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Abstract 

 

This thesis presents applications of molecular quantum electrodynamics (MQED) 

to the analysis of resonance energy transfer (RET), molecular absorption and 

emission, and light scattering by molecules. An MQED framework describes such 

processes as a series of microscopic photonic interaction events. Multi-interaction 

processes entail intermediate states of the system’s evolution remaining 

unspecified, requiring careful interpretation. RET, as modified by coupling with 

the nearest molecule of the surrounding refractive medium, is investigated. 

Special attention is given to a system geometry where unmodified RET is 

impossible, so coupling with the third chromophore is essential. Two distinct 

treatments are given to emission by a multi-chromophore system, distinguished by 

different ways of framing the quantum system: Either all photons are virtual and 

chromophores share excitation, or real photons interact with a single unspecified 

chromophore. Anomalously high fluorescence-anisotropy is explainable with the 

latter analysis. Off-resonant light is known to modify the absorption behaviour of 

molecules: This weak-interaction is analysed with an MQED formulation 

modified by field dressing, modelling advanced media effects in the condensed 

phase. Within the electric-dipole approximation, hyper-Rayleigh scattering (HRS) 

is considered forbidden for centrosymmetric molecules: By including higher-

multipole interactions, mechanisms enabling conventionally-forbidden HRS are 

discovered. For each process analysed, the main results are predictions for the 

efficiency or observable rate. The relative positions and orientations of the 

molecules and fields are the key variables, so the rate equations are typically 

complicated functions thereof. Where rate equations depend on molecular 

orientation, it is often appropriate to calculate the average value over all 

orientations, giving results applicable to the fluid phase. System geometry may 

exert very fine control – a process forbidden in one case may become allowed by 

a minor change of one chromophore’s alignment. This thesis contributes to 

understanding the precise requirements of molecular geometry that must inform 

the design of energy-transfer systems. 
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Chapter 1: Introduction 

 

1. Thesis overview 

This thesis concerns various processes of molecular absorption or emission of 

light, electronic energy transfer, and light scattering. All these forms of light-

matter interaction may in principle be reduced to a series of microscopic photonic 

interaction events. The formalism of molecular quantum electrodynamics 

(MQED) understands each individual interaction event to consist of a single 

chromophore changing its electronic state while creating or annihilating a photon. 

I intend to describe several different forms of interaction and molecular transition 

in an MQED framework. This thesis extends the direct application of MQED 

methods to certain common physical processes that are conventionally analysed 

with other theoretical approaches, and introduces novel developments to existing 

QED analyses. 

The two parts of Chapter 2 are an introduction to molecular QED theory and the 

calculation methods applied in the research of chapters 3-6. Certain features of the 

theory require careful interpretation, as the analysis may involve counter-intuitive 

results of quantum mechanics, or contain implicit assumptions that limit its 

applications. 

Chapter 2a explains the necessity of quantum electrodynamic methods for the 

analysis of photonic interactions, and provide the theoretical framework that is 

employed in the analysis and calculations of the subsequent chapters. It then 

explores the complications that arise in the treatment of multi-interaction 

processes – in principle, interaction events may occur in any time-order and the 

intermediate states of a system’s evolution are unspecified. Appendix 8a assists in 

explaining the mathematical patterns governing event-ordering. 

Chapter 2b outlines the standard method of calculating a rotational average of 

molecular response tensors, which is necessary for evaluating the rate of a process 

where the molecule(s) are randomly oriented or stochastically rotate. Appendix 8b 

contains the full data required for an explicit calculation. This method is used to 

calculate rotationally-averaged rate equations in chapters 3a, 4b, 5 and 6. 
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For each photonic process explored in the chapters 3-6, the main results of the 

MQED analysis are to derive the predicted transition efficiency or observable 

interaction rate. The relative positions and orientations of the system’s molecules 

and fields are usually the key variables to determine efficiency, so the final rate 

equations are typically functions of the lengths and angles in the system geometry. 

Chapter 3 is in two parts, concerning processes of resonance energy transfer 

(RET). Chapter 3a discusses the nature of RET in its two-body and third-body-

modified forms, and provides detailed analysis of the case in which the nearest 

molecule of surrounding matter constitutes the third body. This directly links the 

bulk material properties of a medium to the microscopic photonic interactions of 

RET. Appendix 8c is part of the electrodynamic coupling derivation that is central 

to the analysis of RET applied in chapters 3a, 3b and 4a. Chapter 3b gives special 

attention to a system geometry in which two-body RET is naturally forbidden – 

coupling with the third chromophore is absolutely necessary for RET, and so the 

precise position and orientation of this chromophore is critical. 

Chapter 4 is in two parts, concerning the emission of one or two photons by a 

system of multiple chromophores – emission behaviour is complicated by 

delocalisation of the initial excitation between the chromophores. Chapter 4a 

explores the consequences of pairwise electrodynamic coupling, both within a 

two-nanoemitter system and between individual nanoemitters and the detector 

unit. Appendix 8d gives a mathematical treatment of the quantum mechanics of a 

two-chromophore exciton, where the coupling leads to unspecified excitation-

sharing between emitter units. Chapter 4b disregards explicit coupling and models 

the fluorescence of a multi-chromophore complex in solution, where the sharing 

of excitation is itself a quantum measurement phenomenon. 

Chapter 5 concerns the absorption of one or two photons by a molecule, with the 

involvement of an additional non-resonant beam of light modifying this process. 

The forward-scattering of auxiliary light is additional to the absorption, forming a 

single process of up to four distinct interaction events. Analysis of the case of a 

molecule in solution requires rotational averaging and a discussion of how media 

properties influence the character of interacting light. 

Chapter 6 concerns high-order processes of hyper-Rayleigh scattering (HRS) by a 

molecule. Within a theoretical analysis that uses the standard electric-dipole 
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approximation for all interactions, HRS is known to be forbidden for high-

symmetry molecules. But by including interaction behaviours beyond the electric-

dipole approximation in the analysis, this chapter describes mechanisms that 

enable such conventionally-forbidden HRS. 

Chapter 7 concludes with commentary on the preceding chapters, noting how the 

many different photonic processes are connected by similar MQED models and 

methodology. The limitations of the theoretical framework are discussed briefly, 

along with considerations of quantum-measurement interpretation. The various 

novel findings of this thesis are noted, together with their potential applications 

and areas for further research. 

 

2. List of publications 

Chapters 3-6 of this thesis report six distinct research projects undertaken during 

my postgraduate studentship. As part of this work, several journal articles and 

conference papers have been published. Each thesis chapter has been written to 

expand upon the findings and discussion contained in the corresponding 

publications, and to bring the projects together into a coherent thesis on geometric 

aspects of interaction efficiency. While all publications have been cited where 

appropriate, here is a complete self-bibliography in chronological order. 
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Chapter 2: Calculation framework 

2a: MQED theory 

 

1. MQED: Photonic interactions of molecules 

Quantum electrodynamics is the essential framework for any microscopic analysis 

of molecule-light interactions. A semiclassical model, with quantum-mechanical 

molecules influenced by Maxwellian fields, fails to correctly describe processes 

such as spontaneous emission. A classical vacuum with no radiation offers no 

perturbation to a molecule’s stationary states, so any excited state should be 

perfectly stable. Quantum electrodynamics, by treating radiation as quantum 

particles (photons) subject to uncertainty relations, permits quantum fluctuations 

in photon-number as a source of perturbation.
[1–3]

 

As an example interaction, consider Rayleigh scattering – a process well-known 

as the cause of the atmosphere’s light blue colour. The naive or semi-classical 

model is light (which may or may not be quantised as photons) bouncing off a 

molecule in a single event, like a microscopic form of reflection – this is implied 

by the word “scattering”. But the photonic description is two distinct microscopic 

interaction events: the absorption of an input photon and the creation of a new 

photon of the same wavelength. 

While most of this thesis concerns interactions of photons with whole molecules, 

the theory can equally be applied to photonic interactions of individual optically-

active sites (chromophores) affixed to some larger matrix. The words “molecule” 

and “chromophore” can be understood as interchangeable in most contexts. 

When applying any of these theoretical results to a specific real system, care must 

be taken to ensure that the chromophores are adequately separated in space – all 

interactions are understood to entail a minimum number of photons being 

exchanged between chromophores that remain distinct, with their individual 

states. If there is close physical contact between the molecules, then their 

electronic wavefunctions will significantly overlap, so each molecule no longer 

has a discrete state that only changes in response to creation or annihilation of 

identified photons. If wavefunctions overlap sufficiently that a chemical bond is 

formed, then it becomes incorrect to describe the chromophores as distinct objects 
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whose interactions are mediated purely by the passage of photons through the 

vacuum between their two positions. 

All electromagnetic interactions of molecules are described as discrete 

interactions with the (quantised, retarded) electromagnetic field. These 

interactions are perturbations of the molecules’ states, so perturbation-theory 

methods may be used to evaluate the quantum amplitudes of molecular transition 

processes in terms of molecule-radiation interaction Hamiltonian operators. 

In principle, all theory serves the goal of making predictions for the observable 

outputs of interactions (physical observables such as emission of radiation, or net 

change in a molecule’s electronic excitation), which may be tested. For a process 

where the system of interest undergoes a change in overall state, the theoretical 

analysis methods outlined in this chapter can deliver a prediction of the rate of the 

transition. This may be verified by quantitatively measuring observable signals 

that are diagnostic of the final state produced by the process. 

 

2. Feynman diagrams 

In fundamental quantum field theory, the interactions of elementary particles are 

shown with Feynman diagrams, with conservation of four-momentum ensured by 

rules governing line gradients. A Feynman diagram illustrates a particular 

movement of particles through spacetime, each constituent subsystem occupying 

several states during the evolution. 

Feynman diagrams are well-suited to the systems considered in this thesis, 

because it is possible to show the specifics of each individual photon-interaction 

and the time-order of the events. Unlike the classic diagrams of Richard Feynman 

et al which describe general interactions of particles,
[4]

 this thesis deals with 

molecules limited to non-relativistic motion, and so the form of all Feynman 

diagrams is limited to vertical molecule-lines with photons shown as diagonal 

waves. 

Whole molecules generally remain at non-relativistic speeds, within a Born-

Oppenheimer approximation. The Feynman diagrams used in molecular quantum 

electrodynamics can thus be made to obey the simple rule that molecule lines 

remain vertical. The speed of light being constant, all photons are wavy lines with 
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the same gradient. This approximation removes all other relativistic 

considerations from the Feynman diagram structure. 

 

 

Figure 2a.1: An elementary molecular Feynman diagram. This shows a 

molecule’s spontaneous emission of one photon, while relaxing from an excited 

state α to the ground state 0. The vertical axis is time and the horizontal axis is a 

spatial coordinate, so the slope of the photon’s line indicates propagation to the 

right at speed c. 

 

The information that Feynman diagrams are used to convey in non-relativistic 

molecular quantum electrodynamics does not include intricacies such as four-

momentum. All that is shown is motionless molecules interacting with the field 

and photons that are either virtual (bounded at both ends by interactions within the 

system) or real (connecting the system to the outside, so directly observable). 

Since the relative positions are drawn so abstractly as to be useless, and the virtual 

photons are always implied to consist of a great many possible radiation modes, 

the only physical information that these Feynman diagrams successfully convey is 

the core connectivity and time-order of the photonic interactions within a process. 

See appendix 8a for an overview of a complementary method for 

diagrammatically representing multi-interaction photonic processes: State-

sequence diagrams have certain mathematical advantages,
[5,6]

 and have been 

usefully applied to many of the problems in this thesis.
[3,7,8]
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3. Radiation states and the interaction Hamiltonian 

Photons, as physically observable particles, are described solely in terms of their 

tangible properties which may perturb the matter they interact with. A radiation 

mode describes the microscopic structure of the electric and magnetic fields. The 

decomposition of a system’s radiation into a set of discrete modes, each occupied 

by an integer number of photons, is the quantum version of a classical field mode 

decomposition.
[9,10]

 The states of a system’s radiation are quantified by the Fock 

number q, which is the number of photons of a specific mode in the system. 

This thesis uses a decomposition of electromagnetic fields into the set of plane-

wave modes. Each such mode is defined by the wavevector k, describing the 

propagation direction and the wavelength 12 k   , and the polarisation state η. 

The Fock states of radiation are thus labelled , ,q k . A plane wave has the 

unique property that the field structure is paraxial at all points along the axis of 

propagation k, such that the wavefronts of constant phase are parallel planes 

normal to the k axis. All positions along this axis are equivalent, so the position of 

an interaction does not need to be uniquely defined – in any other choice of mode 

decomposition, it is necessary to specify that the interacting chromophore is 

positioned at the origin of the mode expansion, and carefully construct the Fock 

states to accommodate this requirement. 

When moving from a semi-classical formulation to a fully-quantum molecular 

electrodynamics, the relevant Hamiltonian energy operator for the quantum-

mechanical system must be reformed. Quantum radiation, composed of Fock 

states , ,q k , is now part of the system, so it has its own distinct Hamiltonian 

term. The system Hamiltonian operator is thus conventionally decomposed into 

three components, summing over the various molecules ξ: 

 radiation molecule interaction  +  H H H H


   
(2a.1) 

The interaction Hamiltonian term for each molecule ξ is expressible as a 

multipolar expansion. With the radiation imposing transverse electric 

displacement field 
d  and magnetic field b on the location of ξ:

[1,11]
 

  1 1

interaction 0 0  –  –  –  ij j iH Q d         μ d m b
 

(2a.2) 



2a: Photonic interactions 

19 

Subscripts i,j,k,l are Cartesian indices, each representing an unspecified member 

of the standard-basis set {x,y,z}. This thesis makes extensive use of the Einstein 

convention of implied summation over repeat indices: If Rx represents the x-

component of a vector R, then i i x x y y z zR S R S R S R S    R S . 

In equation (2a.2), μ, Q and m are the electric dipole (E1), electric quadrupole 

(E2) and magnetic dipole (M1) response operators of molecule ξ. In principle, the 

series continues with an infinite number of EN and MN terms. This description of 

the interaction as a combination of multipole moments with increasing order is a 

series expansion, following from a multipolar decomposition of the interaction 

potential’s distribution about the molecule’s position. The pseudo-numerical 

“-pole” names reflect the fact that permanent multipoles are idealised potential 

distributions with 2
N
 poles, centred on the molecule’s position. The N=0 

multipoles are not included – electric monopoles are merely permanent charges, 

and magnetic monopoles are physically impossible. 

It is usually sufficient to include only the first term of the Hint expansion – this is 

the electric dipole (E1) approximation. This is satisfactory when the radiation 

wavelength is sufficiently long that there is no variation in the fields over the 

extent of the molecule. The transition electric dipole moments for each transition 

(labelled μ
FI

 below) are then the only relevant molecular properties. This form of 

the multipolar expansion, which neglects longitudinal fields and delivers the E1 

approximation as a leading term, is consistent with the Power-Zineau-Wooley 

canonical formulation of MQED interactions.
[12,13]

 Any multipolar-tensor-

coupling formulation (such as the E1 approximation) necessarily presupposes a 

QED framework.
[14,15]

 

Each interaction event may be described with a Dirac bracket – this gives the 

quantum amplitude for the interaction process, as discussed in the following 

section 4. Using the E1 approximation, 1

int 0( ε )H    μ d , the molecule-plus-

radiation system is transformed from its initial state I to a final state F with 

amplitude: 

int int

1

0

Mol Rad Mol Rad

Mol | | Mol Rad | | Rad

F F I I

F I F I

F H I H

  

  

  μ d  
(2a.3) 
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The molecular Dirac bracket vector is the electric dipole moment of the 

molecule’s transition, conventionally labelled μ
FI

. Given that the fields belong to 

the radiation, which consists of photons in various Fock states, the quantum 

description of transverse electric displacement field 
d  is expressed as a mode 

expansion in terms of the plane-wave mode parameters k and η: 

   

1/2

†0
( , ) ( , ), ,

,

exp( ) exp( )
2

ck
i a i a i

V
    



            
 k kk k

k

d e k r e k r
 

(2a.4) 

A single photon and a molecule ξ (transitioning ξF← ξI) will therefore interact as 

described by the Dirac bracket: 

 

    

1/2

int ( , ) ,
, 0

†

, ,

exp( )
2ε

exp( )

F I

i i F I

F Ii

ck
F H I i e i Rad a Rad

V

e i Rad a Rad

 

  


 


 

   
 

  

 k k

k

k k

k r

k r

 
(2a.5) 

The photon annihilation operator  ,
a

 k  and the photon creation operator  
†

,
a

 k
 

operate on Fock states of radiation , ,q k  according to standard quantum 

algebra rules: 

   1/2

,
, , 1 , ,a q q q


  

k
k k

 
(2a.6) 

     
1/2†

,
, , 1 1 , ,a q q q


   

k
k k

 
(2a.7) 

The letter q here represents the mode occupation number of a plane-wave Fock 

state – loosely, this is the number of photons within the system volume V that 

have polarization state η and wavevector k. If a different set of electromagnetic 

modes is used to describe the system’s radiation, the Fock states would be defined 

differently – there would be an alternative annihilation operator a and creation 

operator 
†a  for this set of modes, and they would change the Fock numbers for 

the relevant states according to equations (2a.6) and (2a.7). 

A logical consequence of these algebra rules is that the two Dirac bracket terms of 

equation (2a.5) are both always zero, unless one of the two following possibilities 

hold true: 
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 Photon creation – the number of photons in the (k, η) mode increases by one in 

the course of the interaction: 

 

 

,

1/2

int ,
, 0

1

exp( )
2ε

F I

F I

i i

Rad Rad

ck
F H I i e i

V



 






 

 
     

 


k

k

k

k r
 

(2a.8) 

 Photon annihilation – the number of photons in the (k, η) mode decreases by 

one in the course of the interaction: 

 ,

1/2

int ( , )

, 0

1

exp( )
2ε

F I

F I

i i

Rad Rad

ck
F H I i e i

V



 

 




 

 
    

 


k

k

k

k r
 

(2a.9) 

This is, indirectly, a proof of the postulate that fields and molecules only interact 

via the creation or annihilation of a single photon at the molecule. 

 

4. Quantum amplitude and process rate 

In quantum mechanics, a system’s state transition is a wavefunction-collapse from 

one state to another, due to some perturbation. We cannot mechanistically predict 

such microscopic events, merely the probabilities of them occurring. So instead of 

deriving precise predictions of transition times we must settle for calculations of 

the average rate of transition occurrence. 

For the F←I transition, the crucial variable is the quantum amplitude MFI. Most 

generally, this is the Hamiltonian matrix element of the perturbation transforming 

I into F, expressible as a Dirac bracket: 

FIM F H I
 

(2a.10) 

The operator H   is a perturbation Hamiltonian, describing the total energy 

exchanged in the transition. For transitions involving a single microscopic 

interaction, the role of this H   can be taken by the molecular interaction 

Hamiltonian Hint described in the previous section. So for a single-event process, 

equation (2a.8) or (2a.9) gives the process quantum amplitude MFI. 

 “Fermi's golden rule” (actually Dirac’s rule, called “golden” by Fermi) is the 

basis of any calculation of the rate of a system’s discrete state transition. This 
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probabilistic rate, ΓFI, is the probability of the F←I transition’s occurrence per 

unit time. It may be interpreted as the mean lifetime of the state I, or as the 

expected average abundance of the state F as a function of time. If the system’s 

destination F is a continuum of possibilities with density-of-states F , the Fermi 

rule is stated as: 

212FI F FIM  
 

(2a.11) 

This square-modulus function is a form of the Born rule, relating observation-

probability to the Dirac brackets of state-overlap. The applicability of the Fermi 

rule to a particular transition rests on how accurately a single constant value for 

F describes the nature of the system’s state F. 

A quantum amplitude MFI is a complex quantity, with units of energy because H 

is an energy operator. Like a wavefunction, it is an abstract mathematical object 

that only indirectly describes the observable properties of the transition. The 

square-modulus has a real physical interpretation via the Born rule, but the 

complex argument does not. However, the complex argument does have important 

effects on quantum interference, described below. 

 

5. Multi-component quantum amplitudes 

Quantum amplitudes M obey a version of the superposition principle – the “true” 

MFI is the total of a (linear, unweighted) sum of all possible amplitudes that 

connect the same states F and I. All physical mechanisms, involving all 

combinations of any number of feasible perturbations, contribute to the sum as 

terms in MFI. This principle has been poetically described as “everything that can 

happen does happen”,
[16]

 and forms the basis for path-integral calculations in pure 

QED.
[4]

 The magnitude of each individual component MFI is a measure of that 

particular mechanism’s efficiency as a method for executing the F←I transition. 

The Fermi rule’s square-modulus dependence on the total amplitude creates 

quantum interference in the transition rate of processes with multiple MFI 

components. When there are n distinct amplitude components, the Fermi rate 

consists of n squared-amplitudes plus n(n-1)/2 cross-terms of interference 

between pairs. For example, with n=3: 
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(2a.12) 

An overbar denotes complex conjugation. The sign and magnitude of the cross-

terms depend on the complex arguments of the two quantum amplitudes that 

interfere. This means that including additional transition mechanisms does not 

necessarily simply add to the rate – quantum interference may be constructive or 

destructive. 

In equation (2a.10), identifying H   with Hint follows from first-order perturbation 

theory: The physical interaction of photon and molecule, described by Hint, is the 

perturbation that transforms I  into F . For example, in figure 2a.1, the pre-

interaction system labelled “Before” is I , the resulting state labelled “After” is 

F , and the interaction event (molecular relaxation plus photon creation) defines 

the transition. But when the transition F←I requires more than one distinct 

interaction event, the state I is followed by intermediate eras (R, S, T, etc.) before 

the system evolves to F. Each microscopic transition from one state to another is 

then a separate perturbation Hint, so a K-interaction process must be described by 

K
th

-order perturbation theory. This means that in general, the quantum amplitude 

MFI is given by the K
th

 term of a perturbative expansion:
[10,17]

 

  
int int int int int

int

,

...FI

R R SI R I R I S

F H R R H I F H S S H R R H I
M F H I

E E E E E E
   

  
  (2a.13) 

This expansion is another sum over various Ms for different mechanisms, since in 

principle a process F←I may proceed via a varying number of interactions. But 

practically, if a process requires a minimum of K interactions, then the first K–1 

terms of the expansion shall vanish and the K
th

 term shall be the most significant 

by far. 

For processes entailing more than one interaction event, the initial state I is 

abolished by the first event to occur, and the final state F is ushered in by the last 

one to occur. During the time between these two events, the system is in 

intermediate states (labelled R, S, T, etc.). The summation over all possible 
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mechanisms, as in equation (2a.12), necessarily includes a sum over all possible 

intermediate states that the system may occupy in the course of each transition 

pathway. This is indicated by the big sigma operator summing over R, S, T in the 

terms of the perturbative expansion (2a.13). Importantly, the derivation of this 

expansion specifically excludes the states I and F from the set of R, and from the 

set of S, etc.
[18]

 

Without any observation of the system during these intermediate eras, all 

possibilities for the molecular state must be included – all of the molecule’s 

realisable stationary states, and in principle also countless “virtual” states with a 

total energy value that is not in the set of proper eigenfunctions. The full sum-

over-states may be infinite, but the quantum amplitudes involving the stationary 

states will usually be the leading significant terms. 

The sum must even include intermediate states that violate the requirement of 

total energy conservation at each event. The strict law of energy conservation 

applies to the states I and F, so any energy imbalance will last only as long as the 

intermediate states. If the intermediate eras are of short duration (compared to 

Planck’s constant ℏ divided by the magnitude of the energy imbalance) then 

fleeting non-conservation is permitted. This is in accordance with the time-energy 

uncertainty principle – the total energy content of the system in state R has 

uncertainty inversely proportional to the lifetime of R, whereas I and F are of 

unbounded duration and thus certain energy. The denominators of equation 

(2a.13) indicate that the magnitude of each energy imbalance is inversely 

proportional to that mechanism’s quantum amplitude contribution. 

This argument for temporary non-conservation of energy also applies to other 

conservative quantities: the states I and F have well-defined values for the linear 

momentum and angular momentum of each molecule, yet unobserved 

intermediate states are not required to maintain these properties. These unseen 

imbalances do not cause any overall change to the position or orientation of 

molecules undergoing multi-interaction processes, as any such change would 

constitute an observation of the reality of certain intermediate states R. 
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6. Damping and resonance 

In the minimal description of each photonic process, the system states I and F are 

taken to be of infinite duration – giving them a finite lifetime would be to include 

additional state transitions before or after the process. This infinite duration 

requires that all mechanisms for the decay of these states are neglected. This is 

reasonable when I or F involve the molecules’ ground states, which should be 

perfectly stable. But the intermediate states R, S, T are short-lived, so it is 

necessary to include some description of their decay tendencies. 

When each photonic process is described as a minimum number of photons being 

exchanged between chromophores, this deliberately ignores many other possible 

interactions. A complete description of a system’s behaviour must also include 

each molecule exchanging rotational and/or kinetic energy with its neighbours. In 

the condensed phase, these neighbours are disordered solvent molecules, so the 

system is coupled to a thermal bath with a huge number of degrees of freedom. 

Any energy transferred into the thermal bath is unlikely to ever return coherently 

to the system. This coupling manifests as a tendency of the molecular states to 

decay via irreversible thermal dissipation.
[19]

 

In a density matrix formalism, the evolution of such an open quantum system 

(weak coupling to a stochastic bath) is described by a master equation in Lindblad 

form:
[20]

 

   † † †, 2 2
d i

H L L L L L L
dt
     


     

(2a.14) 

The first term is the standard Liouville-von Neumann equation for the evolution 

of a closed quantum system with density matrix ρ, equivalent to the Schrödinger 

equation. The effects of dissipative coupling with the environment are described 

by the Lindbladian terms with a set of decay constants γ. The Lindblad operators 

L represent the open system's contribution to the system-bath interactions.
[21,22]

 

The variable r   is the decay constant of molecular state r due to thermal 

dissipation – in the language of harmonic oscillators, this is the damping 

experienced by that state. A stable ground state immune from decay has no 

damping, so 0 0  . 
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According to equation (2a.13), the quantum amplitude for any multi-interaction 

process is a function of the differences in total system energy between state I and 

each intermediate state R, S, T. For each energy difference factor, separating out 

the molecule and radiation energies yields 

  Rad Rad

0 0I R I r R rE E E E E E E ck      
 

(2a.15) 

where E0r is the difference in molecular energy (between state 0 in era I and state 

r in era R) and k is the wavenumber of the interacting photon in the R←I 

transition. Energy ℏck is added or subtracted from the system depending on 

whether the photon is being created or annihilated. 

Within the QED formalism of this chapter, the decay tendency of each 

intermediate molecular state r, s, t enters the description of multi-interaction 

processes via a damping modification to these energy difference factors: 

  0I R r rE E E ck i c   
 

(2a.16) 

The imaginary damping term is not derived directly from the perturbative 

expansion (2a.13). The form of this modification is a phenomenological 

expediency, intended to encapsulate dynamics of the system beyond the minimal 

photon-molecule interactions, without explicitly including the many additional 

system-bath interactions.
[23–25]

 

Technically, the appearance of an imaginary part in the energy difference 

 I RE E  may be interpreted as non-Hermiticity of the R←I interaction 

Hamiltonian operator, Hint. This breaks time-symmetry for the R←I transition, 

and this time-asymmetry represents the irreversibility of the decay process 

(tending toward thermal equilibrium). Under Noether’s theorem, any time-

asymmetry is equivalent to the system failing to satisfy overall conservation of 

energy. Therefore, energy exchanges with the thermal bath have been 

incorporated into the QED system model in the form of energy discrepancies at 

each state transition. (This is distinct from the explicit non-conservation described 

in the previous section.) 

Apart from the need to include thermal dissipation effects into the QED analysis 

for completeness, damping becomes a very important contribution to system 

behaviour under certain conditions. For choice molecular states r, it is possible 
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that the energy contribution of the interacting photon is equal to the molecular 

transition, a condition of resonance: 

0rck E 
 

(2a.17) 

With no damping, this means the molecule-radiation interaction is perfectly 

energy-conservative at the R←I transition, and hence I RE E . At resonance, the 

unmodified perturbative equation (2a.13) predicts an unbounded rate of transition. 

But in fact, the rates of real second-order transitions are observed to vary with 

radiation frequency such that there is a well-behaved maximum at resonance. The 

addition of imaginary damping to the energy-differences results in the predicted 

rate having a Lorentzian spectrum in k near resonance:
[26,27]

 

   
2 2

0

1

r rE ck c
 

   
(2a.18) 

At exact resonance, 0 0rE ck  , the damping term entirely dominates the 

energy denominator, and so the peak transition rate has an inverse-square 

proportionality to the damping, 2

r
 . This makes the damping magnitude an 

indirectly measurable quantity. 

 

7. Time-ordering 

A process consisting of K distinct interaction events may proceed with those 

events occurring in any order. Each of the K! time-orderings involves the system 

transitioning through a unique sequence of (K-1) intermediate states R, S, T, etc. 

When the perturbative expansion sums over all possible intermediate states, this 

includes a summation over all of the K! time-orderings. 

For example, consider a process of resonance energy transfer from a donor 

molecule to an acceptor molecule, the focus of chapter 3. There are two Feynman 

diagrams for this, showing a transfer of electronic excitation from one molecule to 

another via a photon: 

  



2a: Photonic interactions 

28 

 

Figure 2a.2: Resonance energy transfer. Left: The Donor molecule interacts with 

radiation in the event labelled (A), relaxing from excited state α to ground state 0 

and creating the photon ϕ; then the photon annihilates at the Acceptor in the event 

labelled (B), this interaction exciting it to state β. Right: The Acceptor molecule is 

excited and creates photon ϕ in the event labelled (B); then the photon annihilates 

at the Donor which relaxes in the event labelled (A). 

 

The two events mark transitions in which the molecules and the field change state. 

These states are only disturbed by the interaction events, and so in describing the 

entire system, the events (A) and (B) execute the system’s transition between 

overall states I, R, F. It is the non-relativistic approximation which enables us to 

unambiguously divide the entire system’s time history into three discrete eras 

without worrying about the relativity of simultaneity. The two events punctuate 

three eras in the system’s history, each characterised by an overall system state. 

See appendix 8a for an alternative representation of this process. 

The system’s “true” state R is unspecified, due to the era lasting too short a time 

for any real measurement. The two time-orderings of (A) and (B) each provide 

equally many possibilities for R. The sum over intermediate states R includes an 

indefinite integration over the infinite possibilities for wavevector and polarisation 

of the photon ϕ, even those that create an energy imbalance. In fact the (B)(A) 

time-ordering (the right Feynman diagram of figure 2a.2) always involves some 

energy non-conservation, but the (A)(B) time-ordering is only perfectly 

conservative if the photon energy ℏcϕ has exactly the correct value. 
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Time-ordering falls within the category of unspecified mechanistic information – 

the total quantum amplitude of a multi-event process is the sum of the amplitudes 

for each time-ordering. For a K-interaction process: the total quantum amplitude 

must first be decomposed into a sum of K! terms, each being the amplitude for the 

process limited to one time-ordering; then each of those terms must be 

decomposed into an (infinite) sum, each term of which is the amplitude for the 

process limited to a specific sequence of intermediate states. 
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Chapter 2: MQED calculation framework 

2b: Rotational average of molecular response tensors 

 

1. Introduction 

In each of the following chapters, MQED methods are employed to calculate the 

rate of a certain photonic process as a function of the orientation of the 

chromophores. If the orientation is static and known, the MQED results may be 

used to directly predict the observable process rate. 

