156 to  4.737 Poor 

Whole group n=49 120 0.325 (0.053, 0.551) -4.011 to 4.010 Poor 

Women n= 28 120 0.381 (0.022, 0.651) -3.907 to 4.094 Poor 

Men n=21 120 0.193, (-0.273, 0.576) -4.219 to 3.987 Poor 

≥ 50 years of age 
n=16 

120 0.101, ( -0.347, 0.524) -3.512 to 2.642 Poor 

≤ 49 years of age 
n=33 

120 0.432, (0.113, 0.672) -4.127 to  4.408 Poor 

Exercisers n=40 120 0.304, (-0.011, 0.562) -3.609 to  3.644 Poor 

Non-exercisers n=9 120 0.233, (-0.467, 0.724) -5.403 to  5.275 Poor 

Whole group n=49 130 0.306, (0.034, 0.536) -4.498 to 4.163 Poor 

Women n= 28 130 0.356 (-0.004, 0.633) 4.515 to 4.381 Poor 

Men =21 130 0.208, (-0.257, 0.586) -4.563 to 3.981 Poor 

≥ 50 years of age 
n=16 

130 0.245, (-0.252, 0.634) -4.868 to 3.231 Poor 

≤ 49 years of age 
n=33 

130 0.344, (0.011, 0.610) -4.344 to  4.431 Poor 

Exercisers n=40 130 0.218, (-0.103, 0.496) -4.137 to  4.029 Poor 

Non-exercisers n=9 130 0.414, (-0.217, 0.800) -5.800 to  4.680 Poor 
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Table 51 - Reliability of Average MEP Amplitude of Non-Dominant APB – Active 
Conditions 

Participant subgroup % of 
RMT 

ICC     (95% CI) 95% LOA Reliability 
Category 

Whole group n=47 100 0.459 (0.213, 0.652) -3.179 to 3.787 Poor 

Women n= 27 100 0.588 (0.286, 0.783) -2.994 to 3.970 Poor 

Men n=20 100 0.098, (0, 0.504) -3.427 to 3.614 Poor 

≥  50 years of age 
n=17 

100 0.485, (0.064, 0.766) -2.896 to  3.545 Poor 

≤ 49 years of age 
n=30 

100 0.448, (0.119, 0.688) -3.312 to  3.907 Poor 

Exercisers n=37 100 0.660, (0.441, 0.805) -2.357 to  2.914 Poor 

Non-exercisers n=10 100 -0.096, (0, 0.536) -5.353 to  6.138 Poor 

Whole group n=48 110 0.280 (0.011, 0.513) -4.452 to 5.581 Poor 

Women n= 28 110 0.320,(0, 0.600) -4.618 to 6.181 Poor 

Men n=20 110 0.335, (0, 0.655) -4.313 to 4.968 Poor 

≥  50 years of age 
n=16 

110 0.419, (0, 0.733) -4.637 to 5.484 Poor 

≤ 49 years of age 
n=32 

110 0.205, (0, 0.510) -4.470 to  5.677 Poor 

Exercisers n=39 110 0.406, (0.118, 0.634) -4.081 to  5.097 Poor 

Non-exercisers n=10 110 0.047, (0, 0.625) -5.695 to  7.182 Poor 

Whole group n=49 120 0.506 (0.272, 0.685) -3.929 to 5.282 Poor 

Women n= 28 120 0.533 (0.113, 0.772) -4.079 to 4.956 Poor 

Men n=21 120 0.529, (0.155, 0.775) -3.803 to 5.696 Poor 

≥ 50 years of age 
n=17 

120 0.750, (0.440, 0.899) -3.645 to 4.150 Poor 

≤ 49 years of age 
n=32 

120 0.375, (0.045, 0.634) -4.015 to  5.627 Poor 

Exercisers n=38 120 0.462, (0.184, 0.674) -3.948 to  5.341 Poor 

Non-exercisers n=11 120 0.605, (0.035, 0.877) -4.085 to  5.306 Poor 

Whole group n=49 130 0.549 (0.324, 0.716) -4.311 to 5.136 Poor 

Women n= 28 130 0.589 (0.281, 0.786) -4.730 to  4.999 Poor 

Men n=21 130 0.489, (0.087, 0.755) -3.860 to 5.314 Poor 

≥ 50 years of age 
n=17 

130 0.829, (0.560, 0.935) -4.949 to 5.076 Moderate 

≤ 49 years of age 
n=32 

130 0.392, (0.050, 0.650) -4.166 to  5.203 Poor 

Exercisers n=39 130 0.495, (0.223, 0.697) -3.991 to  5.141 Poor 

Non-exercisers n=10 130 0.751, (0.290, 0.927) -5.413 to  5.171 Poor 
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Appendix 11: Bland Altman Plots of MEP Amplitude 

Figure 57 – Bland-Altman Plots for the Dominant Biceps Muscle Average MEP Amplitude during Resting Conditions 

A B C 

 

                                                                                                                                                                                                                                       
 
 
                                                                                                                                                                               
Figure 57A,B,& C - Bland-Altman Plots of the average MEP amplitude of the biceps muscle during resting conditions 90% RMT to 110% RMT.  The x axis is the average 
MEP amplitude measured in mv of session 1 and session 2 plotted against the difference in average MEP amplitude (mv) between session 1 minus session 2.   The red 
line is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A demonstrates a potential association between magnitude of MEP and 
agreement between sessions.  Plots B and C demonstrate that with increasing amplitude there is a greater differences in amplitude between sessions.  MEP= motor 
evoked potential, RMT=resting motor threshold  

Figure 57A. Bland-Altman plot of the average MEP 
amplitude for the dominant biceps 90% of RMT 
n=27 

Figure 57B. Bland-Altman plot of the average MEP 
amplitude for the dominant biceps at 100% RMT 
n=36 

Figure 57C. Bland-Altman plot of the average MEP 
amplitude of the dominant biceps at 110% RMT 
n=38 
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Figure 58 - Bland Altman Plots for the Dominant Biceps Muscle Average MEP Amplitude during Resting Conditions 

 A B 

 

                                                                                                                                                                                                                                       
 
 
 
 
                                                                                                                                                                                
Figure 58A & B - Bland-Altman Plots of the average MEP amplitude of the biceps muscle during resting conditions 120% RMT to 130% RMT.  The x axis is the average 
MEP amplitude measured in mv of session 1 and session 2 plotted against the difference in average MEP amplitude (mv) between session 1 minus session 2.   The red 
line is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A and B demonstrate a potential association that as amplitude increases 
the difference in measurement between sessions increases.  MEP= motor evoked potential, RMT=resting motor threshold  
  

Figure 58A. Bland-Altman plot of the average MEP 
amplitude of the dominant biceps muscle at 120% 
RMT n=38 

Figure 58B. Bland-Altman plot of the average MEP 
amplitude of the dominant biceps muscle at 130% 
RMT n=22 
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Figure 59 - Bland-Altman Plots for the Dominant Biceps Muscle Average MEP Amplitude during Active Conditions 

 A B 

 

                                                                                                                                                                                                                                       
 
 
 
                                                                                                                                                                                
Figure 59A & B - Bland-Altman Plots of the average MEP amplitude of the biceps muscle during active conditions (20%MVC) at 100% and 110% of AMT.  The x axis is 
the average MEP amplitude measured in mv of session 1 and session 2 plotted against the difference in average MEP amplitude (mv) between session 1 minus session 
2.   The red line is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A and B demonstrate a potential association that as amplitude 
increases the difference in measurement between sessions increases.   MEP= motor evoked potential, AMT=Active motor threshold. 
 

  

Figure 59 A. Bland-Altman plot of the average MEP 
amplitude of the dominant biceps muscle at 100% 
AMT n=51 

Figure 59 B. Bland-Altman plot of the average MEP 
amplitude of the dominant biceps muscle at 110% 
RMT n=51 
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Figure 60 - Bland-Altman Plots for the Dominant Biceps Muscle Average MEP Amplitude during Active Conditions 

 A B 

 

                                                                                                                                                                                                                                       
 
 
 
 
                                                                                                                                                                                
Figure 60 A & B - Bland-Altman Plots of the average MEP amplitude of the biceps muscle during active conditions (20%MVC) at 100% and 110% of AMT.  The x axis is 
the average MEP amplitude measured in mv of session 1 and session 2 plotted against the difference in average MEP amplitude (mv) between session 1 minus session 
2.   The red line is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A and B demonstrate a potential association that as amplitude 
increases the difference in measurement between sessions increases.  MEP= motor evoked potential, AMT=Active motor threshold. 
 

  

Figure 60A. Bland-Altman plot of the average MEP 
amplitude of the non-dominant biceps muscle 
during 100% AMT n=51 

Figure 60B. Bland-Altman plot of the average MEP 
amplitude of the non-dominant biceps muscle 
during 110% AMT n=51 
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Figure 61 - Bland-Altman Plots of the Non-Dominant Biceps Muscle Average MEP Amplitude during Active Conditions 

 A B 

 

 

                                                                                                                                                                                                                                       
 
 
Figure 61 A & B - Bland-Altman Plots of the average MEP amplitude of the biceps muscle during active conditions (20%MVC) at 120% and 130% of AMT.  The x axis is 
the average MEP amplitude measured in mv of session 1 and session 2 plotted against the difference in average MEP amplitude (mv) between session 1 and session 2.   
The red line is the mean difference in average MEP amplitude between session 1 minus session 2.  Plot A and B demonstrate a potential association that as amplitude 
increases the difference in measurement between sessions increases.  MEP= motor evoked potential, AMT=Active motor threshold. 
 

  

Figure 61 A. Bland-Altman plot of the average MEP 

amplitude of the non-dominant biceps during 120% 

AMT n=51 

Figure 61 B. Bland-Altman plot of the average MEP 

amplitude of the non-dominant biceps during 130% 

AMT n=51 
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Figure 62 - Bland-Altman Plots of Dominant Extensor Carpi Radialis Average MEP Amplitude during Resting Conditions 

A B C  

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 62 A,B,& C - Bland-Altman Plots of the average MEP amplitude of the biceps muscle during resting conditions 90% RMT to 110% RMT.  The x axis is the average 
MEP amplitude measured in mv of session 1 and session 2 plotted against the difference in average MEP amplitude (mv) between session 1 and session 2.   The red line 
is the mean difference in average MEP amplitude between session 1 minus session 2.  Plots A, B, and C demonstrate a potential association that as amplitude increases 
the difference in measurement between sessions increases.  MEP= motor evoked potential, RMT=resting motor threshold, ECR=extensor carpi radialis  
 

  

Figure 62 A. Bland-Altman plot of the average MEP 
amplitude of dominant ECR during 90% RMT n=42 

Figure 62 B. Bland-Altman plot of the average MEP 
amplitude of dominant ECR during 100% RMT 
n=47 

Figure 62 C. Bland-Altman plot of the average 
MEP amplitude of dominant ECR during 110% 
RMT n=49 
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Figure 63 - Bland-Altman Plots of the Dominant Extensor Carpi Radilais Average MEP Amplitude during Resting Conditions 

 A B 

 

 

                                                                                                                                                                                                                                       
 
 
Figure 63 A & B - Bland-Altman Plots of the average MEP amplitude of the ECR muscle during resting conditions 120%, 130% RMT.  The x axis is the average MEP 
amplitude measured in mv of session 1 and session 2 plotted against the difference in average MEP amplitude (mv) between session 1 and session 2.   The red line is 
the mean difference in average MEP amplitude between session 1 minus session 2.  Plots A and B demonstrate a potential association that as amplitude increases the 
difference in measurement between sessions increases.  MEP= motor evoked potential, RMT=resting motor threshold, ECR=extensor carpi radialis 
  

