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Abstract

This thesis presents applications of molecular quantum electrodynamics (MQED)
to the analysis of resonance energy transfer (RET), molecular absorption and
emission, and light scattering by molecules. An MQED framework describes such
processes as a series of microscopic photonic interaction events. Multi-interaction
processes entail intermediate states of the system’s evolution remaining
unspecified, requiring careful interpretation. RET, as modified by coupling with
the nearest molecule of the surrounding refractive medium, is investigated.
Special attention is given to a system geometry where unmodified RET is
impossible, so coupling with the third chromophore is essential. Two distinct
treatments are given to emission by a multi-chromophore system, distinguished by
different ways of framing the quantum system: Either all photons are virtual and
chromophores share excitation, or real photons interact with a single unspecified
chromophore. Anomalously high fluorescence-anisotropy is explainable with the
latter analysis. Off-resonant light is known to modify the absorption behaviour of
molecules: This weak-interaction is analysed with an MQED formulation
modified by field dressing, modelling advanced media effects in the condensed
phase. Within the electric-dipole approximation, hyper-Rayleigh scattering (HRS)
is considered forbidden for centrosymmetric molecules: By including higher-
multipole interactions, mechanisms enabling conventionally-forbidden HRS are
discovered. For each process analysed, the main results are predictions for the
efficiency or observable rate. The relative positions and orientations of the
molecules and fields are the key variables, so the rate equations are typically
complicated functions thereof. Where rate equations depend on molecular
orientation, it is often appropriate to calculate the average value over all
orientations, giving results applicable to the fluid phase. System geometry may
exert very fine control — a process forbidden in one case may become allowed by
a minor change of one chromophore’s alignment. This thesis contributes to
understanding the precise requirements of molecular geometry that must inform

the design of energy-transfer systems.
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Chapter 1: Introduction

1. Thesis overview

This thesis concerns various processes of molecular absorption or emission of
light, electronic energy transfer, and light scattering. All these forms of light-
matter interaction may in principle be reduced to a series of microscopic photonic
interaction events. The formalism of molecular quantum electrodynamics
(MQED) understands each individual interaction event to consist of a single

chromophore changing its electronic state while creating or annihilating a photon.

I intend to describe several different forms of interaction and molecular transition
in an MQED framework. This thesis extends the direct application of MQED
methods to certain common physical processes that are conventionally analysed
with other theoretical approaches, and introduces novel developments to existing

QED analyses.

The two parts of Chapter 2 are an introduction to molecular QED theory and the
calculation methods applied in the research of chapters 3-6. Certain features of the
theory require careful interpretation, as the analysis may involve counter-intuitive
results of quantum mechanics, or contain implicit assumptions that limit its

applications.

Chapter 2a explains the necessity of quantum electrodynamic methods for the
analysis of photonic interactions, and provide the theoretical framework that is
employed in the analysis and calculations of the subsequent chapters. It then
explores the complications that arise in the treatment of multi-interaction
processes — in principle, interaction events may occur in any time-order and the
intermediate states of a system’s evolution are unspecified. Appendix 8a assists in

explaining the mathematical patterns governing event-ordering.

Chapter 2b outlines the standard method of calculating a rotational average of
molecular response tensors, which is necessary for evaluating the rate of a process
where the molecule(s) are randomly oriented or stochastically rotate. Appendix 8b
contains the full data required for an explicit calculation. This method is used to

calculate rotationally-averaged rate equations in chapters 3a, 4b, 5 and 6.

11



1: Introduction

For each photonic process explored in the chapters 3-6, the main results of the
MQED analysis are to derive the predicted transition efficiency or observable
interaction rate. The relative positions and orientations of the system’s molecules
and fields are usually the key variables to determine efficiency, so the final rate

equations are typically functions of the lengths and angles in the system geometry.

Chapter 3 is in two parts, concerning processes of resonance energy transfer
(RET). Chapter 3a discusses the nature of RET in its two-body and third-body-
modified forms, and provides detailed analysis of the case in which the nearest
molecule of surrounding matter constitutes the third body. This directly links the
bulk material properties of a medium to the microscopic photonic interactions of
RET. Appendix 8c is part of the electrodynamic coupling derivation that is central
to the analysis of RET applied in chapters 3a, 3b and 4a. Chapter 3b gives special
attention to a system geometry in which two-body RET is naturally forbidden —
coupling with the third chromophore is absolutely necessary for RET, and so the
precise position and orientation of this chromophore is critical.

Chapter 4 is in two parts, concerning the emission of one or two photons by a
system of multiple chromophores — emission behaviour is complicated by
delocalisation of the initial excitation between the chromophores. Chapter 4a
explores the consequences of pairwise electrodynamic coupling, both within a
two-nanoemitter system and between individual nanoemitters and the detector
unit. Appendix 8d gives a mathematical treatment of the quantum mechanics of a
two-chromophore exciton, where the coupling leads to unspecified excitation-
sharing between emitter units. Chapter 4b disregards explicit coupling and models
the fluorescence of a multi-chromophore complex in solution, where the sharing

of excitation is itself a quantum measurement phenomenon.

Chapter 5 concerns the absorption of one or two photons by a molecule, with the
involvement of an additional non-resonant beam of light modifying this process.
The forward-scattering of auxiliary light is additional to the absorption, forming a
single process of up to four distinct interaction events. Analysis of the case of a
molecule in solution requires rotational averaging and a discussion of how media

properties influence the character of interacting light.

Chapter 6 concerns high-order processes of hyper-Rayleigh scattering (HRS) by a
molecule. Within a theoretical analysis that uses the standard electric-dipole

12



1: Introduction

approximation for all interactions, HRS is known to be forbidden for high-
symmetry molecules. But by including interaction behaviours beyond the electric-
dipole approximation in the analysis, this chapter describes mechanisms that

enable such conventionally-forbidden HRS.

Chapter 7 concludes with commentary on the preceding chapters, noting how the
many different photonic processes are connected by similar MQED models and
methodology. The limitations of the theoretical framework are discussed briefly,
along with considerations of quantum-measurement interpretation. The various
novel findings of this thesis are noted, together with their potential applications

and areas for further research.

2. List of publications

Chapters 3-6 of this thesis report six distinct research projects undertaken during
my postgraduate studentship. As part of this work, several journal articles and
conference papers have been published. Each thesis chapter has been written to
expand upon the findings and discussion contained in the corresponding
publications, and to bring the projects together into a coherent thesis on geometric
aspects of interaction efficiency. While all publications have been cited where
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Chapter 2: Calculation framework

2a: MQED theory

1. MQED: Photonic interactions of molecules

Quantum electrodynamics is the essential framework for any microscopic analysis
of molecule-light interactions. A semiclassical model, with quantum-mechanical
molecules influenced by Maxwellian fields, fails to correctly describe processes
such as spontaneous emission. A classical vacuum with no radiation offers no
perturbation to a molecule’s stationary states, so any excited state should be
perfectly stable. Quantum electrodynamics, by treating radiation as quantum
particles (photons) subject to uncertainty relations, permits quantum fluctuations

in photon-number as a source of perturbation.!*!

As an example interaction, consider Rayleigh scattering — a process well-known
as the cause of the atmosphere’s light blue colour. The naive or semi-classical
model is light (which may or may not be quantised as photons) bouncing off a
molecule in a single event, like a microscopic form of reflection — this is implied
by the word “scattering”. But the photonic description is two distinct microscopic
interaction events: the absorption of an input photon and the creation of a new

photon of the same wavelength.

While most of this thesis concerns interactions of photons with whole molecules,
the theory can equally be applied to photonic interactions of individual optically-
active sites (chromophores) affixed to some larger matrix. The words “molecule”

and “chromophore” can be understood as interchangeable in most contexts.

When applying any of these theoretical results to a specific real system, care must
be taken to ensure that the chromophores are adequately separated in space — all
interactions are understood to entail a minimum number of photons being
exchanged between chromophores that remain distinct, with their individual
states. If there is close physical contact between the molecules, then their
electronic wavefunctions will significantly overlap, so each molecule no longer
has a discrete state that only changes in response to creation or annihilation of
identified photons. If wavefunctions overlap sufficiently that a chemical bond is

formed, then it becomes incorrect to describe the chromophores as distinct objects
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2a: Photonic interactions

whose interactions are mediated purely by the passage of photons through the

vacuum between their two positions.

All electromagnetic interactions of molecules are described as discrete
interactions with the (quantised, retarded) electromagnetic field. These
interactions are perturbations of the molecules’ states, so perturbation-theory
methods may be used to evaluate the quantum amplitudes of molecular transition

processes in terms of molecule-radiation interaction Hamiltonian operators.

In principle, all theory serves the goal of making predictions for the observable
outputs of interactions (physical observables such as emission of radiation, or net
change in a molecule’s electronic excitation), which may be tested. For a process
where the system of interest undergoes a change in overall state, the theoretical
analysis methods outlined in this chapter can deliver a prediction of the rate of the
transition. This may be verified by quantitatively measuring observable signals

that are diagnostic of the final state produced by the process.

2. Feynman diagrams

In fundamental quantum field theory, the interactions of elementary particles are
shown with Feynman diagrams, with conservation of four-momentum ensured by
rules governing line gradients. A Feynman diagram illustrates a particular
movement of particles through spacetime, each constituent subsystem occupying

several states during the evolution.

Feynman diagrams are well-suited to the systems considered in this thesis,
because it is possible to show the specifics of each individual photon-interaction
and the time-order of the events. Unlike the classic diagrams of Richard Feynman
et al which describe general interactions of particles,™ this thesis deals with
molecules limited to non-relativistic motion, and so the form of all Feynman
diagrams is limited to vertical molecule-lines with photons shown as diagonal

waves.

Whole molecules generally remain at non-relativistic speeds, within a Born-
Oppenheimer approximation. The Feynman diagrams used in molecular quantum
electrodynamics can thus be made to obey the simple rule that molecule lines

remain vertical. The speed of light being constant, all photons are wavy lines with

16



2a: Photonic interactions

the same gradient. This approximation removes all other relativistic

considerations from the Feynman diagram structure.

Figure 2a.1: An elementary molecular Feynman diagram. This shows a
molecule’s spontaneous emission of one photon, while relaxing from an excited
state a to the ground state 0. The vertical axis is time and the horizontal axis is a
spatial coordinate, so the slope of the photon’s line indicates propagation to the

right at speed c.

The information that Feynman diagrams are used to convey in non-relativistic
molecular quantum electrodynamics does not include intricacies such as four-
momentum. All that is shown is motionless molecules interacting with the field
and photons that are either virtual (bounded at both ends by interactions within the
system) or real (connecting the system to the outside, so directly observable).
Since the relative positions are drawn so abstractly as to be useless, and the virtual
photons are always implied to consist of a great many possible radiation modes,
the only physical information that these Feynman diagrams successfully convey is
the core connectivity and time-order of the photonic interactions within a process.

See appendix 8a for an overview of a complementary method for
diagrammatically representing multi-interaction photonic processes: State-
sequence diagrams have certain mathematical advantages,® and have been

usefully applied to many of the problems in this thesis."®!

17



2a: Photonic interactions
3. Radiation states and the interaction Hamiltonian

Photons, as physically observable particles, are described solely in terms of their
tangible properties which may perturb the matter they interact with. A radiation
mode describes the microscopic structure of the electric and magnetic fields. The
decomposition of a system’s radiation into a set of discrete modes, each occupied
by an integer number of photons, is the quantum version of a classical field mode
decomposition.®*°! The states of a system’s radiation are quantified by the Fock

number g, which is the number of photons of a specific mode in the system.

This thesis uses a decomposition of electromagnetic fields into the set of plane-
wave modes. Each such mode is defined by the wavevector k, describing the
propagation direction and the wavelength 4 =27k, and the polarisation state 7.

The Fock states of radiation are thus labelled |qg,k,7) . A plane wave has the

unique property that the field structure is paraxial at all points along the axis of
propagation k, such that the wavefronts of constant phase are parallel planes
normal to the k axis. All positions along this axis are equivalent, so the position of
an interaction does not need to be uniquely defined — in any other choice of mode
decomposition, it is necessary to specify that the interacting chromophore is
positioned at the origin of the mode expansion, and carefully construct the Fock

states to accommodate this requirement.

When moving from a semi-classical formulation to a fully-quantum molecular
electrodynamics, the relevant Hamiltonian energy operator for the quantum-
mechanical system must be reformed. Quantum radiation, composed of Fock
states |q,k,7), is now part of the system, so it has its own distinct Hamiltonian
term. The system Hamiltonian operator is thus conventionally decomposed into

three components, summing over the various molecules &:

H = Hradiation + Z( Hmolecule + Hinteraction) (23.1)
¢

The interaction Hamiltonian term for each molecule & is expressible as a

multipolar expansion. With the radiation imposing transverse electric

displacement field d* and magnetic field b on the location of &

Hinteraction (é:) = _‘C"(;lu'dj_ _g(;lQijvjdil -m-b +... (28.2)
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2a: Photonic interactions

Subscripts i,j,k,I are Cartesian indices, each representing an unspecified member
of the standard-basis set {x,y,z}. This thesis makes extensive use of the Einstein

convention of implied summation over repeat indices: If Ry represents the x-

component of a vector R, then RS, =R S, +R S +R S, =R-S.

In equation (2a.2), p, Q and m are the electric dipole (E1), electric quadrupole
(E2) and magnetic dipole (M1) response operators of molecule &. In principle, the
series continues with an infinite number of EN and MN terms. This description of
the interaction as a combination of multipole moments with increasing order is a
series expansion, following from a multipolar decomposition of the interaction
potential’s distribution about the molecule’s position. The pseudo-numerical
“-pole” names reflect the fact that permanent multipoles are idealised potential
distributions with 2" poles, centred on the molecule’s position. The N=0
multipoles are not included — electric monopoles are merely permanent charges,

and magnetic monopoles are physically impossible.

It is usually sufficient to include only the first term of the Hjy; expansion — this is
the electric dipole (E1) approximation. This is satisfactory when the radiation
wavelength is sufficiently long that there is no variation in the fields over the
extent of the molecule. The transition electric dipole moments for each transition
(labelled p™ below) are then the only relevant molecular properties. This form of
the multipolar expansion, which neglects longitudinal fields and delivers the E1
approximation as a leading term, is consistent with the Power-Zineau-Wooley
canonical formulation of MQED interactions."*>**! Any multipolar-tensor-
coupling formulation (such as the E1 approximation) necessarily presupposes a

QED framework.™"***!