This chapter describes a method for integrating the MQED rate result (for a static 

chromophore) over the three Euler angles of chromophore orientation, delivering 

a rotational average of the process rate. Chevron brackets  denote that this 

operation has been applied to a quantity: If rate Γ is a function of orientation, then

 is the average value of Γ for the whole orientation-space formed by the three 

Euler angles. 

This average is the correct observable rate for photonic processes in which a 

stochastically-oriented molecule interacts with fields that are fixed in the 

laboratory frame: Interactions of an arbitrarily-oriented molecule with virtual 

photons that couple with fixed chromophores (chapter 3a); laboratory-fixed light 

beams interacting with a freely-rotating chromophore such as a molecule in liquid 

solution (chapters 5 and 6); etc. 

Even if the unfixed chromophore is not rapidly rotating but is static in a 

randomly-determined orientation relative to the fixed fields, the result of Euler 

angle integration is an ensemble average over many systems, which undergo the 

photonic process with different values for that orientation. 

 

2. Reference frames 

As implied by the scalar products in equation (2a.2), every interaction rate term is 

proportional to a scalar product of field vectors and a molecular response tensor. 

Using the Einstein convention of implied summation over repeated indices i: 
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  123...123...
fields i iNi iN

T
 

(2b.1) 

To calculate this scalar product, the field vectors and the molecular response 

tensor must both be expressed in terms of Cartesian components with respect to a 

common reference frame. 

The radiation is fixed in the laboratory frame, meaning that its polarization 

vectors e (or the coupling tensor V that describes virtual radiation) have invariant 

Cartesian components in the laboratory-fixed basis set {x,y,z}. Laboratory-fixed 

tensor components are indicated with Roman indices: i,j,k,l… or i1,i2,i3… 

A molecule’s response tensor is determined by the intrinsic electronic geometry of 

the internal structure, and rotates with the molecule, so the laboratory-frame 

Cartesian components vary with the Euler angles of orientation. The tensor 

components in a molecule-fixed reference frame, with unit vectors {x’,y’,z’}, are 

invariant, so this is the natural frame for expressing these quantities. The 

orthogonal set {x’,y’,z’} would typically be defined by molecular symmetry 

elements such as a principal rotation axis. Molecule-fixed tensor components are 

indicated with Greek indices: λ,γ,ϵ,ζ… or λ1, λ2, λ3… 

The laboratory-fixed tensor components 123...i iNT  will vary as the molecule rotates, 

but the molecule-fixed components 123... NT   are invariant quantities intrinsic to 

the molecule’s physical composition. It is therefore necessary to evaluate each 

laboratory-fixed component as a function of the natural components and a product 

of cosines relating the unit vectors of the two reference frames.  

123... 123... 1 1 2 2 3 3i iN N i i i iN NT T l l l l     
 

(2b.2) 

The dimensionless scalar 1 1il  is the cosine of the angle between the (laboratory-

fixed) unit vector with hanging index i1 and the (molecule-fixed) unit vector with 

hanging index λ1. The factor consisting of N cosines is a double-tensor (a tensor 

with components in both frames) which describes the relationship between the 

two frames, as determined by the Euler angles. The rotationally-averaged double-

tensor is conventionally labelled ( )NI . 

( )

1 1 2 2 3 3

N

i i i iN NI l l l l   
 

(2b.3) 
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The double-tensor is the only factor in rate equation (2b.1) influenced by the 

molecule’s orientation. Crucially, this means that a rotational average of this 

factor accomplishes the averaging of the process rate. 

  ( )

123...123...
fields N

Ni iN
T I  

 
(2b.4) 

Apart from a brief discussion of N=1 and N=3 averages in chapter 3a, and a 

borrowed N=7 result in chapter 6, this thesis only contains explicit evaluations of 

rotational averages with even N values, up to 8. 

 

3. The Thirunamachandran method 

The rotational-average of the double-tensor is calculated according to a standard 

method:
[1–3]

 

( ) ( ) ( ) ( )N N N N

r rs sI f m g
 

(2b.5) 

With even N values, each ( )N

rf is a tensor consisting of a product of N/2 

Kronecker deltas, cast in the laboratory-fixed coordinates i such that each ( )N

rf

index-contracts with the field vectors. Each possible value of the index r produces 

a ( )N

rf with a distinct permutation of the N indices. The set of possible r values has 

cardinality that depends on N:  

 1, 2, 3,r r
 

(2b.6) 

 

 
 /2 1

1

1 !
1 3 5 1

2
N

x

N
r N

x





     

  
(2b.7) 

The elementary case is N=2, which yields the single tensor
(2)

1 12if  , specifying a 

dot product of the field vector that has hanging index i1 and the field vector that 

has hanging index i2. An average with N=4 yields three pair-of-delta tensors (4)

rf : 

(4)

1 12 34

(4)

2 13 24

(4)

3 14 23

i i

i i

i i

f

f

f

 

 

 






 

(2b.8) 
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An average with N=6 yields fifteen triple-delta tensors (6)

rf , following the pattern 

of specifying all unique i-index pairings. An average with N=8 yields 105 quad-

delta tensors (8)

rf .
[4]

 These results are provided in Appendix 8b. 

The tensors ( )N

sg are identical in form to ( )N

rf , but the Kronecker deltas are cast in 

terms of the molecule-fixed coordinates λ such that each ( )N

sg index-contracts with 

the molecular response tensor. 

The elements ( )N

rsm  are defined by the following matrix-inversion relation, 

inferred from equations (A2.13) and (A2.10) of ref.
[1]

: 

  1N
m  S

 
(2b.9) 

( ) ( )N N

rs r sS f f 
 

(2b.10) 

The matrix S consists of Kronecker delta inner-products, so equation (2b.10) 

always produces a single-valued dimensionless scalar, a real number. For 

example, in the N=6 case, the top-right corner element of S is: 

(6) (6)

1;15 1 15 9ij kl mn in jm klS f f         
 

(2b.11) 

The matrix-inverse of S is then calculated, yielding the m
(N)

 matrix. Therefore, the 

elements ( )N

rsm  are likewise real numbers.
[5,6]

 Appendix 8b reports the results of all 

( )N

rsm for even values of N up to 8. Notably, the m
(N)

 matrices obey the formula 

 
1( )

,

1N

rs

r s

m N


  .
[4]

 

Each rotationally-averaged rate term is thus expressible as a multiple index-

contraction, with implied summation over all N laboratory-fixed indices i in the 

set{x,y,z}, over all N molecule-fixed indices λ in the set {x’,y’,z’}, over r in the set 

defined by equation (2b.6), and over s in the same set. 

 

 

( )

123...123...

( ) ( ) ( )

; 123... ; 123... 123...123...

fields

fields

N

Ni iN

N N N

r i iN rs s N Ni iN

T I

f m g T

 

   

 

  
(2b.12) 
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4. Degeneracy and natural invariants 

It may be that the laboratory-fixed field “tensor”, labelled [fields], contains 

vectors that are indistinguishable. Situations like this are especially likely in rate 

terms that are derived from the square modulus of a single quantum amplitude for 

an E1 interaction – each field vector e must appear alongside its complex 

conjugate, which is equal if there is no imaginary part. An arbitrary fourth-rank 

example would be: 

  1 2 3 41234
fields i i i ii

e e b k
 

(2b.13) 

Here, the two vectors e are identical, so the tensor labelled [fields] has i1↔i2 

index-symmetry. 

The effect of this symmetry on the rotational average evaluation is that several r 

values may yield identical results for the contraction with ( )N

rf . Also, in cases 

where the fields are produced by plane radiation, the vectors e have no imaginary 

part so   1 e e , and this may produce further degeneracy. In this example there 

is degeneracy between r=2 and r=3: 

   

    

    

(4)

1 2 3 4 1

(4)

1 2 3 4 2

(4)

1 2 3 4 3

i i i i

i i i i

i i i i

e e b k f

e e b k f

e e b k f

 

  

  

b k

e b e k

e b e k

 
(2b.14) 

In evaluating the implied sum over r in equation (2b.10), the set of unique values 

of the contraction   ( )

123...
fields N

ri iN
f  must be identified, and their coefficients ( )N

rsm  

are the sum of elements of m
(N)

 with the corresponding degenerate r values: 

       (4) (4) (4) (4) (4)

1 2 3 4 ; 1234 1 2 3i i i i r i rs s s sr
e e b k f m m m m      b k e b e k

 
(2b.15) 

In equation (2b.3), the double-tensor consisting of N cosines couples each i-index 

with the λ-index of the same number. The Latin-Greek symmetry of the double-

tensor is reflected in the diagonal symmetry of the m
(N)

 matrices. Any i-index-

symmetry in the contraction  ( )

123...
fields N

ri iN
f  must be reflected by λ-index-

symmetry in the contraction
( )

123...

N

s Ng T  , over the same numbers. Even without 

this induced symmetry, it may be that the molecular response tensor 123... NT   has 

intrinsic λ-index-symmetry due to the nature of the molecule’s state transition. 
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The effect of this symmetry on the rotational average evaluation is that several s 

values may yield identical results for the contraction with 
( )N

sg . An arbitrary 

fourth-rank example would be a T tensor with λ3↔λ4 index-symmetry, resulting 

in degeneracy between s=2 and s=3: 

(4)

1234 1 1122

(4)

1234 2 1212

(4)

1234 3 1221 1212

T g T

T g T

T g T T

 

 

  





 
 

(2b.16) 

As in the laboratory-fixed half of the calculation, the implied sum over s requires 

that the set of unique values of the contraction 
( )

123...

N

s Ng T   must be identified, 

and their coefficients ( )N

rsm  are the sum of elements of m
(N)

 with the corresponding 

degenerate s values: 

 (4) (4) (4) (4) (4)

1234 ; 1234 1122 1 1212 2 3s rs r r rs
T g m T m T m m       

(2b.17) 

Each unique 
( )

123...

N

s Ng T   result (in this example, 1122T and 1212T ) is a scalar 

produced by a limited sum over the 123... NT   Cartesian components, λ-index 

contracting along a particular molecule symmetry defined by the structure of
( )N

sg . 

These scalars are the “natural invariants” of the molecular response tensor for this 

electronic state-transition – as a set, they represent different aspects of the 

molecule’s capacity to perform the various forms of charge-redistribution 

required. 

The natural invariants contain information about how the molecule’s structure 

influences its QED interactions. Evaluating a subset of them as equal to zero 

constitutes a selection rule forbidding a certain kind of transition. It is well known 

that the selection rules for any interaction may be inferred from analysis of the 

components of molecular response tensors.
[7,8]

 

See chapter 6 for a worked example of a N=8 calculation. 

 

1
 D. P. Craig and T. Thirunamachandran, “Rotational Averaging of Tensors”: 

Mol. Quantum Electrodyn., Dover Paperback (Dover Publications, Mineola, New 

York, 1998), pp. 310–315. 



2b: Rotational average of molecular response tensors 

38 

2
 H. Jeffreys, “On Isotropic Tensors”: Math. Proc. Camb. Philos. Soc. 73, 173 

(1973). 

3
 T. Bancewicz, “Excess Hyperpolarizabilities: The Irreducible Tensor 

Approach”: J. Math. Chem. 50, 1570 (2012). 

4
 D.L. Andrews and W.A. Ghoul, “Eighth Rank Isotropic Tensors and Rotational 

Averages”: J. Phys. Math. Gen. 14, 1281 (1981). 

5
 D. L. Andrews and T. Thirunamachandran, “On Three-Dimensional Rotational 

Averages”: J. Chem. Phys. 67, 5026 (1977). 

6
 W.M. McClain, “Polarization Dependence of Three‐Photon Phenomena for 

Randomly Oriented Molecules”: J. Chem. Phys. 57, 2264 (1972). 

7
 D.L. Andrews and T. Thirunamachandran, “Hyper−Raman Scattering by Chiral 

Molecules”: J. Chem. Phys. 70, 1027 (1979). 

8
 R. Piron, S. Brasselet, D. Josse, J. Zyss, G. Viscardi, and C. Barolo, “Matching 

Molecular and Optical Multipoles in Photoisomerizable Nonlinear Systems”: J 

Opt Soc Am B 22, 1276 (2005). 

_ 



39 

Chapter 3: Resonance energy transfer modified by a third 

chromophore 

3a: Influence of near-resonant surrounding matter 

 

1. Introduction 

Resonance energy transfer (RET) is well known to occur in natural photosynthesis 

and its synthetic analogues,
[1,2]

 and energy-harvesting dendrimers and block 

copolymers likewise depend on efficient transfer of excitation between resonant 

chromophores.
[3–5]

 A detailed analysis of the advanced quantum features of this 

familiar process, and the effects unique to multi-chromophore systems, can give 

insights useful to the design of various novel energy-harvesting materials.
[6–9]

 

This chapter provides an MQED description of RET as a photonic process,
[10–13]

 

with focus on the process being modified by interactions with a third 

chromophore that does not directly compete as an acceptor, such as molecules of 

the medium. In many true photosynthetic systems involving an RET donor-

acceptor pair, there are nearby chromophores who absorb at a wavelength that is 

just a little shorter than the wavelength-equivalent of the transfer energy.
[14]

 This 

analysis discovers which specific properties of such nearby near-resonant 

chromophores will enhance or inhibit the efficiency of RET.
[15]

  

A simple three-chromophore model of modified-RET is constructed as an 

extension of elementary two-body RET.
[16]

 Familiar MQED methods are then 

applied to derive equations for the rate of this process in terms of system 

geometry and the electronic properties of the chromophores. The completely 

general rate expression is an intricate function of relative positions and 

orientations,
[17]

 so for ease of calculation the focus is then on providing actionable 

results for particular limiting cases of simple geometry. 

 

2. Three-body RET 

The MQED description of (unmodified) RET entails two 

molecules/chromophores: the donor, D, and the acceptor, A. The donor loses 
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energy in the process, and in the simplest case this means that it relaxes from 

some initial excited state, α, to its ground state, 0. The acceptor is excited by an 

equal amount, to some excited state of its own, β. These two molecular transitions 

are coupled by a mediating photon, ϕ, which is created at one of the interaction 

events and annihilated at the other. 

 

 

Figure 3a.1: Non-relativistic Feynman diagram (left) and Jablonski-like energy 

level diagram (right), illustrating two-body RET. See also figure 2a.2. 

 

A process of third-body-modified RET is constructed by the addition of a third 

chromophore, M, coupled to the RET system by additional virtual photons. The 

minimal coupling (which will dominate a sum-over-states) is via a single photon, 

p, interacting with M and one of the RET pair. Figure 3a.2 illustrates one possible 

configuration for this coupling scheme – in this example it is chromophore D that 

interacts with p, connecting the RET system to M. 

The four interaction events are distinct, with the individual labels (W), (X), (Y) 

and (Z).  At each event, one of the chromophores (M, D, A) undergoes a transition 

between states (0, α, r, β) and one photon (φ, p) is either created or annihilated. 

The four events may occur in any time-ordering, such that there are 4! = 24 

possible permutations. There are 23 Feynman diagrams in addition to figure 3a.2 

that also describe the same overall process. 
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Figure 3a.2: Feynman diagram of third-body-modified RET – specifically, the 

YZWX time-ordering for the MDA coupling configuration.  Event (W) is the 

interaction of M with photon p, considered a static interaction as M undergoes no 

transition and the permanent dipole of its state 0 is engaged; (X) is the interaction 

of D with photon p; (Y) is the interaction of D with photon φ; and (Z) is the 

excitation of A. The four events transform the overall system state from the initial 

I to the final F via three intermediate states. 

 

Regardless of the order of the four events, they punctuate five eras in the system’s 

evolution, labelled chronologically I, R, S, T, F. The sum-over-states encompasses 

all possibilities for the system’s states R, S, T. The many components of this sum 

are decomposed first by coupling configuration, then by time-ordering, then by 

the possible states of the photons and molecules within each era. 

The above photon-connectivity of the system (M coupled to D; D coupled to A) is 

labelled the “MDA coupling configuration”. The shorthand “MDA” serves as a 

direct illustration of the coupling: M-D, D-A. Without introducing a third photon, 

it is possible for the exact same modified-RET process to occur via a mechanism 

with M coupled to A, and D coupled to just one of the others. These are the DAM 

and DMA configurations. 

Intuitively, the coupling configuration should specify the direction of photon 

propagation, and thus dictate the chromophores’ relative positions. But in general 

the photon wavevectors are not strictly limited to the line from their creation 

position to their annihilation position. The sum-over-states includes a sum over all 
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orientations for the wavevectors, calculated as an integration over the polar and 

azimuthal angles (see Appendix 8c) – the possible wavevector orientations that 

are misaligned from the proper creation-annihilation line give smaller 

contributions to the total quantum amplitude. Similarly, if the relative positions of 

the chromophores are such that one of the three coupling configurations is 

unfavourable, this will simply result in that configuration’s quantum amplitude 

component being smaller. 

Ref.
[18]

 previously addressed this problem in terms of the same three coupling 

configurations. The bottom-up approach pursued here aims at a more detailed 

treatment of the influences of bulk matter surroundings on the RET process. 

 

3. Derivation for the MDA coupling configuration 

Consider interaction event (W), as shown in figure 3a.2. Applying the electric 

dipole approximation, the interaction of a photon p with a molecule M 

transitioning T←S has the Dirac bracket: 





0 0

(p)

1/2

( )

int (p) p

, 0

†

(p) p

exp( )
2ε

exp( )

M MW

i i M T S

i M T S

cp
T H S i e i Rad a Rad

V

e i Rad a Rad


 

   
 

  


p e

p r

p r

 
(3a.1) 

This is an applied form of equation (2a.5). The symbols p represents the photon’s 

wavevector, and the non-bold version, p is the magnitude. The subscript i here is a 

Cartesian index, using the Einstein convention of implied summation over 

repeated tensor indices: there is a scalar product of the molecule’s transition 

dipole moment vector μ
M

 and the radiation mode’s polarisation vectors e(p). 

Overbars denote complex conjugation.  The vector Mr is the (relative) position of 

the molecule M where this interaction occurs. The operators pa  and 
†

pa  are the 

photon annihilation and creation operators for the radiation mode p. The volume 

of quantization, V, usually represents the average amount of space occupied by 

one photon, but for a single-photon interaction this is arbitrary. 

As explained by equations (2a.5-7), at least one of these two Dirac bracket terms 

must be zero for any particular pair of occupation numbers for radiation mode p in 
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RadS and RadT. Therefore there are two possible solutions to equation (3a.1). 

Either event (W) is a photon p creation event (as in figure 3a.2): 

0 0

(p)

1/2

( ) †

int (p) p

, 0

exp( )
2ε

M MW

i i M T S

cp
T H S i e i Rad a Rad

V


 
    

 


p e

p r
 
(3a.2) 

or event (W) is a photon p annihilation event: 

0 0

(p)

1/2

( )

int (p)

, 0

exp( )
2ε

M MW

i i M T p S

cp
T H S i e i Rad a Rad

V


 
   

 


p e

p r
 

(3a.3) 

The p-creation solution (3a.2) is non-zero only if the occupation number of mode 

p in RadT is one greater than that in RadS; the p-annihilation solution (3a.3) is 

non-zero only if the occupation number of mode p in RadT is one less than that in 

RadS. Which of these two solutions applies to any particular Dirac bracket in the 

quantum amplitude calculation depends on the time-ordering of the four events. 

Every time-ordering of the four events necessarily involves one creation and one 

annihilation event for photon p, and one of each for photon φ. However, which 

named event corresponds to each of these phenomena varies between the 24 time-

orderings. Events (W) and (X) create and annihilate the photon p, but it is 

whichever occurs first that creates p and whichever follows that annihilates p. 

Events (Y) and (Z) have the same relationship with photon φ. 

For any particular time-ordering, the quantum amplitude of the four-interaction 

process is the fourth-order term of the perturbative expansion, equation (2a.13): 

int int int int

D A D A D A
, ,

FI rad rad rad
R S T IT IT T IS IS S IR IR R

F H T T H S S H R R H I
M

E E E E E E E E E


               
  

(3a.4) 

        

 

( ) ( )

2

( ) ( ) ( ) ( )

D A D A D A
, , ,0

. . . .

2ε

exp .( ) .( )

oo o o r r

p

A AM M D D D D

p a p b c d i j k l

rad rad rad
p e e T 0T T S 0S S R 0R R

pAnn pCre Ann Cre

p e e e ec

V E E E E E E E E E

i i





 

   

 

     
  

                 

   



p r r φ r r

 

Energy differences for molecule X are written as 
X X X

AB A BE E E  , where 
X

AE  is 

the total molecular energy of X in state A. 

The Cartesian index labels a, b, c, d on the polarisation vectors are wildcards 

representing an unspecified permutation of the indices i, j, k, l. Index a shall be 

the same as that on the μ creating photon p, index b shall be the same as that on 
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the μ annihilating photon p, index c shall be the same as that on the μ creating 

photon φ, and index d shall be the same as that on the μ annihilating photon φ. 

Note that μi always describes the event (W) interaction and μl always describes the 

event (Z) interaction, but the correspondence of moments μj and μk to events (X) 

and (Y) depends on which comes first in the given time-ordering. And μk 

necessarily comes before μj. 

The intricate correspondences outlined in the above paragraph – between the 

objective events (W), (X), (Y), (Z); the creation/annihilation events of photons; 

photon polarisations bearing the indices a, b, c, d; the chromophore transition 

events with moments μi, μj, μk, μl – can be best understood by considering how the 

Feynman diagram of figure 3a.2 is modified by changing the time-ordering. Also, 

figure 8a.6 illustrates the molecule and radiation states in all 24 time-orderings. 

Equation (3a.4) is constructed to describe any one of the 24 event-orderings, since 

the big sigma entails an implicit summation over all of them. State-specific 

variables such as 
D

RE  and 
rad

SE can be straightforwardly evaluated by choosing 

one time-ordering of the four events and reading the states from the relevant 

Feynman diagram – e.g. all the E
Rad

 terms will deliver 0, ℏcp, ℏcφ, or ℏc(p+φ). 

The r vectors are the relative positions of whichever interaction events create and 

annihilate the photons p and φ – e.g. .pAnnr is the position of the interaction at 

which photon p is annihilated (at M or at D, depending on time-ordering). 

Similarly, the Cartesian indices on the polarisation vectors e depend on the time-

ordering. Each is in a scalar product with one of the transition dipole moments μ 

determined by which molecular transition creates or annihilates each photon, so 

the indices a, b, c, d must be understood to represent one of the 24 permutations 

of i, j, k, l. 

The general amplitude, including all 24 event-orderings seamlessly, can be found 

by adding together 24 terms of the form of equation (3a.4). The big sigma’s 

summation over radiation modes p and ϕ is achieved by taking the limit of infinite 

V, and recasting the sum over modes as triple integrations over p-space and over 

ϕ-space. The details of this derivation are included in Appendix 8c. 
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 

     
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r

j k k j

FI i l

r r

ij i j kl k l

M
E E ck
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 

 

   
  

 
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 

  
  

  

        


 

(3a.5) 

Nomenclature:   
AB A B R r r  ;   

MD

j

jR


 


 ;   

DA

l

lR


 


 ;   

AD

0 0EE
k

c c

   . 

This is the whole quantum amplitude for the MDA configuration. The complete 

result makes no mention of the photon properties p, ϕ, e(p), or e(ϕ), because all 

possible values have now been included in the sum-over-states. This is in keeping 

with the photons being considered virtual. 

In this MDA coupling configuration, the D chromophore undergoes a two-

interaction transition via some intermediate state r, and the above result includes a 

sum over every possible Dr as the last remaining component of the general sum-

over-states. The general damped polarisability tensor, as given below for molecule 

X transitioning f←0, is capable of describing any such two-interaction transition. 

See equation 5.2.7 of ref.
[19]

. The arguments -k’ and k are the wavenumbers of the 

two interacting photons – a positive sign signifies a photon created at molecule X; 

negative sign indicates annihilation at X. The wavenumber X

r represents damping 

imposed on molecular state Xr (see section 6 of chapter 2a).  

 
0 0

0

X X X XX X X X

X X

0 0

;

f r f rr r

f

r

i j j i

ij X X X X
X r r r r

k k
E c k i c E c k i c

   


 

 
    

     
  

(3a.6) 

In this nomenclature, the big sigma in Equation (3a.5) is now expressible as the 

relevant transition polarisability, 0D D
( ;0)jk k  . 

Likewise, the second line of Equation (3a.5) is precisely expressible in terms of 

the rank-two electrodynamical coupling tensor which is ubiquitous in two-body 

RET work.
[12]

 Cartesian cosines are denoted ˆ
j jR R R . 

     

     
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; 4 ε exp
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 
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 
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R

 
(3a.7) 
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Equation (3a.5) is thus concisely expressed as a product involving just five 

tensors: 

   
A AM M D D

MDA MD DA0; ( ;0) ; oo o o

i ij jk kl lM V k V k    R R
 

(3a.8) 

The arguments of the coupling tensor  DA;klV k R  indicate that it describes the 

transfer of energy ℏck over the distance RDA via a virtual photon – this is the RET 

coupling. The coupling tensor  MD0;ijV R connects the third body M to 

chromophore D, but zero energy is exchanged – this is static coupling between the 

permanent dipole of M and the transition polarisability of D, as illustrated by the 

creation and annihilation of photon p in figure 3a.2. A semiclassical interpretation 

would describe the latter coupling as the permanent dipole of M inducing a 

perturbation in the transition dipole moment of D’s relaxation. 

 

4. Other coupling configurations 

The five factors of Equation (3a.8) each correspond a coupling phenomenon as 

illustrated by the Feynman diagram for the MDA energy transfer process 

(Figure 3a.2). Figure 3a.3 makes this correspondence explicit: 

 

 

Figure 3a.3:  The five factors of MMDA each correspond to a coupling component 

of figure 3a.2, as they each describe one aspect of the electrodynamics of the 

process. 
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With this correspondence in mind, the Feynman diagrams for the DAM and DMA 

configurations enable a straightforward derivation of quantum amplitude formulae 

by substitution of variables. The DAM amplitude is constructed by direct analogy 

from Equation (3a.8): 

   β oo α o o
A AD D M M

DAM DA AM; (0; ) 0;i ij jk kl lM V k k V   R R
 

(3a.9) 

The DMA configuration, in which the M chromophore directly mediates the 

transfer of energy, is structurally similar to two-step RET with no distinct time-

delay.
[20]

 The amplitude is constructed similarly: 

    β oo α o o
A AD D M M

DMA DM MA; ( ; ) ;i ij jk kl lM V k k k V k   R R
 

(3a.10) 

 

 

Figure 3a.4: Feynman diagrams for the other two three-body configurations: 

DAM (left), and DMA (right). These have exactly the same structure as figure 

3a.2, differing only in the chromophore and state labels appropriate to each 

configuration. 

 

Within this formalism, two-body RET (not involving any M) is described as the 

DA configuration. It has a three-factor quantum amplitude: 

  β oo α
A AD D

DA DA;i il lM V k  R
 

(3a.11) 

The full derivation involves the second term of the perturbative expansion, as it is 

a two-interaction process. For this reason, MDA will usually be much greater in 

magnitude than the amplitudes of the three M-modified RET configurations. 
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The Fermi rule gives the measurable rate for a process as proportional to the 

square modulus of the total quantum amplitude. The four configuration 

amplitudes derived above all connect the same initial state I to the same final state 

F, such that they all describe the same RET process, so its total amplitude is their 

sum. This delivers ten rate terms according to the pattern of equation (2a.12). 
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
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(3a.12) 

 

5. Specific geometries 

Each of the 10 terms in rate equation (3a.12) is challenging to directly relate to 

measurements and molecular properties. To most readily elicit the physical 

significance of this result, it is necessary to introduce some simplifying 

assumptions about the physical system. 

The focus is now on the case of the three molecules being separated by a distance 

that is significantly less than k
-1

, but not in direct contact. That is to say, the 

molecules are close together as measured by the wavelength corresponding to the 

exchanged energy, but still at sufficient separation for there to be no significant 

electron wavefunction overlap. The chromophores must remain distinct units, 

whose only interactions with each other are via the two specific virtual photons p 

and ϕ included in the Feynman diagrams of figure 3a.2 and figure 3a.4. In the V 

tensor definition (3a.7), this is the case of kR≪1. Each coupling tensor in 

equations (3a.8-11) therefore reduces to: 

     1 3

0
0

ˆ ˆlim ; 4 ε 3ij ij i j
kR

V k R R R 
 


 R

 
(3a.13) 

This reduced coupling tensor has no imaginary part and no dependence on k. The 

dependence on R, the magnitude of the molecules’ separation, is given solely by 

the factor R
-3

, such that the coupling strength will decline monotonically with 

increasing distance. This justifies a focus on the near-zone, as any M molecules 



3a: Influence of near-resonant surrounding matter 

49 

that are further away will give a comparatively insignificant contribution to the 

RET process. 

To further simplify the system for the sake of enabling calculation of testable 

results, it is necessary to restrict the transition dipole moment vectors o αD D
μ  and 

β oA A
μ  to be parallel. In all the geometric expressions in this section, the 

orientation of these vectors shall be labelled the system’s Cartesian z-axis. 

The main aim of this calculation is to identify the dependence of RET on the 

relative position and the electronic properties of the chromophore M, which 

represents the nearest molecule/chromophore of the matter surrounding D and A. 

When D and A are in solution, M will be the nearest solvent molecule; when D 

and A are protein chromophores, M will be the nearest other chromophore. In 

either scenario, the spatial orientation of M cannot reasonably be specified as a 

known variable – a complete treatment in terms of the specific orientation of M is 

thus unnecessary. Thus, in each instance of 0 0M M
μ  and o oM M

( ; )k k   the (unknown) 

orientation of M must be replaced with an average of all its possible orientations. 

Figure 3a.5 summarises the results of a rotational average over the orientation of 

0 0M M
μ  for each of the ten rate terms of equation (3a.12). These are attained by 

application of the Euler-angle-integration method of tensor averaging explained in 

chapter 2b, section 2. 
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Figure 3a.5: The rank of an average over M’s orientation, applied to each of the 

terms of equation (3a.12). The terms with odd-order double-tensor are vanishing. 
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The rotational-average theory of ref.
[21]

 yields the trivial result 
(1) 0I  . The 

double-tensor I
(3)

 is index-antisymmetric,
[21]

 yet the two terms involving I
(3)

 entail 

an index-contraction with the polarisability tensor o oM M
( ; )jk k k  , which is index-

symmetric because equation (3a.6) has intrinsic i/j symmetry given the arguments 

–k and k.
[22]

 Hence the four terms that yield I
(1)

 or I
(3)

 vanish with the application 

of the rotational average. 