Figure 63 A. Bland-Altman plot of the average MEP 

amplitude of the dominant ECR during 120% RMT 

n=49 

Figure 63 B. Bland-Altman plot of the average MEP 

amplitude of the dominant ECR during 120% AMT 

n=46 
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Figure 64 - Bland-Altman Plots of the Non- Dominant Extensor Carpi Radilais Average MEP Amplitude during Active Conditions 

 A B 

 

 

                                                                                                                                                                                                                                       
 
                                                                                                                                                                            
Figure 64 A & B - Bland-Altman Plots of the average MEP amplitude of the ECR muscle during active conditions (20%MVC) at 100% and 110% of AMT.  The x axis is the 
average MEP amplitude measured in mv of session 1 and session 2 plotted against the difference in average MEP amplitude (mv) between session 1 and session 2.   
The red line is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A and B demonstrate a potential association that as amplitude 
increases the difference in measurement between sessions increases.  MEP= motor evoked potential, AMT=Active motor threshold, ECR=extensor carpi radialis 
  

Figure 64 A. Bland-Altman plot of the average MEP 

amplitude of the non-dominant ECR during 100% 

AMT n=51 

Figure 64 B. Bland-Altman plot of the average MEP 

amplitude of the non-dominant ECR during 110% 

AMT n=51 



 

3
0
1
 

 

Figure 65 - Bland-Altman Plots of the Non-Dominant Extensor Carpi Radilais Average MEP Amplitude during Active Conditions 

 A B 

 

 

                                                                                                                                                                                                                                       
 
                                                                                                                                                                                
Figure 65 A & B - Bland-Altman Plots of the average MEP amplitude of the ECR muscle during active conditions (20%MVC) at 120% and 130% of AMT.  The x axis is the 
average MEP amplitude measured in mv of session 1 and session 2 plotted against the difference in average MEP amplitude (mv) between session 1 and session 2.   
The red line is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A and B demonstrate a potential association that as amplitude 
increases the difference in measurement between sessions increases MEP= motor evoked potential, AMT=Active motor threshold, ECR=extensor carpi radialis. 
 

  

Figure 65 A. Bland-Altman plot of the average MEP 

amplitude of the non-dominant ECR during 120% 

AMT n=51 

Figure 65 B. Bland-Altman plot of the average MEP 

amplitude of the non-dominant ECR during 130% 

AMT n=51 
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Figure 66 - Bland-Altman Plots of the Dominant Abductor Pollicis Brevis Average MEP Amplitude during Resting Conditions 

 A B C 

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 66 A,B,& C - Bland-Altman Plots of the average MEP amplitude of the APB muscle during resting condition 90%, 100%, 110% RMT.  The x axis is the average 
MEP amplitude measured in mv of session 1 and session 2 plotted against the difference in average MEP amplitude (mv) between session 1 and session 2.   The red line 
is the mean difference in average MEP amplitude between session 1 minus session 2.  Plots A and B demonstrate a potential association that as amplitude increases the 
difference in measurement between sessions increases  MEP= motor evoked potential, RMT=resting motor threshold, APB=abductor pollicis brevis 

 

  

Figure 66 C. Bland-Altman plot of the average 
MEP amplitude of dominant APB during 110% 
RMT n=47 

Figure 66 B. Bland-Altman plot of the average MEP 
amplitude of dominant APB during 100% RMT 
n=46 

Figure 66 A. Bland-Altman plot of the average MEP 
amplitude of dominant APB during 90% RMT n=38 
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Figure 67 - Bland-Altman Plots of the Dominant Abductor Pollicis Brevis Average MEP Amplitude during Resting Conditions 

 A B 

 

 

                                                                                                                                                                                                                                       
 
                                                                                                                                                                                

  

 

Figure 67A. Bland-Altman plot of the average MEP 

amplitude of the dominant APB during 120% RMT 
n=45 

 
Figure 67B. Bland-Altman plot of the average 
MEP amplitude of the dominant APB during 130% 
RMT n=40 
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Figure 67 A & B - Bland-Altman Plots of the average MEP amplitude of the APB muscle during resting motor threshold 120%, 130%, RMT.  The x axis is the average 
MEP amplitude measured in mv of session 1 and session 2 plotted against the difference in average MEP amplitude (mv) between session 1 and session 2.   The red line 
is the mean difference in average MEP amplitude between session 1 minus session 2.  Plots A and B demonstrate a potential association that as amplitude increases the 
difference in measurement between sessions increases.  MEP= motor evoked potential, RMT=resting motor threshold, APB=abductor pollicis brevis 
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Figure 68 - Bland-Altman Plots of the Dominant Abductor Pollicis Brevis Average MEP Amplitude during Active Conditions 

 A B 

 

 

                                                                                                                                                                                                                                       
 
                                                                                                                                                                                

  

 

Figure 68A. Bland-Altman plot of the average MEP 
amplitude of the dominant APB during 100% AMT 
n=47 

 
Figure 68 B. Bland-Altman plot of the average 

MEP amplitude of the dominant APB during 110% 
AMT n=48 
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Figure 68A & B - Bland-Altman Plots of the average MEP amplitude of the APB muscle during active conditions (20%MVC) at 100% and 110% of AMT.  The x axis is the 
average MEP amplitude measured in mv of session 1 and session 2 plotted against the difference in average MEP amplitude (mv) between session 1 and session 2.   
The red line is the mean difference in average MEP amplitude between session 1 minus session 2.  Plots A and B demonstrate a potential association that as amplitude 
increases the difference in measurement between sessions increases  MEP= motor evoked potential, AMT=Active motor threshold, APB=abductor pollics brevis  
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Figure 69 - Bland-Altman Plots of the Dominant Abductor Pollicis Brevis Average MEP Amplitude during Active Conditions 

 A B 

 

 

                                                                                                                                                                                                                                       
 
                                                                                                                                                                                
Figure 69 A & B - Bland-Altman Plots of the average MEP amplitude of the APB muscle during active conditions (20%MVC) at 120% and 130% of AMT.  The x axis is the 
average MEP amplitude measured in mv of session 1 and session 2 plotted against the difference in average MEP amplitude (mv) between session 1 and session 2.   
The red line is the mean difference in average MEP amplitude between session 1 minus session 2.  Plots A and B demonstrate a potential association that as amplitude 
increases the difference in measurement between sessions increases MEP= motor evoked potential, AMT=Active motor threshold, APB=abductor pollicis brevis 
 

  

Figure 69 A. Bland-Altman plot of the average MEP 
amplitude of the dominant APB during 120% AMT 
n=49 

Figure 69 B. Bland-Altman plot of the average MEP 
amplitude of dominant APB during 130% AMT, 
n=49 
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Figure 70 - Bland-Altman Plots of the Non-Dominant Abductor Pollics Brevis Average MEP Amplitude during Active Conditions 

 A B 

 

 

                                                                                                                                                                                                                                       
 
                                                                                                                                                                              
Figure 70 A & B - Bland-Altman Plots of the average MEP amplitude of the APB muscle during active conditions (20%MVC) at 100% and 110% of AMT.  The x axis is the 
average MEP amplitude measured in mv of session 1 and session 2 plotted against the difference in average MEP amplitude (mv) between session 1 minus session 2.   
The red line is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A and B demonstrate a potential association that as amplitude 
increases the difference in measurement between sessions increases.  MEP= motor evoked potential, AMT=Active motor threshold, APB=abductor pollicis brevis 
 

  

Figure 70 A. Bland-Altman plot of the average MEP 
amplitude of the non-dominant APB during 100% 
AMT, n=47 

Figure 70 B. Bland-Altman plot of the average MEP 
amplitude of the non-dominant APB during 110% 
AMT, n=48 
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Figure 71 - Bland-Altman Plot of the Non-Dominant Abductor Pollics Brevis Average MEP Amplitude during Active Conditions 

 A B 

 

 

                                                                                                                                                                                                                                                                                                                                                                                                                 

 
 
Figure 71 A & B - Bland-Altman Plots of the average MEP amplitude of the APB muscle during active conditions (20%MVC) at 120% and 130% of AMT.  The x axis is the 
average MEP amplitude measured in mv of session 1 and session 2 plotted against the difference in average MEP amplitude (mv) between session 1 and session 2.   
The red line is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A and B demonstrate random error in agreement between tests 
(dispersion of dots above and below the mean difference line).  MEP= motor evoked potential, AMT=Active motor threshold, APB=abductor pollicis brevis 
 

  

Figure 71 A. Bland-Altman plot of the average MEP 
amplitude of the non-dominant APB during 120% 
AMT n=49 

Figure 71 B. Bland-Altman plot of the average MEP 
amplitude of the non-dominant APB during 130% 
AMT, n=49 
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Appendix 12 - Reliability of MEP Max with 

Subgroups 

Table 52 - MEP Max Subgroups during Active Conditions 

Dominant/Non-
Dominant 

Participant 
Group 

Participants ICC (95% CI) 95 % LOA 
Reliability 
Category 

Dominant 
Biceps 

Whole group N=51 
0.574, (0.360, 0.732) -3.243 to 2.501 

Poor 

 Women N=30 0.620, (0.340, 0.799) -2.809 to  1.920 Poor 

 Men N=21 0.530, (0.138, 0.779) -3.793 to  3.261 Moderate 

 
< 50 years of 
age 

N=33 0.535, (0.247, 0.737) -3.812 to  2.838 Poor 

 
˃ 50 years of 
age 

N=18 0.629, (0.245, 0.843) -1.935 to  1.619 Poor 

 Exercisers N=40 0.569, (0.320, 0.745) -3.434 to  2.796 Poor 

 
Non-
exercisers 

N=11 0.547, (0.016, 0.849) -2.350 to  1.230 Poor 

Non-Dominant 
Biceps  

Whole group N=33 
0.596, (0.385, 0.747) -2.968 to 3.957 

Poor 

 Women N=30 0.334, (-0.016, 0.614) -3.471 to  4.316 Poor 

 Men N=21 0.797, (0.554, 0.913) -2.215 to  3.411 Poor 

 
< 50 years of 
age 

N=33 0.627, (0.369, 0.796) -3.237 to  3.933 Poor 

 
˃ 50 years of 
age 

N=18 0.490, (0.076, 0.768) -2.492 to  4.018 Poor 

 Exercisers N=40 0.589, (0.348, 0.758) -3.319 to  4.189 Poor 

 
Non-
exercisers 

N=11 0.515, (-0.019, 0.836) -1.463 to  2.883 Poor 

Dominant ECR Whole group  0.781, (0.646, 0.869) -2.701 to 2.507 Poor 

 Women N=30 0.762, (0.557, 0.879)) -3.619 to  3.892 Poor 

 Men N=21 0.830, (0.632, 0.927) -2.581 to  1.900 Poor 

 
< 50 years of 
age 

N=33 0.747, (0.545, 0.867) -3.538 to  3.470 Poor 

 
˃ 50 years of 
age 

N=18 0.830, (0.601, 0.933) -2.903 to  2.722 Moderate 

 Exercisers N=40 0.758, (0.586, 0.864) -3.014 to  3.151 Poor 

 
Non-
exercisers 

N=11 0.814, (0.465, 0.946) -4.279 to  3.300 Poor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    



 

