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Abstract 

Fusarium head blight (FHB) is an economically important disease of barley caused by 

mycotoxin-producing Fusarium species. Resistance to FHB is associated with several 

agronomic traits, particularly height. Taller cultivars are generally more resistant; 

however increased height is less favourable due to the prospect of lodging, creating a 

trade-off between disease resistance and agronomic qualities. 

Disease assays with pathogens of differing trophic lifestyles were conducted using 

barley BRI1 mutation lines, which display brassinosteroid (BR) insensitivity and a 

semi-dwarf phenotype. Interestingly, bri1 semi-dwarf lines did not display increased 

susceptibility to FHB. Additionally, bri1 mutation provided advantageous resistance 

to necrotrophs but did not increase susceptibility to biotrophs, demonstrating an 

absence of a resistance trade-off.  

The barley cultivars Chevallier and Armelle display significant FHB resistance, yet 

also possess a tall height phenotype. To determine whether the resistance of these 

cultivars was associated with height, bi-parental populations were created by crossing 

to the short, modern variety NFC Tipple. High density genetic maps of the populations 

were produced using Genotyping-by-Sequencing and 384-SNP BeadXpress assays to 

enable quantitative trait loci (QTL) mapping of both FHB and agronomic traits. Within 

the C×T population, a QTL for FHB resistance was identified on chromosome 6H 

which was not associated with either height or heading date, suggesting that resistance 

in this region is not due to linkage or pleiotropy with these traits. In contrast, FHB 

resistance within the A×T population was coincident with both height and heading 

date QTL on 3H.  

QTL analysis of malting traits of Chevallier, an English malting landrace, was also 

undertaken. Chevallier compared favourably to NFC Tipple, a modern malting 

cultivar, for several malting characteristics including free amino nitrogen, diastatic 

power and wort β-glucan content. This demonstrates that Chevallier may be a useful 

potential source of both FHB disease resistance and quality traits. 
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Chapter 1. General introduction 

1.1 Head blight and other Fusarium diseases 

Fusarium head blight (FHB) is a cereal disease caused by the Fusarium species of 

hemibiotrophic fungal pathogens, causing yield loss and posing a potential health risk 

to organisms that consume contaminated grain. FHB is primarily a disease of major 

small grain cereal crops such as barley (Hordeum vulgare), bread wheat (Triticum 

aestivum) and durum wheat (Triticum turgidum), but it can also affect other cereals 

such as rice (Oryza sativa) and maize (Zea mays), causing major economic losses in 

both agriculture and grain produce industries.  

Fusarium species not only cause head blight, but are able to infect the plant host 

throughout most of its developmental stages and in multiple host tissues. Seedling 

blight causes poor plant establishment and may be seen after the sowing of Fusarium 

infected seeds or colonisation of clean seeds by Fusarium fungi present in the soil 

(Yang et al. 2011). Root rot, which is indicated by root necrosis, and crown rot, 

indicated by brown discolouration and weakening of the stem base, are also caused by 

Fusarium species (Beccari et al. 2011). Head blight however is considered to be the 

most significant of the Fusarium diseases, due to the majority of cereal products being 

generated from grains from the head of the plant and the potential for mycotoxin 

contamination.  

 

1.2 Symptoms of FHB infection 

Following colonisation of plant tissue by Fusarium fungi, a number of visible 

symptoms are presented in the ear and grains of the infected host. The most common 

symptom of FHB in wheat is the bleaching of infected spikelets prior to senescence 

(Figure 1.1a). This bleaching can spread from the initial point of infection, producing 

either partial or complete bleaching of the ear, as the fungus moves into the rachis of 

the wheat ear and further colonises the host tissue (Guenther and Trail, 2005). The 

disease may also be manifested as brown or water soaked discolouration on an 

otherwise green spike, a symptom which is indicative of FHB in barley (Figure 1.1b) 

(McMullen et al. 2012). Two-row barley cultivars have been demonstrated to be more 
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resistant to FHB than six-row cultivars Bai and Shaner, 2004). If environmental 

conditions are favourable for fungal development during anthesis, with prolonged 

periods of high humidity and warm temperatures, clusters of orange sporodochia may 

also be present on the glumes, lemma or even entire kernel of infected crops (Scherm 

et al. 2013). Fusarium infection in floral tissues causes the premature ripening of the 

grains, resulting in the production of characteristic shrivelled ‘tombstone’ kernels 

which are chalky or discoloured in appearance (Maloney et al. 2014). Fusarium 

damaged kernels (FDK) have a lower grain weight causing them to be more easily 

dispersed during harvesting, further propagating fungal infection, and are of poor 

quality resulting in reduced yield. Cereal grains affected by FHB may also contain 

mycotoxins produced by the fungus, leading to possible health risks depending on the 

intended use of such products and the toxin(s) present. The economic losses caused 

by low quality and mycotoxin contaminated wheat and barley grains in the US alone 

were estimated to total $7.67 billion during 1993 – 2001 (McMullen et al. 2012).  

 

 

Figure 1.1. The characteristic symptoms of Fusarium head blight infection in barley. 

a) FHB symptoms in wheat. b). FHB symptoms in two-row (left) and six-row (right) 

barley. Scale bar = 1cm. 
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1.3 Causal species  

Several Fusarium species are known to cause FHB, with environmental conditions, 

particularly temperature and rainfall, largely determining which particular pathogen 

species predominates in a specific geographical location. Within a single environment 

multiple Fusarium species may be present, forming a disease complex (Nicholson, 

2009). The further pathogens Microdochium nivale and M. majus, which were 

formerly recognised as Fusarium species before detailed morphological and genetic 

analysis revealed that they are in a separate genus, are also found within the Fusarium 

disease complex and are known to produce a comparable spectrum of symptoms 

(Nielsen et al. 2013). Worldwide, F. graminearum (teleomorph Gibberella zeae) is 

thought to be the primary causal species of FHB in barley and wheat (McMullen et al. 

2012). The warmer climates in Northern America and Asia are more conducive for F. 

graminearum development, as the species displays optimum fungal growth at 

temperatures between 25 – 30oC (Brennan et al. 2003).  

 

The predominant causal species of FHB in Northern Europe and the UK has 

historically also been F. graminearum, but more recently F. poae and F. avenaceum, 

and in particular F. culmorum have become increasingly prevalent (Xu and Nicholson, 

2009). F. culmorum, F. poae and F. avenaceum exhibit optimal growth at temperatures 

between approximately 20 – 25oC (Doohan et al. 2003), corresponding with the more 

moderate climate in Europe. M. nivale and M. majus, which produce similar symptoms 

to FHB, are more efficient pathogens in climates of 10 – 15oC (Imathiu et al. 2010) 

and are therefore isolated from cooler, wetter locations. F. langsethiae, which was first 

identified in 2004 (Torp and Nirenberg, 2004), has also been demonstrated to be an 

important emerging causal species of FHB in barley and particularly oats (Avena 

sativa). This species is most commonly found in areas such as Northern and Central 

Europe where temperatures of 20 – 30oC provide an ideal growth environment 

(Imathiu et al. 2013). The species F. sporotrichioides is generally isolated from more 

moderate regions with temperatures of 20 – 25oC (Doohan et al. 2003), whilst F. 

verticillioides, formerly F. moniliforme, and F. proliferatum are largely isolated from 

infected maize stubble and exhibit optimal growth at temperatures of 15 – 30oC.  
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1.4 Sources of inoculum and mechanisms of infection 

Within a field environment, the primary inoculum of FHB is contaminated crop 

residue from previous harvests (Bai and Shaner, 2004). F. graminearum has been 

demonstrated to survive saprophytically over winter on plant debris from wheat, 

barley and maize (Goswami and Kistler, 2004). Initiation of the pathogenic phase of 

the Fusarium life cycle and therefore production of inoculum occurs when the 

environmental conditions become more favourable for fungal development. The 

conditions during which optimal development occurs are dependent on the species of 

Fusarium that are present within a disease complex and whether they are able to 

reproduce through sexual or asexual means. For example, F. poae and F. culmorum 

are thought to reproduce via asexual means only, whilst F. graminearum, F. 

avenaceum and the non-true Fusarium species M. nivale and M. majus are capable of 

both asexual and sexual reproduction (Doohan et al. 2003). Asexual reproduction 

results in the production of three main spore types: microconidia, which are one or 

two celled and produced from the conidiophores, larger multi-septate macroconidia 

formed in the sporodochia of conidiophores, and round chlamydospores generated 

from either hyphae or macroconidia (Ma et al. 2013). The production of asexual 

conidia occurs on the surface of infected crops at the optimal temperature of 28 – 32oC 

in F. graminearum (Doohan et al. 2003) and studies have determined that they are 

most often distributed by splash dispersal (Rossi et al. 2002), as demonstrated in 

Figure 1.2.  

Ascospores are produced via sexual means, from sacs called asci within the 

perithecium, and are discharged during periods of higher humidity due to changes in 

turgor pressure within the ascus (Trail et al. 2002). The optimal temperature for 

ascospore generation in F. graminearum is 25 – 28oC and they are considered to be 

the primary inoculum of FHB due to their airborne dispersal (Trail, 2009). Distribution 

of the inoculum onto the surface of or inside the spikelets of crops, allows the initiation 

of infection in the host plant if conditions remain conducive to germination.  
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Figure 1.2. The life cycle of Fusarium graminearum with wheat as the host cereal. 

(Taken from Trail, 2009).  

 

1.4.1 Fungal colonisation of the host  

Following dispersal of the fungal inoculum, the Fusarium fungus is deposited on the 

external structures of cereal ears, such as the palea, lemma and glumes (Trail, 2009). 

Anthers are rapidly colonised by F. graminearum (Skinnes et al. 2010), therefore 

cereals are most susceptible to FHB infection during the period of anthesis, but can 

still be infected during the later stages of kernel development. After germination, F. 

graminearum has been observed to extend its hyphae on the surfaces of these 

structures without penetrating through the epidermal cells (Boenisch and Schäfer, 

2011), before infiltrating the host via the cell wall, epidermis, stomata or cuticle 

(Wanjiru et al. 2002). F. graminearum subsequently undergoes systemic growth, with 

subcuticular colonisation of wheat glumes being observed as early as 48 hours post 
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inoculation (hpi) (Pritsch et al. 2000). Two distinct structures, subcuticular hyphae and 

bulbous infection hyphae, have been observed during this stage of infection (Rittenour 

and Harris, 2010). Subsequent extension of hyphae in F. graminearum is initially 

confined to the intercellular spaces of the wheat rachis (Brown et al. 2010). This lack 

of intracellular growth suggests a brief biotrophic stage of asymptomatic host 

colonisation, leading to F. graminearum being considered as a hemibiotroph rather 

than a truly necrotrophic fungus. Following abundant intercellular growth and hyphal 

extension, F. graminearum begins intracellular establishment, acting in a necrotrophic 

manner as it causes host cell death. Fungal hyphae are present in the aleurone layer, 

endosperm and pericarp of infected wheat grain within 72hpi, causing collapse and 

death of the cells present (Jansen et al. 2005) and ultimately destroying the structure 

of the caryopses. Colonisation of the rachilla, rachis and the rachis node in wheat 

occurs through either lateral intercellular or vertically growing intracellular hyphae 

(Bushnell et al. 2010). Fungal spread within the rachis node is limited in barley, due 

to the synthesis of cell wall components, such as cellulose, lignin and xylan, 

preventing the spread of the fungus from the infected spikelet to non-infected grains 

(Jansen et al. 2005).  

 

1.4.2 Host response to Fusarium colonisation 

In response to initial infection by Fusarium species the host mounts a number of 

defence responses. Following infection with F. graminearum, the expression of wheat 

chitinases, β-1,3-glucanases and thaumatin-like proteins were observed (Pritsch et al. 

2000). Chitinases and glucanases recognise and target the cell wall components chitin 

and glucan for degradation (Theis and Stahl, 2004), weakening the Fusarium cell wall. 

Thaumatin-like proteins are also thought to disrupt the integrity of the fungal 

membrane, as do thionins and lipid transfer proteins which have antifungal activity 

(van Loon et al. 2006). During this subcuticular and intercellular growth of the fungus 

within the host, plant cell wall components such as ferulic acid and p-coumaric acid 

are synthesised, which may reinforce the cell wall to prevent additional fungal 

colonisation (Kang and Buchenauer, 2003). Significant differences in cell wall 

composition have been determined between FHB resistant and susceptible wheat 

cultivars, particularly with respect to lignin content, suggesting an important role in 
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disease resistance (Lionetti et al. 2015). To counteract the strengthening of the host 

cell wall, F. graminearum and F. culmorum produce cell wall degrading enzymes 

including pectinases, xylanases and polygalacturonases (Kikot et al. 2009). Following 

polygalacturonase secretion by F. graminearum, wheat produces polygalacturonase-

inhibiting proteins to help inhibit further cell degradation (Walter et al. 2010). Studies 

have also identified that the production of reactive oxygen species (ROS), peroxidase 

genes (Desmond et al. 2008), ABC transporters (Xiao et al. 2013) and defensin genes 

(Gottwald et al. 2012) are activated in response to host invasion by Fusarium species. 

The production of resistance metabolites from a number of biosynthetic pathways has 

also been observed. For example, higher levels of cinnamic acid, a compound from 

the phenylpropanoid pathway from which ferulic and p-coumaric acid are derived 

(Ponts et al. 2011), have been observed in resistant wheat cultivars compared to more 

susceptible cultivars (Paranidharan et al. 2008). Phenylalanine ammonia lyase, an 

integral component in the phenylpropanoid pathway, is also up-regulated during F. 

graminearum infection (Steiner et al. 2009), again suggesting a role for this pathway 

in defence. Several phytohormone pathways are also involved in basal immunity and 

the expression of genes involved in the synthesis of hormones, such as jasmonic acid 

(JA), have been shown to be upregulated post infection with F. graminearum (Li and 

Yen, 2008). The exact mechanisms of host defence are still being uncovered and 

further studies should provide more definitive answers to the response of both the host 

and the Fusarium pathogen during the infection process.  

 

1.5 Fusarium mycotoxins 

Fusarium fungi have the ability to produce a variety of secondary metabolites known 

as mycotoxins during host colonisation, which have varying effects on human and 

animal health should they be ingested. Many Fusarium species produce several 

mycotoxins which are thought to have multiple actions within plant tissue (Table 1.1). 

Such toxins accumulate in the grains of infected crops and are stable during grain 

processing methods, meaning they may be detected in food and malt products. Some 

of the most prevalent mycotoxins include fumonisins, zearalenone, moniliformin, 

enniatins, beauvericin and the trichothecenes (Desjardins and Proctor, 2007). 

Fumonisins, such as those produced by F. verticillioides and F. proliferatum, are 
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polyketides that disturb sphingolipid metabolism by inhibiting the enzyme ceramide 

synthase (Lanubile et al. 2013). One of the predominant forms of fumonisin, 

Fumonisin B1, is most frequently isolated from infected maize and has been 

demonstrated to induce both intestinal and hepatic toxicity in piglets (Grenier et al. 

2012). A further polyketide zearalenone is commonly produced by F. graminearum 

and F. culmorum, and a number of studies using several animal models have 

demonstrated the hyper-estrogenic effects of the toxin (Hueza et al. 2014). Mycotoxins 

such as moniliformin are also synthesised via polyketide pathways (Jestoi, 2008) and 

are produced by species such as F. avenaceum (Morrison et al. 2002). F. oxysporum 

and F. langsethiae have been identified as species that produce enniatins (Thrane et 

al. 2004), toxins that alter ion homeostasis and disrupt the membrane integrity of 

mitochondria (Tonshin et al. 2010; Meca et al. 2010). F. langsethiae is also known to 

produce beauvericin (Thrane et al. 2004), a cyclohexadepsipeptide that is able to cause 

apoptosis of mammalian cells (Logrieco et al. 2002). The class of mycotoxins known 

as the trichothecenes are currently the most widely understood and investigated form 

of secondary metabolites produced by the Fusarium species, due to the higher 

prevalence of trichothecene producing strains in Northern Europe and America where 

cereal crops are commonly grown. 
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Table 1.1. Fusarium species and their known mycotoxins.  

 

Mycotoxin 
 

Species 
 

Reference 
Trichothecenes F. graminearum (DON, NIV), F. 

culmorum (DON, NIV), F. poae 

(NIV), 

F. sporotrichioides (HT-2, T-2), F. 

langsethiae (HT-2, T-2), F. 

acuminatum (T-2) 

Bottalico and Perrone, 

2002; Desjardins and 

Proctor, 2007; Imathiu et 

al. 2013 

Fumonisins F. verticillioides, F. proliferatum, F. 

subglutinans  

Rheeder et al. 2002; 

Grenier et al. 2012 

Enniatins F. oxysporum, F. langsethiae, F. 

poae 

Thrane et al. 2004 

Zearalenone F. graminearum, F. culmorum Lysoe et al. 2008 

Moniliformin F. avenaceum, F. tricinctum, Morrison et al. 2002 

Beauvericin F. langsethiae, F. poae Thrane et al. 2004; 

Desjardins and Proctor, 

2007 

 

1.5.1 Trichothecene mycotoxins 

Several species of true Fusarium fungi, therefore excluding M. nivale and M. majus, 

produce trichothecene mycotoxins during the colonisation of host plant tissue. 

Trichothecenes are a large class of structurally similar, water soluble, sesquiterpene 

secondary metabolites that are produced by some of the most prevalent Fusarium 

species, including F. graminearum and F. culmorum (McCormick et al. 2011) and are 

therefore of most interest. Trichothecenes have a fused cyclohexene-tetrahydropyran 

ring structure around which acetyl and hydroxyl groups are found (Foroud and Eudes, 

2009). The different toxins are classified according to their structure at the carbon-8 

(C-8) position of the ring. Of the four major types of trichothecene (Type A, B, C, D) 

Type A and Type B are most common, with Type C and Type D being less associated 

with FHB (Bennett and Klich, 2003). Type A trichothecenes possess an ester side 
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chain at the C-8 position, Type B possess a ketone, whilst the less prevalent Type C 

and Type D possess an epoxide and an additional macrocyclic ring, respectively 

(McCormick et al. 2011). Type A toxins, such as T-2 and HT-2, are extremely toxic 

compounds and are approximately ten times more harmful than Type B toxins, such 

as deoxynivalenol (DON) and nivalenol (NIV) (Desjardins and Proctor, 2007). F. 

graminearum produces DON and its less toxic derivatives 3-acetyl-DON (3-ADON) 

and 15-acetyl-DON (15-ADON) (Bottalico and Perrone, 2002), whilst F. 

sporotrichioides and F. langsethiae produce T-2 and HT-2, although such species are 

less prevalent. 

 

Trichothecene synthesis occurs via the terpenoid pathway and is initiated by the 

conversion of the substrate farnesyl pyrophosphate into trichodiene by the enzyme 

trichodiene synthase. This is encoded for by the gene Tri5, which is located at the 

centre of a 25kb core cluster of 12 co-regulated Tri genes (Desjardins and Proctor, 

2007). Trichodiene is converted into calonectrin by a series of nine further reactions 

involving the enzymes Tri4, Tri101, Tri11 and Tri3, a process which is common in 

the synthesis of both Type A and Type B trichothecenes (Merhej et al. 2011). A further 

two common reactions are seen in Type A producing species and F. graminearum 

NIV producers, catalysed by the products of Tri7 and Tri13 (Lee et al. 2014). In studies 

using F. sporotrichioides, Tri7 and Tri8 are then required for the production of Type 

A trichothecenes such as T-2 (Foroud and Eudes, 2009). In F. graminearum, the Type 

B trichothecene NIV is then produced by the action of Tri1 to form 4-ANIV, followed 

by the conversion into NIV by Tri8 (McCormick et al. 2011). Isolates of F. 

graminearum and F. culmorum that are not capable of producing NIV lack functional 

Tri7 and Tri13 genes, and calonectrin is converted into 3-ADON, 15-ADON or DON 

by the action of the products of Tri1 and Tri8. The production of the 3- and 15-ADON 

chemotypes is dependent on the particular mutations present in the coding sequence 

of the Tri8 gene. In 3-ADON producers the Tri8 gene encodes a C-15 esterase which 

deacetylates 3,15-diacetyldeoxynivalenol at the C-15 position, whilst in 15-ADON 

producers the Tri8 gene encodes a C-3 esterase which acts at the C-3 position to 

produce 15-ADON (Alexander et al. 2011). 

The consumption of trichothecene contaminated grain products has been demonstrated 

to have a negative effect on the health of both humans and animals. Trichothecenes 
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are classically regarded as inhibitors of eukaryotic protein and mitochondrial synthesis 

(Pace et al. 1988), by binding to the 60S ribosomal subunit, and have also been 

demonstrated to inhibit DNA synthesis, cell growth and cause cell cycle arrest (Pestka, 

2010). Oxidative stress damage and subsequent cell death caused by the action of 

DON has been observed in both human and plant cells, as have trichothecene induced 

chromosomal abnormalities (Arunachalam and Doohan, 2013). Feed refusal in swine 

and poultry (D’Mello et al. 1999; Borutova et al. 2008) and an inflammatory immune 

response and irritation of the digestive tract in humans are also associated with 

trichothecene exposure (Pestka et al. 2004). Due to the health concerns regarding 

trichothecene contamination strict regulations govern the permitted mycotoxin content 

of cereal grains and their by-products, such as animal feed and brewed beverages. The 

US Food and Drug Administration (FDA) recommends a maximum DON level of 

1ppm in wheat and barley products for human consumption (US FDA, 2010), whilst 

within the EU a limit of 1250ppb is acceptable for DON in unprocessed cereals (EC 

1881/2006). The increasing prevalence of Type A trichothecene mycotoxins led to 

new guidance values regarding T-2 and HT-2 being issued in 2013, with advisory 

limits of 200ppb and 100ppb in unprocessed barley and wheat, respectively, being 

suggested (EC 2013/165/EU).  

 

1.5.2 The effect of trichothecenes within the host 

The actions of trichothecenes such as DON have various effects in cereals. Treatment 

of wheat leaf segments with up to 90ppm DON causes bleaching, an effect enhanced 

by the addition of Ca2+ (Bushnell et al. 2010). The same study also noted that in 

response to treatment with non-toxic levels of DON, leaf segments remained green, 

an observation which was also seen with cycloheximide, another protein synthesis 

inhibitor. Such results suggest the dual roles of DON in both postponing senescence 

and causing cell death may be contributed by its effect on protein synthesis. Treatment 

of wheat leaves with 200ppm DON causes the production of the ROS H2O2 and also 

induces programmed cell death (PCD) within 24 hours (Desmond et al. 2008). 

However, such levels of toxicity are unlikely to be seen within a natural environment. 

Contrastingly, treatment of Arabidopsis thaliana cells with lower levels of DON 

(10ppm) inhibits apoptosis-like PCD in response to heat stress treatment (Diamond et 



 

12 
  

al. 2013). This suggests that trichothecenes may have a role in suppressing cell death, 

which may be advantageous during the brief biotrophic phase of fungal infection. The 

results of such studies suggest that trichothecenes produced by Fusarium species have 

a complex role within host tissues. 

 

DON accumulation within the host tissues has been demonstrated to induce the 

expression of host defence genes. Cytochrome P450s, ABC transporters and 

glutathione S-transferases are consistently induced by the presence of DON in barley 

and wheat (Boddu et al. 2007; Gardiner et al. 2010; Walter and Doohan, 2011), 

suggesting important roles for trichothecene detoxification. Boddu et al. (2007) 

demonstrated that the barley cultivar Morex shows differential upregulation of defence 

genes in response to infection with either trichothecene-producing or tri5 mutant 

isolates of F. graminearum that are incapable of producing trichothecenes. The 

induction of genes encoding ABC transporters and UDP-glucosyltransferases, which 

are thought to have a role in DON detoxification, after inoculation with the wild-type 

fungus but not with the tri5 isolate suggests that distinct pathways are activated during 

Fusarium infection, with separate roles to both limit mycotoxin accumulation and 

restrict fungal colonisation (Boddu et al. 2007). In response to point inoculation of 

DON in wheat ears, the early expression of two ABC transporters are also induced 

(Walter et al. 2015). ABC transporters are known to play roles in auxin and alkaloid 

transport, the deposition of cuticular wax and tolerance to heavy metals, though direct 

transportation of heavy metal ions have not been demonstrated (Rea, 2007). The role 

of UDP-glucosyltransferases in DON detoxification has been illustrated by the 

Arabidopsis gene UGT73C5 which is able to convert 15-ADON to the less toxic DON-

3-O-glucoside, via the transfer of glucose to the 3-OH position (Poppenberger et al. 

2003). Barley spike inoculation with DON results in a decrease in DON concentration 

within the ear over a 72 hour period, but an increase in the content of DON-3-O-

glucoside, suggesting detoxification of DON (Gardiner et al. 2010). The same study 

looked at the transcriptional profiles of barley ears treated with DON and again noted 

the induction of two UDP-glucosyltransferase genes. In a further study four candidate 

barley UDP-glucosyltransferases were expressed in yeast (Schweiger et al. 2010). 

HvUGT13248, which displayed the lowest sequence identity with the Arabidopsis 

gene UGT73C5 identified by Poppenberger et al. (2003), was the only gene from the 

four initial candidates which gave resistance to DON following treatment (Schweiger 
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et al. 2010). The production of DON-3-O-glucoside was found to be greater in both 

transgenic Arabidopsis and wheat lines constitutively expressing HvUGT13248 than 

non-transformants (Shin et al. 2012; Li et al. 2015), with the transgenic wheat cultivars 

also displaying increased Type 2 resistance following infection with F. graminearum.  

 

1.5.3 Trichothecene deficient Fusarium strains 

The production of mycotoxins by Fusarium species has been proposed as a significant 

factor in the process of infecting host plants. The disruption of key genes in the 

trichothecene biosynthetic pathway, such as Tri5 or the closely situated gene Tri6, 

result in a great reduction in mycotoxin biosynthesis, providing targets to enable the 

investigation into the effects of trichothecenes on fungal virulence and disease 

incidence (Foroud and Eudes, 2009). In wheat, Fusarium isolates which possess 

disrupted trichothecene biosynthesis pathways show altered infection successes, 

suggesting a role for these mycotoxins as major factors in disease development. F. 

graminearum isolates which are disrupted in the Tri5 gene produce reduced FHB 

symptoms, such as less severe bleaching, when compared to those inoculated with 

wild-type strains (Desjardins and Hohn, 1997). The trichothecene tri5 deficient 

isolates used by Langevin et al. (2004) and the tri12 F. graminearum isolates used by 

Menke et al. (2013) were also determined to be less aggressive than mycotoxin 

producing isolates during wheat inoculation studies. Further evidence for the role of 

DON as a virulence factor in wheat can be found in the number of studies which have 

observed that trichothecene deficient Fusarium isolates show a reduced ability to 

spread from the initial point of inoculation. Bai et al. (2002) demonstrated that whilst 

DON non-producing strains of F. graminearum are still able to infect wheat spikelets, 

they are restricted in their ability to colonize adjacent spikelets, as did Maier et al. 

(2006). This inability of the tri5 knock-out isolate of F. graminearum to spread beyond 

the rachis node during the infection of wheat was demonstrated to be due to the 

deposition of cell wall components in response to infection, suggesting that the DON 

mycotoxin has a role in preventing this form of defence response (Jansen et al. 2005). 

Subsequent studies using green fluorescence protein (GFP) tagged to the Tri5 gene 

promoter have further determined that the trichothecene pathway is induced during 

colonisation of the rachis node (Ilgen et al. 2009). This evidence, combined with the 

results of the trichothecene mutant studies suggests that the production of DON by 
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Fusarium species contributes towards not only the aggressiveness of the fungus, but 

also the ability to colonise plant host tissue in wheat. At present, few studies have 

investigated the effect of NIV non-producing Fusarium strains during host 

colonisation and NIV has not been demonstrated to be virulence factor in wheat (Ilgen 

et al. 2008). 

 

Contrastingly, DON does not appear to be a virulence factor in barley. Jansen et al. 

(2005) observed no differential in the ability of tri5 disrupted and wild-type F. 

graminearum isolates to spread from infected to non-infected spikelets, with both 

isolates being inhibited at the rachis nodes. Maier et al. (2006) also identified that there 

were no significant differences between the visual symptoms caused by F. 

graminearum wild-type isolates or those caused by tri5 disrupted isolates after spikelet 

inoculation in both the susceptible Pasadena cultivar and the moderately resistant 

Chevron. However, whilst Boddu et al. (2007) again observed the inability of both 

wild-type and tri5 to spread within infected barley spikes, they determined that 

trichothecene producing isolates produced more severe FHB symptoms and greater 

biomass accumulation than the tri5 mutant strain. The results of such studies suggest 

that whilst DON may play a role in the aggressiveness of FHB disease, this effect is 

highly influenced by the host and that the role of DON in the colonisation of barley 

requires further investigation to be fully understood. 

 

1.6 Molecular methods for identifying the presence of Fusarium species 

Whilst visual assessment is useful in detecting the presence of FHB infection, it is 

important to identify and quantify the exact species causing disease to gain a more 

complete understanding of the interaction between pathogen and host. Several 

Fusarium species show morphological similarities during growth in axenic culture, so 

the development of molecular methods has been crucial for more precise 

identification. Polymerase chain reactions (PCR) have been widely utilised to detect 

the presence of specific Fusarium species and to also quantify the amount of Fusarium 

DNA within a sample. Species specific PCR assays have been designed to ascertain 

the presence of F. graminearum and F. culmorum (Nicholson et al. 1998), F. poae 

(Nicholson et al. 1996), F. subglutinans and F. verticillioides (F. moniliforme) (Möller 

et al. 1999) and M. nivale and M. majus (Nicholson et al. 1996). Importantly, the 
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results from competitive PCR employed to quantify Fusarium isolates within a sample 

have been demonstrated to correlate with the results from traditional visual scoring 

(Nicholson et al. 1998). The presence of Fusarium pathogens can also be investigated 

by the use of PCR primers designed to amplify regions of genes within mycotoxin 

biosynthetic pathways. Many of these PCR based assays have focused on identifying 

trichothecene producing Fusarium species, particularly those producing Type B 

trichothecenes, due to the importance of controlling the levels of these mycotoxins in 

grain products. Characterisation of Fusarium species according to their specific 

chemotypes, such as NIV or DON producing isolates, has been demonstrated in F. 

graminearum, F. culmorum and F. cerealis (Nicholson et al. 2004). Multiplex 

quantitative PCR (qPCR) has been developed to successfully identify trichothecene 

and fumonisin producing Fusarium species within maize samples (Preiser et al. 2015). 

Sarlin et al. (2006) determined a correlation between DON content analysed by gas 

chromatography-mass spectrometry (GC-MS) and Fusarium DNA levels, by using 

real-time PCR to quantify trichothecene producing species such as F. graminearum, 

F. culmorum and F. sporotrichioides found in barley grain and malt. Further studies 

to quantify F. graminearum biomass in wheat kernels using real-time PCR, identified 

that Fusarium biomass levels correlate with both Fusarium DNA levels and DON 

quantity, but not disease severity (Horevaj et al. 2011). This again is similar to Hill et 

al. (2008) who used enzyme linked immunosorbent assays (ELISA) to detect DON 

levels in barley, and found that whilst the ELISA assay was a quick practical method 

for indicating the presence of Fusarium DON antigens within grain samples, the FHB 

visual symptoms did not correlate with the DON levels found to be present. Such 

studies illustrate the importance of quantifying fungal DNA and mycotoxin content 

within a sample, due to the inconsistencies between the severity of visual symptoms 

and fungal colonisation and mycotoxin levels.  

The identification of Fusarium contaminated samples can also be determined by other 

diagnostic methods. Loop-mediated isothermal amplification (LAMP), a single tube 

assay which does not require the use of a thermal cycler, has been developed to detect 

fragments of both the Tri5 and Tri6 trichothecene synthesis genes enabling the 

detection of F. graminearum and F. culmorum (Denschlag et al. 2014). The detection 

of Fusarium metabolites within grain samples have also been developed using several 

analytical methods, with high performance liquid chromatography (HPLC) being used 
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to detect DON, fumonisin and ergosterol content (Plattner et al. 1999; Gang et al. 

1998; Bakan et al. 2002) and GC-MS being utilised to detect DON in barley (Olsson 

et al. 2002; Sarlin et al. 2006) and the presence of several Fusarium species in wheat 

grains (Eifler et al. 2011). The development of biosensor methods such as real-time 

electrochemical profiling (REP) using electrode arrays have also been demonstrated 

to be comparable to conventional ELISA assays in detecting the presence of DON in 

wheat samples (Olcer et al. 2014).  

 

1.7 Resistance derived from cultural practices  

A number of cultural practices have been found to affect the incidence of FHB 

infection in the field. Reduced tillage systems have been found to significantly 

increase the severity of FHB disease (Dill-Macky and Jones, 2000), with FHB residues 

being present in up to 60% of the soil in no-till plots compared to only 9% in 

mouldboard ploughed soil. Wheat residues infected with F. graminearum present on 

the soil surface have been shown to decompose more slowly than those beneath the 

soil (Pereyra and Dill-Macky, 2004), with tillage systems therefore promoting the 

burial of these residues and prevention of conidial release. The process of crop rotation 

also has a significant effect on the incidence of FHB in the field, with crops following 

maize more prone to FHB infection (Osborne and Stein, 2007). Maize stubble has been 

identified as a major source of Fusarium inoculum, with F. graminearum being 

isolated from maize residues up to three years post-harvest (Pereyra and Dill-Macky, 

2008). Marburger et al. (2015) determined that a maize/soybean (Glycine max)/wheat 

rotation system produced higher yields than a maize/wheat/soybean rotation in the 

presence of FHB, due to the differences in Fusarium species which infect soybean 

compared with major cereals creating a smaller reservoir of inoculum. Alternately, 

sugar beet (Beta vulgaris) has also been suggested as a candidate for crop rotation 

(Champeil et al. 2004). The developmental stage at which the fungus infects the plant 

host also contributes to the severity of FHB, with the highest DON content in grain 

correlating with infection during mid-anthesis (Del Ponte et al. 2007), especially if 

this coincides with prolonged rainfall (Lacey et al. 1999). Sowing of multiple cultivars 

on several dates throughout the growing season, therefore producing a variety of 

flowering stages, or using cultivars with short flowering times could possibly lead to 
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a reduction in FHB (Champeil et al. 2004) as the most susceptible growing stages are 

less likely to coincide with inoculum dispersal. However, multiple crop harvesting 

dates may be less favourable in agriculture. Siou et al. (2014) also determined that 

infection of wheat spikes up to 28 days post anthesis with F. graminearum, 

F. culmorum and F. poae still produced significant levels of FHB and mycotoxin 

accumulation, suggesting that in the presence of favourable weather conditions this 

process may be ineffective.  

 

1.7.1 Chemical control measures 

The use of fungicides has also been advised as a method for reducing FHB severity. 

However the outcomes of such treatments are largely dependent on the environmental 

conditions, the fungicide selected and the Fusarium species present. Triazoles, which 

are sterol demethylation inhibitors (DMIs), inhibit the production of the C-14 sterol 

which is a known precursor of ergosterol and have been determined to be most 

effective in the control of FHB incidence (Yin et al. 2009). Combination treatments of 

metconazole, tebuconazole and prothioconazole have been demonstrated to produce 

the greatest reduction in FHB severity and DON accumulation in wheat compared to 

other triazoles such as propiconazole (Paul et al. 2010). However the application of 

some triazoles, such as epoxiconazole, or combinations of azoles and strobilurin 

fungicides, such as azoxystrobin, have been reported to result in enhanced DON 

content of wheat grain when compared to control samples (Mennitti et al. 2003; 

Blandino et al. 2006), suggesting not all azole fungicides are suitable for use against 

FHB. Sub-lethal levels of prothioconazole have been shown to increase DON 

production; however this is thought to be due to such treatments causing oxidative 

stress responses which in turn stimulate trichothecene production (Audenaert et al. 

2010). Tebuconazole treatment, whilst effective against F. culmorum and F. 

avenaceum isolates, has little effect on M. nivale (Simpson et al. 2001), suggesting 

one specific fungicide is not appropriate to provide sufficient resistance against the 

group of Fusarium and Microdochium pathogens present within the FHB disease 

complex. Studies with F. graminearum and F. culmorum have identified azole adapted 

isolates within a laboratory setting, with some isolates producing larger amounts of 

the nivalenol mycotoxin than non-adapted strains (Becher et al. 2010; Serfling and 
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Odon, 2014). The timing of fungicide application is also important when aiming to 

reduce FHB incidence. Thiophanate-methyl treatment at the optimal growth stage of 

anthesis reduces both FHB severity and DON accumulation in both wheat and barley, 

whilst application up to 20 days post anthesis limits the accumulation of mycotoxins 

but has little effect on the reduction of FHB incidence (Yoshida et al. 2008, 2012). 