Each interaction event may be described with a Dirac bracket — this gives the
quantum amplitude for the interaction process, as discussed in the following
section 4. Using the E1 approximation, H,, = (—&,")n - d*, the molecule-plus-
radiation system is transformed from its initial state | to a final state F with

amplitude:

<F|Him||>:<MOIF +Rad |Hint|MOII +Rad|>

=—¢*(Mol, |n| Mol )-(Rad, |d*|Rad, ) (22.3)

19



2a: Photonic interactions

The molecular Dirac bracket vector is the electric dipole moment of the
molecule’s transition, conventionally labelled p™. Given that the fields belong to
the radiation, which consists of photons in various Fock states, the quantum
description of transverse electric displacement field d* is expressed as a mode

expansion in terms of the plane-wave mode parameters k and #:

. he,ck } . _ .
d* =|Z( 2;’/ j [e(mk)a(k’”) exp(lk-rg)—e(nvk)agk]n) eXp(—Ik-I’é)] (2a.4)
k.7

A single photon and a molecule & (transitioning &g« &) will therefore interact as

described by the Dirac bracket:

12
) hck i
<F|Hmt|'>=—'”i“§(zsovj [ e explik r){Rade oy, [Rad) (2a.5)

~ &, &p(-ik-r.)(Rad a/ , |Rad, ))

The photon annihilation operator T and the photon creation operator a{ﬂyk)

operate on Fock states of radiation |q, Kk, 77) according to standard quantum

algebra rules:

&, |0k ) =0"|(a-1),k,7) (22.6)

8,1l km) =(a+1)"|(a+1).k7) (2a.7)

The letter g here represents the mode occupation number of a plane-wave Fock
state — loosely, this is the number of photons within the system volume V that
have polarization state # and wavevector K. If a different set of electromagnetic
modes is used to describe the system’s radiation, the Fock states would be defined

differently — there would be an alternative annihilation operator a and creation

operator a' for this set of modes, and they would change the Fock numbers for

the relevant states according to equations (2a.6) and (2a.7).

A logical consequence of these algebra rules is that the two Dirac bracket terms of
equation (2a.5) are both always zero, unless one of the two following possibilities
hold true:
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2a: Photonic interactions

e Photon creation — the number of photons in the (k, ) mode increases by one in

the course of the interaction:

|RadF>:‘Rad, +1(kv77)>

N (2a.8)
(R Hi [ 1) =+ Z:[28 \Y j By EXPETKT)

k. 0

e Photon annihilation — the number of photons in the (k, #) mode decreases by

one in the course of the interaction:
|Rad, ) =|Rad, -1, )

1/2
. hck .
(R Hig [1) == ;[28 Vv ] €.ni EXP(ik-T,)
W7 0

(2a.9)

This is, indirectly, a proof of the postulate that fields and molecules only interact

via the creation or annihilation of a single photon at the molecule.

4. Quantum amplitude and process rate

In quantum mechanics, a system’s state transition is a wavefunction-collapse from
one state to another, due to some perturbation. We cannot mechanistically predict
such microscopic events, merely the probabilities of them occurring. So instead of
deriving precise predictions of transition times we must settle for calculations of

the average rate of transition occurrence.

For the F—1 transition, the crucial variable is the quantum amplitude Mg,. Most
generally, this is the Hamiltonian matrix element of the perturbation transforming

I into F, expressible as a Dirac bracket:
Mg =(F|H'|I) (2a.10)

The operator H' is a perturbation Hamiltonian, describing the total energy
exchanged in the transition. For transitions involving a single microscopic
interaction, the role of this H' can be taken by the molecular interaction
Hamiltonian Hi,; described in the previous section. So for a single-event process,

equation (2a.8) or (2a.9) gives the process quantum amplitude Mg,.

“Fermi's golden rule” (actually Dirac’s rule, called “golden” by Fermi) is the

basis of any calculation of the rate of a system’s discrete state transition. This
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2a: Photonic interactions

probabilistic rate, I's, is the probability of the F«I transition’s occurrence per
unit time. 1t may be interpreted as the mean lifetime of the state I, or as the
expected average abundance of the state F as a function of time. If the system’s

destination F is a continuum of possibilities with density-of-states p. , the Fermi

rule is stated as:
Ty, =277 pe Mg, [ (2a.11)

This square-modulus function is a form of the Born rule, relating observation-
probability to the Dirac brackets of state-overlap. The applicability of the Fermi

rule to a particular transition rests on how accurately a single constant value for

Pr describes the nature of the system’s state F.

A quantum amplitude Mg is a complex quantity, with units of energy because H'
IS an energy operator. Like a wavefunction, it is an abstract mathematical object
that only indirectly describes the observable properties of the transition. The
square-modulus has a real physical interpretation via the Born rule, but the
complex argument does not. However, the complex argument does have important

effects on quantum interference, described below.

5. Multi-component quantum amplitudes

Quantum amplitudes M obey a version of the superposition principle — the “true”
Mg, is the total of a (linear, unweighted) sum of all possible amplitudes that
connect the same states F and 1. All physical mechanisms, involving all
combinations of any number of feasible perturbations, contribute to the sum as
terms in Mg,. This principle has been poetically described as “everything that can
happen does happen”,™™ and forms the basis for path-integral calculations in pure
QED."™ The magnitude of each individual component Mg, is a measure of that

particular mechanism’s efficiency as a method for executing the F—1 transition.

The Fermi rule’s square-modulus dependence on the total amplitude creates
qguantum interference in the transition rate of processes with multiple Mg
components. When there are n distinct amplitude components, the Fermi rate
consists of n squared-amplitudes plus n(n-1)/2 cross-terms of interference

between pairs. For example, with n=3:
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2a: Photonic interactions
Ty =270"p; ‘MFAI +Mg +Mg,

‘2

—2xp. | MA[
(2a.12)
+2Re(MAME )+[M§

‘2
+2Re(|v|,¢\,m;)+2Re(ME.ME.)+\M§.\2}

An overbar denotes complex conjugation. The sign and magnitude of the cross-
terms depend on the complex arguments of the two quantum amplitudes that
interfere. This means that including additional transition mechanisms does not
necessarily simply add to the rate — quantum interference may be constructive or

destructive.

In equation (2a.10), identifying H' with Hi, follows from first-order perturbation

theory: The physical interaction of photon and molecule, described by Hiq, is the

perturbation that transforms |1) into|F). For example, in figure 2a.1, the pre-
interaction system labelled “Before” is | I > , the resulting state labelled “After” is

|F), and the interaction event (molecular relaxation plus photon creation) defines

the transition. But when the transition F—I requires more than one distinct
interaction event, the state | is followed by intermediate eras (R, S, T, etc.) before
the system evolves to F. Each microscopic transition from one state to another is
then a separate perturbation Hiy, SO a K-interaction process must be described by
K™-order perturbation theory. This means that in general, the quantum amplitude

Mg is given by the K™ term of a perturbative expansion:[*]
(F[Hiw [R)(R[Hi| 1)

Mg, =<F|Him||>+ZR: E -E, +RZS:<F|Hin(t||ES|>_<SE|Rl_)|i(mE|IR_><£|)Him|I>

+...(2a.13)

This expansion is another sum over various Ms for different mechanisms, since in
principle a process F«—I may proceed via a varying number of interactions. But
practically, if a process requires a minimum of K interactions, then the first K-1
terms of the expansion shall vanish and the K™ term shall be the most significant
by far.

For processes entailing more than one interaction event, the initial state I is
abolished by the first event to occur, and the final state F is ushered in by the last
one to occur. During the time between these two events, the system is in

intermediate states (labelled R, S, T, etc.). The summation over all possible
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mechanisms, as in equation (2a.12), necessarily includes a sum over all possible
intermediate states that the system may occupy in the course of each transition
pathway. This is indicated by the big sigma operator summing over R, S, T in the
terms of the perturbative expansion (2a.13). Importantly, the derivation of this
expansion specifically excludes the states | and F from the set of R, and from the

set of S, etc.*®!

Without any observation of the system during these intermediate eras, all
possibilities for the molecular state must be included — all of the molecule’s
realisable stationary states, and in principle also countless “virtual” states with a
total energy value that is not in the set of proper eigenfunctions. The full sum-
over-states may be infinite, but the quantum amplitudes involving the stationary

states will usually be the leading significant terms.

The sum must even include intermediate states that violate the requirement of
total energy conservation at each event. The strict law of energy conservation
applies to the states I and F, so any energy imbalance will last only as long as the
intermediate states. If the intermediate eras are of short duration (compared to
Planck’s constant A divided by the magnitude of the energy imbalance) then
fleeting non-conservation is permitted. This is in accordance with the time-energy
uncertainty principle — the total energy content of the system in state R has
uncertainty inversely proportional to the lifetime of R, whereas | and F are of
unbounded duration and thus certain energy. The denominators of equation
(2a.13) indicate that the magnitude of each energy imbalance is inversely

proportional to that mechanism’s quantum amplitude contribution.

This argument for temporary non-conservation of energy also applies to other
conservative quantities: the states | and F have well-defined values for the linear
momentum and angular momentum of each molecule, yet unobserved
intermediate states are not required to maintain these properties. These unseen
imbalances do not cause any overall change to the position or orientation of
molecules undergoing multi-interaction processes, as any such change would

constitute an observation of the reality of certain intermediate states R.
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2a: Photonic interactions
6. Damping and resonance

In the minimal description of each photonic process, the system states | and F are
taken to be of infinite duration — giving them a finite lifetime would be to include
additional state transitions before or after the process. This infinite duration
requires that all mechanisms for the decay of these states are neglected. This is
reasonable when I or F involve the molecules’ ground states, which should be
perfectly stable. But the intermediate states R, S, T are short-lived, so it is

necessary to include some description of their decay tendencies.

When each photonic process is described as a minimum number of photons being
exchanged between chromophores, this deliberately ignores many other possible
interactions. A complete description of a system’s behaviour must also include
each molecule exchanging rotational and/or kinetic energy with its neighbours. In
the condensed phase, these neighbours are disordered solvent molecules, so the
system is coupled to a thermal bath with a huge number of degrees of freedom.
Any energy transferred into the thermal bath is unlikely to ever return coherently
to the system. This coupling manifests as a tendency of the molecular states to

decay via irreversible thermal dissipation.™®!

In a density matrix formalism, the evolution of such an open quantum system

(weak coupling to a stochastic bath) is described by a master equation in Lindblad

form;: 2
%pz_;'[H,p]qLZy(LpU—L*Lp/z—pUL/z) (2a.14)

The first term is the standard Liouville-von Neumann equation for the evolution
of a closed quantum system with density matrix p, equivalent to the Schrodinger
equation. The effects of dissipative coupling with the environment are described
by the Lindbladian terms with a set of decay constants y. The Lindblad operators

L represent the open system's contribution to the system-bath interactions.[*"

The variable y, is the decay constant of molecular state r due to thermal

dissipation — in the language of harmonic oscillators, this is the damping

experienced by that state. A stable ground state immune from decay has no

damping, so y, =0.
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2a: Photonic interactions

According to equation (2a.13), the quantum amplitude for any multi-interaction
process is a function of the differences in total system energy between state | and
each intermediate state R, S, T. For each energy difference factor, separating out

the molecule and radiation energies yields
(EI — ER) =E,+ Ef-E -EX = E,, £7ck (2a.15)

where Eq, is the difference in molecular energy (between state O in era | and state
rin era R) and k is the wavenumber of the interacting photon in the R«I
transition. Energy hckis added or subtracted from the system depending on

whether the photon is being created or annihilated.

Within the QED formalism of this chapter, the decay tendency of each
intermediate molecular state r, s, t enters the description of multi-interaction

processes via a damping modification to these energy difference factors:
(E, —Eg)=E, £hck +incy, (2a.16)

The imaginary damping term is not derived directly from the perturbative
expansion (2a.13). The form of this modification is a phenomenological
expediency, intended to encapsulate dynamics of the system beyond the minimal
photon-molecule interactions, without explicitly including the many additional

system-bath interactions./?* %!

Technically, the appearance of an imaginary part in the energy difference

(E, —Eg) may be interpreted as non-Hermiticity of the R«I interaction

Hamiltonian operator, Hi. This breaks time-symmetry for the R«I transition,
and this time-asymmetry represents the irreversibility of the decay process
(tending toward thermal equilibrium). Under Noether’s theorem, any time-
asymmetry is equivalent to the system failing to satisfy overall conservation of
energy. Therefore, energy exchanges with the thermal bath have been
incorporated into the QED system model in the form of energy discrepancies at
each state transition. (This is distinct from the explicit non-conservation described

in the previous section.)

Apart from the need to include thermal dissipation effects into the QED analysis
for completeness, damping becomes a very important contribution to system

behaviour under certain conditions. For choice molecular states r, it is possible
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2a: Photonic interactions

that the energy contribution of the interacting photon is equal to the molecular

transition, a condition of resonance:
+hck = E,, (2a.17)

With no damping, this means the molecule-radiation interaction is perfectly

energy-conservative at the R«I transition, and hence E, = E;. At resonance, the

unmodified perturbative equation (2a.13) predicts an unbounded rate of transition.
But in fact, the rates of real second-order transitions are observed to vary with
radiation frequency such that there is a well-behaved maximum at resonance. The
addition of imaginary damping to the energy-differences results in the predicted

rate having a Lorentzian spectrum in k near resonance:*®?”

[oc 12 > (2a.18)
(Ey, £7Ck)" +(ncy,)

At exact resonance, E, £7ick =0, the damping term entirely dominates the
energy denominator, and so the peak transition rate has an inverse-square
proportionality to the damping, T oc y2. This makes the damping magnitude an

indirectly measurable quantity.

7. Time-ordering

A process consisting of K distinct interaction events may proceed with those

events occurring in any order. Each of the K! time-orderings involves the system
transitioning through a unique sequence of (K-1) intermediate states R, S, T, etc.
When the perturbative expansion sums over all possible intermediate states, this

includes a summation over all of the K! time-orderings.

For example, consider a process of resonance energy transfer from a donor
molecule to an acceptor molecule, the focus of chapter 3. There are two Feynman
diagrams for this, showing a transfer of electronic excitation from one molecule to

another via a photon:
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I a 0 a 0

Donor Acceptor Donor Acceptor

Figure 2a.2: Resonance energy transfer. Left: The Donor molecule interacts with
radiation in the event labelled (A), relaxing from excited state a to ground state 0
and creating the photon ¢; then the photon annihilates at the Acceptor in the event
labelled (B), this interaction exciting it to state S. Right: The Acceptor molecule is
excited and creates photon ¢ in the event labelled (B); then the photon annihilates

at the Donor which relaxes in the event labelled (A).

The two events mark transitions in which the molecules and the field change state.
These states are only disturbed by the interaction events, and so in describing the
entire system, the events (A) and (B) execute the system’s transition between
overall states I, R, F. It is the non-relativistic approximation which enables us to
unambiguously divide the entire system’s time history into three discrete eras
without worrying about the relativity of simultaneity. The two events punctuate
three eras in the system’s history, each characterised by an overall system state.

See appendix 8a for an alternative representation of this process.

The system’s “true” state R is unspecified, due to the era lasting too short a time
for any real measurement. The two time-orderings of (A) and (B) each provide
equally many possibilities for R. The sum over intermediate states R includes an
indefinite integration over the infinite possibilities for wavevector and polarisation
of the photon ¢, even those that create an energy imbalance. In fact the (B)(A)
time-ordering (the right Feynman diagram of figure 2a.2) always involves some
energy non-conservation, but the (A)(B) time-ordering is only perfectly

conservative if the photon energy Zce has exactly the correct value.
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2a: Photonic interactions

Time-ordering falls within the category of unspecified mechanistic information —
the total quantum amplitude of a multi-event process is the sum of the amplitudes
for each time-ordering. For a K-interaction process: the total quantum amplitude
must first be decomposed into a sum of K! terms, each being the amplitude for the
process limited to one time-ordering; then each of those terms must be
decomposed into an (infinite) sum, each term of which is the amplitude for the

process limited to a specific sequence of intermediate states.
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Chapter 2: MQED calculation framework

2b: Rotational average of molecular response tensors

1. Introduction

In each of the following chapters, MQED methods are employed to calculate the
rate of a certain photonic process as a function of the orientation of the
chromophores. If the orientation is static and known, the MQED results may be

used to directly predict the observable process rate.