The surviving six contributions to Equation (3a.12) consist of: the two-body RET 

rate not involving M, which will usually be the dominant term; two rate terms 

which involve M participating via the polarisability  o oM M
( ; )k k  , i.e. those 

derived from the DMA configuration; and three terms which involve M 

participating via the static dipole 0 0M M
μ , i.e. those derived from the MDA and 

DAM configurations. What this means for the dependence of RET efficiency on 

the properties of nearby chromophores, is that the two-body RET process will be 

modified by two distinct influences – certain contributions to the rate represent the 

modification imposed by the polarisabilty of the surroundings, and others 

represent the modification by a permanent polarity of M. 

Due to MDA being a two-interaction amplitude and thus of low-order perturbation, 

it is expected that the two-body RET rate, 
2

DAM , will dominate the sum in 

equation (3a.12). The same argument also implies that  DA DMARe M M  should be 

the most significant of the five surviving rate terms that involve M. The remaining 

four corrections will only become significant under circumstances where the two-

body RET mechanism is disproportionately unfavourable, such that MDA is 

severely reduced – that is the focus of chapter 3b. 

Before application of the rotational average over M orientations, the term

 DA DMARe M M entails the real part of an intricate inner product of four complex 

tensors: 

 

     

Re

Re ; ; ; ( ; )

o oo o

o o

A A A AD D D D

DA DMA i m l n

M M

ij DM kl MA mn DA jk

M M

V k V k V k k k

     





   R R R
(3a.14) 

The rotational average imposes a factor of 
(2) 3jkI   on the polarisability 

tensor, transforming it into  3 Tro o o oM M M M

  . This trace-polarisability will 
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have positive sign if the primary absorption band of M is of slightly greater 

energy than the transferred energy ℏck. 

Equation (3a.13) is the relevant V definition for this system. The assumption of 

o αD D
μ  and 

β oA A
μ lying on the z-axis implies that the indices i, l, m and n are now 

limited to z. Now, the averaged form of equation (3a.12) therefore evaluates in 

full detail as: 

  

 

 
 

 


β oo α

2
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22 A AD D 3 2

2 3

0

3 2

0

3 3 2 2

2
2 Re

ˆ1 3
48 ε

ˆ6 ε 1 3

Re Tr ( ; )

ˆ ˆ ˆ ˆ ˆ ˆ1 3 3 9

o o

F
FI DA

F
DA DA z

DA DA z

M M

DM MA DM z MA z DM z MA z DM MA

M M M

R R

R R

k k

R R R R R R R R

 


 











 

   

 

 

 

     
 



 
(3a.15) 

The first line of the expansion, 3 2

0
ˆ6 ε (1 3 )DA DAzR R   , is the two-body RET rate; the 

next term contains all variables attributable to the influence of M (the nearest 

chromophore of a passively-interacting medium) modifying the process via DMA 

coupling. Notably, this influence is determined only by the relative position and 

the trace-polarisability of M, and its sign specifies whether M’s influence 

amplifies or diminishes RET. In general, larger (more polarisable) molecules M 

that come nearer to the donor-acceptor pair should induce the greatest (positive or 

negative) rate modification. 

If the trace-polarisability factor is expressed in volume form, 

 
0

3
Re Tr ( ; )

4
o oM M

k k 


  
 

(3a.16) 

and all common factors are removed from (3a.15), then the two leading RET rate 

terms are expressible as: 

 
3

2 2 2

3 3

2ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 3 1 3 3 9
9

DA
FI DAz DM z MAz DM z MAz DM MA

DM MA

R
R R R R R R R

R R

  
             

 
(3a.17) 
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If the three inter-chromophore separation distances are approximately equal, then 

the modification term is proportional to the ratio of M’s polarisability volume to 

the cube of this distance. 

The dependence on M’s position is a very complicated function of the relative 

separation and orientation of D and A as well as their dipole orientation, z. It is 

thus not feasible to predict a rigorous relationship between the location of M and 

the RET rate modification. However, the result does allow the sign and degree of 

modification to be calculated for any specific system geometry. 

A very simple example solution is the case of the three chromophores forming a 

half-square triangle with apex M (i.e. 2 2DA DM MAR R R  ) with the z-axis 

oriented orthogonal to the plane of this triangle. The solution to equation (3a.17) 

for this geometry is: 

5/2

3

2
1

9
FI

DMR

 
    

   
(3a.18) 

The two-body RET rate is set to 1, so the second term represents the relative rate 

modification. If   is the volume of a spherical M, then a reasonable value for the 

separation 
DMR would be triple the radius of M. This volume ratio produces a 

weak but detectable rate enhancement of 9.8%. 

 

6. Polarisability and refractive index 

The polarisability tensor  0 0M M
;ij k k  , which is the time-symmetric inert 

scattering tensor of the molecule M as defined by equation (3a.6), has been shown 

to be the principal factor (other than relative position) determining the role of M 

in modifying RET. 

The double-interaction of M in the DMA coupling configuration (see figure 3a.3) 

is identifiable as simple scattering because: there is conservation of energy in the 

two interaction events within the subsystem consisting of M and radiation; M 

undergoes no overall molecular transition; and the transition dipole moments 

0M Mrμ and 0M Mrμ  are chosen to have no imaginary part. These facts together imply 

that 0 0 0 0M M M M M M M Mr r r r

i j j i    . 
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The polarisability includes a sum over the complete set of intermediate states Mr, 

which are all the possible stationary states for the molecule M. Of particular 

interest is the excited state whose energy (relative to M0) is closest to the transfer 

energy, ℏck. The denominators of equation (3a.6) show that polarisability is at a 

maximum and at its most wavelength-dependent near to resonance, so now the 

near-resonant case is explored in more detail. The nearest-to-resonant 

intermediate state is labelled Mε. In the sum over Mr, this may be separated out: 
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   
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 

 
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       

 
      

       



(3a.19) 

The variables 0

ME and   are electronic properties intrinsic to the species M. The 

energy-separation of Mε from resonance is represented by the difference

0

ME c k    . The situation of exact resonance, 0

ME ck  , corresponds to 

0  . Importantly, this chapter assumes that M does not have any stationary 

state at exact resonance, as this would make it a second acceptor chromophore A. 

In the case of ck being very close in energy to a stationary state of M, so the 

difference  is small, so all r ≠ ε terms (the second line of equation (3a.19)) and 

the anti-resonant ε term (the second fraction in the first line) become 

comparatively negligible. The real trace polarisability featuring in equation 

(3a.15) can then be approximated as: 

    0 0 0 0
1

2 2
Re Tr ;

M M M M M M

ij k k c   

 

  


 
  

 
 

(3a.20) 

This function of   and  can be further simplified by truncating the Taylor series 

expansions that arise in the two extreme cases. Either relatively weak damping: 

    0 0 0 0
1 1 2 3Re Tr ;

M M M M M M

ij k k c  

 

  



   
  

 

        
 

(3a.21) 

or relatively heavy damping: 
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    0 0 0 0
1 2 3 4Re Tr ;

M M M M M M

ij k k c  

 

   



    
  

 

       
 

(3a.22) 

When interpreted as functions of k, these equations describe the influence of the 

transfer energy ℏck on the magnitude of equation (3a.15)’s M-modification term. 

This is because the polarisability of M is the only variable in equation (3a.15) that 

varies with k. 

If RET is understood as the short-range limit of radiative energy transfer, the 

wavenumber may be interpreted as 2k   , where λ is the wavelength of the 

ideal non-virtual photon carrying the energy ℏck from D to A. This perspective is 

conceptually at variance with this chapter’s two-virtual-photon description of 

modified RET, but it illustrates the physical insights. Molecules of the 

surrounding matter modify the rate of energy transfer via their polarisability, and 

the modification varies according to the wavelength. Wavelength-specific 

modification of photon behavior by the polarisability of the medium is commonly 

addressed in terms of macroscopic optical properties. 

A close analogy can be drawn with the wavelength-dependence of the refractive 

index n of a medium comprised of molecules of species M. The density form of 

the Clausius-Mossotti relation expresses the polarisability of a substance present 

in number-density N, as a function of the refractive index n of the pure substance: 

2
1

2

1
3

2

n
N

n
  



 

(3a.23) 

It has already been postulated that there is an isotropic distribution of orientations 

for molecule M. This is consistent with the polarisability itself being isotropic, 

with diagonal scalar elements that are equal and may each be identified with the 

Clausius-Mossotti result. Then the scalar polarisability in equation (3a.15) is 

exactly triple the real part of this result: 

  
     
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ij

n n n
k k N

n n n
  

  
  

  
(3a.24) 

This treats n as the refractive index of a bulk medium consisting of unaligned M 

molecules. RET occurs between individual molecules D and A, which are 

surrounded by this medium. The scenario best described by this formulation is 
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low-concentration solutes D and A present in a liquid M solution, but it may still 

in principle be usefully applied to chromophores embedded in photosynthetic 

proteins or dendrimers. 

Equation (3a.24) can be rearranged to give a prediction for the medium’s 

refractive index given a certain polarisability for the constituents M. Provided that 

n
2
 has no imaginary part, this comes to: 

 
 

 

1
22 Re Tr +9

Re
9 Re Tr

N
n

N






    
(3a.25) 

 

 

Figure 3a.6: Refractive index of the medium M as a function of the transfer-

energy wavelength, λ, with abscissa normalised to the resonance condition. 

Equation (3a.25) is plotted in the form: 
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This graph uses a value for damping,
1 1 1

0(4 ) c E     , which is within the 

weak limit described by equation (3a.21). The parameter K is defined as

0 01 1 M M M M
K c N     , in units of 0 1E  . The near-zero at 02 /c E 

represents weakly-damped resonance. 
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Equation (3a.20) and the relation 0 2ME c       combine to give the real 

trace polarisability  Re Tr  as a function of the ideal wavelength λ. Thus, 

equation (3a.25) provides  Re n  as a function of λ and of N, as illustrated by 

figure 3a.6. Note that the results of section 5 assume the wavelength λ to be 

slightly longer than the resonance condition. The number-density of M molecules, 

N, is an indirect measure of the inter-chromophore distance – the average distance 

should have an inverse cube-root proportionality to N. 

 

7. Discussion 

The results of section 4 stand alone as a complete description of the factors 

determining the rate of modified-RET – but only if we have complete knowledge 

of each chromophore’s relative position, orientation, the energy of each stationary 

state, and all the transition dipole moments involving each stationary state. This 

condition may be approached in the case of strictly-aligned chromophores within 

a rigid protein structure, such as natural photosynthetic complexes. 

It has been identified that with an isotropic medium, molecular polarisability is 

the principal property of the surrounding matter responsible for modifying RET. 

Polarisability is at a maximum near to resonance, so matter that is near-resonant 

will have the greatest effect on RET efficiency – but exact resonance would lead 

to the medium molecules competing for the role of final energy acceptor, which 

lies outside of this analysis. 

Equation (3a.24) is unique for directly linking the bulk refractive index of a 

material to the effect that its individual molecules have upon the microscopic 

process of RET. In the case of a homogenous medium that is a mixture of several 

near-resonant molecular species, the relevant refractive index is that of a pure 

sample of whichever species M is closest to the RET pair. When attempting to 

detect a third-body modification compared to the two-body RET rate, it is not 

possible to remove the third molecule M without completely taking the donor and 

acceptor out of solution, but the RET efficiency of a donor-acceptor complex may 

be measured in solutions with differing refractive index. 

The more conventional refraction-correction to RET involves a redefinition of the 

coupling tensor V,
[23,24]

 and this has been successfully used to analyse 



3a: Influence of near-resonant surrounding matter 

57 

photosynthetic systems by treating the protein scaffold as a refractive 

environment.
[25,26]

 If this chapter employed such an approach, the polarisability of 

molecule M would be unrelated to n, and the V tensors of equations (3a.8-11) 

would receive the modifying factor 
2 2 2( 2) 9n n . But that would result in a 

RET rate dependence on n inconsistent with equation (3a.15), which is justified 

by the QED derivations of this chapter. The discrepancy comes from the two 

formulations describing different coupling scenarios – this chapter deals with a 

specific M chromophore identified as the nearest medium molecule, so the space 

between D and M cannot be filled with matter that modifies coupling with its non-

unity refractive index. 
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Chapter 3: Resonance energy transfer modified by a third 

chromophore 

3b: Orthogonally-oriented transition dipole moments 

 

1. Introduction 

The precise geometrical arrangement of chromophores – especially the relative 

orientations of transition dipole moments – significantly influences the efficiency 

of RET. In the wider literature that covers RET and related processes, the 

deterministic relationship between relative orientations and RET rate is 

conventionally described in terms of an orientation factor, κ.
[1,2]

 Much recent 

theoretical work has explored the issue of optimising the geometry of multi-

component RET systems,
[3–6]

 often expressing orientation dependence with a κ 

function. See equation 2.28 of ref.
[7]

. 

    
 

β o β oo α o α
A A A AD D D D

DA DA
ˆ ˆˆ ˆ ˆ ˆ

1, 3

 



    



μ μ R μ R μ
 (3b.1) 

A well-known result from such work is that the efficiency of short-range Förster 

RET is proportional to 2

3 . More generally, RET is forbidden at all ranges if both 

terms of κ are zero.
[8]

 This condition is met when donor and acceptor dipole 

moments are oriented orthogonally with respect to each other, and one is also 

perpendicular to the straight line between the molecular positions. Note that in 

systems where this is true at the midpoint (equilibrium) of the chromophores’ 

vibrations, vibrational displacement may be sufficient to allow RET.
[9]

 

The previous chapter 3a assumes that the donor and acceptor are positioned such 

that two-body RET (the “DA” configuration) is favourable. Thus the RET rate 

results are dominated by the unmediated RET process, which is merely modified 

by quantum interference from third-body interactions. But if the chromophores 

are situated such that both terms of κ are zero, so the DA configuration cannot 

contribute, then the RET rate will instead be dominated by indirect-RET 

mechanisms. This chapter contains the calculations of RET rate in an elementary 

example of such a DA-forbidden geometry.
[10]
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2. Quantum amplitudes of RET mechanisms 

The donor chromophore D undergoes a decay transition D0←D; the acceptor A 

is excited A←A0; the passive neighbouring molecule M remains in its ground 

state M0. A quantity of energy ℏck is transferred. This process may proceed via 

any of four mechanisms, defined by the coupling configuration,
[11,12]

 and each of 

these mechanisms has a distinct quantum amplitude. These are fully derived in 

chapter 3a and appendix 8c. 

 DA coupling: Two-body RET without the involvement of any M. 

  β oo α
A AD D

DA DA;i ij jM V k  R
  (3b.2) 

 MDA coupling: RET with D statically coupled to M. 

   
A AM M D D

MDA MD DA0; ( ;0) ; oo o o

i ij jk kl lM V k V k    R R
 (3b.3) 

 DAM coupling: RET with A statically coupled to M.  

   β oo α o o
A AD D M M

DAM DA AM; (0; ) 0;i ij jk kl lM V k k V   R R
 (3b.4) 

 DMA coupling: Mediated energy transfer, whereby D and A are each coupled 

only to M.  

    β oo α o o
A AD D M M

DMA DM MA; ( ; ) ;i ij jk kl lM V k k k V k   R R
 (3b.5) 

Separation vector RAB is the displacement of the “B” position from the “A” 

position. The E1
2
 molecular polarisability tensors α are defined by equation (3a.6). 

The E1-E1 coupling tensors V are defined by equation (3a.7).
[13]

 The rate of RET 

is calculated using the Fermi golden rule, expressed in terms of the four quantum 

amplitudes by Equation (3a.12). 

The Fermi rate term describing the pure unmodified DA process is given by the 

square modulus of (3b.2). By carefully implementing equations (3a.7) and (3b.1) 

above, it follows that this rate has the following orientation dependence:
[7,8]

 

 

22 6 2 2

DA DA 3 DA 3 DA 1

6 2 2 4 2 4 2 2

DA 3 DA 3 1 3 DA 12

M R ikR k R

R k R k R

  

    



  

  

   
 (3b.6) 

In the limit where the separation distance RDA is far less than the ideal reduced 

wavelength 1k  , the first term of (3b.6) (with 6R distance-dependence as in 

Förster RET) dominates, and therefore RET rate is proportional to 2

3 . In the 
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opposite limit of RDA≫
1k  , the third term (with 2R distance-dependence as in 

radiative energy transfer) dominates, and so the RET rate is proportional to 2

1 . At 

all intermediate scales of separation RDA, there is also contribution to the RET rate 

from the second term, with orientation factor  2

3 1 32   . This analysis 

rigorously demonstrates that the pure DA form of RET is forbidden when both 
1  

and 
3 are equal to zero, and this prohibition is effective at all scales of donor-

acceptor separation – even in the far-field limit when the mediating photon must 

be considered wavelike, such that inter-chromophore couplings are subject to 

appreciable retardation and the Förster theory of RET is inapplicable.
[14–16]

 

This chapter contains the calculations of RET rate in a three-molecule system 

defined by donor and acceptor dipole moments being oriented orthogonally with 

respect to each other, and both of their dipoles being perpendicular to the vector 

RDA, as shown by figure 3b.1. This is the most elementary DA-forbidding 

scenario. 

 

Figure 3b.1: The dipole moments of the donor and the acceptor, and the vector 

separating their molecular positions, form an orthogonal triad. A Cartesian 

standard-basis coordinate system may be constructed around these vectors. 

 

3. System specification 

The dipole moments of D and A and the separation vector RDA are aligned as an 

orthogonal triad. It is therefore most convenient to specify the Cartesian standard-
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basis coordinate system according to these directions, and to fix the origin at the 

position midway between D and A (see figures 3b.1 and 3b.3). 

β o β oo α o α
A A A AD D D D

DA DA
ˆ ˆ ˆ; ; R   μ x μ y R z  (3b.7) 

In the language of Cartesian hanging indices, the dipole moment factors in the 

quantum amplitude equations (3b.2-5) reduce to: 

o α o αD D D D

i ix       ;     β o β oA A A A

i iy   .
 

(3b.8) 

In particular, the DA configuration quantum amplitude reduces to: 

  β oo α
A AD D

DA DA; 0xyM V k  R  (3b.9) 

As intended, this is confirmed to be vanishing, according to the V definition. 

     2 2ˆ ˆ ˆ ˆ ˆ ˆ3 3 0xy DAx DA y DA xy DAx DA y DA xy DAx DA yR R ikR R R k R R R         (3b.10) 

When the electronic dipoles of each molecule are taken to be precisely aligned to 

a single axis, it is implicitly assumed that the molecules have an intrinsic 

cylindrical symmetry about this one axis. This picture of molecular structure is 

consistent with a push-pull model of charge displacement.
[17–19]

 The push-pull 

model also supports the slightly stronger statement of molecular behaviour, that 

all of the other electronic displacements (static and dynamic dipoles) should 

likewise align to the molecule’s natural axis. 

With transition polarisability α understood as an E1
2
 molecular response tensor, 

the condition of cylindrical symmetry for D and A results in their α tensors having 

just one nonzero Cartesian component, similar to the dipole moment vectors μ 

above: 

o α o αD D D D

ij ix jx        ;     β o β oA A A A

ij iy jy   
 

(3b.11) 

The quantum amplitudes for the other three coupling configurations are thus 

reduced:  

    β oA AM M D D

MDA MD DA0; ( ;0) ; 0o o o

i ix xyM V k V k    R R
 

(3b.12) 

   β oo α o o
A AD D M M

DAM DA AM; (0; ) 0; 0xy yi iM V k k V   R R
 

(3b.13) 
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    β oo α o o
A AD D M M

DMA DM MA; ( ; ) ;xi ij jyM V k k k V k   R R  (3b.14) 

The MDA and DAM amplitudes come to zero because  DA;xyV k R = 0 as shown 

by equation (3b.10). The elimination of three of the four coupling configurations 

leads to a very simple result for the Fermi rate:
 

2 2

MDA DAM DMA DMADAM M M M M   
 

(3b.15) 

In this system geometry, with cylindrical symmetry, RET occurs only through the 

DMA mechanism. Some third chromophore M must be coupled to both D and A 

through its induced dipole moment, acting as a bridge for the excitation. But note 

that M need not be positioned directly between D and A at all, and if M were 

actually bonded to both D and A (i.e. if there were sufficient electronic 

wavefunction overlap to enable electron transfer), then this would be a different 

kind of energy-transfer system altogether. 

 

 

Figure 3b.2: Feynman diagram showing one time-order (of 24) of the DMA 

mechanism. The five factors of MDMA correspond to coupling elements of the 

diagram, like in figure 3a.3. 
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Within the constraints of this system specification, the only remaining geometric 

variables are the length RDA, the quantity of energy to be transferred ℏck, and the 

position and orientation of the crucial molecule M. 

 

4. Position of M 

The Cartesian coordinate system has been defined relative to the positions and 

orientations of the D and A chromophores. For the position of M, it is more 

natural to replace the x and y coordinates with an axial distance 2 2x y   , and 

an azimuthal angle ψ defined such that ψ = 0 fixes M on the positive x axis and 

ψ = π/2 fixes M on the positive y axis. Figure 3b.3 illustrates these cylindrical 

coordinates. 

The position-dependent factors of MDMA are contained in the two V tensors, and 

each V is dominated  by the inverse-cube dependence on coupling distance. 

Within this section, the factor 
3 3

DM MAR R 
 is labelled η: 

    3 3

DMA DM MA DM MA; ;M k k R R    V R V R  (3b.16) 

Usefully, η is symmetric with respect to the ψ coordinate, so the position of M 

only needs to be defined on the ρz plane. 

For any ρ that is greater than RDA/2, the maximum η value is to be found at z = 0. 

For smaller ρ, it is necessary to first define a certain virtual spheroid surface: 

2 2 22 2DAz R   (3b.17) 

This prolate spheroid may be constructed from an ellipse, with minor-axis 

diameter of RDA and foci located on D and A, rotating about the z-axis. For any 

given DA 2R  : 

 Any nonzero z that puts M within the spheroid yields a value of η greater 

than at z = 0: 

   2 2
0 2 2 0DAz zR     

 
(3b.18) 
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 Any z which puts M exactly on the spheroid surface yields the same η value 

as z = 0: 

   2 2
2 2 0DAz zR     

 
(3b.19) 

 Any z that puts M outside the spheroid yields a value of η less than at z = 0: 

   2 2
2 2 0DAz zR    

 
(3b.20) 

With these findings in mind, the following sections specifically concern the z = 0 

cases, where the coupling distances RDM and RMA are always equal. In full, the 

quantum amplitude evaluates as a function of the relative molecular positions, 

contracted with the M polarisability tensor: 

    β oo α o o
2 A AD D M M0 6

DMA 0 DM DM4 ε exp 2 ( ; )z

ij i jM R i kR k k D A   
    (3b.21) 

The tensor parts of MDMA are simplified by the vector arguments in the two 

distinct V factors, RDM and RMA, having equal magnitudes. Explicitly: 

    

    

2 2

DM DM DM DM DM DM

2 2

DM MA MA DM MA MA

DM MA

DM

DM MA

DM

DA
DM MA

DM

ˆ ˆ ˆ ˆ1 3

ˆ ˆ ˆ ˆ1 3

ˆ ˆ cos

ˆ ˆ sin

ˆ ˆ
2

i ix i x ix i x

j jy j y jy j y

x x

y y

z z

D ikR R R k R R R

A ikR R R k R R R

R R
R

R R
R

R
R R

R

 

 







    

    

  

  

 

 (3b.22) 

In the z = 0 regime, 6

DMR  . The coordinate ρ specifies some fixed value for the 

ratio RDA/RDM, which implies that 6

DAR  . Consequently, all of the final RET 

rate results will vary by donor-acceptor separation according to
2 12

DMA DAM R . 

 

5. Orientation and polarisability of M 

Accounting for an arbitrary orientation of the molecule M, it is necessary to define 

an additional Cartesian reference system, with axes fixed to the molecule’s 
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internal structure. The molecule-fixed coordinates (x’,y’,z’) may be related to the 

laboratory-fixed coordinates (x,y,z) via Euler angles (α,β,γ). A laboratory-fixed 

unit vector î is converted to the corresponding molecule-fixed unit vector λ̂  by a 

triple rotation:
[20]

 

 First, rotation α about the z-axis, carrying the y-axis into an orientation that 

the literature calls “the line of nodes”; 

 then rotation β about the line of nodes, carrying the z-axis into the z’-axis; 

 then rotation γ about the z’-axis, carrying the line of nodes into the y’-axis. 

And conversion from λ̂  to î  is the inverse of this operation. Therefore, the 

laboratory-fixed Cartesian components of M’s molecular response tensors may be 

expressed as functions of the natural components, using a triple rotation matrix, Φ: 

M M

i i    (3b.23) 

1

cos sin 0 cos 0 sin cos sin 0

sin cos 0 0 1 0 sin cos 0

0 0 1 sin 0 cos 0 0 1

     

   

 



   
   

  
   
   
   

Φ  (3b.24) 

cos cos cos sin sin cos cos sin sin cos cos sin

sin cos cos cos sin sin cos sin cos cos sin sin

sin cos sin sin cos

           

           

    

   
 

    
 
  

Φ  

This allows the polarisability tensor in MDMA to be evaluated as a function of the 

molecule’s invariant intrinsic properties and the Euler angles of its orientation: 

o o o oM M M M
( ; ) ( ; )ij i jk k k k        (3b.25) 

In general, there are nine distinct Cartesian components to M’s intrinsic 

polarisability o oM M
( ; )k k  . As a simplified model of molecular response, it is 

appropriate to neglect off-diagonal ( 0  ) elements and treat the y’y’ 

component as equal to the x’x’. 

o o

o o o o

o o

o o o o o o

M M

M M M M

M M

M M M M M M

0 0

0 0

0 0

( ; ) ( ; ) ( ; )

x x

x x

z z

ij ix jx iy jy x x iz jz z z

a

a

a

k k k k k k  

 

 

 

         

 
 

  
 
 

           

α
 (3b.26) 
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This is similar to the assumption of cylindrical symmetry explained in section 3 – 

molecule M is symmetric with respect to rotation about the z’ axis. The molecules 

D and A are described as having perfect cylindrical symmetry and all dipoles 

lying in the natural axis; but if M were treated in the same manner here, only the 

z’z’ component of polarisability would be nonzero. The inclusion of a transverse 

component o oM M
( ; )x x k k     in the results highlights the RET rate contributions 

attributable to M’s off-axis dipoles. 

The Euler angle γ, describing rotation of M about the z’ axis, is rendered 

meaningless if the molecular response tensor doesn’t discriminate between the x’ 

and y’ axes. For this reason, all functions of γ cancel out of the RET rate 

calculation. 

 

 

Figure 3b.3:  The laboratory-fixed frame is defined with Cartesian coordinates 

such that molecules D and A lie on the z-axis, equidistant from the origin O, and 

have natural dipoles perfectly aligned to the x and y axes. The molecule M lies on 

the xy plane (z = 0) at distance ρ from the z-axis and azimuth ψ defined with a 

right-hand-rule from the x-axis. The orientation of M’s z’ axis is described with 

polar angle β and azimuth α defined similarly to ψ. The angle γ is not shown – it is 

rotation of M about the z’ axis. 
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6. Rate results 

6.1 M located on the coordinate origin 

The most highly symmetric case is where M is situated midway between D and A, 

specified by ρ = 0. The coordinate ψ has no meaning in this position, and 

RDM = RDA/2. Under these conditions, equation (3b.21) yields: 

 

 

β oo α o o
2 A AD D M M0 6

DMA 0

2

6 2 2

DA DA DA DA

2 4 ε ( ; )

1
exp 1

2 4

xyM k k

i
R ikR kR k R

    




 

 
   

 

 (3b.27) 

The polarisability of M has been reduced to one Cartesian component (in the 

laboratory-fixed frame) by Kronecker deltas in the coupling tensors. This reduces 

to: 

o o o o o o

o o o o

M M M M M M

M M M M 2

( ; ) ( ; ) ( ; )

( ; ) ( ; ) sin cos sin

xy xx yx xy yy x x xz yz z z

z z x x

k k k k k k

k k k k

  

    

         

   

           

     

 (3b.28) 

The orientation function indicates that RET is forbidden where  0,  , or 

where  0, 2, , 3 2    . These are the cases of 2

3 0  for some process of 

direct RET from D to M, or from M to A. Conversely, the optimum M 

orientations are found at 2  , with  4, 3 4, 5 4, 7 4     . These are 

the cases of the z’ axis being coplanar to the D and A dipoles and at dihedral 

angles of 45° to both, such that the two 2

3  values are equal. Curiously, the 

orientation function is independent of kRDA, unlike in the following subsections. 

The Fermi rate of RET is proportional to the square modulus of this quantum 

amplitude: 

  β oo α o o o o

22 22 4 A AD D M M M M0

DMA 0

4
12 2 2 2 2 4

DA DA DA

16 4 ε ( ; ) ( ; )

4 2 sin cos sin

z z x xM k k k k

R i kR k R

     

  



   



   

  

 (3b.29) 
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6.2 The three molecules mutually equidistant 

The radial displacement value   DA3 2 R   is a case of particular significance, 

as this has the three molecules mutually equidistant, RDA = RDM = RMA. The three 

positions form an equilateral triangle, which is a natural result of close-packing 

for molecules of approximately equal size. 

    β oo α o oDM DA
2 A AD D M M6

DMA 0 DA4 ε exp 2 ( ; )
R R

DA i j ijM ikR R D A k k   
    (3b.30) 

A full expansion of the polarisability and coupling tensors is required. The tensor 

part of amplitude (3b.30) expands according to the polarisability equation (3b.26). 

o o o o

o o

M M M M

M M

( ; ) ( ; )

( ; )

i j ij x x i j ix jx i j iy jy

z z i j iz jz

D A k k k k D A D A

k k D A

 



     

   

         

   
 (3b.31) 

Each of these three terms has a dimensionless coefficient, whose general form is: 

  i j i j x x y y z z x x y y z zD A D D D A A A                     (3b.32) 

In the present case, the coefficients of (3b.31) are calculated by finding the correct 

forms of D and A. The equations (3b.22) must be solved by specifying 

  DA3 2 R   and RDM = RDA. 

       

      

      

      

       

 

2 2 2 2

DA DA

2 2

DA DA

2 2

DA DA

2 2

DA DA

2 2 2 2

DA DA

1 1 9 / 4 cos 1 3 / 4 cos

3 / 4 1 3sin cos sin cos

3 4 1 3cos cos

3 / 4 1 3cos sin cos sin

1 1 9 / 4 sin 1 3 / 4 sin

3 4 1

x

y

z

x

y

z

D ikR k R

D ikR k R

D ikR k R

A ikR k R

A ikR k R

A i

 

   

 

   

 

    

      

      

    

    

     2 2

DA DA3sin sinkR k R   

 (3b.33) 

Substitution of these components into equation (3b.32) with x     gives the 

solution for the first coefficient: 
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         

 

   

    

      

2 2 2 2 2

DA DA

2 2

DA DA

2 2

DA DA

2 2 2

DA

1 9 / 4 cos 1 9 / 4 cos 1 3 / 4 cos

cos cos cos sin sin

3 4 3 3 sin cos sin cos cos cos sin

3 4 3 3 cos sin cos

1 9 / 4 sin 1 9 / 4 sin

i j ix jxD A

ikR k R

ikR k R

ikR k R

ikR k R

  

    

      

  

 

   

     
 

 

      

     

       

 

   

    

2 2

DA

2 2

DA DA
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DA DA

1 3 / 4 sin

sin cos cos cos sin

3 4 3 3 sin cos cos cos cos sin sin

3 4 3 3 sin sin cos

ikR k R

ikR k R



    

      

  

 
 

 

      

     

(3b.34) 

The angle γ has been included at this stage of calculation, even though it is sure to 

cancel out of the final result. The other two coefficients of (3b.31) are calculated 

by repeating the substitution with different unit vectors λ and ν. 