Environmental conditions also affect the action of azole fungicides, as rainfall at the 

time of fungicide application or during anthesis reduces the efficacy of tebuconazole, 

prothioconazole and metconazole (Andersen et al. 2014; D’Angelo et al. 2014). Yield 

improvements gained from fungicide application to control FHB have been proven to 

be inconsistent. Marburger et al. (2015) saw an average yield increase of 3.9% in 

tebuconazole and prothioconazole treated wheat in only two out of three trial years, 

meaning that fungicides alone cannot be reliably used to prevent FHB associated yield 

loss. The integration of fungicide application with other cultural practices has been 

proposed as a more reliable method for controlling FHB incidence. For example, the 

combination of a moderately resistant cultivar and the application of triazole 

fungicides has been demonstrated to be more effective at reducing FHB incidence and 

DON accumulation than fungicide application or cultivar genetic resistance alone 

(Willyerd et al. 2012; Salgado et al. 2014). The inconsistent results produced by 

fungicides, combined with the high cost of applying such treatments repeatedly with 

the risk of generating fungicide insensitive Fusarium isolates, therefore suggest they 

are not effective long term solutions to preventing FHB infection and that sources of 

genetic resistance to FHB must also be identified.   

 

1.8 Host resistance to FHB 

As both cultural and chemical control of FHB may be less reliable, the use of genetic 

mechanisms to minimise the incidence and severity of the disease is favourable. 

Several types of resistance to FHB in cereal crops have been postulated, although not 

all described mechanisms have been identified in plant hosts. Resistance to the initial 

penetration of the host tissue by Fusarium fungi is determined to be Type 1 resistance 

(Schroeder and Christensen, 1963), whilst inhibition of fungal spread from infected to 

non-infected spikelets comprises Type 2 resistance. Type 2 resistance is primarily 

important against DON producing isolates of F. graminearum and F. culmorum, as 
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other species are not known to spread within the ear (Boenisch and Schäfer, 2011). In 

barley, Fusarium colonisation has been demonstrated to be mostly inhibited from 

spreading between rachis nodes, restricting the fungus to the original infected spikelet 

(Jansen et al. 2005). Therefore barley is considered to possess a form of Type 2 

resistance. Mesterhazy, (1995) also described three other forms of possible resistance: 

Type 3, resistance to the infection or damage of kernels, Type 4, resistance to the effect 

on yield and Type 5, resistance to the accumulation of Fusarium mycotoxins such as 

DON. Whilst resistance to kernel damage and toxin accumulation are advantageous 

traits for a cereal cultivar to possess, the resistance to initial infection (Type 1) is the 

primary focus of investigation due to the many practical applications derived from 

generating resistant cereal crops.  

 

1.9 Resistance to FHB 

1.9.1 Germplasm derived resistance 

Unlike other crop diseases such as rusts, where durable resistance has been established 

for wheat leaf rust (Puccinia triticina) and stripe rust (P. striiformis f. sp. tritici) by 

the introduction of the Lr34 gene (Risk et al. 2013), identifying genes for stable and 

reliable resistance to FHB has proven more difficult. The considerable environmental 

influence on disease incidence makes replication of field studies more complex and 

numerous studies have identified that resistance to FHB is polygenic with only 

moderate heritability. In hexaploid wheat germplasm, the Chinese cultivar Sumai 3 is 

the most widely used source of genetic resistance to FHB (Rudd et al. 2001), due to 

the consistent and well characterised resistance gained from breeding with this 

cultivar. A major quantitative trait locus (QTL), titled Fhb1, is associated with Type 

2 FHB resistance in wheat and has been consistently identified from Sumai 3 mapping 

populations. Fhb1 has been fine mapped to the distal segment of 3BS (Cuthbert et al. 

2006; Liu et al. 2008) and potential genes within this QTL region are being cloned 

(Zhuang et al. 2013). Ning 7840, Wangshuibai and Frontana which are derived from 

the Sumai 3 germplasm, have also been used as additional sources of FHB resistance 

(Cuthbert et al. 2006).  
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In barley however, no single cultivar has been identified which produces stable 

resistance at an appropriate level to effectively combat disease. A number of varieties 

have been identified which display moderate resistance to FHB such as Chevron a six-

row malting variety, the two-row Chinese varieties CIho 4196, Zhedar 1 and Zhedar 

2 and the Japanese cultivar Frederickson (Bai and Shaner, 2004), which have all been 

employed within breeding programs to reduce FHB severity. The recurrent screening 

of elite germplasm lines, diverse landraces and wild accessions is being undertaken 

with the aim of identifying potential new sources of resistance for barley breeding 

(Massman et al. 2011; Linkmeyer et al. 2013; Mamo and Steffenson, 2015), and the 

advent of new technologies such as genome wide association studies (GWAS) should 

also enable the increased detection of QTL associated with disease and further 

exploitation of genetic sources of FHB resistance. 

 

1.9.2 Quantitative trait loci in barley associated with resistance to FHB 

QTL associated with FHB and DON accumulation have been identified throughout 

the barley genome using different bi-parental mapping populations in various 

environments. Chromosome 2H has been consistently identified as the genomic 

location of several FHB QTL (Hori et al. 2004; Horsley et al. 2006; Nduulu et al. 2007; 

Massman et al. 2011). However, such FHB QTL do not always co-locate with QTL 

associated with reduced DON accumulation (Ma et al. 2001). A number of the FHB 

or DON QTL previously identified also co-locate with agronomic traits. For example, 

plant height has been consistently associated with FHB incidence (Zhu et al. 1999; Ma 

et al. 2001; Choo et al. 2004; Horsley et al. 2006), with taller cultivars appearing to be 

more resistant. Row type (Mesfin et al. 2003; Sato et al. 2008), flowering time (Mesfin 

et al. 2003; Horsley et al. 2006; Nduulu et al. 2007) and spike morphology (Hori et al. 

2005; Yoshida et al. 2005) are also frequently implicated in FHB resistance. It is 

therefore important to identify whether the association between QTL for FHB 

resistance and agronomic traits, such as height, is due to linkage or pleiotropy to avoid 

the potential trade-off between disease resistance and favourable agronomic traits.  
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1.9.3 Phytohormone signalling associated resistance  

Plant phytohormone pathways regulate numerous aspects of plant development, 

including growth, organ formation, seed production and senescence. The effects of 

plant hormones have also been implicated in resistance to Fusarium diseases. 

Exogenous application of JA prior to inoculation with F. graminearum in the 

susceptible wheat landrace Y1193-6 resulted in the upregulation of defence genes and 

an increase in resistance to a level comparable with that of Sumai 3 (Li and Yen, 2008). 

Salicylic acid (SA) also appears to decrease susceptibility to FHB, with wheat 

spikelets which accumulate higher levels of SA following soil drench treatment 

demonstrating greater resistance to FHB infection and DON accumulation (Makandar 

et al. 2012). The hormone ethylene (ET) has also been associated with disease 

resistance. Attenuation of the Ethylene insensitive 2 (EIN2) gene in wheat gives 

reduced fungal colonisation following F. graminearum inoculation, compared with 

wild-type lines which show more severe bleaching symptoms (Chen et al. 2009). The 

same study also identified that Arabidopsis thaliana ET overproducing lines were also 

more susceptible to F. graminearum infection, suggesting that the ET pathway is also 

utilised by Fusarium fungi during infection of dicotyledonous plant hosts. Evidence 

from studies such as these provides useful insights into pathways which may be 

utilised to minimise the incidence of FHB.  

 

1.10 Plant breeding associated trade-offs 

The aim of plant breeding is to combine multiple favourable traits, such as disease 

resistance, reduced height or increased yield, into a single cultivar. However, recent 

studies have identified that introducing a single desirable trait into breeding programs 

may result in potential trade-offs which are less favourable. Many European wheat 

cultivars possess either the Reduced height (Rht) Rht-D1b or Rht-B1b alleles which 

confer reduced sensitivity to the plant growth hormone gibberellic acid (GA) and 

result in an advantageous semi-dwarf phenotype. However, lines carrying Rht-D1b 

have been demonstrated to show reduced Type 1 resistance to FHB compared to wild-

type (rht-tall) cultivars (Srinivasachary et al. 2008). Studies with Rht-B1b show that 

the presence of this allele also reduces Type 1 resistance but has a significant positive 

effect on Type 2 resistance (Srinivasachary et al. 2009). This implicates a trade-off 
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between reduced plant height, conferred by altered phytohormone signalling, and FHB 

resistance. Additional studies looking at the effects of the Rht alleles on resistance to 

other fungal diseases determined a more general trade-off between pathogens of 

differing lifestyles. Rht dwarf lines show increased susceptibility to biotrophic fungi, 

yet display increased resistance to necrotrophs when compared to rht-tall lines (Saville 

et al. 2012), indicating the importance of determining the potential for trade-off when 

introducing specific alleles into cultivars.  

In spring barley broad spectrum disease resistance to powdery mildew, caused by the 

obligate biotroph Blumeria graminis f. sp. hordei, has been successfully achieved for 

over 30 years by the introduction of recessive alleles of the Mildew resistance locus o 

(Mlo) gene (Acevedo-Garcia et al. 2014). However, it has been demonstrated that the 

presence of recessive mlo alleles alters resistance to FHB. Jansen et al. (2005) 

investigated the infection pattern of F. graminearum in the caryopses of the mildew 

resistant cultivars Ingrid-mlo-5 and Pallas-mlo-5, and their respective near-isogenic 

parental lines (NILs). Colonisation by F. graminearum was more rapid in the two mlo-

5 genotypes; with macroconidia being present on the surface of the caryopses at 72hpi 

compared to 96hpi in the parental NILs (Jansen et al. 2005). The endosperm and 

aleurone cells within the caryopses of the mlo-5 cultivars also displayed greater 

disintegration than in the parental NILs, demonstrating their increased susceptibility 

to F. graminearum infection. The presence of mlo alleles has also been observed to 

affect resistance to other fungal pathogens. Jarosch et al. (1999) demonstrated that the 

recessive mlo-1, mlo-3 and mlo-5 alleles confer hypersusceptibility to the 

hemibiotroph Magnaporthe grisea, with a greater degree of sporulation and enlarged 

lesion development observed in cultivars possessing these alleles. Investigation into 

the recent emergence of the hemibiotrophic barley pathogen Ramularia collo-cygni, 

which causes Ramularia leaf spot (RLS), also identified that cultivars possessing the 

mlo-11 allele show an increased susceptibility to R. collo-cygni (McGrann et al. 2014). 

Further analysis of this association using doubled-haploid mapping populations 

determined that a QTL for RLS susceptibility and the mlo-11 resistance allele co-

localise on 4H. 

Trade-offs may also be associated with quality traits. The translocation between the 

1BL chromosome segment in bread wheat (T. aestivum) and 1RS in rye (Secale 

cereale) was originally created to introduce the rye resistance genes to leaf rust, stem 
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rust and powdery mildew (Lr26,Yr9, Lr26, Pm8) into commercial wheat (Dhaliwal et 

al. 1987). This translocation has also been observed to be associated with increased 

resistance to FHB. A study by Ittu et al. (2000) identified that increased resistance to 

FHB is associated with the presence of the GliR1 allele, which resides within the 

1BL/1RS translocation region. QTL mapping of the Romanian wheat variety Fundulea 

201R, which also carries the 1RS segment, resulted in the detection of a major QTL 

associated with Type 2 resistance on chromosome 1B within the 1BL/1RS region 

(Shen et al. 2003). Whilst this may appear to be a potentially useful source of Type 2 

resistance, quality studies have identified that the presence of the 1BL/1RS 

translocation results in poor performance during the commercial bread making 

process. Lines possessing the translocation show a reduction in glutenin content, 

causing a decline in gluten strength (Lee et al. 1995) and also have lower kernel 

hardness, affecting the milling quality of such lines (Zhao et al. 2012). Dough 

‘stickiness’ and reduced tolerance to mixing processes are also associated with the 

1BL/1RS translocation (Martín et al. 2001), which is thought to be due to the presence 

of genes encoding secalins, which are gluten associated storage proteins, in the 1RS 

segment (Jiang et al. 2010). This suggests that selecting for FHB resistance within the 

1BL/1RS region may give the potential for trade-off. 

Results from the above studies suggest that it is vital to investigate the potential for 

trade-off between disease resistance and agronomically and economically important 

quality traits. Determining whether genes for resistance affect other traits by either 

pleiotropy or linkage will determine whether such resistance is useful for breeding 

purposes. Whilst specific traits may still be bred for due to their agronomic importance 

regardless of associated undesirable effects, such as the Rht semi-dwarfing alleles, the 

prior knowledge of potential trade-off will allow more informed breeding decisions to 

be made.  

 

1.11 Overall objectives 

There is little genetic resistance to FHB in barley which performs consistently across 

environments and does not cause a potential trade-off with other traits. Therefore, 

identifying sources of resistance which do not have pleiotropic effects would be 
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advantageous when aiming to breed for FHB resistance and lower mycotoxin content 

whilst retaining agronomically significant quality traits.  

The specific objectives for this research are:  

i) To investigate the effect of altered phytohormone signalling through the 

brassinosteroid pathway on resistance to FHB and a range of other 

economically important cereal diseases. Barley bri1 cultivars have a 

mutation in the brassinosteroid receptor (BRI1) gene and possess a semi-

dwarf phenotype, therefore the prospect of trade-off between growth and 

disease resistance within these lines will be determined. 

 

ii) To identify whether the barley cultivars Chevallier or Armelle may be used 

as a possible source of resistance to FHB. Chevallier is a tall English 

landrace and Armelle is a tall French cultivar, yet both have been 

demonstrated to show significant FHB resistance. The potential for 

pleiotropy between FHB resistance, agronomic traits such as height and 

flowering time, and quality traits within these two cultivars will be 

investigated. 
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Chapter 2. Evaluation of the role of BRI1 in disease resistance and 

potential trade-offs 

Many of the results in this chapter have been previously published in: 

Goddard R, Peraldi A, Ridout C, Nicholson P. 2014. Enhanced disease resistance 

caused by BRI1 mutation is conserved between Brachypodium distachyon and barley 

(Hordeum vulgare). Molecular Plant-Microbe Interactions 27, 1095–1106.  

 

2.1 Introduction 

Plant hormones play a critical role in regulating development including growth, 

senescence and response to both abiotic and biotic stresses. Salicylic acid (SA), 

jasmonic acid (JA) and ethylene (ET) are three hormones considered to be at the core 

of plant regulatory mechanisms involved in response to pathogen infection and they 

are known to act in a largely antagonistic manner. Resistance to biotrophs is 

predominantly dependent on signalling through the SA pathway. Defence responses 

activated by SA signalling include the hypersensitive response (HR), which acts to 

deprive biotrophic pathogens of living tissue by causing the death of infected host 

cells. In contrast, JA and ET signalling often work in concert and are considered to be 

more important in resistance towards necrotrophic pathogens that feed off dead plant 

tissue and insects which cause host cell death (Glazebrook, 2005; Kliebenstein and 

Rowe, 2008). However, recent evidence suggests a more complex picture where 

several growth-promoting phytohormones can greatly modulate the outcome of 

pathogen infection (Robert-Seilaniantz et al. 2011). Further hormones such as 

cytokinins (CKs), auxin and abscisic acid (ABA) are also known to regulate both 

physiological and stress-related responses and it has become increasingly clear that 

the integration of phytohormone signals is much more complex than previously 

thought, particularly with respect to regulating the trade-off between growth and 

immunity.  

Gibberellic acid (GA) is a hormone which has been shown to play a role in both 

development, such as growth and seed germination, and also immunity. GA-

responsive growth is modulated by DELLA proteins which act as growth repressors 

(Peng at al. 1999). In the presence of GA, DELLAs are ubiquitinated by the SCF 
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complex (Alvey and Harberd, 2005), promoting recognition of DELLA proteins by 

the 26S proteasome protein complex and targeting them for degradation and so 

relieving growth inhibition (Hussain and Peng, 2003). The Reduced height (Rht) gene 

was a major dwarfing gene used during the Green Revolution, and the semi-dominant 

gain-of-function alleles Rht-B1b and Rht-D1b encode truncated growth repressor 

DELLA proteins which are hyposensitive to GA (Hedden, 2003). In the presence of 

GA these mutant forms of DELLA are constitutively active, causing inhibition of stem 

elongation and resulting in a semi-dwarf phenotype. Under higher nitrogen inputs, 

semi-dwarf Rht lines show an increased yield due to a greater biomass accumulation 

in the grain, and are also more resistant to lodging as the shorter stem is more able to 

support this increased biomass.  

Whilst the presence of the Rht alleles produces a favourable semi-dwarf phenotype, it 

has been demonstrated that these alleles also confer a trade-off between height and 

altered disease resistance. Arabidopsis thaliana DELLA proteins have been implicated 

in plant immunity, with mutations in GAI (one of the five AtDELLA proteins) giving 

an increased resistance to Alternaria brassicicola, a necrotrophic fungus which causes 

cell apoptosis in plants, but also an increased susceptibility to hemibiotrophic fungi 

(Navarro et al. 2008). The presence of the Rht-B1b allele in wheat has also been 

significantly associated with susceptibility to Fusarium head blight (FHB), with semi-

dwarf varieties showing compromised initial resistance (Type 1) to FHB compared to 

tall varieties with the wild-type allele (Srinivasachary et al. 2009). Investigation into 

the effects of Rht and Slender 1 (Sln1), the barley (Hordeum vulgare) Rht orthologue, 

to a range of fungal pathogens has also determined that dwarf (gain-of-function) 

DELLA mutants have greater resistance to necrotrophic pathogens but an increased 

susceptibility to biotrophic pathogens. Rht and Sln1 alleles have been demonstrated to 

confer an increased susceptibility to the brief initial biotrophic stage of infection 

displayed by hemibiotrophic fungi such as F. graminearum, but an increased 

resistance to the necrotrophic colonisation phase that follows (Saville et al. 2012). A 

higher susceptibility to biotrophs, for example Blumeria graminis, was also observed 

in semi-dwarf lines suggesting that GA signalling has a pleiotropic effect on plant 

growth and disease resistance (Saville et al. 2012). Recent studies have implicated 

DELLA proteins as having a function for pathway control and signal integration, 

particularly with respect to JA signalling which mediates resistance to necrotrophic 
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pathogens. JA ZIM-domain (JAZ) proteins act as repressors of JA signalling (Song et 

al. 2014) and bind to MYC2, the activator of JA transcription, inhibiting its activity 

(Kazan and Manners, 2013). In the presence of GA, DELLA proteins are targeted for 

degradation and growth repression is released (Alvey and Harberd, 2005). Under less 

favourable conditions, in the absence of GA, DELLA proteins are not degraded and 

have been demonstrated to compete with MYC2 to bind to JAZ proteins (Wild et al. 

2012). The transcription factor MYC2 is then free to activate JA responsive genes, 

releasing JA repression and therefore providing enhanced resistance to necrotrophic 

pathogens (De Bruyne et al. 2014). As the JA and SA pathways are generally thought 

to act in an antagonistic manner, increased JA signalling is assumed to cause the 

suppression of SA-mediated defence responses, resulting in greater susceptibility to 

biotrophs. This hypothesis, based on cross-talk between several phytohormone 

pathways, provides a molecular basis for resistance trade-offs between pathogens of 

differing lifestyles. The implications of these studies suggest that alternative semi-

dwarfing alleles, which act through alteration of signalling in phytohormone pathways 

other than GA, could be investigated to determine whether a similar trade-off between 

growth and immunity is evident.  

Brassinosteroids (BRs) are one such class of plant growth hormones. BRs regulate a 

wide range of developmental processes, such as cell elongation, root growth, and 

senescence, yet have also been implicated as having an important role in regulating 

plant defence (Bari and Jones, 2009). BR is perceived by the extracellular domain of 

the receptor Brassinosteroid-insensitive 1 (BRI1), an LRR (leucine-rich repeat) 

receptor-like kinase (Nam and Li, 2002). Once BR is bound, BRI1 then 

heterodimerizes with BRI1-associated receptor kinase 1 (BAK1), the co-receptor of 

BRI1, removing the inhibitory protein BRI1-kinase inhibitor 1 (BKI1) from the 

plasma membrane (Wang and Chory, 2006). BRI1 and BAK1 undergo 

transphosphorylation and phosphorylated BKI1 is able to promote BR signalling (Zhu 

et al. 2013). In Arabidopsis, BR signalling is known to act antagonistically with 

pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), (Albrecht 

et al. 2012; Belkhadir et al. 2012). Lozano-Durán et al. (2013) showed that BR-

mediated suppression of immune signalling requires expression of Brassinazole-

resistant 1 (BZR1), one of two major BR-activated transcription factors in 

Arabidopsis, which induces expression of several WRKY transcription factors that 
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negatively control early immune response. An antagonistic relationship between BR 

and PTI signalling has also been demonstrated in rice where Pythium graminicola, a 

pathogenic oomycete of roots, exploits endogenous BRs as virulence factors for host 

colonization (De Vleesschauwer et al. 2012). The authors showed that the 

immunosuppressive effect of BRs is, at least partially, due to negative cross-talk with 

both the SA and GA pathways. In addition, Nahar et al. (2013) showed that BRs can 

suppress rice defence mechanisms against the root-knot nematode Meloidogyne 

graminicola, at least partially through negative cross-talk with the JA signalling 

pathway. The results of such studies demonstrate a function for BR in plant immunity 

and signal integration, though further work is needed to determine the extent of the 

role of BR signalling in both pathogen defence and crosstalk between phytohormone 

pathways. 

Mutation of BRI1 also results in dwarfism in both dicot and monocot species (Clouse 

et al. 1996; Yamamuro et al. 2000; Chono et al. 2003; Thole et al. 2012). Japanese 

semi-dwarf ‘uzu’ barley (bri1) varieties possess a spontaneous single nucleotide 

substitution (A > G at position 2612) in a conserved region of the kinase domain of 

the BRI1 gene, as seen in Figure 2.1, which is thought to alter kinase activity and 

therefore signal transduction, ultimately rendering the plant insensitive to exogenously 

applied BR (Chono et al. 2003). The effect of BRI1 mutation on disease resistance in 

barley is unknown, but the semi-dwarf uzu lines provide an ideal background in which 

to investigate whether altered signalling through the BR pathway has a similar 

pleiotropic effect on growth and disease resistance as demonstrated by GA.  
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Figure 2.1. Schematic representation of the missense mutation of the HvBRI1 protein 

in ‘uzu’ barley. (Taken from Goddard et al. 2014). 

 

The availability of the semi-dwarf bri1 lines permit the investigation of the effect of 

BR mutation to a range of economically important pathogens exhibiting different 

infection strategies, trophic lifestyles and tissue compatibility (Table 2.1). 

Magnaporthe oryzae, which causes rice blast, is a hemibiotrophic pathogen that 

exhibits a brief biotrophic phase characterised by the development of haustoria within 

host cells (Parker et al. 2008), which can also infect other cereals including wheat and 

barley (Jarosch et al. 2003; Urashima et al. 2004). Ramularia leaf spot (RLS), a newly 

important disease of barley, is caused by Ramularia collo-cygni, a hemibiotrophic 

fungus with a very prolonged endophytic phase of asymptomatic, intercellular 

colonisation (Stabentheiner et al. 2009). Oculimacula species O. yallundae and O. 

acuformis are the causal pathogens of eyespot of wheat, barley and rye. While O. 

acuformis is considered to be entirely necrotrophic, O. yallundae exhibits a brief initial 

asymptomatic phase of infection before colonising in a necrotrophic manner (Blein et 

al. 2009). Several Fusarium species, including F. culmorum, can infect the roots, stem 

bases and heads of cereals, with the mode of infection dependent on tissue. FHB is an 

economically devastating disease due to the production of mycotoxins, such as 

deoxynivalenol (DON), by the fungus that contaminate the grain (Bottalico and 

Perrone, 2002). F. culmorum can also infect vegetative tissues i.e. roots and stem bases 

causing root rot (FRR) and crown rot (FCR) respectively (Miedaner, 1997). Take-all 

is a serious disease of wheat, barley and triticale, caused by the necrotrophic pathogen 
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Gaeumannomyces graminis var. tritici (G. graminis). In contrast, Blumeria graminis 

is an obligate biotrophic pathogen that causes powdery mildew (Both et al. 2005).  

 

Table 2.1. Tissue compatibility and trophic lifestyle of the major cereal pathogen 

species used. (Taken from Goddard et al. 2014). 

 

Pathogen Tissue Trophic lifestyle Reference 

Blumeria graminis f.sp. 

hordei 

Foliar Biotroph Both et al. (2005) 

    

Fusarium culmorum Floral Hemibiotroph (short 

biotrophic stage) 

Brown et al. (2010) 

    

  Root Necrotroph Beccari et al. (2011) 

  Stem base 

 

Necrotroph  Beccari et al. (2011); 

Chen et al. (2013) 

Gaeumannomyces graminis 

var. tritici 

Root Necrotroph Freeman and Ward. 

(2004) 

    

 Magnaporthe oryzae Foliar Hemibiotroph (short 

biotrophic stage) 

Parker et al. (2008) 

    

 Ramularia collo-cygni Foliar Hemibiotroph (long 

asymptomatic stage) 

Stabentheiner et al. 

(2009) 

    

Oculimacula acuformis Stem base Necrotroph Blein et al. (2009) 

    

Oculimacula yallundae Stem base Hemibiotroph (short 

biotrophic stage) 

Blein et al. (2009) 
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Whilst the role of BR in plant disease response has become increasingly apparent, little 

is known about the effect of disruption of BR perception mutation in barley. The 

following research investigated the effect of the semi-dwarfing BRI1 mutation on 

disease resistance to a range of cereal fungal pathogens, exhibiting a range of trophic 

lifestyles, with the aim of determining whether there was a trade-off between BR-

mediated growth and disease resistance.  

 

2.2 Materials and methods 

2.2.1 Plant material and growth conditions 

Near-isogenic line pairs (NILs) of barley two-row cultivar Bowman (BRI1) and 

Bowman-Uzu (bri1) (as characterised by Druka et al. 2011), and six-row Akashinriki 

(BRI1) and Akashinriki-Uzu (bri1) were obtained from the Barley and Wild Plant 

Resource Center, Okayama University, Japan. In all experiments except for take-all, 

seeds were pre-germinated in Petri dishes on damp filter paper for 48 h in the dark at 

4oC and then incubated at 24oC for 24 h, before being transferred to F2 soil (Levington, 

Scotts Professional, UK).  

 

2.2.2 Fungal inoculum 

Magnaporthe oryzae (M. oryzae) wheat-adapted isolate BR32 (kindly provided by Dr 

G.R.D. McGrann, John Innes Centre (JIC), UK) was maintained at 24oC as detailed 

by Tufan et al. (2009). Wheat-adapted T5 isolate of Gaeumannomyces graminis var. 

tritici (G. graminis) (kindly provided by Prof A. Osbourn, JIC) was cultured on potato 

dextrose agar (PDA) under 16 h/8 h light-dark cycle at 24 °C. Ramularia collo-cygni 

(R. collo-cygni) isolate Rcc09B4 was maintained and inoculum prepared as detailed 

by Peraldi et al. (2014). A mixture of Oculimacula acuformis and O. yallundae isolates 

(as described by Chapman et al. 2008) were maintained on V8 agar plates (9g 

bactoagar, 50 ml V8 vegetable juice in 450 ml deionized water) at 16oC for 21 days 

prior to use as inoculum. DON-producing Fusarium culmorum (F. culmorum) isolate 

Fu42 from the culture collections at JIC was maintained and conidial inoculum 

prepared as detailed by Peraldi et al. (2011). For stem base infection tests, F. culmorum 
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Fu42 colonies were grown on V8 agar for 14 days at 20oC. Blumeria graminis f.sp. 

hordei (B. graminis) isolates CC148 and DH14 from the culture collections at JIC 

were maintained on the barley line Golden Promise as described by Brown and Wolfe 

(1990).  

 

2.2.3 Leaf unfurling standard assay 

To confirm the altered BR responsiveness of the uzu lines and to determine the 

sensitivity of the lines to brassinosteroid the leaf unrolling protocol of Chono et al. 

(2003) was followed. Seeds of each line were grown in the dark for 7 days (17oC/15oC 

16/8 h temperature regime) to cause leaf etiolation before two segments (top and 

bottom) of 1.5cm were cut from each leaf. Sections were floated in 2ml of appropriate 

concentrations (80nm, 800nm) of epibrassinolide (eBL) and incubated for 4 days in 

the dark. Photographs of each plate were taken on the final day of incubation and 

Image J was used to measure leaf unrolling. Experiments were repeated twice. 

 

2.2.4 Seedling spray inoculations 

Seeds were sown 10 per 5 x 5 cm pot and grown at 18/15oC under a 16 h/8 h light-

dark photoperiod. Seedlings were inoculated with M. oryzae isolate BR32 as described 

by Tufan et al. (2009), and incubated under a 16/8 h light-dark photoperiod at 

24oC/16oC to induce fungal development. At 6dpi, disease symptoms were scored as 

the number of lesions on the first leaf (Jarosch et al. 2003). M. oryzae inoculations 

were repeated twice. R. collo-cygni inoculations with Rcc09B4 were performed as 

three independent experiments, as described by Makepeace et al. (2008). Symptoms 

were scored from 10 – 28dpi as a percentage of the first leaf showing Ramularia leaf 

spot (RLS) lesions. Scores were then calculated as a percentage of the maximum 

possible area under disease progress curve (% max AUDPC), assuming a value of 

100% for every score date, to standardise scores across experiments.  

2.2.5 Root and leaf inoculations 

Inoculum was prepared by homogenising 14 day old G. graminis T5 culture plates 

with H2O (2:1) and thoroughly mixing with autoclaved H2O-saturated medium 
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vermiculite (William Sinclair Horticulture Ltd). Inoculum was added to 50ml Falcon 

tubes, with 5 seeds placed on top of the inoculum and 5 replicates per genotype. 

Seedlings were incubated at 18/15oC under a 16 h/8 h light-dark photoperiod for 3 

weeks and scored using a numerical system (0 – 10 scale incorporating symptoms in 

both roots and leaves, with 0 = no infection, 10 = whole seedling diseased). Three 

seedling inoculations with G. graminis were conducted. Detached leaf assays with B. 

graminis f. sp. hordei isolates (DH14 and CC148) were performed using the protocol 

of Boyd et al. (1994). Agar boxes were incubated at 18/12oC under a 16 h/8 h light-

dark photoperiod and symptoms were scored at 7 and 10dpi, using the 0 – 4 scale 

devised by Moseman et al. (1965), in three independent experiments.  

 

2.2.6 Stem base inoculations 

All plants for F. culmorum stem base infections were grown at 18/15oC under a 16 h/8 

h light-dark photoperiod. Seedlings for F. culmorum non-wound stem base infection 

were grown 5 seeds per 5 x 5cm pot, with 5 replicates per line. Seedlings were 

inoculated using the method of Simpson et al. (2000), using the following 

modifications. Inoculum was prepared by homogenising Fu42 culture plates with H2O 

(2:1) and seedlings were inoculated with 2ml of homogenate. Seedlings were kept in 

the dark for 24 h after inoculation to induce fungal growth and symptoms were scored 

at 21dpi. F. culmorum wounded stem base assays followed the protocol of Knight and 

Sutherland (2013). Wounds were inoculated with 10µl of conidia (1x107 ml-1) and 

incubated in the dark at 25oC for 24 h. Seedlings were returned to normal growth 

conditions and scored at 21dpi. Non-wounded stem base assays were repeated three 

times and wounded assays were repeated twice.  

For Oculimacula stem base infection, plants were grown and inoculated with either O. 

acuformis or O. yallundae using the method of Burt et al. (2010). Plants were 

incubated at 10oC under a 16/8 h light-dark photoperiod and harvested 8 weeks post 

inoculation. Assays were repeated twice with O. yallundae isolates and once with O. 

acuformis. Disease symptoms for all stem base assays were assessed as the penetration 

of leaf sheaths by the pathogen, using the 0 – 10 scoring system devised by Scott 

(1971).  
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2.2.7 Field experiment inoculation 

Seeds were sown in 1m2 plots in a randomised complete block design experiment, in 

the spring of 2012 and 2013 at JIC. Eight and five replicates per genotype were used 

in the 2012 and 2013 trials, respectively. Plants were spray inoculated from anthesis 

with an F. culmorum Fu42 conidial suspension of 1x105 ml-1 spores (0.5x105ml-1 

spores in 2013) and 0.05% Tween 20, with repeated spraying to ensure even 

inoculation. Disease was assessed visually as the percentage of disease per plot at 4 

separate time points, beginning 2 weeks after the first inoculation. Data from both 

experimental years were combined for analysis.  

 

2.2.8 Statistical analysis  

All experiments were performed at least twice. All disease data scores were analysed 

using a generalized linear model (GLM) in the software package GenStat v16.0 

(Lawes Agricultural Trust, Rothamsted Experimental Station, UK). ANOVA tables 

are displayed within the Appendix. Within the GLMs paired t-tests were used to assess 

differences in disease symptom severity for each of the BRI1/bri1 pairs. 

 

 

2.3 BRI1 results 

 2.3.1 BR Insensitivity of semi-dwarf bri1 uzu lines 

In response to the control treatment (H2O) neither NIL pair showed any significant 

difference in leaf unfurling between the BRI1 tall and bri1 semi-dwarf line with the 

leaf segments remaining tightly furled (P =  0.097 and P = 0.122 in Akashinriki and 

Bowman backgrounds, respectively). When treated with 80nm of eBL, both BRI1 lines 

showed a significant increase in leaf unrolling (P < 0.001 in both backgrounds), whilst 

both the semi-dwarf bri1 lines were insensitive to the treatment (P = 0.181 and P = 

0.154 in Akashinriki and Bowman backgrounds, respectively). The wild-type BRI1 

lines again showed a further increase in leaf unrolling after 800nm eBL treatment (P 

< 0.001 in both backgrounds). After treatment with 800nm eBL, the semi-dwarf bri1 
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lines displayed a significant increase in unrolling compared to the control treatments 

(P < 0.001 in both backgrounds), indicating that the bri1 lines are attenuated in their 

sensitivity to BR but that they remain responsive to high concentrations of 

exogenously applied BR. 

 

2.3.2 Influence of BRI1 mutation on resistance to M. oryzae 

The wheat-adapted isolate of M. oryzae BR32, which also infects barley, was used to 

investigate the impact of BRI1 mutation on disease resistance to this hemibiotrophic 

pathogen. Following spray inoculation with BR32 conidia, large lesions developed 

rapidly on both Bowman and Akashinriki BRI1 lines, with disease symptoms being 

more severe on the former. By 6dpi, large areas of chlorosis had also begun to develop 

around the M. oryzae infection lesions on both BRI1 lines (Figure 2.2a). Both bri1 

semi-dwarf lines were more resistant to blast infection than their respective BRI1 lines, 

with leaves of the bri1 genotypes having significantly fewer and smaller necrosis-

ringed lesions than those of BRI1 (P < 0.001 and P = 0.015 in the Bowman and 

Akashinriki pairs, respectively, Appendix Table A.1) (Figure 2.2b). 
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Figure 2.2. The effect of the bri1 mutation on Magnaporthe infection. a) Leaf blast 

symptoms in Bowman (left pair) and Akashinriki backgrounds (right pair) at 6dpi. 

Scale bar = 1cm. b) The number of blast leaf lesions on seedlings inoculated with M. 

oryzae BR32 isolate (6dpi). Means ± s.e. were calculated from 2 independent 

experiments. *, *** Significant differences (P < 0.05 and P < 0.001 respectively) from 

the wild-type NILs. 
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2.3.3 Influence of BRI1 mutation on resistance to G. graminis var. tritici 

In response to inoculation with G. graminis, the necrotrophic causal agent of take-all 

disease, Bowman and Akashinriki BRI1 wild-type seedlings were more susceptible 

than bri1 seedlings and displayed blackened roots and stems (Figure 2.3a). In the BRI1 

lines, a greater proportion of the roots per seedling were continuously infected (no 

patches of uninfected tissue), with characteristic black discolouration progressing up 

the stems and causing curling and yellowing of the leaves. In bri1 lines the extent of 

root infection by the fungus was much less severe, with roots only showing patches of 

light brown discolouration and with fewer seedlings displaying foliar disease 

symptoms. The bri1 NILs displayed a significantly lower disease score (P < 0.001, 

Appendix Table A.2) than the BRI1 NILs (Figure 2.3b). 