311 
 

Dominant/Non-
Dominant 

Participant 
Group 

Participants ICC (95% CI) 95 % LOA 
Reliability 
Category 

Non-Dominant 
ECR 

Whole group N=51 
0.451, (0.199, 0.645) -2.942 to 2.967 

Moderate 

 Women N=30 0.540, (0.229, 0.751 -2.849 to  2.479 Moderate 

 Men 
N=18 

 
0.337, (-0.101, 0.665) -3.015 to  3.606 Poor 

 
< 50 years of 
age 

N=33 0.453, (0.139, 0.685) -3.447 to  2.835 Poor 

 
˃ 50 years of 
age 

N=18 0.509, (0.090, 0.780) -1.609 to  2.803 Moderate 

 Exercisers N=39 0.359, (0.053, 0.602) -2.904 to  3.055 Moderate 

 
Non-
exercisers 

N=11 0.667, (0.137, 0.899) -3.171 to  2.735 Poor 

Dominant APB Whole group N=51 0.380, (0.118, 0.592) -4.907 to 4.522 Poor 

 Women N=30 0.386, (0.032, 0.653) -5.145 to  4.620 Poor 

 Men N=20 0.376, (-0.071, 0.693) -4.693 to  4.494 Poor 

 
< 50 years of 
age 

N=33 0.464, (0.156, 0.692) -4.943 to  3.917 Poor 

 
˃ 50 years of 
age 

N=18 
0.219, (95% CI: -0.276, 
0.617) 

-4.718 to  5.538 Poor 

 Exercisers n=40 0.322, (0.012, 0.574) -5.064 to  4.638 Poor 

 
Non-
exercisers 

N=11 0.555, (-0.070, 0.860) -4.413 to  4.212 Poor 

Non-Dominant 
APB 

Whole group N=51 
0.581, (0.367, 0.738) -4.421 to 5.349 

Moderate 

 Women N=30 0.618, (0.304, 0.805) -3.323 to  5.564 Moderate 

 Men N=20 0.530, (0.142, 0.778) -5.476 to  4.470 Poor 

 
< 50 years of 
age 

N=32 0.459, (0.132, 0.695) -5.652 to  6.000 Poor 

 
˃ 50 years of 
age 

N=18 0.815, (0.448, 0.934) -1.743 to  3.608 Poor 

 Exercisers N=38 0.516, (0.247, 0.712) -4.743 to  5.743 Poor 

 
Non-
exercisers 

N=11 0.835, (0.505, 0.953) -2.841 to  3.465 Poor 
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Table 53 - MEP Max Subgroups at Rest 

Dominant/Non-
Dominant 

Participant 
Group 

Participants ICC (95% CI) 95 % LOA 
Reliability 
Category 

Dominant 
Biceps 

Whole group 47 0.180 (-0.097, 0.436) -2.554 to 3.394 
Poor 

 Women 27 0.077, (-0.285, 0.430) -2.604 to  3.517 Poor 

 Men 20 0.301, (-0.147, 0.649) -2.569 to  3.293 Moderate 

 
< 50 years of 
age 

32 0.098, (-0.255, 0.428) -2.934 to  3.494 Poor 

 
˃ 50 years of 
age 

15 0.424, (-0.032, 0.752) -1.445 to  2.998 Poor 

 Exercisers 33 0.155, (-0.160, 0.448) -2.622 to  3.584 Poor 

 
Non-
exercisers 

14 0.290, (-0.388, 0.748) -2.405 to  2.837 Poor 

Dominant ECR  Whole group 50 0.487, (0.242, 0.673) -3.243 to 2.501 Poor 

 Women 29 0.605, (0.320, 0.792) -1.987 to  2.582 Poor 

 Men 21 0.373, (-0.016, 0.677) -3.335 to  1.996 Poor 

 
< 50 years of 
age 

33 0.420, (0.093, 0.664) -3.055 to  2.695 Poor 

 
˃ 50 years of 
age 

17 0.649, (0.251, 0.858) -1.982 to  2.100 Poor 

 Exercisers 39 0.525, (0.252, 0.720) -2.339 to  2.431 Poor 

 
Non-
exercisers 

11 0.442, (-0.133, 0.807 -3.771 to  2.588 Poor 

Dominant APB Whole group 49 0.330, (0.053, 0.559) -4.391 to 4.564 Poor 

 Women 29 0.286, (-0.094, 0.590) -4.895 to  5.106 Poor 

 Men 20 0.327, (-0.143, 0.670) -3.724 to  3.844 Poor 

 
< 50 years of 
age 

32 0.320, (-0.035, 0.601) -4.496 to  4.739 Poor 

 
˃ 50 years of 
age 

17 0.362, (-0.154, 0.715) -4.332 to  4.379 Moderate 

 Exercisers 39 0.270, (-0.051, 0.539) -4.538 to  4.240 Poor 

 
Non-
exercisers 

10 0.440, (-0.144, 0.817) -3.472 to  5.629 Poor 
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Appendix 13: Bland-Altman Plots of MEP Max Amplitude  

Figure 72 - Bland-Altman plots of Amplitude of MEP Max of the Biceps Muscle 

 A B C 

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 72 A, B, & C - Bland-Altman Plots of the 95% LOA of the amplitude of MEP max of the biceps muscle during active (20% MVC) conditions and resting conditions.   
The x axis is the average amplitude of MEP max measured in mv of session 1 and session 2 plotted against the difference in amplitude of MEP max (mv) between 
session 1 and session 2.   The red line is the mean difference in MEP max amplitude between session 1 and session 2.  Plots A, B and C demonstrate demonstrate a 
potential association that as amplitude increases the difference in measurement between sessions increases.  MEP= motor evoked potential, LOA= limits of agreement 

Figure 72 C. Bland-Altman plot of the MEP max of 
the non-dominant biceps during active conditions, 
n=51 

Figure 72 B. Bland-Altman plot of the MEP max of 
the dominant biceps during active conditions, n=51 

Figure 72 A. Bland-Altman plot of the MEP max of 
the dominant biceps during resting conditions, 
n=47 
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Figure 73 - Bland-Altman Plots of Amplitude of MEP Max of the Extensor Carpi Radialis Muscle 

 A B C 

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 73 A, B, & C - Bland-Altman Plots of MEP Max Amplitude of the ECR during active conditions (20% MVC).  The x axis is the average amplitude of MEP max 
measured in mv of session 1 and session 2 plotted against the difference in amplitude of MEP max (mv) between session 1 and session 2.   The red line is the mean 
difference in MEP max amplitude between session 1 minus session 2.  Plots A, B and C demonstrate a potential association that as amplitude increases the difference in 
measurement between sessions increases.  MEP= motor evoked potential, ECR= extensor carpi radialis 

 

  

Figure 73 C. Bland-Altman plot of the MEP max of 
the non-dominant ECR during active conditions, 
n=51 

Figure 73 B. Bland-Altman plot of the MEP max of 
the dominant ECR during active conditions, n=51 

Figure 73 A. Bland-Altman plot of the MEP max of 
the dominant ECR during resting conditions, n=50 
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Figure 74 - Bland-Altman Plots of Amplitude of MEP Max of the Abductor Pollicis Brevis 

 A B C 

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 74 A, B, & C - Bland-Altman Plots of MEP Max Amplitude of the APB during active conditions (20% MVC).  The x axis is the average amplitude of MEP max 
measured in mv of session 1 and session 2 plotted against the difference in amplitude of MEP max (mv) between session 1 and session 2.   The red line is the mean 
difference in MEP max amplitude between session 1 and session 2.  Plots A, B and C demonstrate random error in agreement between ratings.  MEP= motor evoked 
potential, APB= abductor pollicis brevis

Figure 74 C. Bland-Altman plot of the MEP max of 
the non-dominant APB during active conditions, 
n=51 

Figure 74 B. Bland-Altman plot of the MEP max of 
the dominant APB during active conditions, n=51 

Figure 74 A. Bland-Altman plot of the MEP max of 
the dominant APB during resting conditions, n=49 



 

316 
 

Appendix 14 - Reliability of the Silent Period 

Including Subgroups 

Table 54- Silent Period assessed at 130% AMT  

(next page) 
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Dominant/Non-
Dominant 

Participant 
Group 

Participants ICC (95% CI) 95 % LOA 
Reliability 
Category 

Dominant 
Biceps 

Whole group N=51 0.614, (0.412, 0.759) -47.343 to 36.131 Poor 

 Women N=30 0.480, (0.159, 0.712) -47.795 to 40.124 Poor 

 Men N=21 0.789, (0.556, 0.908) -47.424 to 32.510 Moderate 

 
< 50 years of 
age 

N=33 0.558, (0.206, 0.769) -51.416 to 35.687 Poor 

 
˃ 50 years of 
age 

N=18 0.710, (0.380, 0.881) -34.331 to 35.543 Poor 

 Exercisers N=40 0.556, (0.301, 0.737) -39.661 to 34.986 Poor 

 
Non-
exercisers 

N=11 0.788, (0.250, 0.943) -65.441 to 34.025 Poor 

Non-Dominant 
Biceps  

Whole group N=33 0.537, (0.311, 0.706) 53.809 to 46.4212 Poor 

 Women N=30 0.503, (0.184, 0.727) -50.122 to 47.764 Poor 

 Men N=21 0.588, (0.214, 0.811) -58.246 to 45.602 Poor 

 
< 50 years of 
age 

N=33 0.474, (0.166, 0.699) -54.343 to 46.409 Poor 

 
˃ 50 years of 
age 

N=18 0.657, (0.278, 0.857) -54.540 to 48.843 Poor 

 Exercisers N=40 0.570, (0.320, 0.746) -46.627 to 44.049 Poor 

 
Non-
exercisers 

N=11 0.372, (-0.310, 0.786) -73.941 to 51.689 Poor 

Dominant ECR Whole group  0.656, (0.465, 0.788) -47.725 to 46.062 Poor 

 Women N=30 0.600, (0.313, 0.787) -43.998 to 44.448 Poor 

 Men N=21 0.709, (0.408, 0.871) -53.131 to 48.853 Poor 

 
< 50 years of 
age 

N=33 0.501, (0.190, 0.719) -46.262 to 46.254 Poor 

 
˃ 50 years of 
age 

N=18 0.834, (0.611, 0.934) -54.374 to 47.295 Moderate 

 Exercisers N=40 0.672, (0.459, 0.812) -45.344 to 47.699 Poor 

 
Non-
exercisers 

N=11 0.605, (0.091, 0.873) -55.916 to 39.384 Poor 

Non-Dominant 
ECR 

Whole group N=51 0.750, (0.598, 0.850) -52.759 to 49.966 Moderate 

 Women N=30 0.767, (0.564, 0.882) -64.023 to 41.146 Moderate 

 Men 
N=20 

 
0.704, (0.389, 0.872) -60.180 to 47.163 Poor 

 
< 50 years of 
age 

N=33 0.718, (0.498, 0.851) -55.646 to 52.309 Poor 

 
˃ 50 years of 
age 

N=18 0.859, (0.668, 0.944) -45.275 to 44.113 Moderate 

 Exercisers N=39 0.788, (0.631, 0.883) -46.508 to 51.299 Moderate 

 
Non-
exercisers 

N=11 0.477, (-0.097, 0.823) -66.713 to 41.167 Poor 

Dominant APB Whole group N=51 0.647, (0.423, 0.791) -61.976 to 39.810 Poor 

 Women N=30 0.635, (0.288, 0.821) -64.023 to 41.146 Poor 

 Men N=20 0.692, (0.375, 0.865) -60.789 to 39.474 Poor 

 
< 50 years of 
age 

N=33 0.601, (0.326, 0.781) -59.740 to 39.400 Poor 

 
˃ 50 years of 
age 

N=17 0.714, (0.355, 0.888) -70.659 to 43.013 Poor 

 Exercisers n=40 0.654, (0.417, 0.805) -62.615 to 42.219 Poor 

 
Non-
exercisers 

N=11 0.623, (0.090, 0.888) -61.738 to 34.259 Poor 

Non-Dominant 
APB 

Whole group N=51 0.769, (0.589, 0.870) -69.659 to 66.889 Moderate 

 Women N=30 0.750, (0.534, 0.874) -60.852 to 60.264 Moderate 
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 Men N=20 0.443, (0.017, 0.734) -80.255 to 74.992 Poor 