         

 

   

    

      

2 2 2 2 2

DA DA

2 2

DA DA

2 2

DA DA

2 2

DA

1 9 / 4 cos 1 9 / 4 cos 1 3 / 4 cos

cos cos sin sin cos

3 4 3 3 sin cos sin cos sin cos cos

3 4 3 3 cos sin sin
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i j iy jyD A

ikR k R

ikR k R
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  

    

      

  

 

   

     
 

  

       

     

       

 

   

    
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2 2

DA DA
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DA DA

1 3 / 4 sin

sin cos sin cos cos

3 4 3 3 sin cos cos cos sin sin cos

3 4 3 3 sin sin sin

R

ikR k R

ikR k R



    

      

  

 
 

  

       

     

(3b.35) 

         

 

  

         

 

2 2 2 2 2

DA DA

2 2

DA DA
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DA DA

2 2 2 2 2

DA DA

1 9 / 4 cos 1 9 / 4 cos 1 3 / 4 cos

cos sin

3 4 3 3 sin cos sin sin

3 4 3 3 cos cos

1 9 / 4 sin 1 9 / 4 sin 1 3 / 4 sin

sin sin

3 4

i j iz jzD A

ikR k R

ikR k R

ikR k R

ikR k R

  

 

   

 

  

 

   

     
 



     

     

      
 



 

  

2 2

DA DA

2 2

DA DA

3 3 sin cos cos sin

3 4 3 3 sin cos

ikR k R

ikR k R

   

 

   

     

 (3b.36) 
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To calculate the Fermi rate, it is necessary to further simplify this result. Assume 

that o oM M
( ; ) 0x xa k k    , such that the transverse component of polarisability is 

neglected, so the tensor-contraction (3b.31) reduces to one term: 

o o o oM M M M
( ; ) ( ; )i j ij i j iz jz z zD A k k D A k k          (3b.37) 

And also assume that / 2  , such that the z’ axis is assumed to be coplanar to 

the D and A dipoles. Then the remaining coefficient becomes: 

 

      

 

      

2 2 2

DA DA

2 2 2 2 2

DA DA

2 2

DA DA

2 2 2 2 2

DA DA

2 9 9 3 sin cos sin

4 9cos 4 9cos 4 3cos cos

9 9 3 sin cos cos

4 9sin 4 9sin 4 3sin sin

i j iz jzD A

ikR k R

ikR k R

ikR k R

ikR k R

  

   

  

   

 



  

   


     


   


     


 (3b.38) 

This delivers a result for RET rate as a function of M’s azimuthal position ψ and 

azimuthal orientation α: 

 

      

  
      

β oo α o o

2
2

DMA

22 24 A AD D M M4 12

0

2
2 2 2 2 2 2

DA DA

2
2

DA DA

2 2 2 2 2 2

DA DA
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DA z z

M
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kR kR
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 

   

     

    

    



 

 





         

   
 

     

  

2

2
2

DA DA9 sin cos cos 4 9sin sinkR kR



    

    

   
 

(3b.39) 

 

6.3 M located at the apex of a right triangle 

The radial displacement value DA 2R   is also a case of interest: The three 

positions form a right triangle, with M on the right angle. This has the molecule M 

positioned on the equator of the spheroid discussed in section 4, such that 

equation (3b.17) is true. Here, the η function is not affected by small changes the 
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z-coordinate of M’s position, so the results of this subsection are applicable even 

if relative positions are not precisely defined in the z-dimension. 

    β oo α o oDA
2 A AD D M M2 6 1/2

DMA 0 DA8 4 ε exp 2 ( ; )
R

DA i j ijM R ikR D A k k
    

    (3b.40) 

Again, the tensor-contraction is evaluated according to equation (3b.31). The 

three coefficients of (3b.31) are calculated by finding the correct forms of D and 

A, by solving the equations (3b.22) for the case of DA 2R   and 1/2

DM DA2R R . 

This method yields: 

         
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 

  
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    
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  
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(3b.41) 
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(3b.42) 
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(3b.43) 

As in the previous subsection, it is necessary to simplify this result in order to 

calculate the Fermi rate. It is now assumed that o oM M
( ; ) 0x xa k k    , and / 2  . 

The tensor-contraction in (3b.40) reduces to one term, specified by (3b.37). The 

coefficient in the DA 2R   case is: 
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(3b.44) 

This delivers a result for RET rate as a function of M’s azimuthal position ψ and 

azimuthal orientation α: 
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Equation (3b.45) is a continuous function of the M’s positional coordinate ψ, M’s 

orientational coordinate α, and the donor-acceptor distance RDA. 

The left column of Figure 3b.4 at the end of this chapter shows the output of this 

function for choice values of the dimensionless scalar kRDA. A full-motion 

animated plot has also been produced from the same source images, showing the 

equation outputs for the full continuum of kRDA values – this animation is 

available at the online version of ref. 
[10]

. 

 

7. Discussion 

The “DA” mechanism of direct RET is forbidden in donor-acceptor pairs that 

have a 1 3 0     orthogonal geometry. This fact is so well understood that 

energy transfer within structured polymers can be precisely controlled by 

manipulating chromophore orientations.
[3]

 This chapter has outlined an additional 

mechanism which may enable RET in such cases – via the induced dipoles (of 

transition between the ground state and virtual states) of a nearby polarisable 

molecule M. In principle, the effects of such additional polarisable chromophores 

should inform the development of energy transfer systems which rely on precise 

control of energy flow. 

The dependence of RET rate on the precise position and orientation of each 

chromophore is highly intricate. Just like direct RET is forbidden in the 

1 3 0    case, the results of this chapter predict very specific geometric 

conditions where the indirect RET process is either efficient or forbidden. By 

manipulating chromophore orientation in systems with rigidly-placed 

chromophores, measurements of energy transfer may test whether equations 

(3b.29), (3b.39) and (3b.45) correctly describe the higher-order geometric rules. 

As in the scenarios explored in chapter 3a, the only relevant intrinsic property of 

the chromophore M is the polarisability α
M

. The dependence on k imparted by α
M

 

should follow the principles outlined in the polarisability section of chapter 3a. 

The “DMA” mechanism must not be confused with two distinct RET steps. The 

four interaction events all occur as parts of the system’s transition F←I, which is 

considered instantaneous from a macroscopic perspective.The two photons are 

virtual and the two interactions with chromophore M are of unspecified energy 
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and time-order – they cannot be meaningfully described as events of ℏck 

absorption followed by ℏck emission. 

Curiously, the ρ = 0 case (section 6.1) shows behaviour similar to the rules 

governing a beam of light passing through a sequence of polarisers. Consider a 

beam of unpolarised light propagating upward, which meets a polariser in the 

horizontal plane aligned to the x axis, then a polariser in the horizontal plane 

displaced from x by angle α, and finally a polariser in the horizontal plane aligned 

to the y axis. The efficiency of light transmittance at each interaction is governed 

by Malus’ law – the first polariser shall polarise the beam, the second shall re-

align the polarisation and impose a factor of cos
2
α to the beam intensity, and the 

third shall re-align the polarisation and impose a factor cos
2
(α – π/2) of to the 

beam intensity. The final intensity will be proportional to (cos
2
α sin

2
α); and no 

transmission can occur if the second polariser is removed. In the RET system of 

this chapter with ρ = 0 and β = π/2, section 6.1 shows that the efficiency of energy 

transfer is proportional to (cos
2
α sin

2
α); and no transfer can occur if the molecule 

M is removed. 

This kind of correspondence between energy transfer efficiency and the physics of 

classical waves is to be expected in long-range (radiative) energy transfer 

processes, as the photons traverse whole wavelengths and may be described as 

real propagating radiation. But the results of section 6.1 are derived from quantum 

electrodynamics and are equally valid for short-range RET where the photons are 

clearly virtual. The Malus dependence on azimuthal orientation of the mediator M 

is found at all ranges of kRDA, illustrating the essential unity of Förster RET and 

radiative energy transfer. 
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Figure 3b.4:  Colour-spectrum plots of mediated-RET rate, plotted as a function 

of M’s azimuthal position ψ and azimuthal orientation α, for choice values of the 

distance ρ and the dimensionless scalar kRDA. At left, DA 2R  , plotting equation 

(3b.45); at right, DA( 3 / 2)R  , plotting equation (3b.39). 
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Chapter 4: Emission by multi-chromophore complexes 

4a: Excitation delocalised between a pair of emitters 

 

1. Introduction 

The MQED theory and calculation-methods used throughout this thesis are of 

general application, such that the electrodynamical behaviour of metal 

nanoantennas may be validly approximated as the photonic interactions of 

chromophores. Nanoparticles may become emitters or detectors of radiation due 

to the attachment of fluorescent molecules, or the excitation of plasmon 

resonances on the metal surface, and a close pair of nanoemitters may be expected 

to exhibit special QED effects.
[1]

 This chapter explores the properties of emitted 

radiation from such a pair, in particular investigating the distinctive features 

attributable to electromagnetic coupling between them and with the photodetector.  

The advanced features of coupled emitter pairs is a question of current research 

interest.
[2–4]

 Metal nanoantenna technology underpins miniaturised radio-

frequency antenna,
[5–7]

 enhancement of fluorescence
[8–10]

 and resonance energy 

transfer (RET)
[9,11]

, and optimising data yield in fluorescence microscopy.
[12]

 The 

conventional approach has focused on either detailed modelling of a single 

antenna, or the emergent activity of an ordered array.
[13–15]

 This chapter 

specifically concerns a pair of coupled emitters, such that the inter-emitter 

interactions are significant but do not comprise the kind of mass cooperation 

found in an array.
[16]

 

By treating the emitters and detector as a three-chromophore photonic system, 

advanced quantum effects arise from the electromagnetic coupling between 

emitter and detector. An important property of modern gold nanoantenna systems 

is their ability to modify the directionality of their emission based on emitter-

detector coupling strength.
[17–22]

 The MQED analysis of this chapter delivers 

robust predictions of detected signal intensity and phase, at close range (as 

detected by a near-field microscope) or in the wave zone (as detected by a remote 

photodetector).
[23,24]
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2. System Specification 

The system under consideration in this chapter consists of two emitter 

chromophores, herein labelled A and B, and a detector (energy acceptor) 

chromophore labelled D. The MQED framework is compatible with a variety of 

very different physical systems, and this versatility allows the results from this 

chapter’s simplified calculations to be applied to arbitrary nanoemitters and 

photodetectors. 

The emission and detection of radiation is equivalent to the radiative transfer of 

energy from the emitter pair to D. The initial state I with the energy on the 

emitters depends on whether this excitation is localised on one of them, or shared 

between both – the following sections explore these two possibilities separately. 

Regardless, the process of emission and detection ends with a final state F, where 

A and B are both relaxed to their ground states 0, and D is excited (however 

briefly) to a higher-energy state labelled γ. 

0 0,F A B D  (4a.1) 

Overall energy conservation, EI = EF, demands that the energy given up by the 

emitters must be equal to the relative energy of the detector’s excited state γ, and 

this quantity defines the ideal wavevector magnitude k: 

0

D Dck E E

  (4a.2) 

If the transferred energy ℏck is considered to be the emission and reception of real 

radiation, then it shall have wavelength 12 k  . The requirement that D is capable 

of absorbing such radiation is equivalent to assuming the existence of a molecular 

stationary state γ, even if it is short-lived. 

The Cartesian coordinate system’s origin is chosen to be at the point midway 

between A and B; the x-axis passes through both A and B; the z-axis passes 

through D. The two emitters are thus assumed to be equidistant from D, but this 

distance RAD and the separation between the pair, RAB, are unspecified variables 

relative to the ideal wavelength 12 k  . The relevant transition dipole moments of 

the emitters, μ
A
 and μ

B
, are assumed to be parallel, and oriented according to 

polar angle θ and azimuth ϕ. The dipole moment of the detector, μ
D
, is limited to 

the horizontal xy plane with azimuth ψ, consistent with a feasible experimental 
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setup involving a polarized photodetector lowered from above. Figure 4a.1 

illustrates this system geometry. 

 

 

 Figure 4a.1: The geometric variables RAB, ROD, ψ, θ, and ϕ define the relative 

position and orientations of the emitters A and B and the detector D. The 

Cartesian coordinate system is fixed accordingly. 

 

The assumptions of parallel emitter dipoles and the emitters being equally distant 

from D are both intended to maximise pairwise coupling so that novel quantum 

effects will be most apparent, and to increase the system’s symmetry for ease of 

calculation. In particular, it must be considered that the distance RAD = RBD and 

this crucial coupling variable may be controlled by direct experimental 

manipulation of the z-coordinate (altitude) of D, labelled ROD. 

The first part of this chapter concerns the simple transfer of excitation from 

chromophore A to chromophore D, modified by the nearby third body B – this is 

directly equivalent to the three-body RET of chapters 3a and 3b, but the focus 

here is on making the theory applicable to a system of real nanoemitters and a 

photodetector. Completely unrelated quantum mechanical features appear when 

the emitter pair is instead treated as one unit, with the individual states of A and B 

left unspecified.
[25]

 The framing of the Dirac kets in equation (4a.1) is intended to 

facilitate this analysis. 
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This chapter does not directly address cases with both emitters being initially 

excited, ,m mA B . In brief, the emission-and-detection process involves transfer of 

ℏck energy from A to B and transfer of 2ℏck from A to D; or the same with A and 

B reversed; or simultaneous transfer of ℏck to D from each emitter. The latter 

coupling configuration is equivalent to energy pooling.
[26–29]

 

 

3. Excitation localized on one emitter   

3.1 Quantum amplitudes 

If excitation is localized on one of the emitters, the system’s initial state I is as 

follows. In the language of energy transfer employed in the previous chapters, one 

emitter – in this example, A – must initially occupy an excited state labelled m, 

while the second emitter and D are each in a ground state labelled 0. 

0 0,mI D A B  (4a.3) 

0

A A

mck E E   (4a.4) 

Equations (4a.2) and (4a.4) together ensure overall energy conservation. The 

quantum amplitude of the A-to-D energy transfer process is given by the same 

sum-over-mechanisms explained in chapter 3a of this thesis, and in ref. 
[30]

. This 

amplitude is labeled MA, whereas MB would be the amplitude for the identical B-

to-D transfer process. 

A DA DAB DBA BDAM M M M M     (4a.5) 

There are four coupling configurations, each connecting the same initial state I to 

the final state F, defined in both parts of chapter 3. Selection rules for the 

electronic transitions may forbid certain mechanisms, in which case those 

components will be vanishing. The first and leading term is the amplitude of 

direct RET-like coupling.  In this application, it is written as:  

 0 0

DA DA; m
D D A A

i ij jM V k  R  (4a.6) 

The other three terms are fourth-order amplitudes for mechanisms involving 

coupling to B. These are the lowest-order of the many possible amplitude 

contributions that depend on the relative position and orientation of B.  
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 (4a.7) 

The transition polarizabilities α are defined by equation 5.2.7 of ref. 
[31]

, or in 

more detail by equation (3a.6) of this thesis. The general intermolecular coupling 

tensor, V, is defined as in chapters 3a and 3b. If the wavevector argument is zero, 

such that zero real energy is exchanged, this is described as static coupling. 

 

 

Figure 4a.2: The DAB coupling configuration. Emitter B does not transition, so 

MDAB involves static A-B coupling, such that A is perturbed by the permanent 

dipole of B and undergoes an E1
2
 relaxation. 

 

3.2 Leading signal terms 

By the Fermi rule, the rate of energy transfer (in this scenario, the signal strength 

of detected fluorescence) is proportional to the square modulus of MA. The four 

amplitude terms thus expand into ten rate (signal) terms as per equation (2a.12), 

and the leading rate term will be the square modulus of the dominant amplitude, 

MDA. Of the remaining nine signal terms, the dominant three shall be the quantum 

interference involving MDA. 
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 

   

2 2

A DA DA DAB

DA DBA DA BDA

2Re

2Re 2Re

FI M M M M

M M M M

   

  
 (4a.8) 

The lead term is the square modulus of equation (4a.6). 

  0 0

2 2 32 22 2 21
DA 0 AB OD4

4 m
D D A A

M R R S


   μ μ  (4a.9) 

The complex dimensionless scalar labelled S is shorthand for the detailed 

geometric function: 

 
   

 

1
2 2 2 2 2 21

4

1
2 2 2 2 21

4

2 2 2 2 21 1
4 4

1
2 2

2 2 2 21 1
4 4

sin cos cos 4 1

1 1 3 4

sin sin sin 1

cos cos 4

3 3

AB OD AB AB OD

AB OD AB AB OD

AB OD AB OD

AB OD AB OD

AB OD AB

S k R R R R R

i k R R R R R

k R R i k R R

R R R R

k R R i k R

  

  

 







         

      

      

   

       2

ODR

 (4a.10) 

The variable RAD has been subsumed into ROD and RAB, to reduce redundancy and 

because these are the length parameters most likely to be readily measurable. 

Equation (4a.9) is plotted in the upper half of figure 4a.3, in the near-zone, 

1

ABR k . With dipoles aligned θ = 90° and ϕ = ψ = 51.7°, there is an interesting 

dependence on ROD that predicts zero signal contribution at 10.019ODR k . 

The relative magnitudes of the three quantum interference terms of equation 

(4a.8) will be determined by the same geometric variables as the lead term, but 

also by the molecule’s selection rules for one-photon and two-photon transitions. 

In equations (4a.6) and (4a.7), the single-photon transition (E1) allowedness is 

represented by the transition dipole moment μ; the two-photon transition (E1
2
) 

allowedness is represented by the transition polarisability α. 

As an example, if a relaxation process involving two photons is forbidden for 

emitter A ( 0 mA A
α = 0) and static coupling is forbidden for emitter B ( 0 0 0

B B
μ , i.e. 

B is nonpolar in its ground state), then MDAB and MBDA will vanish according to 

equations (4a.7). In this case, the leading signal contribution in rate equation 

(4a.8) that involves B in any way will be: 
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 (4a.11) 

The complex dimensionless scalar labelled W and the complex vectors T and U 

are shorthand for detailed geometric functions: 
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 (4a.12) 

Equation (4a.11) is plotted in the lower half of figure 4a.3, with the same abscissa 

and angles as the upper half. Each coloured curve is the result for a given 

component of  0 0 ;
B B

k kα . All five components in z give a result of zero – this is 

a consequence of θ = 90°, as induced-dipoles of B oriented in the z-direction 

produce a κ = 0 geometry (explained in chapter 3b). The total zero at 

1
OD 0.02R k  arises for the same reasons as in the upper graph, as MDA is of 

course a factor of MDAMDBA. 
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Figure 4a.3: 

 
3 22 2 21

Upper AB OD4
4y R R S


     

   
33 2 2 31

Lower 4
2 4 Re expAB OD AB AB j ky R R R ikR W T U

          

The upper graph plots the results of equation (4a.9); the lower graph plots the 

results of equation (4a.11) for the four nonzero tensor components jk. The reduced 

wavelength 1k   is used as the unit of length. The two graphs’ shared abscissa 

illustrates the common zero at 1
OD 0.02R k . 

Both graphs use the values  1
AB 0.1R k  ;  θ = 90°  ;  ϕ = ψ = 51.7°. 
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4. Excitation delocalized across the pair  

4.1 Combination states 

In cases where the coupling between A and B described by tensor V(k;RAB) 

favours unobserved transfer of excitation prior to the emission-and-detection 

process, then in the system’s initial state I the emitter pair may already be sharing 

the excitation ℏck.  

An initial state I in which excitation is delocalised between A and B is some 

superposition combining the state in which m is localised on A (described in the 

previous section) and the counterpart state in which m is localised on B. The Dirac 

ket for such an initial state I is found by adding or subtracting the kets of the two 

component states, and normalising. Addition produces the symmetric exciton, 

labelled I  ; subtraction produces the antisymmetric exciton, labelled I  .  

 1/2

0 0 02 , ,m mI D A B A B    (4a.13) 

 

 

Figure 4a.4: Construction of symmetric (+) and antisymmetric (-) exciton states 

(blue) as combinations of the localised-excitation states (red). The red vertical 

arrow is the initial state used in M
A
; the horizontal red arrow is the counterpart 

state with excited B. 
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Note that these excitons are combination states produced by a superposition of 

two localised-excitation base states, and are thus an example of entangled states. 

If the two-emitter subsystem is disturbed by a direct measurement of the energy 

state of A (either A0 or Am), then B will necessarily be in the opposite energy state 

(Bm or B0, respectively). See ref.
[32]

 and appendix 8d of this thesis for further 

discussion of the superposition principle at work here.  

The emission-and-detection process may proceed from either of the starting points

I  , with the emitter pair initially in an exciton state. The quantum amplitude of 

such a process, M+ or M-, may be derived from equation (4a.13): 

   

    
 

1/2
0 0 0 0 0

1/2
0 0 0 00 0 0 0

1/2

A B

,2 , ,

, ,2 , ,

2

m m

m m

D A BM D A B A B

D A B D A BD A B D A B

M M



 









 

 

  (4a.14)

 

Here, the missing details {…} are the rest of the fourth-order term of the 

perturbative expansion given by equation (2a.13), as only the F  bra and I  ket 

have been shown explicitly. Amplitude MA is the result from equation (4a.5) and 

MB is the amplitude for the counterpart process that begins with excitation 

localised on B. The latter has exactly the same form as the results of the previous 

section, only differing in the particular values of 0 mB B
α and 0 mB B

μ compared to A’s 

molecular response tensors – and this difference vanishes if the two emitters are 

chemically similar. 

 

4.2 Degeneracy splitting 

Coupling between the two emitters will lead to degeneracy splitting of the 

symmetric and antisymmetric excitons. The two initial states I   and I  differ 

in total energy by 2MAB, where MAB is the quantum amplitude for RET between A 

and B. See appendix 8d for a quantum-mechanical justification for this prediction. 
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1 3
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m m

m m

A A B B

i ij AB j

A A B B
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M V k

R ikR

ikR ikR k R

 



    

 





       

R

μ μ (4a.15) 
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Recall that equations (4a.2) and (4a.4) define the wavenumber variable k. The loss 

of energy by the emitters is overall equal to the photon energy ℏck, and to the 

energy gained by the detector,
0

D DE E  . 

The difference in energy between symmetric and antisymmetric initial states 

implies two distinct values of DE
differing by 2MAB, and two distinct wavelengths 

of radiation 12 k   because k has two values differing by
AB2M c . It may or 

may not be possible to experimentally resolve the two different fluorescence 

signals produced by an emitter pair in these two exciton states. If the energy gap 

2MAB is too small to enable resolution of the two signals, then the detected 

emission rate will be a simple sum of the two indistinguishable emission 

processes, which reduces to the sum of uncoupled-emission signals from the two 

individual emitters: 

2 2 2 2

A BFI M M M M       (4a.16) 

But if the detector is capable of distinguishing between emission from the 

symmetric and antisymmetric excitons, then the two observed signals will be 

proportional to
2

M  and 
2

M  respectively. 

 

4.3 Intensity distribution of antisymmetric emission 

Consider the third line of equation (4a.14), in the minus case. 

 

 

1/2

A B

1/2

A B

2

2 exp

M M M

M i M







 

   

 (4a.17) 

If detector D is located equidistant from the two emitters, emitters A and B are 

chemically similar, and there is a symmetric geometry obeying  2, 3 2  

or  0,  , it follows that A BM M . Therefore 0M  , meaning that the 

emission-and-detection process from the antisymmetric initial state is forbidden. 

In an experiment that systematically varies the position of D, the existence of this 

plane of zero detectable signal is diagnostic of the antisymmetric exciton. 
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This accords with a semiclassical analysis of real dipolar emission by the 

nanoemitter pair.
[1,33]

 The minus sign in equation (4a.17) may be written as +e
iπ

 

according to Euler’s identity, and this can be interpreted to determine the 

structural character of the real radiation emitted by the pair: in the symmetric 

exciton state, the two emitters emit waves that are in phase; in the antisymmetric 

exciton state, the two emitters emit waves with a phase difference of π. It follows 

from the system’s symmetry that if  2, 3 2   or  0,  , then symmetry 

dictates total wave cancellation at the plane of equidistance, so no signal will be 

received by a detector in this plane. 

 

5. Discussion 

The calculations in this chapter show the conditions under which effects of back-

coupling and degeneracy splitting may appear in the emission profile of coupled 

nanoemitters. The inclusion of the fluorescence detector as a “third 

chromophore”, as part of a closed QED system, is necessary to elucidate these 

pure quantum features of cooperative emission behaviour. This demonstrates the 

utility of such a rigorous applied-MQED analysis. 

If  2, 3 2   or  0,  , the emitter pair is symmetric about the x = 0 

plane (see figure 4a.1). Intuitively, a mirror surface on this plane could produce 

equivalent emission behaviour with just one emitter interacting with its own 

reflected image. But the excitation-sharing physics of sections 3 and 4 cannot 

occur if the state of chromophore B is limited to the reflected image of the state of 

A, and so the emission profile will not exhibit the quantum features predicted by 

this chapter. In constructing an MQED model of this mirror-modified emission 

process, the reflected image of the actual chromophore “A” cannot simply be 

included as a “chromophore B” because the minimum-interaction description of 

this process has A coupled to the actual atoms of the mirror. 

Each of the four initial excitation states of the emitter pair produces radiation with 

distinctive characteristics. With excitation localised on a single nanoemitter, 

electromagnetic coupling with the second unit and the detector results in a 

fluorescence signal with a particular dependence on the positions, orientations, 

and static polarizabilities of the three components. With excitation delocalised 
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across the pair, the result is a signal with wavelength, intensity distribution and 

phase profile that are all characteristic of an exciton doublet, distinct from single-

centre emission.
[33]

 

These results may inform the design of measurements to discriminate between the 

unique excitation states of a pair of nanoantennas, enabling more precise control 

in the construction and operation of nano-component systems. 
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Chapter 4: Emission by multi-chromophore complexes 

4b: Anisotropy of fluorescence in solution 

 

1. Introduction 

For molecules with more than one chromophore, interactions such as fluorescence 

or RET are complicated by internal dynamics – the exchange or sharing of energy 

between the constituent chromophores.
[1]

 In addition to the exciton scenario of the 

previous chapter, a more direct effect of quantum mechanics allows the position 

of excitation to be physically undetermined without explicit delocalisation: the 

chromophores may share in the probability distribution of not just the excitation 

location, but of the location of the whole two-interaction fluorescence process. 

This chapter concerns single-photon fluorescence, a process whose elementary 

microscopic description is a one-photon absorption event quickly followed by the 

emission of one photon from the same chromophore. The analysis is tailored for 

application to a molecule containing N chemically-identical chromophores in the 

solution phase, yielding predictions of fluorescence rate and anisotropy. 

Fluorescence anisotropy values outside the range -0.2 – 0.4 are predicted under 

certain conditions, which is novel for single-photon fluorescence in an isotropic 

solution. 

 

2. MQED of fluorescence 

The absorption and the re-emission of light are discrete photon-molecule 

interactions that together comprise the fluorescence mechanism. The MQED 

description is identical to Rayleigh scattering if no overall molecular transition is 

described. The effective quantum amplitude of such a two-interaction process is 

delivered by the second term of equation (2a.13). 

int int

FI

R I R

F H R R H I
M

E E



  

(4b.1) 
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The double Dirac bracket is evaluated, using an E1 (electric dipole) 

approximation, as the scalar product of a linear electric displacement with the 

relevant molecular response: 

  2 1 0 01 0

0

fr r

int intF H R R H I 
  d μ d μ

 
(4b.2) 

The molecular response μ
r0

 is the chromophore’s transition dipole moment for the 

transition between those states indicated by symbols in superscript; each electric 

displacement d is associated with a transition involving a change of the 

occupation number of a specific radiation mode.
[2]

  A prime mark (‘ ) indicates the 

mode of the output photon(s), k’ ; unprimed symbols denote properties of the 

input mode k. So the superscript 01 signifies a transition in which the radiation 

state reduces from one input photon to none; the superscript 1‘0 signifies an 

increase from zero to one output photon. Evaluating the Dirac brackets according 

to equations (2a.4-9) yields:  

0

0 02

fr r

i j

FI i j

r r r

c
M kk e e

V E ck i c

 

 
 

 
  

(4b.3) 

Here, the symbol E0r refers to the energy of the molecule in initial state 0 minus 

its energy when in state r. The volume of quantization V, which represents the 

average volume containing exactly one photon, can be explained as the irradiance 

of a beam being proportional to ck V . In equation (4b.2), an imaginary part  rc  

has been added to the energy denominator: this is the damping discussed in 

chapter 2a section 6. 

The summation over r in equation (4b.3) yields just one term, as the fluorescence 

process entails excitation of the molecule to occupy one definite electronic state r 

during the process’ intermediate era R. Thus the basic quantum amplitude consists 

of a single term that may be decomposed into scalar and tensor parts: 

1/2 1/2 1
0

0 0

1

2

fr r

FI i j i j

r r

k k V
M e e

k E c i
 

 

 
  
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(4b.4) 

Note that the molecular parts of equation (4b.4) are equivalent to a damped 

transition polarisability (E1
2
 response) tensor given by equation (3a.6), with only 

one state r and the “anti-resonant” term omitted as it is insignificant near 

resonance.
[3,4]
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(4b.5) 

A field-centric “radiation reaction” formulation produces an equivalent 

polarisability derivation.
[5]

 

 

3. Quantum interference 

For a multichromophore molecule, it should be understood that absorption of the 

input photon is associated with distinct quantum amplitudes MFI for each of its N 

chemically-identical chromophores.  The subsequent emission event may 

originate from any of those chromophores, and emissions from each of them are 

indistinguishable – the identity of the individual chromophore engaged in a 

particular fluorescence process is unobservable.   

The underlying reason is that, since no measurement is made on the system’s 

intermediate state R, the molecular wavefunction R does not collapse in a way 

that could localise the excitation on any one chromophore unit. This superposition 

is consistent with the wavefunction: 

1 2
N

R A

A

N     
(4b.6) 

Here, A  is the wavefunction for the molecule with all chromophores unexcited 

except for A, which is the one excited to its higher stationary state r.   

As always, the quantum amplitude for the overall process, as observed, consists of 

a sum of amplitudes for all mechanisms consistent with the observation. Here, the 

identity of the active chromophore is part of this unspecified mechanistic 

information.  Phase issues connected to this summation are discussed in section 6 

of this chapter. 