 

2.3.4 Influence of BRI1 mutation on resistance to Oculimacula spp. 

The disease symptoms of Oculimacula infection were more apparent in the BRI1 tall 

NILs, with the semi-dwarf bri1 NILs displaying less severe browning of the stem base 

(Figure 2.4a). In response to stem base infection with the hemibiotrophic fungus O. 

yallundae, the semi-dwarf bri1 lines were significantly more resistant to infection than 

BRI1 lines (P < 0.001), with the fungus penetrating through fewer successive leaf 

sheaths (Figure 2.4b). To determine the effect of BRI1 mutation to a truly necrotrophic 

species of Oculimacula, lines were inoculated with O. acuformis isolates in a single 

experiment. Similar results were obtained to those for O. yallundae infection as the 

bri1 lines were more resistant than the Bowman and Akashinriki BRI1 lines but the 

differential was less pronounced (P = 0.004 and 0.002 in Bowman and Akashinriki 

pairs, respectively, Appendix Table A.3). 
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Figure 2.3.The effect of the bri1 mutation on Gaeumannomyces infection. a) Take- all 

disease symptoms in both Bowman (left pair) and Akashinriki backgrounds (right 

pair) at 21dpi. Scale bars = 1 cm. b) Disease scores (0 – 10 severity scale) of NIL pairs 

inoculated with G. graminis (21dpi). Means ± s.e. were calculated from 3 independent 

experiments. *** Significant difference (P < 0.001) from the respective wild-type 

NILs. 
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Figure 2.4. The effect of the bri1 mutation on Oculimacula infection. a) O. yallundae 

symptoms in both Bowman (left pair) and Akashinriki background (right pair) at 

56dpi. Scale bars = 1 cm. b) Stem base disease scores of O. yallundae/acuformis 

inoculated NIL pairs at 56dpi. Means ± s.e. were calculated from 2 independent 

experiments (O. yallundae). The experiment was repeated once with O. acuformis to 

confirm findings. **, *** Significant differences (P < 0.01 and P < 0.001) from the 

respective wild-type NILs. 
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2.3.5 Influence of BRI1 mutation on resistance to F. culmorum  

Barley bri1 and BRI1 lines were assessed for their response to both FHB and FCR. 

Susceptibility to FHB was assessed through spray inoculation of field plots in two 

successive years (2012 and 2013) followed by visual disease scoring. Interestingly, in 

the 2012 field trial, plants were subjected to a short period of drought stress before 

normal watering was resumed. The heads of semi-dwarf bri1 lines which had emerged 

during the period of stress were much smaller, more compact and had fewer grains 

than those in the BRI1 lines (Figure 2.5a). Heads of the bri1 lines that emerged 

subsequently during the more favourable conditions were less compact than those 

produced during the drought stress but they were still more compact than those of the 

BRI1 lines. However, no significant difference in the combined FHB disease scores 

between semi-dwarf bri1 and BRI1 lines (P = 0.457 and 0.197 in Bowman and 

Akashinriki pairs, respectively, Appendix Table A.4) was visible (Figure 2.5b). 

Susceptibility to FCR was determined by the ability of the pathogen to penetrate 

through successive leaf sheaths at the stem base following stem base infection. The 

BRI1 lines of both Bowman and Akashinriki displayed more severe visual disease 

symptoms than the bri1 lines, with a greater number of leaf sheaths exhibiting the 

brown discolouration characteristic of the disease (Figure 2.6a). The differences in 

FCR scores between tall and semi-dwarf NILs were found to be significant in both the 

Bowman and Akashinriki pairs (P < 0.001, Appendix Table A.5) (Figure 2.6b). In an 

additional set of experiments, seedlings were wounded at the stem base prior to 

inoculation to encourage infection by the fungus (Knight and Sutherland, 2013). With 

this procedure, the differential susceptibility observed in the non-wounded assays was 

lost (Figure 2.7a) and no significant difference in FCR symptoms were seen between 

BRI1 and bri1 lines (P = 0.103 and 0.064 in Bowman and Akashinriki pairs, 

respectively, Appendix Table A.6) (Figure 2.7b).  
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Figure 2.5. The effect of the bri1 mutation on Fusarium infection. a) FHB symptoms 

on barley heads spray inoculated with F. culmorum conidia from the 2012 field trial; 

Bowman (left pairs) Akashinriki backgrounds (right pairs) at 21dpi. Heads on the left 

of each pair represent heads subjected to drought stress, whilst those on the right 

represent non stressed heads. Scale bars = 1cm. b) Visual FHB disease assessment 

scores for 2012 and 2013 field plots spray inoculated with F. culmorum Fu42 conidia 

(21dpi). Bars indicate means ± s.e. from 2 years of trial data. 
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Figure 2.6. The effect of the bri1 mutation on Fusarium infection. a) Images of FCR 

in non-wounded stem bases in both Bowman (left pair) and Akashinriki background 

(right pair) at 21dpi. Scale bars = 1cm. b) Crown rot scores of non-wounded F. 

culmorum Fu42 inoculated NIL pairs at 21dpi. Means ± s.e. were calculated from 3 

independent experiments. *** Significant difference (P < 0.001) from the respective 

wild-type NILs. 
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Figure 2.7. The effect of the bri1 mutation on Fusarium infection. a) Images of FCR 

on wounded stem bases in both Bowman (left pair) and Akashinriki backgrounds 

(right pair) at 21dpi. Scale bars = 1cm. b) Crown rot scores of wounded F. culmorum 

Fu42 inoculated NIL pairs at 21dpi. Means ± s.e. were calculated from 2 independent 

experiments. 
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2.3.6 Influence of BRI1 mutation on resistance to R. collo-cygni 

R. collo-cygni is a hemibiotrophic fungal pathogen which displays a long endophytic 

colonisation phase, before switching to a necrotrophic lifestyle. Foliar spray 

inoculation with R. collo-cygni produced characteristic RLS brown lesions visible on 

both the abaxial and adaxial leaf surface from 10dpi in the Bowman background and 

12dpi in the Akashinriki background. Disease symptoms were consistently more 

severe in the Bowman background across all experiments, with both BRI1 and bri1 

lines displaying a greater percentage of RLS lesions per leaf than both of the 

Akashinriki lines (Figure 2.8a). However, no significant difference in percentage 

maximum area under disease progress curve (%AUDPC) score was observed between 

lines possessing the bri1 mutation (P = 0.175 and 0.278 in Bowman and Akashinriki 

pairs, respectively, Appendix Table A.7) and those possessing the BRI1 gene in any 

of 3 independent inoculation experiments (Figure 2.8b).  

 

2.3.7 Influence of BRI1 mutation on resistance to B. graminis f.sp. hordei 

The role of BRI1 in resistance to B. graminis f.sp. hordei was investigated as an 

example of an interaction with an obligate biotrophic pathogen. Disease susceptibility 

was scored taking into account the amount of mycelial growth, necrosis and chlorosis 

visible on the leaf surface. The two-row variety Bowman was more susceptible to the 

B. graminis f.sp. hordei isolates used than the six-row variety Akashinriki, with both 

BRI1 and bri1 lines in the Bowman background displaying a greater number of 

mycelial colonies (Figure 2.9a). However, no significant difference in susceptibility 

to B. graminis f.sp. hordei was observed in detached leaf assays between the BRI1 tall 

and bri1 semi-dwarf lines for either of the NIL pairs (P =  0.374 and 0.183 in Bowman 

and Akashinriki pairs, respectively, Appendix Table A.8) at either of the time points 

scored (7, 10dpi) (Figure 2.9b).  
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Figure 2.8. The effect of the bri1 mutation on Ramularia infection. a) Ramularia leaf 

spot symptoms on barley seedlings in both Bowman (left pair) and Akashinriki 

backgrounds (right pair) at 28dpi. Scale bar = 1cm. b) The % of the maximum area 

under disease progress curve (% max AUDPC, 28dpi) for leaves inoculated with R. 

collo-cygni. Means ± s.e. were calculated from 3 independent experiments. 
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Figure 2.9. The effect of the bri1 mutation on Blumeria infection. a) Powdery mildew 

disease symptoms following spray inoculation in both Bowman (left pair) and 

Akashinriki backgrounds (right pair) at 10dpi. Scale bars = 1 cm. b) Disease scores 

for detached first leaves inoculated with B. graminis spores (10dpi). Means ± s.e. were 

calculated from 3 independent experiments. 
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2.4 Discussion 

Brassinosteroids along with a second phytohormone, GA, have been demonstrated to 

have increasingly important roles in the interplay between plant growth and immunity 

(De Bruyne et al. 2014). Attenuating GA signalling through mutation of DELLA 

proteins was very important in agriculture, with the wheat Rht semi-dwarfing alleles 

being central to advances in crop yield that occurred during the so-called ‘Green 

Revolution’ (Peng et al. 1999; Achard et al. 2006; Navarro et al. 2008). However, Rht 

and Sln1 (the Rht DELLA equivalent in barley) alleles have pleiotropic effects on 

immunity. In response to biotrophic fungi the dwarf gain-of-function barley Sln1d line 

is more susceptible than the wild-type tall line, yet Sln1d is more resistant to disease 

caused by necrotrophic fungi (Saville et al. 2012).  

BRI1 mutation in barley confers a semi-dwarf phenotype, much less extreme than the 

reduction in height seen in barley lines possessing the Sln1d GA-insensitive allele. 

Disruption of BRI1 led to an increase in disease resistance to necrotrophic pathogens 

(G. graminis var. tritici, O. acuformis) and hemibiotrophs with a short biotrophic 

phase (M. oryzae, O. yallundae) in leaf and root tissues. In contrast, disruption of BRI1 

had no discernible effect on resistance towards B. graminis var. hordei and R. collo-

cygni. B. graminis is an obligate biotroph (Both et al. 2005), whilst R. collo-cygni is a 

hemibiotroph with a prolonged asymptomatic endophytic phase (Stabentheiner et al. 

2009).  

Interestingly the effect of BRI1 mutation on infection by the hemibiotroph F. 

culmorum appeared to differ with tissue. Semi-dwarf bri1 lines were more resistant 

than tall BRI1 lines to stem base infection, yet no difference in susceptibility was seen 

after floral inoculation. This probably reflects differences in the mode of infection in 

the two tissues. During infection of floral tissues of wheat, F. culmorum initially grows 

intercellularly with little or no disruption of the host tissues before adopting a 

necrotrophic growth style (Brown et al. 2010). In contrast, no such stage has been 

observed during the infection and colonisation of stem base or root tissues where the 

fungus appears to grow in an entirely necrotrophic manner (Beccari et al. 2011; Chen 

et al. 2013). It has been previously shown that in response to FHB infection, the model 

species Brachypodium distachyon (Bd) mirrors more closely the situation in wheat, as 

the fungus is able to move through head tissues to infect adjacent spikelets (Peraldi et 
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al. 2011). Parallel to the investigation of disease response assays in barley uzu bri1 

lines, similar studies were conducted by A. Peraldi using a Bd T-DNA insertional BRI1 

homozygous mutant (Bdbri1) line and a null segregant control line (BdBRI1) 

(Goddard et al. 2014). Following spray-inoculation of heads of Bdbri1 and BdBRI1 

with F. culmorum, there was no difference in the rate and magnitude of FHB symptom 

appearance up to 5dpi (Goddard et al. 2014). Disease then developed more rapidly on 

BdBRI1 than on the Bdbri1 line as the fungus spread through rachis tissues to infect 

additional spikelets. The movement of Fusarium through infected floral tissues of Bd 

contrasts with the lack of movement in barley. This conforms to the different types of 

FHB resistance described by Schroeder and Christensen (1963). Type 1 defines the 

resistance of the spike to initial fungal penetration and Type 2 is interpreted as 

resistance to spread through the rachis from infected to non-infected spikelets. Most 

wheat varieties have little or no Type 2 resistance, whilst barley varieties have 

inherently high levels of Type 2 resistance and differences in FHB susceptibility are 

due to different degrees of Type 1 resistance (Bai and Shaner, 2004). The data from 

Bd floral infection indicate that disruption of BRI1 had no effect on resistance to initial 

infection (Type 1 resistance) but did lead to an increase in Type 2 resistance. Data 

from the two replicated field experiments involving the barley BRI1 NILs provided no 

evidence for a role of BRI1 in FHB resistance of barley. As FHB symptoms do not 

spread in barley (Type 2 resistance) it is concluded that this also reflects a lack of 

effect of BRI1 mutation on Type 1 resistance (resistance to initial infection). 

Therefore, this concurs with the situation in Bd where disruption of BRI1 had no effect 

on Type 1 resistance. The results from the FHB inoculation experiments, in both B. 

distachyon and barley, together support the view that BRI1 mutation impacts on 

mechanisms associated with Type 2 resistance to FHB, the phase where the fungus 

adopts a necrotrophic mode of colonisation.  

The effect of BRI1 mutation on stem base infection by F. culmorum was also 

dependent upon inoculation method. When unwounded, the bri1 lines were 

significantly more resistant to F. culmorum than their wild-type NILs. However, this 

difference was lost when the stems were wounded immediately prior to inoculation. 

Physical trauma of plant tissues through wounding or herbivory activates a signalling 

cascade that leads to the production of different mobile signals, the predominant of 

which are ET and JA (Savatin et al. 2014). In Arabidopsis, Makandar et al. (2010) 
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reported that mutation of some of the core signalling components of the JA pathway 

(opr3, coi1 and jar1) induces hyper-resistance in Arabidopsis plants challenged with 

F. graminearum, a very close relative of F. culmorum. The observation of increased 

induction of Pathogenesis-related protein 1 (PR1) transcripts and SA accumulation in 

opr3 and jar1 mutants compared to the wild-type plants, led the authors to conclude 

that the JA-induced susceptibility may function via attenuation of SA-induced defence 

mechanisms (Makandar et al. 2010). Antagonism between the JA/ET and SA 

signalling pathways is well documented (Robert-Seilaniantz et al. 2011) and in 

Arabidopsis both SA and JA signalling have been demonstrated to be required for 

resistance against F. graminearum (Makandar et al. 2012). Similarly ET signalling 

was shown to be a factor of susceptibility to infection by Fusarium species in 

Arabidopsis, wheat and barley (Chen et al. 2009). Therefore, it is reasonable to assume 

that wounding of barley stem bases may activate JA and ET signalling pathways, both 

of which have been shown to increase susceptibility to Fusarium species. It is possible 

that signalling resulting from the wounding pre-treatment may antagonise the effect 

of the BRI1-related differential response observed between the BRI1 and bri1 lines in 

the absence of wounding.  

Whilst my results demonstrate that BR signalling has pleiotropic effects on growth 

and disease resistance, it is of interest to note that unlike the GA-insensitive Sln1d 

mutation, BRI1 mutation does not incur a disease resistance trade-off between 

pathogens of differing trophic lifestyles. Semi-dwarf bri1 lines were more resistant to 

infection by pathogens exhibiting a necrotrophic lifestyle but such lines did not exhibit 

the increased susceptibility to biotrophic pathogens associated with attenuation of GA 

signalling (Saville et al. 2012). The absence of the biotroph-necrotroph disease trade-

off following impairment of BR signalling suggests that manipulation of this pathway 

or downstream BR-regulated genes may have potential agricultural use in breeding 

varieties with reduced height, enhanced resistance to necrotrophic pathogens but 

without compromising resistance to biotrophic pathogens.  

An emerging body of evidence suggests that BR signalling is involved in the 

regulation of plant defence responses. Belkhadir et al. (2012) reported that BRs 

function in an antagonistic manner to PTI that is triggered by PAMPs such as chitin 

and flagellin. BAK1, the BRI1 co-receptor, has been demonstrated to also act as a co-

receptor with Flagellin-sensing 2 (FLS2), an LRR receptor-like kinase that recognises 
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the flagellin PAMP flg22-peptide (Chinchilla et al. 2007). Overexpression of BRI1 in 

Arabidopsis compromised PTI activity in response to flg22 treatment, possibly due to 

competition between BRI1 and FLS2 for BAK1 (Belkhadir et al. 2012), which may 

be responsible for the observed antagonism. Further studies conducted in Arabidopsis 

showed that activation of the BRI1 pathway inhibits the PTI signalling mediated by 

several pattern-recognition receptors (PRRs). Co-treatment of wild-type plants with 

exogenous eBL and flg22 caused a significant decrease in flg22-induced immune 

responses (Albrecht et al. 2012). However, the same study showed that exogenous BR 

treatment also reduced chitin induced PTI activity, which is detected independently of 

BAK1, suggesting that BR-mediated inhibition occurs downstream of BAK1. The 

cause of the antagonism may actually lay with BZR1, the key transcription factor 

regulating BR-responsive genes. BZR1 promotes the expression of a number of 

WRKY transcription factors that act as negative regulators of the reactive oxygen 

species (ROS) production associated with the onset of PTI, which is thought to 

suppress defence gene expression (Lozano-Durán and Zipfel, 2015). Mutation of BRI1 

might be anticipated to alleviate this antagonism and perhaps lead to enhanced 

efficiency of PTI. My data would support the view that BR signalling functions 

antagonistically with basal defence mechanisms as BRI1 mutation enhanced resistance 

against a broad range of pathogenic micro-organisms despite differences in their 

infection and virulence strategies. Currently, little is known about the molecular 

components controlling the antagonistic relationship between growth and immunity in 

monocotyledons. However, recent work in Arabidopsis from two independent groups 

demonstrated that the basic helix-loop-helix transcription factor Homolog of 

brassinosteroid enhanced expression2 interacting with IBH1 (HBI1), negatively 

regulates genes involved in the onset of PTI while positively regulating BR-triggered 

responses (Fan et al. 2014; Malinovsky et al. 2014). The above studies suggest that 

HBI1 and BZR1 both negatively mediate immunity, although the mechanisms through 

which these transcription factors act is still unclear (Belkhadir and Jallais, 2015). 

In contrast to the effects of BRs on PTI, other studies have proposed that BRs have a 

positive role in resistance. For example, exogenous application of BRs was shown to 

increase resistance to M. grisea and Xanthomonas oryzae pv. oryzae in rice and 

resistance to tobacco mosaic virus, Pseudomonas syringae pv. tabaci and Oidium sp. 

in tobacco (Nakashita et al. 2003). This report appears difficult to reconcile with the 
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findings here that BRI1 mutation reduced disease caused by M. oryzae. Similarly, Ali 

et al. (2013) reported the first study implicating BRs in resistance to Fusarium in 

barley. The authors observed that exogenous application of eBL, whether applied to 

floral tissue or added in the soil, enhanced the resistance of barley to FHB and FCR, 

respectively, caused by F. culmorum. This appears contradictory to the present 

findings that mutation of BRI1 enhances resistance. Recent reports taking a genetic 

rather than chemical approach, however, support the findings from the present work 

that disruption of BRI1 in barley leads to enhanced resistance to necrotrophic 

pathogens. Barley semi-dwarf uzu (bri1) lines not only showed less severe symptoms 

to FCR than their tall equivalents (Chen et al. 2014), but also displayed slower 

development of Fusarium throughout the leaf sheaths and reduced fungal biomass 

within infected tissues (Bai and Liu, 2015). The results of these genetic studies indicate 

that reduced BR signalling enhances resistance to Fusarium. A further study by Ali et 

al. (2014), using the Bowman and Akashinriki uzu bri1 lines used within this research, 

also demonstrated that altered BRI1 signalling gives increased resistance to the 

necrotrophic net blotch fungus Pyrenophora teres and also to barley stripe mosaic 

virus (BSMV). Interestingly, both the studies of Ali et al. (2013) and Nakashita et al. 

(2003) employed a chemical approach to investigate the effect of BRs on disease 

resistance. Their findings therefore reflect the effect of exogenous application of 

phytohormone to plants whose cellular signalling machinery is intact and therefore 

fully responsive to the hormone. Recent studies (Ali et al. 2014; Chen et al. 2014; Bai 

and Liu, 2015) employing a genetic approach to investigate the impact of BR 

signalling on disease resistance have utilised bri1 lines which are hyposensitive to the 

BR signal. Plants carrying genetic mutations that impair or prevent activation of a 

particular phytohormone pathway may compensate for such a defect via differential 

regulation of other hormonal signalling pathways to re-equilibrate overall hormone 

ratios and outputs. Hence, it is not surprising that the findings from genetic studies 

may not correspond directly to those from studies using chemical approaches, as the 

former examines the effect of constitutive disruption of a pathway while the latter 

generally examines the effect of supplementing or overloading a pathway. In addition, 

responses to phytohormone application are frequently dependent upon concentration. 

For example, Clouse et al. (1996) reported that root growth of Arabidopsis seedlings 

was reduced when exposed to high concentrations of eBL but stimulated at low 

concentrations. Similarly, Zhao et al. (2004) reported that production of the 
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phytoalexin β-thujaplicin was stimulated by moderate ET concentrations, whereas 

excessive concentrations of ET reduced β-thujaplicin levels to below those in 

untreated plants.  

In conclusion, my data demonstrates that BR signalling plays a complex role in the 

trade-off between growth and immunity. Mutation of BRI1, the gene encoding the 

main barley BR receptor, not only resulted in a reduction in plant height when 

compared to wild-type plants, it also provided increased disease resistance in response 

to infection with pathogens of specific trophic lifestyles. Unlike GA-insensitive alleles 

which confer a resistance trade-off between biotrophic and necrotrophic fungal 

pathogens, I was able to demonstrate that the BRI1 uzu mutation provides 

advantageous resistance to necrotrophs without increasing susceptibility to biotrophs. 

The knowledge that BRI1 mutation results in both a favourable shorter stem phenotype 

and increased necrotroph resistance demonstrates the potential for the BR pathway to 

be manipulated when aiming to reduce plant height and increase resistance to a range 

of economically important diseases.  
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Chapter 3. Production of high density barley genetic maps for 

quantitative trait loci analysis 

3.1 Introduction 

Quantitative trait loci (QTL) identify regions of the genome that are associated with a 

particular agronomic trait, such as height or disease resistance. The detection of QTL 

for specific traits is reliant on the production of a segregating population, such as a 

recombinant inbred (RIL) or doubled haploid (DH) population, with known 

polymorphisms between the parental lines (Collard et al. 2005). Genetic linkage maps 

are then created based on the recombination frequency of these polymorphisms 

throughout the entire population, allowing QTL to be identified by determining the 

statistical association between the genetic markers within the map and the phenotype 

observed (Würschum, 2012). The detection of QTL therefore depends on the 

identification of a sufficient number of reliable polymorphisms to produce an 

adequately marker dense genetic linkage map.  

Restriction fragment length polymorphisms (RFLPs) were widely utilised as some of 

the first DNA markers to generate genetic maps (Yang et al. 2015), including the maps 

used to identify QTL for FHB and other associated agronomic traits. For example, Zhu 

et al. (1999) located eight QTL associated with FHB, within a population of 144 DH 

barley lines, from a linkage map of only 97 RFLPs. Ma et al. (2001) also located eight 

FHB QTL using a map derived from 211 RFLPs genotyped across a 147 line DH 

barley population. The total map distance covered 1,026cM, with a mean distance of 

13.5cM between markers (Ma et al. 2001). As marker technology has developed 

towards more PCR-based methods, such as amplified fragment length polymorphisms 

(AFLPs) and simple sequence repeats (SSRs), the inclusion of multiple forms of 

genetic markers within a map has been used to give an increased marker density and 

to aid QTL identification. Hori et al. (2005) used a combination of AFLPs, SSRs, 

expressed sequence tags (ESTs) and resistance gene analog (RGA) markers from 95 

barley RILs to produce a high density map of 1,172 markers. Dahleen et al. (2003) 

produced a linkage map of 1,330.8cM containing 7 RGA, 29 SSR, 53 RFLP and 123 

AFLP markers using 75 DH barley lines, which enabled the detection of nine FHB 

QTL. The same authors subsequently produced a higher density map of the same 

population by genotyping an additional 85 DH lines and including a further 369 
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markers, increasing the map distance to 1,385.5cM (Dahleen et al. 2012). Although 

the aforementioned genetic markers have been demonstrated to produce sufficient 

linkage maps for QTL identification, their higher cost and lower efficiency mean they 

have been increasingly replaced by higher throughput technologies.  

 

Genotyping methods have rapidly developed within the last decade, providing new 

tools for identification of genetic polymorphisms. A number of arrays designed to 

identify single nucleotide polymorphisms (SNPs) have been developed using Illumina 

BeadChip® genotyping technology (Illumina Inc, San Diego, CA) allowing a large 

number of samples to be queried for a greater number of SNPs within a single run. 

The Illumina BeadChip system is based on the hybridisation of three oligonucleotides 

(two SNP specific probes and one locus specific probe) to a DNA sample, PCR 

amplification and the addition of cyanine fluorescent probes, followed by 

hybridisation to a BeadChip and analysis of the fluorescent signal to identify the SNP 

(Shen et al. 2005). The barley SNPs used within these arrays have been primarily 

derived from expressed sequence tags (ESTs) from a relatively small, yet well 

characterised, set of parental lines. The 1,536 SNP Barley Oligonucleotide Pool Assay 

(BOPA1) devised by Rostoks et al. (2005, 2006) used the parents of the Oregon Wolfe 

Barley (OWB) population, in addition to Morex, Steptoe and Optic amongst the 

cultivars from which to identify polymorphisms. From this assay, Moragues et al. 

(2010) developed two separate 384-SNP subsets, specifically optimised for 

genotyping either barley landraces or cultivars, with a view to reducing the 

ascertainment bias seen by using a single SNP set. Three pilot OPAs were also 

generated by Close et al. (2009), before the creation of two final production OPAs 

(BOPA1 and BOPA2) each testing 1,536 SNPs which were selected from the pilot 

OPAs based on their genomic location and biological relevance. These again use the 

parents and progeny from four common barley mapping populations, Steptoe × 

Morex, Haruna Nijo × OHU602, Morex × Barke and the OWB population, for SNP 

identification (Close et al. 2009). A selection of 2,832 SNPs from the BOPA1 and 

BOPA2 assays developed by Close et al. (2009) have also been combined with 5,010 

SNPs identified from RNA sequencing (RNA-seq) reads of 10 barley cultivars 

(including Barke, Betzes, Morex and Optic), to form the iSelect SNP chip capable 

querying 7,842 markers (Comadran et al. 2012).  
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 Next-generation sequencing (NGS) technologies have also been widely posited as one 

approach for the identification of large numbers of genetic markers within a species. 

Such genotyping methods include restriction-site-associated DNA sequencing (RAD-

seq), Genotyping-by-Sequencing (GBS), reduced representation libraries (RRL) and 

complexity reduction of polymorphic sequences (CRoPS). Most NGS technologies 

are based on the digestion of DNA with specific restriction enzymes (RE), followed 

by the ligation of either common and barcode adapters to allow multiplexing of 

samples and then subsequent pooling and sequencing of these samples (Davey et al. 

2011). NGS methods have been demonstrated to be suitable for numerous different 

downstream applications, such as phylogeography (Emerson et al. 2010) and genome 

wide association studies (Parchman et al. 2012), with both RAD-seq and GBS being 

particularly utilised for QTL mapping studies in numerous species. RAD-seq uses size 

selection to identify DNA fragments of 300-700bp for sequencing which have been 

digested and randomly sheared (Cronn et al. 2012). A smaller region of the genome is 

sequenced at a higher coverage level with RAD-seq, proving a useful method for 

studying species without a reference genome as each marker is genotyped with an 

increased level of precision (Davey et al. 2011). Using the RAD-seq method, 445 RAD 

markers were mapped within the OWB population to identify QTL for agronomic 

traits such as height and row type (Chutimanitsakun et al. 2011).  

 

GBS differs from RAD-seq in that digested fragments (170-350bp) are not sheared or 

size selected, simplifying the workflow process (Elshire et al. 2011). In barley, the 

GBS protocol was initially optimised using a single methylation-sensitive RE ApeKI, 

as the cut sites for this enzyme were demonstrated to be distributed throughout the 

barley genome (Elshire et al. 2011). The ApeKI enzyme subsequently generates three 

types of DNA fragments containing either a barcode and a common reverse adapter, 

or either both common or both barcoded adapters (Elshire et al. 2011). This method 

was validated by the mapping of 24,186 sequence tags from the OWB population to 

the OWB framework map, with both the reference and the GBS markers being 

demonstrated to be in agreement (Elshire et al. 2011). A two-enzyme approach has 

also been developed by Poland et al. (2012), where all digested DNA fragments 

possess both a common adapter and a barcoded forward adapter, which was again 

validated in the OWB population by the mapping of 9,545 SNPs. GBS technology 

further differs from RAD-seq in that a larger proportion of the genome is sequenced 
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but at low coverage. This has proven to be highly useful for species with a reference 

genome, particularly with respect to QTL mapping and MAS studies (Davey et al. 

2011), as it easier to impute missing data from the low coverage sequencing reads with 

increased accuracy. The use of GBS for generating genetic maps with the aim of QTL 

identification has been demonstrated by Liu et al. (2014).The authors used a map with 

1,391 SNPs derived from a Golden Promise × Morex population to locate a QTL 

associated with the height gene Breviaristatum-e (ari-e) on 5H, which was previously 

mapped to the same genomic region by QTL analysis. 

 

With the aim of generating high quality genetic maps suitable for identifying QTL 

associated with FHB, three barley populations were produced in this study. Chevallier 

is an English landrace from 1820 (Beaven, 1936) which has been demonstrated to 

show significant resistance to FHB (Muhammed, 2012). Chevallier was crossed with 

NFC Tipple, a short modern malting variety (Syngenta Seeds, Ltd), which is 

susceptible to FHB and has been demonstrated to be genetically distant to Chevallier 

by phylogenetic analysis (J. Russell, personal communication). Two separate 

Chevallier × NFC Tipple populations were produced by single seed descent (SSD) and 

one was advanced to the F5 generation, while the second was advanced to the F7 

generation. A further bi-parental cross between NFC Tipple and the French cultivar 

Armelle was created. Armelle was released in 1974 and has also been shown to have 

FHB resistance (Muhammed, 2012). A single Armelle × NFC Tipple population was 

produced by SSD and advanced to the F6 generation. All three populations were 

genotyped using the 384-SNP cultivar optimised array (Moragues et al. 2010) and the 

two Chevallier × NFC Tipple populations were additionally genotyped using the GBS 

method described by Elshire et al. (2011). 

 

3.2 Materials and methods 

3.2.1 Generation of mapping populations 

Two separate bi-parental crosses were developed to provide two mapping populations 

with the common parents Chevallier (JIC accession number 4851 or 4817), and NFC 

Tipple (hereafter referred to as Tipple) (Syngenta Seeds, Ltd). An F5 population of 188 

RILs (C×T F5) was produced by KWS UK Ltd., Cambridge, UK. I produced a separate 
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population resulting in 188 F7 RILs (C×T F7) at JIC. Both populations were developed 

by single seed descent (SSD). A bi-parental cross between Armelle and Tipple (A×T) 

was also developed by Syngenta Seeds Ltd, creating a population of 250 F6 RILs 

developed by SSD. 

 

3.2.2 384-SNP BeadXpress genotyping  

For both the C×T F5 and A×T F6 populations leaf material was sampled from 3-week-

old seedlings, with a pool of five seedlings per genotype. For the C×T F7 population, 

leaf material was sampled from a single seedling per genotype. Genomic DNA for 

each population was extracted using the DNeasy 96 Plant Kit and the protocol for 

frozen plant tissue (Qiagen) by R. Goram (JIC), and diluted to 50ng/µl. The 384-plex 

cultivar optimised genotyping panel (as described in Moragues et al. (2010) was used 

to genotype the C×T F5, C×T F7 and A×T F6 populations using the Illumina 

BeadXpress (BX) platform at the James Hutton Institute (JHI). SNP calls were 

analysed using Illumina BeadStudio software.  

Marker data for 384 SNPs was produced by the BX genotyping platform. From the 

returned SNP calls, RILs which displayed an apparent high level of heterozygosity 

(over 20% of total SNP calls returned as heterozygous) were removed from the dataset. 

In the C×T F5 population, 23 RILs were removed leaving 165 RILs for subsequent 

analysis. (It was later determined that the high level of heterozygosity in the C×T F5 

population was an artefact of incorrect calling by the software, perhaps due to issues 

with SNP genotyping). In the C×T F7 (188 RILs) and A×T F6 populations (250 RILs) 

all of the genotyped lines were retained in the dataset as they displayed sufficiently 

low heterozygosity. Monomorphic markers were then removed from each dataset, 

providing an initial set of markers for the genetic mapping of each population. 

 

3.2.3 Genotyping-by-Sequencing  

Leaf material from a single 3-week-old seedling per genotype was sampled for both 

the C×T F5 and F7 populations. Genomic DNA for each population was extracted using 

the DNeasy 96 Plant Kit and the protocol for frozen plant tissue (Qiagen) by R. Goram 
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(JIC). DNA was then quantified using the Quant-iT™ PicoGreen® dsDNA assay and 

diluted to 50ng/µl. GBS libraries for the C×T F5 and C×T F7 populations were 

produced at the Biotechnology Resource Centre (BRC) Genomic Diversity Facility at 

Cornell University (US), using the 96-plex ApeKI restriction enzyme approach 

(Elshire et al. 2011). Libraries were sequenced using the Illumina HiSeq 2000/2500 

generating 100bp single end reads. On average, 2,066,581 reads were produced for the 

C×T F5 population and 2,230,103 were produced for the F7 population per DNA 

sample. Raw sequence reads were trimmed and the barcodes removed and the 64bp 

tags were mapped to the Morex reference genome (IBSC, 2012) to call the SNPs. 

Failed sequences were determined as those displaying less than 10% of the total mean 

reads per population and were removed from analysis. Raw and filtered (those with a 

minor allele frequency of above 1% and merged duplicate SNPs) SNP calls aligned to 

the Morex reference sequence were provided for both populations.  

Sequencing of a single C×T F5 line (line 5) and a single C×T F7 line (line 568) failed 

providing genotype data for 187 lines for both populations. Within Excel, further 

data filtering was performed on the 8,754 filtered SNP calls provided for each 

population. SNPs which were monomorphic or displayed missing calls for either of 

the parental genotypes were removed from the analyses as were SNPs with over 20% 

missing values for the C×T progeny, providing an initial set of markers for the 

genetic mapping of each population.  

 

3.2.4 Combined BeadXpress and Genotyping-by-Sequencing data 

To provide the most complete linkage group for each chromosome, the GBS and BX 

SNP initial data sets (containing all the filtered polymorphic SNPs) were combined 

for both the C×T F5 and F7 populations.  

 

3.2.5 Genetic mapping 

All maps were created using JoinMap® 3.0 software (van Ooijen and Voorrips, 2001). 

Within JoinMap, individual marker chi-squared values were calculated and markers 

which deviated significantly from the expected 1:1 ratio were either re-coded or 

removed from the marker set. The Kosambi mapping function was used to generate 
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genetic distances between markers and a LOD score of 7.0 was used to create the 

linkage groups for both the BX and GBS datasets. For the BeadXpress datasets the 

marker order of each linkage group was referenced against the marker order in the 

barley consensus map (Close et al. 2009), whilst for the GBS datasets the marker order 

was referenced against the Morex reference genome (IBSC, 2012). Genetically 

redundant markers were removed from the initial maps. Markers which appeared to 

have been ordered incorrectly, for example mapping to either the wrong chromosome 

or the wrong chromosome arm to the reference map, were also removed to ensure that 

the most accurate map was generated for subsequent QTL analysis. The final map for 

each population was then generated by re-running the mapping software. Linkage 

maps for each population were drawn using MapChart (Voorips, 2002).  

 

3.3 Results 

3.3.1 384-SNP BeadXpress genotyping 

Genotyping of both of the C×T populations with the 384-SNP assay identified 212 

SNPs (55.2% of total SNPs) within the cultivar optimised 384-SNP set which were 

monomorphic between the Chevallier and Tipple parental lines. A total of 172 markers 

were determined to be polymorphic in both the C×T F5 and F7 populations, with these 

polymorphic markers displaying uneven distribution across the seven chromosomes 

during the linkage mapping process (Table 3.1). Chromosomes 1H and 7H were 

particularly sparsely populated in both populations using this genotyping platform.  