 
< 50 years of 
age 

N=33 0.670, (0.415, 0.826) -72.324 to 69.296 Poor 

 
˃ 50 years of 
age 

N=18 0.527, (0.085, 0.793) -63.935 to 61.962 Poor 

 Exercisers N=38 0.613, (0.365, 0.779) -61.910 to 60.818 Poor 

 
Non-
exercisers 

N=11 0.691, (0.177, 0.907) -93.669 to 85.712 Poor 

 

Table 54- Test-retest reliability of the silent period assessed 130% AMT, with 20% MVC 

background contraction (assessed individually for each participant at each session) for 

participants based on gender, age, and participation in exercise.  The test-retest reliability was 

determined using the ICC model [2,1] and associated 95% CI, and Bland-Altman’s 95% LOA. The 

ICC is interpreted such that ICC > 0.7 is acceptable reliability, based on the lower end of the 

confidence interval. 
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Appendix 15: Bland-Altman Plots of the Silent Period 

Figure 75 - Bland-Altman Plots of the Silent Period of the Biceps Muscle during 130% AMT 

  A B 

 

 

                                                                                                                                                                                                                                       
 
 
Figure 75 A & B - Bland-Altman Plots of the silent period of the dominant (A) and non-dominant (B) biceps muscle assessed at 130% AMT.  The x axis is the average 
silent period measured in ms of session 1 and session 2 plotted against the difference in silent period in ms between session 1 minus session 2.   The red line is the 
mean difference of the silent period between session 1 and session 2.  Plots A and B demonstrate random error in agreement between tests. Note difference in scale 
between plot A and plot B.  MEP= motor evoked potential, AMT=Active motor threshold, SP=silent period, APB= abductor pollicis brevis 

 

Appendix 15: Bland-Altman Plots of the Silent 
Period 

Figure 75 A. Bland-Altman plot of the silent period 
of the dominant biceps muscle assessed at 130% 
AMT, n=51 

Appendix 15: Bland-Altman Plots of the Silent 
Period 
Figure 75 B. Bland-Altman plot of the silent period 
of the non-dominant biceps muscle assessed at 
130% AMT, n=51 
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Figure 76 - Bland-Altman Plot of the Silent Period of the Extensor Carpi Radialis 

  A B 

 

 

                                                                                                                                                                                                                                       
 
 
Figure 76 A & B - Bland-Altman Plots of the silent period of the dominant (A) and non-dominant (B) ECR muscle assessed at 130% AMT.  The x axis is the average silent 
period measured in ms of session 1 and session 2 plotted against the difference in silent period in ms between session 1 minus session 2.   The red line is the mean 
difference of the silent period between session 1 and session 2.  Plots A and B demonstrate random error in agreement between tests.  MEP= motor evoked potential, 
AMT=Active motor threshold, SP=silent period, ECR=extensor carpi radialis  

Figure 76 A. Bland-Altman plot of the silent period 
of the dominant ECR assessed during 130% AMT, 
n=51 

Figure 76 B. Bland-Altman plot of the silent period 
of the non-dominant ECR assessed during 130% 
AMT, n=51 
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Figure 77 - Bland-Altman Plots of the Silent Period of the Abductor Pollicis Brevis Muscle 

  A B 

 

 

                                                                                                                                                                                                                                       
 
 
Figure 77 A & B - Bland-Altman Plots of the silent period of the dominant (A) and non-dominant (B) APB muscle assessed at 130% AMT.  The x axis is the average silent 
period measured in ms of session 1 and session 2 plotted against the difference in silent period in ms between session 1 minus session 2.   The red line is the mean 
difference of the silent period between session 1 and session 2.  Plots A and B demonstrate random error in agreement between tests.  Note difference in scale between 
plot A and plot B.  MEP= motor evoked potential, AMT=Active motor threshold, SP=silent period, APB= abductor pollicis brevis  

Figure 77 A. Bland-Altman plot of the silent period 
of the dominant APB assessed during 130% AMT, 
n=51 

Figure 77 B. Bland-Altman plot of the silent period 
of the non-dominant APB assessed during 130% 
AMT, n=51 
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Appendix 16: Reliability of MEP Latency of 

Subgroups 

Table 55 - MEP Latency Assessed at 120% AMT 
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Dominant/Non-
Dominant 

Participant 
Group 

Participants ICC (95% CI) 95 % LOA 
Reliability 
Category 

Dominant 
Biceps 

Whole group N=51 0.589, (0.375, 0.743) -2.708 to 2.603 Poor 

 Women N=30 0.773, (0.577, 0.885) -1.608 to  1.835 Poor 

 Men N=21 0.406, (0, 0.708) -3.886 to  3.307 Moderate 

 
< 50 years of 
age 

N=34 0.506, (0.200, 0.722) -2.862 to  2.627 Poor 

 
˃ 50 years of 
age 

N=17 0.651, (0.270, 0.855) -2.478 to  2.611 Poor 

 Exercisers N=40 0.483, (0.203, 0.690) -2.793 to  2.628 Poor 

 
Non-
exercisers 

N=11 0.797, (0.396, 0.941) -2.502 to  2.616 Poor 

Non-Dominant 
Biceps  

Whole group N=51 0.614, (0.410, 0.760) -2.338 to 2.123 Poor 

 Women N=30 0.567, (0.261, 0.768) -2.459 to  2.351 Poor 

 Men N=21 0.624, (0.277, 0.828) -2.186 to  1.818 Poor 

 
< 50 years of 
age 

N=34 0.497, (0.187, 0.716) -2.504 to  2.310 Poor 

 
˃ 50 years of 
age 

N=17 0.755, (0.456, 0.901) -2.055 to  1.803 Poor 

 Exercisers N=40 0.540, (0.281, 0.726) -2.424 to  2.053 Poor 

 
Non-
exercisers 

N=11 0.775, (0.360, 0.934) -2.030 to  2.383 Poor 

Dominant ECR Whole group N=50 0.653, (0.464, 0.786) -2.398 to 3.030 Poor 

 Women N=30 0.728, (0.506, 0.860) -2.191 to  2.835 Poor 

 Men N=20 0.461, (0.051, 0.739) -2.751 to  3.365 Poor 

 
< 50 years of 
age 

N=33 0.546, (0.262, 0.745) -2.263 to  3.027 Poor 

 
˃ 50 years of 
age 

N=17 0.592, (0.184, 0.826) -2.696 to  3.092 Moderate 

 Exercisers N=39 0.637, (0.412, 0.790) -2.480 to  2.934 Poor 

 
Non-
exercisers 

N=11 0.716, (0.271, 0.913) -2.140 to  3.403 Poor 

Non-Dominant 
ECR 

Whole group N=51 0.560, (0.337, 0.723) -2.242 to 3.126 Moderate 

 Women N=30 0.626, (0.353, 0.802) -2.209 to  3.113 Moderate 

 Men N=21 0.352, (0, 0.669) -2.358 to  3.214 Poor 

 
< 50 years of 
age 

N=34 0.558, (0.270, 0.755) -2.188 to  2.439 Poor 

 
˃ 50 years of 
age 

N=17 0.383, (0, 0.705) -1.950 to  4.026 Moderate 

 Exercisers N=40 0.464, (0.190, 0.673) -2.350 to  3.067 Moderate 

 
Non-
exercisers 

N=11 0.716, (0.253, 0.914) -1.851 to  3.386 Poor 

Dominant APB Whole group N=49 0.563 (0.345, 0.725) -4.754 to 4.068 Poor 

 Women N=28 0.327, (0, 0.604) -5.679 to  3.893 Poor 

 Men N=21 0.794, (0.563, 0.910) -3.113 to  3.857 Poor 

 
< 50 years of 
age 

N=33 0.596, (0.324, 0.778) -4.170 to  3.639 Poor 

 
˃ 50 years of 
age 

N=16 0.432, (0, 0.742) -5.852 to  4.874 Poor 

 Exercisers N=40 0.529, (0.267, 0.719) -4.820 to  4.006 Poor 

 
Non-
exercisers 

N=9 0.650, (0.089, 0.893) -4.712 to  4.547 Poor 

Non-Dominant 
APB 

Whole group N=49 0.697 (0.523, 0.815) 3.388 to 3.512 Moderate 

 Women N=28 0.751, (0.543, 0.873) -2.933 to  3.543 Moderate 

 Men N=21 0.534, (0.142, 0.781) -4.009 to  3.417 Poor 
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< 50 years of 
age 

N=32 0.541, (0.244, 0.745) -3.044 to  3.193 Poor 

 
˃ 50 years of 
age 

N=17 0.771, (0.481, 0.908) -3.982 to  4.067 Poor 

 Exercisers N=38 0.574, (0.321, 0.750) -3.479 to  3.219 Poor 

 
Non-
exercisers 

N=11 0.844, (0.537, 0.955) -2.714 to  4.465 Poor 
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Table 56 - MEP Latency Assessed at 120% RMT 

Dominant/Non-
Dominant 

Participant 
Group 

Participants ICC (95% CI) 95 % LOA 
Reliability 
Category 

Dominant 
Biceps 

Whole group N=38 0.436 (0.152, 0.653) -5.215 to5.498 Poor 

 Women N=21 0.447, (0.072, 0.709) -5.574 to  5.171 Poor 

 Men N=17 0.454, (0, 0.766) -4.174 to  6.257 Moderate 

 
< 50 years of 
age 

N=31 0.422, (0.080, 0.674) -5.485 to  5.908 Poor 

 
˃ 50 years of 
age 

N=7 0.365, (0, 0.784) -4.554 to  4.398 Poor 

 Exercisers N=28 0.528, (0.226, 0.736) -4.118 to  4.122 Poor 

 
Non-
exercisers 

N=10 0.297, (0.495, 0.790) -8.506 to  9.857 Poor 

Dominant ECR  Whole group N=49 0.492, (0.251, 0.675) -3.497 to4.041 Poor 

 Women N=29 0.550, (0, 0.759) -3.395 to  4.294 Poor 

 Men N=210 0.326, (0, 0.663) -3.685 to  3.685 Poor 

 
< 50 years of 
age 

N=33 0.312, (0, 0.588) -3.806 to  4.571 Poor 

 
˃ 50 years of 
age 

N=16 0.685, (0.311, 0.874) -2.855 to  2.995 Poor 

 Exercisers N=38 0.653, (0.426, 0.802) -2.640 to  2.606 Poor 

 
Non-
exercisers 

N=11 0.317, (0, 0.746) -4.888 to  7.625 Poor 

Dominant APB Whole group N=45 0.631 (0.426, 0.774) -4.228 to 4.278 Poor 

 Women N=27 0.715, (0.477, 0.855) -3.014 to  3.364 Poor 

 Men N=18 0.554, (0.150, 0.797) -5.755 to  5.364 Poor 

 
< 50 years of 
age 

N=30 0.522, (0.226, 0.732) -5.032 to  3.665 Poor 

 
˃ 50 years of 
age 

N=15 0.745, (0.175, 0.917) -1.234 to  3.900 Moderate 

 Exercisers N=33 0.699, (0.497, 0.829) -2.931 to  3.569 Poor 

 
Non-
exercisers 

N=7 0.567, (0, 0.870) -8.186 to  5.716 Poor 
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Appendix 17: Bland-Altman plots of MEP Latency 

Figure 78 - Bland-Altman Plots of the MEP Latency of the Biceps Muscle during Active Conditions 

  A B 

 

 

                                                                                                                                                                                                                                       
 
 
Figure 78 A & B - Bland-Altman Plots of MEP latency of the dominant (A) and non-dominant (B) biceps muscle assessed at 130% AMT.  The x axis is the average latency 
measured in ms of session 1 and session 2 plotted against the difference in latency in ms between session 1 minus session 2.   The red line is the mean difference of the 
latency between session 1 and session 2.  Plots A and B demonstrate random error in agreement between sessions Note the different scales of plot A and plot B. MEP= 
motor evoked potential.  AMT=Active motor threshold 