The observable rate of fluorescence is now given by application of the Fermi rule: 
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(4b.7) 

The first N terms of this rate equation represent the combined fluorescence from 

the N individual chromophores – this fluorescence rate is what may be predicted if 

the Fermi rule is applied separately to each chromophore’s fluorescence.  The 

additional N (N -1)/2 terms are the quantum interference that arise from the 

position of the fluorescence process being unspecified. 

Although the quantum interference terms describe a certain sharing of 

fluorescence activity between chromophores, this formulation does not entail 

excitation delocalisation via any exciton or FRET effect – the analysis here is thus 

distinct from theories based on inter-chromophore coupling.
[6]

 Microscopically, 

the fluorescence mechanism is itself single-centre.  Quantum interference in the 

observable rate of fluorescence is a quantum measurement phenomenon, not 

evidence for real mixing-of-states between chromophores. 

 

4. Rotational average 

To describe the fluorescence of a molecule in solution, an isotropic average must 

be applied to the molecular response tensors. The field vectors are unaffected, as 

the input light is presumed to be from a source fixed in the laboratory reference 

frame, and the observed output photons must have polarisation aligned to the 

receiving spectrometer. With chevron brackets indicating a continuous integration 

over the three Euler angles of molecular orientation,
[7]

 the rate result averages as 

follows according to the method outlined in chapter 2b: 
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(4b.8) 
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This averaged-rate result may apply to the fluorescence of a solute molecule 

rotating stochastically with no well-defined orientation, or alternatively an 

ensemble average of the fluorescence from many randomly-oriented molecules, 

which individually do not exhibit any appreciable rotation.
[8]

 The chromophores 

within the molecule are also not necessarily fixed in orientation relative to each 

other. 

The I
(4)

 double-tensor is reported in appendix 8b. Applying the Kronecker deltas, 

the tensor parts of each of the N(N+1)/2 rate terms thus acquire the following 

general form: 
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(4b.9) 

The magnitudes of each chromophore’s absorption and emission dipoles will all 

be equal provided they are chemically similar, permitting the factorisation above.  

Each of the bracketed dot-products corresponds to a physical angle in the system: 

  1cos   e e  is the angle between the polarisation vectors of the input 

absorbed light and the emitted light.  Parallel fluorescence is the 0    case; 

perpendicular fluorescence is the 90   case. 

  1 0ˆ ˆcos A fr Ar

A
 μ μ  is the angle between the absorption and emission 

dipoles for chromophore A.  Each chromophore’s θ angle represents some 

undetermined combination of molecular rotation (during the state r lifetime), 

and a natural difference in the orientation of the two dipoles relative to the 

molecule. If the intrinsic physical properties of chromophore species A dispose 

it to have emission and absorption dipoles that are parallel, then the 

reorientation A  must be entirely due to molecular rotation – with sufficient 

stochastic rotation, this averages to 90A   . The opposite limit is where 

molecular rotation is negligible (due to the lifetime of state r being vanishingly 

short, or the molecule being trapped in a cold and viscous solvent), such that 

the value of A  is wholly set by intrinsic chromophore properties. 
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  1 0 0ˆ ˆcosAbs Ar Br

AB  μ μ  is the angle between the absorption dipoles for 

chromophores A and B.  This is the difference in orientation between A and B 

at the time of absorption.  Likewise,  1 ˆ ˆcosEm A fr B fr

AB  μ μ  is the angle at the 

time of emission. The ψ angles describe the shape of the multi-chromophore 

molecule at the two transition times. Note that 0Abs Em

AA AA    . 

 Lastly,  1 0

;
ˆ ˆcos Ar B fr

A B  μ μ is the angle between the dipole of A’s 

absorption and the dipole of B’s emission. Each χ angle represents some 

undetermined combination of the relevant ψ and θ angles, determined by the 

precise configuration and dynamics of the multi-chromophore system.  Note 

that ;B A  is distinct from ;A B , and that ;A A A  . 

All of the above angles are required to have definite values between 0° and 180°. 

With this angular nomenclature, our N(N+1)/2 rate terms each become 
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(4b.10) 

Resubstituting these results into the rate equation (4b.8) yields the rotationally-

averaged rate; 
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(4b.11) 

Recall that the first line is equivalent to a transition polarisability, α. This formula 

allows us to predict the observable rate of fluorescence for any particular multi-

chromophore system in solution, in terms of its internal angles and dynamics. 
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5. Fluorescence anisotropy 

The anisotropy of fluorescence is a readily-measured observable, offering a 

reliable means of examining the detailed fluorescence behaviour of molecules in 

solution.  It is quantified as a function of the relative rates of emission with 

polarization that is parallel or perpendicular to the input mode, which must be 

measured separately:
[9,10]
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0 902
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
    

(4b.12) 

The theoretical maximum anisotropy of r =1.0 indicates zero perpendicular 

fluorescence; the minimum of r = – 0.5 indicates zero parallel fluorescence; 

isotropy, indicated by r = 0, results from fluorescence that is independent of ζ. 

Anisotropy is also commonly formulated as the equivalent quantity called 

polarization ratio, P, straightforwardly related to r as:
[9]
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r
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r
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  
(4b.13) 

Substitution of the solution-phase predictions of equation (4b.11) as the 

arguments of equation (4b.12) yields a testable formula for r: 


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(4b.14) 

For any molecule of interest whose internal structure is known, equation (4b.14) 

may be directly applied. There are too many uncorrelated variables for a generic 

analysis, so what follows in this section is an overview of the results for certain 

limiting cases. 

Firstly, the case of 0Abs Em

AB AB    for each pair A≠B. This represents a condition 

where all of the absorption dipoles are parallel, and all of the emission dipoles are 

also parallel. This constrains the values for all A  and ;A B  angles to one angle for 

the absorption-emission orientation difference, labelled θ. The anisotropy result is 

independent of N: 
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(4b.15) 

This is well known to be true for N = 1, and for a parallel ensemble of arbitrary N. 

See equation 10.20 of ref.
[9]

. The maximum and minimum anisotropy values are 

0.4 (at θ = 0° or 180°) and –0.2 (at θ = 90°), consistent with single-photon 

fluorescence in an isotropic solution. A prediction of MQED theory via Fermi rate 

equations has re-derived a result that is familiar to fluorescence spectroscopy.  

Next, consider the case of A = 0° for all chromophores, which specifies that each 

individual chromophore’s absorption dipole and emission dipole are parallel in 

space (the molecule is rigid and fixed in orientation). This implies the equalities 

; ;

Abs Em

AB AB A B B A       for each pair A≠B, so all those angles are subsumed into 

a single variable labelled AB . 
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(4b.16) 

This yields a maximum anisotropy value of 1.0, for a N=3 molecule whose 

chromophores are mutually orthogonal, and for any configuration of 

chromophores whose dipoles all point toward or away from a common centre and 

are positioned at the vertices of a Platonic solid. Here, it is the minimum of 

anisotropy that takes the value of 0.4, when all angles AB = 0° or 180°. 

Equation (4b.16) is further analysed in figure 4b.1. 
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Figure 4b.1: Plot of equation (4b.16) with the assumption that all angles AB  are 

equal, subsumed into a single abscissa ψ. The N=3 curve represents a trigonal 

pyramidal molecule, approaching a trigonal-planar geometry at ψ =120°. With 

N=4, it is not possible to have all six angles AB  be equal unless ψ =0° or 

ψ =109.47° (a tetrahedral molecule). 

 

It is known that a tetraphenylporphyrin molecule with square planar symmetry 

(and corresponding fourfold degeneracy in its excited state) may exhibit 

r ≥ 0.7.
[11]

 The conjugated bonds of this system hold the component groups 

together inflexibly – therefore, if molecular rotation is controlled, equation 

(4b.16) will be applicable as the correct anisotropy equation. If the four phenyl 

branches are treated as separate dipolar chromophores, then according to equation 

(4b.16): 
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The experiment in ref.
[11]

 observed anisotropy values in exactly this region with 

ultrafast measurements, such that the intermediate state lifetime was vanishingly 

short and thus θ ≈0°. 

 

6. Discussion 

The issue of quantum uncertainty in the intermediate state between absorption and 

emission deserves further comment.  The results of this chapter rest on a certain 

coherence being retained by the system, described as a superposition of states by 

equation (4b.6). It is important to recognise that the selection of a specific 

superposition state, in which the phases of each A  are equal, is the origin of 

equation (4b.7) having identical (unweighted, unphased) contributions from each 

fluorescent chromophore. This condition is physically consistent with each 

chromophore experiencing input radiation with nearly the same optical phase, 

because the dimensions of the molecule will usually be much smaller than the 

optical wavelength. Alternative molecule states, with different relative phase 

factors, would constitute another acceptable basis set – summation over which 

would lead to statistically-weighted results. 

This formulation of fluorescence theory, incorporating quantum interference 

between chromophores, should more fully capture the advanced geometric effects 

governing the fluorescence behaviour of multi-component molecules. Insofar that 

the fluorescence behaviour of a multi-chromophore system is related to its 

capacity for electronic energy exchange or RET, the analysis developed here may 

also be adapted to contribute to optimisation of RET efficiency in light-harvesting 

compounds.
[12]

 

There is relatively little existing theoretical work describing the basis for a range 

of r values beyond the limits of equation (4b.15), with the most-cited theories 

often appealing to the possibility of complex effects of coherence in systems of 

multiple energy levels.
[13]

 The anisotropy derivations of this chapter can explain 

and predict such observations based only on the assumptions of the MQED 

framework. 
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Chapter 5: Effects of non-resonant light on one- and two-

photon absorption 

 

1. Introduction 

The multi-order theory of molecule-light interactions can include the interactions 

of photons that are not resonant with a molecular transition.
[1]

 Off-resonant laser 

light is known to physically interfere with elementary absorption and two-photon 

absorption processes, passively interacting with the molecule and thus observably 

modifying the absorption intensity.
[2]

 In principle, the fields attributable to 

vacuum modes could perform the same passive interactions, but analysis suggests 

that the resulting modifications would be negligible. The optically-modified 

process is a higher-order mechanism, which may allow molecular transitions that 

are formally forbidden for unmodified absorption.
[3]

 The theoretical treatment of 

such a high-order multiphoton transition is familiar from descriptions of 

multiphoton fluorescence and the optical Kerr effect. 
[4–6]

 

This chapter deals with one- and two-photon absorption rates and predicts how 

they may be modified by the passive influence of an auxiliary non-resonant light 

source.
[7]

 The calculations here are tailored to the scenario of a single molecule in 

solution, as this describes systems of practical interest and simple experiment 

design.
[8]

 The rate of absorption may be derived from the measured fluorescence 

of a sample through which a resonant beam and a non-resonant beam cross. 

The physical character of photons is affected by the refractive properties of the 

liquid medium through which they propagate, so the MQED of interactions must 

accommodate the modification of electric displacement by the medium’s 

refractive index. Additionally, the orientation of a solution-phase molecule is 

randomised by thermal agitation between each absorption event, so the observed 

rate of absorption will be an average of the theoretical static-molecule rate results 

at all possible orientations. In sections 4 and 5, the rotationally-averaged rates of 

optically-modified one- and two-photon absorption are calculated using advanced 

methods for high-rank tensor isotropic averages. The outcome is a rigorous 

analysis of the correspondence between details of the molecule’s electronic 

response and the polarisation states of the two beams. 
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2. MQED model of absorption 

This chapter focuses on the excitation of a molecule in solution by a process of 

either single-photon absorption or two-photon absorption. The absorbed photons 

implicate the presence of an input light source (ideally a paraxial laser beam) 

whose wavelength is resonant with the molecule’s stationary state gaps. 

Simultaneously, an auxiliary off-resonant beam is introduced – this cannot excite 

the molecule, but may passively interact in a way that modifies the absorption 

processes. Specifying the auxiliary beam radiation as “off-resonant” means that 

neither a single photon nor two photons have sufficient energy to excite the 

molecule to its higher state, and therefore the molecule is transparent to this light. 

The throughput of off-resonant light becomes a part of the absorption process. As 

shown in figures 5.2 and 5.4, the following interaction events occur: one or two 

resonant absorptions, annihilation of one off-resonant photon, and the creation of 

one off-resonant photon. The absorption of the excitation beam and the (elastic 

Rayleigh) forward-scattering of the auxiliary beam are effectively instantaneous 

and cannot be meaningfully separated. Lower-case state labels r, s, t denote the 

state of the molecule within the respective intermediate system states R, S and T. 

The molecule is in ground state 0 within the initial system state ( I ), and in 

excited state α within the final state ( F ). In this nomenclature, it is the second-in-

time interaction event which transitions the whole system from R to S. 

Even though these processes involve multiple photonic interactions, the overall 

molecular response tensors are constructed from combinations of transition dipole 

moments: a two-event transition is modelled as two dipolar interactions (E1
2
) that 

comprise a transition polarizability tensor, α; a three-event transition is modelled 

as three dipoles (E1
3
) that comprise a hyperpolarisability tensor, β; four events are 

E1
4
, comprising a “second” hyperpolarisability, χ.

[9]
 Each of these response 

tensors has its own symmetry features and selection rules.
[3]
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Figure 5.1 

 

 

Figure 5.2 

 

 

Figure 5.3 

 

Figure 5.4 

 

Figures 5.1-4:  Feynman diagrams for: (5.1) elementary one-photon absorption; 

(5.2) one-photon absorption engaging with forward scattering of a passive beam, 

showing one of six time orderings; (5.3) two-photon absorption; (5.4) two-photon 

absorption engaging with forward scattering of a passive beam, showing one of 24 

time orderings. In all these cases, the molecule is excited α←0. The excitation 

beam is shown as blue and the auxiliary beam shown as green (the implication 

that the auxiliary wavelength is longer than the excitation wavelength is consistent 

with the photon energy inequalities in section 2).  
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The auxiliary light is distinguished from the absorbed photons by a prime mark on 

all variables associated with it. The absorbed photons have energy Mol

0ck E  for 

one-photon absorption, and Mol

02 ck E for two-photon absorption; the 

requirement of the auxiliary beam to be off-resonant is written as Mol

0ck E
   for 

one-photon absorption, and Mol

02 ck E
  for two-photon absorption. 

For a molecule in solution, the surrounding matter can be expected to modify the 

electric field properties of radiation, which affects the character of all interactions. 

In a solid matrix, it would be correct to invoke a polariton formulation, but for an 

essentially-transparent liquid medium, all media effects may be approximated as 

an electronic “field dressing”.
[10]

 For each radiation mode, the dressing is 

quantified as the medium’s refractive index n, whose definition involves the 

angular frequency ω, wavevector magnitude k, and group velocity vg: 
[11]
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(5.1) 

This formulation of dressed fields in the condensed-phase renders the quantum 

description of radiation as intermediate between photon and polariton.
[11,12]

 The 

result is a modified form for the electric displacement experienced by the 

molecule, such that equation (2a.4) is changed to: 

 

 
       

1/2 2

0 †

, , , ,1/2

2

2 3

g
nv

i a a
cV n



   



 


  
          

k k k k
d e e

 
(5.2) 

This once again implies a mode expansion over transverse plane waves – each 

mode is defined by a polarization state η and wavevector k; the vector  , k
e is the 

electric field unit-vector of such a wave (overbar indicates complex conjugation). 

This calculation describes a single-centre process, with all events occurring at the 

one molecule’s position, so there are no phase factors dependent on relative 

displacement. 

Additional background information for this absorption model is detailed in ref.
[2]

, 

but without accommodating local solvent effects. Section 3 of this chapter applies 

the MQED analysis to the auxiliary-beam-modified absorption behaviour of a 

single molecule that is fixed in some static orientation. 
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3. Rate equations 

3.1 Dirac brackets 

The rate of a multi-interaction-event process is given by equation (2a.5) in terms 

of Dirac brackets for each interaction. Using equation (5.2) instead of equation 

(2a.4), each interaction event is either a photon annihilation: 
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(5.3) 

Or it is a photon creation: 
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(5.4) 

The operators  ,
a

 k
 and 

 
†

,
a

 k
 each apply to either photon creation or annihilation, 

with quantum algebra as in equations (2a.5-9). In the following subsections, the 

symbol q is again used to represent the number of photons within the system 

volume V that have polarization state η and wavevector k. In the initial radiation 

state RadI , the excitation beam and auxiliary beam are both present in their 

initial states: there are q photons in volume V that have polarization state η and 

wavevector k corresponding to angular frequency ω, associated with electric 

fields e and refractive index n; there are also q’ photons in volume V that have 

polarization state η’ and wavevector k’ corresponding to angular frequency ω’, 

associated with electric fields e and refractive index n’. 

 

3.2 One-photon absorption 

Elementary single-photon absorption, illustrated by figure 5.1, is a single photon-

annihilation event whose quantum amplitude is given by a single Dirac bracket. 

Using the dressed-field E1 approximation of section 2, this evaluates as: 
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(5.5) 

Absorption combined with forward-scattering of auxiliary light, illustrated by 

figure 5.2, is a three-interaction process whose quantum amplitude is given by the 
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third-order term of equation (2a.13). No other terms need to be considered – the 

three-event process represents the leading modification to simple absorption. 
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(5.6) 

The assumption of high irradiance in the auxiliary beam justifies the 

approximation ( 1)q V q V   , which leads to the appearance of q’ as the 

auxiliary intensity factor. The sum-over-states for all R and S includes a sum over 

six time-orderings of the three events and over all possible molecular states r and 

s. In each time-ordering, the dipole component indices {a,b,c} are a unique 

permutation of {i,j,k}, such that contraction with the electric field vector 

components results in a set of scalar products. The complete result of the sum-

over-states is a tensor that encapsulates the molecule’s E1
3
 response to 

microscopic electric fields, so the molecular part of equation (5.6) (the dipole 

moments and energy differences) is a form of transition hyperpolarisability tensor, 

labelled
0

ijk

 .
[9]

 

Following the Fermi rule, the overall quantum amplitude of single-photon 

absorption is the sum of the above two amplitudes (combining the modified and 

unmodified mechanisms), and the observable rate is calculated according to 

equation (2a.12): 
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(5.7) 

The “photon density” q /V is not directly measurable, but beam irradiance is, so 

this rate equation has been expressed in terms of excitation beam irradiance 
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I cq V and auxiliary beam irradiance I cq V   . The second term of 

equation (5.7), which is linear in I’, is quantum interference between the two 

absorption mechanisms. 

 

3.3 Two-photon absorption 

The process of two-photon absorption entails either exactly two annihilation 

events, illustrated by figure 5.3, or two annihilations combined with forward-

scattering of auxiliary light, illustrated by figure 5.4. The quantum amplitude is 

given as the sum of a second-order term of equation (2.13) for the former and a 

fourth-order term for the latter. 

In the second-order mechanism, the two absorbed photons are in principle 

indistinguishable which means there is only one unique time-ordering of the two 

events. This may be thought of as two combined single-photon absorptions from 

different excitation beams, at the limit of the two beams becoming equal in 

wavelength and parallel in polarisation. If each fictitious beam is at half the 

intensity of the actual excitation beam (ergo, photon density = q/2V), then the 

quantum amplitude becomes: 

 
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(5.8) 

The E1
2
 molecular response tensor may be constructed from the normalised and 

index-symmetrised sum of the two time-order-dependent double-absorption 

molecular responses – i.e. the mean of the two absorption dipole pairs. This 

demonstrates that the E1 approximation accommodates transitions that entail a 

shift in permanent dipole and those that do not.
[13]
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(5.9) 

The auxiliary-modified mechanism involves four interaction events, and is 

evaluated via the same method: 
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(5.10) 

Once again, the approximation ( 1)q V q V   is employed. The sum-over-states 

includes a sum over 24 time-orderings, and in each time-ordering the indices 

{a,b,c,d} are a different permutation of {i,j,k,l}. The complete result of the sum-

over-states is an E1
4
 molecular response tensor, so the molecular part of equation 

(5.10) is a second-hyperpolarisability tensor, labelled
0

ijkl

 . Ref.
[3]

 discusses the 

selection rule implications of this. The indistinguishability of the two absorbed 

photons implies that only half of the 24 time-orderings are truly distinct – this 

degeneracy has been hidden within the structure of the χ tensor, and will reappear 

as a certain index-symmetry. 

The Fermi rule rate of two-photon absorption, combining the modified and 

unmodified mechanisms, is likewise calculated according to equation (2a.12): 


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(5.11) 

Again, photon density has been expressed as irradiances I and I’. In the case of the 

excitation beam, using a single value for I implies that the photon-density is not 

significantly diminished by the first absorption event. Explicitly, the 

approximation ( 1)q V q V  has been employed, which assumes constant high 

beam intensity. The appearance of the factor  
1/2

1q q     in equations (5.8) and 

(5.10) has been deliberately ignored – this contains information on the beam’s 

second-order coherence,
[14]

 and may be replaced by a rate factor g
(2)

. 
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Within any finite system volume at any one time (absent any special boundary 

conditions), the number of vacuum fluctuation photons with any specific 

polarization state and wavevector will be very small.
[14]

 So if the auxiliary light is 

not a coherent beam but merely a vacuum mode whose photons q’ are transient 

quantum fluctuations, then 0q V  . This will give rise to no observable 

modification to absorption – an auxiliary beam of definite irradiance I  is needed. 

 

4. Tensor contractions 

4.1 Scalar rate factors 

In each of the quantum amplitudes expressed by equations (5.5), (5.6), (5.8) and 

(5.10), the tensor parts consist of N field vectors e contracted with the Nth-order 

molecular response tensor. Each thus forms a scalar inner-product. The indices i, j, 

k, etc. represent Cartesian components of the tensors in a laboratory-fixed frame, 

as the molecule and beams are in fixed orientations in space. 

The six rate terms are therefore each expressible as a tensor contraction between a 

set of field vectors and a composite molecular response tensor for the 0←α 

transition. Equations (5.7) and (5.11) are re-written in concise form to isolate 

these orientation-dependent tensor contraction parts: 
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(5.12) 
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(5.13) 

The label A

BC  is used for the tensor contraction that appears in the Bth term of the 

A-photon absorption rate equation. The values of N in each of these contractions is 

the sum of the Ns for the two quantum amplitudes that interfere to produce this 

rate term. 
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In this formulation, selection rules (i.e. a molecule intrinsically forbidding certain 

kinds of excitation interaction) are represented by certain molecular response 

tensors having zero magnitude: If one unmodified single-photon absorption is 

forbidden, this means 0 0 μ , and thus 1

1C   and 1

2C   disappear; if one unmodified 

two-photon absorption is forbidden, this means 0 0 α , and thus 2

1C   and 2

2C   

disappear. 

 

4.2 Rotational average 

If the molecule is strongly aligned to the beam, such that molecular orientation is 

static in the reference frame of the fields, then equations (5.7) and (5.11) are the 

complete results for absorption rate. Such alignment may be forced by a molecule 

that preferentially orients its response dipoles to the auxiliary beam polarization 

vector – then if this direction is defined as the z axis, the indices k, l, m, n in 

equation (5.7) become limited to z; and the indices m, n, o, p in equation (5.11) 

become limited to z. 

But for the case of a molecule rotating freely in solution, the rotational-average of 

these results must be calculated. This average, denoted by chevron brackets, is a 

continuous integration over the three Euler angles which relate the molecule’s 

orientation to the laboratory-fixed frame. See chapter 2b for a full explanation of 

this calculation and the standard evaluation method based on ( )NI . 

The two beams are assumed to be fixed in space, their sources at rest in the 

laboratory frame. This means the field vectors have well-defined components 

fixed in this frame, so their indices i, j, k… belong to the set {x,y,z}. The right-

hand factors in equations (5.7) and (5.11) are components of the molecular 

response tensors in that same frame. It is necessary to express the response tensor 

components in terms of a molecule-fixed frame, with indices λ, γ, ζ… that instead 

belong to the set of unit vectors that are the natural orthogonal triad for the 

molecule’s structure. 

In the fluid phase, the six contractions that appear in equations (5.12) and (5.13) 

average to: 

1 (2)

1 1 2 1 2i iC e e I

  
 

(5.14) 
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1 (4)

2 1 2 3 4 1 234C i i i ie e e e I

   
 

(5.15) 

1 (6)

3 1 2 3 4 5 6 134 256C i i i i i ie e e e e e I

     
 

(5.16) 

2 (4)

1 1 2 3 4 12 34C i i i ie e e e I

  
 

(5.17) 

2 (6)

2 1 2 3 4 5 6 12 3456C i i i i i ie e e e e e I
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(5.18) 

2 (8)

3 1 2 3 4 5 6 7 8 1256 3478C i i i i i i i ie e e e e e e e I

     
 

(5.19) 

These are then evaluated according to ( ) ( ) ( ) ( )

; 123 ; 123

N N N N

r i N rs s NI f m g  , as outlined in 

chapter 2b.
[15]

 

If the beams are plane waves, the field vectors have no imaginary part, so 

    1   e e e e  and     1      e e e e . Therefore, every Kronecker delta in the 

tensor ( )

; 123

N

r i Nf contracting with field vectors will yield either 1 or  e e . Similar 

degeneracy effects in the contraction with ( )

; 123

N

s Ng   cause the molecular response 

tensor components to be reduced to a set of the natural invariant scalars. 

 

4.3 Unmodified absorption 

The B=1 terms give the rate of absorption via a mechanism with no auxiliary 

beam involvement, as illustrated by figures 5.1 and 5.3. They are independent of 

e , so may be evaluated straightforwardly without any reference to the 

polarisation vector angles that dominate the calculations of the following section. 

 1
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1
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3

  μ μ
 

(5.20) 
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C 2

15



       
 

(5.21) 

Every field vector is the same e, so every Kronecker delta in the tensor ( )

; 123

N

r i Nf  

yields a contraction equal to 1. Therefore, the results are a sum of every natural 

invariant ( 1

1C   has only one, 2

1C   has two) multiplied by a coefficient derived from

( )N

rsm , and the sum of all coefficients comes to  
1

1N


 . 
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5 Dependence on beam polarisation geometry 

5.1 Inter-polarisation angle 

The scalar ( )e e  is under direct experimental control, as the angle 1cos ( ) e e  is 

simply the difference in polarisation orientation for the absorbed and auxiliary 

beams at the molecule’s position. The implication is that apart from irradiances I 

and I’ and coherence, this angle is the only property of the pair of beams to 

determine the absorption rate in rotationally-averaged cases. The direction of the 

Poynting vectors S & S or wavevectors k & k’ are not relevant. 

An experiment designed to interrogate molecular behaviour, extracting maximum 

information concerning the magnitudes of molecular response tensor natural 

invariants, should measure absorption rates with different values for 1cos ( ) e e . 

The following subsections predict the results for the two extreme cases: choosing

1cos ( ) 0   e e represents a case of parallel polarisations, denoted || e e , which 

results in ( ) 1 e e ; choosing 1cos ( ) 90   e e  represents a case of perpendicular 

polarisations, denoted e e , which results in ( ) 0 e e . The results (5.20-29) 

may be directly substituted into equations (5.12) and (5.13), giving the one- or 

two-photon absorption rate for the fluid phase, for a given polarisation geometry. 

 

5.2 Parallel polarisations, || e e  

With parallel polarisations, every Kronecker delta in the tensor 
( )

; 123

N

r i Nf  yields a 

contraction equal to 1, just like in the B=1 rate terms. Each rotationally-averaged 

C becomes a sum of all natural invariants multiplied by a coefficient 
( )

;
N

r rs
s S

m


 , 

where the set S   is defined as all s values that yield the chosen natural invariant 

from the contraction of molecular response tensors with ( )

; 123

N

s Ng  . 
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(5.23) 
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(5.25) 

Every element in the m
(N)

 matrix contributes once to the coefficients, so in each 

averaged C the sum of all coefficients comes to  
1

1N


 . 

 

5.3 Perpendicular polarisations, e e  

With perpendicular polarizations, every contraction of the field vectors with 

( )

; 123

N

r i Nf  yields 0 if the factor ( )e e  appears, or 1 if it does not. So each rate term 

becomes a sum of all natural invariants, each multiplied by a coefficient 

( )N
r R rs
s S

m


 , where the set R  is defined as all r values for which the ( )

; 123

N

r i Nf  

contraction result is 1, and the set S  is again defined as all s values that yield the 

chosen natural invariant. 
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If a certain natural invariant’s coefficient is zero, ( ) 0N
r R rs
s S

m


 , this implies that 

the absorption interaction process does not engage with that particular form of 

molecular electronic response. 

 

5.4 Depolarisation ratio 

The scale of the effect on absorption of choosing 1cos ( ) e e  may be quantified by 

the ratio of the || e e  and e e  rate results. The value of this ratio indicates the 

range of absorption rates that are under experimental control via manipulation of 

beam polarisation. This is equivalent in definition and analytic role to the Raman 

spectroscopy concept of depolarization ratio.
[16]

 

It must be noted that each of the second-term contractions 2CA
are derived from 

the product of two different quantum amplitudes (either expressions (5.5) and (5.6) 

for single-photon absorption, or (5.8) and (5.10) for two-photon absorption), while 

the corresponding 1CA
 and 3CA

 are each derived from the square of one of them. 

This implies that if 1C 0A   (unmodified absorption is forbidden) or 3C 0A 

(modified absorption is forbidden), this is because one of the quantum amplitudes 

has zero magnitude, and ergo 2C 0A  . 

If absorption in the fluid phase is only possible with auxiliary beam involvement, 

the 
1C 0A   case, then it follows that 

3CA

A



  . So the depolarisation ratios 

are expressible as: 

3

||||

3

C

C

A

A

A
A


















e e
e e

e ee e  
(5.30) 

For single-photon absorption (A=1), the results of expressions (5.23) and (5.27) 

apply here. If all eight of the   natural invariants are taken to be approximately 

equal, then the ratio will evaluate as 1/5. The maximum possible value is 3, in the 

case of the natural invariant     being far greater than the other seven. For 

two-photon absorption (A=2), expressions (5.25) and (5.29) apply. If all 17 of the 

  natural invariants are equal, then the ratio will evaluate as 3/35. The 
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maximum possible value is 6, achieved when    ,    ,    , 

or     is dominant. 

If fluid-phase absorption is not modified by the auxiliary beam, the case of 

3C 0A  , then the beam’s polarisation geometry is irrelevant. The ratio will have 

a default value of 1. 

 

6 Discussion 

The absorption processes analysed in this chapter may be nonlinear and include 

annihilation and re-creation of coherent photons, but they are fundamentally 

distinct (and experimentally distinguishable) from even-order transitions of no net 

excitation, such as the optical Kerr effect.
[17–19]

 That said, it is possible that a high-

order multiphoton interaction (such as four- or six-wave mixing) may lose its 

character of a coherent parametric process by resonant absorption at an 

intermediate state: The absorption would then become identifiable as a discrete 

process, physically distinct from the other interaction events, as it would be 

separated by a definite time delay and possibly a Stokes frequency shift. 