Within the C×T F5 population 164 progeny lines were used to create the genetic map. 

In the initial mapping process nine linkage groups (with 1H and 5H each represented 

across two groups) containing 158 markers were identified, although some of the 

markers appeared to be incorrectly ordered and were removed. In the final map nine 

linkage groups were again present, with the marker number per linkage group ranging 

from five on 7H to 32 on 6H. Of the initial 172 markers, 14 could not be linked. Only 

14 polymorphic markers were identified that mapped to chromosome 1H and only 

nine of these could be identified at a LOD score of 7.0. Therefore, chromosome 1H 

was mapped as two linkage groups containing four and five markers. Even fewer 

markers correctly mapped to chromosome 7H (2.9% of the total markers), with only 
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11 markers being polymorphic on this chromosome and only five markers being 

present in the 7H linkage group at a LOD of 7.0 (Table 3.1). Chromosomes 3H and 

6H displayed the greatest marker coverage, with 16% (28) of the markers mapping to 

3H and 19% (32) of the markers available mapping to 6H. The final C×T F5 map 

covered a genetic distance of 684.8cM with a total of 133 markers (Table 3.4). This 

represented a marker density of one marker every 5.1cM, with the largest distance 

between markers being 17.1cM. 

Within the C×T F7 population none of the progeny lines displayed more than 20% 

heterozygosity, so all 188 lines were included within the genetic mapping process. In 

the initial genetic map 10 linkage groups were identified (with 1H, 2H and 5H each 

represented across two groups) containing a total of 168 markers, some of which were 

incorrectly ordered and therefore removed. Of the initial 172 markers, four could not 

be linked. The final F7 map covered a distance of 820.6cM with a total of 154 markers, 

representing one marker every 5.3cM (Table 3.4). The genetic marker number per 

linkage group in the final map ranged from five on 7H to 34 on 3H. Of the 14 

polymorphic markers identified to chromosome 1H, 12 of these markers (7.8% of the 

total polymorphic markers) were mapped to two linkage groups of five and seven 

markers at a LOD score of 7.0. As with the C×T F5 population, only 2.9% of markers 

mapped to the 7H chromosome within the F7 genetic map. The largest distance 

between markers was observed to be 20.1cM on chromosome 7H. 

Of the SNP set assayed, 221 (57.6%) of the markers were monomorphic between the 

Armelle and Tipple parents, leaving 163 polymorphic markers. This is comparable 

with the C×T populations, where 55.2% of the markers were also determined to be 

monomorphic. In the initial mapping process 145 markers were clustered into eight 

linkage groups, with 18 markers which could not be linked to any group. After removal 

of the incorrectly ordered markers, a final A×T genetic map consisted of 129 markers 

covering 717.9cM was created, giving a marker density of one marker every 5.6cM 

(Table 3.4). The largest distance between markers was observed to be 23.7cM on 

chromosome 1H. The 129 markers formed eight linkage groups, with chromosome 2H 

represented as two separate groups of 11 and 13 markers. As with both of the C×T 

populations, chromosome 1H in the A×T map contained the fewest markers, with only 

14 SNPs for 1H being polymorphic in the parental lines, resulting in only 5.4% of the 

total markers mapping to this linkage group. Only 5.4% of the markers were located 
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to 6H, despite this chromosome being more marker dense (containing over 16% of 

SNPs) in both the C×T populations. The linkage groups representing chromosomes 

5H and 3H contained the highest number of markers, with 27.9% (36 markers) and 

21.7% (28 markers) mapping to each of these chromosomes, respectively.  

 

3.3.2 Genotyping-by-Sequencing  

The GBS platform provided a much greater number of SNPs with which to create a 

genetic map than the BX genotyping method. Large attrition rates were observed in 

the number of SNPs initially produced by the GBS method compared to those suitable 

for inclusion in the genetic mapping process (with 82% of SNPs removed from the 

initial dataset in both of the C×T populations). From the linkage mapping analysis, a 

single linkage group per chromosome was identified for both populations (Table 3.2), 

compared to the multiple linkage groups identified in the BX data set. An increase in 

both marker number and genetic distance was also seen in both populations.  

None of the lines assayed with the GBS genotyping method displayed over 20% 

heterozygous SNP calls in the GBS data produced for the C×T F5 population. All lines 

were therefore retained in the analysis, providing 187 out of 188 C×T progeny lines 

for linkage analysis. A total of 1,565 SNPs were included in the initial linkage analysis, 

which formed seven linkage groups containing a total of 892 markers. Of the initial 

1,565 markers, 673 markers could not be correctly linked to a group. As with the BX 

data, some of these markers were incorrectly ordered or genetically redundant and 

were therefore removed. The final GBS C×T F5 linkage map covered a genetic 

distance of 1,188.2cM, representing an increase of 42.4% compared to the BX map 

(684.8cM). The number of genetic markers ranged from 59 on 4H, to 158 on 7H. 

Chromosome 1H, which was previously poorly represented by markers in the BX 

dataset, was extended from 29.1cM to 209.3cM with a total of 84 GBS markers. An 

additional 153 markers were mapped to chromosome 7H in the GBS map, expanding 

the genetic distance covered from 36.4cM to 170.9cM. The total number of markers 

included in the map increased from 133 to 817 using the GBS SNPs, with an average 

of 116 markers per chromosome (Table 3.2). The marker density was improved from 

one genetic marker every 5.1cM in the BX map to one marker every 1.5cM. The 

greatest distance between markers was also reduced to 15.0cM. 
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A total of 1,577 SNPs were included in the initial linkage analysis of the C×T F7 GBS 

data, forming seven linkage groups containing a total of 897 markers. Of the initial 

markers, 680 markers could not be correctly linked. After the removal of incorrectly 

ordered markers, a final C×T F7 linkage map covering 968.1cM with a total of 733 

markers across seven linkage groups was created. The final map displayed a 15% 

increase in map distance compared to the BX map, (from 820.6cM to 968.1cM) and 

an increase in marker number from 154 to 733 markers (Table 3.2). The number of 

genetic markers ranged from 59 on 4H, to 162 on 2H, with an average of 104 SNPs 

per chromosome. As with the C×T F5 population the marker coverage of chromosomes 

1H and 7H, which previously displayed the lowest marker density, was greatly 

improved. Chromosome 1H included 80 more markers than in the original BX map, 

giving a total of 93 markers and an increase of 107.4cM in linkage group distance. A 

total of 72 further markers were included in the chromosome 7H linkage group using 

the GBS dataset, however this only represented an expansion in map distance of 

14.3cM (from 69.9cM in the BX map to 84.2cM in the GBS). The total marker density 

was increased in the F7 population; with one marker every 1.3cM in the GBS map 

compared to one marker every 5.3cM in the BX map. The largest distance between 

two genetic markers was 16.6cM on chromosome 5H. 

 

3.3.3 Combined 384-SNP array BeadXpress and Genotyping-by-Sequencing 

The SNPs from both the BX and GBS methods for each population were combined 

into a single data set with the aim of to creating the most complete linkage group for 

each chromosome. The inclusion of the BX SNP markers allowed a greater number of 

markers to be anchored into the genetic maps for each population (Table 3.3).  

The C×T F5 combined map contained 936 markers (95 BX and 841 GBS markers) 

covering 1,224.4cM, an increase of 36.2cM and an addition of 119 markers (Table 

3.3). Of the 1,737 markers used in the initial combined map, 711 markers could not 

be correctly linked to any group. The number of genetic markers per linkage group in 

the final combined map ranged from 77 on 4H, to 179 on 2H. Chromosome 2H, the 

longest linkage group in the GBS map, was expanded by 22.8cM through the addition 

of 27 markers by combining the two datasets (Table 3.3). However, the addition of 18 

extra markers to the linkage group representing 4H reduced the map distance from 
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132.9cM in the GBS map to 121.9cM in the combined map. An additional 14 markers 

were introduced to chromosome 5H in the combined map, again contracting the 

genetic distance from 128.0cM to 119.9cM. The marker density of the combined map 

was also improved on that of the map containing solely GBS markers, with one marker 

every 1.3cM compared to one marker every 1.5cM. The largest distance between two 

adjacent genetic markers was similar to the GBS map (15.0cM), with a distance of 

15.1cM on 1H. 

The C×T F7 combined final map contained 962 markers (135 BX and 827 GBS 

markers), covering 1,078.4cM (Table 3.3). This gave an increase of 229 markers and 

an extension of 110.3cM compared to the GBS map. Of the 1,749 markers used in the 

initial combined map, 726 markers could not be correctly linked to any group. The 

number of genetic markers per linkage group in the final combined map ranged from 

76 on 4H, to 176 on 2H. Linkage groups which displayed a higher number of markers 

in the GBS map were also extended by combining the datasets. For example, 55 extra 

markers were identified on chromosome 3H giving a marker total of 172 and extending 

the linkage group by 43.6cM to a distance of 198.4cM (Figure 3.1). The GBS linkage 

group for 7H contained 77 markers covering 84.2cM, making it the shortest linkage 

group in the GBS map. The addition of the BX markers to the GBS dataset allowed 

the inclusion of 60 extra GBS markers on chromosome 7H, increasing the total from 

77 markers to 139 in the final combined map (Table 3.3). The final map distance of 

7H was also extended by 63.2cM to 147.4cM. As with the C×T F5 map, some 

chromosomes appeared shorter in the combined GBS/BX map than the GBS map. The 

linkage group for 2H was contracted from 191.6cM to 174.2cM by the addition of 14 

markers, whilst 17 further markers were added to 4H reducing the map length by 

4.4cM. Combining both the GBS and BX markers also improved the marker density 

of the map, with one marker placed every 1.1cM compared with one every 1.3cM in 

the GBS map. However, the largest distance between two markers was not greatly 

reduced by combining the two datasets, with a gap of 16.5cM being observed on 1H. 
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Figure 3.1. Genetic maps of C×T F7 chromosome 3H. a) Linkage group for 3H with 

34 BeadXpress markers. b) Linkage group for 3H with 172 combined 384-SNP array 

BeadXpress and Genotyping-by-Sequencing markers. 
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11_10515100.2

11_20009107.9

11_11503115.1
11_10312116.7

11_10918124.4
11_11172126.9

11_10280132.9
11_11141133.4
11_20612136.4

11_11127143.5
11_21427146.1

11_10631156.0

11_21272161.7

11_21523173.7

11_11516181.0

3H [2]

426230.0
10331030.5
1585020.9
534971.5
1557973 1564729
42052 56257

1.7

11_201592.3
11_202522.8
11_210274.9
15674055.4
415188.5
11_2059518.0
11_2017220.1
4579821.0
5115421.6
159469222.0
11_2079429.6
6328638.8
11_1067247.1
157849947.4
4873247.5
15996347.6
5893647.9
11_1008148.7
158198548.9
3784452.6
4418353.8
156182354.7
11_2114555.9
11_2064756.3
3787356.6
11781358.1
157824858.3
656858.7
4701258.8
254823159.9
11_1060160.7
4143863.2
5092063.7
23893863.8
50881 158018363.9
11_2119764.0
13547664.5
157284464.8
155920265.7
11498666.0
13893766.1
254680666.2
11_11337 11_20856
38258 136698
1567966 71226
2550265 38959
42749

66.3

7829866.4
4450466.6
4231066.8
17697267.2
160803867.8
5453968.9
11_1072869.2
11_11191 5792770.1
255316371.3
38595 580971.4
157693672.7
24446173.8
4586374.3
156634374.4
11_21305 14076074.8
4466775.1
191908275.5
5334276.9
54814 38871
276158

77.0

4767377.3
18501178.1
1567661 15910779.7
255607979.9
27382680.8
3818181.3
16361486.0
619487.5
157927087.8
3990989.1
11_2009390.1
16500495.5
6664799.1

3H [1]

159703105.0
1560072105.2
1580629105.5
368851105.8
62256106.4
50427108.1
11_10515108.9
1567457111.9
11_20009116.0
51098116.4
81800117.3
11_11503122.8
11_10312124.2
132300125.4
1585379125.5
366741 1592091125.9
1577124128.4
100075128.5
136790128.7
135095129.5
11_10918131.9
2551243133.7
157683135.3
1594047135.4
55398 42877135.5
11_11172135.7
1601301136.0
45775136.5
1567216141.1
368599141.2
56871141.8
11_11141142.0
11_10280142.2
1558254144.9
11_20612145.5
11_11127152.8
45895153.2
289824153.9
11_21427155.3
2549458155.7
136901163.0
138550164.3
11_10631165.0
131382169.1
51022169.7
1586094169.9
322288170.0
140700170.4
60362170.7
2550164170.8
11_21272171.1
2551231173.5
42498173.7
99452174.5
40984175.6
69302176.6
442051177.5
37551178.4
274760 65579
56642

179.9

2546648180.1
37329181.0
11_21523183.1
43211184.7
2554032184.9
60459185.3
2555870186.7
45283187.5
11_11516190.6
1594539194.2
63539198.4

3H [2]

11_201590.0
11_202520.9
11_210273.1

11_2059515.4
11_2017217.6

11_2079427.1

11_1067243.6
11_1008145.2
11_2114552.5
11_2064753.0
11_1060157.5
11_2119760.5
11_11337 11_2085662.8
11_1072865.5
11_1119166.5
11_2130571.2
11_1131474.4
11_2009385.2

11_10515100.2

11_20009107.9

11_11503115.1
11_10312116.7
11_10918124.4
11_11172126.9
11_10280132.9
11_11141133.4
11_20612136.4
11_11127143.5
11_21427146.1

11_10631156.0

11_21272161.7

11_21523173.7

11_11516181.0

3H

a) b) 
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3.4 Discussion 

The production of genetic maps for the same mapping populations with both the 384-

SNP BX Illumina array and the GBS protocol provided an opportunity to compare the 

two methods. SNP chip arrays have been widely utilised and the production of the 

BOPA assays (Close et al. 2009) and the iSelect chip (Comadran et al. 2012) have 

allowed ease of genotyping for a large number of SNPs of interest. GBS technology 

has only more recently been developed and the pipelines with which to analyse data 

produced by this method are still being improved upon (Davey et al. 2011).  

The three populations used within this study display a wide range of genetic diversity. 

The common parent within both populations is Tipple, a modern malting variety, 

which was crossed with both the English landrace Chevallier, and the French cultivar 

Armelle. The aim of using two populations with the same parental genotypes but of 

different generations (C×T F5 and F7) and separate initial crosses was to allow the 

validation of any subsequent QTL associated with FHB or agronomic traits. This also 

provided the opportunity to evaluate how the different genotyping platforms 

performed with regard to the different levels of possible heterozygosity within the two 

populations. The A×T population was genotyped using the BX technology only, but 

gave the opportunity to compare the ability of the 384-SNP set to identify 

polymorphisms in two diverse populations.  

The cultivar optimised 384-SNP array devised by Moragues et al. (2010) was used 

alongside the Illumina BeadXpress technology to genotype both the A×T and two C×T 

populations. Using this method a large number of SNPs were identified (55.2% in both 

the C×T F5 and F7 populations and 57.7% in the A×T population,) which were 

monomorphic between the parental genotypes and were therefore uninformative in the 

genetic mapping process. Chevallier and Tipple are thought to be genetically diverse 

(J. Russell, personal communication), so it was surprising that so few polymorphic 

markers were identified from the 384-SNP assay. A number of lines within C×T F5 

population also appeared to display particularly high levels of heterozygosity (over 

20% heterozygous SNP calls per line), leading to the removal of 23 F5 lines and 

reducing the population available for mapping to 165 progeny lines. The percentage 

heterozygosity in the F5 population was calculated to be 12.6%, which is indicative of 

an F4:5 RIL population. A similar level of heterozygosity was not displayed in either 
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the C×T F7 population or the A×T F6 population, which was thought to be due to the 

additional cycles of inbreeding that these populations were subjected to. It is possible 

that the protocols used for each genotyping method may also contribute to the higher 

levels of heterozygosity seen within the C×T F5 population. Genomic DNA from pools 

of five seedlings per line were used to genotype the C×T F5 and A×T F6 populations 

using the BX system, with the aim of accounting for a higher percentage of 

heterozygosity within the less advanced mapping populations, whilst the C×T F5 and 

F7 populations were genotyped from a single seed per line using the GBS method. It 

is possible that the process of pooling DNA from multiple seedlings may contribute 

to the increased heterozygosity displayed within the C×T F5 BX dataset, however such 

heterozygosity was not seen in the A×T F6 population genotyped using the same 

technique. I subsequently designed KASP markers to validate the genotypic status of 

the heterozygous C×T F5 lines as determined by the BX method. Such lines were 

confirmed to be homozygous, suggesting that several markers had been miscalled by 

the automated software when analysing the BeadChip data. This illustrates that QTL 

analysis using the C×T F5 genetic map can be considered to be as informative as the 

F7 map if using the data derived from the GBS genotyping method.  

The genetic maps produced using the 384-SNP assay dataset contained a similar 

number of markers, with 133 and 154 markers in the C×T F5 and F7 populations, 

respectively, and 129 markers in the A×T population. In two spring barley populations 

(Power × Braemar and Decanter × Cocktail) which were also genotyped using the 

cultivar optimised 384-SNP subset, 125 and 127 polymorphic SNPs respectively, were 

identified between the parental lines, of which 122 and 120 SNPs could be mapped 

(McGrann et al. 2014). Bertholdsson et al. (2015) also used the 384-SNP assay to 

generate a 196 SNP genetic map for a Psaknon × SLUdt1398//Mona population. 

However, as the populations presented within this study were generated using more 

diverse parental lines it might be expected that a greater number of SNPs would have 

been identified. This suggests that genotyping using the 384-SNP assay is useful for 

adapted germplasm but is not able to provide additional SNP information when used 

to genotype diverse parental lines. The map distances generated from the BX SNPs 

ranged from 684.8cM in the C×T F5 population, to 820.6cM in the C×T F7 population, 

with the marker distribution in both the C×T and A×T populations being uneven. In 

both populations chromosomes 1H and 7H contained the fewest markers. In contrast, 
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chromosomes 2H and 3H generally displayed the greatest number of SNPs. This is 

reflected in the design of the 384-SNP set. SNPs were selected for inclusion in the 

assay if they were evenly distributed across the genome, with a 10cM maximum 

interval distance between markers. The frequency of SNPs located on each 

chromosome was also calculated, with approximately 40 SNPs being attributed to 1H 

and 7H, and over 70 markers being positioned to 2H and 5H (Moragues et al. 2010). 

Of the SNPs assayed for 7H, only 11 were identified as being polymorphic in the C×T 

parental lines and only five of these could be linked at a LOD of 7.0. This resulted in 

linkage groups which had distances of up to 20cM between markers in both of the 

C×T populations. This is again comparable to the maps produced using the same 

genotyping method by McGrann et al. (2014), where chromosome 7H in the Decanter 

× Cocktail map was represented as three linkage groups, with distances of up to 38cM 

between SNP markers. Similarly, only 14 SNPs were polymorphic for 7H in the A×T 

dataset, with nine markers forming a linkage group. Contrastingly, certain 

chromosomes for which SNPs were represented at a higher frequency in the 384-SNP 

subset were represented by linkage groups displaying relatively low marker numbers. 

For example, approximately 50 markers in the subset were assigned to chromosome 

6H, of which 31 and 32 were mapped in the C×T F5 and F7 populations respectively. 

However, the A×T 6H linkage map only contained 15 polymorphic 6H markers, of 

which only 7 were genetically linked using mapping software. Moragues et al. (2010) 

determined that using an optimised 384-SNP set is generally a more cost effective 

genotyping method than using a larger 1,536 SNP BOPA1 assay. However, the lack 

of polymorphic SNPs within the parental genotypes of both populations using the 

cultivar optimised 384-SNP set resulted in sparsely populated linkage groups, 

particularly for 1H and 7H. This lack of markers may be due to ascertainment bias. 

This arises when markers are identified from a relatively small panel of cultivars used 

to create the SNP assay, which are then not represented at the same frequency in the 

population which is genotyped (Heslot et al. 2013). Therefore less common 

polymorphisms are less likely to be detected than frequently occurring 

polymorphisms. Using a cultivar optimised 384-SNP assay to genotype the landrace 

Chevallier and the older Armelle variety may have resulted in rarer SNPs being 

undiscovered. This lack of markers on particular chromosomes may be expected to 

have an effect when using these linkage maps for QTL analysis. The effect of a QTL 

is known to be minimised when DNA markers are more than 15cM apart, especially 
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using single marker analysis methods, resulting in a QTL being less likely to be 

identified (Collard et al. 2005). This therefore means that FHB or agronomic trait QTL 

present on some of the chromosomes produced from the 384-SNP genotyping method 

may be less precisely located or possibly even undetected due to the sparse distribution 

of markers.  

NGS methods should reduce the effects of ascertainment bias as they identify 

polymorphisms based on the population being genotyped (Rife et al. 2015). The GBS 

linkage maps generated for the C×T F5 and F7 populations contained up to six times 

more markers than the BX maps, and markers were more evenly distributed 

throughout the genome. Chromosome 7H which was previously the least represented 

linkage group in the BX map, was increased from five to 158 markers, suggesting that 

the lack of markers in the BX map was not due to a lack of polymorphisms between 

the Chevallier and Tipple lines on this chromosome but due to the SNPs selected in 

the 384-SNP assay.  

Whilst the GBS genotyping method provided a much larger initial number of SNPs 

than the BX data (8,754 SNPs compared to 384 SNPs in the BX dataset), 82% of these 

were removed from the mapping dataset through a series of quality control steps to 

give two robust final sets of 1565 (F5) and 1577 (F7) SNP markers . A total of 817 and 

733 markers, in the C×T F5 and F7 populations respectively, were included in the final 

genetic maps produced using solely the GBS markers. This attrition rate is similar to 

that seen in the study by Honsdorf et al. (2014) who identified approximately 41,000 

SNPs from initial GBS sequencing of a set of barley introgression lines, a total which 

was reduced to 3,744 SNPs after data filtering. Mascher et al. (2013) also identified 

an initial 33,000 SNPs using a two enzyme GBS method, but numbers were reduced 

to approximately 8,000 SNPs by filtering for minor allele frequency (MAF) and 

missing data values, and only 1,584 SNPs were successfully incorporated into the final 

genetic map. Further work by Liu et al. (2014) identified 1,949 reliable SNPs from a 

total of 461,000,000 sequencing reads within their 138 RIL Golden Promise × Morex 

GBS dataset, of which only 1,332 SNPs were genetically informative. This evidence 

suggests that whilst the low coverage GBS method produces genetic information for 

a large number of SNPs throughout the genome, a high proportion of these will be less 

reliably genotyped and that using a stringent set of criteria is important for identifying 

robust SNPs which can used in further applications.  



 

70 
  

Using the GBS dataset the marker density of the genetic maps increased from 

approximately one marker every 5cM in the BX map to one marker every 1cM using 

the GBS data, producing a genetic map of high density. However despite there being 

an average of 116 and 104 markers per chromosome in the C×T F5 and F7 populations 

respectively, some linkage groups still displayed marker intervals of over 15cM. This 

observation is not limited to the populations genotyped here, as despite the high 

density of GBS-derived linkage maps a number of studies have also reported larger 

than expected distances between markers. For example, the markers surrounding the 

ari-e height QTL identified by Liu et al. (2014) were separated by a distance of 7cM. 

Similarly, within the 3,000 SNP map created by Igartua et al. (2015) marker intervals 

of up to 10.5cM were observed, whilst Poland et al. (2012) noted distances of up to 

18cM between markers despite the genetic map containing over 9,000 SNPs. This 

issue is not only confined to barley GBS derived maps, as the bread wheat map 

produced by Li et al. (2015) contained 3,757 unique SNPs yet had marker intervals of 

up to 28cM and the durum wheat map created by van Poecke et al. (2013) using a bin-

mapping approach noted 38 bins devoid of markers. Even within the relatively small 

genome of rice, a total of 86 out of 1,550 marker bins were empty in the map produced 

by Spindel et al. (2013). This lack of even marker distribution in certain genomic 

regions may correlate with known areas of reduced recombination (Poland et al. 2012), 

a lack of polymorphism between the parental genotypes (Liu et al. 2014; Igartua et al. 

2015) or possibly low read coverage due to less even distribution of restriction enzyme 

sites (Spindel et al. 2013). The results from the present study combined with the 

current literature suggest that whilst the GBS method can be used to produce high 

density linkage maps, a number of factors may still result in regions of low marker 

coverage during map production.  

The advantages of combining different early generation DNA markers into a single 

map to improve genetic density has been widely demonstrated (Yang et al. 2015). The 

BX and GBS SNP datasets for the two C×T populations were also combined in an 

effort to populate the larger intervals between markers with SNPs and to produce the 

most accurately ordered maps. Merging the datasets allowed the addition of 119 and 

229 markers in the C×T F5 and F7 maps, respectively, and extended the genetic 

distance by 110cM in the F7 population. This represented an increase of up to 10% in 

map distance and an addition of up to 23% more markers. This inclusion of further 
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markers not only increased the length of the shortest linkage groups, but also extended 

some of the most densely populated chromosomes such as 2H and 3H. The marker 

density was increased from one marker every 1.3cM in the C×T F7 map to one every 

1.1cM, demonstrating that it was possible to improve map resolution even in a well 

populated GBS map by the addition of the BX SNPs. The total length of the linkage 

maps produced by combining the BX and GBS SNPs were 1,224.4cM (936 markers) 

in the F5 map and 1,078.4cM (962 markers) in the F7 map. The map lengths produced 

are comparable to those obtained in other barley GBS studies, for example an 

introgression map of 55 wild barleys spanning 989.2cM (Honsdorf et al. 2014), the 

1,200cM map produced by Liu et al. (2014) from a Golden Promise × Morex 

population of 138 RILs and also SNP array studies such as the original BOPA1 and 

BOPA2 map covering 1,099cM (Close et al. 2009). The map produced by Honsdorf 

et al. (2014) contained a combination of 457 BOPA1 SNPs and 3,744 GBS derived 

SNPs, the addition of which gave a tenfold increase in resolution compared to the 

original map created with solely BOPA1 markers. Within the C×T maps, the 

incorporation of GBS and BX SNPs into a single dataset allowed a larger number of 

GBS SNPs to be incorporated within linkage groups than in the initial GBS map. For 

example, a total of 827 GBS SNPs were included in the final C×T F7 combined map, 

whilst only 733 were included in the original GBS map, representing an increase of 

23.8%. A similar effect was seen by Chutimanitsakun et al. (2011), where 445 RAD 

markers were initially mapped covering 1,260cM, yet inclusion of 2,383 RFLPs, SSR 

and SNPs allowed the integration of 463 RAD markers to give a map of 2,846 markers 

over a total distance of 1,286cM.  

Whilst the overall C×T map distances were extended by the integration of markers 

some of the linkage groups were actually contracted in length by inclusion of the BX 

SNPs, such as chromosome 2H in the C×T F7 map which was shortened by 17.4cM 

through the addition of 14 markers. The expansion of genetic maps are predominantly 

due to errors in genotyping, which falsely represent double recombination events and 

cause the distance of a linkage group to be inflated (Cartwright et al. 2007). Error 

checking in large datasets can be time consuming as it generally involves removing 

single markers and testing for map distortion, and if a large proportion of markers all 

possess a low error rate it may not be possible to remove them all from subsequent 

analysis. In an effort to identify errors during the mapping processes described here, 
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the markers (BX and GBS data) for both the A×T and C×T populations were analysed 

using the JoinMap chi-squared analysis function and those which were significantly 

different from the expected 1:1 ratio and could not be re-coded or were thought to be 

indicative of double recombination were removed from the analysis. It is possible that 

the markers which appeared to be under segregation distortion and were removed from 

the datasets may actually be informative during the QTL mapping process (Xu, 2008) 

and could be included in subsequent genetic maps to provide more marker loci. The 

marker orders of subsequent maps were also referenced against the BOPA1 and 

BOPA2 SNP positions determined by Close et al. (2009) and the Morex reference 

sequence (IBSC, 2012). However, it appears that there may still have been instances 

where errors occurred in the ordering of the SNP markers, such as in the F7 2H linkage 

group. By incorporating both sets of genotype data into the mapping process it appears 

that some of these errors have been corrected for, suggesting that the combined BX 

and GBS maps not only contain a higher density of markers, but are also more accurate 

and reliable in the order of these markers.  

This study allowed the comparison between two genotyping methods, with the aim of 

producing the most accurate linkage maps for subsequent QTL identification. By 

utilising both the 384-SNP array and GBS genotyping methods and amalgamating the 

subsequent SNP data it has been possible to produce high density genetic maps which 

correlate with the marker order of the barley reference maps. This should enable the 

more precise identification and positioning of QTL associated with FHB and 

agronomic traits.  
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Chapter 4. FHB resistance and the potential for trade-off with 

agronomic traits in heritage barley 

4.1 Introduction 

Determination of the genetic resistance of barley and wheat to FHB has primarily been 

investigated through quantitative trait loci (QTL) mapping approaches. Reported FHB 

QTL in barley all relate to Type 1 resistance (disease incidence), whilst QTL in wheat 

have been reported for Type 1 and Type 2 resistance (disease spread within the 

infected ear). Several methods of inoculation are used within mapping studies, with 

differing methods being favoured to investigate the separate forms of resistance. In 

barley the grain-spawn method is the most widely used inoculation technique for QTL 

studies and involves the distribution of Fusarium infected cereal grains on the soil 

surface (Zhu et al. 1999; Ma et al. 2001; Dahleen et al. 2003; Mesfin et. al 2003; Choo 

et al. 2004; Horsley et al. 2006; Lamb et al. 2009; Yu et al. 2010; Dahleen et al. 2012). 

This method mimics the natural infection process observed due to the accumulation 

of Fusarium infected crop debris in the soil from prior harvests, with inoculum being 

present throughout the growing season. The spray inoculation method (Canci et al. 

2004; Nduulu et al. 2007) and the cut-spike test (Hori et al. 2005; Sato et al. 2008) are 

more labour intensive techniques and involve the spraying of Fusarium conidia 

directly onto the ears during anthesis. These two methods most represent either splash 

or windborne spore dispersal and can be used to ensure equivalent inoculum 

application across varieties differing in flowering time (Hori et al. 2005). All three of 

these methods have been used to identify Type 1 resistance QTL in barley.  

Similarly in wheat both the grain-spawn and spray inoculation methods are used to 

identify QTL for Type 1 resistance (Draeger et al. 2007; Haberle et al. 2007; Schmolke 

et al. 2008; Srinivasachary et al. 2008; Srinivasachary et al. 2009; Szabó-Hevér et al. 

2014). Assessing this form of resistance is inherently more difficult than in barley 

however, due to the propensity of the fungus to spread through the rachis within the 

wheat ear to infect adjacent spikelets (Buerstmayr et al. 2009). Type 2 resistance in 

wheat may be specifically investigated using the single spikelet inoculation method 

where Fusarium conidia are directly injected into a defined area of the wheat ear, with 
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resistance determined as the rate or extent of fungal spread from the point of 

inoculation (Buerstmayr et al. 2002; Srinivasachary et al. 2009; Ruan et al. 2012). 

QTL associated with mycotoxin accumulation, usually identified by quantification of 

DON within harvested grains, may be detected using the grain spawn, spray 

inoculation and spikelet inoculation techniques but not by the cut-spike method as the 

ear is removed from the plant prior to maturity preventing mycotoxin accumulation 

within the grain (as grain do not develop in the cut spike). 

QTL associated with FHB resistance have been located on every chromosome in 

barley, as demonstrated in Figure 4.1, and also in wheat (Massman et al. 2011; 

Buerstmayr et al. 2011). The detection of multiple QTL each contributing a low 

phenotypic effect on FHB resistance within a single mapping population is a common 

occurrence in both of these cereal species (Buerstmayr et al. 2009). In barley, Ma et 

al. (2001) detected eight QTL (2HS, 2HL, 3HS, 3HL, 5HS, 5HL, 6HL, 7HS) 

associated with Type 1 resistance which each accounted for between 7 – 20% of the 

variance in a Chevron × Stander cross. Similarly, Yang et al. (2005) identified eight 

QTL (1DL, 2DS, 3BC, 3BS, 4DL, 5AS, 6BS, 7BL) associated with both Type 1 and 

2 resistance from a population derived from the wheat cultivars DH181 × AC 

Foremost, which each accounted for between 6 – 24% of the population variance. QTL 

detection is often extremely variable and can be highly dependent on the environment 

and year in which the phenotyping took place. Mesfin et al. (2003) identified 13 barley 

QTL associated with FHB across six trials within a single year in a Fredrickson × 

Stander cross, however only three of these QTL were significant across multiple 

environments.  

QTL associated with lower DON concentration have also been identified on every 

barley chromosome (Massman et al. 2011). In wheat, fewer studies have assessed the 

potential relationship between FHB and DON, with QTL for DON accumulation 

being identified on 1AL, 2A, 2DS, 3BS, 4B, 5AS, 5DL (Buerstmayr et al. 2009). 

QTL associated with FHB resistance and a reduction in DON accumulation in both 

barley and wheat are often non-coincident. Only five of the eight barley FHB QTL 

detected by Ma et al. (2001), co-located with the genomic region of QTL for reduced 

DON accumulation within the grain. Dahleen et al. (2003) located nine FHB QTL in 

a Zhedar 2 × ND9712//Foster barley population, yet were only able to detect three 

QTL associated with lower DON concentration which co-located with FHB QTL. In 



 

75 
  

wheat, Somers et al. (2003) used a Wuhan × Nyu Bai DH population to identify four 

QTL associated with both Type 1 and 2 FHB resistance and also identified three 

genomic regions associated with reduced toxin concentration, only one of which was 

coincident with an FHB QTL.  

 

 

 

Figure 4.1. Quantitative trait loci identified in various barley cultivars and the bin 

positions on the specific chromosomes. Each square represents a different 

environment within a study where a QTL was detected and each colour represents the 

cultivar from which resistance was contributed. (Taken from Massman et al. 2011). 

 

FHB resistance and DON accumulation QTL are also frequently coincident with QTL 

for agronomic traits. Plant height and heading date (HD) have been particularly 

implicated as having a role in FHB resistance in barley and wheat, whilst QTL for ear 

morphology traits are also frequently associated with FHB (Bai and Shaner, 2004). In 

barley, both row type and flowering type are also thought to be highly influential on 

disease susceptibility (Hori et al. 2005). The co-location of QTL for FHB and 
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agronomic traits is often transient across environments and trial years in both wheat 

and barley, suggesting that much of the resistance associated with agronomic 

characteristics is due to disease escape (Buerstmayr et al. 2009). However, 

determining the potential for either linkage or pleiotropy between genes for agronomic 

traits and disease resistance is important for informed cereal breeding.  

In both barley and wheat, taller cultivars are thought to be more resistant than those 

which have shorter stature (Srinivasachary et al. 2009), which has been suggested to 

be due to the microclimate of the shorter lines being more conducive to Fusarium 

infection as shorter cultivars may be subject to increased humidity favouring disease 

development. The reduced distance between leaf layers observed in shorter plants may 

also aid the dispersal of splash borne conidia, further reducing Type 1 resistance 

(Buerstmayr and Buerstmayr, 2015). This poses a trade-off between the short height 

phenotype which is favoured in agriculture and the potential for breeding for FHB 

resistance. Numerous studies in barley have identified major FHB QTL which are 

coincident with those for plant height. A study using two sets of DH lines, derived 

from a three-way Zhedar 2 × ND9712//Foster cross, identified two QTL with 

resistance derived from Zhedar 2, at 62 – 70cM and 106 – 122cM on 2H which co-

located with plant height (Dahleen et al. 2012). Zhu et al. (1999) identified several 

potent FHB resistance QTL on 1H, 3H and 4H in a Gobernadora × CMB643 

population, which again were all coincident with height QTL. Of the eight FHB QTL 

identified by Ma et al. (2001), four were co-incident with plant height (2H, 3H, 5H 

and 7H) QTL and the other five co-located with other morphological traits. Yu et al. 