This chapter describes a method for integrating the MQED rate result (for a static
chromophore) over the three Euler angles of chromophore orientation, delivering

a rotational average of the process rate. Chevron brackets ( ) denote that this

operation has been applied to a quantity: If rate I" is a function of orientation, then

(T} is the average value of I for the whole orientation-space formed by the three

Euler angles.

This average is the correct observable rate for photonic processes in which a
stochastically-oriented molecule interacts with fields that are fixed in the
laboratory frame: Interactions of an arbitrarily-oriented molecule with virtual
photons that couple with fixed chromophores (chapter 3a); laboratory-fixed light
beams interacting with a freely-rotating chromophore such as a molecule in liquid

solution (chapters 5 and 6); etc.

Even if the unfixed chromophore is not rapidly rotating but is static in a
randomly-determined orientation relative to the fixed fields, the result of Euler
angle integration is an ensemble average over many systems, which undergo the

photonic process with different values for that orientation.

2. Reference frames

As implied by the scalar products in equation (2a.2), every interaction rate term is
proportional to a scalar product of field vectors and a molecular response tensor.

Using the Einstein convention of implied summation over repeated indices i:
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2b: Rotational average of molecular response tensors

[oc [fields]i123...iN TilZ3---iN (Zb'l)

To calculate this scalar product, the field vectors and the molecular response
tensor must both be expressed in terms of Cartesian components with respect to a

common reference frame.

The radiation is fixed in the laboratory frame, meaning that its polarization
vectors e (or the coupling tensor V that describes virtual radiation) have invariant
Cartesian components in the laboratory-fixed basis set {x,y,z}. Laboratory-fixed
tensor components are indicated with Roman indices: i,j,k,l... or i1,i2,i3...

A molecule’s response tensor is determined by the intrinsic electronic geometry of
the internal structure, and rotates with the molecule, so the laboratory-frame
Cartesian components vary with the Euler angles of orientation. The tensor
components in a molecule-fixed reference frame, with unit vectors {x’,y’,z’}, are
invariant, so this is the natural frame for expressing these quantities. The
orthogonal set {x’,y ",z ’} would typically be defined by molecular symmetry
elements such as a principal rotation axis. Molecule-fixed tensor components are
indicated with Greek indices: 4,y,¢,{... or 21, 12, A3...

The laboratory-fixed tensor components T,,, ,, Will vary as the molecule rotates,

but the molecule-fixed components T,,,, ,, are invariant quantities intrinsic to

the molecule’s physical composition. It is therefore necessary to evaluate each
laboratory-fixed component as a function of the natural components and a product

of cosines relating the unit vectors of the two reference frames.

Ti123...iN :Tuzs...m |i1/11 Iiuz Ii3l3“'|iN/1N (2b.2)

The dimensionless scalar ., ,, is the cosine of the angle between the (laboratory-
fixed) unit vector with hanging index i1 and the (molecule-fixed) unit vector with
hanging index A1. The factor consisting of N cosines is a double-tensor (a tensor
with components in both frames) which describes the relationship between the
two frames, as determined by the Euler angles. The rotationally-averaged double-

tensor is conventionally labelled 1 ™).

1N = (1ol

111151242

EYPRLLL TN > (2b.3)
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2b: Rotational average of molecular response tensors

The double-tensor is the only factor in rate equation (2b.1) influenced by the
molecule’s orientation. Crucially, this means that a rotational average of this

factor accomplishes the averaging of the process rate.
(T) oc [fields] ;i Toazs an 1 (2b.4)

Apart from a brief discussion of N=1 and N=3 averages in chapter 3a, and a
borrowed N=7 result in chapter 6, this thesis only contains explicit evaluations of

rotational averages with even N values, up to 8.

3. The Thirunamachandran method

The rotational-average of the double-tensor is calculated according to a standard

method:*~

1) = §ORmMGMD (2b.5)

With even N values, each f ™ is a tensor consisting of a product of N/2
Kronecker deltas, cast in the laboratory-fixed coordinates i such that each ™

index-contracts with the field vectors. Each possible value of the index r produces
a f ™ with a distinct permutation of the N indices. The set of possible r values has

cardinality that depends on N:

re{123,|r} (2b.6)
Ir| = % = 1x3x5x - (N -1) (2b.7)

The elementary case is N=2, which yields the single tensor f,? =&, , specifying a

dot product of the field vector that has hanging index i1 and the field vector that

has hanging index i2. An average with N=4 yields three pair-of-delta tensors f

f1(4) = 5i125i34
£9 = 6130154 (2b.8)
f3(4) = 6}146}23
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An average with N=6 yields fifteen triple-delta tensors f© , following the pattern
of specifying all unique i-index pairings. An average with N=8 yields 105 quad-

delta tensors f ® ! These results are provided in Appendix 8b.

The tensors g{ are identical in form to f ™), but the Kronecker deltas are cast in

terms of the molecule-fixed coordinates 4 such that each g™ index-contracts with

the molecular response tensor.

The elements m{™™ are defined by the following matrix-inversion relation,

inferred from equations (A2.13) and (A2.10) of ref.™:
m" =g (2b.9)
S, =fM.fM (2b.10)

The matrix S consists of Kronecker delta inner-products, so equation (2b.10)
always produces a single-valued dimensionless scalar, a real number. For

example, in the N=6 case, the top-right corner element of S is:

Sus = B - 1.9 = 6,6, 6m80 60 =9 (2b.11)

mn*~in™ jm

The matrix-inverse of S is then calculated, yielding the m™ matrix. Therefore, the

elements m{") are likewise real numbers.®® Appendix 8b reports the results of all

m™ for even values of N up to 8. Notably, the m™ matrices obey the formula

m{ = (N +1)"."

S =(N+1)

Each rotationally-averaged rate term is thus expressible as a multiple index-
contraction, with implied summation over all N laboratory-fixed indices i in the
set{x,y,z}, over all N molecule-fixed indices 4 in the set {x ",z ’}, over r in the set
defined by equation (2b.6), and over s in the same set.

<F> * [ﬁelds]i123...iN T/”~123---/1N 1

(2b.12)

H (N) (N) ~(N)
oc [ﬂelds]ilgg_“”\, fr;i123...iN My Gs; 212348 T/uzs.../m
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4. Degeneracy and natural invariants

It may be that the laboratory-fixed field “tensor”, labelled [fields], contains
vectors that are indistinguishable. Situations like this are especially likely in rate
terms that are derived from the square modulus of a single quantum amplitude for
an E1 interaction — each field vector e must appear alongside its complex
conjugate, which is equal if there is no imaginary part. An arbitrary fourth-rank

example would be:

[fields]. ., =€, &, bk, (2b.13)

1234

Here, the two vectors e are identical, so the tensor labelled [fields] has 112

index-symmetry.

The effect of this symmetry on the rotational average evaluation is that several r
values may yield identical results for the contraction with ™. Also, in cases
where the fields are produced by plane radiation, the vectors e have no imaginary

part so (e-g)=1, and this may produce further degeneracy. In this example there

is degeneracy between r=2 and r=3:

[eileizbi3ki4] f1(4) = (b'k)
[e.€.,D5ki ] £ =(e-b)(e-k) (2b.14)
[eileizbi3ki4] f3(4) :(e'b)(e'k)

In evaluating the implied sum over r in equation (2b.10), the set of unique values

of the contraction [fields] f ™) must be identified, and their coefficients m"’

i123...iN

are the sum of elements of m™ with the corresponding degenerate r values:
Zr[eileizbi3ki4] fr(;ﬁzsz: mﬁ:) = (b ) k) m1(:) +(e'b)(e ) k)(mg) + mgsl)) (2b.15)

In equation (2b.3), the double-tensor consisting of N cosines couples each i-index
with the A-index of the same number. The Latin-Greek symmetry of the double-

tensor is reflected in the diagonal symmetry of the m™ matrices. Any i-index-

symmetry in the contraction [fields]im___iN f ™) must be reflected by A-index-

symmetry in the contraction g{™'T,,,, .\ , over the same numbers. Even without
this induced symmetry, it may be that the molecular response tensor T,,,, ,, has

intrinsic A-index-symmetry due to the nature of the molecule’s state transition.
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The effect of this symmetry on the rotational average evaluation is that several s
values may yield identical results for the contraction with g"’. An arbitrary

fourth-rank example would be a T tensor with A3«<>14 index-symmetry, resulting

in degeneracy between s=2 and s=3:

4 —
T/11234 O T/11122

Thioas gz :T/11212 (2b.16)

T/11234 9;° = T/11221 = T/11212

As in the laboratory-fixed half of the calculation, the implied sum over s requires
that the set of unique values of the contraction g{"’T,,,. ., must be identified,

and their coefficients m" are the sum of elements of m™ with the corresponding

degenerate s values:
@ m® = @ @, m®
Z TJ.1234 gs /11234 T/11122 mrl +T/11212 (er + mr3 ) (2b17)

Each unique g{"'T,,,, , result (in this example, T,,,,,and T,,,,,) is a scalar
produced by a limited sum over the T,,,, ,, Cartesian components, A-index

contracting along a particular molecule symmetry defined by the structure of g™

These scalars are the “natural invariants” of the molecular response tensor for this
electronic state-transition — as a set, they represent different aspects of the
molecule’s capacity to perform the various forms of charge-redistribution

required.

The natural invariants contain information about how the molecule’s structure
influences its QED interactions. Evaluating a subset of them as equal to zero
constitutes a selection rule forbidding a certain kind of transition. It is well known
that the selection rules for any interaction may be inferred from analysis of the

components of molecular response tensors.”#!

See chapter 6 for a worked example of a N=8 calculation.

' D. P. Craig and T. Thirunamachandran, “Rotational Averaging of Tensors”:
Mol. Quantum Electrodyn., Dover Paperback (Dover Publications, Mineola, New
York, 1998), pp. 310-315.
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Chapter 3: Resonance energy transfer modified by a third

chromophore

3a: Influence of near-resonant surrounding matter

1. Introduction

Resonance energy transfer (RET) is well known to occur in natural photosynthesis
and its synthetic analogues,™ and energy-harvesting dendrimers and block
copolymers likewise depend on efficient transfer of excitation between resonant
chromophores.”® A detailed analysis of the advanced quantum features of this
familiar process, and the effects unique to multi-chromophore systems, can give

insights useful to the design of various novel energy-harvesting materials.'*™

This chapter provides an MQED description of RET as a photonic process,™* ™!

with focus on the process being modified by interactions with a third
chromophore that does not directly compete as an acceptor, such as molecules of
the medium. In many true photosynthetic systems involving an RET donor-
acceptor pair, there are nearby chromophores who absorb at a wavelength that is
just a little shorter than the wavelength-equivalent of the transfer energy.!™ This
analysis discovers which specific properties of such nearby near-resonant

chromophores will enhance or inhibit the efficiency of RET.*!

A simple three-chromophore model of modified-RET is constructed as an
extension of elementary two-body RET.!*®! Familiar MQED methods are then
applied to derive equations for the rate of this process in terms of system
geometry and the electronic properties of the chromophores. The completely
general rate expression is an intricate function of relative positions and

(17]

orientations, ™" so for ease of calculation the focus is then on providing actionable

results for particular limiting cases of simple geometry.

2. Three-body RET

The MQED description of (unmodified) RET entails two
molecules/chromophores: the donor, D, and the acceptor, A. The donor loses
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energy in the process, and in the simplest case this means that it relaxes from
some initial excited state, «, to its ground state, 0. The acceptor is excited by an
equal amount, to some excited state of its own, 5. These two molecular transitions
are coupled by a mediating photon, ¢, which is created at one of the interaction

events and annihilated at the other.

(44 0 0 0
D A D A

Figure 3a.1: Non-relativistic Feynman diagram (left) and Jablonski-like energy

level diagram (right), illustrating two-body RET. See also figure 2a.2.

A process of third-body-modified RET is constructed by the addition of a third
chromophore, M, coupled to the RET system by additional virtual photons. The
minimal coupling (which will dominate a sum-over-states) is via a single photon,
p, interacting with M and one of the RET pair. Figure 3a.2 illustrates one possible
configuration for this coupling scheme — in this example it is chromophore D that

interacts with p, connecting the RET system to M.

The four interaction events are distinct, with the individual labels (W), (X), (Y)
and (Z). At each event, one of the chromophores (M, D, A) undergoes a transition
between states (0, o, r, ) and one photon (¢, p) is either created or annihilated.
The four events may occur in any time-ordering, such that there are 4! = 24
possible permutations. There are 23 Feynman diagrams in addition to figure 3a.2

that also describe the same overall process.
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|F> 0 0 p
(X)
| T) p
(W)-..,
| S) r
(2)
| R) h
(Y)
|I> 0 o 0
M D A

Figure 3a.2: Feynman diagram of third-body-modified RET — specifically, the
YZWX time-ordering for the MDA coupling configuration. Event (W) is the
interaction of M with photon p, considered a static interaction as M undergoes no
transition and the permanent dipole of its state 0 is engaged; (X) is the interaction
of D with photon p; (Y) is the interaction of D with photon ¢; and (Z) is the
excitation of A. The four events transform the overall system state from the initial

| 1) to the final | F ) via three intermediate states.

Regardless of the order of the four events, they punctuate five eras in the system’s
evolution, labelled chronologically I, R, S, T, F. The sum-over-states encompasses
all possibilities for the system’s states R, S, T. The many components of this sum
are decomposed first by coupling configuration, then by time-ordering, then by

the possible states of the photons and molecules within each era.

The above photon-connectivity of the system (M coupled to D; D coupled to A) is
labelled the “MDA coupling configuration”. The shorthand “MDA” serves as a
direct illustration of the coupling: M-D, D-A. Without introducing a third photon,
it is possible for the exact same modified-RET process to occur via a mechanism
with M coupled to A, and D coupled to just one of the others. These are the DAM

and DMA configurations.

Intuitively, the coupling configuration should specify the direction of photon
propagation, and thus dictate the chromophores’ relative positions. But in general
the photon wavevectors are not strictly limited to the line from their creation

position to their annihilation position. The sum-over-states includes a sum over all
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orientations for the wavevectors, calculated as an integration over the polar and
azimuthal angles (see Appendix 8c) — the possible wavevector orientations that
are misaligned from the proper creation-annihilation line give smaller
contributions to the total quantum amplitude. Similarly, if the relative positions of
the chromophores are such that one of the three coupling configurations is
unfavourable, this will simply result in that configuration’s quantum amplitude

component being smaller.

Ref."® previously addressed this problem in terms of the same three coupling
configurations. The bottom-up approach pursued here aims at a more detailed

treatment of the influences of bulk matter surroundings on the RET process.