Figure 78 A. Bland-Altman plot of MEP latency of 
the dominant biceps during 130% AMT, n=51 

Figure 78 B. Bland-Altman plot of MEP latency of 
the non-dominant biceps during 130% AMT, n=51 
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Figure 79 - Bland-Altman Plots of MEP Latency of the Extensor Carpi Radialis 

    A B 

 

 

                                                                                                                                                                                                                                       
 
 
Figure 79 A & B - Bland-Altman Plots of MEP latency of the dominant (A) and non-dominant (B) ECR muscle assessed at 130% AMT.  The x axis is the average latency 
measured in ms of session 1 and session 2 plotted against the difference in latency in ms between session 1 minus session 2.   The red line is the mean difference of the 
latency between session 1 and session 2.  Plots A and B demonstrate random error in agreement between tests.  MEP= motor evoked potential.  AMT=Active motor 
threshold, ECR=extensor carpi radialis, ms=milliseconds 

  

Figure 79 A. Bland-Altman plot of MEP latency of 
the dominant ECR during 130% AMT, n=50 

Figure 79 B. Bland-Altman plot of MEP latency of 
the non-dominant ECR during 130% AMT, n=51 
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Figure 80 - Bland-Altman Plots of MEP Latency of the Abductor Pollicis Brevis 

  A B 

 

 

                                                                                                                                                                                                                                       
 
 
Figure 80 A & B - Bland-Altman Plots of MEP latency of the dominant (A) and non-dominant (B) APB muscle assessed at 130% AMT.  The x axis is the average latency 
measured in ms of session 1 and session 2 plotted against the difference in latency in ms between session 1 minus session 2.   The red line is the mean difference of the 
latency between session 1 and session 2.  Plots A and B demonstrate random error in agreement between sessions.  MEP= motor evoked potential.  AMT=Active motor 
threshold, APB=abductor pollicis brevis, ms=milliseconds 

 

 

Figure 80 A. Bland-Altman plot of MEP latency of 
the dominant APB during 130% AMT, n=49 

Figure 80 B. Bland-Altman plot of MEP latency of 
the non-dominant APB during 130% AMT, n=49 
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Figure 81 - Bland-Altman Plots of MEP Latency of the Biceps Muscle Assessed at 120% MEP Latency 

A B C 

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 81 A, B, & C - Bland-Altman Plots of MEP latency of the dominant (A, B) and non-dominant (C) biceps muscle assessed at 120% of RMT and AMT.  The x axis is 
the average latency measured in ms of session 1 and session 2 plotted against the difference in latency in ms between session 1 minus session 2.   The red line is the 
mean difference of the latency between session 1 and session 2.  Plots A, B and C demonstrate random error in agreement between sessions.  Note the different scales 
of plot A, B, and C. MEP= motor evoked potential.  AMT=Active motor threshold MEP=motor evoked potential, ms=milliseconds

Figure 81 C. Bland-Altman plot of the MEP latency 
of the non-dominant biceps during 120% AMT, 
n=51 

Figure 81 B. Bland-Altman plot of the MEP latency 
of the dominant biceps during 120% AMT. n=51 

Figure 81 A. Bland-Altman plot of the MEP latency 
of the dominant biceps during 120% RMT, n=38 
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Figure 82 - Bland-Altman Plots of MEP Latency of the Extensor Carpi Radialis 

  A B C 

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 82 A, B, & C - Bland-Altman Plots of MEP latency of the dominant (A) and non-dominant (B) ECR muscle assessed at 120% of RMT and AMT.  The x axis is the 
average latency measured in ms of session 1 and session 2 plotted against the difference in latency in ms between session 1 minus session 2.   The red line is the mean 
difference of the latency between session 1 and session 2.  Plots A, B, and C demonstrate random error in agreement between sessions  Note the different scales of plot 
A compared to plot B and C. MEP= motor evoked potential.  AMT=Active motor threshold, ECR=extensor radialis, ms=milliseconds  

Figure 82 C. Bland-Altman plot of the MEP latency 
of the non-dominant ECR during 120% AMT, n=51 

Figure 82 B. Bland-Altman plot of the MEP latency 
of the dominant ECR during 120% AMT, n=50 

Figure 82 A. Bland-Altman plot of the MEP latency 
of the dominant ECR during 120% RMT, n=49 
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Figure 83 - Bland-Altman Plots of MEP Latency of the Abductor Pollicis Brevis 

 A B C 

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 83 A, B, & C - Bland-Altman Plots of MEP latency of the dominant (A) and non-dominant (B) APB muscle assessed at 120% of RMT and AMT.  The x axis is the 

average latency measured in ms of session 1 and session 2 plotted against the difference in latency in ms between session 1 minus session 2.   The red line is the mean 

difference of the latency between session 1 and session 2.  Plots A, B, C demonstrate random error in agreement between sessions.  Note the different scales of plot A, 

B and C. MEP= motor evoked potential.  AMT=Active motor threshold, APB=abductor pollicis brevis  

Figure 83 C. Bland-Altman plot of the MEP latency 
of the non-dominant APB during 120% AMT, n=49 

Figure 83 B. Bland-Altman plot of the MEP latency 
of the dominant APB during 120% AMT, n=49 

Figure 83 A. Bland-Altman plot of the MEP latency 
of the dominant APB during 120% RMT, n=45 
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Appendix 18: Bland-Altman Plots of the slope of the recruitment curve  

Figure 84 - Bland-Altman Plots of the Slope of the Recruitment Curve of the Biceps Muscle 

A B C 

 

                                                                                                                                                                                                                                       
 
 
Figure 84 A, B, & C - Bland-Altman plot of the slope of the RC for the dominant and non-dominant biceps muscle.  The active conditions are during background 

contraction that is 20% of participants’ individual MVC which was assessed at session 1 minus session 2.    The average slope of session 1 and session 2 is plotted 

against the difference in the slope of session 1 minus session 2.  The red line is the mean difference in the slope of the RC of session 1 and session 2.  Plot A exhibits 

systematic bias that the slope was less steep in the second session.  Plots B, and C demonstrate a trend towards the slope being greater in the second session and a 

potential linear association.  Note the different scale of plots A, B and C.  RC=recruitment curve.

Appendix 18: Bland-Altman Plots of the slope 
of the recruitment curve  

Figure 84C. Bland-Altman plot of the slope of the 
RC of the non-dominant biceps during active 
conditions, n=15 

Appendix 18: Bland-Altman Plots of the slope of 
the recruitment curve  

Figure 84B. Bland-Altman plot of the slope of the 
RC of the dominant biceps during active conditions, 
n=16 

Appendix 18: Bland-Altman Plots of the slope of 
the recruitment curve  

Figure 84 A. Bland-Altman plot of the slope of the 
RC of the dominant biceps at rest, n=5 
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Figure 85 - Bland-Altman Plots of the Slope of the Recruitment Curve of the Extensor Carpi Radialis  

 A B C 

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 85 A, B, & C - Bland-Altman plots of the slope of the RC of the ECR muscle assessed at rest (A) and during active conditions (B,C) which is 20% MVC calculated 

individually for each participant at each session.  The x axis is the average slope of session 1 and session 2 plotted against the difference in the slope of session 1 minus 

session 2.  The red line is the mean difference in slope of session 1 and session 2.  Plot A exhibits systematic error such that the slope of the RC was greater the second 

session compared to the first.  Plot B exhibits a potential association between slope and agreement.  Plot C demonstrates a trend toward systematic error such that the 

second session demonstrated lesser slope (dot above the mean difference) The slope tended to be lower the second session during the resting conditions, and higher in 

the second session during the active conditions.  Note the different scales of plot A, B, and C.  RC=recruitment curve, ECR=extensor carpi radialis. RMT=resting motor 

threshold, AMT=active motor threshold   

Figure 85 C. Bland-Altman plot of the slope of the 
RC of the non-dominant ECR during active 
conditions, n=12 

Figure 85 B. Bland-Altman plot of the slope of the 
RC of the dominant ECR during active conditions, 
n=11 

Figure 85 A. Bland-Altman plot of the slope of the 
RC of the dominant ECR at rest, n=11 
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Figure 86 - Bland-Altman Plots of the Slope of the Recruitment Curve of the Abductor Pollicis Brevis 

A B C 

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 86 A, B, & C - Bland-Altman plots of the slope of the RC of the APB during resting (A) and active conditions (B, C) during 20% MVC calculated individually for each 

participant at each session.  The x axis is the average slope of session 1 and session 2 plotted against the difference in the slope of session 1 minus session 2.  The red 

line is the mean difference in slope of session 1 and session 2.  Plots A and B exhibit a potential linear association between the magntidue of the slope and agreement 

between sessions. Plot C demonstrates a trend toward systematic error such that the second session demonstrates a greater slope  Note the different scales of plots A 

and B compared to plot C.  RC=recruitment curve, APB=abductor pollicis brevis. RMT=resting motor threshold, AMT=active motor threshold 

 

Figure 86 C. Bland-Altman plot of the slope of the 
RC of the non-dominant APB during active 
conditions, n=13 

Figure 86 B. Bland-Altman plot of the slope of the 
RC of the dominant APB during active conditions, 
n=16 

Figure 86 A. Bland-Altman plot of the slope of the 
RC of the dominant APB at rest, n=16 
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Appendix 19: Ethical Approval forms for: “The 

test-retest reliability of TMS measures of 

corticospinal pathway excitability early after 

stroke” 
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Appendix 20: Participant information Sheet and 

Consent Form: “Test-retest reliability of TMS 

Measures of Corticospinal Pathway Early After 

Stroke” 

FAST INdICATE  

Functional Strength Training for upper limb recovery after stroke 

Supplementary Brain-Muscle Connectivity Assessment Participant Information 

Form 

This document is associated with the study protocol version 4.0 30 August 

2013. 

 

An invitation to you 

We would like to invite you to take part in a supplementary assessment of 

the brain-muscle connection, identical to the one you had at the baseline 

assessment.  Before you decide we would like you to understand why 

the research is being done and what it would involve for you.  One of 

our team will go through the information sheet with you and answer any 

questions you have.  This will take around 10 minutes. 

 

Talk to others about the supplementary assessment if you wish. 
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Part 1 gives you the purpose of this supplementary assessment and 

what will happen if you take part. 

 

Part 2 gives you more detailed information about the conduct of the 

supplementary assessment. 

 

We are here to help.  Ask us if there is anything that is not clear.  Pages 

11 and 12 have the names and contact details of people who can help. 

 

Part 1  

 

What is the purpose of this additional research? 

After stroke weakness in the arm and hand prevents people from doing 

everyday activities such as writing.  Understanding the connection between 

the brain and the muscles of the arm can improve our understanding of 

how people recover after a stroke.  The purpose of this supplementary 

assessment is to determine the reliability (a measure of how much the 

connection may change from day to day) of the connection between your 

brain and muscles early after a stroke.    
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The aim of the is research is to find out the reliability of the brain-muscle 

connectivity early after stroke 

 

Why have I been invited? 

We are looking for people who have had a stroke, are participating in the 

FAST INdICATE trial in Norfolk, and are suitable to receive Transcranial 

Magnetic Stimulation (TMS).  TMS is explained on page 4.   

 

Do I have to take part? 

It is up to you to decide to join the supplementary assessment.  We will 

describe the assessment and go through this information sheet.  If you 

agree to take part, we will then ask you to sign a consent form.  You are 

free to withdraw from this supplementary research at any time, without 

giving a reason.  This would not affect the standard of the care you 

receive or your involvement in the FAST INdICATE research.     