(2010) detected a potent FHB QTL accounting for 14% of the phenotypic variance 

within a Zhenongda 7 × PI 643302 cross on 2H, however the QTL interval also 

overlapped partially with a minor QTL for height. A single QTL for FHB resistance 

was detected at the centromeric region of 5HS in a Russia 6 × H.E.S 4 population 

(Hori et al. 2005), with resistance derived from Russia 6, which co-located with a QTL 

for height. GWAS studies of two-row and six-row barley CAP (Co-ordinated 

Agricultural Project) lines by Massman et al. (2011) also identified an association 

between plant height and FHB resistance, with QTL on 4H at 24 – 36cM and 6H at 42 

– 67cM co-locating with QTL for height. An association between FHB and plant 

height has also been demonstrated in wheat, with QTL for both Type 1 and Type 2 

resistance on 1A, 2BS, 2DS, 3A, 4DS, 5BL coinciding with height QTL (Schmolke et 
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al. 2008; Gervais et al. 2003; Ban and Handa, 2008; Mao et al. 2010; Draeger et al. 

2007; Srinivasachary et al. 2008; Paillard et al. 2004). A major QTL associated with 

Type 1 resistance to FHB was detected in a Soissons × Orvantis DH population, which 

co-located with a major QTL associated with height at the Rht-D1 locus on 4DS 

(Srinivasachary et al. 2008). The Soissons allele was associated with both increased 

Type 1 resistance and increased plant height at this locus. Interestingly, the Fhb1 QTL 

on 3BS which is associated with potent Type 2 resistance and is derived from the 

Chinese cultivar Sumai 3 does not appear to have any major associations with plant 

height (Xie et al. 2007; McCartney et al. 2007; Pumphrey et al. 2007; Buerstmayr et 

al. 2009). The identification of QTL in both barley and wheat which do not always 

coincide with those for plant height suggests that resistance seen in tall varieties is not 

solely due to disease escape.  

The role of HD has also been implicated in FHB resistance with a number of QTL 

being identified on wheat chromosomes, such as 2AL, 6DL, 7AL and 7BS, which 

co-locate with QTL for FHB severity in Arina × Forno, Dream × Lynx and Cansas × 

Ritmo populations (Liu et al. 2013; Paillard et al. 2004; Klahr et al. 2007; Haberle et 

al. 2007). Studies in barley have identified chromosome 2H as being a particular 

genomic region associated with both FHB and HD QTL. A study by de la Pena et al. 

(1999) identified a potent QTL for FHB between markers MWG887 – ABC306 on 

2H which accounted for up to 14% of the phenotypic variation. This FHB QTL 

coincided with a QTL for HD also detected in the same marker interval. Mesfin et al. 

(2003) detected three further QTL associated with FHB on 2H, between the markers 

Ebmac0521a – Bmag0140, Vrs1 – Bmag0125 and ABC252 – ABC153. One of the 

major QTL in this region, located between Ebmac0521a – Bmag0140 markers, was 

also associated with later heading. QTL analysis of two mapping populations by 

Canci et al. (2004), using two partially susceptible lines from the Chevron × M69 

population crossed to the elite cultivars Stander and M81, detected QTL on 2H for 

both resistance to FHB incidence and DON accumulation within a 6.7cM region. 

The Chevron allele at this locus reduced FHB susceptibility by approximately 42%, 

but increased the heading date by 3.8 days. An FHB QTL in the same region of 2H 

(Qrgz-2H-8) was also identified by Lamb et al. (2009) from a C93-3230-24 × Foster 

cross, which again co-located with both a HD QTL and also a QTL for plant height 

in the hvm23 – abc162 marker region. A further HD QTL flanked by the markers 
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ABG46c-MWG865 at the Qrgz-2H-8 region on 2H, where HD correlated negatively 

with FHB severity, was mapped to the same region as the Early maturing 6 (Eam6) 

gene (Horsley et al. 2006), suggesting that the QTL detected may actually be Eam6. 

Previously HD was thought to have a pleiotropic effect on disease resistance, with 

later heading cultivars being exposed to the Fusarium inoculum present in the 

environment for a shorter period of time and therefore displaying less severe FHB 

symptoms (Dahleen et al. 2003). Nduulu et al. (2007) developed a NIL population 

derived from a CM62 × M69 cross to fine map the relationship between FHB and 

HD at the Qrgz-2H-8 region to determine whether disease resistance was due to 

pleiotropy or linkage with HD associated genes. The authors determined that the 

QTL for FHB resistance displayed a close association with the GMS03 marker, 

whilst the HD QTL was more closely associated with the GBM1023 – Bmac0132 

marker interval which was 1.0cM away from the GMS03 marker. The same study 

also identified a resistant yet early-heading recombinant, suggesting that the 

relationship between FHB resistance and HD is actually due to very close linkage at 

the Qrgz-2H-8 region of 2H and not due to the pleiotropic effect of a HD gene.  

Other important agronomic traits, such as row type in barley, have been associated 

with FHB severity demonstrating that there are multiple trade-offs to be considered 

when breeding for resistance. The Six-rowed spike 1 (Vrs1) gene, which acts with the 

Intermedium-C (Int-C) gene to determine row type, is located on 2H (Ramsay et al. 

2011). The Vrs1.b wild-type allele confers a two-row phenotype and is associated with 

FHB resistance, whilst six-row cultivars (vrs1.a) are thought to be more susceptible 

(Bai and Shaner, 2004). A study by Mesfin et al. (2003), using a mapping population 

derived from a two-row Fredrickson and six-row Stander cross, identified two FHB 

QTL on 2H. One of these was associated with HD, whilst the other was coincident 

with Vrs1 at the Vrs1 – Bmag0125 interval. An FHB QTL which was coincident with 

Vrs1 and a major QTL for HD was also identified using the 125 RIL population 

derived from a Russia 6 (two-row) and H.E.S 4 (six-row) cross developed by Hori et 

al. (2005). It is possible that the ear morphology of six-rowed cultivars is more 

conducive to Fusarium infection than that of two-row varieties, either by providing a 

larger surface area for the deposition of inoculum or for the collection of water 

following rainfall, which would provide a more humid microclimate for pathogen 

growth (Yoshida et al. 2005). However, as the Vrs1 locus appears to be very close to 
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a major HD QTL, as demonstrated in multiple mapping populations (Dahleen et al. 

2003; Mesfin et al. 2003; Hori et al. 2005), it has not yet been possible to fully 

determine whether the effect of row type on FHB resistance is due to pleiotropy or 

linkage with Vrs1. Interestingly, Massman et al. (2011) also detected two co-locating 

QTL for DON accumulation and HD which were close to Vrs1 in the six-row CAP 

population, suggesting that within six-row populations there may be a closely linked 

HD effect within the region of Vrs1. The development of a NIL population to precisely 

map both FHB and row type QTL within the Vrs1 region may be necessary to 

determine the relationship between FHB and Vrs1 on 2H.  

The long arm of 2H is also the location of the cly1/Cly2 locus which confers 

cleistogamy, or closed flowering, in barley (Wang et al. 2013). An FHB QTL was 

identified within 1.7cM of the cly1/Cly2 locus in a study by Hori et al. (2005), whilst 

QTL for FHB resistance were coincident with the cleistogamy locus in all five of the 

RIL populations investigated by Sato et al. (2008). Anther extrusion is associated with 

increased Type 1 resistance in wheat, as retained or partially extruded anthers are 

thought to provide a favourable substrate within the floret for Fusarium colonisation 

(Lu et al. 2013). Closed flowering may also provide another means to reduce FHB 

susceptibility. However, Dahleen et al. (2012) also studied the effect of the flowering 

type on resistance yet were unable to identify any QTL co-locating with the cly1/Cly2 

locus, with the authors noting that disease severity in closed or open flowering lines 

appeared to differ between environments. Yoshida et al. (2007) demonstrated that 

cleistogamous cultivars display increased resistance to infection compared to 

chasmogamous (open flowering) varieties when inoculation occurs at anthesis, 

however this resistance was lost by 10 days post-anthesis, when both cleistogamous 

and chasmogamous cultivars display similar levels of susceptibility.  

FHB resistance has also been demonstrated to be correlated with other characteristics 

such as glume length, spike density, floret size and spike angle in barley (Zhu et al. 

1999; Ma et al. 2001; Choo et al. 2004; Hori et al. 2005; Horsley et al. 2006). The 

major QTL associated with FHB on 2H was coincident with those for inflorescence 

density and lateral floret size in a study by Zhu et al. (1999), as was a QTL for lateral 

floret size on 4H which also co-located with a QTL for DON. Ma et al. (2001) 

identified a spike angle QTL on 2H at Xcdo373 – Xcdo684b, which overlapped QTL 

for lower FHB incidence and DON concentration, and also two QTL associated with 
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the number of nodes on the rachis on 1H and 2H which co-located with QTL for DON. 

Increased spikelet density within the ear may provide a more favourable microclimate 

for fungal proliferation, whilst a more upright spike angle may promote water 

accumulation in the ear following rainfall (Yoshida et al. 2005). Increased floret size 

may simply provide a larger surface area for inoculum to collect. In wheat, narrow 

flower opening and compactness of the ear have also been associated with FHB 

(Gilsinger et al. 2005; Schmolke et al. 2005). A potent FHB QTL on 2B explaining 

29% of the phenotypic variation which was associated with narrow flower opening in 

a Patterson × Goldfield cross (Gilsinger et al. 2005). Such studies in both barley and 

wheat illustrate the importance of ear morphology as a potential means of disease 

escape. 

The results of QTL and association studies illustrate the complexity of breeding for 

genetic resistance to FHB, as a trade-off between resistance and a number of 

favourable traits is often evident. In the current study, two separate mapping 

populations were developed from a cross between the significantly FHB resistant, yet 

tall, heritage Chevallier parent and the short susceptible parent Tipple. The aim of this 

study was to phenotype both of these populations for FHB susceptibility, plant height, 

HD and other characteristics to determine whether the resistance of Chevallier 

conferred a potential trade-off with agronomic traits, therefore affecting the potential 

of such resistance to be introgressed into elite barley cultivars. An additional mapping 

population, derived from an Armelle × Tipple cross, was also phenotyped to evaluate 

the possibility of a trade-off in another FHB resistant cultivar.  

 

4.2 Methods and materials  

4.2.1 Production of Fusarium inoculum 

DON producing F. culmorum Fu42 was grown on V8 agar (9 g bactoagar, 50 mL V8 

vegetable juice in 450 mL deionized water) for 14 days at 20oC. Small squares of agar 

(1cm) were added to flasks of sterilized oat grains and kept at room temperature for 3 

– 4 weeks. The conidia were harvested by adding SDW to each flask and filtering the 

solution through muslin, before centrifuging for 5 min at 3000g. The remaining pellet 
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was washed and re-suspended with SDW at a concentration of 1×106 conidia ml-1 and 

stored at -20°C until use. 

 

4.2.2 Chevallier × Tipple F5 phenotyping  

The 188 line F5 Chevallier × Tipple population was sown in a whole plot, single 

replicate design containing 18 randomized controls, including the parental lines, at the 

JIC field trial site in 2013. The population was scored for multiple agronomic traits. 

Height (distance from the soil to the tip of the barley spike, excluding awns at Zadoks 

growth stage (GS) 83 (Zadoks et al. 1974)) and heading date (number of days from 

initial sowing to Zadok’s GS 55) were scored. Growth habit (GH) was recorded on a 

1 – 6 scale at Zadok’s GS 20, (1 = very prostrate, 6 = very erect) and tillering was 

scored on a 1 – 9 scale (1 = very poor, 9 = very good). Mildew was scored on a 1 – 9 

scale (1 = no mildew, 9 = all upper leaves more than 50% infected) on five score dates 

from Zadok’s GS 14 – 39, and a mean value for each RIL was calculated. Spike angle 

was recorded using the UPOV (1994) 1 – 9 scale (1 = erect, 9 = recurved). 

Physiological leaf spotting (PLS) was observed as dark brown spots on both sides of 

the leaf, and scored on a 1 – 10 scale (1 = no spotting, 10 = more than 50% of leaves 

covered). To investigate FHB susceptibility plots were sprayed 7 – 8 times from mid-

anthesis with F. culmorum Fu42 conidial suspension (0.5x105 conidia per ml-1
 and 

0.05% Tween 20) using a knapsack sprayer and were mist irrigated to increase 

humidity and promote fungal infection. Spraying was continued throughout anthesis 

to ensure that all emerging spikes were inoculated, as Fusarium species are not known 

to spread within the ear in barley. FHB severity (percentage of disease per plot) was 

scored at four separate time points, beginning 2 weeks after the first inoculation. Grain 

was hand-harvested from each plot for subsequent DON analysis. 

A further FHB trial containing the 188 C×T F5 lines in a three row split plot design, 

with two replicates per line, was sown in spring 2013 at KWS, Thriplow, UK. Height 

and HD was recorded at this site. FHB scores were taken on a single date with each 

replicate being scored by a different individual. The phenotype data for each replicate 

was therefore analysed separately as two trials (designated KWS1 and KWS2) to 

account for any differences in scoring.  
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4.2.3 Chevallier × Tipple F5 mildew seedling inoculation 

The C×T F5 population, Chevallier, Tipple and the susceptible control line Manchuria 

were sown three seeds per 5 x 5 cm pot and grown at 18oC in a CER. Lines were 

randomised within each tray, with 30 pots per tray including pots of Chevallier, Tipple 

and Manchuria. The B. graminis isolate CC148 was maintained on separate pots of 

Manchuria seedlings at 18oC. After 9 days, seedlings were inoculated with B. graminis 

by distributing spores from the inoculation pots onto the seedlings, which were then 

kept at 18oC with high humidity for 24 h. After 7 days the 1st leaf of each seedling was 

scored separately for mildew and necrosis symptoms, using a 0 – 4 scale (0 = no 

mildew/necrosis, 4 = 100% of leaf covered). The experiment was repeated twice.  

 

4.2.4 Chevallier × Tipple gibberellic acid (GA) response assay. 

The protocol of Gale and Gregory (1977) was followed. Chevallier and Tipple seeds 

were sown randomly in two P40 Pak trays (20 seeds per line, per treatment) and grown 

in a CER (18/15oC under a 16 h/8 h light-dark photoperiod). Seedlings were watered 

as necessary with either 10ppm gibberellic acid (GA3) solution (Sigma Aldrich, 

product G7645) or control treatment of H2O. Measurements (total plant height, length 

from first to second leaf node, length from second to third leaf node) were recorded at 

31dpi and the percentage difference in height between the GA3 and control treatment 

for each line was calculated. The experiment was conducted once.  

 

4.2.5 Chevallier × Tipple F5 phytase analysis 

A sub-set of 105 lines from the C×T F5 population were selected on the basis of seed 

availability and were milled for subsequent analysis of the phytate content of the flour. 

Inositol phosphate levels of these samples were analysed by HPLC. The peak areas 

associated with the presence of inositol 1,3,4,5-tetrakisphosphate (IP4), two isomers 

of inositol pentakisphosphate (IP5a and IP5b) and phytate (myo-inositol-(1,2,3,4,5,6)-

hexakisphosphate or IP6) were measured. Five replicates of the parental lines were 
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included, with a single replicate for the RILs. This work was conducted by the group 

of Dr. Charles Brearley at the University of East Anglia, UK.  

4.2.6 Chevallier × Tipple F7 phenotyping 

The 188 line C×T F7 population developed at JIC was sown in a whole plot single 

replicate design containing 12 randomized controls, including the parental lines, at JIC 

in 2014. The population was inoculated and scored as in the C×T F5 trial in 2013. 

Phenotype data for height and HD and mildew severity (two score dates) was also 

recorded.  

A further trial with the same population was sown at JIC in 2015, using a split plot 

two replicate design also containing 12 randomized controls. The population was 

inoculated as described in 2013. Height, HD, tillering, GH, PLS and mildew severity 

were scored as in the C×T F5 2013 trial. The population was scored for FHB as in 2013 

and grain was hand harvested for DON toxin analysis. 

 

4.2.7 Armelle × Tipple F6 phenotyping 

From the Armelle × Tipple F6 population developed by Syngenta, 198 lines from the 

total 250 RIL population were selected on the basis of seed availability. These lines 

were sown in a randomised whole plot single replicate design, containing the parental 

controls in 2013 at NIAB, Cambridge, UK. The population was inoculated from mid-

anthesis with an F. culmorum Fu42 conidial suspension at 0.5x105 conidia per ml-1 

and was scored for FHB at two separate time points, beginning 2 weeks after the first 

inoculation. FHB measurements were recorded as the percentage of ears infected per 

plot. Height was also recorded.  

The same population was sown in a randomised whole plot single replicate design also 

containing the parental controls at the JIC field trial site in 2014. The population was 

inoculated as in the C×T F5 trial in 2013. The population was scored for FHB severity 

at two separate time points, beginning 2 weeks after the first inoculation. Height and 

HD were also recorded. 
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4.2.8 DON analysis 

The same subset of 105 lines used in the C×T F5 phytase assays were selected from 

the FHB trial at JIC in 2013 for DON analysis. The DON concentration of four 

replicates of each of the parental lines from the C×T F7 FHB trial in 2014 was also 

analysed, however the levels were so low that the RIL population was not tested. The 

entire 188 C×T F7 RIL population from the 2015 JIC FHB trial was also analysed for 

DON accumulation. From the C×T F5 2013 trial five replicates of each parent were 

analysed, whilst for the C×T F7 2015 trial four replicates were analysed. A single 

replicate per RIL, per population, was analysed. A sample of grain (~40g) from each 

line was milled to gain a representative sample for each plot. The DON ELISA assay 

was carried out using a Ridascreen Fast DON ELISA kit (R-Biopharm) and the initial 

DON extraction was conducted as per the manufacturer’s instructions. Mycotoxin 

analysis of the C×T F7 population was conducted by M. Collins and J. Nicholson (JIC). 

 

4.2.9 Statistical analysis 

The analyses of variance (ANOVA) for phenotypic traits recorded during the field 

trials were conducted separately for each environment by means of a general linear 

model (GLM) within Genstat 16th edition (Lawes Agricultural Trust, Rothamsted 

Experimental Station, UK), to account for the effect of line, row (within the field) and 

replicate. The analyses of variance for FHB susceptibility were also analysed 

separately for each environment using a GLM to account for the effect of score date, 

line, row and replicate. Disease severity was found to differ across environments 

therefore combined analyses of variance were not conducted. Spatial analysis was not 

performed on the experimental data due to the single replicate nature of the trials. The 

mildew CER experiments were analysed using a GLM to account for experimental, 

tray and line variation, whilst a two-sample t-test was used to compare the parental 

lines for both the DON accumulation values and the inositol phosphate measurements. 

A simple linear regression was fitted for FHB and DON values for both the 2013 and 

2015 trial data.  
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4.2.10 QTL analysis 

Genstat 16th edition (Lawes Agricultural Trust, Rothamsted Experimental Station, 

UK) was used for QTL analysis. The combined 384-SNP BeadXpress and 

Genotyping-by-Sequencing genetic maps were used for the C×T F5 and F7 

populations, whilst the 384-SNP BeadXpress genetic map was used for the A×T F6 

population. Predicted mean values calculated within a GLM in Genstat were used for 

the phenotype data for each trait, except for the C×T F5 and F7 DON accumulation 

data and the C×T F5 phytase (inositol) data where the raw data values were used. Traits 

were analysed as a single trait linkage analysis using the Kosambi mapping function 

and LOD threshold of 3.0 was used to detect significant QTL. QTL analysis of the 

Chevallier × Tipple F5 and F7 populations and the Armelle × Tipple F6 population was 

initially performed using a maximum step size of 10cM along the genome for QTL 

detection. The analysis was subsequently repeated using a maximum step size of 2cM 

to determine if QTL could be more precisely located. However, reducing the step size 

affected only the size of the QTL interval, both increasing and decreasing it, but did 

not affect the location of the peak QTL marker. Therefore, all further reported QTL 

for all three populations were generated as in the original analysis. Simple interval 

mapping (SIM) was used for the initial QTL search, followed by composite interval 

mapping (CIM) to finalise the QTL location using the detected candidate QTL as co-

factors. A final QTL model was then fitted to produce the estimated QTL effects. QTL 

images were produced using MapChart.  

 

4.3 Results 

4.3.1 Chevallier × Tipple F5 phenotyping 

In all three Fusarium inoculation experiments (JIC, KWS1, KWS2) the parental line 

Tipple consistently displayed the characteristic symptoms of FHB, with multiple 

Fusarium infected kernels per spike (Figure 4.2), whilst disease was mainly absent in 

Chevallier. FHB disease severity at the KWS1 and KWS2 trials was much lower than 

that observed at the JIC site. Within the GLM, score date, line and row were all deemed 

to have significant effects on FHB at the JIC trial (P < 0.001) (Appendix, Table A.9). 

Neither line nor row were significant at KWS1 (P = 0.255 and 0.628, respectively, 
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Appendix, Table A.10). The positional effect of row was significant at KWS2 (P = 

0.023) but again line did not affect FHB severity (P = 0.124) (Appendix, Table A.11). 

The predicted mean FHB score for Chevallier ranged from 0.25% in at KWS1, to 

0.87% in the JIC trial (Table 4.1), whilst for Tipple ranged from 12.3% at KWS2 to 

17.6% at JIC. The difference in predicted mean FHB scores between the parental lines 

was significant in all three datasets at the P <0.01 level or higher (Table 4.1). The 

mean FHB scores for the RILs were 7.2, 3.4 and 4.7% in the JIC, KWS1 and KWS2 

trials respectively, illustrating the lower disease incidence in both of the KWS trials. 

(Table 4.1). 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Fusarium culmorum Fu42 isolate inoculated Chevallier (left) and Tipple 

(right) heads from the 2013 John Innes Centre field trial. Scale bar = 1cm.  

 

Line had a significant effect on plant height in all three trials (P < 0.001 at KWS1 and 

KWS2, P = 0.017 at JIC, Appendix Tables A.12 – A.14). The row effect was not 

significant at JIC (P = 0.793), but was at both KWS1 and KWS2 (P = 0.034 and 0.020, 

respectively). Tipple consistently displayed a short height phenotype throughout all 

three trials (Table 4.1). The difference in height values between the two parental lines 
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was significant in all three datasets at the P = 0.01 level (Table 4.1). The mean heights 

for the RILs were 112.5, 110.1 and 111.2cm in the JIC, KWS1 and KWS2 trials 

respectively (Table 4.1). 

Within the GLM, the effect of line on HD score was significant in all three trials (P < 

0.001 at KWS1 and KWS2, P = 0.010 at JIC, Appendix Tables A.15 – A.17). The row 

effect was deemed significant at JIC (P = 0.011), but not at either KWS trial (P = 

0.144 and 0.286 at KWS1 and KWS2 respectively). Tipple took significantly fewer 

days than Chevallier to reach head emergence in all three trials (Table 4.1). The RIL 

plots emerged earlier at the JIC trial site in 2013. The mean HD scores for the RILs 

were 106.0, 110.0 and 110.0 days at JIC, KWS1 and KWS2 respectively, (Table 4.1). 

As the range in HD scores in the RILs exceed the range of the parents, it is probable 

that both of the parental lines contribute towards HD.  

At the JIC trial site phenotype data for GH, tillering, PLS and spike angle was 

collected. The presence of B. graminis within the field resulted in natural powdery 

mildew infection, allowing disease severity to also be recorded. Significant differences 

in predicted mean score values for the parental lines were observed for GH, PLS and 

mildew (Table 4.1).  
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The level of DON accumulation in 105 of the C×T F5 RILs at the JIC trial was 

investigated with the aim of identifying whether reduced FHB symptoms also 

correlated with a reduction in DON concentration. The mean DON content of the 

milled grain for Chevallier was 0.4ppm, whilst for Tipple it was 14.9ppm. The mean 

values for the parental lines were significantly different at the P = 0.025 level. The 

mean DON accumulation values in the RILs calculated from one replicate was 

3.7ppm, with a range between 0.1 – 15.8ppm. An R2 value of 0.206 was determined 

for the relationship between the FHB score from the JIC trial and the DON values 

calculated from the ELISA. This indicates a weak positive correlation between the 

visual symptoms of FHB recorded and the subsequent levels of DON accumulation 

within the grain. 

Inositol phosphate analysis was undertaken on the same sub-set of the C×T F5 RILs as 

used for the DON accumulation analysis. The mean peak areas for IP5a and IP5b were 

determined to be significantly different between Chevallier and Tipple (Table 4.2). 

The peak area values for the RILs were lower than the mean peak areas for the parental 

lines, but were only calculated from a single replicate which may account for this 

discrepancy.  

 

Table 4.2. The mean peak areas associated with inositol phosphates for Chevallier and 

Tipple, and the range of peak areas for 105 C×T F5 recombinant inbred lines.  

  Means Range  

Trait Chevallier Tipple RILs t- probability* 

IP4 347148 318882 65022 – 193860 0.357 

IP5a 462524 127849 1090 – 20318 0.002 

IP5b 653283 767112 8369 - 22719 0.020 

IP6 2899245 2344212 824870 – 1504600 0.094 

 

* The statistical significance of the difference between peak area values for Chevallier 

and Tipple was calculated from a t-test.  

 

To investigate the resistance of the C×T F5 RILs and the parental lines to powdery 

mildew infection in a controlled environment, two seedling inoculation experiments 
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within a CER were conducted. Symptoms of mildew and necrosis appeared to be 

segregating within the population so were scored separately. There was no significant 

effect of experiment (P = 0.174) on mildew severity, whilst the experiment – tray 

interaction and the effect of line were determined significant at the P < 0.001 level 

(Table 4.3). As with the field environment, Chevallier displayed more severe mildew 

symptoms than Tipple, with pustules covering a larger proportion of the Chevallier 

leaf surface. Very few mildew pustules were observed on Tipple leaves. Predicted 

mean scores of 2.0 and 0.0 for Chevallier and Tipple, respectively, were obtained from 

the GLM, with a score of 2.5 for the susceptible control line Manchuria. T-

probabilities were calculated and the mean scores for Chevallier and Tipple were 

found to be significantly different (P < 0.001), whilst the scores for Chevallier and 

Manchuria were not (P = 0.164). The predicted mean scores for the RILs ranged 

between 0.0 – 3.0.  

 

Table 4.3. Analysis of variance for mildew scores from two B. graminis seedling 

inoculation experiments, calculated within a general linear model. 

Term d.f m.s v.r F.pr 

Experiment 1 0.48 1.86 0.174 

Experiment.Tray 12 1.27 4.93 <0.001 

Line 148 1.60 6.23 <0.001 

Residual 172 0.26   

      

Total 333 0.89   

 

Necrotic symptoms were also scored in the two experiments. The effect of experiment 

and the experiment – tray interaction were not significant (P = 0.052 and 0.583 

respectively), whilst line had a significant effect at the P < 0.001 level (Table 4.4). 

Only mild necrotic symptoms were observed in the control lines, with a predicted 

mean score of 0.30 in Tipple, 0.04 in Chevallier and 0.01 in Manchuria, corresponding 

to less than 25.0% of the leaf surface displaying necrosis. None of these values were 

significantly different. The predicted means for the RILs ranged from 0.0 – 2.0.  
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Table 4.4. Analysis of variance for necrosis scores from two B. graminis seedling 

inoculation experiments, calculated within a general linear model. 

Term d.f m.s v.r F.pr 

Experiment 1 1.09 3.82 0.052 

Experiment.Tray 12 0.25 0.87 0.583 

Line 148 0.55 1.94 <0.001 

Residual 172 0.28   

      

Total 333 0.40   

 

4.3.2 QTL analysis of Chevallier × Tipple F5 traits 

Two QTL associated with plant height were identified at the JIC site (Table 4.5). The 

major height QTL was identified on the long arm of 3H at position 139.8cM (Figure 

4.5) with a LOD score of 35.5 and accounted for 68.0% of the variance. A minor QTL 

was located at 32.6cM on 3H. For both of these QTL the contributing parental allele 

came from Chevallier, which was expected due to its tall height. Two height QTL 

were also detected at KWS1 and KWS2 which mapped to exactly the same locations 

as the JIC height QTL, giving confidence in the accuracy of the phenotype data 

collected at both trials.  

QTL for HD were mapped to chromosomes 3H and 7H in the JIC dataset. A major 

QTL was identified at 139.8cM on 3H, corresponding to marker 11_11172 (Table 4.5), 

with a LOD score of 15.7 and explaining 34.5% of the variance. This QTL therefore 

co-localises with the major 3H height QTL identified in both the JIC and KWS 

datasets. A further HD QTL was located on 7H at position 28.7cM (Figure 4.7). The 

late HD phenotype was contributed to by both parents, with Tipple providing the high 

value (later) allele at the 3H QTL and Chevallier contributing the later allele at the 

minor 7H QTL (Table 4.5). This possible additive effect may explain why several of 

the RIL lines showed significantly later (higher) predicted mean HD scores than either 

of the parental lines (Table 4.1). The HD QTL detected at KWS1 and KWS2 were 

located at the same map positions as in the JIC data (Table 4.5), along with an 

additional minor QTL on 2H with the later allele contributed by Chevallier.  

A single major QTL associated with FHB was identified using the JIC dataset with a 

LOD score of 5.6. This was located on 6H at position 114.5cM corresponding to 
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marker 11_11246 (Figure 4.6). Up to 15.3% of the phenotypic variance within the 

dataset was accounted for by this QTL and higher levels of disease were associated 

with the Tipple allele (Table 4.5), illustrating that resistance was being provided by 

Chevallier. No QTL associated with FHB could be identified from either of the KWS 

datasets. This may be due to the low disease pressure observed within both of the 

replicates at the KWS1 and KWS2.  

Phenotype data from ELISA assays were used to identify any QTL associated with 

DON accumulation. A single QTL was detected on 6H at position 119.5cM, 

accounting for 10.5% of the variance within the RIL population. Susceptibility to 

DON accumulation was associated with the allele contributed by Tipple. The QTL 

associated with DON accumulation co-located with the 6H FHB QTL (Figure 4.6).  

QTL for GH, tillering and spike angle all co-located at position 139.3cM (marker 

11_11172) on 3H corresponding to the location of the major height and HD QTL 

(Figure 4.5). A QTL for PLS was also detected on 3H at position 144.5cM. QTL 

associated with powdery mildew were identified on 1H, with a major QTL at 

11_10332 at position 43.9cM (Figure 4.3). A single QTL for IP5a and two QTL for 

IP5b were identified. The IP5a QTL was located on 3H at position 23.2cM and the IP5b 

QTL were located on 1H at 29.1cM and 6H at 104.1cM (Table 4.5). It was not possible 

to identify any QTL associated with IP4 or IP6.  
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4.3.3 Chevallier and Tipple GA assay  

The sdw1 gene on 3H confers a semi-dwarf phenotype and the candidate gene has 

been proposed as a gibberellin 20-oxidase or Hv20ox (Jia et al. 2011). The response 

of the parental lines to GA was investigated with the aim of identifying whether a GA 

response might be contributing towards the major 3H height QTL. Treatment with 

10ppm GA3 had a significant positive effect on all three measurements of plant height 

(total height, first to second and second to third leaf node) compared with the control 

in both Chevallier and Tipple (P <0.001). The height measurements of Chevallier and 

Tipple under the control treatment were also deemed to be significantly different (P = 

0.026), therefore the percentage difference in height values between the control and 

10ppm GA3 treatment for each measurement were calculated to account for this. 

Treatment of 10ppm GA3 resulted in a 67.7% and 68.7% increase in distance between 

the second and third leaf nodes in Chevallier and Tipple, respectively (Figure 4.8). A 

similar increase of 67.0% and 68.0% in length was also observed in the total height 

measurement of Chevallier and Tipple respectively, when comparing the 10ppm GA3 

treatment to the control. A less pronounced effect in seedling growth in response to 

10ppm GA3 was displayed in the distance between the first to second leaf node, as the 

percentage difference in length between the control and GA treatment was 47.1% in 

Chevallier and 48.0% in Tipple (Figure 4.8). Whilst the application of 10ppm GA3 had 

a significant effect on increasing plant height, no significant variation (P = 0.646) in 

the percentage differences between 10ppm GA3 and control treatments for any of the 

three height measurements were observed between Chevallier and Tipple. 
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Figure 4.8. The percentage difference in total height, first to second and second to third 

leaf node distance, between Chevallier and Tipple seedlings treated with either 10ppm 

GA3 or H2O.  

 

4.3.4 Chevallier × Tipple F7 phenotyping 

There were a number of phenotyping issues with the C×T F7 trial at the JIC site in 

2014. The herbicides applied to the trial failed to control weed growth, resulting in 

barley plants displaying stunted growth due to competition with naturally occurring 

plants within the environment. This stress led to shorter plants in which the peduncle 

failed to extend, resulting in the ears being trapped within the boot during anthesis, 

hindering the inoculation process. Within the GLM, score date, line and row were 

deemed to have a significant effect on FHB severity (P < 0.001), (Appendix Table 

A.18). The predicted mean FHB scores for Chevallier and Tipple were 2.3 and 14.0% 

respectively (Table 4.6), with Tipple displaying a lower disease score than expected 

from previous JIC trials. The difference in predicted means between the two parental 

lines was still significant at the P < 0.001 level however. The range of scores for the 

RILs was 2.1 – 20.3%, with a total of 15 RILs displaying a higher predicted FHB score 

than the susceptible Tipple parent. The mean FHB score for the RILs was 8.3% (Table 

4.6). Growth conditions in the 2015 trial were favourable and plants were not subject 

to the weed competition seen in 2014. Within the GLM, score date, line and row were 

deemed to have a significant effect on FHB severity (P < 0.001), whilst replicate was 
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not significant (P = 0.187), (Appendix Table A.19). Tipple had a predicted mean FHB 

score of 19.2%, whilst Chevallier scored 1.5% (Table 4.6). Predicted scores for the 

RILs ranged from 1.1 – 12.9%, with a mean score of 7.2%. 

DON analysis of the 2015 F7 trial was undertaken. The mean DON content of the 

milled grain for Chevallier was 0.5ppm, whilst for Tipple it was 3.6ppm. The mean 

values for the parental lines were significantly different at the P = 0.014 level. The 

mean DON accumulation values in the RILs calculated from one replicate was 

1.8ppm, with a range of 0.1 – 5.6ppm. This range of values for DON concentration in 

the 2015 trial of F7 RILs is much lower than in the 2013 trial of the C×T F5 population 

where the range was 0.1 – 15.8ppm. An R2 value of 0.177 was determined for the 

relationship between FHB score in 2015 and the DON values calculated from the 

ELISA. This indicates a very weak positive correlation between visual symptoms of 

FHB severity and the concentration of DON within the grain. 

In the 2014 trial, line had a significant effect on plant height (P < 0.001) whilst the 

positional effect of row did not (P = 0.343), (Appendix Table A.20). The predicted 

height values for the parental lines were 119.5 and 70.0cm in Chevallier and Tipple, 

respectively (Table 4.6). The mean height of the RILs was 94.8cm. From the 2015 trial 

line was again significant in the GLM (P < 0.001), whilst both row and replicate were 

not significant (P = 0.079 and 0.501, respectively), (Appendix Table A.21). Under the 

more favourable growth conditions of the 2015 trial the predicted height values for 

Chevallier and Tipple were 140.8 and 90.7cm, an increase in height of approximately 

20cm compared to that of the 2014 trial. The predicted height values for the parental 

lines were significantly different at the P < 0.001 level (Table 4.6). The predicted mean 

height score of the RILs was 109.8cm, an increase of 15cm compared to the mean 

height in 2014. 

HD was significantly affected by line (P < 0.001) in the 2014 trial, but not by row (P 

= 0.409), (Appendix Table A.22). There was a difference of five days between the HD 

scores of Chevallier and Tipple, with predicted scores of 77.0 and 82.0 days 

respectively (Table 4.6). The predicted scores suggest that the Chevallier line had an 

earlier HD than Tipple, which is in contrast to all three previous trials (JIC, KWS1 and 

KWS2 in 2013) where the Chevallier parent consistently emerged from the boot at a 

later date than Tipple (Table 4.6). This change in HD pattern may be due to the 
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stressful growth conditions experienced in 2014. Within the GLM for the 2015 trial, 

line was also deemed significant (P < 0.001), but row and replicate were not (P = 

0.930 and 0.710, respectively), (Appendix Table A.23). The predicted HD scores for 

the parental lines were 94.0 and 90.0 days in Chevallier and Tipple respectively, 

illustrating that under more favourable growth conditions the Tipple parent displayed 

the expected earlier HD phenotype (Table 4.6). The HD scores observed in the RILs 

ranged from 74.0 – 92.0 days in the 2014 trial and from 87.0 – 99.0 days in the 2015 

trial (Table 4.6). The mean score for the RILs was 81.0 days in 2014 and 92.0 days in 

2015. 