3. Derivation for the MDA coupling configuration

Consider interaction event (W), as shown in figure 3a.2. Applying the electric
dipole approximation, the interaction of a photon p with a molecule M

transitioning T<«S has the Dirac bracket:

1/2
. h .
(TIHW|S)=—ig"M Z( ik J (e exp(ip-r,)(Rad, |a, |Rad,)

P.€p) 2SOV (3&1)

— &,y eXp(-ip-r, )(Rad;, |al |Rad,))

This is an applied form of equation (2a.5). The symbols p represents the photon’s
wavevector, and the non-bold version, p is the magnitude. The subscript i here is a
Cartesian index, using the Einstein convention of implied summation over
repeated tensor indices: there is a scalar product of the molecule’s transition

dipole moment vector p™ and the radiation mode’s polarisation vectors ey,.
Overbars denote complex conjugation. The vector Ty, is the (relative) position of
the molecule M where this interaction occurs. The operators a, and ag are the

photon annihilation and creation operators for the radiation mode p. The volume
of quantization, V, usually represents the average amount of space occupied by

one photon, but for a single-photon interaction this is arbitrary.

As explained by equations (2a.5-7), at least one of these two Dirac bracket terms

must be zero for any particular pair of occupation numbers for radiation mode p in
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Rads and Radt. Therefore there are two possible solutions to equation (3a.1).

Either event (W) is a photon p creation event (as in figure 3a.2):

1/2
(TIHS[S) =+igd"M Z[%} &y EXP(-ip-r,)(Rad; |a/ |Rad,) (3a.2)
P &(p) 0

or event (W) is a photon p annihilation event:

1/2
(TIHS?|S) =—igg"M > (%J ey exp(ip-ry)(Rad; |a |Rads) (3a.3)
P.&(p) 0
The p-creation solution (3a.2) is non-zero only if the occupation number of mode
p in Rady is one greater than that in Rads; the p-annihilation solution (3a.3) is
non-zero only if the occupation number of mode p in Radr is one less than that in
Rads. Which of these two solutions applies to any particular Dirac bracket in the
qguantum amplitude calculation depends on the time-ordering of the four events.

Every time-ordering of the four events necessarily involves one creation and one
annihilation event for photon p, and one of each for photon ¢. However, which
named event corresponds to each of these phenomena varies between the 24 time-
orderings. Events (W) and (X) create and annihilate the photon p, but it is
whichever occurs first that creates p and whichever follows that annihilates p.
Events (Y) and (Z) have the same relationship with photon ¢.

For any particular time-ordering, the quantum amplitude of the four-interaction
process is the fourth-order term of the perturbative expansion, equation (2a.13):

int int

My = 3 (FLH T Hi [S){S | [R)CR [ Hi 1)

R,S,T[E:-DF‘FE;? _ETrad:H:EIIg+ES_ESrad]|:EIIz+EI/;\a_EF:ad:| (33.4)

2 = = MyM, ,.D,D, . ,D,D, . AsA
_( hc J Z PP € o)aCioCiscCippa L M My
o D A rad D A rad D A rad
280\/ P.&(p) #:E(g) [EaT +Eq —E J[Eas +Eos —Es ][EaR +Epr —Eg }

X exp(lp : (rpAnn. - rpCre.) + I(p : (r¢Ann. - r¢Cre.))
Energy differences for molecule X are written as E,i(B = E,i( - Eé( , Where E: is

the total molecular energy of X in state A.

The Cartesian index labels a, b, ¢, d on the polarisation vectors are wildcards
representing an unspecified permutation of the indices i, j, k, I. Index a shall be

the same as that on the p creating photon p, index b shall be the same as that on
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the p annihilating photon p, index c shall be the same as that on the p creating
photon ¢, and index d shall be the same as that on the p annihilating photon ¢.
Note that y; always describes the event (W) interaction and g always describes the
event (Z) interaction, but the correspondence of moments »; and u to events (X)
and (Y) depends on which comes first in the given time-ordering. And z

necessarily comes before ;.

The intricate correspondences outlined in the above paragraph — between the
objective events (W), (X), (), (2); the creation/annihilation events of photons;
photon polarisations bearing the indices a, b, c, d; the chromophore transition
events with moments i, u;, 1 w1 — can be best understood by considering how the
Feynman diagram of figure 3a.2 is modified by changing the time-ordering. Also,

figure 8a.6 illustrates the molecule and radiation states in all 24 time-orderings.

Equation (3a.4) is constructed to describe any one of the 24 event-orderings, since

the big sigma entails an implicit summation over all of them. State-specific

variables such as EER and ESrad can be straightforwardly evaluated by choosing

one time-ordering of the four events and reading the states from the relevant
Feynman diagram — e.g. all the E*® terms will deliver 0, #cp, hce, or hc(ptg).
The r vectors are the relative positions of whichever interaction events create and

annihilate the photons p and ¢ —e.g. r_, ., is the position of the interaction at

pANN.
which photon p is annihilated (at M or at D, depending on time-ordering).
Similarly, the Cartesian indices on the polarisation vectors e depend on the time-
ordering. Each is in a scalar product with one of the transition dipole moments p
determined by which molecular transition creates or annihilates each photon, so
the indices a, b, ¢, d must be understood to represent one of the 24 permutations
of i, j, k, I.

The general amplitude, including all 24 event-orderings seamlessly, can be found
by adding together 24 terms of the form of equation (3a.4). The big sigma’s
summation over radiation modes p and ¢ is achieved by taking the limit of infinite
V, and recasting the sum over modes as triple integrations over p-space and over

¢-space. The details of this derivation are included in Appendix 8c.

44



3a: Influence of near-resonant surrounding matter

100 O DD DD
_ A, ' '
M., =(27) (280) Hi OMO/“l ’ Z{ J e : }

D, Efr E:r —hck (38..5)
X(Vzéij _vivj ) R&lo (Vrzé‘m ViV ) R;& exp(ikRDA)
E> Ej,
Nomenclature: Ryg=r—TIs; VJ.E 0 : VI’EL : kE_aozﬂ'
ORyp | ORy hc  hc

This is the whole quantum amplitude for the MDA configuration. The complete
result makes no mention of the photon properties p, ¢, e(,), or e, because all
possible values have now been included in the sum-over-states. This is in keeping

with the photons being considered virtual.

In this MDA coupling configuration, the D chromophore undergoes a two-
interaction transition via some intermediate state r, and the above result includes a
sum over every possible Dy as the last remaining component of the general sum-
over-states. The general damped polarisability tensor, as given below for molecule
X transitioning f«—0, is capable of describing any such two-interaction transition.
See equation 5.2.7 of ref."™. The arguments -4’ and k are the wavenumbers of the

two interacting photons — a positive sign signifies a photon created at molecule X;

negative sign indicates annihilation at X. The wavenumber y* represents damping

imposed on molecular state X, (see section 6 of chapter 2a).

Xfxr X Xo Xle’ XrXD

XX y2a y24 : :
a; (k' k)=— ' ! + ! ' 3a.6
0 ) ;{Efﬁ,—hck—lhc;ﬁx EX +hck’iihc;/rx} (32.6)

In this nomenclature, the big sigma in Equation (3a.5) is now expressible as the

relevant transition polarisability, oo™ (—k;0).

Likewise, the second line of Equation (3a.5) is precisely expressible in terms of

the rank-two electrodynamical coupling tensor which is ubiquitous in two-body

RET work.!*? Cartesian cosines are denoted FAQJ. =R, /R.

V, (k;R)=(47¢g,) R exp(ikR)

<[ (8, -3RR; )~ kR (5, - )k (6, -RR;)] (3a.7)
:(47st) R lexp(lkR [ V.V, ]
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Equation (3a.5) is thus concisely expressed as a product involving just five

tensors:
Myioa :/uiMOMO Vij (0; RMD) aﬁfDa (=k;0) Vy (k; RDA) ,UlA'BAo (3a.8)

The arguments of the coupling tensor V,, (k; RDA) indicate that it describes the
transfer of energy ack over the distance Rpa Via a virtual photon — this is the RET
coupling. The coupling tensor V; (0;R,,, ) connects the third body M to

chromophore D, but zero energy is exchanged — this is static coupling between the
permanent dipole of M and the transition polarisability of D, as illustrated by the
creation and annihilation of photon p in figure 3a.2. A semiclassical interpretation
would describe the latter coupling as the permanent dipole of M inducing a

perturbation in the transition dipole moment of D’s relaxation.

4. Other coupling configurations

The five factors of Equation (3a.8) each correspond a coupling phenomenon as
illustrated by the Feynman diagram for the MDA energy transfer process

(Figure 3a.2). Figure 3a.3 makes this correspondence explicit:

M V(GR,,) @™ (-k0)  V(KR,,) p™

0 0 )i
0 o 0
M M D D D A A

Figure 3a.3: The five factors of Mypa each correspond to a coupling component
of figure 3a.2, as they each describe one aspect of the electrodynamics of the

process.
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With this correspondence in mind, the Feynman diagrams for the DAM and DMA
configurations enable a straightforward derivation of quantum amplitude formulae
by substitution of variables. The DAM amplitude is constructed by direct analogy

from Equation (3a.8):
MDAM = ,uiDOD“ Vij (k; RDA) ajAkBAO (O; k) Vkl (0; RAM) MMOMO (33-9)

The DMA configuration, in which the M chromophore directly mediates the
transfer of energy, is structurally similar to two-step RET with no distinct time-

delay.® The amplitude is constructed similarly:

Mowa = 247 Vi (KiRpy ) ™ (ki K) Vi (KiRya) 4™ (32.10)
0 f 0 0 0 f
; ;
a 0 0 a 0 0
D A M D M A

Figure 3a.4: Feynman diagrams for the other two three-body configurations:
DAM (left), and DMA (right). These have exactly the same structure as figure
3a.2, differing only in the chromophore and state labels appropriate to each

configuration.

Within this formalism, two-body RET (not involving any M) is described as the

DA configuration. It has a three-factor quantum amplitude:
_ ,.D,D, . AgA,
Mpa = 44 Vi (k’ RDA) H (3a.11)

The full derivation involves the second term of the perturbative expansion, as it is
a two-interaction process. For this reason, Mpa will usually be much greater in

magnitude than the amplitudes of the three M-modified RET configurations.
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The Fermi rule gives the measurable rate for a process as proportional to the
square modulus of the total quantum amplitude. The four configuration
amplitudes derived above all connect the same initial state | to the same final state
F, such that they all describe the same RET process, so its total amplitude is their

sum. This delivers ten rate terms according to the pattern of equation (2a.12).

L'y ZZ”h_lpF |MDA +Mpypa + Mpay + MDMA|2
=27h" pe { |MDA|2

+2Re (M, Mopya )+ My
- , (3a.12)
+2Re(MpaMpay ) +2Re(Mypa Moy )+ Mpay]
+2Re( LY )+2Re(MMDAMDMA)
+2Re(M MA)+|MDMA|2 }

5. Specific geometries

Each of the 10 terms in rate equation (3a.12) is challenging to directly relate to
measurements and molecular properties. To most readily elicit the physical
significance of this result, it is necessary to introduce some simplifying

assumptions about the physical system.

The focus is now on the case of the three molecules being separated by a distance
that is significantly less than k™, but not in direct contact. That is to say, the
molecules are close together as measured by the wavelength corresponding to the
exchanged energy, but still at sufficient separation for there to be no significant
electron wavefunction overlap. The chromophores must remain distinct units,
whose only interactions with each other are via the two specific virtual photons p
and ¢ included in the Feynman diagrams of figure 3a.2 and figure 3a.4. In the V
tensor definition (3a.7), this is the case of kR<«1. Each coupling tensor in
equations (3a.8-11) therefore reduces to:

limV, (k;R) =(47z,) R*(5; —3RR)) (3a.13)

kR—0

This reduced coupling tensor has no imaginary part and no dependence on k. The
dependence on R, the magnitude of the molecules’ separation, is given solely by
the factor R, such that the coupling strength will decline monotonically with

increasing distance. This justifies a focus on the near-zone, as any M molecules
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that are further away will give a comparatively insignificant contribution to the

RET process.

To further simplify the system for the sake of enabling calculation of testable

results, it is necessary to restrict the transition dipole moment vectors uD°D“ and

uABA" to be parallel. In all the geometric expressions in this section, the

orientation of these vectors shall be labelled the system’s Cartesian z-axis.

The main aim of this calculation is to identify the dependence of RET on the
relative position and the electronic properties of the chromophore M, which
represents the nearest molecule/chromophore of the matter surrounding D and A.
When D and A are in solution, M will be the nearest solvent molecule; when D
and A are protein chromophores, M will be the nearest other chromophore. In
either scenario, the spatial orientation of M cannot reasonably be specified as a

known variable — a complete treatment in terms of the specific orientation of M is

thus unnecessary. Thus, in each instance of p"" and "™ (-k;k) the (unknown)

orientation of M must be replaced with an average of all its possible orientations.

Figure 3a.5 summarises the results of a rotational average over the orientation of
p'™ for each of the ten rate terms of equation (3a.12). These are attained by

application of the Euler-angle-integration method of tensor averaging explained in

chapter 2b, section 2.

DA |M DA|2

MDA <MM0MO> <MM0M0/U;VIGMD>
oc | D o | @

DAM </uiMOMU> <‘uiM°M0,u:\AOMO> <MM°M°,UJM°M°>
o | @ o |® @

OMA <aiJMoMo> <#iMOMoajhﬁloMo> <MMOMDaanOMD> <0‘i;\A°M°a|£\|A°M°>
oc |® o o |® o | @

DA MDA DAM DMA

Figure 3a.5: The rank of an average over M’s orientation, applied to each of the

terms of equation (3a.12). The terms with odd-order double-tensor are vanishing.
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[21]

The rotational-average theory of ref./*!! yields the trivial result 1 =0. The

double-tensor I? is index-antisymmetric,?"! yet the two terms involving 1 entail
an index-contraction with the polarisability tensor a}\f"'\"" (=k; k), which is index-

symmetric because equation (3a.6) has intrinsic i/j symmetry given the arguments
—k and k. Hence the four terms that yield 1V or I®) vanish with the application

of the rotational average.

The surviving six contributions to Equation (3a.12) consist of: the two-body RET

rate not involving M, which will usually be the dominant term; two rate terms
which involve M participating via the polarisability " (—k;k), i.e. those
derived from the DMA configuration; and three terms which involve M
participating via the static dipole p*™ , i.e. those derived from the MDA and

DAM configurations. What this means for the dependence of RET efficiency on
the properties of nearby chromophores, is that the two-body RET process will be
modified by two distinct influences — certain contributions to the rate represent the
modification imposed by the polarisabilty of the surroundings, and others

represent the modification by a permanent polarity of M.

Due to Mpa being a two-interaction amplitude and thus of low-order perturbation,
it is expected that the two-body RET rate, [M,|*, will dominate the sum in
equation (3a.12). The same argument also implies that Re(l\ﬁDA MDMA) should be

the most significant of the five surviving rate terms that involve M. The remaining
four corrections will only become significant under circumstances where the two-
body RET mechanism is disproportionately unfavourable, such that Mpa is

severely reduced — that is the focus of chapter 3b.
Before application of the rotational average over M orientations, the term
Re(l\ﬁDA MDMA)entaiIs the real part of an intricate inner product of four complex

tensors:

D,D, Aghy  AgA

Re(MDAMDMA)Zlu| ,un?oDa M,

_ - (3a.14)
x Re[ Vi (K Row ) Via (K Rya ) Vi (KR, ) @™ (=K K) |

The rotational average imposes a factor of 1¥ =5, &,, /30n the polarisability

tensor, transforming it into &} /3="Tr(a"" ). This trace-polarisability will
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have positive sign if the primary absorption band of M is of slightly greater
energy than the transferred energy Ack.