 

If you are unable to write or hold a pen (either due to the effects of your 

stroke or for another reason) you can choose an independent person or 

if you would prefer, an independent person will be found for you.  The 

independent person may be a member of your medical team, a family 

member or friend.  When we use the word independent we mean a 

person who is not a member of the research team or a person who 

cannot be influenced by the research team. This person will write on a 

consent form for you as you verbally agree to take part.  This 
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independent person cannot decide for you that will take part and you will 

not be asked or made to do anything you do not want to do.   

 

What will happen if I decide to take part? 

 There will be a supplementary assessment between 1-3 days 

following your baseline assessment.  The supplementary assessment 

which will be identical to the one you have already completed.    

 

Will I stop getting any treatment? 

If you take part in the research, you will still receive all the treatment that 

you would receive if you did not take part. 

 

What will I have to do? 

 If you decide to take part you will have one extra brain-muscle 

connectivity session using TMS.  

 The supplementary assessment will be identical to the one you had at 

baseline, and will be between 1-3 days following your baseline brain-

muscle connectivity assessment.   

 The supplementary assessment will last approximately 40 minutes. 

 The assessment will take place at either an NHS in-patient area or in 

the rehabilitation research facility at the University of East Anglia.    
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What does the supplementary assessment involve? 

The assessment involves the use TMS to assess the: the connection 

between your brain and the muscles in your weaker arm and hand.    

 Transcranial Magnetic Stimulation (TMS)  

This assessment involves the use of a device for producing pain-free 

stimulation of the areas of the brain that control movement.  In response 

to this stimulation, muscles of the body generate a natural brief burst of 

activity (a contraction). This muscle activity can be recorded from muscles 

using a method called electromyography (EMG). The examination of the 

EMG muscle recordings following TMS can provide information on how 

well signals sent from the brain connect to muscles in the arm and hand.  

A picture of someone receiving TMS can be found below.   
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Expenses and Payments 

We cannot pay you for participating in the research but will arrange and 

pay for any taxi journeys you may need to take you to and from the 

assessment.  Taking part in the research will not cost you money. 

 

What are the Possible Disadvantages and Risks of Participating?  

Before repeating the assessment we will again ask you questions to 

ensure it is safe for you to proceed.  If we think that it is not safe for you to 

proceed then you will not have the assessment. 

 

We will make every effort to minimise any risk to you as we follow a 

range of safety standards and best practice policies.  

  

Will my taking part in the supplementary assessment be kept 

confidential? 

Yes. We will follow ethical and legal practice guidelines and all information 

about you will be handled in confidence.  The details are included in Part 2. 

 

This completes Part 1. 

If this information in Part 1 interests you and you are considering taking part, 

please read the information in Part 2 before making any decision.
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Part 2 

 

What happens if I don’t want to carry on in the supplementary 

research? 

You may withdraw at any time without giving a reason.  

Withdrawing from the supplementary assessment will not affect 

your treatment now or at any time in the future by any healthcare 

team, or your involvement in the FAST INdICATE research.  If you 

withdraw from the supplementary assessment, any information 

collected may still be used. 

 

What if there is a problem? 

If you have a concern about the supplementary assessment, you 

should ask to speak to your researcher who will answer any questions 

or find someone who can.  Your researchers contact details can be 

found on pages 11-12.  

 

If you remain unhappy or wish to complain formally, you can do this 

through the NHS Complaints Procedure. Details can be obtained 

from 

http://www.nhs.uk/choiceintheNHS/Rightsandpledges/complaints/Pag

es/NHScomplaints.aspx  
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Alternatively, you could call the Norfolk Community Health and Care 

NHS Trust Patient Advice and Liaison Services (PALS) on 0800 088 

4449. 

What if I am harmed? 

If something does go wrong and you are harmed during the research 

assessment there are no special compensation arrangements.   

If you are harmed due to someone’s negligence then you may have 

grounds for legal action for compensation against the University of 

East Anglia but you may have to pay your legal costs. 

 

Will anyone else know that I am in the supplementary 

assessment? 

We will inform your medical team that you are taking part.  

 

If we are concerned at any time about your health during your 

participation in this study we will report this to someone in your 

medical team. 

 

We will not directly inform your GP. 

 

Who is organising the research? 

This research is organized by a PhD student as part of a PhD under 

direct supervision of experienced researchers as well as the Research 

and Enterprise Services (REN) department at the UEA.  The 

supplementary assessment is led by Professor Valerie Pomeroy and 

managed by Nick Leavey (the Trial Manager of Fast INdICATE).  
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Will my taking part in the research be kept confidential? 

The research team will only have access to information about you that 

is relevant to the additional assessment.   All information which is 

collected about you during the course of the research will be kept 

strictly confidential, and any information about you will have your 

name removed so that you cannot be recognised. 

 

The data will only be accessed by authorised persons within the 

Research Team and the Research and Development Office of the 

NHS Trusts, who ensure the quality of the research carried out. 

 

You will use your unique FAST INdICATE number for the purpose of 

collecting and analysing data. This means you will remain 

anonymous. 

 

How will my information be stored?  

Data will be stored securely in research offices during the research 

and for 1 year after completion.  Long term data is then stored in a 

secure area in the University of East Anglia for 20 years.  All 

procedures for handling, processing, storage and destruction of 

data are compliant with the Data Protection Act 1998. 

 

All computer files will either be stored in a secure user 

authenticated area or encrypted to protect them from unauthorised 

access.  All the computer files will be anonymous. 
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What will happen to the results? 

The results of the supplementary session will be analysed separately 

from the bigger FAST INdICATE trial; and will contribute to part of a 

PhD thesis.  These results will add to the knowledge of brain-muscle 

connectivity by determining the reliability of these measures in acute 

stroke.  The results will be published in academic journals and 

shared with colleagues at conferences but individual participants will 

not be identifiable.  

 

Who has reviewed the supplementary assessment?  

The Norfolk Ethics Committee and the University of East Anglia 

ethics committee have approved the supplementary assessment.  

The main research trial will be monitored by a Trial Management 

Group, a Trial Steering Committee and a Data Monitoring and Ethics 

Committee.  The supplementary TMS data will be monitored by the 

Norwich Local Management Group.  All these groups put your 

safety above everything else.   
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Further Information and Contact Details  

 

 

 

Kathryn Collins, 

PhD Student 

Email: Kathryn.collins@uea.ac.uk 

 

 

Supervisors: 

Professor Valerie Pomeroy, 

Email: v.pomeroy@uea.ac.uk 

 

 

 

Dr. Niamh Kennedy, 

Email: niamh.kennedy@uea.ac.uk 

  

  

If you would prefer you can contact Nick Leavey, the Trial 

Manager of FAST INdICATE 

 

 Nick Leavey 

Trial Manager 

n.leavey@uea.ac.uk 

 

By telephone: 01603 593899 (this is a private number with a private 

answering machine that only Nick can access) 

mailto:Kathryn.collins@uea.ac.uk
mailto:v.pomeroy@uea.ac.uk
mailto:niamh.kennedy@uea.ac.uk
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By post: Room 1.21, School of Allied Health Professions, Faculty of 

Medicine and Health Sciences, University of East Anglia, Norwich 

Research Park, Norwich, NR4 7TJ 

 

Independent Contact Details: 

If you wish to discuss this study with someone who is not involved 

in the research then you can contact the Norfolk Community Health 

and Care NHS Trust Patient Advice and Liaison Services (PALS) 

on 0800 088 4449. 

 

Thank you for taking the time to read this information. If you 

choose to participate, you will keep a copy of this participant 

information sheet and the completed consent form. 
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Consent Form 
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Appendix 21: Bland-Altman Plots of Motor Threshold 

Figure 87 - Bland-Altman Plots of the Resting Motor Threshold of the Non-Paretic Upper Limb 

A B C 

 

                                                                                                                                                                                                                                       
 
 
Figure 87 A, B, & C - Bland-Altman plot of the RMT of the non-paretic biceps, ECR and APB muscles.  The x axis is the average RMT of session 1 and session 2 plotted 

against (y axis) the different in RMT from session 1 minus session 2.   The red line is the mean difference in RMT between session 1 and session 2.  Plots A, B and C 

demonstrate random error in agreement etween sesions. Note the different scales of plots A, B, and C.  RMT= resting motor threshold, ECR=extensor carpi radialis, APB-

abductor pollicis brevis 

Figure 87C. Bland-Altman plot of RMT of the non-
paretic APB, n=27 

 

Figure 87B. Bland-Altman plot of RMT of the non-
paretic ECR, n=28 

 

Figure 87A. Bland-Altman plot of RMT of the non-
paretic biceps, n=28 
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Figure 88 - Bland-Altman Plots of the Resting Motor Threshold of the Paretic Upper Limb 

    A B C 

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 88 A, B, & C - Bland-Altman plot of the RMT of the paretic biceps, ECR and APB muscles.  The x axis is the average RMT of session 1 and session 2 plotted 
against (y axis) the different in RMT from session 1 to session 2.   The red line is the mean difference in RMT between session 1 and session 2.  Plots A, B and C 
demonstrate random error in agreement between sessions. Note the different scales of plots A, B, and C.  RMT= resting motor threshold, ECR=extensor carpi radialis, 
APB-abductor pollicis brevis  

Figure 88 C. Bland-Altman plot of RMT of the 
paretic APB, n=23 

 

Figure 88 B. Bland-Altman plot of RMT of the 
paretic ECR, n=25 

 

Figure 88 A. Bland-Altman plot of RMT of the 
paretic biceps, n=14 
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Figure 89 - Bland-Altman Plots of the Active Motor Threshold Non-Paretic Upper Limb  

     A B C 

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 89 A, B, & C - Bland-Altman plot of the AMT of the non-paretic biceps, ECR and APB muscles.  The x axis is the average AMT of session 1 and session 2 plotted 

against (y axis) the different in AMT from session 1 minus session 2.   The red line is the mean difference in AMT between session 1 and session 2.  Plots A, B and C 

demonstrate random error in agreement between sessions. Note the different scales of plots A, B, and C.  AMT= active motor threshold, ECR=extensor carpi radialis, 

APB-abductor pollicis brevis   

Figure 89 C. Bland-Altman plot of AMT of the non-
paretic APB, n=27 

 

Figure 89 B. Bland-Altman plot of AMT of the non-
paretic ECR, n=28 

 

Figure 89 A. Bland-Altman plot of AMT of the non-
paretic biceps, n=28 
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Figure 90 - Bland-Altman Plots of the Active Motor Threshold of the Paretic Upper Limb    

     A B C 

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 90 A, B, & C - Bland-Altman plot of the AMT of the paretic biceps, ECR and APB muscles.  The x axis is the average AMT of session 1 and session 2 plotted 

against (y axis) the different in AMT from session 1 minus session 2.   The red line is the mean difference in AMT between session 1 and session 2.  Plots A, B and C 

demonstrate random error in agreement between sessions. Note the different scales of plots A, B, and C.  AMT= active motor threshold, ECR=extensor carpi radialis, 

APB-abductor pollicis brevis   

Figure 90 C. Bland-Altman plot of AMT of the 
paretic APB, n=24 

 

Figure 90 B. Bland-Altman plot of AMT of the 
paretic ECR, n=27 

 

Figure 90 A. Bland-Altman plot of AMT of the 
paretic biceps, n=27 
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Appendix 22: Bland-Altman Plots of the Average MEP Amplitude  

Figure 91 - Bland-Altman Plots of the Average MEP Amplitude of the Non-Paretic Biceps   

    A B 

 

 

                                                                                                                                                                                                                                       

Figure 91 A & B - Bland-Altman plot of the average MEP amplitude of the non-paretic biceps muscle at 100%, and 110% of AMT, during slight muscle contraction.  The x 
axis is the average MEP amplitude of session 1 and session 2 plotted against (y axis) the difference in average MEP amplitude from session 1 minus session 2.   The red 
line is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A, B demonstrate a potential association between magnitude of EMP 
amplitude and the difference between sessions. Note the different scales of plots A, B, and C.  AMT= active motor threshold MEP=motor evoked potential 