Phenotype data for GH, tillering and PLS was only collected during the 2015 trial, 

with the parental lines being significantly different for all traits except tillering (Table 

4.6).  
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4.3.5 QTL analysis of Chevallier × Tipple F7 traits 

As with the C×T F5 population, two QTL were associated with height in the F7 RILs, 

both of which were identified in the same locations on 3H in both 2014 and 2015. The 

major height QTL on 3H was identified at positions 136.5 and 135.5cM from the 2014 

and 2015 trials respectively, which accounted for 67.9 and 61.6% of the phenotypic 

variance within the RILs. A minor height QTL was also located on 3H in both years 

(Table 4.7). 

Three QTL associated with HD were identified in each trial year, with a major QTL 

at position 136.5cM on 3H. The two QTL on 3H co-located with the minor and major 

height QTL also present on this chromosome (Figure 4.11) and a further minor HD 

QTL was detected at the telomeric region of 7H in both years. The Chevallier parental 

allele was associated with a later HD score for the 3H and 7H QTL, whilst the Tipple 

allele was associated with a later score at the major 3H QTL (Table 4.7). This 

contribution from both parental genotypes may explain the transgressive segregation 

seen in the range of HD scores in the F7 RIL population in both trial years.  

It was not possible to identify any QTL associated with FHB from the C×T F7 2014 

trial using the predicted mean values calculated across the four score dates, which was 

thought to be due to the issues with accurately phenotyping the FHB trait. The 

predicted mean values for each score date were then analysed separately with the aim 

of identifying potential QTL. Analysis of the first score date identified two QTL 

associated with FHB. The 6H QTL was detected at position 122.14cM and accounted 

for 6.7 % of the variation within the population. A further QTL on 7H was detected 

accounting for 7.5% of the variance (Table 4.7). Higher FHB values were associated 

with the presence of the Tipple allele. No QTL could be identified during the analysis 

of the second and third score datasets individually. Analysis of the fourth and final 

score dataset resulted in the detection of a single QTL associated with FHB on 3H at 

position 135.41cM. This QTL co-located with the major 3H height and HD QTL 

(Figure 4.11) with the Tipple allele contributing to the higher FHB score, shorter plant 

height and later flowering. Analysis of the 2015 predicted mean FHB scores calculated 

across the four score dates resulted in the detection of four QTL. The 6H QTL was 

again identified at position 114.6cM accounting for 8.6% of the phenotypic variance 

in the RILs. A single QTL was identified on 2H at position 130.5cM. Two QTL were 
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identified on 7H, at positions 7.4 and 103.5cM (Table 4.7), accounting for 7.8 and 

10.8% of the variance, respectively. The major 7H FHB QTL co-located with the FHB 

QTL identified during the initial score for the 2014 trial, whilst the QTL interval for 

the minor 7H QTL interval partially overlapped the location of two HD QTL identified 

in both 2014 and 2015 (Figure 4.13). For all four QTL identified in the 2015 trial the 

Chevallier parent was associated with increased resistance to FHB.  

Four QTL associated with DON accumulation were identified from the 2015 trial 

(Table 4.7). A single QTL was detected on 1H at position 101.8cM, with the 

Chevallier allele contributing to higher DON concentration. Two QTL were identified 

on 3H at 76.9 and 126.4cM, with the Tipple allele being associated with higher DON 

accumulation. A final QTL was identified on 6H at 89.7cM, with the Chevallier allele 

contributing to higher DON. The combined phenotypic variance accounted for by the 

two QTL where Tipple contributes the high value allele (both on 3H) was 14.2%, 

whilst for the two QTL where Chevallier contributes the high value allele (1H, 6H) 

the combined variance was 15.6%. 

From the 2015 trial data, the major QTL for GH and tillering and co-located on 3H, in 

a similar location as the major height and HD QTL (Table 4.7). Two minor GH QTL 

were identified on 1H and 2H, whilst a further tillering QTL was identified on 2H 

(Table 4.7). A major QTL associated with powdery mildew was again detected on 1H 

from the 2015 data, with two additional minor QTL on 1H and 2H. A single QTL on 

2H for powdery mildew was identified from the 2014 trial. Finally, three QTL 

associated with PLS were also identified, with two QTL on 7H and a single QTL on 

3H (Table 4.7). Tipple contributed the higher scoring allele for the major 7H QTL and 

Chevallier contributed the higher scoring allele for the other two QTL. 
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4.3.6 Chevallier × Tipple F7 DON QTL 

From the QTL analysis of the DON accumulation data recorded in the C×T F7 

population in 2015 four QTL were identified (1H, 3HS, 3HL and 6H). The Chevallier 

parent (allele A) contributed high value alleles at the 1H and 6H QTL, whilst the 

Tipple parent (allele B) contributed high value alleles at both 3H QTL. Lines which 

possessed either the high value allele at all four of the DON QTL loci (ABBA), the 

low value allele at each loci (BAAB) or those possessing all the parental alleles 

(AAAA or BBBB) were selected and the mean DON values (ppm) for each of these 

classes was calculated. The mean DON value for the ABBA class (all high value 

alleles) was 2.5ppm whilst the value for the BAAB class (all low value alleles) was 

0.9ppm. The mean values for classes AAAA and BBBB were 1.3 and 2.3ppm 

respectively, with these combinations of alleles displaying intermediate DON 

accumulation compared to the ABBA or BAAB classes (Figure 4.14).  

 

Figure 4.14. Box plots of each of the four DON genotype classes identified from 

quantitative trait loci analysis of the C×T F7 population in 2015.  
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4.3.7 Armelle × Tipple F6 phenotyping 

At the 2013 NIAB trial (NIAB13) score date was observed to have a significant effect 

on FHB severity (P < 0.001), (Appendix Table A.24). The effect of line and row were 

also significant (P = 0.008 and 0.037, respectively). Disease pressure at this trial was 

not high. Tipple displayed significantly more severe FHB symptoms than the Armelle 

parent (P = 0.043), with a score of 9.7% compared to 3.0% in Armelle (Table 4.8). 

The mean score for the RILs was 8.2%. The 2014 trial (JIC14) was subject to the same 

weed-choked and stressful conditions as the C×T F7 trial at the same site, therefore 

accurate phenotyping of FHB was compromised. Within the GLM, score date had a 

significant effect (P = 0.020), but line and row did not (P = 0.252 and 0.156, 

respectively, Appendix Table A.25). Tipple displayed more severe FHB symptoms, 

with a score of 17.0%, whilst Armelle scored 3.0%. The predicted mean scores of the 

parental lines were found to be significantly different at the P = 0.01 level. The range 

of predicted scores within the RILs varied from 0.5 – 22.0% (Table 4.8), and the mean 

score for the RILs was 10.4%. 

Within the NIAB13 trial, the predicted height values for the parental lines were 81.4 

and 108.0cm in Tipple and Armelle, respectively (Table 4.8). The predicted height 

values for the RIL lines varied from 73.0 – 135.0cm, with a mean score of 97.7cm 

(Table 4.8). Within the GLM, the effect of line on plant height was insignificant (P = 

0.055), as was the positional effect of row (P = 0.155), (Appendix Table A.26). The 

heights of the parental lines at JIC14 were shorter than at NIAB13 most probably due 

to the less favourable growth conditions. Within the GLM, neither line nor row were 

deemed to have a significant effect on plant height (P = 0.249 and 0.319, respectively), 

(Appendix Table A.27). The predicted height values for Armelle and Tipple were 97.0 

and 59.0cm, respectively (Table 4.8). The scores for the RILs ranged from 58.0 – 

122.0cm, with a mean score of 92.9cm. 

HD scores were only recorded at JIC14. Line was determined to significantly affect 

heading (P < 0.001) but row did not (P = 0.056), (Appendix Table A.28). Predicted 

HD scores for the parental lines were 83.0 and 77.0 in Armelle and Tipple, 

respectively, which were found to be significantly different at the P < 0.001 level 

(Table 4.8). The HD values for the RILs ranged between 74.0 – 95.0 days, with a mean 

score of 84.0 days.  
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4.3.8 QTL analysis of Armelle × Tipple F6 traits 

A single QTL associated with height was identified from the NIAB13 data. This QTL 

was located on 3H at position 147.6cM, corresponding to marker 11_10918, and 

represented 10.4% of the phenotypic variance within the population (Table 4.9). A 

height QTL locating to the same marker position was also identified from the JIC14 

data, representing 8.2% of the phenotypic variance within the population. The high 

value allele was contributed by the tall Armelle parent for both of the QTL. HD was 

only recorded at JIC14 and a QTL associated with this trait was also detected on 3H 

at 154.4cM (marker 11_10280), explaining 7.8% of the population variance (Table 

4.9). This HD QTL overlapped with the height QTL, with a later HD score being 

associated with the presence of the Tipple allele. QTL associated with FHB could only 

be detected using NIAB13 data, with no QTL being identified using a LOD threshold 

of 3.0 using the JIC14 dataset. The NIAB13 FHB QTL mapped to marker 11_11172 

at position 149.2cM on chromosome 3H, therefore co-locating with the previously 

identified QTL for both height and HD (Figure 4.15). The FHB QTL explained 7.4% 

of the population variance and higher FHB susceptibility was associated with the 

Tipple parental genotype.  
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4.4 Discussion 

Phenotyping of both the Chevallier × Tipple F5 and F7 populations enabled QTL for 

several agronomic traits to be identified, with many of these QTL being detected in 

the same location across both populations and in different trial environments. A major 

QTL associated with plant height, accounting for up to 77% of the phenotypic 

variance, was identified on chromosome 3H in both the C×T populations. There are 

various groups of barley semi-dwarfing genes such as breviaristatum (ari), erectoides 

(ert), brachytic (brh), semi-brachytic (uzu) and short culm (hcm), with several of these 

genes located on chromosome 3H (Wang et al. 2014; Dockter et al. 2014). The uzu or 

Hvbri1 semi-dwarfing gene, associated with reduced sensitivity to brassinosteroid, is 

present at the centromeric region of 3HL (Chono et al. 2003). However the major 

height QTL in the C×T population is located at the distal end of 3HL, suggesting the 

uzu gene is unlikely to be associated with the shorter height phenotype seen in the 

present study. The erectoides-c semi-dwarfing gene has also been mapped close to the 

centromere on 3HL (Lundqvist et al. 1997); however the spikes of cultivars possessing 

the erectoides-c allele display a compact appearance due to a shorter internode 

distance within the ear. The semi-dwarfing sdw1 gene is also located on 3HL and is 

associated with late heading, a decrease in 1000-grain weight, prostrate growth habit 

and an increase in tiller number (Thomas et al. 1991; Bezant et al. 1996; Malosetti et 

al. 2011; Jia et al. 2011). The major QTL for height on 3HL at 136.0 – 139.8cM in 

both the C×T F5 and F7 populations also co-locates with the major QTL for HD, GH, 

tillering and spike angle. It seems apparent that the sdw1 gene is the likely candidate 

underlying the major height QTL on 3HL, as the Tipple allele is associated with 

reduced height, increased heading, a prostrate GH and increased tiller number at this 

region. A recent study suggests that the effect of sdw1 on height and HD may be due 

to pleiotropy as these traits are consistently associated with this locus (Kuczyńska et 

al. 2014). Sdw1 and denso, which were originally identified from the cultivars Jotun 

and Diamant, have been proven to be allelic (Kuczyńska et al. 2013), with the denso 

allele being favoured for use in malting cultivars and sdw1 being utilised for feed 

barley (Jia et al. 2009). Jia et al. (2011) proposed the sdw1 locus to be a gibberellin 

20-oxidase or Hv20ox due to its location in the syntenic region of rice containing the 

semi-dwarf sd1gene which also encodes a GA 20-oxidase. GA treatment assays have 

been utilised to confirm the presence of the denso semi-dwarfing allele in the Baudin 
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cultivar, which displays increased growth following GA3 application compared to the 

control cultivar AC Metcalfe (Jia et al. 2011), however following the exogenous 

application of GA3 to Chevallier and Tipple seedlings both parental lines were equally 

responsive. It may therefore be possible that at least within the C×T population, the 

height QTL on 3H may not be associated with a GA response. The relative expression 

levels of Hv20ox have been proposed as a method of determining the presence of either 

the sdw1 or denso allele (Jia et al. 2011), suggesting that this may be a necessary 

method to confirm the allelic status of Chevallier and Tipple at the sdw1 locus.  

Chromosome 4H is the site of the major B. graminis resistance gene known as Mlo, 

which provides broad spectrum resistance to powdery mildew, yet it was not possible 

to detect a QTL associated with mildew resistance on 4H in either C×T population. It 

is very unlikely that the heritage cultivar Chevallier possesses any form of Mlo 

associated resistance, as illustrated by its high level of susceptibility. While Tipple is 

highly resistant to mildew, the Mlo status of Tipple remains unclear. Tipple displayed 

significant resistance to powdery mildew in both natural and controlled inoculation 

experiments, yet does not appear to possess either the mlo-9 or mlo-11 alleles, which 

are most commonly used in spring barley, or the mlo-5 allele (G. McGrann, personal 

communication).  

The major QTL associated with susceptibility to mildew in both the F5 and F7 C×T 

populations were located on chromosome 1H. The short arm of chromosome 1H is the 

site of the major Mla locus for race specific resistance to powdery mildew. Alleles at 

this locus encode multiple NB-LRR proteins and promote specific host – pathogen 

interactions resulting in various mildew resistance phenotypes (Xu et al. 2014). There 

are 30 recognised Mla alleles and due to the complexity at the Mla locus designing 

molecular markers for easy characterisation of these alleles has proven difficult 

(Moscou et al. 2011). Several mapping studies have also identified resistance QTL on 

1H associated with the Mla locus. Hickey et al. (2012) identified a major QTL on 1H 

bin 2 at position 29.2cM, whilst Schmalenbach et al. (2008) identified two QTL 

associated with powdery mildew resistance between 0 – 85.0cM which accounted for 

a 50.0% reduction in mildew susceptibility. The Mlra minor resistance gene is also 

present on 1H and is located distally to the Mla locus (Aghnoum et al. 2010), however 

it is unlikely the resistance conferred by alleles at this locus could explain the apparent 

high levels of resistance demonstrated by Tipple. The further mildew resistance gene 
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Ror1 is also present on 1H and has been fine mapped to the pericentric region of the 

long arm of 1H (Acevedo-Garcia et al. 2013), however the positioning of the QTL 

identified within the present research suggests that this gene is unlikely to be 

associated with mildew susceptibility in the C×T population. The mildew resistance 

gene Mlp has also been posited to be located on 1H (Jørgensen, 1994). It appears 

probable that the resistance to powdery mildew in the Tipple parent is associated with 

the Mla locus although the results of the present study are unable to confirm the 

specific allelic status of Tipple, and further experiments using Mla-, Mlra- and Mlp-

virulent B. graminis isolates should be undertaken to characterise the resistance seen 

in Tipple. In the F7 2015 trial, a single minor QTL associated with mildew was 

identified on 2H at position 129.6cM, which was not identified in any other trial year 

or population. Shtaya et al. (2006) identified a QTL on 2H in two successive years 

using a L94 × Vada population, at positions 100.5 and 86.0cM, whilst Silvar et al. 

(2011) also detected two minor QTL on 2H accounting for a combined phenotypic 

variance of 7.3%. The MlLa resistance gene, which causes an intermediate response 

to avirulent B. graminis isolates, is also located on 2H (Giese et al. 1993), suggesting 

this may have a role in resistance in the C×T population.  

Physiological leaf spots (PLS), also known as abiotic or non-parasitic leaf spots 

(NPLS), are distinct from fungal spotting diseases such as net blotch caused by 

Pyrenophora teres f. teres and Ramularia leaf spot, and are thought to be caused by 

oxidative stress (Wu and von Tiedemann, 2004). The presence of PLS is associated 

with yield loss in highly susceptible cultivars. A single QTL on the long arm of 3H for 

PLS was detected in the F5 RILs, whilst a major 7HS QTL and two minor QTL were 

identified on 3HS and 7HL in the F7 RILs. The recessive mlo alleles which confer 

powdery mildew resistance are associated with increased susceptibility to abiotic 

spotting, such as target spot, in a field environment (Makepeace et al. 2007). However, 

an absence of QTL for both mildew severity and PLS on 4H, the location of the Mlo 

gene, suggests that mlo is not associated with the PLS symptoms seen within the C×T 

population. Behn et al. (2004) identified several QTL for NPLS on 1H, 4H and 7H 

from a PZ24727 × Barke DH population, with the 7HS being mapped to 25cM. A 

further study by the same authors again detected a QTL on 7HL at 90cM which co-

located with QTL for height and 1000-grain weight; however this had a lesser effect 

on the phenotypic variance than the 4H mlo associated QTL (Behn et al. 2005). The 
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presence of PLS QTL on both the short and long arm of 7H within these studies and 

at similar genomic regions in the F7 RILs suggests that 7H may be an important 

genomic region associated with PLS. The 3H PLS QTL identified in the F5 RILs 

partially overlapped with the minor 3H QTL for height and HD. It has been noted that 

in some environments, the appearance of PLS coincides with generative growth (Behn 

et al. 2004), which may offer an explanation for the partial co-location of the PLS and 

HD QTL. A number of lesion mimic mutants, known as nec mutants, which display 

necrotic lesions in the absence of pathogenic organisms (Rostoks et al. 2003) have 

been identified on 3H in barley. The nec8 mutant (also known as necS1-1) was induced 

through fast-neutron (FN) treatment of the cultivar Steptoe and has been mapped to 

3H bin 6, with a possible candidate gene being a cation or proton exchanging protein 

(Zhang et al. 2009). A further mutant designated nec9.3091, which also displayed dark 

brown leaf spots, was mapped to the AFLP marker E37M33-6 at 128.1cM on 3H in a 

Proctor × Nudinka map (Wright et al. 2013). Further investigation into the underlying 

mechanisms which result in leaf spotting in barley may allow clarification of the 3H 

QTL which are associated with similar symptoms in the C×T populations. 

The availability of phosphate is an important target for plant breeding. Up to 70% of 

the phosphate in seeds is stored as phytic acid (myo-inositol-(1,2,3,4,5,6)-

hexakisphosphate or IP6) in the aleurone layer, where it is thought to act a store of 

cations, phosphoryl groups and act as a chelating agent (Brinch-Pedersen et al. 2002). 

Phytases (myo-inositol hexakisphosphate phosphohydrolases) hydrolyse phytic acid 

into myo-inositol and inorganic phosphate, providing bioavailable phosphate which 

was previously inaccessible in the seed (Lott et al. 2011). Monogastric livestock 

display low phytase activity, meaning much of the phosphate in their feed is 

unavailable, and the seeds of many crops also display low phytase activity meaning 

that increasing phytase levels is a favourable breeding target in cereals (Brinch-

Pedersen et al. 2014). Three QTL for different isomers of inositol pentakisphosphate 

(IP5) were identified on 1H, 3H and 6H in the C×T F5 population. A single major QTL 

on 3H was detected for IP5a and two minor QTL were identified for IP5b on 1H and 

6H, with the 6H QTL partially overlapping the FHB QTL. Further definition of the 

intervals for the 6H IP5b and FHB QTL should determine the extent of any association 

between these traits. IP5 is a lower inositol phosphate which is associated with IP6 

hydrolysis (Rapp et al. 2001) and it is possible that the different isomers of IP5, such 
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as IP5a and IP5b, may also be phytase enzymes (C. Brearley, personal communication). 

In plants two forms of phytases have been identified; histidine acid phosphatase 

phytases (HAP), a family of enzymes which include multiple inositol polyphosphate 

phosphatase (MINPPs), and purple acid phosphatase phytases (PAP) (Brinch-

Pedersen et al. 2014). A major QTL associated with a PAP was identified on 5H at 

58.9cM, with the HvPAPa gene mapping to the same location, whilst a minor QTL on 

3H at 54.1cM corresponded to the location of the HvPAPb gene in a Yerong × Franklin 

DH population (Dai et al. 2011). A QTL on 1H was also detected from the same study 

at 44 – 76cM, although this could not be linked to any gene. The positioning of 

common markers within the map produced by Dai et al. (2011) and the C×T map 

determines that the location of the HvPAPb gene does not correspond with the position 

of the 3H IP5a QTL interval. This suggests that HvPAPb is not likely to be responsible 

for the IP5a effect observed in the C×T population. At present, only nine PAP cDNAs 

have been cloned from cereals (Brinch-Pedersen et al. 2014) and there do not appear 

to be any known PAPs or MINPPs on 1H or 6H in the literature. The identification of 

three QTL which may potentially have an effect on mature grain phytase activity 

therefore requires further investigation.  

The primary objective of the present study was to determine the possibility of a trade-

off between FHB resistance and agronomic traits in the tall, heritage cultivar 

Chevallier. A QTL associated with reduced FHB incidence was consistently identified 

on the long arm of chromosome 6H in the two separate C×T populations across 

multiple trial years, giving confidence in the potency of this QTL. This QTL was not 

coincident with any other agronomic QTL conventionally associated with FHB 

resistance such as height or HD, as the major QTL for these traits were identified on 

chromosome 3H within the region of the sdw1 gene. This suggests that the resistance 

of the 6H QTL is not a consequence of pleiotropy or linkage with genes for these traits.  

The phenotyping of disease traits is difficult due to the complex interaction between 

genotype and environment, therefore FHB QTL are less easy to define than those for 

highly heritable traits such as height. The interval distance for the 6H FHB QTL was 

defined as 19.9cM in the C×T F5 RILs which was expanded to 36.8cM in the C×T F7 

RILs. The QTL interval for the F7 population is likely to be more accurately defined 

than in the F5 population, even though the interval appears larger, due to the increased 

genetic map resolution in this population. It is therefore favourable to further define 
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the QTL interval within the F7 population by back-crossing RILs which possess the 

resistance haplotype at the 6H QTL interval to the Tipple parent and conducting 

additional phenotyping of these lines.  

Chromosome 6H is not generally associated with FHB resistance, with 2H being most 

frequently identified as the location of most major QTL detected for FHB (Zhu et al. 

1999; Hori et al. 2005; Horsley et al. 2006; Lamb et al. 2009; Yu et al. 2010; Massman 

et al. 2011). In studies where QTL for FHB have been identified on this chromosome, 

many of these have been associated with agronomic traits and are therefore difficult 

to further characterise without attempting to determine the potential of pleiotropy or 

linkage within these regions (Ma et al. 2001; Dahleen et al. 2003; Canci et al. 2004). 

FHB QTL which do not appear to co-locate with other traits have however been 

identified on the short arm of 6H. Mesfin et al. (2003) identified two minor effect QTL 

on 6HS at 46 and 58cM within a Frederickson × Stander cross, however these were 

determined to have an opposite allelic effect on resistance. Dahleen et al. (2012) 

identified an FHB QTL located on 6HS between 0 – 6cM from a Zhedar 2 × 

ND9712//Foster population, with resistance provided by the Zhedar 2 allele. The peak 

marker underlying this QTL locates to chromosome 6H bin 2 in the integrated SNP 

based consensus map produced by Muñoz-Amatriaín et al. (2011). Massman et al. 

(2011) also identified two FHB QTL on 6H from the US CAP populations. One of 

these QTL co-located with a DON QTL on 6HS at 42 – 61cM and the other was 

positioned on 6HL at 124 – 126cM. However, only the 6HS QTL was present in both 

the two-row and the six-row CAP populations while the 6HL QTL was only detected 

in the six-row population (Massman et al. 2011). The 6H FHB QTL in the Chevallier 

× Tipple population is located on 6HL at position 114.5cM in both the F5 and F7 

populations and does not appear to correlate with any of the previous approximate 

QTL locations on 6H identified within two-row barley. The QTL detailed in the 

literature at present were identified from mapping populations using the cultivars 

Zhedar 2 or Frederickson, or the advanced breeding CAP populations which are 

predominantly American, Japanese and Chinese elite modern germplasm lines. The 

6H resistance QTL identified within this research is provided from the English 

landrace Chevallier, which may account for the identification of what appears to be a 

previously unidentified QTL in a two-row cultivar. That this QTL has not been 

previously described in the literature and also does not appear to provide a trade-off 
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with other agronomic traits suggests this resistance may be unique to Chevallier. The 

extent to which the SNPs underlying the 6H QTL associated with Chevallier are 

present in both modern and heritage barley varieties can be determined by designing 

KASP markers within the QTL region. Several other Chevallier accessions from 

various geographic locations, (obtained from the JIC Germplasm Resources Unit), 

have also been genotyped using the Genotyping-by-Sequencing method, yet not all 

possess the same SNP at the 6H peak marker.  

Chromosome 6H is also known to be the location of several QTL associated with 

resistance to other barley diseases. Niks et al. (2004) identified a major novel gene 

designated Ryd3, for resistance to barley yellow dwarf virus (BYDV) at 58cM on 6H 

in a L94 × Vada RIL population. P. teres is the causal organism of the net form of net 

blotch, (NFNB), a foliar disease of barley. Resistance to NFNB is associated with the 

centromeric region of 6H, with Abu Qamar et al. (2008) identifying two resistance 

genes, approximately 1.8cM apart, at this position and a study by Gupta et al. (2011) 

detecting a single major gene for resistance at this location. Resistance to a small 

secreted proteinaceous necrotrophic effector known as PttNE1, associated with P. 

teres infection, was also detected on 6H at 46cM in a Hector × NDB 112 population 

(Liu et al. 2015). The centromeric region of 6H has also been proposed as the location 

of a number of genes which affect resistance to Rhynchosporium secalis, the causal 

species of leaf scald. Wagner et al. (2008) identified a minor QTL associated with R. 

secalis resistance near the centromere of 6H, whilst Zhan et al. (2008) also determined 

there was a cluster of resistance genes at this region, in addition to a major resistance 

gene named Rrs13 on the short arm of 6H. Low levels of leaf scald symptoms, caused 

by natural Rhynchosporium infection, were present in the JIC C×T F7 trial in 2014; 

however the distribution of disease was sporadic and disease levels were not adequate 

enough to accurately phenotype the whole population. It is unlikely that the 6H FHB 

QTL identified from the C×T populations will have an effect on resistance to either R. 

secalis or P. teres, as resistance to both leaf scald and NFNB is consistently associated 

with either the centromeric region or the short arm of 6H, whilst the FHB QTL is 

located on the long arm of 6H. However, it may be pertinent to conduct inoculation 

experiments with both of these fungal pathogens to determine whether any QTL for 

resistance can be identified from the population and if these QTL co-locate with the 

FHB resistance QTL.  
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Barley mapping studies frequently result in the detection of multiple QTL associated 

with a reduction in FHB incidence (Ma et al. 2001; Dahleen et al. 2003; Hori et al. 

2005; Dahleen et al. 2012). In addition to the 6H QTL, three further QTL associated 

with FHB were identified on 2H and 7H in the C×T F7 population during the 2015 

trial, none of which were detected in the C×T F5 population. The increase in the 

number of detected QTL may be due to the more fixed genetic nature of the F7 

population compared to the C×T F5 RILs. Chromosome 2H is the genomic region 

which is most associated with the presence of major FHB QTL, however these 

frequently co-locate with HD QTL (Zhu et al. 1999; Canci et al. 2004; Hori et al. 2005; 

Horsley et al. 2006; Sato et al. 2008; Lamb et al. 2009). In the current study, only a 

single minor FHB QTL was detected at this location and no association with HD was 

identified. The 2H QTL does however partially overlap minor QTL identified for GH 

and tillering which were also identified in the same year and a QTL associated with 

powdery mildew detected in 2014. The peak markers for each of these traits do not 

co-locate with that of the FHB QTL but it is not possible at present to conclude that 

these traits are not associated. QTL for FHB resistance have also been identified on 

7H in previous studies (Ma et al. 2001; Dahleen et al. 2012). In this study, QTL on 

7HS and 7HL partially overlapped QTL for HD and PLS, respectively. The peak 

markers for the FHB and PLS QTL on 7HL are separated by 42.2cM meaning it is 

unlikely that there is an association between the two traits, although this cannot be 

fully disregarded. The 7HS QTL peak marker is 7.4cM from the peak marker of the 

minor HD QTL, with the Chevallier allele providing increased resistance to FHB but 

also an increase in the number of days to head emergence at the HD QTL. This 

suggests there may be the possibility of trade-off between FHB and HD at this QTL 

position. 

The strong interaction between genotype and environment can greatly affect the ability 

to detect FHB QTL (Canci et al. 2004). During the 2014 trial of the F7 population 

when plant growth conditions were not optimal, it was not possible to detect any QTL 

using the mean FHB score but it was possible to identify QTL using the individual 

scores from each of the four score dates. Interestingly, the 6H QTL was identified 

from the first score date, as was a 7H QTL, however these were absent in the final 

score when a single 3H QTL was present. This suggests that the 6H QTL may 

represent a form of host resistance during the early stages of infection, which in the 
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2014 trial was then masked by the effect of the 3H QTL during the later infection 

stages. The 3H FHB QTL was coincident with the major QTL for plant height and 

other agronomic traits. Competition with weeds resulted in very short plants and 

spikes remained partially surrounded by the flag leaf sheath. It was noted that such 

spikes in the shorter, later heading RILs frequently exhibited severe FHB symptoms 

at the base of the spike, most probably as a result of the retention of inoculum and 

associated high humidity aiding infection.  

In barley, QTL associated with reduced DON concentration do not always coincide 

with those for FHB. An association mapping study by Massman et al. (2011), using 

American two-row and six-row CAP lines, identified eight commonly detected QTL 

for reduced DON concentration on 1H, 2H, 3H, 4H, 5H and 6H with only two of these 

QTL (4H at 24 – 36cM and 6H at 42 – 67cM) being associated with Type 1 FHB 

resistance. Studies by both Yu et al. (2010) and Dahleen et al. (2012), detected 

multiple QTL for FHB on 2H, 5H and 7H, however QTL associated with a reduction 

in DON concentration were only identified on chromosomes 3H and 2H in each study, 

respectively. Several other mapping studies within barley have identified either QTL 

for DON or FHB resistance which also do not co-locate (Ma et al. 2001; Dahleen et 

al. 2003; Lamb et al. 2009). Such studies suggest that breeding for both decreased 

FHB incidence and DON accumulation in barley is a complex process as it appears 

that these traits are often under separate genetic control. 

In the C×T F5 population a single QTL associated with reduced DON accumulation 

was identified that co-located with the 6H FHB QTL, with resistance to DON and 

reduced FHB incidence being conferred by the Chevallier allele. However, from the 

2015 trial of the C×T F7 RILs four QTL were identified on 1H, 3HS, 3HL and 6H with 

only one of these partially overlapping with an FHB QTL. The detected DON QTL 

were located within large marker intervals, with the 3HL interval spanning up to 

43.3cM. The reduced precision of DON QTL location observed from the 2015 

phenotype data may be due to the limited range of DON values of the F7 RILs. The 

weather following inoculation was very cool and this may have adversely influenced 

DON production by the fungus. For example, the FHB scores and DON concentration 

in Tipple at the JIC 2013 trial were 17.6% and 14.9ppm respectively, whilst in 2015 

the disease score for Tipple was 19.2% yet DON levels were much lower than in 2013, 

at only 3.6ppm. It may even be possible that the Chevallier allele confers reduced 
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DON accumulation during years of high DON production, yet has a lesser effect when 

DON levels are relatively low. 

Of the four DON QTL identified in 2015, Chevallier and Tipple each contributed two 

alleles for reduced DON accumulation. The contribution of alleles from both the 

resistant and susceptible parental lines which are associated with lower DON has been 

observed in other mapping studies. For example, Dahleen et al. (2003) detected three 

DON QTL on chromosome 6H in a Zhedar 2 × ND9712//Foster population, with only 

one of these QTL being associated with the allele from the FHB resistant parent 

Zhedar 2. Similarly, lower DON was associated with the resistant Chevron parental 

allele for five QTL identified by Ma et al. (2001), whilst the susceptible Stander parent 

contributed to lower DON levels for two detected QTL. The F7 RILs possessing the 

low value alleles at each of the four DON QTL (1H, 3HS, 3HL, 6H) identified in the 

2015 trial exhibited a lower mean DON concentration in the grain than those 

possessing all of the alleles associated with the Chevallier parent. This suggests that 

by selecting specific alleles at each of these four loci it may be possible to produce 

lines which show increased resistance to DON accumulation compared to the 

Chevallier parent.  

Most interestingly, within the C×T F7 population a single DON QTL on 6H was 

identified from the 2015 trial. Unexpectedly, however, it was the Chevallier allele at 

this QTL that was associated with an increase in DON accumulation within the grain. 

The peak markers of the 6H FHB and DON QTL are 24.8cM apart, although it is not 

possible from the present QTL resolution to fully determine whether these are indeed 

different QTL. It is likely that the effect of the 6H DON QTL is dependent on the 

environment, which may explain why the Chevallier allele was associated with lower 

DON levels in 2013 but was associated with higher DON in 2015. A significant 

environmental effect on the detection of resistance QTL has been observed in several 

other studies. Horsley et al. (2006) identified four QTL associated with reduced DON 

accumulation on 2H (bins 5 – 10) in a Foster × CIho 4196 RIL population. At three of 

the four trial environments, the CIho 4196 allele contributed to lower DON 

concentration within the grain, yet in a single environment the Foster allele was 

associated with lower DON. This considerable genotype × environment interaction 

provides further difficulty in the identification of QTL associated with DON 

accumulation. 
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Three additional QTL associated with DON were identified on 1H, 3HS and 3HL and 

QTL for reduced DON accumulation have been identified on these chromosomes in 

previous mapping studies (Ma et al. 2001; Canci et al. 2004). The 1H DON QTL 

located at 101.8cM explained the lowest phenotypic variance within the F7 population 

and partially overlapped the QTL for mildew and GH also detected on this 

chromosome. Ma et al. (2001) also identified a minor QTL associated with lower DON 

on 1HL, between markers Xcdo431 – Xcmwg706, which did not co-locate with other 

traits. The intervals of the two 3H QTL partially overlapped the minor and major QTL 

associated with agronomic traits such as height and HD, with the allele for lower DON 

being contributed by Chevallier. Interestingly, the 3H DON QTL which accounts for 

the largest phenotypic variance overlaps the minor QTL for height and HD, whilst the 

minor DON QTL overlaps the major 3HL agronomic trait cluster found in the region 

of the sdw1 gene. The minor DON QTL overlapping with the sdw1 locus on 3HL may 

reflect a pleiotropic effect associated with this major height and HD QTL. In contrast 

the reduction in DON contributed by the Chevallier allele at the 3HS QTL is less likely 

to be associated with the effects of the environment or as a consequence of disease 

escape resulting from a greater plant height, but may be due to an as-yet-unknown 

developmental process.  

Reduced DON accumulation in barley grain has been associated with the expression 

of UDP-glucosyltransferases which convert the mycotoxin 15-ADON to DON-3-O-

glucoside, a compound which exhibits reduced toxicity (Gardiner et al. 2010). 

Schweiger et al. (2010) identified four candidate barley UDP-glucosyltransferases 

which were observed to be greatly induced by DON. After expression in yeast only a 

single gene from the four candidates, HvUGT13248, conferred resistance to DON and 

was associated with the production of DON-3-O-glucoside (Schweiger at al. 2010). 

Arabidopsis thaliana lines displaying constitutive expression of HvUGT13248 

exhibited less growth inhibition following culture on DON containing media than non-

transformed lines, which displayed restricted germination and reduced root and 

cotyledon growth (Shin et al. 2012). Transgenic HvUGT13248 lines also produced 

increased concentrations of DON-3-O-glucoside than non-transformants following 

DON treatment (Shin et al. 2012). The wheat cultivars Bobwhite and CBO37 have 

since been transformed to express HvUGT13248, and display both increased Type 2 

FHB resistance (spread within the ear) and greater production of DON-3-O-glucoside 
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than non-transgenic lines, suggesting this may be a useful source of resistance to DON 

accumulation (Li et al. 2015). Homology searches of the HvUGT13248 genomic 

sequence using the Ensembl Plant genome browser position this gene on chromosome 

5H in barley, which does not correspond with the locations of any of the four DON 

QTL identified within the C×T study indicating the QTL identified are not associated 

with this gene.  