Equation (3a.13) is the relevant V definition for this system. The assumption of
uD°D“ and uAﬁA° lying on the z-axis implies that the indices i, I, m and n are now

limited to z. Now, the averaged form of equation (3a.12) therefore evaluates in

full detail as:

(Te )= 27 Pe {|MDA|2+2<Re(MDAMDMA)>+...}

h
- ;thg 120 [ Res (1-3R2,,)
x{ 6772,Rs (1-3R%,, (3a.15)

+Re(Tra'" (-k;k))
X RISi/I Rl\_/li\ |:l_3|QI§M 2 _3IQI\2/IAZ +9F§DM ZIQMAZ (IQDM ' IQMA )}

+..}

The first line of the expansion, 67&,R53(1-3R2,,), is the two-body RET rate; the

next term contains all variables attributable to the influence of M (the nearest
chromophore of a passively-interacting medium) modifying the process via DMA
coupling. Notably, this influence is determined only by the relative position and
the trace-polarisability of M, and its sign specifies whether M’s influence
amplifies or diminishes RET. In general, larger (more polarisable) molecules M
that come nearer to the donor-acceptor pair should induce the greatest (positive or

negative) rate modification.

If the trace-polarisability factor is expressed in volume form,

o' =

Re(Tra"" (—k;k)) (3a.16)

4re,

and all common factors are removed from (3a.15), then the two leading RET rate

terms are expressible as:

R 2 'R R R A A R R
<FFI > o |:1_3RI§AZ:|+§( RO:E D? J[]‘_:BRSM z _3Rl\2/IAz +9RDMZRMAZ (RDM ) RMA):| (33-17)

DM " ‘MA
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If the three inter-chromophore separation distances are approximately equal, then
the modification term is proportional to the ratio of M’s polarisability volume to

the cube of this distance.

The dependence on M’s position is a very complicated function of the relative
separation and orientation of D and A as well as their dipole orientation, z. It is
thus not feasible to predict a rigorous relationship between the location of M and
the RET rate modification. However, the result does allow the sign and degree of

modification to be calculated for any specific system geometry.
A very simple example solution is the case of the three chromophores forming a
half-square triangle with apex M (i.e. R,, =2R,,, =«/2R,, ) with the z-axis

oriented orthogonal to the plane of this triangle. The solution to equation (3a.17)

for this geometry is:

25/2 (Z’
T 1+ —
(Tg) oc 1+ 5 [RgM] (3.18)

The two-body RET rate is set to 1, so the second term represents the relative rate
modification. If « is the volume of a spherical M, then a reasonable value for the

separation R, would be triple the radius of M. This volume ratio produces a

weak but detectable rate enhancement of 9.8%.

6. Polarisability and refractive index

MoM,

The polarisability tensor ¢;; (—k;k), which is the time-symmetric inert

scattering tensor of the molecule M as defined by equation (3a.6), has been shown
to be the principal factor (other than relative position) determining the role of M
in modifying RET.

The double-interaction of M in the DMA coupling configuration (see figure 3a.3)
is identifiable as simple scattering because: there is conservation of energy in the
two interaction events within the subsystem consisting of M and radiation; M

undergoes no overall molecular transition; and the transition dipole moments

MOMr

pand uM'MO are chosen to have no imaginary part. These facts together imply

that ﬂiMOMrﬂ;\ArMO — ﬂ}VlOMr #iMrMO .
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The polarisability includes a sum over the complete set of intermediate states M,
which are all the possible stationary states for the molecule M. Of particular
interest is the excited state whose energy (relative to My) is closest to the transfer
energy, aick. The denominators of equation (3a.6) show that polarisability is at a
maximum and at its most wavelength-dependent near to resonance, so now the
near-resonant case is explored in more detail. The nearest-to-resonant

intermediate state is labelled M,. In the sum over M, this may be separated out:
o™ (—k;k)=—-n"'c

% /U-MoMg/JMgMO A£+iy£+ As+2k¢|7/€ (33.19)
LT AR (A 2k) 4R

k,—k+iy k,+kFiy
+ ;uiMOMr:quMO ro r + ro r
Z CL(EM e —Kk) +y7 (EM /he +K) 4+

The variables Eg“g andy, are electronic properties intrinsic to the species M. The
energy-separation of M, from resonance is represented by the difference

A, = E:ﬂ) /hc —K . The situation of exact resonance, EgN(') = hck , corresponds to

A, =0 1mportantly, this chapter assumes that M does not have any stationary

state at exact resonance, as this would make it a second acceptor chromophore A.

In the case of 7ck being very close in energy to a stationary state of M, so the

difference A, is small, so all r # ¢ terms (the second line of equation (3a.19)) and

the anti-resonant ¢ term (the second fraction in the first line) become
comparatively negligible. The real trace polarisability featuring in equation

(3a.15) can then be approximated as:

&

AZ+y?

Re(Tr "™ (—k;K)) = () * s e —2

(3a.20)

This function of A, and ¥, can be further simplified by truncating the Taylor series

expansions that arise in the two extreme cases. Either relatively weak damping:

7, <<

Re(Tr ailjwomo (—k; k)) ~ _(hc)—l luMOMg’uMgMO [A;l —}/fAf]

AS

(3a.21)

or relatively heavy damping:
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v, >>

Re(Tr ailjvloMO (—k; k)) ~ _(hc)fl 'uMOMé./JMgMO I:A57/;2 _Agsj/:t]

AE

(3a.22)

When interpreted as functions of k, these equations describe the influence of the
transfer energy hck on the magnitude of equation (3a.15)’s M-modification term.
This is because the polarisability of M is the only variable in equation (3a.15) that

varies with k.

If RET is understood as the short-range limit of radiative energy transfer, the

wavenumber may be interpreted as k = 277/ A , where 1 is the wavelength of the

ideal non-virtual photon carrying the energy #ck from D to A. This perspective is
conceptually at variance with this chapter’s two-virtual-photon description of
modified RET, but it illustrates the physical insights. Molecules of the
surrounding matter modify the rate of energy transfer via their polarisability, and
the modification varies according to the wavelength. Wavelength-specific
modification of photon behavior by the polarisability of the medium is commonly

addressed in terms of macroscopic optical properties.

A close analogy can be drawn with the wavelength-dependence of the refractive
index n of a medium comprised of molecules of species M. The density form of
the Clausius-Mossotti relation expresses the polarisability of a substance present

in number-density N, as a function of the refractive index n of the pure substance:

2
Ln?-1

o =3N >
n"+2 (3a.23)

It has already been postulated that there is an isotropic distribution of orientations
for molecule M. This is consistent with the polarisability itself being isotropic,
with diagonal scalar elements that are equal and may each be identified with the
Clausius-Mossotti result. Then the scalar polarisability in equation (3a.15) is

exactly triple the real part of this result:

Re(nzz2 +Re(n?)+ Im(n2)22—2
Re(n’) +4Re(n®)+Im(n*)" +4

Re(Traj"" (-k;k))=3Rea =9N*

]

(3a.24)

This treats n as the refractive index of a bulk medium consisting of unaligned M
molecules. RET occurs between individual molecules D and A, which are

surrounded by this medium. The scenario best described by this formulation is
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3a: Influence of near-resonant surrounding matter

low-concentration solutes D and A present in a liquid M solution, but it may still

in principle be usefully applied to chromophores embedded in photosynthetic

proteins or dendrimers.

Equation (3a.24) can be rearranged to give a prediction for the medium’s

refractive index given a certain polarisability for the constituents M. Provided that

n® has no imaginary part, this comes to:

2N Re(Tra) +9 %

9-NRe(Tra)

we(n) |

5
Re(n)

0.5 0.75 1 1.25 1.5 1.75
Al (2nhiclE,p)

Figure 3a.6: Refractive index of the medium M as a function of the transfer-
energy wavelength, 4, with abscissa normalised to the resonance condition.
Equation (3a.25) is plotted in the form:

2 -1 %2
2K (h'c'E,, - Zn/ll)[(hlclEgo —2m Y + 7/2} +9
Re(n)= 2 _

9-K (¢ Eo -2 ") (¢ By - 2227 47

This graph uses a value for damping, y = (47) *# ‘¢ 'E,,, which is within the
weak limit described by equation (3a.21). The parameter K is defined as
K =#7"c*Ng"M MM in units of E,, =1. The near-zero at A = 2zhic/ E_,

represents weakly-damped resonance.

(3a.25)
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3a: Influence of near-resonant surrounding matter

Equation (3a.20) and the relation A, = Eg“g /hc — 2/ A combine to give the real
trace polarisability Re(Tr«) as a function of the ideal wavelength 4. Thus,
equation (3a.25) provides Re(n) as a function of 4 and of N, as illustrated by

figure 3a.6. Note that the results of section 5 assume the wavelength A to be
slightly longer than the resonance condition. The number-density of M molecules,
N, is an indirect measure of the inter-chromophore distance — the average distance

should have an inverse cube-root proportionality to N.

7. Discussion

The results of section 4 stand alone as a complete description of the factors
determining the rate of modified-RET — but only if we have complete knowledge
of each chromophore’s relative position, orientation, the energy of each stationary
state, and all the transition dipole moments involving each stationary state. This
condition may be approached in the case of strictly-aligned chromophores within
a rigid protein structure, such as natural photosynthetic complexes.

It has been identified that with an isotropic medium, molecular polarisability is
the principal property of the surrounding matter responsible for modifying RET.
Polarisability is at a maximum near to resonance, so matter that is near-resonant
will have the greatest effect on RET efficiency — but exact resonance would lead
to the medium molecules competing for the role of final energy acceptor, which
lies outside of this analysis.

Equation (3a.24) is unique for directly linking the bulk refractive index of a
material to the effect that its individual molecules have upon the microscopic
process of RET. In the case of a homogenous medium that is a mixture of several
near-resonant molecular species, the relevant refractive index is that of a pure
sample of whichever species M is closest to the RET pair. When attempting to
detect a third-body modification compared to the two-body RET rate, it is not
possible to remove the third molecule M without completely taking the donor and
acceptor out of solution, but the RET efficiency of a donor-acceptor complex may

be measured in solutions with differing refractive index.

The more conventional refraction-correction to RET involves a redefinition of the

coupling tensor V,??* and this has been successfully used to analyse
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3a: Influence of near-resonant surrounding matter

photosynthetic systems by treating the protein scaffold as a refractive
environment.'>?*! | this chapter employed such an approach, the polarisability of
molecule M would be unrelated to n, and the V tensors of equations (3a.8-11)
would receive the modifying factor (n* +2)?/9n? . But that would result in a

RET rate dependence on n inconsistent with equation (3a.15), which is justified
by the QED derivations of this chapter. The discrepancy comes from the two
formulations describing different coupling scenarios — this chapter deals with a
specific M chromophore identified as the nearest medium molecule, so the space
between D and M cannot be filled with matter that modifies coupling with its non-

unity refractive index.
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Chapter 3: Resonance energy transfer modified by a third

chromophore

3b: Orthogonally-oriented transition dipole moments

1. Introduction

The precise geometrical arrangement of chromophores — especially the relative
orientations of transition dipole moments — significantly influences the efficiency
of RET. In the wider literature that covers RET and related processes, the
deterministic relationship between relative orientations and RET rate is
conventionally described in terms of an orientation factor, «.* Much recent
theoretical work has explored the issue of optimising the geometry of multi-
component RET systems, ' ®! often expressing orientation dependence with a «

function. See equation 2.28 of ref.[".

K, =™ R )_Z<RDA L )(ﬁDA 'ﬁABAO) (3b.1)
xel,

{13}

A well-known result from such work is that the efficiency of short-range Forster

RET is proportional to x . More generally, RET is forbidden at all ranges if both

terms of « are zero.[® This condition is met when donor and acceptor dipole
moments are oriented orthogonally with respect to each other, and one is also
perpendicular to the straight line between the molecular positions. Note that in
systems where this is true at the midpoint (equilibrium) of the chromophores’

vibrations, vibrational displacement may be sufficient to allow RET.™

The previous chapter 3a assumes that the donor and acceptor are positioned such
that two-body RET (the “DA” configuration) is favourable. Thus the RET rate
results are dominated by the unmediated RET process, which is merely modified
by quantum interference from third-body interactions. But if the chromophores
are situated such that both terms of k are zero, so the DA configuration cannot
contribute, then the RET rate will instead be dominated by indirect-RET
mechanisms. This chapter contains the calculations of RET rate in an elementary

example of such a DA-forbidden geometry.™*”!
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2. Quantum amplitudes of RET mechanisms

The donor chromophore D undergoes a decay transition Dy«—D,,; the acceptor A
Is excited Ag—Ao; the passive neighbouring molecule M remains in its ground
state Mo. A quantity of energy hack is transferred. This process may proceed via
any of four mechanisms, defined by the coupling configuration,***? and each of
these mechanisms has a distinct quantum amplitude. These are fully derived in

chapter 3a and appendix 8c.

e DA coupling: Two-body RET without the involvement of any M.

AgA,

D,D, .
Mo =247 Vi (KiRp ) 4] (3b.2)
e MDA coupling: RET with D statically coupled to M.

Muon = 4"V, (0:Ryp) @22 (-k:0) Vi (KiRpa) 2™ (3b.3)

e DAM coupling: RET with A statically coupled to M.

Mo = 4% Vi (K;Roa) @3 (0:K) Vi (0:Rxy) 44 (3b.4)

e DMA coupling: Mediated energy transfer, whereby D and A are each coupled

only to M.

. My . . AsAo

Mowa :,UiDOD“ Vij (k1 RDM) a;\: M (-k;k) V, (k, RMA) L (3b.5)
Separation vector Rag is the displacement of the “B” position from the “A”
position. The E1% molecular polarisability tensors a are defined by equation (3a.6).
The E1-E1 coupling tensors V are defined by equation (3a.7).*! The rate of RET
is calculated using the Fermi golden rule, expressed in terms of the four quantum

amplitudes by Equation (3a.12).

The Fermi rate term describing the pure unmodified DA process is given by the
square modulus of (3b.2). By carefully implementing equations (3a.7) and (3b.1)
above, it follows that this rate has the following orientation dependence:!"®!

2 _ . 2
IMpa|” o Ron ‘K3 —ikR Ak, — széAK‘l‘
(3b.6)
oc R k2 +k*Roy (K32 —2K1K3) +k*R &7
In the limit where the separation distance Rpa is far less than the ideal reduced
wavelength k™, the first term of (3b.6) (with R distance-dependence as in

Forster RET) dominates, and therefore RET rate is proportional to xZ. In the
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opposite limit of Rpa>> k™, the third term (with R distance-dependence as in
radiative energy transfer) dominates, and so the RET rate is proportional to &/ . At
all intermediate scales of separation Rpa, there is also contribution to the RET rate

from the second term, with orientation factor (zc§ —21(‘11(‘3). This analysis

rigorously demonstrates that the pure DA form of RET is forbidden when both «;
and x,are equal to zero, and this prohibition is effective at all scales of donor-

acceptor separation — even in the far-field limit when the mediating photon must
be considered wavelike, such that inter-chromophore couplings are subject to

appreciable retardation and the Forster theory of RET is inapplicable.* ¢

This chapter contains the calculations of RET rate in a three-molecule system
defined by donor and acceptor dipole moments being oriented orthogonally with
respect to each other, and both of their dipoles being perpendicular to the vector
Rpa, as shown by figure 3b.1. This is the most elementary DA-forbidding

scenario.