In the fluid phase, with molecules freely rotating, the correct basis set for the 

molecular electronic response to absorption transitions is formed by the natural 

invariants that appear in equations (5.20-29). Their magnitudes contain all 

information regarding the relevant molecular responses. The natural invariant 

values are in large part determined by molecular structure, with the self-index-

contraction pattern related to molecular symmetries. The results of sections 4 and 

5 offer insights concerning the interplay of field geometry, molecular orientation 

and the symmetry of the molecule’s structure. The variation of molecular response 

with beam polarisation and molecular orientation allows for straightforward 

measurement of interactions that are sensitive to such geometric considerations.
[20]

 

In cases where the conventional single-photon or two-photon absorption 

mechanism is forbidden, an auxiliary-beam-modified absorption mechanism 

becomes necessary for any measurable absorption to occur. The results of section 

5, which require high-order (up to N=8) rotational averaging methods, show some 

of the symmetry considerations that become important in such cases. These results 
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may be of particular interest to application in fluorescence spectroscopy 

experiments, as they permit information to be gained from manipulation of the 

easily-controllable beam parameters of intensity and polarisation direction. The 

depolarisation ratio defines the range of absorption-rate variation that is under the 

control of auxiliary beam polarisation. 

In the vacuum case (n = 1), the results of section 5 here exactly reduce to a 

rotational average of the results reported by ref.
[2]

 – the advanced symmetry 

selection-rule discussion in that paper also applies to these results. The 

depolarization measurement detailed in section 5 of this chapter is another tool for 

the analysis of symmetry rules, as it is a straightforward measurement that may be 

related to natural invariant magnitudes. These analytical methods should be useful 

for better understanding some of the advanced symmetry effects that arise in 

nonlinear solution-phase interactions. 

As outlined in section 2, this chapter has employed a “dressed-field” formulation 

of molecular QED, with functions of refractive index n involved in the 

fundamental equations. This formulation differs from the media-modified MQED 

theory employed in chapter 3a and refs.
[21,22]

, being more appropriate to this 

single-molecule problem. 

Interpretation of equations (5.7) and (5.11) show that if an absorption process 

requires the involvement of an auxiliary beam, then the rate’s proportionality to 

the square of auxiliary beam intensity 2I   helps to identify the observed process 

as optically-modified absorption as opposed to sum-frequency absorption or 

similar. The depolarisation ratio measurement is a further means of verification. 

Practically, nonlinearity in the auxiliary beam implies a need to use intense lasers 

as the beam source, as implied by the comments in section 3 regarding photon 

density q V . This may suggest that complicating effects of molecular re-

alignment could arise, as the molecule might preferentially orient itself according 

to the auxiliary beam polarization. However, thermal agitation (Brownian motion, 

etc.) will usually overcome any such orientation-forcing. 

The auxiliary beam has been described as undergoing forward scattering, such 

that the output photons experience no change in physical state. In principle, it is 

therefore possible for the observation of modified-absorption to serve as proof of 
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the involvement of these photons without their explicit annihilation. This 

constitutes a form of weak measurement of the auxiliary photon state. New kinds 

of weak-measurement experiment may be imagined from this basis.
[23,24]
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Chapter 6: Hyper-Rayleigh scattering including 

multipolar contributions 

 

1. Introduction 

Rayleigh scattering, well-known as the cause of the atmosphere’s light blue 

colour, is a photonic process consisting of single-photon absorption, concerted 

with one emission. The output photon is of equal wavelength and in a random 

direction, and the molecule returns to its initial state.
[1]

 It is favourable at low 

luminosity, and is allowed by all atoms and molecules – scattering rate is 

determined by the E1
2
 response tensor, polarisability α, which is finite for all 

matter due to its spatially-even optical-susceptibility parity. 

A higher intensity of light input leads to related processes that involve more 

photon-absorption interaction events. The scattering process in which a molecule 

absorbs two photons and emits a second-harmonic is called hyper-Rayleigh 

scattering (HRS).
[2]

 Note that the term “second harmonic generation” 

conventionally refers to a different process – a beam interacting with a solid 

material, generating coherent half-wavelength emission in the same direction as 

the input mode, not the scattering of photons described here. 

The HRS process has applications in the spectroscopic analysis of minerals and 

condensed-phase nanoparticles.
[3–5]

 The rate of HRS is determined by the E1
3
 

response tensor, hyperpolarisability β.
[1,6,7]

 Simplified “push-pull” models of 

molecular dynamics have been developed for  predicting the principal β 

components of molecules,
[8–10]

 often using a two-level approximation,
[11–13]

 whose 

limitations have been identified and much discussed.
[14–18]

 

For centrosymmetric molecules, all molecular state wavefunctions ψ have a parity 

that is either gerade (symmetric with respect to spatial inversion) or ungerade 

(antisymmetric). Consider the full integral form of the Dirac bracket that describes 

the molecular transition in an E1 interaction, such as in equation (2a.3): 

ˆψ ψf if i d μ μ
 

(6.1) 
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The integration is over all of three-dimensional space, so if the integrand is overall 

ungerade then the result will be zero. An electric dipole μ̂  is naturally ungerade, 

as it consists of opposing positive and negative electric poles. According to the 

rules for combining gerade and ungerade (equivalent to multiplying +1 and –1), 

the integrand will thus be ungerade unless the molecule’s initial and final state 

wavefunctions are of opposite parity. Therefore, an E1 interaction must impose a 

parity reversal on a centrosymmetric molecule, or else be forbidden. This is the 

Laporte selection rule.
[19]

 

In a process of scattering there is no net molecular transition, such that the 

molecule’s final state is also its initial state. In figure 6.1, this is shown as 

0f i  . In particular, scattering preserves the spatial parity of the 

molecule’s state, and so the Laporte rule forbids a scattering process for 

centrosymmetric molecules that consists of an odd number of interactions. It 

follows that HRS, entailing three interactions and no overall molecular state 

change, is forbidden for molecules of sufficiently high symmetry. But second-

harmonics may still be generated by such media – this chapter provides an 

explanation for this observation. 

Going beyond the E1 approximation, considering additional terms of equation 

(2a.2), allows for additional multipolar interaction mechanisms, which may be 

immune to the symmetry arguments above which forbid HRS.
[20]

 This chapter 

describes mechanisms that enable conventionally-forbidden HRS, using a QED 

derivation with an extended interaction Hamiltonian to calculate a more complete 

rate equation for HRS. 

 

2. Process specification 

Hyper-Rayleigh scattering is a photonic process of one molecule undergoing three 

photonic interaction events: two input photons are annihilated, and one second-

harmonic output photon is created with unspecified direction of propagation. 

Observations of HRS are typically made on a sample of the molecule-of-interest 

in liquid solution. This chapter will not consider resonance effects – the two 

intermediate molecular states (labelled r and s as usual) must be presumed non-

stationary. 
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Figure 6.1: Molecular Feynman diagram for hyper-Rayleigh scattering, showing 

one of three (or six) time-orderings. The molecule finally returns to its initial state 

0. The output photon, whose properties are denoted by labels bearing a prime 

mark (’), is a second-harmonic of the input light, such that ck ck ck   . 

 

The HRS process is incoherent, such that each individual occurrence is 

unconnected and singular. The total HRS rate is thus a simple sum of the HRS 

rate for every molecule in the sample. This is in contrast to the multi-chromophore 

fluorescence described in chapter 4b, where the identity of the active 

chromophore is undetermined. For coherent second-harmonic-generating 

processes in fluid media, the M1 and E2 interactions are forbidden.
[21,22]

 

The “E1 approximation” is the case where all interaction events are describable 

with an interaction Hamiltonian of purely electric dipole character – only the first 

term of equation (2a.2). The electric quadrupole (E2) and the magnetic dipole 

(M1) are jointly the next-leading interaction Hamiltonian terms, as they both arise 

from the multipolar transformation of the second order of the minimal coupling 

interaction.
[23–25]

 Thus, the leading corrections to the E1 approximation of HRS 

will be where one of the three interactions has M1 character or E2 character. This 

choice of multipolar description is more fully explained in the next section. 
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The output photon and the interaction which creates it are distinguished from the 

absorptions by the presence of a prime mark (’). This chapter considers five 

possible HRS mechanisms: 

 (E1
3
) is the HRS mechanism conforming to the E1 approximation. The label 

indicates that there are three E1 interactions. A more systematic label might 

be (E1
2
E1’). 

 (E1M1E1’) is where one absorption event is an M1 interaction. The label 

indicates that the other absorption event and the emission event are both E1. 

 (E1E2E1’) is where one absorption event is E2.  

 (E1
2
M1’) is where both absorption events are E1 interactions but the emission 

is M1.  

 (E1
2
E2’) is where the emission is E2. 

Where MFI is the quantum amplitude for a certain HRS mechanism, the following 

form of the Fermi rule gives the rate of the HRS process for a sample of N 

randomly-oriented molecules that are chemically similar. Chevron brackets 

denote an isotropic average over all molecular orientations. 

         3 2 2

2
5

1

Molecules Mechanisms

2
E1 E1 M1 E1 E2E1M1E1 E1E2E11

2

2

N
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M

N M M M M M
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

  

 

    

 

 
(6.2) 

According to the pattern of equation (2a.12), this rate equation expands into 15 

terms, for which the rotational average must be calculated separately. 
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(6.3) 
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3. Quantum amplitudes 

The five quantum amplitudes MFI are each given by the three-interaction term of 

equation (2a.13). 

  
int int int

,

FI

R S I R I S

F H S S H R R H I
M

E E E E


 
  

(6.4) 

For each interaction event, equation (2a.2) gives the complete interaction 

Hamiltonian, Hint. In the previous section, the sum over various multipolar 

Hamiltonian terms has been subsumed into the sum of five quantum amplitudes 

for the five mechanisms – these are two complementary forms of the sum-over-

mechanisms discussed in section 5 of chapter 2a. In this analysis, with five 

distinct mechanisms identified, each interaction event is described as either purely 

an E1 interaction, or purely an M1 interaction, or purely an E2 interaction. The 

relevant interaction Hamiltonian will thus be the single scalar-product found in 

the term of equation (2a.2) that corresponds to the type of interaction being 

described: 

(E1) 1

int 0H     μ d
 

(6.5) 

(M1)

intH   m b
 

(6.6) 

(E2) 1

int 0 ij j iH Q d    
 

(6.7) 

The relevant electric and magnetic fields are given in photonic form as mode 

expansions: 

( , ) ( , ) . ( , ) †( , ) .0

, 2

i ick
i a e a e

V

   



     k k k r k k k r

k

d e e
 

(6.8) 

( , ) ( , ) . ( , ) †( , ) .

, 02

i ik
i a e a e

c V

   

 

    k k k r k k k r

k

b b b
 

(6.9) 

The partial-del operator in (E2)

intH  evaluates as: 

. .j ji k ri i

j j

j

d
e e i k e

dr

    k r k r

 
(6.10) 
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HRS is a single-position process, so r=0 in all of the above equations. The 

operators a and †a  each apply to either photon creation or annihilation, with 

quantum algebra as in equations (2a.6-7). The three Dirac brackets of the MFI 

numerator will therefore each be one of the following six results: 

 The Dirac bracket for an E1 absorption event: 

(E1) ( , )

int

02

sr

R i i

c
S H R i q k e

V




 
   

 

k

 
(6.11) 

 The Dirac bracket for an E1 emission event: 

 (E1) ( , )

int

0

1
2

sr

R i i

c
S H R i q k e

V




 
 

    
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k

 
(6.12) 

 The Dirac bracket for an M1 absorption event: 

(M1) ( , )

int

02

sr

R i iS H R i q k m b
c V





 
   
 

k

 
(6.13) 

 The Dirac bracket for an M1 emission event: 

 (M1) ( , )

int

0

1
2

sr

R i iS H R i q k m b
c V





 
 

     
 

k

 
(6.14) 

 The Dirac bracket for an E2 absorption event: 

(E2) ( , )

int

02

sr

R ij i j

c
S H R q k Q e k

V




 k

 
(6.15) 

 The Dirac bracket for an E2 emission event: 

 (E2) ( , )

int

0

1
2

sr

R ij i j

c
S H R q k Q e k

V





     k

 
(6.16) 

Throughout this chapter, the unprimed symbol q refers to the average number of 

input photons occupying volume V before the first absorption event. The volume 

V is defined as the average volume that contains one output photon (ℏck’ of 

energy) after HRS. The input beam irradiance may be expressed as 2I c qk V , 

with number-density q/V representing the average number of input photons 



6: Hyper-Rayleigh scattering including multipolar contributions 

130 

occupying a unit volume. Each absorption interaction is the annihilation of one 

input photon ( 1)S Rq = q  ; each emission interaction is the creation of one output 

photon ( 1)S Rq = q   . The initial system state I has no radiation of the output mode 

( 0)Iq = , but there is some flux of the input mode, such that volume V contains qI 

photons. These equations have used the approximation of high input flux, 

( 1)q q q  ; but as HRS is an optically nonlinear process, a g
(2)

 factor should in 

general be included to describe beam coherence. 

In general, with six time-orderings for each HRS mechanism, the 

distinguishability of the three interaction events creates six potentially-distinct 

amplitude terms. But for the HRS mechanisms where the two absorption events 

are indistinguishable, there are only three distinct time-orderings and so the 

amplitude has only three unique terms. 

What follows are the complete derivations of the five quantum amplitudes, with 

the molecular response tensor assigned a single symbol. 
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4. General rate equation 

Substituting-in the quantum amplitude results (6.17-21) above into equation (6.3), 

the rate equation for HRS becomes: 
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(6.22) 

The second-“order” interaction Hamiltonians 
(E2)

intH  and 
(M1)

intH are typically 

weaker than 
(E1)

intH  by a ratio of approximately the fine structure constant 

(≈137).
[24]

 Thus the higher-order tensors J, J’, K, and K’ will be similarly lesser in 

magnitude relative to β, if the latter is not reduced to zero by symmetry 

considerations: For a centrosymmetric molecule, it is known that β=0. The tensors 

J, J’, K, and K’ describe even-order molecular susceptibilities, so the very same 

symmetry arguments suggest that these are nonzero for all molecules. 

The first rate term, 
3 2

(E1 )

FIM , would normally dominate the HRS process due to its 

  dependence on molecular response – but centrosymmetry causes the (E1
3
) 
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mechanism to be forbidden. The four terms of quantum interference between 

(E1
3
) and the higher-multipole mechanisms (i.e. the rate terms with a single β 

factor) are largely irrelevant: with a finite β they are insignificant compared to the 

3 2
(E1 )

FIM  term; and in the β=0 case they vanish along with it.
[26]

 The 10 rate terms 

not involving (E1
3
) only become significant under the β=0 condition. 

This means that normally only the first line of equation (6.22) is significant; but in 

the centrosymmetric case, the 10 terms with no β factor will dominate the HRS 

rate.
[27]

 What follows are the full calculations for these ten multipolar rate terms. 

 

5. Rotational averages and experimental setups 

Moving from static results to fluid, the rate terms of equation (6.22) are each 

rotationally-averaged according to the standard method outlined in chapter 2b. 

   

1 1 1 1

1 1

i iN i iN r i iN rs s N

i iN rs Nr s

v v T f v v m g T

f v v m g T

 

 



  
(6.23) 

This is an Einstein index-summation of scalar factors: r is the index of 

experiment-specific radiation scalars, produced by applying Kronecker deltas f to 

the radiation vectors v (which in each rate term is a product of e, ē, b, ƀ, and k̂  

variants); s is the index of natural-invariant molecular scalars, produced by 

applying Kronecker deltas g to the two-factor molecular response tensors T; mrs is 

a dimensionless number given in appendix 8b. 

Information about the structure of the input and output radiation modes is required 

in order to evaluate the radiation scalars 1i in r
f v v . This chapter considers four 

choices of experimental setup: 

 “Parallel”: Linearly-polarised light is input; light of parallel polarisation is 

detected from an orthogonal position. 

 “Perpendicular”: Linearly-polarised light is input; light of perpendicular 

polarisation is detected from an orthogonal position. 

 “Preserved”: Circularly-polarised light is input; light of preserved left-

polarisation is detected from a forward position. 
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 “Flipped”: Circularly-polarised light is input; light of reversed polarisation 

(left to right) is detected from a forward position. 

These are illustrated in figure 6.2. The “parallel” and “perpendicular” HRS 

experiments may be compared in order to determine the depolarisation ratio of 

scattered radiation – simply take the ratio of the parallel and perpendicular HRS 

rate values. The same is true for the “preserved” and “flipped” setups – the ratio 

of their rates gives the reversal ratio of HRS.
[27]

 

 

 

                  (“Parallel” setup)                                     (“Perpendicular” setup) 

 

 

                (“Preserved” setup)                                     (“Flipped” setup) 

Figure 6.2: Illustrations of the four example experimental setups. The cube 

represents a sample of N condensed-phase molecules, each of which is an 

individual HRS system. Input light is shown in orange with wavevector k; output 

light in blue with wavevector k’. 
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The choice of experimental setup specifies the orientation of the radiation vectors 

e, ē, b, ƀ, and k in the input and output modes. These ten vectors each have a 

magnitude of unity (note the carat on the k vectors appearing in the rate equation). 

Accordingly, each is expressible as a combination of the standard-basis Cartesian 

unit vectors  ˆ ˆ ˆ, ,x y z . 

 

 P. or P. 
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Perpendicular  

output 

Left-circular 

polarisation 

Right-circular 

polarisation 
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2
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i
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i
ix y  
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2

i
ix y   ˆ ˆ

2

i
i


x y  

 k = ẑ  ŷ  ŷ  ẑ  ẑ  

Table 6.1: Evaluation of the field vectors in equation (6.22). 

 

The values of their dot products are hence derived by straightforward comparison 

of their Cartesian components listed here – e.g. in the “parallel” experiment, 

ˆ ˆ( ) ( ) 1     k b z z ; and in the “perpendicular” experiment, ˆ ˆ( ) 1   e b x x . 

The constituent factors of any radiation scalar  1i in r
f v v  may be easily derived 

from table 6.1 in this way. 

For example, consider the rate term arising from the square of the (E1
2
E2’) 

mechanism: 

 2
2

E1 E2

( ) ( )
ˆ ˆ

FI i j k l m n o p ij kl mn opM e e e k e e e k K K


     
 

(6.24) 

The field tensor ˆ ˆ
i j k l m n o pe e e k e e e k    is contracted by application of Kronecker deltas 

f  to produce a set of radiation scalars  ˆ ˆ
i j k l m n o p

r
f e e e k e e e k    . According to 

equation (2b.7), the set of r values has cardinality of 105. But because the vectors 
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e, e  and k’ each appear twice, degeneracy ensures that there are only 23 distinct 

scalars. As this rate term is an eighth-rank rotational average, each of the scalars 

has four dot-product factors, which can be derived from table 6.1. The radiation 

scalars ˆ ˆ
i j k l m n o p

r
f e e e k e e e k     are evaluated in table 6.3 at the end of this chapter. 

The other 14 terms of rate equation (6.22) have their own set of radiation scalars, 

which likewise evaluate as dimensionless numbers in each setup. These numbers 

may be complex, but the Fermi rule keeps the rate result real. 

Each rate term also has its own set of molecular scalars 1 n s
gT  . Each of these 

is a natural invariant of the molecule’s intrinsic electronic behaviour, as discussed 

in chapter 2b. 

For the rate term arising from the square of the (E1
2
E2’) mechanism, the 

molecular response tensor ( ) ( )ij kl mn opK K   is contracted by application of Kronecker 

deltas g to produce a set of molecular scalars  ( ) ( )ij kl mn op s
g K K  . The bracketed 

subscript indices indicate index-symmetry, and this implies degeneracy which 

reduces the set of 105 independent s values to just 36 distinct natural invariants. 

The molecular scalars  ( ) ( )ij kl mn op s
g K K   are evaluated in table 6.4 at the end of 

this chapter. 

Each of the other 14 rate terms has a two-factor molecular response tensor (arising 

from a combination of two HRS mechanisms) which likewise evaluates as a set of 

natural invariant scalars. Any real molecule will have in-principle-measurable 

values for each of its natural invariants. 

With the radiation scalars  1i in r
f v v  and molecular scalars  1 n s

gT   each 

derived for all possible values of r and s, it is possible to calculate the rotationally-

averaged rate term as a simple unweighted sum of 15
2
 or 105

2
 terms, according to 

equation (6.23).
[28–30]

 The radiation scalars and the mrs elements are each 

dimensionless numbers that can be precisely known for each experimental setup, 

but the molecular scalars are unknown properties of the molecule, the natural 

invariants of its interactions, and must remain as labelled variables. In calculating 

the sum over r and s, the final result is a weighted sum over the set of these 

natural invariants. 
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For our example rate term, equation (6.23) becomes: 

   
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(6.25) 

The values of the three scalar factors in each of the 11025 terms are given in table 

6.3, table 6.4, and tables 8b.3-8. The radiation scalars and m
(8)

 elements are 

numbers, so the 36 natural invariants can factorise out. Thus for each 

experimental setup, the predicted value of this averaged-tensor is a weighted sum 

of the 36 natural invariants, each multiplied by a number coefficient. 

The outcome of equation (6.25) is reported in table 6.5 at the end of this chapter. 

This is the most succinct statement of the rate term that is possible without 

making additional assumptions about the molecular properties. The equivalent 

data derived for the other nine non-(E1
3
) rate terms can be found in the 

supplementary material of ref.
[31]

. 

 

6. Simple case 

An assumption of ideal molecular symmetry lets us set all of the natural invariants 

in each rate term to be equal. This means total degeneracy in the index s, so we 

may define a single molecular scalar  1 n s
T gT   that is the same for all s. 

Then, in the final rate equation for each experimental setup, each averaged-tensor 

is reduced to a single molecular scalar T multiplied by a single dimensionless 

coefficient,  1,T i in rsrr s
x f v v m . 

1 1i in i in Tv v T x T 
 

(6.26) 

So the complete 10-term ( β=0 ) version of rate equation (6.22) becomes: 
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(6.27) 
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J J  1/35 1/105 2/35 2/35 

J J  0 0 – 4/35 4/35 

J J   – 2/105 1/7 2/35 2/35 

K J  0 0 2/35 0 

K J   1/35 – 1/105 2/35 0 

K J  – 1/35 1/105 – 2/35 – 44/105 

K J   0 0 2/35 – 4/15 

K K  1/63 1/105 2/315 2/315 

K K  0 0 4/315 4/315 

K K   1/63 1/315 2/315 2/315 

Table 6.2: Values of Tx  for use in equation (6.27). Many thanks to Matthew D. 

Williams for calculating the first seven rows, which require 6th- and 7th-order 

rotational averages. 

 

To continue the worked example of the previous section, the values of 
K K

x
 

 for 

each experimental setup (the final row of table 6.2) are calculated by simply 

adding all 23 of the coefficients in the relevant column of table 6.5.
[31]

 

 

7. Discussion 

The higher-multipolar interaction moments m and Q are usually ignored as 

negligible, but if the (E1
3
) HRS mechanism is forbidden by symmetry, then they 

become necessary for the HRS process. The four mechanisms involving M1 and 

E2 interactions are allowed for all molecules, and the rate of HRS arising 

therefrom should be non-negligible. The nonzero rate results of this chapter lead 

to the conclusion that HRS is universally allowed. Centrosymmetric HRS should 

be weaker than conventional HRS by a factor in the ballpark of 137
2
. Use of near-

resonant wavelengths, such that ℏck or ℏck’ is chosen to be near to an energy gap 



6: Hyper-Rayleigh scattering including multipolar contributions 

139 

for the molecule’s ground state, may enhance the tensors J, J’, K, or K’ by a much 

greater degree,
[32]

 turning the “forbidden” HRS process into a measurable signal. 

The depolarisation and reversal ratios of HRS provide a new method for uniquely 

characterising different molecules. Experimental equipment that automatically 

switches between the detection of different polarisation states may be used, 

combining two setups into one experiment that can directly test the results of this 

chapter.
[27,33]

 

One notable prediction of these results comes from comparing the preserved and 

flipped rates in the case of J and J’ tensors being negligible compared to the K 

and K’ (i.e. the M1-involving mechanisms are near-forbidden). This reversal ratio 

evaluates as 1, indicating total reversal of circularity for forward emission of 

second-harmonic photons. The powers of k in equation (6.27) suggest that this 

observation will be most likely at shorter wavelengths. 
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1,2,14,15,16,17,29,30 (e' · e*)(e'* · e)(e · k')(e* · k') 0 0 0 0 

3,13,18,28 (e* · e*)(e'* · e)(e · k')(e' · k') 0 0 0 0 

4,5,19,20 (e · e')(e'* · e)(e* · k')^2 0 0 0 0 

6,21 (e* · e*)(e · e')(e'* · e)(k' · k') 1 0 0 0 

7,8,10,11,22,23,25,26 (e · e*)(e'* · e)(e* · k')(e' · k') 0 0 0 0 

9,12,24,27 (e · e*)(e' · e*)(e'* · e)(k' · k') 1 0 1 0 

31,32,92,93 (e · e)(e' · e*)(e* · k')(e'* · k') 0 0 0 0 

33,91 (e · e)(e* · e*)(e' · k')(e'* · k') 0 0 0 0 

34,35,37,40,98,99,101,104 (e · e*)(e · e')(e* · k')(e'* · k') 0 0 0 0 

36,43,94,97 (e* · e*)(e · e')(e · k')(e'* · k') 0 0 0 0 

38,41,102,105 (e · e*)^2(e' · k')(e'* · k') 0 0 0 0 

39,42,44,45,95,96,100,103 (e · e*)(e' · e*)(e · k')(e'* · k') 0 0 0 0 

46,47 (e · e)(e'* · e')(e* · k')^2 0 0 0 0 

48 (e · e)(e* · e*)(e'* · e')(k' · k') 1 1 0 0 

49,50,52,54,55,57,59,60 (e · e*)(e'* · e')(e · k')(e* · k') 0 0 0 0 

51,58 (e* · e*)(e'* · e')(e · k')^2 0 0 0 0 

53,56 (e · e*)^2(e'* · e')(k' · k') 1 1 1 1 

61,62,76,77 (e · e)(e'* · e*)(e* · k')(e' · k') 0 0 0 0 

63,78 (e · e)(e'* · e*)(e' · e*)(k' · k') 1 0 0 0 

64,67,69,74,79,82,84,89 (e · e')(e'* · e*)(e · k')(e* · k') 0 0 0 0 

65,70,72,75,80,85,87,90 (e · e*)(e'* · e*)(e · k')(e' · k') 0 0 0 0 

66,73,81,88 (e'* · e*)(e' · e*)(e · k')^2 0 0 0 0 

68,71,83,86 (e · e*)(e · e')(e'* · e*)(k' · k') 1 0 0 1 

Table 6.3: Evaluation of the 105 radiation scalars ˆ ˆ
i j k l m n o p

r
f e e e k e e e k    . 

Symbols e and k stand for the e and k̂  vectors in equation (21), and an asterisk 

(*) denotes complex conjugation:  e* e .  
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s = 

Molecular scalar 

(natural invariant) 

1,2,16,17 K'a(ab)b K'*c(cd)d 

3,18 K'a(ab)b K'*c(dd)c 

4,5,19,20 K'a(ab)c K'*b(cd)d 

6,21 K'a(ab)c K'*b(dd)c 

7,10,22,25 K'a(ab)c K'*c(bd)d 

8,11,23,26 K'a(ab)c K'*d(bc)d 

9,12,24,27 K'a(ab)c K'*d(bd)c 

13,28 K'a(ab)c K'*c(dd)b 

14,15,29,30 K'a(ab)c K'*d(cd)b 

31,32 K'a(bb)a K'*c(cd)d 

33 K'a(bb)a K'*c(dd)c 

34,35,37,40 K'a(bc)a K'*b(cd)d 

36,43 K'a(bc)a K'*b(dd)c 

38,41 K'a(bc)a K'*d(bc)d 

39,42,44,45 K'a(bc)a K'*d(bd)c 

46,47 K'a(bb)c K'*a(cd)d 

48 K'a(bb)c K'*a(dd)c 

49,50,52,55 K'a(bc)b K'*a(cd)d 

51,58 K'a(bc)b K'*a(dd)c 

53,56 K'a(bc)d K'*a(bc)d 

54,57,59,60 K'a(bc)d K'*a(bd)c 

61,76 K'a(bb)c K'*c(ad)d 

62,77 K'a(bb)c K'*d(ac)d 

63,78 K'a(bb)c K'*d(ad)c 

64,67,79,82 K'a(bc)b K'*c(ad)d 

65,70,80,85 K'a(bc)b K'*d(ac)d 

66,73,81,88 K'a(bc)b K'*d(ad)c 

68,71,83,86 K'a(bc)d K'*b(ac)d 

69,74,84,89 K'a(bc)d K'*b(ad)c 

72,75,87,90 K'a(bc)d K'*d(ab)c 

91 K'a(bb)c K'*c(dd)a 

92,93 K'a(bb)c K'*d(cd)a 

94,97 K'a(bc)b K'*c(dd)a 

95,96,100,103 K'a(bc)b K'*d(cd)a 

98,99,101,104 K'a(bc)d K'*b(cd)a 

102,105 K'a(bc)d K'*d(bc)a 

Table 6.4: Evaluation of the 105 molecular scalars ( ) ( )ij kl mn op s
g K K  .  
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co
ef
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ci
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K'a(ab)b K'*c(cd)d – 2/945     1/1890 – 5/378     1/945  

K'a(ab)b K'*c(dd)c – 1/945     1/378     1/189     1/1890 

K'a(ab)c K'*b(cd)d – 2/945     1/1890    2/189     2/189  

K'a(ab)c K'*b(dd)c    8/945  – 13/1890 – 13/945  – 13/945  

K'a(ab)c K'*c(bd)d – 2/945     1/189  – 5/378     2/189  

K'a(ab)c K'*d(bc)d – 2/945     1/189  – 5/378     2/189  

K'a(ab)c K'*d(bd)c   16/945  – 13/945    11/189  – 26/945  

K'a(ab)c K'*c(dd)b – 1/945     1/378     1/189     1/1890 

K'a(ab)c K'*d(cd)b – 2/945     1/1890 – 5/378     1/945  

K'a(bb)a K'*c(cd)d – 1/945     1/378     1/189     1/1890 

K'a(bb)a K'*c(dd)c – 1/1890 – 11/1890    1/3780    1/3780 

K'a(bc)a K'*b(cd)d – 2/945     1/189     2/189  – 5/378  

K'a(bc)a K'*b(dd)c – 1/945     1/378     1/1890    1/189  

K'a(bc)a K'*d(bc)d – 1/945  – 11/945  – 5/756  – 5/756  

K'a(bc)a K'*d(bd)c – 2/945     1/189  – 5/378     2/189  

K'a(bb)c K'*a(cd)d – 1/945  – 13/1890    1/189     1/189  

K'a(bb)c K'*a(dd)c    4/945    17/945  – 13/1890 – 13/1890 

K'a(bc)b K'*a(cd)d – 2/945  – 13/945  – 5/378  – 5/378  

K'a(bc)b K'*a(dd)c – 1/945  – 13/1890    1/189     1/189  

K'a(bc)d K'*a(bc)d    8/945    34/945    11/378    11/378  

K'a(bc)d K'*a(bd)c – 2/945  – 13/945  – 5/378  – 5/378  

K'a(bb)c K'*c(ad)d – 1/945     1/378     1/1890    1/189  

K'a(bb)c K'*d(ac)d – 1/945     1/378     1/1890    1/189  

K'a(bb)c K'*d(ad)c    8/945  – 13/1890 – 13/945  – 13/945  

K'a(bc)b K'*c(ad)d – 2/945     1/1890    1/945  – 5/378  

K'a(bc)b K'*d(ac)d – 2/945     1/189     2/189  – 5/378  

K'a(bc)b K'*d(ad)c – 2/945     1/1890    2/189     2/189  

K'a(bc)d K'*b(ac)d   16/945  – 13/945  – 26/945    11/189  

K'a(bc)d K'*b(ad)c – 2/945     1/1890   1/945  – 5/378  

K'a(bc)d K'*d(ab)c – 2/945     1/189     2/189  – 5/378  

K'a(bb)c K'*c(dd)a – 1/1890 – 11/1890    1/3780    1/3780 

K'a(bb)c K'*d(cd)a – 1/945     1/378     1/189     1/1890 

K'a(bc)b K'*c(dd)a – 1/945     1/378     1/1890    1/189  

K'a(bc)b K'*d(cd)a – 2/945     1/189  – 5/378     2/189  

K'a(bc)d K'*b(cd)a – 2/945     1/189     2/189  – 5/378  

K'a(bc)d K'*d(bc)a – 1/945  – 11/945  – 5/756  – 5/756  

Table 6.5: Results for equation (24). The averaged-contraction is equal to a sum 

of all 36 natural invariants K'K'*, each multiplied by a setup-specific coefficient. 
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Chapter 7: Concluding comments 

 

All of the photonic processes analysed in this thesis have been shown to strongly 

depend on the precise system geometry – particularly the relative positions and 

orientations of each involved chromophore. The best example is section 6 of 

chapter 3b, which reports extremely complicated functions of lengths and angles, 

illustrative of the fine control that molecular geometries may exert on the 

efficiency of photonic processes: As seen in figure 3b.4, the energy-transfer 

process in question may be entirely forbidden in one case, but then become 

allowed after a very fine change of one chromophore’s alignment. 