Appendix 22: Bland-Altman Plots of the Average MEP 
Amplitude  

Figure 91A. Bland-Altman plot of the average MEP 
amplitude at 100% AMT of the non-paretic biceps, n=28 

Appendix 22: Bland-Altman Plots of the Average MEP 
Amplitude  

Figure 91B. Bland-Altman plot of the average MEP 
amplitude at 110% AMT of the non-paretic biceps, n=28 
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Figure 92 - Bland-Altman Plots of the Average MEP Amplitude of the Non-Paretic Biceps 

     A B 

 

 

                                                                                                                                                                                                                                       
 
 
Figure 92 A & B - Bland-Altman plot of the average MEP amplitude of the non-paretic biceps muscle at 120%, and 130% of AMT, during slight muscle contraction.  The x 
axis is the average MEP amplitude of session 1 and session 2 plotted against (y axis) the difference in average MEP amplitude from session 1 minus session 2.   The red 
line is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A, B demonstrate a potential association between the magnitude of MEP 
amplitude and the difference in measurement between sessions.  AMT= active motor threshold MEP=motor evoked potential 
  

Figure 92 A. Bland-Altman plot of the average MEP 
amplitude at 120% AMT of the non-paretic biceps, 
n=28 

Figure 92 B. Bland-Altman plot of the average MEP 
amplitude at 130% AMT of the non-paretic biceps, 
n=28 
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Figure 93 - Bland-Altman Plots of the MEP Amplitude of the Non-Paretic ECR Muscle 

     A  B 

 

 

                                                                                                                                                                                                                                       
 
 
Figure 93 A & B - Bland-Altman plot of the average MEP amplitude of the non-paretic ECR muscle at 100%, and 110% of AMT, during slight muscle contraction.  The x 

axis is the average MEP amplitude of session 1 and session 2 plotted against (y axis) the difference in average MEP amplitude from session 1 minus session 2.   The red 

line is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A, B demonstrate random error in agreement between sessions.  AMT= 

active motor threshold MEP=motor evoked potential ECR=extensor carpi radialis  

Figure 93 A. Bland-Altman plot of the average MEP 
amplitude at 100% AMT for the non-paretic ECR, 
n=28 

Figure 93 B. Bland-Altman plot of the average MEP 
amplitude at 110% AMT for the non-paretic ECR, 
n=28 

 



          
 

3
5
9
 

 

Figure 94 - Bland-Altman Plots of the MEP Amplitude of the Non-Paretic ECR Muscle 

     A  B 

 

 

                                                                                                                                                                                                                                       
 
 
Figure 94 A & B - Bland-Altman plot of the average MEP amplitude of the non-paretic ECR muscle at 110%, and 120% of AMT, during slight muscle contraction.  The x 

axis is the average MEP amplitude of session 1 and session 2 plotted against (y axis) the difference in average MEP amplitude from session 1 to session 2.   The red line 

is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A, B demonstrate random error in agreement between sessions. Note the 

different scales of plots A and B.  AMT= active motor threshold MEP=motor evoked potential, ECR=extensor carpi radialis  

Figure 94 A. Bland-Altman plot of the average MEP 
amplitude at 120% AMT for the non-paretic ECR, 
n=28 

Figure 94 B. Bland-Altman plot of the average MEP 
amplitude at 130% AMT for the non-paretic ECR, 
n=28 
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Figure 95 - Bland-Altman Plots of the MEP Amplitude of the Non-Paretic APB Muscle 

      A  B 

 

 

                                                                                                                                                                                                                                       
 
 
Figure 95 A & B - Bland-Altman plot of the average MEP amplitude of the non-paretic APB muscle at 100%, and 110% of AMT, during slight muscle contraction.  The x 
axis is the average MEP amplitude of session 1 and session 2 plotted against (y axis) the difference in average MEP amplitude from session 1 minus session 2.   The red 
line is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A demonstrates random error in measurement agreement between 
sessions, plot B demonstrates a potential association between magnitude of MEP amplitude and measurement agreement.. Note the different scales of plots A and B.  
AMT= active motor threshold MEP=motor evoked potential, APB=abductor pollicis brevis muscle  

  

Figure 95 A. Bland-Altman plot of MEP amplitude of 
the non-paretic APB at 100% AMT, n=27 

Figure 95 B. Bland-Altman plot of MEP amplitude 
of the non-paretic APB at 110% AMT, n=27 
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Figure 96 - Bland-Altman Plots of the MEP Amplitude of the Non-Paretic APB Muscle 

        A  B 

 

 

                                                                                                                                                                                                                                       
 
 
Figure 96 A & B - Bland-Altman plot of the average MEP amplitude of the non-paretic APB muscle at 120%, and 130% of AMT, during slight muscle contraction.  The x 
axis is the average MEP amplitude of session 1 and session 2 plotted against (y axis) the difference in average MEP amplitude from session 1 minus session 2.   The red 
line is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A & B demonstrate random error in agreement between sessions.  Note 
the different scales of plots A and B.  AMT= active motor threshold MEP=motor evoked potential, APB=abductor pollicis brevis muscle 

  

Figure 96 A. Bland-Altman plot of MEP amplitude of 
the non-paretic APB at 120% AMT, n=27 

Figure 96 B. Bland-Altman plot of MEP amplitude 
of the non-paretic APB at 130% AMT, n=27 
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Figure 97 - Bland-Altman Plots of the MEP Amplitude of the Paretic Biceps 

        A  B 

 

 

                                                                                                                                                                                                                                       
 
Figure 97 A & B - Bland-Altman plot of the average MEP amplitude of the paretic biceps muscle at 100%, and 110% of AMT, during slight muscle contraction.  The x axis 

is the average MEP amplitude of session 1 and session 2 plotted against (y axis) the difference in average MEP amplitude from session 1 minus session 2.   The red line 

is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A, B demonstrates a greater number of differences below the mean difference 

line suggesting greater MEP amplitude at the second session and a potential association between MEP amplitude and measurement agreement.   Note the different 

scales of plots A and B.  AMT= active motor threshold MEP=motor evoked potential   

Figure 97 A. Bland-Altman plot of the average MEP 
amplitude at 100% AMT for the paretic biceps, n=27 

Figure 97 B. Bland-Altman plot of the average MEP 
amplitude at 110% AMT for the paretic biceps, 
n=27 
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Figure 98 - Bland-Altman Plots of the Average MEP for the Paretic Biceps 

        A  B 

 

 

                                                                                                                                                                                                                                       
 
Figure 98 A & B - Bland-Altman plot of the average MEP amplitude of the paretic biceps muscle at 120%, and 130% of AMT, during slight muscle contraction.  The x axis 

is the average MEP amplitude of session 1 and session 2 plotted against (y axis) the difference in average MEP amplitude from session 1 minus session 2.   The red line 

is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A, B demonstrate  a greater number of differences between sessions fall below 

the mean difference line suggesting greater amplitude at session two as well as a potential association between MEP amplitude and measurement agreement.  Note the 

different scales of plots A and B.  AMT= active motor threshold, MEP=motor evoked potential   

Figure 98 A. Bland-Altman plot of the average MEP 
amplitude at 120% AMT for the paretic biceps, n=27 

Figure 98 B. Bland-Altman plot of the average MEP 
amplitude at 130% AMT for the paretic biceps, 
n=23 
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Figure 99 - Bland-Altman Plots of the Average MEP Amplitude of the Paretic ECR 

          A  B 

 

 

                                                                                                                                                                                                                                       
 
Figure 99 A & B - Bland-Altman plot of the average MEP amplitude of the paretic ECR muscle at 100%, and 110% of AMT, during slight muscle contraction.  The x axis is 

the average MEP amplitude of session 1 and session 2 plotted against (y axis) the difference in average MEP amplitude from session 1 minus session 2.   The red line is 

the mean difference in average MEP amplitude between session 1 and session 2.  Plots A, B demonstrate a potential association between MEP amplitude and 

measurement agreement. Note the different scales of plots A and B.  AMT= active motor threshold MEP=motor evoked potential, ECR=extensor carpi radialis muscle  

Figure 99 A. Bland-Altman plot of the average MEP 
amplitude at 100% AMT of the paretic ECR, n=23 

Figure 99 A. Bland-Altman plot of the average MEP 
amplitude at 110% AMT of the paretic ECR, n=25 
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Figure 100 - Bland-Altman Plots of the Average MEP Amplitude of the Paretic ECR 

            A  B 

 

 

                                                                                                                                                                                                                                       
 
Figure 100 A & B - Bland-Altman plot of the average MEP amplitude of the paretic ECR muscle at 120%, and 130% of AMT, during slight muscle contraction.  The x axis 

is the average MEP amplitude of session 1 and session 2 plotted against (y axis) the difference in average MEP amplitude from session 1 minus session 2.   The red line 

is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A, B demonstrate random error in agreement between sessions.  Note the 

different scales of plots A and B.  AMT= active motor threshold MEP=motor evoked potential, ECR=extensor carpi radialis  

Figure 100 A. Bland-Altman plot of the average 
MEP amplitude of the paretic ECR at 120% AMT, 
n=23 

Figure 100 A. Bland-Altman plot of the average 
MEP amplitude of the paretic ECR at 130% AMT, 
n=22 
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Figure 101 - Bland-Altman Plots of the Average MEP Amplitude of the Paretic APB Muscle 

             A  B 

 

 

                                                                                                                                                                                                                                       
 
Figure 101 A & B - Bland-Altman plot of the average MEP amplitude of the paretic APB muscle at 110%, and 120% of AMT, during slight muscle contraction.  The x axis 

is the average MEP amplitude of session 1 and session 2 plotted against (y axis) the difference in average MEP amplitude from session 1minussession 2.   The red line is 

the mean difference in average MEP amplitude between session 1 and session 2.  Plots A, B demonstrate random a potential association between magnitude of MEP 

amplitude and measurement agreement. Note the different scales of plots A and B.  AMT= active motor threshold MEP=motor evoked potential, APB=abductor pollicis 

brevis muscle   

Figure 101 A. Bland-Altman plot of the average 
MEP amplitude of MEP of paretic APB at 100% 
AMT, n=24 

Figure 101 A. Bland-Altman plot of the average 
MEP amplitude of MEP of paretic APB at 110% 
AMT, n=24 
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Figure 102 - Bland-Altman Plots of the Average MEP Amplitude of the Paretic APB Muscle  

             A  B  

 

 

                                                                                                                                                                                                                                       
 
Figure 102 A & B - Bland-Altman plot of the average MEP amplitude of the paretic APB muscle at 120%, and 130% of AMT, during slight muscle contraction.  The x axis 

is the average MEP amplitude of session 1 and session 2 plotted against (y axis) the difference in average MEP amplitude from session 1 minus session 2.   The red line 

is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A, B demonstrate a potential association between MEP amplitude and the 

difference between sessions.  AMT= active motor threshold MEP=motor evoked potential, APB=abductor pollicis brevis muscle 

 

Figure 102 A. Bland-Altman plot of the average 
MEP amplitude of MEP of paretic APB at 120% 
AMT, n=21 

Figure 102 A. Bland-Altman plot of the average 
MEP amplitude of MEP of paretic APB at 130% 
AMT, n=19 
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Appendix 23 Bland-Altman Plots of MEP Max Amplitude  

Figure 103- Bland-Altman Plots of the MEP Max Amplitude of the non-paretic upper limb 

A.                                                                                      B.                                                                              C.  