Figure 3b.1: The dipole moments of the donor and the acceptor, and the vector
separating their molecular positions, form an orthogonal triad. A Cartesian

standard-basis coordinate system may be constructed around these vectors.

3. System specification

The dipole moments of D and A and the separation vector Rpa are aligned as an

orthogonal triad. It is therefore most convenient to specify the Cartesian standard-
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3b: Orthogonally-oriented transition dipole moments

basis coordinate system according to these directions, and to fix the origin at the

position midway between D and A (see figures 3b.1 and 3b.3).

D,D AgA,

P =X ; po :}A’ﬂABAO ; Rpn =ZRps (3b.7)

In the language of Cartesian hanging indices, the dipole moment factors in the

guantum amplitude equations (3b.2-5) reduce to:

pePe =0, fP P =8, i (30.8)
In particular, the DA configuration quantum amplitude reduces to:

Moa = 1%% V,, (K;Rpa ) 1™ =0 (3b.9)
As intended, this is confirmed to be vanishing, according to the V definition.

(84 ~3RonRon, )~ KRor (8 ~3RonRon )~K'RE (6 ~RouRony ) =0 (30.10)

When the electronic dipoles of each molecule are taken to be precisely aligned to
a single axis, it is implicitly assumed that the molecules have an intrinsic
cylindrical symmetry about this one axis. This picture of molecular structure is
consistent with a push-pull model of charge displacement.** The push-pull
model also supports the slightly stronger statement of molecular behaviour, that
all of the other electronic displacements (static and dynamic dipoles) should

likewise align to the molecule’s natural axis.

With transition polarisability a understood as an E1% molecular response tensor,
the condition of cylindrical symmetry for D and A results in their a tensors having
just one nonzero Cartesian component, similar to the dipole moment vectors p

above:
DD, _ DD, . AA, AA,
;" = 0,0, a o =00, (3b.11)

The quantum amplitudes for the other three coupling configurations are thus

reduced:
Muoa = 4" Vi, (0:Ryp) @™ (-k;0) V,y (kiR ) 7™ =0 (3.12)
Mo =177 V,, (K;Rpa) @ (0;k) V,; (0;R ) 24" =0 (3b.13)
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3b: Orthogonally-oriented transition dipole moments

Moma = > Vi (k;RDM) "™ (=k; k) ij(k; RMA) ,LIASA° (3b.14)

ij
The MDA and DAM amplitudes come to zero because V,, (k;Rp, )= 0 as shown

by equation (3b.10). The elimination of three of the four coupling configurations

leads to a very simple result for the Fermi rate:
2 2
|MDA+MMDA+MDAM+MDMA| :|MDMA| (3b-15)

In this system geometry, with cylindrical symmetry, RET occurs only through the
DMA mechanism. Some third chromophore M must be coupled to both D and A
through its induced dipole moment, acting as a bridge for the excitation. But note
that M need not be positioned directly between D and A at all, and if M were
actually bonded to both D and A (i.e. if there were sufficient electronic
wavefunction overlap to enable electron transfer), then this would be a different

kind of energy-transfer system altogether.

A

”DDD& V(k;RDM) PRYAYS (—k: %) V(k;RMA) ”A;s .

0 0 p
o 0 0
D \Y A

Figure 3b.2: Feynman diagram showing one time-order (of 24) of the DMA
mechanism. The five factors of Mpua correspond to coupling elements of the

diagram, like in figure 3a.3.
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Within the constraints of this system specification, the only remaining geometric
variables are the length Rpa, the quantity of energy to be transferred Ack, and the

position and orientation of the crucial molecule M.

4. Position of M

The Cartesian coordinate system has been defined relative to the positions and
orientations of the D and A chromophores. For the position of M, it is more

natural to replace the x and y coordinates with an axial distance pzwfxz +y*,and

an azimuthal angle y defined such that y = 0 fixes M on the positive x axis and
w = /2 fixes M on the positive y axis. Figure 3b.3 illustrates these cylindrical

coordinates.

The position-dependent factors of Mpua are contained in the two V tensors, and

each V is dominated by the inverse-cube dependence on coupling distance.

Within this section, the factor R, R, is labelled #:
Mpuma V(k;RDM)V(k;RMA) o« RI;I%/IRI\_/IB:A =1 (3b.16)

Usefully, » is symmetric with respect to the w coordinate, so the position of M
only needs to be defined on the pz plane.

For any p that is greater than Rpa/2, the maximum # value is to be found at z = 0.

For smaller p, it is necessary to first define a certain virtual spheroid surface:
2" +2p* =R%, /2 (30.17)

This prolate spheroid may be constructed from an ellipse, with minor-axis

diameter of Rpa and foci located on D and A, rotating about the z-axis. For any

given p<R,,/2:

e Any nonzero z that puts M within the spheroid yields a value of # greater
thanatz =0:

77(0<|z|<JR§A/2—2p2) >1n(2=0) (3b.18)
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e Any z which puts M exactly on the spheroid surface yields the same 7 value
asz=0:

n(z=+[Rou/2-20")=n(2=0) (3b.19)
e Any zthat puts M outside the spheroid yields a value of # less than at z = 0:
(|2 > (REs/2-207 ) < n(2=0) (3b.20)

With these findings in mind, the following sections specifically concern the z=0
cases, where the coupling distances Rpy and Rya are always equal. In full, the
quantum amplitude evaluates as a function of the relative molecular positions,
contracted with the M polarisability tensor:

M gua = (47[80 )_2 Rowm exp(2i kRDM) pe /UABAO ai'jVIOMO (-k;k) Dy A (3b.21)

The tensor parts of Mpwa are simplified by the vector arguments in the two

distinct V factors, Rpm and Rua, having equal magnitudes. Explicitly:

A A

D E(l_ikRDM )(é‘lx _3FEDMi RDMX)_kZREZ)M (é‘lx —Rowi IQDMx)

Aj E(l—lkRDM )(§Jy _BRMAj RMAy)_kZRéM (5Jy - RMAj RMAy)
Roy, = —Ryya, = 2 cosy (3b.22)
Row
IQDMy :_IQMAy: £ siny
Rowm
Roe = Runy = 00

DMz MAz —
2R,y

In the z = 0 regime, 7 =R;;,. The coordinate p specifies some fixed value for the

ratio Rpa/Rpm, Which implies that 77 o«c RZ5 . Consequently, all of the final RET

. . . 2 _
rate results will vary by donor-acceptor separation according to M| o« Rox .

5. Orientation and polarisability of M

Accounting for an arbitrary orientation of the molecule M, it is necessary to define

an additional Cartesian reference system, with axes fixed to the molecule’s
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internal structure. The molecule-fixed coordinates (x’,y’,z") may be related to the

laboratory-fixed coordinates (x,y,z) via Euler angles (a,f,y). A laboratory-fixed

unit vector i is converted to the corresponding molecule-fixed unit vector i by a

triple rotation:*”!

e First, rotation o about the z-axis, carrying the y-axis into an orientation that
the literature calls “the line of nodes”;
e then rotation f about the line of nodes, carrying the z-axis into the z -axis;

e then rotation y about the z-axis, carrying the line of nodes into the y-axis.

And conversion from & to i is the inverse of this operation. Therefore, the
laboratory-fixed Cartesian components of M’s molecular response tensors may be

expressed as functions of the natural components, using a triple rotation matrix, @:
=@, 11 (3b.23)

cosy siny 0)(cosfp 0 —sing)( cosa sina O
®'=|-siny cosy 0| 0 1 O —sina cosa 0 (3b.24)
0 0 1)\sing 0 cosp 0 0 1

COSa COS fCosy —sinasiny —CoSa Cos Asiny —sinacosy cosasin
- =|sin@cos fcosy+cosasiny —sSinacos Asiny +Ccosacosy Sinasin S
—sin g cos y sin gsiny cos

This allows the polarisability tensor in Mpwa to be evaluated as a function of the

molecule’s invariant intrinsic properties and the Euler angles of its orientation:
aiJM"M" (-kk)=D,, @, a/';"V"M" (=k; k) (3b.25)

In general, there are nine distinct Cartesian components to M’s intrinsic
polarisability or)*™ (—k; k) . As a simplified model of molecular response, it is
appropriate to neglect off-diagonal (J,, =0) elements and treat the y’y’

component as equal to the x x’.

ape 0 0
a“M = 0 a0
O O aMOMO (3b.26)

2'7'

o (—k;K) =[ DD, + DDy, |y (—k;K) + D, D, ate™ (—k;k)
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This is similar to the assumption of cylindrical symmetry explained in section 3 —
molecule M is symmetric with respect to rotation about the z’ axis. The molecules
D and A are described as having perfect cylindrical symmetry and all dipoles
lying in the natural axis; but if M were treated in the same manner here, only the

z’z” component of polarisability would be nonzero. The inclusion of a transverse

component ae™ (—k;k) in the results highlights the RET rate contributions

attributable to M’s off-axis dipoles.

The Euler angle y, describing rotation of M about the z” axis, is rendered
meaningless if the molecular response tensor doesn’t discriminate between the x’
and y’ axes. For this reason, all functions of y cancel out of the RET rate

calculation.

>

=>

X

Figure 3b.3: The laboratory-fixed frame is defined with Cartesian coordinates
such that molecules D and A lie on the z-axis, equidistant from the origin O, and
have natural dipoles perfectly aligned to the x and y axes. The molecule M lies on
the xy plane (z = 0) at distance p from the z-axis and azimuth y defined with a
right-hand-rule from the x-axis. The orientation of M’s z” axis is described with
polar angle g and azimuth « defined similarly to y. The angle y is not shown —it is

rotation of M about the z’ axis.
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6. Rate results

6.1 M located on the coordinate origin

The most highly symmetric case is where M is situated midway between D and A,
specified by p = 0. The coordinate w has no meaning in this position, and

Rpm = Rpa/2. Under these conditions, equation (3b.21) yields:

Mg,\"AOA =2° (472'80 )_2 ,qu’D“,uAﬁA° a%"M" (—k; k)
5 . i 1, 2 (3b.27)
x Ron exp (ikRy, ) 1_§kRDA_Zk R2,

The polarisability of M has been reduced to one Cartesian component (in the
laboratory-fixed frame) by Kronecker deltas in the coupling tensors. This reduces
to:

ay™ (kiK) = [ DD + D D oy (—k;K) + DD, ™ (<k; k)

3b.28
=[ g™ (—k; k) — o™ (—k; k) |sin acos asin® B (30.28)

The orientation function indicates that RET is forbidden where § {O, 72'} , or

where a €{0, /2, 7, 3z/2} . These are the cases of «; =0 for some process of
direct RET from D to M, or from M to A. Conversely, the optimum M
orientations are found at 8 = 7/2, with « € {z/4, 3z/4, 57/4, Tr/4} . These are
the cases of the z’ axis being coplanar to the D and A dipoles and at dihedral
angles of 45° to both, such that the two x values are equal. Curiously, the

orientation function is independent of kRpa, unlike in the following subsections.

The Fermi rate of RET is proportional to the square modulus of this quantum

amplitude:

Mg = 16(4zee) [ | [ [att™ (—ksk) — ™ (—kskof

s (3b.29)
xR [4—2i KRy, —k*R3,| sin® & cos’ a sin‘ 3
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6.2 The three molecules mutually equidistant

The radial displacement value p = (\/??/2) R, IS a case of particular significance,

as this has the three molecules mutually equidistant, Rpa = Rom = Rma. The three
positions form an equilateral triangle, which is a natural result of close-packing

for molecules of approximately equal size.
M Seufon = (477e,) * exp(2ikRpn )Res 1™ 1™ D, A, o™ (—k;K) (3b.30)

A full expansion of the polarisability and coupling tensors is required. The tensor
part of amplitude (3b.30) expands according to the polarisability equation (3b.26).

MM, . _ MM, .
D, Ao (-k;ik) = ™ (-k;k) [ DA D, @, + DAD, D,

(3b.31)
+ a2 (—k; k) D,AD, D,

Each of these three terms has a dimensionless coefficient, whose general form is:

DA®,®, =(D,®,+D,d,+D,d, )(A®, +AD, +AD, ) (3b.32)

In the present case, the coefficients of (3b.31) are calculated by finding the correct

forms of D and A. The equations (3b.22) must be solved by specifying

Yo us (\/5/2) RDA and RDM = RDA-

D, =(1-ikRy, ) (1-(9/4)cos’ v ) —k*R5, (1-(3/ 4)cos’ y )
D, =(3/4)[ (1-ikRy, ) (—3siny cosy ) —k*R3, (=siny cosy) |
D, :(ﬁ/4)[(1—ikRDA)(—3cosw)—k2R§A(—cosw)]
: _ _ (30.33)
A, =(3/4)[ (1-ikRy, ) (3cosy siny ) —k*R5, (cosy siny ) |
A, =(1-ikRy, )(1-(9/4)sin® y ) ~k’R}, (1-(3/ 4)sin’ y)
A, =(V3/4)[ (1-ikRy ) (3siny ) —k°R3, (siny) |

Substitution of these components into equation (3b.32) with 2 =v=x" gives the

solution for the first coefficient:
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3b: Orthogonally-oriented transition dipole moments

DA®, D,

i A Dy
{la —(9/4)0052w)—ikRDA(l—(9/4)coszq/)—k2R§A(1—(3/4)coszz,y)]
x (cosa cos Bcosy —sinasiny)
+(3/4)[—3+3ikRDA+kZRSA]siny/cosw(sinacosﬁcos;x+c03asin7/)
(ﬁ/4) ~3+3ikR,, +k RSA]cosw sin fcosy) | (3b.34)
x{ [(L-(9/4)sin® yr )~ kR, (1- (97 4)sin® y )~ k*R3, (1-(3/ 4)sin ) |
x (sin e cos B cos y +cosasin y)

+(3/ )[ 3+3ikR,, +k RéA]SInl//COSl//(COSO{COSﬂCOS]/ sinasiny)
+(\E/4) 3+ 3ikR,, +k’Rg, |siny (sin Bcosy) |}

The angle y has been included at this stage of calculation, even though it is sure to
cancel out of the final result. The other two coefficients of (3b.31) are calculated

by repeating the substitution with different unit vectors A and v.

DA®, D,

i Py
[ -(9/4)coszy/)-ikRDA(1—(9/4)cos2V/)—kZR;A(l—(3/4)coszw)}

x (—cosa cos fsiny —sina cosy)
+(3/4)[—3+3ikRDA+k2R,§A]sim//cosV/(—sinacosﬂsiny+005acos;/)
+(\§/4)[—3+3ikRDA +k*R5, |cosy (sin Bsiny) | (3b.35)

x{ [(L1=(9/4)sin® yr) kR, (1 (97 4)sin® yr )~ k°R3, (1-(3/ 4)sin’ ) |

x (—sin & cos Bsin y +cosa cos y)
+(3/4)[—3+3ikRDA+kZRéA]siny/cosw(—COSacosﬂsiny—sinacos;x)
—(ﬁ/4)[—3+3ikRDA+k2R§A]sinz//(sinﬁsiny) !