The processes described in chapters 3a, 3b and 4a are distinguished by not 

entailing any net absorption or emission of external photons. Energy is transferred 

between chromophores without any involvement of distant sources/detectors of 

radiation: RET is a process internal to a two- or three-chromophore system; 

chapter 4a concerns a process of photon emission and immediate detection, with 

the detector included as part of a three-chromophore energy transfer system. In 

contrast, chapter 5 describes a process in which a radiation mode interacts with a 

molecule without the Fock number necessarily changing – in principle, this can 

become a form of weak measurement on the radiation state.
[1–3]

 

The two parts of Chapter 4 therefore represent alternative treatments of similar 

processes, distinguished by very different ways of framing the system – either all 

photon paths are bound within the system, or emitted light escapes out and is 

considered a real photon. Very different quantum measurement issues arise in 

these two analyses, yielding experimentally-distinguishable outcomes. Treating 

emission-and-detection as a single four-event process may be conceptually 

superior, as back-coupling and degeneracy splitting are quantum effects that are 

excluded when emission is restricted to a photon with specified real properties. By 

including the detector as a coupled chromophore within the system and allowing 

for unspecified emitter states, chapter 4a reveals the particular emission 

behaviours characteristic of excitons, distinct from single-chromophore 

emission.
[4]

 The results provide testable models for the idiosyncratic excitation 

behaviour of coupled nanoantennas, a family of systems of current technological 

interest.
[5]
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Chapter 3 gives a full MQED description of RET as a two- or four-interaction 

event process, with the coupling between chromophores mediated by virtual 

photons. In chapter 4a this result is directly applied to an entirely distinct energy-

transfer process (more properly described as an emission process), thus illustrating 

the versatility of the MQED framework. The geometric analysis in chapter 4b 

may also inform the optimisation of multi-chromophore systems for energy 

exchange. This thesis contributes to understanding the very precise requirements 

of molecular geometry that must inform the design of energy-harvesting 

technology, and other systems where fine control of energy transfer is required. 

For example, recent research seeks to develop laser technology using organic dye 

molecules in the solid state, optimising laser yield via a sequence of selective RET 

steps that populate the lasing chromophore’s excited state.
[6]

 Also, in light-

harvesting systems, energy from the original absorption event is directed through 

a “cascade” of efficient one-way transfer steps toward the desired reaction 

centre.
[7,8]

 The analysis of chapters 3 and 4 may be applied to give a more 

complete description of the energy transfer processes in such systems, and thence 

predict the optimum positions and orientations of chromophores within the solid 

matrix, and account for effects of quantum interference by nearby dye or host 

molecules. 

If this work is to be developed into a full MQED description of real light-

harvesting systems, then the absorption of light and all subsequent inter-

chromophore energy transfer steps should be included together and treated as one 

process. The analysis of media-modified absorption provided by chapter 5 of this 

thesis must be combined with the analysis of media-modified transfer provided by 

chapter 3a, including all possible coupling configurations, then the system 

geometry can be holistically optimised for harvesting efficiency. 

The anisotropy predictions of chapter 4b are an example of the MQED method 

reproducing results from complementary theoretical approaches.
[9]

 The analysis in 

this chapter also explains advanced spectroscopic behaviours that would 

otherwise be considered anomalous, in particular the observation of extremely 

high anisotropy of fluorescence at short timescales.
[10]

 The relative orientations of 

dipoles within a multi-chromophore molecule have been linked to obscure but 

measurable features of the total fluorescence behaviour. This has potential 
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applications in the study of protein folding and other molecular structure 

problems. 

Chapters 3a, 4b, 5 and 6 first give rate equations for the given photonic process as 

a function of molecular orientation, then calculate the average value of that rate 

over all orientations of the active molecule. The static results are valuable in 

themselves, but they are directly applicable as rate predictions only if each active 

molecule’s relative position and orientation is known to a reasonable precision. 

Such well-ordered molecules may be found in structured energy-harvesting 

materials or natural photosynthetic complexes,
[8]

 but in the condensed phase the 

rotationally-averaged rate equations must be used. Further work should extend the 

geometric analyses in this thesis by challenging this static/stochastic dichotomy, 

exploring intermediate cases where chromophore orientation is subject to partial 

thermal disorder. For example, the θ parameter in chapter 4b should be 

unambiguously broken into its intrinsic and rotational components, in order for 

fluorescence anisotropy measurements to elicit more internal geometric 

information. 

Chapters 5 and 6 describe high-order (nonlinear) light-interaction processes by 

single molecules of unspecified orientation. With no relative position vectors, the 

most important geometric variables are the propagation-direction and polarisation 

state of the input beams. Such beam parameters can be finely controlled, so the 

results of these chapters are well-suited to application in fluorescence 

spectroscopy experiments. The only other consideration is the set of averaged 

molecular response tensor components. Process selection rules are reducible to 

these symmetry properties,
[11,12]

 and in chapter 6 the typical rules have been 

undermined by considering new forms of molecular response – a conventionally-

forbidden process has been given a predicted efficiency.
[13]

 The theoretical 

prospect of new forms of hyper-Rayleigh scattering opens the way to 

developments in the spectroscopy of high-symmetry molecules, with potential 

applications in new methods of characterising substances. 

When there are many interactions of radiation with a molecule of unspecified 

orientation, the rotational averages of process rate must be very high order. 

Chapter 2b explains the general method, and chapter 6 provides a worked 

example of an eighth-rank average involving 105×105 matrix evaluation. It is 
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hoped that publication of this thesis provides a resource for any researchers 

considering similarly ambitious rotational-average calculations. 

The intrinsic polarisability (E1
2
 moment) of a molecule is used to quantify the 

molecule’s propensity to undergo a two-interaction transition, just like transition 

dipole (E1) moment is commonly used in physical chemistry as a measure of a 

molecule’s propensity to a single interaction. The polarisability becomes central 

to all photonic processes with cooperation between chromophores (discussed in 

chapters 3a, 3b and 4a) or the multi-photon interactions of single chromophores 

(chapters 4b, 5 and 6). Section 6 of chapter 2a provides a necessary discussion of 

polarisability’s interpretation considering the problem of damping and resonance. 

Polarisability theory is then given a detailed application in section 5 of chapter 3a: 

With two virtual photons interacting with one chromophore, it is appropriate to 

derive the tensor in full, as a factor in the process quantum amplitude. Further, the 

polarisability of a medium molecule is related to the medium’s bulk optical 

properties, as a means of accounting for advanced media effects. 

At certain points in each of the chapters 3-6, limiting assumptions about the 

system geometry have been imposed which simplify the rate equations into a 

concise form. This approach has been necessary to render the predictions of each 

system’s (possibly extremely complicated) dynamics into a set of reportable 

results – but it means that the results are limited to particular cases, which may not 

always be those of practical interest. Nonetheless, the calculations in this thesis 

may still serve as a template for the derivation of results for more useful cases: 

The reader may follow the methods explained in each chapter, and apply the 

general rate equations, then explore an alternative system geometry that is more 

relevant to their particular application. 
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Appendix 8a: Time-ordering of interaction events: State-

sequence diagrams 

 

This appendix outlines state-sequence diagrams as an alternative diagrammatic 

system to the Feynman diagrams employed in the main part of the thesis. 

The elementary case of a quantum interaction process is a unitary system that 

undergoes one transformative event. As a state-sequence diagram, such a process 

is illustrated by figure 8a.1: 

 

 

Figure 8a.1: Elementary single-event state-sequence diagram. 

 

Time proceeds from left to right. The system, illustrated as a box, is shown in its 

initial state (left) labelled “0”. The process of the system evolving into its final 

state can be seen by reading the diagram rightward, following the transformative 

event arrow “+1” that transitions the system from that initial state into its final 

state labelled “1”. 

If there is more than one event, then the different time-orderings turn the diagram 

into a network of the possible state sequences, as shown by figure 8a.2. 
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Figure 8a.2: Elementary two-event state-sequence diagram. 

 

This two-event process consists of events (A) and (B). Event (A) adds the 

property “a” to the system’s state; event (B) adds the property “b”. In general, the 

property “x” should be understood as “event (X) is in the system’s history”. 

Therefore, the event arrows must all be drawn parallel to like events and 

orthogonal to all unlike events. The combination of both events transforms the 

system from initial state “0” to final state “ab”. There are two allowed routes 

through the network – these are the two time-orderings, (A)(B) and (B)(A). It is 

this that creates two distinct possible states, “a” and “b”, during the intermediate 

era. 

For a practical example of this scheme used to describe a MQED problem, 

consider the RET process that is illustrated with two Feynman diagrams in figure 

2a.2. This is represented by state-sequence diagram figure 8a.3. 
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Figure 8a.3: State-sequence diagram for resonance energy transfer. 

 

Each box displays a system state, displaying the states of the three subsystems: 

Radiation, Donor molecule, and Acceptor molecule. The lower path is the (A)(B) 

time-ordering and corresponds to the left Feynman diagram; the upper path is 

(B)(A) and corresponds to the right Feynman diagram. The advantage of the state-

sequence approach is that both Feynman diagrams and their relationship are 

completely described with this one figure. 

Figure 8a.4 is the abstract diagram with three events. Again, the occurrence of (C) 

adds the property “c” to the system’s state. This network can be seen to be 

comprised of the two-event diagram doubled-up – the (A)+(B) parallelogram 

turning “0” to “ab” is reproduced, turning c to abc. Note that in moving from two 

events top three: the number of state-sequence routes from the initial to final state 

increases from 2! to 3!, and the total number of possible states increases from 2
2
 

to 2
3
. 
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Figure 8a.4: Elementary three-event state-sequence diagram. 

 

This diagram has the clear structure of a cube, with the three events defining the 

cardinal directions in a three-dimensional (A)(B)(C)-space. This mathematical 

feature arises from treating the events as fully independent and commutative – any 

time-ordering is allowed and each permutation of the same set of events has the 

same outcome. The combinatorial possibilities of three transitions occurring in 

any order map to a representation of a 3D state space, through which the system 

moves in unit-vector leaps from the initial state “0”, to the opposing vertex of the 

cube which is the final state “abc”. 
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Figure 8a.5: Elementary four-event state-sequence diagram. 

 

For a four-event process, the three-event diagram is doubled-up in the same way, 

constructing a tesseract (four-dimensional cube) in the 4D state-space defined by 

the four events. This state-sequence diagram covers 2
4
 states and 4! time-ordering 

pathways. The network of the four-event diagram precisely emulates a tesseract 

projected into the 2D plane of this page: the 16 state-boxes align with vertices, 

and the 32 event-lines align with the cell-edges of a tesseract. 

For an example of a real four-event process captured with a tesseract state-

sequence diagram, consider the “MDA configuration” of third-body-modified 

RET, the focus of chapter 3a. This is represented by state-sequence diagram figure 

8a.6. 
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Figure 8a.6: State-sequence diagram for the “MDA configuration” of third-body-

modified RET. 

 

The electronic state of the chromophore M is not shown, as it remains M0 

throughout the process. The YZWX pathway through this network is illustrated by 

figure 3a.2. The other 23 time-orderings of the MDA-configuration process, 

which are enumerated separately at great length in Appendix 8c, are summarised 

systematically by this one figure. 

The following patterns arise in a state-sequence diagram for an interaction process 

with N transition events. These are illustrated by figure 8a.7. 

 

 The evolution of the system consists of N+1 “eras”, separated by the N events; 

 The state-sequence diagram covers 2
N
 possible states including the initial and 

final; 

 There are N! possible sequence routes between the many intermediate states, 

identical to the time-order permutations of the N events; 
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 The diagram has the form of an N-dimensional cube with states as vertices and 

events as cell-edges; 

 The diagram sorts the 2
N
 states between the N+1 eras according to the (N+1)

th
 

row of Pascal’s Triangle. 

 

 

Figure 8a.7: The elementary state-sequence diagrams replicate Pascal’s triangle. 

The trivial N=0 case is the diagram for a zero-event process, i.e. a stationary state. 

_ 
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Appendix 8b: Rotational averaging of tensors: Complete 

matrices 

 

1. Sources 

These are the results of the I
(N)

 calculation method outlined in chapter 2b section 

3, for even N values. The results for second, fourth and sixth ranks are as reported 

in Appendix 2 of the book [ Molecular Quantum Electrodynamics by D. P. Craig 

and T. Thirunamachandran (Dover Publications, 1998) ]. The results for the 

eighth rank rotational average are as reported in the article [ D.L. Andrews and 

W.A. Ghoul, “Eighth Rank Isotropic Tensors and Rotational Averages”: J. Phys. 

Math. Gen. 14, 1281 (1981) ]. 

 

2. Second rank average, N=2 

The elementary tensor f is a single Kronecker delta in two i indices. 

(2)

12if   

As there is only one f, the matrix S has just one element, provided by a 

straightforward application of equation (2b.10). 

(2) (2) 3ij ijS f f       

The single (2)m  element is calculated as the inverse of S, which in the single-

element limit is equal to the number’s reciprocal. 

(2) 1 1

3
m S    

Finally, according to equation (2b.5), the result for I
(2)

 is a double-tensor of one 

term. 

(2) (2) (2) (2)

12 12

1

3
iI f m g     

This double-tensor is responsible for the “trace” function Tr( ) in chapter 3a 

section 5, and is used to evaluate equation (5.20). 
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3. Fourth rank average, N=4 

The tensors (4)

rf are each a pair of Kronecker deltas in i. There are three possible 

permutations of four indices paired. 

(4)

1 12 34

(4)

2 13 24

(4)

3 14 23

i i

i i

i i

f

f

f

 

 

 







 

Equation (2b.10) applies to each element of the dimension-three square matrix S. 

9 3 3

3 9 3

3 3 9

ij kl ij kl ij kl ik jl ij kl il jk

ik jl ij kl ik jl ik jl ik jl il jk

il jk ij kl il jk ik jl il jk il jk

           

           

           

   
   

    
  
  

S  

The matrix m
(4)

 is calculated via matrix-inversion. 

(4) 1

4 1 1
1

1 4 1
30

1 1 4

m 

  
 

   
 
   

S  

Applying equation (2b.5), I
(4)

 is a double-tensor of nine terms. 

T

12 34 12 34

(4) (4) (4) (4)

13 24 13 24

14 23 14 23

4 1 1
1

1 4 1
30

1 1 4

i i

r rs s i i

i i

I f m g

 

 

 

   

   

   

     
    

   
    
         

 

This result is central to chapter 4b section 4, and is employed in the evaluation of 

equations (5.21), (5.22), and (5.26). 

 

4. Sixth rank average, N=6 

The tensors (6)

rf are each a product of three Kronecker deltas in i. There are 15 of 

them, representing all possible permutations of six i indices in three pairings. 

(6) (6) (6)

1 12 34 56 6 13 26 45 11 15 24 36

(6) (6)

2 12 35 46 7 14 23 56

(6) (6)

3 12 36 45 8 14 25 36

(6) (6)

4 13 24 56 9 14 26 35

(6) (6)

5 13 25 46 10 15 23 46

i i i i i i i i i

i i i i i i

i i i i i i

i i i i i i

i i i i i i

f f f

f f

f f

f f

f f

        

     

     

     

     

  

 

 

 

 

(6)

12 15 26 34

(6)

13 16 23 45

(6)

14 16 24 35

(6)

15 16 25 34

i i i

i i i

i i i

i i i

f

f

f

f

  

  

  

  








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The result for m
(6)

 is reported by Craig & Thirunamachandran (1998) as part of 

their equation (A2.26). The method employed in this calculation is identical to the 

N=4 case that I have explained in full above, but involving a matrix-inversion 

computation of dimension 15. 

(6)

16 5 5 5 2 2 5 2 2 2 2 5 2 2 5

5 16 5 2 5 2 2 2 5 5 2 2 2 5 2

5 5 16 2 2 5 2 5 2 2 5 2 5 2 2

5 2 2 16 5 5 5 2 2 2 5 2 2 5 2

2 5 2 5 16 5 2 5 2 5 2 2 2 2 5

2 2 5 5 5 16 2 2 5 2 2 5 5 2 2

5 2 2 5 2 2 16 5 5 5 2 2 5 2 2
1

2 2 5 2 5 2 5 16 5 2 5 2 2 2 5
210

2 5 2 2 2 5 5 5 16 2

m

     

     

     

     

     

     

     

      

    2 5 2 5 2

2 5 2 2 5 2 5 2 2 16 5 5 5 2 2

2 2 5 5 2 2 2 5 2 5 16 5 2 5 2

5 2 2 2 2 5 2 2 5 5 5 16 2 2 5

2 2 5 2 2 5 5 2 2 5 2 2 16 5 5

2 5 2 5 2 2 2 2 5 2 5 2 5 16 5

5 2 2 2 5 2 2 5 2 2 2 5 5 5 16

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
      
 

      
      
 

      
      
 
       

 

Applying equation (2b.5) of this thesis, I
(6)

 is a double-tensor of 225 terms given 

by the row-square-column matrix multiplication: 

12 34 56

12 35 46

12 36 45

13 24 56

13 25 46

13 26 45

14 23 56

(6)

14 25 36

14 26 35

15 23 46

15 24 36

15 26 34

16 23 45

16 24 35

16 25 34

i i i

i i i

i i i

i i i

i i i

i i i

i i i

i i i

i i i

i i i

i i i

i i i

i i i

i i i

i i i

I

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  













 





T

12 34 56

12 35 46

12 36 45

13 24 56

13 25 46

13 26 45

14 23 56

(6)

14 25 36

14 26 35

15 23 46

15 24 36

15 26 34

16 23 45

16

m

  

  

  

  

  

  

  

  

  

  

  

  

  

 

  

  

  

  

  

  

  

  

  

  

  

  

  

 
















 
 
 
 
 
 
 
 
 



24 35

16 25 34



  



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
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This result is employed in the evaluation of equations (5.23), (5.24), (5.27) and 

(5.28). 

 

5. Eighth rank average, N=8 

Application of equation (2b.7) predicts 105 unique values for r and for s, and the 

set of 105 tensors (8)

rf may be constructed by following the same index-

permutation pattern as in the above results. Table 8b.2 following this appendix 

describes these 105 tensors (8)

rf , each of which is a product of four Kronecker 

deltas in i . It must be noted that this set is overcomplete – only 91 of these tensors

(8)

rf are linearly independent, as the other 14 may be constructed as linear 

functions of the independent 91. Nonetheless, the overcomplete set is not 

incorrect because this redundancy does not introduce degeneracy as defined in 

chapter 2b section 4. 

This overcompleteness means that there is not a unique solution for each of the 

11025 elements (8)

rsm . In the calculation performed by Andrews & Ghoul (1981), 

each element (8)

rsm is instead assigned a variable label. The assignment is based on 

the tensor structure of the corresponding element of the S matrix, 
(8) (8)

rs r sS f f  . 

For example, the top-right element is: 

  (8) (8)

1;105 1 105 ij kl mn op ip jo kn lm ij jo op ip kl lm mn knS f f                     

What is of interest is that the inner product of eight deltas factorises into two self-

contained cycles of four. This factorisation is diagnostic of a certain set of 

possible values for (8)

1;105m . There are five distinct ways that each inner product of 

eight deltas may factorise into cycles, and these are each assigned a variable label 

in the set {A,B,C,D,E}. The ruleset of this algorithm is given by Table 8b.1. 
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rsS  factorisation (8)

rsm  

             A 

            B 

           C 

           D 

          E 

Table 8b.1: Rules for assigning the labels A,B,C,D,E to the elements (8)

rsm , 

according to the tensor structure of the corresponding element Srs. Adapted from 

Table 3 in Andrews & Ghoul (1981). 

 

Tables 8b.3-8 following this appendix combine to show the resulting matrix m
(8)

 

in terms of the five variable labels A,B,C,D,E. These variables have possible 

values constrained by the equations (26-29) given by Andrews & Ghoul (1981). I 

have chosen to use the E=0 result, as this is the simplest form of m
(8)

, most useful 

for direct application in the rotational-averaging calculations in this thesis. 

A 19 / 630 B –23/ 3780 C 1/ 7560 D 1/ 756 E 0      

Once again, m
(8)

 enters equation (2b.5), to give I
(8)

 as a double-tensor with 11025 

terms. This result is employed in the evaluation of equations (5.25) and (5.29). 

Also, see chapter 6 section 5 of this thesis for a worked example of how I
(8)

 is 

used to calculate a rotationally-averaged process rate. 

_  
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r δi 
 
δi 

 
δi 

 
δi 

 
 r δi  δi  δi  δi  

1 1 2 3 4 5 6 7 8  54 1 5 2 6 3 8 4 7 
2 1 2 3 4 5 7 6 8  55 1 5 2 7 3 4 6 8 
3 1 2 3 4 5 8 6 7  56 1 5 2 7 3 6 4 8 
4 1 2 3 5 4 6 7 8  57 1 5 2 7 3 8 4 6 
5 1 2 3 5 4 7 6 8  58 1 5 2 8 3 4 6 7 
6 1 2 3 5 4 8 6 7  59 1 5 2 8 3 6 4 7 
7 1 2 3 6 4 5 7 8  60 1 5 2 8 3 7 4 6 
8 1 2 3 6 4 7 5 8  61 1 6 2 3 4 5 7 8 
9 1 2 3 6 4 8 5 7  62 1 6 2 3 4 7 5 8 

10 1 2 3 7 4 5 6 8  63 1 6 2 3 4 8 5 7 
11 1 2 3 7 4 6 5 8  64 1 6 2 4 3 5 7 8 
12 1 2 3 7 4 8 5 6  65 1 6 2 4 3 7 5 8 
13 1 2 3 8 4 5 6 7  66 1 6 2 4 3 8 5 7 
14 1 2 3 8 4 6 5 7  67 1 6 2 5 3 4 7 8 
15 1 2 3 8 4 7 5 6  68 1 6 2 5 3 7 4 8 
16 1 3 2 4 5 6 7 8  69 1 6 2 5 3 8 4 7 
17 1 3 2 4 5 7 6 8  70 1 6 2 7 3 4 5 8 
18 1 3 2 4 5 8 6 7  71 1 6 2 7 3 5 4 8 
19 1 3 2 5 4 6 7 8  72 1 6 2 7 3 8 4 5 
20 1 3 2 5 4 7 6 8  73 1 6 2 8 3 4 5 7 
21 1 3 2 5 4 8 6 7  74 1 6 2 8 3 5 4 7 
22 1 3 2 6 4 5 7 8  75 1 6 2 8 3 7 4 5 
23 1 3 2 6 4 7 5 8  76 1 7 2 3 4 5 6 8 
24 1 3 2 6 4 8 5 7  77 1 7 2 3 4 6 5 8 
25 1 3 2 7 4 5 6 8  78 1 7 2 3 4 8 5 6 
26 1 3 2 7 4 6 5 8  79 1 7 2 4 3 5 6 8 
27 1 3 2 7 4 8 5 6  80 1 7 2 4 3 6 5 8 
28 1 3 2 8 4 5 6 7  81 1 7 2 4 3 8 5 6 
29 1 3 2 8 4 6 5 7  82 1 7 2 5 3 4 6 8 
30 1 3 2 8 4 7 5 6  83 1 7 2 5 3 6 4 8 
31 1 4 2 3 5 6 7 8  84 1 7 2 5 3 8 4 6 
32 1 4 2 3 5 7 6 8  85 1 7 2 6 3 4 5 8 
33 1 4 2 3 5 8 6 7  86 1 7 2 6 3 5 4 8 
34 1 4 2 5 3 6 7 8  87 1 7 2 6 3 8 4 5 
35 1 4 2 5 3 7 6 8  88 1 7 2 8 3 4 5 6 
36 1 4 2 5 3 8 6 7  89 1 7 2 8 3 5 4 6 
37 1 4 2 6 3 5 7 8  90 1 7 2 8 3 6 4 5 
38 1 4 2 6 3 7 5 8  91 1 8 2 3 4 5 6 7 
39 1 4 2 6 3 8 5 7  92 1 8 2 3 4 6 5 7 
40 1 4 2 7 3 5 6 8  93 1 8 2 3 4 7 5 6 
41 1 4 2 7 3 6 5 8  94 1 8 2 4 3 5 6 7 
42 1 4 2 7 3 8 5 6  95 1 8 2 4 3 6 5 7 
43 1 4 2 8 3 5 6 7  96 1 8 2 4 3 7 5 6 
44 1 4 2 8 3 6 5 7  97 1 8 2 5 3 4 6 7 
45 1 4 2 8 3 7 5 6  98 1 8 2 5 3 6 4 7 
46 1 5 2 3 4 6 7 8  99 1 8 2 5 3 7 4 6 
47 1 5 2 3 4 7 6 8  100 1 8 2 6 3 4 5 7 
48 1 5 2 3 4 8 6 7  101 1 8 2 6 3 5 4 7 
49 1 5 2 4 3 6 7 8  102 1 8 2 6 3 7 4 5 
50 1 5 2 4 3 7 6 8  103 1 8 2 7 3 4 5 6 
51 1 5 2 4 3 8 6 7  104 1 8 2 7 3 5 4 6 
52 1 5 2 6 3 4 7 8  105 1 8 2 7 3 6 4 5 
53 1 5 2 6 3 7 4 8           

Table 8b.2: Each tensor (8)

rf  is a product of four Kronecker deltas. The value of r 

specifies the permutation of the four i indices.  
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A B B B D D B D D D D B D D B B C C D E E D E E E E D E E D B C C D E 
B A B D B D D D B B D D D B D C B C E D E E E D D E E E D E C B C E D 
B B A D D B D B D D B D B D D C C B E E D E D E E D E D E E C C B E E 
B D D A B B B D D D B D D B D D E E B C C D E E E D E E D E D E E D E 
D B D B A B D B D B D D D D B E D E C B C E D E D E E E E D E D E E D 
D D B B B A D D B D D B B D D E E D C C B E E D E E D D E E E E D E E 
B D D B D D A B B B D D B D D D E E D E E B C C D E E D E E D E E B C 
D D B D B D B A B D B D D D B E E D E D E C B C E D E E E D E E D D E 
D B D D D B B B A D D B D B D E D E E E D C C B E E D E D E E D E D E 
D B D D B D B D D A B B B D D E D E E D E D E E B C C D E E E D E C B 
D D B B D D D B D B A B D B D E E D D E E E D E C B C E D E E E D E D 
B D D D D B D D B B B A D D B D E E E E D E E D C C B E E D D E E E D 
D D B D D B B D D B D D A B B E E D E E D D E E D E E B C C E E D C C 
D B D B D D D D B D B D B A B E D E D E E E E D E D E C B C E D E E E 
B D D D B D D B D D D B B B A D E E E D E E D E E E D C C B D E E E E 
B C C D E E D E E E E D E E D A B B B D D B D D D D B D D B B C C D E 
C B C E D E E E D D E E E D E B A B D B D D D B B D D D B D C B C E D 
C C B E E D E D E E D E D E E B B A D D B D B D D B D B D D C C B E E 
D E E B C C D E E E D E E D E B D D A B B B D D D B D D B D D E E B D 
E D E C B C E D E D E E E E D D B D B A B D B D B D D D D B E D E D B 
E E D C C B E E D E E D D E E D D B B B A D D B D D B B D D E E D D D 
D E E D E E B C C D E E D E E B D D B D D A B B B D D B D D D E E D E 
E E D E D E C B C E D E E E D D D B D B D B A B D B D D D B E E D E C 
E D E E E D C C B E E D E D E D B D D D B B B A D D B D B D E D E E E 
E D E E D E D E E B C C D E E D B D D B D B D D A B B B D D E D E E D 
E E D D E E E D E C B C E D E D D B B D D D B D B A B D B D E E D C E 
D E E E E D E E D C C B E E D B D D D D B D D B B B A D D B D E E E E 
E E D E E D D E E D E E B C C D D B D D B B D D B D D A B B E E D E E 
E D E D E E E E D E D E C B C D B D B D D D D B D B D B A B E D E C E 
D E E E D E E D E E E D C C B B D D D B D D B D D D B B B A D E E E C 
B C C D E E D E E E E D E E D B C C D E E D E E E E D E E D A B B B D 
C B C E D E E E D D E E E D E C B C E D E E E D D E E E D E B A B D B 
C C B E E D E D E E D E D E E C C B E E D E D E E D E D E E B B A D D 
D E E D E E B D D C E E C E E D E E B D D D E E E C E E C E B D D A B 
E D E E D E C E E B D D C E E E D E D B D E C E D E E E E C D B D B A 
E E D E E D C E E C E E B D D E E D D D B E E C E E C D E E D D B B B 
D E E B D D D E E E C E E C E D E E D E E B D D C E E C E E B D D B D 
E E D C E E E D E D B D E C E E E D E C E D B D E D E E E C D D B D B 
E D E C E E E E D E C E D B D E D E E E C D D B E E C E D E D B D D D 
E D E D B D E C E D E E E E C E D E E D E C E E B D D C E E D B D D B 
E E D E C E D B D E D E E E C E E D C E E E D E D B D E C E D D B B D 
D E E E C E E C E E E D D D B D E E E E C E E C D D B E E D B D D D D 
E E D D D B E E C E E C D E E E E D E E D C E E C E E B D D D D B D D 
E D E E E C D D B E E C E D E E D E C E E E E D E C E D B D D B D B D 
D E E E E C E E C D D B E E D D E E E C E E C E E E D D D B B D D D B 
D E E B C C D E E E D E E D E D E E B C C D E E E D E E D E B D D D E 
E D E C B C E D E D E E E E D E D E C B C E D E D E E E E D D B D E D 
E E D C C B E E D E E D D E E E E D C C B E E D E E D D E E D D B E E 
D E E D E E B D D C E E C E E B D D D E E D E E E E C E E C D E E B C 
E D E E D E C E E B D D C E E D B D E D E E E C D E E E C E E D E C B 
E E D E E D C E E C E E B D D D D B E E D E C E E C E D E E E E D C C 
B D D D E E D E E E E C E E C D E E D E E B D D C E E C E E D E E D E 
C E E E E D E E D D D B E E C E C E E E D D D B E E D E C E E E C E D 

Table 8b.3: Elements (8)

rsm , in the range  1 35s   and  1 53r  . The edge 

of the m
(8)

 matrix is bordered.  