The Armelle × Tipple population was included within the present study to determine 

whether the resistance of Armelle, another tall cultivar, was also due to a trade-off 

between height or other agronomic traits. A single QTL for both height and HD co-

located on the long arm of chromosome 3H, suggesting that the sdw1 locus is also 

associated with these traits in this population. The single FHB QTL detected, with 

resistance derived from Armelle, directly coincided with the height QTL on 3HL. This 

suggests that the FHB resistance seen in Armelle may be due to an association with a 

gene controlling plant height and HD on 3H. It is not possible to determine whether 

this is due to pleiotropy or linkage from the present study, however. That the resistance 

of the taller variety Armelle appears to be associated with both height and HD, 

suggests that the resistance on 6H in Chevallier, which is not associated with either 

trait, is unique.  

The phenotyping of two separate Chevallier × Tipple populations for FHB 

susceptibility has validated the identification of a potent QTL associated with reduced 

FHB incidence on chromosome 6H of Chevallier. In contrast to many mapping 

studies, the FHB QTL is not associated with agronomic traits such as height or HD. 

This indicates that the resistance of Chevallier is unlikely to be due to either pleiotropy 

or linkage with agronomic traits and may be a form of physiological resistance rather 

than a consequence of disease escape.  

 



 

129 
  

Chapter 5. Quantitative trait loci analysis of malting quality traits 

within a Chevallier × Tipple barley population 

5.1 Introduction 

The quality of barley malt is influenced by a number of specific components, all of 

which have an effect on the colour, flavour, reproducibility and stability of the finished 

beer. The optimal proportions of such components, including β-glucan, α-amylase and 

free amino nitrogen (FAN), have been determined to facilitate the production of beer 

with a consistent quality. During malting and mashing there are three main recognised 

biochemical processes; amylolysis (breakdown of starches); cytolysis (breakdown of 

structural components such as cell walls) and proteolysis (modification of proteins) 

(Hu et al. 2014). There are several methods for the analysis of the extent to which 

these processes have occurred, including those approved by the Institute of Brewing 

(IoB), the European Brewing Convention (EBC) and the American Society of Brewing 

Chemists (ASBC). Malt specifications may be expressed as either ‘as is’ values, which 

are representative of normal moisture conditions, or ‘dry basis’ values which are 

derived from dry extract (O’Rourke, 2002).  

β-glucan or (1-3)(1-4)-β-d-glucan (BG) content is one quality parameter which is 

assessed during malting analysis. β-glucan is a cell wall non-starch polysaccharide 

which is a major component of the barley endosperm and is degraded by the cytolytic 

enzyme (1-3)(1-4)-β-d-glucan-4-glucanohydrolase or β-glucanase (Wang et al. 2004). 

The breakdown of β-glucan is an important step in the malting process as it allows the 

movement of enzymes, such as α-amylases, into the starchy endosperm which was 

previously inaccessible to these enzymes (Matthies et al. 2009). Raw barley grains 

contain very little β-glucanase activity and production of this enzyme is induced 

during the germination stage of the malting process (de Sa and Palmer, 2004). The β-

glucan content of malt provides an indication of modification (the extent of endosperm 

breakdown), therefore high wort β-glucan content is a sign of poor modification of the 

grain (Gianinetti, 2009). Higher β-glucan levels are associated with increased wort 

viscosity, which can affect filtration processes and result in a haze in the finished 

product (Speers et al. 2003). Low β-glucan malts are therefore favoured within the 

brewing industry. 
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The enzyme α-amylase is one of the principle amylolytic enzymes involved in the 

malting process. α-amylase causes the random hydrolysis of α-1-4-D-glycosidic bonds 

within amylose and amylopectin, generating oligosaccharides and dextrins which are 

converted by β-amylase into fermentable sugars, such as glucose and maltose, for 

yeast metabolism (Adefila et al. 2012). Higher α-amylase levels are therefore desirable 

yet have been linked to pre-harvest sprouting (PHS) under humid conditions, with 

QTL for both traits co-locating in some mapping studies (Yang and Ham, 2012). PHS 

has a negative effect on grain quality and results in uncontrolled germination, 

demonstrating the potential for trade-off when breeding for desired malting quality 

traits. Diastatic power is a measure of the combined enzyme activity of α-amylase and 

the further diastatic enzymes β-amylase and limit dextrinase, and acts as an indicator 

of the amount of starch degradation possible during malting and mashing (Gibson et 

al. 1995). Higher values of diastatic power in malt have become more desirable due to 

the increased use of adjuncts, such as rice or corn, in brewing because these grains 

possess limited endogenous diastatic power (Wang et al. 2015). However, in 100% 

malt beers high diastatic power values are less favoured. 

The moisture level of malt is important, as higher moisture levels are associated with 

lower extract values and the increased potential for growth of microorganisms. Malts 

with higher moisture values may have been subject to poor kilning processes, which 

may also have an adverse effect on malt colour and flavour (Hamalainen and 

Reinikainen, 2007). The IoB extract measurement is produced on coarsely ground 

material (0.7mm as opposed to 0.2mm). It provides an estimate of the amount of 

extract, or sugars, within the malt providing an indication of the level of starch 

modification (O’Rourke, 2002). 

Parameters associated with the nitrogen content of the malt are also important in the 

brewing process. The total nitrogen (TN) provides a representation of all the 

nitrogenous compounds within the malt, whilst the total soluble nitrogen (TSN) 

signifies only the soluble forms (Abernathy et al. 2009). The soluble nitrogen ratio 

(SNR) represents the ratio between TSN and TN. The SNR and the Kolbach Index 

denote the same measurement, but refer to the methods approved by the IoB and the 

EBC, respectively. The TN value gives an indication of the protein content within the 

grain (Angelino et al. 1997), whilst TSN and SNR provide a representation of the 

extent of the modification of proteins into different molecular weight forms and amino 
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acids during malting. Protein levels need to be moderately high during the brewing 

process due to their enzymatic role in starch degradation and contribution to body and 

flavour (Steiner et al. 2010). However, excessive protein levels are thought to 

contribute towards haziness in the finished beer and also reduce the available starch 

resulting in a lower extract yield. 

FAN refers to the complex mix of free amino acids and peptides present within the 

wort, which provide an essential source of yeast nutrition (Mugode et al. 2011). The 

measurement of FAN serves as an indicator for potential yeast fermentation, but does 

not take into the account the preferential uptake of specific amino acids by yeast 

(Stewart et al. 2013). Adequate FAN levels are required to provide the necessary 

source of nitrogen for sufficient yeast fermentation; however excessive FAN in the 

wort, which yeast is unable to metabolise, is associated with flavour instability due to 

the promotion of ester flavours and also poor mouthfeel (Steiner et al. 2012). 

Contrastingly, low FAN levels within the wort reduce the availability of amino acids, 

such as valine, which in turn can affect the formation of diacetyl compounds that 

contribute towards specific flavour tones within beer (Krogerus and Gibson, 2013). 

FAN levels of 140 – 180mg/l are considered to be optimal for both yeast metabolism 

and flavour development (Fox et al. 2003). 

The contamination of barley grain by Fusarium species, and the subsequent 

accumulation of mycotoxins, is known to affect several malt quality parameters. 

Fusarium infected grains show severe structural damage, with the degradation of cell 

walls and starch granules observed prior to the malting process (Oliveira et al. 2012b). 

Nielsen et al. (2014) found that in the UK malting cultivars Tipple, Quench and Optic 

an increase in F. poae biomass was associated with a decrease in both malt extract and 

germinative energy. F. culmorum infection alters the protein content of grain, with an 

increase proteolytic activity and protein extractability observed compared to control 

grains (Oliveira et al. 2013). Wort produced from Fusarium infected malt is observed 

to have higher FAN and β-glucan levels than non-infected malt and is also associated 

with premature yeast flocculation (Oliveira et al. 2012a). Furthermore, the presence of 

DON within the malt correlates with a darker wort colour, which is thought to be due 

to the production of proteolytic enzymes during Fusarium infection (Schwarz et al. 

2006). Hydrophobins are low molecular weight hydrophobic proteins produced by 

filamentous fungi, which are involved in a range of biological functions during the 
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fungal life cycle such as sporulation and surface interactions (Bayry et al. 2012). 

Hydrophobin production by F. graminearum, F. culmorum and F. poae has been 

observed not only during the development of barley grain but also throughout the 

steeping and germination steps of malting, before the subsequent release of 

hydrophobins into the wort during mashing (Sarlin et al. 2007). The presence of 

Fusarium associated hydrophobins in the finished brewed product causes gushing 

(uncontrolled foaming) of bottled beer upon opening (Sarlin et al. 2012). Gushing is 

therefore considered to be a serious quality defect, as such products cannot be sold to 

consumers. The results of these studies demonstrate the negative effects of FHB on 

the quality of brewed products and illustrate the need for advances in breeding for 

resistance to reduce FHB associated losses.  

Chevallier barley was cultivated throughout England during the 1800s and early 1900s 

and was considered one of the best malting barleys at this time (Beaven, 1936). 

However, the desired characteristics and performance of malting cultivars have 

evolved throughout the last century and it is unknown how the malting quality of 

Chevallier compares to modern varieties. The creation of a recombinant in-bred line 

(RIL) population between Chevallier and the contemporary malting barley Tipple 

provides a unique opportunity to identify any favourable malting traits within the 

Chevallier germplasm. Malt quality is known to be affected by Fusarium infection; 

therefore the significant FHB resistance of Chevallier provides an additional aspect 

for identifying the potential for trade-off between disease resistance and quality traits. 

With this aim, Chevallier, Tipple and 105 RILs were micromalted to identify potential 

QTL associated with either malt quality or yeast fermentation activity. 

 

5.2 Materials and methods 

5.2.1 Chevallier × Tipple F5 field trial 

A trial containing a subset of 105 lines of the 188 Chevallier × Tipple F5 population 

was sown at Morley Farm, Norfolk, UK in 2013. A single replicate of each RIL was 

sown in a 2 x 6m plot and nitrogen was applied at 65kg/ha. The 105 RILs were 

identical to those used in the DON accumulation/inositol phytase assays in Chapter 4. 
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5.2.2 Micromalting analysis 

Micromalting analysis using 500g of seed per genotype was undertaken by Crisp 

Malting Ltd. using their standard methods of analysis. A single replicate of each RIL 

and two replicates for each parental line were micromalted. The malt quality traits α-

amylase (as is and dry basis, dextrin units/du), diastatic power (as is and dry basis, 

°IoB), diastatic power Windisch Kolbach (dry basis, °WK), wort β-glucan (mg/l), free 

amino nitrogen (mg/l), soluble nitrogen ratio (%), total soluble nitrogen (%) and total 

nitrogen (%) were measured using the IoB and EBC standard recommended methods 

of analysis. 

 

5.2.3 Yeast activity analysis 

Analysis of yeast activity was undertaken to determine whether wort produced from 

Chevallier or Tipple malt was more favourable for yeast metabolism and also to 

identify any potential QTL associated with fermentation. Grain samples were crushed 

to 0.7mm (coarse grind) and weighed to 50g per sample. In a THIEMT TMB mashing 

bath, 350ml ddH2O (total volume) per sample was preheated to 65oC. Milled grain 

samples were then added to 250ml of ddH2O and mixed with a glass rod, before a 

further 100ml ddH2O was added. Each sample was mashed for 1 hour at 65oC with a 

stirrer speed of 50rpm and then cooled to 20oC. The volume of each sample was 

adjusted to 450ml and aliquoted into 30ml tubes which were centrifuged for 10 min at 

1000g. Samples were then aliquoted into 1ml tubes and centrifuged for 10 min at 

3000g to remove microorganism contamination. Per sample, 180µl of wort was 

transferred into a 96-well microtitre plate. Yeast culture (Safale 04, Fermentis©) was 

adjusted to optical density OD 2.0 using ddH2O and 20µl was added to each wort 

sample. Negative controls of wort without yeast were included. Three replicates per 

RIL and nine replicates per parental line were analysed. Plates were incubated at 25oC 

for 23 hours using a Tecan plate reader and the OD595 of each sample was recorded 

every 30 minutes. Gen5 data analysis software was used to process the data and to 

calculate Vmax and lag phase values. This work was undertaken at the University of 

Sunderland and Brewlab Ltd. 
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5.2.4 Quantitative trait loci analysis 

The combined 384-SNP BeadXpress and Genotyping-by-Sequencing genetic map for 

the C×T F5 population was used for QTL analysis. The raw values for each trait were 

analysed in a single trait linkage analysis in Genstat 16th edition, using the Kosambi 

mapping function with a LOD threshold of 3.0 for detecting significant QTL. The 

maximum step size along the genome was reduced to 10cM to improve the localization 

of possible QTL. Simple interval mapping (SIM) was used for the initial QTL search, 

followed by composite interval mapping (CIM) to finalise the QTL location using the 

detected candidate QTL as co-factors. A final QTL model was then fitted to produce 

the estimated QTL effects. QTL images were produced using MapChart.  

 

5.2.5 Statistical analysis 

Two-sample t-tests within Genstat 16th edition (Lawes Agricultural Trust, Rothamsted 

Experimental Station, UK) were used to determine if the mean trait values of 

Chevallier and Tipple were significantly different from one-another. A general linear 

model was used to determine whether there were significant differences between 

batches (16 samples per batch) during the micromalting process.  

 

5.3 Results 

5.3.1 Malting quality analysis 

Multiple measurements associated with quality traits were recorded during 

micromalting of the parental lines and the RILs. Tipple displayed a greater mean α-

amylase (as is) content than Chevallier with means of 63.5 and 51.0du, respectively. 

These values were on the boundary of being statistically different (P = 0.054 level). 

The mean for the RILs was 65.2du (Table 5.1). Similar values were obtained for the 

mean α-amylase (dry basis) values, with a mean of 53.5du and 67.0du for Chevallier 

and Tipple, respectively, which was significantly different (P = 0.033). The mean of 

the RILs was 69.4du. Mean values for diastatic power (as is) were not significantly 

different in the parental lines (P = 0.120), with values of 100.5 and 139.5 °IoB for 

Chevallier and Tipple, respectively. The mean diastatic power value of the RILs was 
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177.5 °IoB (Table 5.1). No significant difference in diastatic power (dry basis) values 

was observed (P = 0.148), with both parental lines providing similar measurements. 

Diastatic power (Windisch Kolbach, dry basis) was also measured with Chevallier 

displaying a marginally lower value than Tipple, with 394.5 and 403.0 °WK being 

recorded for each parent, respectively (P = 0.346). The mean of the RILs was 595.3 

°WK (Table 5.1). A significant difference in wort β-glucan values between the two 

parental lines was observed (P = 0.036), with Tipple displaying a greater wort β-

glucan content than Chevallier, with mean values of 383.0 and 278.5mg/l, respectively 

(Table 5.1). A mean value of 228.1 mg/l was obtained for the RILs. Both the ‘as is’ 

and ‘dry basis’ measurements of IoB 0.7mm extract were obtained from the 

micromalting analysis. Mean extract (as is) values of 285.5 (300.0 for dry basis) and 

290.5 1°/kg (306.0 for dry basis) were determined for Chevallier and Tipple, 

respectively. Neither the ‘as is’ nor the ‘dry basis’ values for the parental lines were 

significantly different (P = 0.748 and 0.645, respectively). The means for the RILs 

were 279.1 and 296.8 1°/kg for the ‘as is’ and ‘dry basis’ extract values (Table 5.1). 

FAN mean values were 153.5 and 184.0 mg/l in Chevallier and Tipple respectively (P 

= 0.612), whilst the mean for the RILs was 147.7 mg/l. Multiple measurements 

associated with the nitrogen levels of the malted samples were recorded. The SNR 

values for Chevallier and Tipple were 36.7 and 40.2% respectively, with a mean of 

35.7% in the RILs. The mean parental values were not significantly different (P = 

0.671). TSN (dry basis) mean values were 0.7 and 0.8% in Chevallier and Tipple 

respectively, values which were not statistically different (P = 0.616), whilst the mean 

value of the RILs was 0.7%. The mean Chevallier value for TN (dry basis) was 1.8%, 

whereas for Tipple it was 1.9% (Table 5.1). Again, these values did not differ 

significantly (P = 0.836). The mean value for the RILs was 1.9%. 
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Table 5.1. The mean values associated with malting traits for Chevallier and Tipple, 

and both the range and mean values for 105 C×T F5 recombinant inbred lines. 

 Parents RILs  

Trait† Chevallier Tipple Mean Range t- probability* 

AA (as is) 51.00 63.50 65.23 41.00 – 138.00 0.054 

AA (dry) 53.50 67.00 69.37 44.00 – 146.00 0.033 

DP (as is) 100.50 139.50 177.54 54.00 – 323.00 0.120 

DP (dry) 106.00 147.00 188.83 58.00 – 342.00 0.148 

DP-WK (dry) 394.50 403.00 595.31 183.00 – 077.00 0.346 

BG 278.50 383.00 228.14 103.00 – 894.00 0.036 

IoB Extract (as is) 285.50 290.50 279.11 264.00 – 298.00 0.748 

IoB Extract (dry) 300.00 306.00 296.79 279.00 – 318.00 0.645 

FAN 153.50 184.00 147.70 103.00 – 208.00 0.612 

SNR 36.70 40.20 35.71 28.80 – 45.60 0.671 

TSN (dry) 0.65 0.76 0.69 0.53 – 0.86 0.616 

TN (dry) 1.81 1.88 1.94 1.65 – 2.37 0.836 

 

† Abbreviations and measurements for each trait: AA (α-amylase: dextrin units or du); 

DP (diastatic power: °IoB); DP-WK (diastatic power: °WK); BG (wort β-glucan: 

mg/l); IoB extract (1°/kg); FAN (free amino nitrogen: mg/l); SNR (soluble nitrogen 

ratio: %); TSN (total soluble nitrogen: %) and TN (total nitrogen: %). 

* The statistical significance of the difference between mean values for Chevallier and 

Tipple was calculated from a t-test. 

 

For some malting parameters, such as α-amylase or TN, the range of values of the 

RILs appears to exceed the values of the parental genotypes (Table 5.1). It is possible 

that transgressive segregation may be occurring in the population as the two parental 

cultivars are genetically diverse, which may result in some of the RILs displaying 

either lower or higher values than the parental lines. Significant differences between 

micromalting batches were also observed for 11 of the 12 malting parameters 

measured (Table 5.2), a factor which again may contribute towards the variation seen 

within the population. It is worth noting that the mean values and the ranges of the 

RILs are generated from a single replicate of 105 RILs from the wider C×T F5 

population due to the high cost of the assay. Increased replication would therefore give 

more confidence in the accuracy of some of the more extreme trait values. 
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Table 5.2. T-probabilities of the significant differences between micromalting batches, 

calculated from a general linear model. 

Trait t- probability 

α-amylase (as is) <0.001 

α-amylase (dry ) <0.001 

Diastatic power (as is) <0.001 

Diastatic power (dry) <0.001 

Diastatic power Windisch Kolbach (dry) <0.001 

β-glucan (in wort)   0.034 

IoB Extract (as is)   0.054 

IoB Extract (dry)   0.027 

Free amino nitrogen   0.015 

Soluble nitrogen ratio <0.001 

Total soluble nitrogen (dry)   0.001 

Total nitrogen (dry) <0.001 

 

5.3.2 Yeast activity analysis 

Yeast activity assays were conducted to determine whether there were any significant 

differences in yeast fermentation between Chevallier and Tipple wort. The results of 

the yeast analysis assays were highly variable however, with considerable variance 

displayed both within replicates on each plate and between plates. Negative or zero 

readings were also observed for multiple samples, which may be indicative of settling 

of the yeast cells within the plate during incubation preventing accurate OD values 

being recorded. Fewer replicates were analysed for the RILs due to the large 

population size and this resulted in high variability of the mean trait values for these 

lines. Within the parental lines, no significant difference between the mean values for 

lag time, Vmax or the first and final OD values could be determined between 

Chevallier and Tipple (Table 5.3). 
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Table 5.3. The mean values associated with yeast activity for Chevallier and Tipple. 

 Means  

Trait Chevallier Tipple t- probability* 

Lag time† 258.00 240.50 0.288 

Vmax† 1.93 1.90 0.808 

OD 1 0.16 0.16 0.900 

OD final 1.25 1.26 0.910 

 

† Lag time is expressed in minutes (min) and Vmax is expressed as the increase in OD 

units per minute (OD/min)). 

* The statistical significance of the difference between mean values for Chevallier and 

Tipple was calculated from a t-test. 

 

5.3.3 QTL analysis of quality traits 

QTL associated with malting parameters were identified on every chromosome except 

1H and 6H. On several chromosomes the malting quality QTL appeared to co-locate 

with agronomic trait QTL, such as height and heading date, identified within chapter 

4. To determine whether the agronomic QTL would be present using a reduced dataset, 

the analyses for these QTL were repeated using only the phenotype data for the 105 

C×T RILs. All agronomic trait QTL were identified to the same location when using 

both the 105 RIL subset and the complete 188 RIL dataset, suggesting that there is 

little loss of power during the analysis process when using a reduced dataset. 

Three QTL were associated with α- amylase activity, using both the ‘dry basis’ and 

‘as is’ values. The α- amylase dry basis QTL was identified on 5H at position 89.0cM, 

accounting for 10.3% of the variance with the contributing parental allele from 

Chevallier (Table 5.4). Two further QTL, one each for ‘dry basis’ and one for ‘as is’ 

values, were identified on 7H at position 162.9cM (Figure 5.5) with the higher value 

allele being provided by the Tipple parent. A single QTL for diastatic power 

(Windisch-Kolbach units) was detected on 3H at 50.36cM, accounting for 11.4% of 

the phenotypic variance within the population. This QTL also partially overlapped the 

heading date QTL identified in the C×T F5 Fusarium trials in 2013 (Figure 5.2). QTL 

peaks for both diastatic power ‘as is’ and ‘dry basis’ IoB measurements were also 
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observed on 3H, however these were not significant at the threshold of LOD 3.0 used. 

Two QTL were identified for wort β-glucan content, with one on 2H at 214.9cM 

explaining 14.4% of the variance, and a further QTL detected on 3H accounting for 

23.3% of the phenotypic variance (Table 5.4). Higher wort β-glucan was associated 

with the Tipple parent. A QTL for IoB extract was detected on 2H at position 56.5cM, 

with a LOD score of 3.3. Three FAN QTL were detected from the dataset, with the 

major QTL being located on 2H at 207.4cM overlapping the QTL identified for wort 

β-glucan content (Figure 5.1). Two partially overlapping FAN QTL were also 

identified on 4H at positions 58.9 and 90.5cM (Table 5.4). Higher FAN content was 

associated with the Chevallier parent for all three QTL. A QTL associated with SNR 

was present on 2H at 206.4cM, co-locating with both the FAN and wort β-glucan QTL 

and also partially overlapping with a minor QTL associated with heading date (Figure 

5.1). The SNR QTL accounted for 8.2% of the phenotypic variance within the RIL 

population and a higher SNR was conferred by the Chevallier parent (Table 5.4). A 

further SNR QTL was detected on 4H at 91.9cM, coinciding with the FAN QTL 

present on 4H (Figure 5.3) and explaining 21.3% of the variance. A single QTL 

associated with TSN was detected within the dataset. This co-located with the FAN 

and SNR QTL on 4H at position 91.9cM. A TN QTL was also found to be present on 

3H at 138.2cM, with the QTL interval overlapping with QTL identified for agronomic 

traits such as height, heading date, tillering and growth habit (Figure 5.2). Both of the 

QTL associated with total nitrogen explained a similar amount of phenotypic variance, 

for example 17.9 and 15.2% in the 4H and 3H QTL respectively, with the Chevallier 

parent contributing to a higher value for both QTL. No QTL associated with yeast 

activity (initial/final OD values, Vmax, lag time) could be detected from the datasets. 
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5.4 Discussion 

QTL associated with malting quality have been identified on every barley 

chromosome (Wang et al. 2015), however within this study no QTL were detected for 

malting traits on chromosomes 1H and 6H. Four clusters of coincident QTL were 

detected on 2H, 4H, 5H and 7H; a feature not uncommon in malting quality studies 

(Han et al. 2004; Laido et al. 2009; Schmalenbach and Pillen, 2009). 

QTL associated with wort β-glucan have been detected on each chromosome, with 

multiple studies identifying 1H, 2H and 7H as particular regions of interest (Emebiri 

et al. 2004; Gao et al. 2004; Han et al. 2004; Li et al. 2008; Gutiérrez et al. 2011). 

Within the current study, a minor QTL was detected on 2H and a major QTL was 

located on 3H. A minor QTL associated with wort β-glucan was previously identified 

on the long arm of 2H at 292cM in a VB9524 × ND11231∗12 DH population (Emebiri 

et al. 2004) and significant marker-trait association with wort β-glucan was identified 

at position 150.7cM using cultivars from the Oregon State breeding program 

(Gutiérrez et al. 2011). The location of two previous wort β-glucan associated QTL on 

2H suggests that the QTL detected in the current study may not be unique. Four genes 

associated with cellulose synthase-like (CslF) genes which are thought to mediate the 

synthesis of β-glucan have been previously mapped to 2H (Burton et al. 2008), but are 

located at the centromeric region suggesting these are unlikely to be associated with 

the 2H minor QTL. The major QTL for wort β-glucan segregating in the C×T 

population mapped to the long arm of chromosome 3H at 185.1cM, accounting for 

23.3% of the variance within the population. β-glucan QTL have been detected on the 

short arm of 3H at position 32cM in a VB9524 × ND11231∗12 DH population, which 

accounted for 22.6% of the variance, and at 99cM in a TR251 × CDC Bold population 

(Emebiri et al. 2004; Li et al. 2008). Several (1,3)-β-d-glucan synthase-like (GSL) 

genes have been detected in barley, with HvGSL6 and HvGSL7 both being located on 

chromosome 3H (Schober et al. 2009). Significant marker-trait associations between 

grain β-glucan content have been detected on 3H between 63.0 – 70.2cM in a GWAS 

of spring and winter elite barley germplasm pools (Houston et al. 2014). The most 

significant markers in the study by Houston et al. (2014) that were associated with β-

glucan on 3H, SCRI_RS_237939 and 11_11314, are located in genomic regions which 

correspond to the presence of the candidate genes HvGSL7 and a glycoside hydrolase, 
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respectively. The marker associated with wort β-glucan in the C×T F5 map is located 

in the distal region of 3H at 185.1cM however, suggesting that the wort β-glucan QTL 

in the present study is unlikely to be due to an association with the candidate genes 

identified by Houston et al. (2014). 

There are several parameters evaluated during malt analysis which relate to the 

nitrogen content, and therefore protein modification, of the malt. QTL associated with 

the TN, TSN, SNR or Kolbach-Index (K-I) and FAN content have been reported on 

chromosomes 1H, 2H, 3H, 4H, 5H and 7H and often co-locate (Emebiri et al 2004; 

Panozzo et al. 2007; Wang et al. 2015). Within the C×T population, four QTL for 

FAN, SNR and TSN were identified on 4H. Three of these QTL (FAN, SNR and TSN) 

co-located at 90.5 – 91.9cM, and the QTL interval of this cluster also partially 

overlapped the major FAN QTL located on 4H centred at 58.9cM. Chromosome 4H 

has been identified as region associated with nitrogen content, as QTL for FAN, SN 

and SNR/K-I have been identified on this chromosome in multiple studies (Panozzo 

et al. 2007; Szucs et al. 2009; Wang et al. 2015). Several QTL from previous studies 

map throughout the short arm of 4H, with a QTL mapping to 18.0cM in the study by 

Emebiri et al. (2004) and a QTL for FAN being located at 56.0cM, with a QTL interval 

of 51.6 – 95.0cM, within a TX9425 × Naso Nijo DH population (Wang et al. 2015). 

The positioning of these QTL suggests that the QTL associated with malt nitrogen 

content on 4H may not be unique to the C×T population. Two additional co-locating 

minor QTL for SNR and FAN were detected on chromosome 2H in the C×T 

population. QTL for TN and SNR/K-I have been associated with the short arm of 2H 

(Wang et al. 2015), but the detection of a QTL for FAN on 2H does not appear to have 

been previously reported. The 2H QTL in the C×T population partially overlap a minor 

QTL for wort β-glucan and as low β-glucan is associated with an increased Kolbach-

Index or SNR (Jin et al. 2012), it is unsurprising that QTL for wort β-glucan and SNR 

appear to co-locate. A single QTL associated with TN was also detected on the long 

arm of chromosome 3H in my study. Two QTL associated with TN were also detected 

on 3H by Wang et al. (2015) which were found to be environmentally dependent. The 

same authors also identified two QTL for SN and FAN on 3H. This suggests that the 

identification of QTL on the long arm of 3H associated with malt nitrogen levels may 

be novel to the C×T population, but it is unclear how TN and SN/FAN traits may 

express themselves in different backgrounds. 



 

148 
  

QTL for α-amylase activity have been detected on each chromosome using several 

populations (Marquez-Cedillo et al. 2000; Han et al. 2004; Szucs et al. 2009; 

Mohammadi et al. 2015). Two of the major barley genes which encode α- amylases, 

Amy1 and Amy2, are located on 6H and 7H, respectively (Matthies et al. 2009), and 

many QTL previously identified have been detected within the genomic regions 

containing these genes. Three QTL associated with the α-amylase content of the malt 

were identified in the C×T population, with two QTL on 7H and a single QTL on 5H. 

The α-amylase QTL on 7H (representing both the ‘as is’ and ‘dry basis’ values) was 

located at 162.9cM, which correlates with a previous study which identified α-amylase 

QTL at 161.5cM on 7H (Gutiérrez et al. 2011). The marker for the Amy2 locus was 

recently mapped at 126cM on 7H in a GWAS of 254 European spring barleys (Shu 

and Rasmussen, 2014). α-amylase enzymes are separated into two major classes which 

are distinguished by the isoelectric point of each enzyme and the Amy2 gene on 7H is 

thought to encode low isoelectric point α-amylases (Zwickert-Menteur et al. 1996). It 

is highly probable that the C×T 7H α-amylase QTL is due to the presence of the Amy2 

locus within this region. Whilst the 5H QTL identified within the C×T population is 

not associated with either of the major α-amylase genes, additional QTL for α-amylase 

have also been reported on 5H previously (Marquez-Cedillo et al. 2000; Ayoub et al. 

2003; Gutiérrez et al. 2011; Mohammadi et al. 2015). A QTL for α-amylase was 

identified at position 280cM by Emebiri et al. (2004) and also at 183.0 – 188.0cM in 

five out of eight American breeding populations studied by Mohammadi et al. (2015). 

The 5H QTL in the present study was mapped to 89.0cM, suggesting that this QTL 

may be novel. The detection of three QTL associated with α-amylase, with the high 

value alleles being derived from either parent, may explain the range of values for α-

amylase observed within the RILs which exceeded those of Chevallier and Tipple. 

Diastatic power provides an estimate of all the amylolytic activity present during 

mashing. As with most malt quality traits, QTL for this characteristic have been 

identified on each of the seven barley chromosomes, with QTL associated with 

diastatic power and specific amylolytic enzymes often co-locating (Marquez-Cedillo 

et al. 2000; Gao et al. 2004; Han et al. 2004; Gutiérrez et al. 2011). A single QTL for 

diastatic power (Windisch-Kolbach), with a LOD score of 3.0, was identified on 3H 

in this study. A QTL associated with diastatic power was also detected on 3H at 

200.9cM in a Morex × DH72 population by Larson et al. (1997), which was found to 
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co-locate with a serine carboxypeptidase I (Cxp1) gene which has been proposed to 

affect starch hydrolysis (Potokina et al. 2004). However, the QTL within this study 

and the study by Larson et al. (1997) map to different chromosomal arms of 3H, so 

are therefore unlikely to be associated. Diastatic power is an indicator of α-amylase, 

β-amylase and limit dextrinase activity, yet interestingly within this study the QTL for 

diastatic power (3H) did not co-locate with QTL associated with α-amylase (5H and 

7H). It has been posited that β-amylase is a more reliable indicator of diastatic power 

than either α-amylase or limit dextrinase (Georg-Kraemer et al. 2001), however the 

activity of these enzymes were not specifically analysed in the present study. There 

are two known β-amylase genes in barley, with a gene specifying an endosperm 

specific β-amylase, known as Bmy1, on 4H and a second gene, Bmy2, encoding a 

ubiquitous β-amylase located on the short arm of 2H (Vinje et al. 2011). A gene 

encoding for limit dextrinase has been mapped to the short arm of 7H (Li et al. 1999). 

As the major genes encoding β-amylase and limit dextrinase are located on different 

chromosomes to the diastatic power QTL (3H) detected in the C×T population it is 

unlikely that they are associated with the differential diastatic power of these two 

varieties. However, analysis of the activity of these enzymes within the malt of the 

C×T RILs may provide more information regarding this QTL. 

Malt extract is a measure of the sugar content derived from the malt. Many studies 

have identified 1H, 2H, 5H and 7H as being chromosomes frequently associated with 

this trait (Marquez-Cedillo et al. 2000; Gao et al. 2004; Han et al. 2004; Elia et al. 

2010; Matthies et al. 2014). A single QTL for IoB extract (dry weight) was identified 

on 2H within this study which did not co-locate with any of the other malt quality 

traits. QTL associated with malt extract have been identified along chromosome 2H 

previously, with a major QTL on 2H at 29.0cM being identified in a study by Wang 

et al. (2015), a QTL locating near the Vrs1 marker on 2H as detected by Elia et al. 

(2010) and two further QTL which were identified using the EBC analysis method 

mapping to 165.0 and 250cM on 2H in a study by Emebiri et al. (2004). The consistent 

detection of QTL for malt extract on 2H suggests that the QTL identified within the 

C×T population may not be novel. 

Interestingly, it was not possible to detect any QTL associated with malt quality traits 

on chromosomes 1H and 6H in the C×T population. 1H is purported to be the site of 

multiple genomic regions that are associated with several co-locating malting traits. 
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QTL for α-amylase activity, β-glucan content, friability, wort viscosity, grain protein 

content, diastatic power and malt extract have all previously been detected on 1H 

(Emebiri et al. 2004; Molina-Cano et al. 2007; Laido et al. 2009; Schmalenbach and 

Pillen, 2009; Gutiérrez et al. 2011; Matthies et al. 2014; Wang et al. 2005). Malting 

QTL on 1H have also been demonstrated to cluster, with eight QTL overlapping in an 

85cM interval in a study by Schmalenbach and Pillen (2009) and a marker-trait 

association for friability, malt extract and wort viscosity being detected at 58.7 – 59.4 

cM detected by Matthies et al. (2014). It is therefore surprising that it was not possible 

to identify any QTL on 1H within the C×T population, which may indicate a lack of 

polymorphisms between Chevallier and Tipple on this chromosome. In contrast, malt 

quality QTL are less frequently reported on 6H (Marquez-Cedillo et al. 2000; Emebiri 

et al. 2004; Yang and Han, 2012; Wang et al. 2015). Fewer marker-trait associations 

were detected on 6H than on the other chromosomes in multiple GWAS of the Oregon 

Wolfe barley population (Gutiérrez et al. 2011) and only 12 significant associations 

were detected on 6H compared to the 40 that were identified on 5H in the study by 

Szucs et al. (2009).  

Malting quality traits on 2H and 3H partially overlap with QTL associated with 

agronomic characteristics. The SNR and FAN QTL on 2H partially overlap the QTL 

interval of a minor QTL for heading date, whilst the diastatic power QTL on 3H 

overlaps a minor height QTL. The QTL identified for TN content also partially 

overlaps the agronomic QTL cluster on 3H, which is thought to be associated with the 

sdw1 locus. Wang et al. (2015) also report the co-location of QTL for TN and heading 

date on both the short arm of 2H and 3H, whilst multiple studies have detected QTL 

associated with malt extract within the sdw1 region on chromosome 3H (Collins et al. 

2003; Elia et al. 2010). Further investigation within these regions of the genome is 

required to determine the possible associations between these traits. 