DA®, D,
{ [( —(9/4)coszc,y)—ikRDA (1-(9/4)cos® ) —k°R5, (1—(3/4)C0$21//)]
xcosasin f
+(3/4)[—3+3ikRDA + széAJsinwcosyxsin asin
+(\/3/4)[ -3+ 8ikRp, + k’R3, Jcosy cos 2} (30.36)
x{ [(1-(9/4)sin® y ) =ikRy, (1-(9/4)sin® yr ) ~k°R3, (1—(3/4)sin’ y) |
xsinasin g

+(3/4)[—3+3ikRDA + széA}SinWCOSl//COSaSin B
~(\/3/4)[ -3+3ikRy, +k°R3, Jsiny cos 8 }
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3b: Orthogonally-oriented transition dipole moments

To calculate the Fermi rate, it is necessary to further simplify this result. Assume
that as™ (—k; k) =0, such that the transverse component of polarisability is

neglected, so the tensor-contraction (3b.31) reduces to one term:
D, A aij“"°“"° (-k;k)=DAD,D,, o™ (—k; k) (3b.37)

And also assume that # = 7/ 2, such that the z’ axis is assumed to be coplanar to

the D and A dipoles. Then the remaining coefficient becomes:
DAD, D, =
[ {~9+9ikR,, +3K*R5, | siny cosysina
+{4 9cos” y ) ikRDA(4—90052w)—széA(4—3coszz//)}cosaJ (3b.38)
[ { —9+9ikR,, +3K RSA}smz//cosV/COSa
+{ (4-9sin’y) ikRDA(4—95in2y/)—k2R§A(4—3sin2y/)}sina}

This delivers a result for RET rate as a function of M’s azimuthal position y and

azimuthal orientation a:

‘l\/l p=r2|? _

DMA

2 (4mey) Rog ™™ \2 ‘ﬂAB \

" (kskof
x( _{3k2RéA—9}Sinl//COSl//Sina+{(4—90082w)—széA(4—3COSZI//)}COSaT

- 3b.39
+ 9kRDASinl//COSl//Sina—kRDA(4—9COSZV/)COSaT) (30.39)

x( :{3k2R,§A ~9}siny cosy cosa +{(4—9sin2 w)—k*Ro, (4 -3sin’ y/)}sin aT

+[ 9kR, , siny cosy cos e — kRDA(4—9sin2 w)sin a]z )

6.3 M located at the apex of a right triangle

The radial displacement value p =R, /2 is also a case of interest: The three

positions form a right triangle, with M on the right angle. This has the molecule M
positioned on the equator of the spheroid discussed in section 4, such that

equation (3b.17) is true. Here, the # function is not affected by small changes the
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3b: Orthogonally-oriented transition dipole moments

z-coordinate of M’s position, so the results of this subsection are applicable even

if relative positions are not precisely defined in the z-dimension.
Mpuier/? =8(4re,) " Ronexp(2YikRy, ) 1™ ™™ D A '™ (—k:k)  (30.40)

Again, the tensor-contraction is evaluated according to equation (3b.31). The
three coefficients of (3b.31) are calculated by finding the correct forms of D and

A, by solving the equations (3b.22) for the case of p=R,,/2 and R,,, =2 "*R,, .
This method yields:

DA®, D, =
{ [(1—(3/2)0082z//)—2_1’2ikRDA(1—(3/2)COSZW)—Z"lszéA(l—(l/Z)COSZl//)]

x (cosa cos fcosy —sinasiny)
+2‘1[—3+3x2‘1’2ikRDA+2‘1k2R,§A]sinV/cosw(sinacosﬂcos;/JrCOSasiny)
—27[-3+3x27ikRy, + 27 kR, |cosy (sin Bcosy) |} (3b.41)

x{ [ (1= (3/2)sin” )~ 2 *2ikRy,, (1 (3/2)sin® yr )~ 2 *K*RE, (1-(1/2)sin’ y ) |
x(sinacosﬂcoswrcoswsiny)
+27[ -3+3x2%ikR,, + 27 'k*R}, |siny cosy (cosa cos Bcos y —sinasiny )

+ 2‘1[—3+3>< 27"%1kR,, + 2‘1k2R,§A]sin w (sinBcosy) }

DA®,®,, =
{ [(1-(3/2)c0s’ p) -2 ikRy, (1-(3/2) cos” y )~ 2 *K*RE, (1- (Y2) cos’ ) |
x (—cosa cos Bsiny —sinacosy)
+2‘1[—3+3x2‘1’2ikRDA+2‘1k2R,§A]sinz//cosw(COSacos;f—sinacosﬂsin7/)
+27[ -3+ 3x 2 VikRy, + 2 'k*RY, |cosy/ (sin Bsiny) | (3b.42)
x{ [ (L-(3/2)sin® ) =27 ikRy, (1—(3/2)sin” ) -2 kRS, (1-(1/2)sin’ y )
x(—sinacosﬁsiny+cosacos;/)
—2‘1[—3+3x2‘”2ikRDA+2‘1k2R§A]sinz//cosw(COSacos,b’sin7+sinacos;/)

_pt [—3+3>< 2721kR,, + 2‘1k2R§A]sin w (sin Bsiny) }
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3b: Orthogonally-oriented transition dipole moments
DA®,P, =
{ [(l—(3/2)cos2 w)—2"ikRy, (1-(3/2)cos’ ) - 2 'k*R3, (1-(1/2) cos? y/)}
x(cosasin j)
+2‘1[—3+3x 2721kR, +2‘1k2R,§A]sinz//cosw(sin asin )
+27[-3+3x27"ikR,, + 2 'k’RE, |cosy (cos B) (3b.43)
x{ [(1-(3/2)sin® y) =27 kRy (1-(3/2)sin” )~ 2 *K*RE, (1- (Y 2)sin ) |
x(sineasin f)
+27[ -3+3x 2 V2ikRy, + 2 'k?RE, |siny cosy (cosasin B)
—271[-3+3x2%ikRy, +2'K*R}, |siny (cos B) }

As in the previous subsection, it is necessary to simplify this result in order to

calculate the Fermi rate. It is now assumed thatals" (—k;k) =0, and S=7/2.

The tensor-contraction in (3b.40) reduces to one term, specified by (3b.37). The
coefficient in the p=R,,/2 case is:

DA ®, D,
=2 [(2—30052 w)-2"%ikR;, (2-3cos’ y ) -2 kR, (2 cos? (//):|C03a
+[-3+3x22ikR,, + 27 k°R}, Jsiny cosysina (3b.44)

x{ [(2-3sin )~ 2 "2ikRy, (2-3sin® yr ) -2 *k*RY, (2—sin ) Jsin

+[-3+3x2ikR,, + 27 kRS, Jsiny cosy cosar |

This delivers a result for RET rate as a function of M’s azimuthal position y and
azimuthal orientation a:

p=r/2|?
‘M DMA

16(47e,) " Ro2 ‘yD"D"‘Z u

Aﬁ‘

W (sof

x( [{2—3cos2 w —2k’R5, (2—cos® y/)} cosa+{2k’R}, —3}siny cosy sin aT

(3b.45)

2
+| -2 l’szDA 2-3cos’y cos(x+3><2‘1’2kRDAsinz//coswsina] )

)
(2—sin2 y/)}sin a+ {2’1k2R§A —3}sin wcosy/cosoc]2

[-
([2 3sin?y — 2k?R2,
[-

2
+[ —27? KRy, (2-3sin’ z,y)sina+3><2*1’2kRDAsiny/cosw005a] )
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3b: Orthogonally-oriented transition dipole moments

Equation (3b.45) is a continuous function of the M’s positional coordinate y, M’s

orientational coordinate «, and the donor-acceptor distance Rpa.

The left column of Figure 3b.4 at the end of this chapter shows the output of this
function for choice values of the dimensionless scalar kRpa. A full-motion
animated plot has also been produced from the same source images, showing the
equation outputs for the full continuum of kRpa values — this animation is

available at the online version of ref. [%,

7. Discussion

The “DA” mechanism of direct RET is forbidden in donor-acceptor pairs that

have a x; =, =0 orthogonal geometry. This fact is so well understood that

energy transfer within structured polymers can be precisely controlled by
manipulating chromophore orientations.”! This chapter has outlined an additional
mechanism which may enable RET in such cases — via the induced dipoles (of
transition between the ground state and virtual states) of a nearby polarisable
molecule M. In principle, the effects of such additional polarisable chromophores
should inform the development of energy transfer systems which rely on precise

control of energy flow.

The dependence of RET rate on the precise position and orientation of each
chromophore is highly intricate. Just like direct RET is forbidden in the

K, = k; =0 case, the results of this chapter predict very specific geometric

conditions where the indirect RET process is either efficient or forbidden. By
manipulating chromophore orientation in systems with rigidly-placed
chromophores, measurements of energy transfer may test whether equations
(3b.29), (3b.39) and (3b.45) correctly describe the higher-order geometric rules.
As in the scenarios explored in chapter 3a, the only relevant intrinsic property of
the chromophore M is the polarisability a™. The dependence on k imparted by o™

should follow the principles outlined in the polarisability section of chapter 3a.

The “DMA” mechanism must not be confused with two distinct RET steps. The
four interaction events all occur as parts of the system’s transition F<—I, which is

considered instantaneous from a macroscopic perspective.The two photons are

virtual and the two interactions with chromophore M are of unspecified energy
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3b: Orthogonally-oriented transition dipole moments

and time-order — they cannot be meaningfully described as events of Ack

absorption followed by Ack emission.

Curiously, the p = 0 case (section 6.1) shows behaviour similar to the rules
governing a beam of light passing through a sequence of polarisers. Consider a
beam of unpolarised light propagating upward, which meets a polariser in the
horizontal plane aligned to the x axis, then a polariser in the horizontal plane
displaced from x by angle «, and finally a polariser in the horizontal plane aligned
to the y axis. The efficiency of light transmittance at each interaction is governed
by Malus’ law — the first polariser shall polarise the beam, the second shall re-
align the polarisation and impose a factor of cos’« to the beam intensity, and the
third shall re-align the polarisation and impose a factor cos*(a — /2) of to the
beam intensity. The final intensity will be proportional to (cos?« sin“c); and no
transmission can occur if the second polariser is removed. In the RET system of
this chapter with p = 0 and f = /2, section 6.1 shows that the efficiency of energy
transfer is proportional to (cos’a sin?a); and no transfer can occur if the molecule

M is removed.

This kind of correspondence between energy transfer efficiency and the physics of
classical waves is to be expected in long-range (radiative) energy transfer
processes, as the photons traverse whole wavelengths and may be described as
real propagating radiation. But the results of section 6.1 are derived from quantum
electrodynamics and are equally valid for short-range RET where the photons are
clearly virtual. The Malus dependence on azimuthal orientation of the mediator M
is found at all ranges of kRpa, illustrating the essential unity of Férster RET and

radiative energy transfer.
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Figure 3b.4: Colour-spectrum plots of mediated-RET rate, plotted as a function

of M’s azimuthal position y and azimuthal orientation a, for choice values of the

distance p and the dimensionless scalar kRpa. At left, p =R, /2, plotting equation

(3b.45); at right, p = (\3/2)R,, , plotting equation (3b.39).
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Chapter 4. Emission by multi-chromophore complexes

4a. Excitation delocalised between a pair of emitters

1. Introduction

The MQED theory and calculation-methods used throughout this thesis are of
general application, such that the electrodynamical behaviour of metal
nanoantennas may be validly approximated as the photonic interactions of
chromophores. Nanoparticles may become emitters or detectors of radiation due
to the attachment of fluorescent molecules, or the excitation of plasmon
resonances on the metal surface, and a close pair of nanoemitters may be expected
to exhibit special QED effects.!! This chapter explores the properties of emitted
radiation from such a pair, in particular investigating the distinctive features
attributable to electromagnetic coupling between them and with the photodetector.

The advanced features of coupled emitter pairs is a question of current research
interest.>*! Metal nanoantenna technology underpins miniaturised radio-
frequency antenna, ! enhancement of fluorescence!® ' and resonance energy
transfer (RET)®!Y and optimising data yield in fluorescence microscopy.*?! The
conventional approach has focused on either detailed modelling of a single
antenna, or the emergent activity of an ordered array.* ! This chapter
specifically concerns a pair of coupled emitters, such that the inter-emitter
interactions are significant but do not comprise the kind of mass cooperation

found in an array.*®

By treating the emitters and detector as a three-chromophore photonic system,
advanced quantum effects arise from the electromagnetic coupling between
emitter and detector. An important property of modern gold nanoantenna systems
is their ability to modify the directionality of their emission based on emitter-
detector coupling strength.*”?2 The MQED analysis of this chapter delivers
robust predictions of detected signal intensity and phase, at close range (as
detected by a near-field microscope) or in the wave zone (as detected by a remote

photodetector).?*2
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4a: Excitation delocalised between a pair of emitters
2. System Specification

The system under consideration in this chapter consists of two emitter
chromophores, herein labelled A and B, and a detector (energy acceptor)
chromophore labelled D. The MQED framework is compatible with a variety of
very different physical systems, and this versatility allows the results from this
chapter’s simplified calculations to be applied to arbitrary nanoemitters and

photodetectors.

The emission and detection of radiation is equivalent to the radiative transfer of
energy from the emitter pair to D. The initial state | with the energy on the
emitters depends on whether this excitation is localised on one of them, or shared
between both — the following sections explore these two possibilities separately.
Regardless, the process of emission and detection ends with a final state F, where
A and B are both relaxed to their ground states 0, and D is excited (however

briefly) to a higher-energy state labelled .

|F)=|A,.B,)|D,) (4a.2)

Overall energy conservation, E; = Eg, demands that the energy given up by the
emitters must be equal to the relative energy of the detector’s excited state y, and

this quantity defines the ideal wavevector magnitude k:

hck = EyD -Ep (4a.2)

If the transferred energy Ack is considered to be the emission and reception of real
radiation, then it shall have wavelength 27k ™. The requirement that D is capable
of absorbing such radiation is equivalent to assuming the existence of a molecular

stationary state y, even if it is short-lived.

The Cartesian coordinate system’s origin is chosen to be at the point midway
between A and B; the x-axis passes through both A and B; the z-axis passes
through D. The two emitters are thus assumed to be equidistant from D, but this
distance Rap and the separation between the pair, Rag, are unspecified variables
relative to the ideal wavelength 27k ™. The relevant transition dipole moments of
the emitters, p” and p®, are assumed to be parallel, and oriented according to
polar angle @ and azimuth ¢. The dipole moment of the detector, p®, is limited to

the horizontal xy plane with azimuth v, consistent with a feasible experimental
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4a: Excitation delocalised between a pair of emitters

setup involving a polarized photodetector lowered from above. Figure 4a.1

illustrates this system geometry.

Figure 4a.1: The geometric variables Rag, Rop, vy, 6, and ¢ define the relative
position and orientations of the emitters A and B and the detector D. The

Cartesian coordinate system is fixed accordingly.

The assumptions of parallel emitter dipoles and the emitters being equally distant
from D are both intended to maximise pairwise coupling so that novel quantum
effects will be most apparent, and to increase the system’s symmetry for ease of
calculation. In particular, it must be considered that the distance Rap = Rgp and
this crucial coupling variable may be controlled by direct experimental

manipulation of the z-coordinate (altitude) of D, labelled Rop.