Figure 103 A Bland-Altman plot of the non-paretic               Figure 103  B Bland-Altman plot of the non-paretic                  Figure 103  C Bland-Altman plot of the non- 
biceps MEP max amplitude, n=28                                       ECR MEP max amplitude, n=25                                                 paretic APB MEP max amplitude, n=27 
 
 
Figure 103  A,B,C Bland-Altman plots of the non-paretic MEP max amplitude of the A) biceps, B) ECR and C) APB assessed during slight muscle contraction.  The x 
axis is the average MEP max amplitude of session 1 and session 2 plotted against (y axis) the difference in average MEP max amplitude from session 1 minus 
session 2.   The red line is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A, B demonstrate a potential association between 
MEP max amplitude and the difference between sessions. MEP=motor evoked potential, ECR=extensor carpi radialis, APB=abductor pollicis brevis muscle 
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Figure 104- Bland-Altman Plots of the MEP Max Amplitude of the Paretic Upper Limb 

A.                                                                           B.                                                                                  C.  
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Figure 104 A. Bland-Altman plot of the paretic                      
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Figure 104B. Bland-Altman plot of the paretic ECR                
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Figure 104C. Bland-Altman plot of the paretic 
biceps muscle MEP max amplitude, n=27                            muscle MEP max amplitude, n=25                                          APB muscle MEP max amplitude, n=24 
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Figure 104A, B, and C - Bland-Altman plots of the paretic MEP max amplitude of the A) biceps, B) ECR and C) APB assessed during slight muscle contraction.  The x 
axis is the average MEP max amplitude of session 1 and session 2 plotted against (y axis) the difference in average MEP max amplitude from session 1 minus session 2.   
The red line is the mean difference in average MEP amplitude between session 1 and session 2.  Plots A demonstrates a greater number of differences between 
sessions below the mean difference suggesting greater MEP amplitudes at the second session, as well as a potential association between MEP amplitude and difference 
between sessions.  Plot B demonstrates random error in agreement between sessions.  Plot C demonstrates a potential association between MEP max amplitude and 
the difference between sessions. MEP=motor evoked potential, ECR=extensor carpi radialis, APB=abductor pollicis brevis muscle                                                                                                                                                  
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Appendix 24: Bland-Altman Plots of MEP Latency  

Figure 105 - Bland-Altman Plots of the MEP Latency of the Non-Paretic Limb Assessed at 130% AMT   

A B C 
 

                                                                                                                                                                                                                                       
 
 
 
Figure 105 A, B, & C - Bland-Altman plot of MEP latency of the non-paretic biceps, ECR, and APB muscles assessed at 120% AMT, during slight muscle contraction.  

The x axis is the latency of session 1 and session 2 plotted against (y axis) the difference in latency from session 1 to session 2.   The red line is the mean difference in 

latency between session 1 and session 2.  Plots A, B demonstrate random error as the difference between tests is dispersed above and below the mean difference line.  . 

Note the different scales of plots A and B.  AMT= active motor threshold MEP=motor evoked potential, ECR=extensor carpi radialis, APB= abductor pollicis brevis  

 

Appendix 24: Bland-Altman Plots of MEP 
Latency  

Figure 105C. Bland-Altman plot of MEP latency of 
non-paretic APB at 120% AMT, n=25 

 

Appendix 24: Bland-Altman Plots of MEP 
Latency  

Figure 105B. Bland-Altman plot of MEP latency of 
non-paretic ECR at 120% AMT, n=26 

 

Appendix 24: Bland-Altman Plots of MEP 
Latency  

Figure 105A. Bland-Altman plot of MEP latency of 
non-paretic biceps at 120% AMT, n=26 
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Figure 106 - Bland-Altman Plots of the MEP Latency of the Paretic Muscles Assessed at 120% AMT 

A B C 

 

                                                                                                                                                                                                                                       
 
 
 
Figure 106 A, B, & C - Bland-Altman plot of MEP latency of the non-paretic biceps, ECR, and APB muscles assessed at 120% AMT, during slight muscle contraction.  

The x axis is the latency of session 1 and session 2 plotted against (y axis) the difference in latency from session 1 to session 2.   The red line is the mean difference in 

latency between session 1 and session 2.  Plots A, B demonstrate random error as the difference between tests is dispersed above and below the mean difference line.  

Note the different scales of plots A and B.  AMT= active motor threshold MEP=motor evoked potential, ECR=extensor carpi radialis, APB= abductor pollicis brevis  

Figure 106 C. Bland-Altman plot of MEP latency of 
paretic APB at 120% AMT, n=22 

 

Figure 106 B. Bland-Altman plot of MEP latency of 
paretic ECR at 120% AMT, n=21 

 

Figure 106 A. Bland-Altman plot of MEP latency of 
paretic biceps at 120% AMT, n=21 
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Figure 107 - Bland-Altman Plots of the MEP Latency of the Non-Paretic Muscles Assessed at 130% AMT 

A B C 

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 107A, B, & C - Bland-Altman plot of MEP latency of the non-paretic biceps, ECR and APB assessed at 130% AMT, with slight background contraction.  The x axis 

is the MEP latency of session 1 and session 2 plotted against (y axis) the difference in MEP latency from session 1 minus session 2.   The red line is the mean difference 

in MEP latency between session 1 and session 2.  Plots A, B, demonstrate random error in agreement between sessions.  Plot C demonstrate a greater number of 

differences above the mean difference line suggesting shorter latency the second session.  Note the different scales of plots A, B, and C.  AMT= active motor threshold 

MEP=motor evoked potential, ECR=Extensor carpi radialis muscle, APB=abductor pollicis brevis muscle   

Figure 107C. Bland-Altman plot of MEP latency of 
130% AMT of the non-paretic APB, n=22 

 

Figure 107B. Bland-Altman plot of MEP latency of 
130% AMT of the non-paretic ECR, n=26 

 

Figure 107A. Bland-Altman plot of MEP latency of 
130% AMT of the non-paretic biceps, n=26 
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Figure 108 - Bland-Altman Plots of the MEP Latency of the Paretic Muscles Assessed at 130% AMT  

 A B C 

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 108A, B, & C - Bland-Altman plot of MEP latency of the paretic biceps, ECR and APB assessed at 130% AMT, with slight background contraction.  The x axis is 

the MEP latency of session 1 and session 2 plotted against (y axis) the difference in MEP latency from session 1 to session 2.   The red line is the mean difference in 

MEP latency between session 1minus session 2.  Plots A demonstrates a trend towards greater differences with longer latency. Plot B demonstrates a greater number of 

differences below the mean difference line suggesting longer latency the second session, and Plot C potentially demonstrates an association with magnitude of response 

and difference between sessions. Note the different scales of plots A, B, and C.  AMT= active motor threshold MEP=motor evoked potential, ECR=Extensor carpi radialis 

muscle, APB=abductor pollicis brevis muscle   

Figure 108C. Bland-Altman plot of MEP latency of 
130% AMT of the paretic APB, n=15 

 

Figure 108B. Bland-Altman plot of MEP latency of 
130% AMT of the paretic ECR, n=18 

 

Figure 108A. Bland-Altman plot of MEP latency of 
130% AMT of the paretic biceps, n=16 
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Appendix 25 Bland-Altman Plots of the Silent Period  

Figure 109 - Bland-Altman Plots of the Silent Period of the Non-Paretic Muscles Assessed at 130% of AMT  

A B C 

 

                                                                                                                                                                                                                                       
 
 

Figure 109A, B, & C - Bland-Altman plot of SP of the non-paretic biceps, ECR and APB assessed at 130% AMT, with slight background contraction.  The x axis is the 

SP of session 1 and session 2 plotted against (y axis) the difference in SP from session 1 minus session 2.   The red line is the mean difference in MEP latency between 

sessions.  Plots A, B, and C demonstrate random error in agreement between sessions.  Note the different scales of plots A, B, and C.  SP=silent period, AMT= active 

motor threshold MEP=motor evoked potential, ECR=Extensor carpi radialis muscle, APB=abductor pollicis brevis muscle   

Appendix 25 Bland-Altman Plots of the Silent 
Period  

Figure 109C. Bland-Altman plot of SP assessed 
at 130% AMT of the non-paretic APB, n=16 

 

Appendix 25 Bland-Altman Plots of the Silent 
Period  

Figure 109B. Bland-Altman plot of SP assessed at 
130% AMT of the non-paretic ECR, n=24 

 

Appendix 25 Bland-Altman Plots of the Silent 
Period  

Figure 109A. Bland-Altman plot of SP assessed at 
130% AMT of the non-paretic biceps, n=24 
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Figure 110 - Bland-Altman Plots of the Silent Period of the Paretic Muscles Assessed at 130% of AMT  

A B C 

 

                                                                                                                                                                                                                                       
 
 
 
 
Figure 110A, B, & C - Bland-Altman plot of SP of the paretic biceps, ECR and APB assessed at 130% AMT, with slight background contraction.  The x axis is the SP of 

session 1 and session 2 plotted against (y axis) the difference in SP from session 1 minus session 2.   The red line is the mean difference in SP between session 1 and 

session 2.  Plots A demonstrates random error, plots B, and C demonstrate a potential association between magnitude of the SP and measurement agreement.. Note the 

different scales of plots A, B, and C.  SP=silent period, AMT= active motor threshold MEP=motor evoked potential, ECR=Extensor carpi radialis muscle, APB=abductor 

pollicis brevis muscle   

Figure 110C. Bland-Altman plot of SP assessed at 
130% AMT of the paretic APB, n=10 

 

Figure 110B. Bland-Altman plot of SP assessed at 
130% AMT of the paretic ECR, n=22 

 

Figure 110A. Bland-Altman plot of SP assessed at 
130% AMT of the paretic biceps, n=22 
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Appendix 26: Bland-Altman Plots of the Slope of the Recruitment Curve 

Figure 111 - Bland-Altman Plots of the Slope of the Recruitment Curve of the Non-Paretic Muscles   

  A B C 

 

                                                                                                                                                                                                                                       
 
 

Figure 111A, B, & C - Bland-Altman plots of the slope of the RC of the non-paretic biceps (A), ECR (B), and APB (C) assessed during slight muscle contraction.  The x 

axis is the average slope of session 1 and session 2 plotted against (y axis) the difference in slope of session 1 minus session 2, the red line is the mean difference line in 

the slope of session1 an session 1.  Plot A demonstrates greater differences between sessions with greater slopes.  Plot C demonstrates the slope of the RC was less 

steep at the second session.  Note the different scales of plots A, B, C. RC=recruitment curve, ECR=extensor carpi radilais muscle, APB=abductor pollicis brevis muscle 

Appendix 26: Bland-Altman Plots of the Slope 
of the Recruitment Curve 

Figure 111A. Bland-Altman plot of the slope of the 
RC of the non-paretic APB, n=8 

 

Appendix 26: Bland-Altman Plots of the Slope 
of the Recruitment Curve 

Figure 111A. Bland-Altman plot of the slope of the 
RC of the non-paretic ECR, n=2 

 

Appendix 26: Bland-Altman Plots of the Slope 
of the Recruitment Curve 

Figure 111A. Bland-Altman plot of the slope of the 
RC of the non-paretic biceps, n=9 
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Figure 112 - Bland-Altman Plots of the Slope of the Recruitment Curve of the Paretic Muscles 

     A  B 

 

 

                                                                                                                                                                                                                                       
 
 
Figure 112A & B - Bland-Altman plots of the slope of the RC of the paretic ECR (A) and APB (B) assessed during slight muscle contraction.  The x axis is the average 

slope of session 1 and session 2 plotted against (y axis) the difference in slope of session 1 and session 2, the red line is the mean difference line in the slope of session1 

minus session 1.  Plots A and B demonstrate random erroring agreement between sessions.  Note the different scales of plots A and  B. RC=recruitment curve, 

ECR=extensor carpi radilais muscle, APB=abductor pollicis brevis muscle. 

Figure 112A. Bland-Altman plot of the slope of the 
RC of the paretic ECR, n=4 

Figure 112B. Bland-Altman plot of the  slope of the 
RC of the paretic APB, n=6 
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