8b: Rotational averaging of tensors: Complete matrices 
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E D E E E E D E E D D E E D E E B C C D E E D E E D E E D E E B C C D 
E E E D D E E E D E E D E E D E D E E B C C D E E E E D E E D D E E D 
D E D E E D E D E E E E D E E D D E E D E E B C C E D E E D E D E E B 
E B C C D E E D E E B C C D E E D E E E E D E E D D E E B C C D E E E 
E D E E B C C D E E C B C E D E E E D D E E E D E E D E D E E E E D E 
D D E E D E E B C C C C B E E D E D E E D E D E E E E D D E E E D E C 
C D E E E D E E D E D E E B C C D E E E D E E D E B C C D E E D E E E 
E E D E C B C E D E E D E D E E E E D E D E C B C C B C E D E E E D D 
E E E D E D E C B C E E D D E E E D E C B C E D E C C B E E D E D E E 
C E D E D E E E E D E D E C B C E D E D E E E E D D E E E D E E D E E 
E C B C E D E E E D D E E E D E E D E E E D C C B E D E C B C E D E D 
E E D E E E D C C B E E D E D E C B C E D E E E D E E D E D E C B C E 
B E E D E E D D E E E E D C C B E E D E E D D E E D E E E E D E E D C 
D C C B E E D E D E D E E E E D E E D C C B E E D E E D C C B E E D E 
D E E D C C B E E D E D E E E D C C B E E D E D E E D E E E D C C B E 
E D E E E E D E E D D E E B D D D E E E C E E C E D E E B D D D E E E 
E E E D D E E E D E E D E D B D E C E D E E E E C E E D D D B E E C E 
D E D E E D E D E E E E D D D B E E C E E C D E E E D E D B D E C E D 
D D E E E C E E C E B C C D E E D E E E E D E E D D E E D E E B D D C 
D E C E D E E E E C C B C E D E E E D D E E E D E E D E E E C D D B E 
B E E C E E C D E E C C B E E D E D E E D E D E E E E D E C E D B D E 
E B D D C E E C E E D E E D E E B D D C E E C E E B C C D E E D E E E 
E D B D E D E E E C E D E E E C D D B E E C E D E C B C E D E E E D D 
C D D B E E C E D E E E D E C E D B D E D E E E C C C B E E D E D E E 
E C E E B D D C E E E D E E D E C E E B D D C E E D E E E E C E E C D 
E E D E D B D E C E D E E E E C E E C D D B E E D E D E E D E C E E B 
C E E C D D B E E D E E D C E E E D E D B D E C E E E D C E E E D E D 
D C E E C E E B D D E E D E E D C E E C E E B D D D E E E C E E C E E 
E E E D E C E D B D D E E E C E E C E E E D D D B E E D E E D C E E C 
E E C E E E D D D B E D E C E E E E D E C E D B D E D E C E E E E D E 
D B D D D D B D D B B D D D E E D E E E E C E E C B D D D E E D E E E 
D D D B B D D D B D D B D E D E E E C D E E E C E D D B E E D E C E E 
B D B D D B D B D D D D B E E D E C E E C E D E E D B D E D E E E C D 
B B D D D B D D B D D E E B C C D E E E D E E D E D E E D E E B D D C 
B D B D B D D D D B E D E C B C E D E D E E E E D E E C E D E D B D E 
A D D B D D B B D D E E D C C B E E D E E D D E E E C E E E D D D B E 
D A B B B D D B D D D E E D E E B D D C E E C E E D E E B C C D E E E 
D B A B D B D D D B E E C E D E D B D E C E E E D E D E C B C E D E D 
B B B A D D B D B D E C E E E D D D B E E D E C E E E D C C B E E D E 
D B D D A B B B D D E D E E D E C E E B D D C E E E E C D E E E C E D 
D D B D B A B D B D E E C D E E E C E D B D E D E E D E E D E C E E B 
B D D B B B A D D B C E E E E D E E D D D B E E C C E E E E D E E D D 
B B D D B D D A B B E E D E E D C E E C E E B D D E C E D E E E E C E 
D D D B D B D B A B E C E D E E E E C E D E D B D E E D E E D C E E C 
D D B D D D B B B A C E E E D E E D E E E C D D B C E E E D E E D E E 
E D E E E E C E E C A B B B D D B D D D D B D D B B D D D E E D E E E 
E E E C D E E E C E B A B D B D D D B B D D D B D D B D E C E E E D C 
D E C E E C E D E E B B A D D B D B D D B D B D D D D B E E C E D E E 
C D E E E D E E D E B D D A B B B D D D B D D B D D E E B D D D E E E 
C E D E D E E E E D D B D B A B D B D B D D D D B E C E D B D E D E C 
B E E D E E D D E E D D B B B A D D B D D B B D D E E C D D B E E D E 
E B D D C E E C E E B D D B D D A B B B D D B D D D E E D E E B C C D 
E D B D E C E E E D D D B D B D B A B D B D D D B E E D E D E C B C E 

Table 8b.4: Elements (8)

rsm , in the range  36 70s   and  1 53r  . The 

edge of the m
(8)

 matrix is bordered.  



8b: Rotational averaging of tensors: Complete matrices 
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E E D E E E E D E E D D E E D E E B C C E E D E E D D E E D E E B C C 
E E B C C D E E D E E B C C D E E D E E E D E E D E D E E B C C D E E 
C C D E E E D E E D E D E E B C C D E E D E E D E E B C C D E E D E E 
D E E D E E D E D E E E E D E D E C B C E D E D E E E E D E D E C B C 
D E C B C D E E B C C D E E E D E E D E E E D D E E E D E C B C E D E 
B C E D E E E D D E E E D E C B C E D E D E E B C C D E E E D E E D E 
E D E E D D E E E D E E D E E E D C C B D E E E D E E D E E E D C C B 
E E E D E E D E C B C E D E D E E E E D E E D E D E C B C E D E E E D 
D E D E E E E D E D E C B C E D E E E D E D E C B C E D E D E E E E D 
E D C C B B C C D E E D E E E E D E E D D E E E E D E E D C C B E E D 
E E E E D C B C E D E E E D D E E E D E E D E E E D C C B E E D E D E 
D E E E D C C B E E D E D E E D E D E E E E D C C B E E D E E D D E E 
C B E E D D E E E E D E E D C C B E E D B C C D E E D E E E E D E E D 
E D D E E E D E E E D C C B E E D E D E C B C E D E E E D D E E E D E 
E D E D E E E D C C B E E D E E D D E E C C B E E D E D E E D E D E E 
C E E C E E E D D D B E E C E E C D E E E E D D D B E E C E E C D E E 
E C D E E D E E B D D D E E E C E E C E E D E D B D E C E D E E E E C 
E E E E C E D E D B D E C E D E E E E C D E E B D D D E E E C E E C E 
E E C E E E D E E E C D D B E E C E D E E D E E E C D D B E E C E D E 
E C E D E D E E D E E B D D C E E C E E E E D E C E D B D E D E E E C 
D E E E C E E D E C E D B D E D E E E C D E E D E E B D D C E E C E E 
E D E E D D E E E E C E E C D D B E E D D E E E E C E E C D D B E E D 
E E E D E E D E E D E C E E B D D C E E E E D C E E E D E D B D E C E 
D E D E E E E D C E E E D E D B D E C E E D E E D E C E E B D D C E E 
D B E E D B C C D E E D E E E E D E E D D E E E C E E C E E E D D D B 
D D C E E C B C E D E E E D D E E E D E E D E C E E E E D E C E D B D 
B D E C E C C B E E D E D E E D E D E E E E D E E D C E E C E E B D D 
E D D D B D E E E C E E C E E E D D D B B C C D E E D E E E E D E E D 
E E B D D E D E C E E E E D E C E D B D C B C E D E E E D D E E E D E 
C E D B D E E D E E D C E E C E E B D D C C B E E D E D E E D E D E E 
E C E E C D D B E E D E C E E C E D E E D D B E E D E C E E C E D E E 
C E D E E B D D D E E D E E E E C E E C D B D E D E E E C D E E E C E 
E E E C E D B D E D E E E C D E E E C E B D D D E E D E E E E C E E C 
E E C E E E E C E D E D B D E C E E E D E E C E D E D B D E C E E E D 
C E E E D D E E D E E B D D C E E C E E E C E E E D D D B E E D E C E 
E D E C E E C E E E D D D B E E D E C E D E E D E E B D D C E E C E E 
D E E D E E E C D E E E C E D B D E D E E E C D E E E C E D B D E D E 
E E E E D E D E E D E C E E B D D C E E C E E E E D E E D D D B E E C 
E D D E E C E E E E D E E D D D B E E C E D E E D E C E E B D D C E E 
B D E D E D E E B C C D E E E D E E D E E C E D E E E E C E D E D B D 
D D C E E E D E C B C E D E D E E E E D C E E E D E E D E E E C D D B 
D B E E C E E D C C B E E D E E D D E E E E D E E D C E E C E E B D D 
D E D B D E C E D E E E E C E D E D B D D E E B C C D E E E D E E D E 
E E B D D C E E E D E E D E E E C D D B E D E C B C E D E D E E E E D 
E C D D B E E D E E D C E E C E E B D D E E D C C B E E D E E D D E E 
E C E E C D B D E C E E E D C E E E D E D B D E C E E E D C E E E D E 
E E E D E B D D D E E D E E E E C E E C D D B E E C E D E E D E C E E 
D E C E E D D B E E C E D E E D E C E E B D D D E E D E E E E C E E C 
C E E C E E C E D B D E D E C E E E E D E C E D B D E D E C E E E E D 
E E E E D D E E B D D D E E E C E E C E E E C D D B E E D E E D C E E 
E D C E E E E C D D B E E D E E D C E E D E E B D D D E E E C E E C E 
E E D E E E C E E C E D E E B D D D E E E C E E C E D E E B D D D E E 
D E E E D E E D C E E E D E D B D E C E C E E E E D E E D D D B E E C 

Table 8b.5: Elements (8)

rsm , in the range  71 105s   and  1 53r  . The 

edge of the m
(8)

 matrix is bordered.  



8b: Rotational averaging of tensors: Complete matrices 
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C E E E D E E D E E E C D D B E E C E D E D B D E C E E E D E C E E E 
D B D E D E E E C D E E E C E E D E E D E C E E B D D C E E E D E E D 
E C E E E D D D B E E D E C E C E E E E D E E D D D B E E C E E C D E 
E C E D E E E E C E D E D B D E E C D E E E C E D B D E D E C E E E E 
D D B E E D E C E E C E D E E E E D E E D C E E C E E B D D E E D E E 
E E C E D E D B D E C E E E D C E E E D E E D E E E C D D B E C E D E 
E E C D E E E C E D B D E D E E C E D E E E E C E D E D B D C E E E D 
D E E D E E B C C D E E D E E D E E D E E B C C D E E D E E B D D D E 
E E D E D E C B C E D E E E D E E D E D E C B C E D E E E D D D B E E 
E D E E E D C C B E E D E D E E D E E E D C C B E E D E D E D B D E C 
D E E B D D D E E E C E E C E B D D D E E D E E E E C E E C D E E D E 
E E D C E E E D E D B D E C E D D B E E C E D E E D E C E E E E D E D 
E D E C E E E E D E C E D B D D B D E C E E E D C E E E D E E D E E E 
B D D D E E D E E E E C E E C D E E B D D D E E E C E E C E D E E B D 
C E E E E D E E D D D B E E C E E C D D B E E D E E D C E E E C E D B 
C E E E D E E D E E E C D D B E C E D B D E D E C E E E E D E E C D D 
D D B E E C E D E E D E C E E E E D C E E E D E D B D E C E E E D C E 
E E C D D B E E D E E D C E E C E E E E D E E D D D B E E C E C E E C 
E E C E E C D E E D E E B D D E C E E C E D E E B D D D E E C E E E E 
D B D E C E E E D C E E E D E E D E C E E E E D E C E D B D E D E C E 
E C E D B D E D E C E E E E D C E E E D E E D E E E C D D B E E C E E 
E C E E C E D E E B D D D E E E E C E E C D E E D E E B D D C E E E D 
E D E E D E D E E B C C D E E E D E E D E D E E B C C D E E D B D E D 
E E D D E E E D E C B C E D E E E D D E E E D E C B C E D E D D B E E 
D E E E E D E E D C C B E E D D E E E E D E E D C C B E E D B D D C E 
E D E D B D E C E D E E E E C D B D E D E E E C D E E E C E E D E E D 
E E D E C E D B D E D E E E C D D B E E C E D E E D E C E E E E D D E 
D E E E C E E C E E E D D D B B D D C E E C E E E E D E E D D E E E E 
D B D E D E E E C D E E E C E E D E D B D E C E D E E E E C E D E D B 
E C E E E D D D B E E D E C E E E C D D B E E D E E D C E E C E E B D 
E C E D E E E E C E D E D B D C E E B D D C E E E D E E D E E E C D D 
D D B E E C E D E E D E C E E E E D E C E D B D E D E E E C E E D E C 
E E C D D B E E D E E D C E E E C E E E D D D B E E D E C E C E E C E 
E E C E E C D E E D E E B D D C E E C E E B D D D E E D E E E C E E E 
B D D C E E C E E E E D E E D D E E E C E E C E E E D D D B D E E E C 
C E E B D D C E E E D E E D E E C E D E E E E C E D E D B D E E C E E 
C E E C E E B D D D E E D E E E E C E E C D E E D E E B D D E C E D E 
E E D E E D D E E D E E B C C E E D E E D D E E D E E B C C D D B E E 
E D E D E E E E D E D E C B C E D E D E E E E D E D E C B C D B D E C 
D E E E D E E D E E E D C C B D E E E D E E D E E E D C C B B D D C E 
E E D D D B E E C E E C D E E D D B E E D E C E E C E D E E E E D E E 
E D E E E C D D B E E C E D E D B D E C E E E D C E E E D E E D E D E 
D E E E E C E E C D D B E E D B D D C E E C E E E E D E E D D E E E D 
D D B E E D E C E E C E D E E E E D D D B E E C E E C D E E E E D D D 
E E C E D E D B D E C E E E D E C E D B D E D E C E E E E D C E E B D 
E E C D E E E C E D B D E D E C E E B D D C E E E D E E D E E C E D B 
D B D E C E E E D C E E E D E E D E E E C D D B E E C E D E E D E E E 
E C E D B D E D E C E E E E D E E C E D E D B D E C E E E D C E E C E 
E C E E C E D E E B D D D E E C E E C E E B D D D E E D E E E E C E D 
B D D C E E C E E E E D E E D D E E E E C E E C D D B E E D D E E E E 
C E E B D D C E E E D E E D E E E C D E E E C E D B D E D E E C E E C 
C E E C E E B D D D E E D E E E C E E C E D E E B D D D E E E E C D E 

Table 8b.6: Elements (8)

rsm , in the range  1 35s   and  54 105r  . The 

edge of the m
(8)

 matrix is bordered.  



8b: Rotational averaging of tensors: Complete matrices 
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D D D B E E D E C E D B D D D B B B A D D B D B D E D E E E D C C B E 
E C E E B D D C E E D B D D B D B D D A B B B D D E C E E C E D E E B 
E E C E D B D E D E D D B B D D D B D B A B D B D E E D C E E E D E D 
D E E D D D B E E C B D D D D B D D B B B A D D B C E E E E D E E D D 
D C E E C E E B D D D D B D D B B D D B D D A B B E E C E E C D E E D 
E E E C E D E D B D D B D B D D D D B D B D B A B E D E C E E E E D E 
E E D E E E C D D B B D D D B D D B D D D B B B A C E E E D E E D E E 
E D E E E E C E E C B D D D E E D E E E E C E E C A B B B D D B D D D 
C E D E E D E C E E D B D E C E E E D C E E E D E B A B D B D D D B B 
E E E D C E E E D E D D B E E C E D E E D E C E E B B A D D B D B D D 
E B C C D E E D E E D E E B D D D E E E C E E C E B D D A B B B D D D 
E C B C E D E E E D E C E D B D E D E C E E E E D D B D B A B D B D B 
D C C B E E D E D E E E C D D B E E D E E D C E E D D B B B A D D B D 
D D E E E C E E C E D E E D E E B C C D E E D E E B D D B D D A B B B 
D E D E C E E E E D E E D E D E C B C E D E E E D D D B D B D B A B D 
B E E D E E D C E E E D E E E D C C B E E D E D E D B D D D B B B A D 
E E D E D B D E C E E C E E C E D E E B D D D E E D B D D B D B D D A 
E D E E B D D D E E E E D C E E E D E D B D E C E D D B B D D D B D B 
D E E D D D B E E C C E E E E D E E D D D B E E C B D D D D B D D B B 
E E E D E C E D B D E E C E E C D E E D E E B D D D D B D D B B D D B 
C D E E D E E B D D E D E C E E E E D E C E D B D D B D B D D D D B D 
E E D E E E C D D B C E E E D E E D E E E C D D B B D D D B D D B D D 
E E E C D E E E C E D B D E D E E E C D E E E C E B D D C E E C E E E 
C E D E E D E C E E B D D C E E C E E E E D E E D D B D E D E E E C D 
E C E E E E D E E D D D B E E C E D E E D E C E E D D B E E C E D E E 
E D E E B C C D E E E D E D B D E C E D E E E E C C E E B D D C E E E 
E E D E C B C E D E C E E B D D C E E E D E E D E E D E D B D E C E D 
D E E D C C B E E D E E C D D B E E D E E D C E E E E C D D B E E D E 
D E C E D E E E E C E D E E D E D E E B C C D E E C E E C E E B D D D 
D C E E E D E E D E E E D D E E E D E C B C E D E E E D E C E D B D E 
B E E D E E D C E E D E E E E D E E D C C B E E D E C E E E D D D B E 
E D B D E D E E E C C E E C E E B D D D E E D E E E D E E D E D E E B 
E B D D D E E D E E E E D E C E D B D E D E E E C E E D D E E E D E C 
D D D B E E D E C E E C E E E D D D B E E D E C E D E E E E D E E D C 
E E C E E E D D D B E E C E E C D E E D E E B D D E E C E E C D E E D 
C D E E D E E B D D D E E E C E E C E E E D D D B E C E D E E E E C E 
E E E C E D E D B D E C E D E E E E C E D E D B D D E E E C E E C E E 
D E C E E C E D E E D D B E E D E C E E C E D E E B D D C E E C E E E 
E E E D C E E E D E B D D C E E C E E E E D E E D D D B E E D E C E E 
E C E E E E D E E D D B D E C E E E D C E E E D E D B D E C E E E D C 
D D E E D E E B C C E E D D D B E E C E E C D E E C E E B D D C E E E 
E E E D E D E C B C C E E B D D C E E E D E E D E E E D D D B E E C E 
E E D E E E D C C B E C E D B D E D E C E E E E D E C E D B D E D E C 
B E E C E E C D E E E E D E E D D E E D E E B C C C E E C E E B D D D 
D C E E E D E E D E E D E D E E E E D E D E C B C E D E E E C D D B E 
D E D E C E E E E D D E E E D E E D E E E D C C B E E C E D E D B D E 
C D D B E E C E D E C E E C E E B D D D E E D E E E E D E E D D E E D 
E B D D D E E D E E E D E E E C D D B E E C E D E E D E D E E E E D E 
E D B D E C E E E D E E C E D E D B D E C E E E D D E E E D E E D E E 
C E E C D D B E E D E C E E C E D E E B D D D E E E C E E C E D E E B 
E D E E B D D D E E D E E E E C E E C D D B E E D E E C D E E E C E D 
E E C E D B D E D E E E C D E E E C E D B D E D E D E E E E C E E C D 

Table 8b.7: Elements (8)

rsm , in the range  36 70s   and  54 105r  . The 

edge of the m
(8)

 matrix is bordered.   
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E D E D E C E E E E D E E D D D B E E C E E D C E E E D E D B D E C E 
D D D E E D E E D E E B C C D E E D E E E E C E E C D E E D E E B D D 
B D E C E E E D E D E C B C E D E E E D C E E E D E E D E E E C D D B 
D B E E C E D E E E D C C B E E D E D E E D E C E E E E D E C E D B D 
E E B D D E E C E E C D E E D E E B D D D E E D E E B C C D E E D E E 
C E D B D C E E E D E E D E E E C D D B E E D E D E C B C E D E E E D 
E C D D B E D E C E E E E D E C E D B D E D E E E D C C B E E D E D E 
D B D D B B D D C E E C E E E E D E E D B D D C E E C E E E E D E E D 
D D D B D D B D E D E E E C D E E E C E D D B E E C E D E E D E C E E 
B D B D D D D B E E C E D E E D E C E E D B D E D E E E C D E E E C E 
B D D B D C E E B D D C E E E D E E D E C E E B D D C E E E D E E D E 
D D D D B E D E D B D E C E D E E E E C E E C D D B E E D E E D C E E 
D B B D D E E C D D B E E D E E D C E E E D E D B D E C E D E E E E C 
D D B D D C E E C E E B D D D E E D E E C E E C E E B D D D E E D E E 
B D D D B E E D E C E D B D E D E E E C E C E E E D D D B E E D E C E 
D B D B D E C E E E D D D B E E D E C E E E D E C E D B D E D E E E C 
B B B D D E D E E D E D E E B C C D E E E E C E E C D E E D E E B D D 
A B D B D E E D D E E E D E C B C E D E E C E D E E E E C E D E D B D 
B A D D B D E E E E D E E D C C B E E D D E E E C E E C E E E D D D B 
D D A B B E E C E E C D E E D E E B D D E D E E D E D E E B C C D E E 
B D B A B E C E D E E E E C E D E D B D E E D D E E E D E C B C E D E 
D B B B A D E E E C E E C E E E D D D B D E E E E D E E D C C B E E D 
E D E E D A B B B D D B D D D D B D D B B D D C E E C E E E E D E E D 
E E E C E B A B D B D D D B B D D D B D D B D E C E E E D C E E E D E 
D E C E E B B A D D B D B D D B D B D D D D B E E D E C E E C E D E E 
D E E D E B D D A B B B D D D B D D B D C E E B D D C E E E D E E D E 
E E E E C D B D B A B D B D B D D D D B E C E D B D E D E C E E E E D 
E D C E E D D B B B A D D B D D B B D D E E D D D B E E C E E C D E E 
E E D E E B D D B D D A B B B D D B D D C E E C E E B D D D E E D E E 
D E E E C D D B D B D B A B D B D D D B E E C E D E D B D E C E E E D 
E D E C E D B D D D B B B A D D B D B D E D E E E C D D B E E C E D E 
C C D E E D B D D B D B D D A B B B D D E C E E C E D E E B D D D E E 
B C E D E D D B B D D D B D B A B D B D E E C D E E E C E D B D E D E 
C B E E D B D D D D B D D B B B A D D B D E E E E C E E C D D B E E D 
E E B D D D D B D D B B D D B D D A B B E E D E E D D E E D E E B C C 
D E D B D D B D B D D D D B D B D B A B E D E D E E E E D E D E C B C 
E D D D B B D D D B D D B D D D B B B A D E E E D E E D E E E D C C B 
E D E E D B D D C E E C E E E E D E E D A B B B D D B D D D D B D D B 
C E D E E D B D E C E E E D C E E E D E B A B D B D D D B B D D D B D 
E E E D E D D B E E D E C E E C E D E E B B A D D B D B D D B D B D D 
D E E D E C E E B D D C E E E D E E D E B D D A B B B D D D B D D B D 
E C D E E E C E D B D E D E C E E E E D D B D B A B D B D B D D D D B 
E E E E D E E D D D B E E C E E C D E E D D B B B A D D B D D B B D D 
E E D E E C E E C E E B D D D E E D E E B D D B D D A B B B D D B D D 
E C E D E E E C E D E D B D E C E E E D D D B D B D B A B D B D D D B 
C E E E D E D E E E C D D B E E C E D E D B D D D B B B A D D B D B D 
E E B C C E C E E C E D E E B D D D E E D B D D B D B D D A B B B D D 
D E C B C E E C D E E E C E D B D E D E D D B B D D D B D B A B D B D 
E D C C B D E E E E C E E C D D B E E D B D D D D B D D B B B A D D B 
D D D E E E E D E E D D E E D E E B C C D D B D D B B D D B D D A B B 
B D E D E E D E D E E E E D E D E C B C D B D B D D D D B D B D B A B 
D B E E D D E E E D E E D E E E D C C B B D D D B D D B D D D B B B A 

Table 8b.8: Elements (8)

rsm , in the range  71 105s   and  54 105r  . The 

edge of the m
(8)

 matrix is bordered. 
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Appendix 8c: Resonance energy transfer: Explicit 

coupling Vij derivation 

 

As shown in chapter 3a, third-body-modified RET comprises four interaction 

events, which may occur in any of 24 possible time-orderings. For any one time-

ordering, the MDA-configuration of the process has quantum amplitude given by 

equation (3a.4): 

 
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

p r r φ r r

 

This appendix contains the generalisation this result to find the quantum 

amplitude of the overall process. This will be simply the sum of 24 terms with this 

form, at the limit of infinite volume V. 

The indices a, b, c, d are hereafter chosen to be fixed and i, j, k, l to vary 

according to the rules set out in chapter 3a – therefore, the ēa eb ēc ed factor is 

common to all 24 terms and factors out. The photon annihilation and creation 

positions rpAnn and rpCre will in every case be the positions of chromophores D and 

M, or vice versa. The positions rϕAnn and rϕCre will in every case be the positions 

of chromophores A and D, or vice versa. 

What follows are the numerators of the 24 versions of Equation (3a.4) for each 

time-ordering of the four events (W), (X), (Y), (Z). 
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These 24 terms factorise into four terms with unique exponential factors, each a 

sum of six unique fractions. Within each term, the six fractions group into two 

unique numerators – the first and fourth terms have five fractions with the same 

numerator and one exception, the second and third terms have three fractions with 

each numerator. 
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The quantity D

0E is the electronic energy lost by chromophore D. Similarly, the 

quantity 
0

AE  is the electronic energy “lost” by chromophore A. Since RET is the 

conservative process of energy transferred from D to A, chromophore A must 

gain exactly the amount of energy that D loses, which is to say 
D A

0 0E E   . 

Replacing all instances of the variable D

0E with A

0E   simplifies the unique 

denominators, yielding just 8 terms: 
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The common factor [–ħcp]
-1

 immediately cancels with the top line. Factorising out 

common numerators, combining denominator sums and collecting like terms 

yields the relatively concise quantum amplitude expression: 
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It is now appropriate to expand the quantisation volume to infinity. Moving from 

an enclosed finite system to a regime of infinite space modifies the nature of the 

sum over p and e(p) described by the big sigma operator. This is now a continuous 

sum over all possible vectors p, a definite integral over all of p-space (triple-

integration). 
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Due to Kronecker deltas, the indices a and b are now symmetric with respect to 

each other, likewise c and d. Henceforth, μb and μd have been suppressed into μa 

and μc respectively, implying that μaμa=μaμb or μbμa.  
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The terms pertaining to the two photons p and ϕ may be separated out into two 

definite integrals over three-dimensional wavevector spaces: 
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Since chromophore A only interacts with photon ϕ and likewise M with p, we 

may choose to assign either a or b to the interaction on M (event W), and either c 

or d to the interaction on A (event Z). The strict correspondence between the 

indices a, b, c, d and the four unique photon creation/annihilation events no longer 

exists, although a and b still correspond to p, likewise c and d to ϕ.  

The p integral evaluates as follows. In converting to spherical coordinates, we use 

the vector identity cos( )pR  p R , which suppresses the vectors into scalar 

variables. 
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The φ integral evaluates as follows. The overall energy difference is best 

expressed as a reciprocal length, A

0k E c  . 
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Combining these results gives the true quantum amplitude of the MDA 

configuration, containing an explicit summation over all physically-realisable 

virtual states Dr. 
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This is the final amplitude result, reported as Equation (3a.5). 

_ 
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Appendix 8d: Delocalised excitation: Exciton splitting 

 

This appendix calculates the difference in energy between the two delocalised-

excitation (exciton) states of chapter 4a, section 4. 

The two-emitter subsystem is in an unspecified state of excitation, with the states 

of localised-excitation as the base states: 

 Base state A is the state of excitation localised on emitter A, represented 

by the Dirac ket 
0,mA B . 

 Base state B is the state of excitation localised on emitter B, represented by 

the Dirac ket 
0 , mA B . 

The relevant molecular Hamiltonian matrix for these two ket eigenvectors is: 

A AB

BA B

E M
H

M E

 
  
 

 

E is the total energy of the subsystem in one of the base states and M is the 

quantum amplitude of a transition from one to the other. Due to the symmetry of 

the subsystem, the two base states are so similar that A BE E and AB BAM M . 

The transition between the base states is a process of RET between A and B, as 

reported by equation (4a.15): 

 

   

    

0 0

0 0

AB

1 3

0

2 2 2 2 2 2 2

;

4 ε exp

2 2 sin cos 1 sin sin cos

m m

m m

A A B B

i ij AB j

A A B B

AB AB

AB AB AB

M V k

R ikR

ikR ikR k R

 



    

 





       

R

μ μ  

The delocalised exciton states (blue arrows on Figure 4a.4) are each some 

combination of the base states, defined by some specific values for the 

superposition coefficients Ac  and Bc : 

0 0, ,A m B mc A B c A B    
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Substituting this generic combination wavefunction into the time-dependent 

Schrödinger equation,  H i t    , yields the following differential 

equations: 

A AB

A AB

A A B

B B A

i c c E c M

i c c E c M

 

 
 

Integration leads to linear expressions for the two base state coefficients: 
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Here, G+ and G- are constants of integration determined by initial conditions. 

These contain information about which particular combination of base states the 

subsystem occupies: 

 The symmetric exciton I  is defined by G+=1 , G–=0 . 

 The antisymmetric exciton I  is defined by G+=0 , G–=1 . 

Any combination-state Ψ has total energy labelled E . This can be calculated with 

the Schrödinger equation by factoring out the shared time-dependent phase factor 

K  from the coefficients Ac  and Bc : 
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1 1

0 0

1

, ,

exp

A m B mK K c A B K c A B

K i E t
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Applying this factorisation to the G+=1, G–=0 case yields the total I   energy. 

I A ABE E M    

Applying this factorisation to the G+=0, G–=1 case yields the total I   energy. 

I A ABE E M    

So the energy difference between the two excitons is: 

I I AB2E E M    