Whilst different beer styles require specific quality parameters, there are preferential 

values for many traits within the brewing industry leading to an aim to breed cultivars 

which increasingly fit these criteria. Malts which do not conform to these standards 

may be more difficult to process and may result in the manufacture of products with 

variable quality. The malt specifications for diastatic power, FAN and wort β-glucan 

have been determined to be of particular importance for brewers due to their 

significant contribution towards the finished beer (Brewer’s Association, 2014). 
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Diastatic power (Windisch-Kolbach) levels between 200 – 350°WK are generally 

preferable (Fox et al. 2003), yet the mean values for both Chevallier and Tipple exceed 

this range at 394.5 and 403.0°WK respectively. The diastatic power content of 

Chevallier is not significantly different from that of Tipple however, a cultivar which 

has full IBD approval for use as a malting cultivar (HGCA, 2014). This suggests that 

malt derived from Chevallier performs comparably with the modern variety Tipple for 

diastatic power activity. A FAN content of 140 – 180mg/l within malt is also desirable 

(Fox et al. 2003). Chevallier also compares well for FAN content at 153.5 mg/l, whilst 

Tipple only slightly exceeds the range of desired values at 184.0 mg/l. Whilst malt 

quality may differ between years, this suggests wort derived from Chevallier malt is 

likely to contain sufficient levels of FAN for adequate yeast fermentation but is less 

likely to contain excessive levels of FAN which contribute towards flavour instability. 

The preferred wort β-glucan content has been determined to be less than 200mg/l 

(O’Rourke, 2002), which should indicate sufficient grain modification without 

resulting in increased wort viscosity. Both the Chevallier and Tipple wort β-glucan 

content exceed this value, at 278.5 and 383.0 mg/l. Although the wort β-glucan content 

of Chevallier is larger than desired it is significantly lower than that of Tipple, 

suggesting that the heritage Chevallier malt better correlates with the favoured 

parameters for wort β-glucan than the modern Tipple variety. 

The production of alcohol during brewing is dependent on the fermentation process. 

Immediately after the addition of yeast to unfermented wort, a process known as 

pitching, the yeast begins to metabolize amino acids within the wort. The initial stage 

of nitrogen uptake, synthesis of cell wall components such as sterols and fatty acids, 

and general acclimatisation is known as the lag phase and is critical for efficient 

fermentation (Stewart et al. 2013). Within 12 hours, the yeast begins a period of 

exponential growth where sugars such as glucose, maltose and fructose, are converted 

into ethanol and carbon dioxide. Whilst yeast has been considered a model organism 

for several decades, quantitative genetic studies using the budding yeast 

Saccharomyces cerevisiae have only become more prevalent within the last decade 

(Liti and Louis, 2012). Presently there are no reports of QTL associated with yeast 

performance during brewing, however two studies were recently published which 

identified QTL associated with the production of wine aroma compounds by S. 

cerevisiae (Marullo et al. 2007; Steyer et al. 2012). The current study attempted to 
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identify QTL associated with yeast growth parameters, including lag phase and 

maximum growth velocity, however no QTL were identified which may indicate that 

traits associated with yeast metabolism are not highly heritable. It may also suggest 

that whilst Chevallier and Tipple display significantly different malting traits, as 

evidenced by the detection of QTL, the wort derived from these cultivars is equally 

favourable for yeast growth. Different yeast strains, however, have also been 

demonstrated to utilise wort at different rates (Evans and Hamet, 2005). Safale 04 

(Fermentis©), the yeast strain used within the present study, is known for its vigorous 

fermentation and it is possible that using a yeast strain which is more sensitive to the 

wort composition may reveal differences in growth activity influenced by parameters 

within the two barley varieties.  

The present study provides the first investigation of malting quality associated with 

the heritage cultivar Chevallier. Analysis of malting traits requires large grain 

quantities and relies on the use of specialist equipment, meaning the process is both 

expensive and time-consuming. A single replicate of 105 RILs created from a cross 

with the modern cultivar Tipple were grown in one environment and were 

micromalted to provide preliminary knowledge of quality traits associated with 

Chevallier. Further studies with increased replication and a larger population may be 

undertaken to provide more robust data to detect more subtle differences between the 

varieties. Of the 15 QTL for malting traits identified within the RIL population the 

Chevallier parent was associated with nine of these QTL, whilst Tipple was associated 

with six. Chevallier contributed QTL for α-amylase, diastatic power (Windisch-

Kolbach), FAN, SNR, TSN and TN, whereas Tipple contributed QTL for α-amylase 

and wort β-glucan content. As Chevallier was most widely grown over a century ago, 

it is surprising that this cultivar, and not the modern malting variety Tipple, contributes 

the more favourable high value alleles for diastatic power and malt nitrogen and also 

the low value allele associated with β-glucan. The malting quality of Chevallier is 

comparable to that of Tipple for a number of important characteristics, whilst for wort 

β-glucan Chevallier malt compares more favourably to the optimal quality parameters. 

As Tipple is a modern malting variety it was assumed that this cultivar would 

considerably outperform Chevallier in terms of quality, however the results presented 

here suggest that Chevallier displays remarkably good quality traits for a variety first 

grown in the early nineteenth century. 
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Chapter 6. General discussion 

Fusarium head blight (FHB) is an economically important cereal disease caused by 

Fusarium species of hemibiotrophic fungi. Cultural practices aimed at reducing the 

impact of FHB, such as the application of triazole fungicides and crop rotation with 

soybean and sugar beet, are only moderately effective and therefore sources of genetic 

resistance must be identified to improve FHB resistance in commercial varieties (Paul 

et al. 2010; Marburger et al. 2015). QTL mapping studies have determined that much 

of the FHB resistance identified in both barley and wheat is associated with agronomic 

traits, particularly height (Zhu et al. 1999; Buerstmayr et al. 2009). There is a 

requirement to identify sources of genetic resistance that do not compromise the ability 

to combine favourable agronomic or quality characteristics and disease resistance 

within a single cultivar. A central theme of this thesis was to identify the potential for 

trade-off between FHB resistance and agronomic traits, particularly height, or quality 

characteristics. 

Much of the resistance to FHB is associated with increased plant height. In wheat, 

cultivars that possess the semi-dominant gain-of-function Reduced height (Rht) Rht-

D1b or Rht-B1b semi-dwarfing alleles display reduced Type 1 resistance (initial 

infection) to FHB infection, whilst rht-tall lines are significantly more resistant 

(Srinivasachary et al. 2008). Reduced plant height conferred by the Rht-D1b and B1b 

alleles in wheat is believed to be due to the alteration of signalling through the 

gibberellic acid (GA) pathway (Hedden, 2003). Similarly, a reduction in plant height 

is observed in barley lines which have a mutation in the Brassinosteroid-insensitive 1 

(BRI1) gene, the receptor in the brassinosteroid (BR) phytohormone pathway (Chono 

et al. 2003). Such lines, known as ‘uzu’ or bri1, exhibit reduced sensitivity to 

exogenously applied brassinosteroid and display a semi-dwarf phenotype (Chono et 

al. 2003). However unlike the GA-insensitive Rht alleles, little was known about the 

effect of this semi-dwarfing mutation on disease resistance in barley. In chapter 2 it 

was demonstrated that barley lines possessing the semi-dwarf bri1 mutation display 

tissue specific resistance following Fusarium culmorum infection. The bri1 semi-

dwarf near-isogenic lines (NILs) were significantly more resistant to Fusarium crown 

rot (FCR) infection than the BRI1 tall lines. This is in direct accordance with the 

studies of Chen et al. (2014) and Bai and Liu (2015), who observed that not only do 
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the bri1 lines exhibit a reduction in visual FCR symptoms but they also display a 

decrease in the accumulation of fungal biomass within the leaf sheath tissues. 

Contrastingly, in response to FHB infection there was no significant difference 

observed in Type 1 resistance between the semi-dwarf bri1 and tall BRI1 barley NILs 

across two trial years. A similar response to floral infection with F. culmorum has also 

been observed in Brachypodium distachyon mutant lines which are disrupted in BR 

signalling. The B. distachyon bri1 line, which displays a semi-dwarf phenotype, does 

not show an altered Type 1 resistance when compared to the tall BRI1 line, but exhibits 

increased Type 2 resistance (Goddard et al. 2014). These results suggest it is possible 

that BRI1 mutation offers increased resistance to the spread of the Fusarium fungus 

throughout the rachis and into adjacent spikelets (Type 2 resistance), but that the 

inherent Type 2 resistance of barley (Jansen et al. 2005) may have masked this effect 

within the results presented in my study. Importantly, the results in chapter 2 

demonstrate that the bri1 mutation is not associated with reduced Type 1 resistance as 

observed for the Rht dwarfing alleles (Srinivasachary et al. 2008; Saville et al. 2012). 

This suggests that this semi-dwarfing allele may be useful for introducing reduced 

height without negatively affecting resistance to initial infection. 

Previous studies have reported that BR increases resistance to both FCR and FHB 

caused by F. culmorum (Ali et al. 2013). The study by Ali et al. (2013) observed the 

effects of exogenously applied BR to barley cultivars which were not altered in the 

BR signalling pathway, whilst the bri1 NILs in the present study display constitutive 

disruption of BR signalling which is conferred by genetic mutation. The apparently 

contrasting results observed by Ali et al. (2013) may actually reflect the effect of 

increasing BR levels in plants with fully functional BR signalling pathways. 

Interestingly, uzu semi-dwarf bri1 mutants also display a greater accumulation of 

castasterone, the biosynthetic precursor of the most bioactive BR brassinolide, than 

BRI1 tall lines due to the disruption of signalling through the BR pathway (Chono et 

al. 2003). This response is similar to Rht wheat lines, where biologically active GA1 

accumulates in GA-non-responsive semi-dwarf lines (Appleford and Lenton, 1991). It 

is therefore possible that increased BR levels, resulting from either exogenous 

application of brassinolide as demonstrated by Ali et al. (2013) or as a consequence of 

BRI1 mutation as seen in the uzu lines used in chapter 2, may increase resistance to 

Fusarium diseases.  
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Trade-offs associated with disease resistance have been widely reported in the 

literature. Barley cultivars displaying increased resistance to the obligate biotrophic 

pathogen Blumeria graminis f.sp. hordei, conferred by the recessive mlo alleles, 

display increased susceptibility to several fungal diseases. The caryopses of mlo 

cultivars are more easily colonised by the hemibiotroph F. graminearum, with the 

fungus being able to penetrate the endosperm and aleurone layer more quickly than in 

Mlo lines (Jansen et al. 2005). Barley mlo cultivars also exhibit increased susceptibility 

to the hemibiotrophs Magnaporthe grisea (Jarosch et al. 2003) and Ramularia collo-

cygni (McGrann et al. 2014), and display increased susceptibility to lesion 

development caused by the necrotrophic fungus Pyrenophora teres (Makepeace, 

2006). This suggests a trade-off between resistance to the biotroph B. graminis and 

pathogens with other trophic lifestyles, which therefore causes additional complexity 

when breeding for disease resistance. In chapter 2, the bri1 semi-dwarf NILs were 

found to display altered resistance to fungal pathogens of differing trophic lifestyles 

when compared to the tall BRI1 NILs. The bri1 lines exhibited increased resistance to 

necrotrophic pathogens such as Oculimacula acuformis and Gaeumannomyces 

graminis var. tritici, and to hemibiotrophs with a short biotrophic phase such as O. 

yallundae and M. oryzae. However, no difference in resistance between semi-dwarf 

bri1 and BRI1 tall NILs was observed in response to infection by R. collo-cygni, a 

hemibiotroph with a prolonged endophytic phase. A similar resistance response to 

pathogens of differing trophic lifestyles has also been observed in the model species 

B. distachyon. The B. distachyon semi-dwarf bri1 line displays increased resistance to 

G. graminis and M. oryzae, but not to R. collo-cygni, when compared to the respective 

BRI1 tall line (Goddard et al. 2014). This suggests that the role of BR signalling in 

disease resistance is similar in both barley and B. distachyon. Importantly, within 

chapter 2 the barley bri1 semi-dwarf lines do not show increased susceptibility to 

biotrophic pathogens such as B. graminis in comparison to the tall BRI1 NILs. This is 

in contrast to the study of the GA-insensitive wheat Rht and Slender 1 (Sln1), the 

barley Rht orthologue, semi-dwarfing alleles by Saville et al. (2012), who observed an 

increase in resistance to necrotrophic pathogens but also increased susceptibility to 

biotrophs. Chapter 2 demonstrates that alteration of the BR pathway through mutation 

of BRI1 in barley, which confers a semi-dwarf phenotype, does not cause increased 

susceptibility to FHB and also does not confer a resistance trade-off between 

pathogens of differing trophic lifestyles like the GA-insensitive Rht or Sln1 alleles 
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(Saville et al. 2012). This provides an alternate phytohormone pathway which may be 

investigated with regards to breeding cultivars with both a favourable height 

phenotype without compromising disease resistance.  

Much of the study into FHB resistance in barley and wheat is conducted through the 

mapping of quantitative trait loci (QTL) and the development of new genotyping 

technologies throughout the last decade has enabled increasingly high density barley 

genetic maps to be produced for use in these studies (Yang et al. 2015). Chapter 3 

detailed the use of two genotyping methods, the cultivar optimised 384-SNP assay 

developed by Moragues et al. (2010), designed from the original BOPA 1 and BOPA2 

assays by Close et al. (2009), and the Genotyping-by-Sequencing technique (GBS) 

originally developed by Elshire et al. (2011) with the aim of producing the high density 

genetic maps for FHB QTL detection. The 384-SNP assay has been determined to be 

sufficient for SNP identification and genetic mapping studies in adapted germplasm 

(Moragues et al. 2010; McGrann et al. 2014; Bertholdsson et al. 2015), however the 

resultant Chevallier × Tipple (F5 and F7) and Armelle × Tipple (F6) genetic maps were 

sparsely populated, particularly on chromosomes 1H and 7H. As the two barley 

populations within chapter 3 were derived from genetically distant parental lines it 

was expected that a larger number of SNPs would have been identified by the 384-

SNP assay, yet the lack of SNPs within certain genomic regions suggests that the SNP 

assay may not always be suitable for the genotyping of diverse parents. 

The GBS protocol identified a much larger initial pool of SNPs for mapping within 

both of the C×T populations; however 82% of these were removed through quality 

control processes before the initial mapping. Several barley GBS mapping studies 

have also reported large data losses throughout the GBS pipeline using mapping 

populations of a similar size developed from modern cultivars (Mascher et al. 2013; 

Liu et al. 2014; Honsdorf et al. 2014). This suggests that the data attrition observed in 

chapter 3 is a consequence of the genotyping method and not a result of the either the 

parental lines used or the population size. Whilst genetic maps in barley created using 

the GBS method produce a higher marker density, it has been noted that large gaps 

between markers still persist (Poland et al. 2012; Igartua et al. 2015), a detail which 

was also observed in the two C×T GBS maps created in chapter 3. QTL associated 

with FHB in barley have been identified from maps containing as few as 97 RFLP 

markers across the seven chromosomes (Zhu et al. 1999) or those displaying a mean 
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distance of over 10cM between genetic markers (Ma et al. 2001). However, the aim 

of this chapter was to create sufficiently dense maps to improve the resolution of QTL 

detection for both disease and agronomic traits. To this end, the SNPs from the GBS 

and the 384-SNP assays were combined to produce the two final C×T maps covering 

1,224.4cM and 1,078.4cM in the F5 and the F7 populations, respectively. The map 

lengths created in chapter 3 are comparable to other GBS barley genetic maps formed 

from similar population sizes which have been used to successfully detect QTL for 

agronomic traits, such as the map created by Liu et al. (2014) who identified the row 

type locus Vrs1 within a 1.5cM interval, suggesting that they were suitable for 

mapping of FHB QTL to sufficient resolution.  

Many studies aiming to identify genetic resistance to FHB in barley and wheat have 

centred around the use of elite cultivars or breeding programs to develop mapping 

populations for either QTL or genome wide association studies. The results of such 

studies in both cereal species consistently identify FHB resistance which is associated 

with plant height (Ma et al. 2001; Gervais et al. 2003; Hori et al. 2005; Ban and Handa, 

2008; Mao et al. 2011; Massman et al. 2011; Dahleen et al. 2012), heading date (HD) 

(Canci et al. 2004; Paillard et al. 2004; Horsley et al. 2006; Lamb et al. 2009; Liu et 

al. 2013) or other agronomic traits such as ear morphology (Choo et al. 2004; Hori et 

al. 2005; Gilsinger et al. 2005; Schmolke et al. 2005; Horsley et al. 2006). This 

suggests that the association between FHB and these traits may be due to pleiotropy 

or close linkage. At present, moderate resistance to FHB is achieved from a limited 

source of barley and wheat cultivars (Bai and Shaner, 2004) and studies using more 

diverse germplasm have been initiated to increase the potential of detecting potent 

FHB resistance. Chevallier is an English landrace barley which was originally 

discovered in 1823 (Beaven, 1936) that has significant Type 1 FHB resistance yet also 

displays a tall height phenotype. In chapter 4, the potential for linkage or pleiotropy 

between FHB resistance and plant height genes within the Chevallier background was 

investigated. Two height QTL were identified in both the F5 and F7 generations of the 

C×T population, with the major QTL being located on the long arm of 3H within the 

region of the sdw1 gene (Malosetti et al. 2011). Whilst the candidate gene underlying 

this locus has been proposed to be a GA 20-oxidase (Jia et al. 2011) there was no 

differential in the response of Chevallier and Tipple to GA3 application. This may 

indicate that at least in the C×T population, the QTL within this genomic region may 
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not be associated with a GA response. Interestingly the uzu semi-dwarf height gene 

investigated in chapter 2 is also present on the long arm of 3H; however the major 

height QTL within the C×T population is located at the distal end of 3HL whilst the 

uzu gene is located at the centromeric region (Li et al. 2015).  

A potent QTL associated with Type 1 FHB resistance was identified in both the F5 and 

F7 C×T populations on chromosome 6H, with resistance derived from Chevallier. 

Surprisingly, this QTL was not associated with plant height, heading date or any of 

the morphological traits that are frequently identified with FHB resistance. This 

indicates that the resistance of Chevallier on 6H is not due to pleiotropy or linkage 

with genes for these traits, but may be a form of physiological resistance. As a 

potentially useful source of FHB resistance it is now important to begin to fine map 

the 6H QTL interval. The process of back-crossing recombinant inbred lines (RILs) 

displaying 6H resistance to the Tipple parent should eliminate genetic background 

noise that may affect phenotypic scoring and allow the interval to be further refined. 

There are a further 220 C×T RILs at the F6 generation that have been developed which 

may also be used should additional material be required. The stacking of multiple 

minor effect QTL associated with FHB in a single variety has been demonstrated to 

be effective at reducing both FHB incidence and DON accumulation in wheat, due to 

the cumulative effects of these loci (Miedaner et al. 2006). This suggests that the three 

additional QTL for Type 1 FHB resistance identified on chromosomes 2H and 7H in 

the F7 population trialled in 2015 may also be useful.  

The detection of multiple QTL associated with accumulation of the mycotoxin DON 

within a single population is often observed in barley (Ma et al. 2001; Dahleen et al. 

2003) and the effects of these QTL are often highly influenced by the environment. 

Within the C×T F7 population four QTL associated with DON were identified from 

the 2015 trial data. A QTL on 6H was associated with increased DON levels from the 

F7 population and lower DON levels within the F5 population studied in 2013, 

suggesting the effect of this QTL is environmentally dependent. Two QTL associated 

with DON were identified on 3H, both of which co-located with agronomic trait QTL 

detected on the same chromosome. The minor DON QTL on the long arm of 3H was 

coincident with the major QTL complex in the region of the sdw1 gene, suggesting 

there may be a pleiotropic effect associated with height or HD at this location. The 

major DON QTL on the short arm of 3H was found to be coincident with the minor 



 

159 
  

height/HD QTL. Interestingly, this suggests that lower DON levels associated with 

the major 3HS QTL are therefore less likely to be a result of disease escape due to 

increased plant height. In both barley and wheat, DON QTL are often non-coincident 

with QTL associated with FHB (Somers et al. 2003; Yu et al. 2010; Dahleen et al. 

2012). Within the C×T F7 population, a QTL on 6H, associated with higher DON 

levels in the 2015 trial, partially co-located with an FHB resistance QTL. However as 

the marker interval for the DON QTL is not precisely defined, as a result of the limited 

range of DON values observed in the 2015 trial, it may be possible that the two traits 

may not be associated although this cannot be discounted. A further three QTL for 

both traits were identified in the F7 population, with FHB QTL being identified on 2H 

and 7H, and DON QTL being detected on 1H and 3H. Such results suggest that, as 

with previous studies, FHB resistance and DON accumulation are likely to be under 

separate genetic control.  

Whilst it was possible to identify an apparently novel source of resistance to FHB 

within the Chevallier population, the screening of genetically diverse germplasm does 

not guarantee the identification of both unique and useful sources of resistance. A 

study of 23,255 wild (Hordeum vulgare ssp. spontaneum) and cultivated (H. vulgare 

ssp. vulgare) barley accessions by Huang et al. (2013) recurrently identified 

chromosome 2H as being particularly associated with FHB, although this region only 

conferred minor resistance and was often associated with the Vrs1 row type locus. 

Mamo and Steffenson (2015) also investigated the resistance of 298 Ethiopian and 

Eritrean barley landraces to FHB and specifically selected lines from geographically 

diverse regions to increase the genomic diversity within the study. The authors also 

identified a QTL on 2HL associated with resistance to FHB severity and DON 

accumulation, though again this was associated with row type. In chapter 4, the A×T 

mapping population was evaluated to determine whether the FHB resistance of 

Armelle, a tall French cultivar released in 1974, was associated with plant height. In 

this population, QTL for FHB, plant height and heading date were coincident on 

chromosome 3H which is consistent with previous studies where these three traits have 

been observed to co-locate (Ma et al. 2001; Lamb et al. 2009; Dahleen et al. 2012). 

This again suggests that the FHB resistance of Chevallier identified on 6H, which is 

not associated with agronomic traits, is novel. Further heritage cultivars, in addition to 

those studied in chapter 4, are presently being screened for their resistance to FHB and 
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DON accumulation with the aim of identifying potential sources of resistance in both 

two-row and six-row barley. 

Malting barley has many required characteristics which facilitate the production of 

beers with specific flavours and colours (Newton et al. 2011), yet contamination of 

malt by Fusarium species has been demonstrated to have a negative effect on these 

qualities. Altered levels of free amino nitrogen (FAN), β-glucan, starch and protein 

content are observed in contaminated malt compared to non-Fusarium infected malt 

(Oliveira et al. 2012a; Oliveira et al. 2012b) and the presence of Fusarium associated 

hydrophobins induces gushing in bottled beer (Sarlin et al. 2012). Therefore it is 

important that malting cultivars not only display specific malt quality characteristics, 

but also have favourable agronomic traits such as disease resistance. In chapter 4 

Chevallier was demonstrated to display FHB resistance on chromosome 6H which was 

not associated with agronomic traits, as is usually observed in barley. It was not known 

however, how the Victorian malting variety Chevallier performed with respect to 

present-day micromalting standards and whether the cultivar possessed any favourable 

malting characteristics which may be of interest within modern brewing. In chapter 5, 

the malting quality of Chevallier was assessed through the QTL mapping of 105 C×T 

F5 RILs. A total of 15 QTL associated with malt parameters were identified within the 

population. Whilst many factors contribute to malt quality, low β-glucan and adequate 

diastatic power and FAN levels are presently favoured to reduce wort viscosity and 

give flavour and product stability (Brewer’s Association, 2014). Interestingly, the 

Chevallier allele was found to be associated with QTL for reduced wort β-glucan 

content and also higher FAN and diastatic power content within the malt. Whilst 

Chevallier was associated with higher malt FAN content, the measurement of the 

Chevallier malt was within the desired parameters for this trait (Brewer’s Association, 

2014). Similarly, the diastatic power activity in Chevallier malt slightly exceeded the 

favoured range for this trait (Fox et al. 2003), but was still lower than the measured 

activity within the malt derived from Tipple.  

As with FHB QTL mapping studies, many of the previously reported malting quality 

QTL have been identified within modern germplasm with less information available 

for older varieties. The six-row cultivar Morex has been the common parental line in 

several reports due to the popularity of six-row varieties for malting in the U.S. 

(Marquez-Cedillo et al. 2000; Edney and Mather, 2004; Gao et al. 2004; Han et al. 
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2004; Elia et al. 2009) and several U.S. breeding programs, such as the Oregon Wolfe 

barley population, have also been studied (Szucs et al. 2009; Gutiérrez et al. 2011; 

Mohammadi et al. 2015). This has provided a more restricted gene pool for identifying 

QTL with which to improve malting quality. More recently, studies using diverse or 

uncultivated germplasm have detected sources of genetic variation associated with 

quality traits. Novel alleles for increased β-amylase activity at the Bmy1 locus on 4H 

have been identified in both Tibetan wild barley and Chinese landraces (Gong et al. 

2013), whilst wild barley lines from both Finland and Israel have been determined to 

show greater activity of the diastatic enzymes α-amylase and β-amylase in comparison 

to modern cultivars (Ahokas and Poukkula, 1999; March et al. 2012). The results 

presented in chapter 5 also illustrate that Chevallier displays favourable malting 

characteristics which are equivalent to those of the modern variety Tipple or are 

actually more desirable, such as low wort β-glucan. QTL analysis of Chevallier has 

demonstrated that beneficial alleles associated with malting quality are present within 

English landraces, suggesting another potential source of variation that may be 

exploited in the future for breeding of malting barley.  

It was not possible to identify any QTL associated with malt quality on 1H or 6H, 

whereas multiple QTL were identified on each of the remaining five chromosomes. 

There appears to be a paucity of malting-related QTL identified on 6H in the literature 

(Marquez-Cedillo et al. 2000; Emebiri et al. 2004; Gutiérrez et al. 2011) suggesting 

that there may simply be fewer genes associated with malting traits located on this 

chromosome. However, 1H is commonly identified as the genomic region associated 

with multiple important malt characteristics such as β-glucan, wort viscosity, extract 

and grain protein content (Emebiri et al. 2004; Laido et al. 2009; Schmalenbach and 

Pillen, 2009; Gutiérrez et al. 2011). The basis of QTL mapping relies on the 

identification of polymorphisms between the parental lines (Collard et al. 2005). The 

absence of QTL on 1H within the C×T F5
 population, as evidenced in chapter 5, 

therefore suggests that Chevallier and Tipple do not possess polymorphic loci on 

chromosome 1H associated with the malting traits assessed. It may indicate that 

favourable alleles on 1H affiliated with malting characters were present in the 

Victorian era when Chevallier was first cultivated and were selected for in the cultivars 

developed at the time. It is possible that these alleles may have been retained through 

subsequent breeding selections into modern varieties such as Tipple, due to their 
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associations with advantageous characteristics, which would explain the lack of QTL 

on chromosome 1H within the present population.  

Trade-offs within plant breeding often compromise the ability to introgress several 

favourable agronomic or quality characteristics into a single variety. Therefore the 

knowledge of whether specific agronomic or disease traits are associated is 

informative for determining their potential use within a breeding program. Within this 

thesis, several aspects of trade-off have been investigated. Chapter 2 determined that 

mutation of the BRI1 gene in barley, resulting in a semi-dwarf phenotype, does not 

cause a resistance trade-off between necrotrophic/hemibiotrophic pathogens and 

biotrophic pathogens. The same chapter also demonstrated that the reduced plant 

height of the bri1 lines did not increase susceptibility to the incidence of FHB. Whilst 

most resistance to FHB in barley is associated with increased plant height, chapter 4 

demonstrated that within the Chevallier genetic background resistance is present 

which is not associated with either height or heading date. Within chapter 5, the 

malting quality potential of Chevallier was determined for the first time. This chapter 

determined that not only does Chevallier possess potentially novel sources of 

resistance to FHB, it also has several favourable malting quality traits which may be 

of interest to modern brewers. 
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Appendix 

Table A.1. ANOVA from GLM calculated from M. oryzae inoculations. 

 

Table A.2. ANOVA from GLM calculated from G. graminis inoculations. 

 

Table A.3. ANOVA from GLM calculated from combined O. acuformis and O. 

yallundae inoculations. 

 

 

 

Term d.f m.s v.r F pr. 

Experiment_Replicate 2 899.20 7.52 <0.001 

Line 1 301.10 2.52   0.116 

Line/Mutation 2 1008.70 8.43 <0.001 

Residual 104 119.60   

Total 109 151.90   

Term  d.f m.s v.r F pr. 

Experiment 2 14.20 13.26 <0.001 

Experiment/Replicate 12 1.78 1.66   0.077 

Line 1 4.92 4.59   0.033 

Line/Mutation 2 29.55 27.59 <0.001 

Residual 253 1.07   

Total 270 1.43   

Term

  

d.f m.s v.r F pr. 

Experiment 1 63.37 36.88 <0.001 

Line 1 0.94 0.54 0.461 

Line/Mutation 2 48.08 27.98 <0.001 

Residual 181 1.72   

Total 185 2.55   
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Table A.4. ANOVA from the GLM calculated from F. culmorum FHB inoculations. 

 

Table A.5. ANOVA from the GLM calculated from F. culmorum non-wounded FCR 

inoculations. 

 

Table A.6. ANOVA from the GLM calculated from F. culmorum wounded FCR 

inoculations. 

 

Term

  

d.f m.s v.r F pr. 

Experiment 1 1074.28 51.71 <0.001 

Experiment/Score 2 197.31 9.50 <0.001 

Line 1 23.09 1.11 0.294 

Line/Mutation 2 20.47 0.99 0.377 

Residual 97 20.77   

Total 103 34.45   

Term

  

d.f m.s v.r F pr. 

Experiment 2 207.57 182.16 <0.001 

Experiment/Rep 16 2.30 2.02 0.012 

Line 1 1.97 1.73 0.189 

Line/Mutation 2 44.86 39.37 <0.001 

Residual 327 1.14   

Total 349 3.22   

Term

  

d.f m.s v.r F pr. 

Experiment 1 16.82 17.97 <0.001 

Experiment/Rep 2 1.64 1.75 0.181 

Line 1 0.67 0.71 0.402 

Line/Mutation 2 2.94 3.14 0.049 

Residual 74 0.94   

Total 80 1.19   
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Table A.7. ANOVA from the GLM calculated from R. collo-cygni inoculations. 

 

Table A.8. ANOVA from the GLM calculated from B. graminis inoculations. 

 

Table A.9. ANOVA from GLM of C×T F5 JIC 2013 trial, variate: FHB 

Term d.f m.s v.r F.pr 

Score 3 187.14 32.19 <.001 

Score.Line 808 18.32 3.15 <.001 

Row 10 88.47 15.22 <.001 

Residual 38 5.81     

Total 859 19.17     

 

 

 

 

Term

  

d.f m.s v.r F pr. 

Experiment 2 1281.8 80.88 <0.001 

Line 1 1073.45 67.73 <0.001 

Line/Mutation 2 24.21 1.53 0.222 

Residual 108 15.85   

Total 113 47.76   

Term

  

d.f m.s v.r F pr. 

Experiment 2 20.71 66.10 <0.001 

Experiment/Replicate 9 0.42 1.34 0.227 

Dpi score 1 11.28 36.00 <0.001 

Line 1 40.50 129.25 <0.001 

Line/Mutation 2 0.41 1.30 0.278 

Residual 112 0.31   

Total 127 1.05   
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Table A.10. ANOVA from GLM of C×T F5 KWS1 2013 trial, variate: FHB 

Term d.f m.s v.r F.pr 

Line 206 9.69 1.42 0.255 

Row 17 5.69 0.83 0.628 

Residual 16 6.84     

Total 239 9.32     

 

Table A.11. ANOVA from GLM of C×T F5 KWS2 2013 trial, variate: FHB 

Term d.f m.s v.r F.pr 

Line 206 13.78 1.65 0.124 

Row 17 23.37 2.79 0.023 

Residual 16 8.37     

Total 239 14.10     

 

Table A.12. ANOVA from GLM of C×T F5 JIC 2013 trial, variate: height 

Term d.f m.s v.r F.pr 

Line 203 467.22 57.33 0.017 

Row 10 4.41 0.54 0.793 

Residual 2 8.15     

Total 215 441.42     

 

Table A.13. ANOVA from GLM of C×T F5 KWS1 2013 trial, variate: height 

Term d.f m.s v.r F.pr 

Line 206 349.26 17.87 <.001 

Row 17 49.65 2.54 0.034 

Residual 16 19.54     

Total 239 305.88     

 

Table A.14. ANOVA from GLM of C×T F5 KWS2 2013 trial, variate: height 

Term d.f m.s v.r F.pr 

Line 206 379.05 14.09 <.001 

Row 17 77.19 2.87 0.020 

Residual 16 26.9     

Total 239 334     
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Table A.15. ANOVA from GLM of C×T F5 JIC 2013 trial, variate: heading date 

Term d.f m.s v.r F.pr 

Line 203 14.99 99.95 0.010 

Row 10 13.65 91.02 0.011 

Residual 2 0.15     

Total 215 14.79     

 

Table A.16. ANOVA from GLM of C×T F5 KWS1 2013 trial, variate: heading date 

Term d.f m.s v.r F.pr 

Line 206 23.80 28.35 <.001 

Row 17 1.44 1.71 0.144 

Residual 16 0.84     

Total 239 20.67     

 

Table A.17. ANOVA from GLM of C×T F5 KWS2 2013 trial, variate: heading date 

Term d.f m.s v.r F.pr 

Line 206 29.53 38.63 <.001 

Row 17 1.02 1.33 0.286 

Residual 16 0.76     

Total 239 25.58     

 

Table A.18. ANOVA from GLM of C×T F7 JIC 2014 trial, variate: FHB 

Term d.f m.s v.r F.pr 

Score 3 3015.20 1247.67 <.001 

Score/Line 752 22.59 9.35 <.001 

Row 6 16.75 6.93 <.001 

Residual 18 2.42     

Total 779 33.60     
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Table A.19. ANOVA from GLM of C×T F7 JIC 2015 trial, variate: FHB 

Term d.f m.s v.r F.pr 

Score 3 1322.47 432.94 <.001 

Score/Line 756 15.06 4.93 <.001 

Row 9 33.66 11.02 <.001 

Rep 6 4.48 1.47 0.187 

Residual 793 3.06     

Total 1567 11.55     

 

Table A.20. ANOVA from GLM of C×T F7 JIC 2014 trial, variate: height 

Term d.f m.s v.r F.pr 

Line 188 338.88 17.38 <.001 

Row 9 19.5 1.13 0.343 

Residual 1 2   

Total 198 329     

 

Table A.21. ANOVA from GLM of C×T F7 JIC 2015 trial, variate: height 

Term d.f m.s v.r F.pr 

Line 189 685.17 10.66 <.001 

Row 9 112.93 1.76 0.079 

Rep 6 57.36 0.89 0.501 

Residual 187 64.26     

Total 391 365.41     

 

Table A.22. ANOVA from GLM of C×T F7 JIC 2014 trial, variate: heading date 

Term d.f m.s v.r F.pr 

Line 188 19.92 31.87 <.001 

Row 9 44.97 2.41 0.409 

Residual 1 0.63   

Total 198 19.32     
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Table A. 23. ANOVA from GLM of C×T F7 JIC 2015 trial, variate: heading date 

Term d.f m.s v.r F.pr 

Line 189 17.18 5.81 <.001 

Row 9 1.20 0.41 0.930 

Rep 6 1.83 0.62 0.716 

Residual 187 2.96     

Total 391 9.78     

 

Table A.24. ANOVA from GLM of A×T F6 NIAB 2013 trial, variate: FHB 

Term d.f m.s v.r F.pr 

Score 1 1176.69 53.44 <.001 

Score/Line 398 83.04 3.77 0.008 

Row 9 70.44 3.2 0.037 

Residual 11 22.02     

Total 419 83.78     

 

Table A. 25. ANOVA from GLM of A×T F6 JIC 2014 trial, variate: FHB 

Term d.f m.s v.r F.pr 

Score 1 185.71 20.63 0.020 

Score/Line 388 22.09 2.45 0.252 

Row 9 32.00 3.56 0.156 

Residual 3 9.00     

Total 401 22.431     

 

Table A.26. ANOVA from GLM of A×T F6 NIAB 2013 trial, variate: height 

Term d.f m.s v.r F.pr 

Line 199 152.65 152.65 0.055 

Row 9 24.70 24.7 0.155 

Residual 1 1     

Total 209 146.41     
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Table A.27. ANOVA from GLM of A×T F6 JIC 2014 trial, variate: height 

Term d.f m.s v.r F.pr 

Line 196 240.5 1.22 0.249 

Row 9 230.8 1.17 0.319 

Residual 1 97.7    

Total 206 203.3     

 

Table A. 28. ANOVA from GLM of A×T F6 JIC 2014 trial, variate: heading date 

Term d.f m.s v.r F.pr 

Line 196 144.31 9.22 <.001 

Row 9 28.18 1.8 0.056 

Residual 1 9.65     

Total 206 22.77     
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