The first part of this chapter concerns the simple transfer of excitation from
chromophore A to chromophore D, modified by the nearby third body B — this is
directly equivalent to the three-body RET of chapters 3a and 3b, but the focus
here is on making the theory applicable to a system of real nanoemitters and a
photodetector. Completely unrelated quantum mechanical features appear when
the emitter pair is instead treated as one unit, with the individual states of A and B
left unspecified.!”® The framing of the Dirac kets in equation (4a.1) is intended to

facilitate this analysis.
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This chapter does not directly address cases with both emitters being initially
excited, |Aﬂ, Bm>. In brief, the emission-and-detection process involves transfer of

hck energy from A to B and transfer of 2Ack from A to D; or the same with A and
B reversed; or simultaneous transfer of Aick to D from each emitter. The latter

coupling configuration is equivalent to energy pooling.1?®*!

3. Excitation localized on one emitter

3.1 Quantum amplitudes

If excitation is localized on one of the emitters, the system’s initial state I is as
follows. In the language of energy transfer employed in the previous chapters, one
emitter — in this example, A — must initially occupy an excited state labelled m,

while the second emitter and D are each in a ground state labelled 0.
[1)=[Do)| A, By) (4a.3)
hck =E —E (4a.4)

Equations (4a.2) and (4a.4) together ensure overall energy conservation. The
quantum amplitude of the A-to-D energy transfer process is given by the same
sum-over-mechanisms explained in chapter 3a of this thesis, and in ref. B, This
amplitude is labeled Ma, whereas Mg would be the amplitude for the identical B-

to-D transfer process.

MA :MDA+MDAB+MDBA+MBDA (43--5)

There are four coupling configurations, each connecting the same initial state | to
the final state F, defined in both parts of chapter 3. Selection rules for the
electronic transitions may forbid certain mechanisms, in which case those
components will be vanishing. The first and leading term is the amplitude of

direct RET-like coupling. In this application, it is written as:
Mpa = 247" V; (ki RDA)/”}AOA“ (42.6)

The other three terms are fourth-order amplitudes for mechanisms involving
coupling to B. These are the lowest-order of the many possible amplitude

contributions that depend on the relative position and orientation of B.
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Mpne = /UD . Vi (k RDA) aAOAm (—k;0) Vy (0; RAB) T
Moga =" Vy (KiRpg ) @™ (—kiK) Vi (KiR g ) 24 (4a.7)
Mg, MBOBO Vi (0 RDB) D "™ (k;0) Vkl( RDA) A

The transition polarizabilities a are defined by equation 5.2.7 of ref. B, or in
more detail by equation (3a.6) of this thesis. The general intermolecular coupling
tensor, V, is defined as in chapters 3a and 3b. If the wavevector argument is zero,

such that zero real energy is exchanged, this is described as static coupling.

MD;'DO V(k, RDA ) aAnA,,, (—k, 0) V(O, RAB ) anHo

‘JJ

0

D

0

m

A

0

0

B

Figure 4a.2: The DAB coupling configuration. Emitter B does not transition, so
Mpag involves static A-B coupling, such that A is perturbed by the permanent

dipole of B and undergoes an E1° relaxation.

3.2 Leading signal terms

By the Fermi rule, the rate of energy transfer (in this scenario, the signal strength
of detected fluorescence) is proportional to the square modulus of Ma. The four
amplitude terms thus expand into ten rate (signal) terms as per equation (2a.12),
and the leading rate term will be the square modulus of the dominant amplitude,
Mpa. Of the remaining nine signal terms, the dominant three shall be the quantum

interference involving Mpa.
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T o [Ma = [Mpa| +2Re(MpaMpas)

_ _ (4a.8)
+2Re(MpuMpg, )+ 2Re(Mp, Mo, ) + ...
The lead term is the square modulus of equation (4a.6).
_; 2 _
[Monl* = (475, ) * [0 [ [w [ [3R% +R3, ][ (4a.9)

The complex dimensionless scalar labelled S is shorthand for the detailed

geometric function:

S =sin QCOS(pcosv/( K*[4R + RéD:I{RiB [ Rie +4RéD:|_l _1}
+{1—i ky3RZ% +RZ }{1—3R,§B [R2, +4R%, ]1} )
+sin @sin sin 1//(1— k? [% RZ; + RSD]—i k(3R + R ) (42.10)

+cos@cosy R,gR,p [Rf\g +4R5, ]71
x(kZI:% RZ, +R2, |-3+3iky1R% +R, )

The variable Rap has been subsumed into Rop and Rag, to reduce redundancy and
because these are the length parameters most likely to be readily measurable.
Equation (4a.9) is plotted in the upper half of figure 4a.3, in the near-zone,

R, << k™. With dipoles aligned 6 = 90° and ¢ = y = 51.7°, there is an interesting

dependence on Rop that predicts zero signal contribution at Ry, =~ 0.019k ™,

The relative magnitudes of the three quantum interference terms of equation
(4a.8) will be determined by the same geometric variables as the lead term, but
also by the molecule’s selection rules for one-photon and two-photon transitions.
In equations (4a.6) and (4a.7), the single-photon transition (E1) allowedness is
represented by the transition dipole moment p; the two-photon transition (E1?)

allowedness is represented by the transition polarisability a.

As an example, if a relaxation process involving two photons is forbidden for
emitter A (a™* = 0) and static coupling is forbidden for emitter B (n*® =0, i.e.

B is nonpolar in its ground state), then Mpag and Mgpa Will vanish according to
equations (4a.7). In this case, the leading signal contribution in rate equation
(4a.8) that involves B in any way will be:
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2 Re(MDAM DBA) = 2(4”50 )_3 ‘HDVDO 2 ‘"AOA“ ‘2 [% Ris + Ro ]73 Rae

X Re[exp(ikRAB)W T, U, a2 (—k; k)]

(4a.11)

The complex dimensionless scalar labelled W and the complex vectors T and U

are shorthand for detailed geometric functions:

W =T,sin@dcosg+T,sindsing—T, cosd
T = COS(//( k? [% RZ, + R(Z)D]{RiB [Rf\g +4R5, ]71 _1}
+{1—ika/% RZ + R%, }{1—3R,§B [RZ, +4R§D]_l} )
T, =sinz//(1—k2[% RZ, +R2, |- ik %R§B+R§D) (42.12)
T, = cosyR,eRop [ RZ, +4R§D]’1(3—k2[% RZ, +R2, |- 3iky3 R, + RgD)
U, =sin@cosg(-2+2ikR,;)
U, =sin@sing(1-k°Ri; —ikR,; )
U, =cos0(1-k’R%; —ikR; )

Equation (4a.11) is plotted in the lower half of figure 4a.3, with the same abscissa
and angles as the upper half. Each coloured curve is the result for a given

component of a>% (—k; k). All five components in z give a result of zero — this is

a consequence of & = 90°, as induced-dipoles of B oriented in the z-direction

produce a k = 0 geometry (explained in chapter 3b). The total zero at
Rop ~0.02k™ arises for the same reasons as in the upper graph, as Mpa is of

course a factor of MpaMpga.

86



10,000

8,000

y Upper 6,000
k 6

4,000

2,000

15,000,000 -

10,000,000 -

5,000,000 -

y Lower 0

k9

-5,000,000 -

-10,000,000 -

-15,000,000 -

Figure 4a.3:

yUpper = (47[)_2 [% R,iB + RéD :|_3| S |

4a: Excitation delocalised between a pair of emitters

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

2

Yiomr = 2(47) [ 4R + RS, }_3 R Re[ exp(ikR,5 )W T;U, |

The upper graph plots the results of equation (4a.9); the lower graph plots the

results of equation (4a.11) for the four nonzero tensor components jk. The reduced

wavelength k™ is used as the unit of length. The two graphs’ shared abscissa

illustrates the common zero at Rop = 0.02k ™.

Both graphs use the values R,z =0.1k™ ; 6=90° ; ¢ =y =51.7°.
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4. Excitation delocalized across the pair

4.1 Combination states

In cases where the coupling between A and B described by tensor V(k;Rag)
favours unobserved transfer of excitation prior to the emission-and-detection
process, then in the system’s initial state I the emitter pair may already be sharing

the excitation fack.

An initial state I in which excitation is delocalised between A and B is some
superposition combining the state in which m is localised on A (described in the
previous section) and the counterpart state in which m is localised on B. The Dirac
ket for such an initial state I is found by adding or subtracting the kets of the two

component states, and normalising. Addition produces the symmetric exciton,

labelled

1) ; subtraction produces the antisymmetric exciton, labelled|1 ).

1} =2"|D,)(| A, By) = | A, B,) ) (4a.13)

‘D0>|Am’B0>

‘Dﬂ>|A0’Bm>

Figure 4a.4: Construction of symmetric (+) and antisymmetric (-) exciton states
(blue) as combinations of the localised-excitation states (red). The red vertical
arrow is the initial state used in M”; the horizontal red arrow is the counterpart

state with excited B.

88



4a: Excitation delocalised between a pair of emitters

Note that these excitons are combination states produced by a superposition of
two localised-excitation base states, and are thus an example of entangled states.
If the two-emitter subsystem is disturbed by a direct measurement of the energy
state of A (either A or An), then B will necessarily be in the opposite energy state
(Bnm or Bo, respectively). See ref.? and appendix 8d of this thesis for further

discussion of the superposition principle at work here.

The emission-and-detection process may proceed from either of the starting points

|i> , with the emitter pair initially in an exciton state. The quantum amplitude of

such a process, M. or M., may be derived from equation (4a.13):

M, =27*(D, (A, Bo| {...} [D)(|ABy) £ |A,B,))

=27 (D, [(ABo| {...} [Do)] Ay Bo) £ (D, [(ABy| {--} [Dy)|ABy) )
_ 2_1/2(MA + MB) (43-14)

Here, the missing details {...} are the rest of the fourth-order term of the
perturbative expansion given by equation (2a.13), as only the (F| braand |1) ket
have been shown explicitly. Amplitude Ma is the result from equation (4a.5) and

Mg is the amplitude for the counterpart process that begins with excitation

localised on B. The latter has exactly the same form as the results of the previous
section, only differing in the particular values of a®* andp®® compared to A’s

molecular response tensors — and this difference vanishes if the two emitters are

chemically similar.

4.2 Degeneracy splitting

Coupling between the two emitters will lead to degeneracy splitting of the

symmetric and antisymmetric excitons. The two initial states |1) and | 1) differ

in total energy by 2Mag, where Mag is the quantum amplitude for RET between A

and B. See appendix 8d for a quantum-mechanical justification for this prediction.

Mps = :uiAmAOVij (k; RAB)/ujBOBm

=(4re, )_1 R exp(ikRyg) ‘uA‘“A‘)‘ ‘uB‘JBm (4a.15)

><{2[ikRAB ~1]sin® Ocos’ ¢ +[1-ikR,, — k’R2 |(sin” @sin’ ¢+ cos 0)}
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4a: Excitation delocalised between a pair of emitters

Recall that equations (4a.2) and (4a.4) define the wavenumber variable k. The loss
of energy by the emitters is overall equal to the photon energy Ack, and to the

energy gained by the detector, E” —E; .

The difference in energy between symmetric and antisymmetric initial states
implies two distinct values of Ef differing by 2Mag, and two distinct wavelengths
of radiation 27k ™ because k has two values differing by 2M ., /c . It may or

may not be possible to experimentally resolve the two different fluorescence
signals produced by an emitter pair in these two exciton states. If the energy gap
2Mag is too small to enable resolution of the two signals, then the detected
emission rate will be a simple sum of the two indistinguishable emission
processes, which reduces to the sum of uncoupled-emission signals from the two

individual emitters:

2 2 2 2
L oc|M, [ +|M_|" =|M,[" +|My| (4a.16)
But if the detector is capable of distinguishing between emission from the

symmetric and antisymmetric excitons, then the two observed signals will be

proportional to|M. |* and |M_| respectively.

4.3 Intensity distribution of antisymmetric emission

Consider the third line of equation (4a.14), in the minus case.

M_=2"3(M,-M,)

=22 [ M, +exp(iz)My | (a.17)

If detector D is located equidistant from the two emitters, emitters A and B are

chemically similar, and there is a symmetric geometry obeying ¢ e {z/2, 37/2}
or {0, }, it follows that M, = M. Therefore M_ =0, meaning that the

emission-and-detection process from the antisymmetric initial state is forbidden.
In an experiment that systematically varies the position of D, the existence of this

plane of zero detectable signal is diagnostic of the antisymmetric exciton.

90



4a: Excitation delocalised between a pair of emitters

This accords with a semiclassical analysis of real dipolar emission by the
nanoemitter pair.**! The minus sign in equation (4a.17) may be written as +e™
according to Euler’s identity, and this can be interpreted to determine the
structural character of the real radiation emitted by the pair: in the symmetric
exciton state, the two emitters emit waves that are in phase; in the antisymmetric

exciton state, the two emitters emit waves with a phase difference of z. It follows

from the system’s symmetry that if ¢ e {7/2, 37/2}or 8 <{0, x}, then symmetry

dictates total wave cancellation at the plane of equidistance, so no signal will be

received by a detector in this plane.

5. Discussion

The calculations in this chapter show the conditions under which effects of back-
coupling and degeneracy splitting may appear in the emission profile of coupled
nanoemitters. The inclusion of the fluorescence detector as a “third
chromophore”, as part of a closed QED system, is necessary to elucidate these
pure quantum features of cooperative emission behaviour. This demonstrates the

utility of such a rigorous applied-MQED analysis.

If ge{z/2,3z/2}or 6 {0, x}, the emitter pair is symmetric about the x = 0

plane (see figure 4a.1). Intuitively, a mirror surface on this plane could produce
equivalent emission behaviour with just one emitter interacting with its own
reflected image. But the excitation-sharing physics of sections 3 and 4 cannot
occur if the state of chromophore B is limited to the reflected image of the state of
A, and so the emission profile will not exhibit the quantum features predicted by
this chapter. In constructing an MQED model of this mirror-modified emission
process, the reflected image of the actual chromophore “A” cannot simply be
included as a “chromophore B because the minimum-interaction description of

this process has A coupled to the actual atoms of the mirror.

Each of the four initial excitation states of the emitter pair produces radiation with
distinctive characteristics. With excitation localised on a single nanoemitter,
electromagnetic coupling with the second unit and the detector results in a
fluorescence signal with a particular dependence on the positions, orientations,

and static polarizabilities of the three components. With excitation delocalised
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across the pair, the result is a signal with wavelength, intensity distribution and
phase profile that are all characteristic of an exciton doublet, distinct from single-

centre emission.*

These results may inform the design of measurements to discriminate between the
unique excitation states of a pair of nanoantennas, enabling more precise control

in the construction and operation of nano-component systems.
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Chapter 4. Emission by multi-chromophore complexes

4b: Anisotropy of fluorescence in solution

1. Introduction

For molecules with more than one chromophore, interactions such as fluorescence
or RET are complicated by internal dynamics — the exchange or sharing of energy
between the constituent chromophores.™ In addition to the exciton scenario of the
previous chapter, a more direct effect of quantum mechanics allows the position
of excitation to be physically undetermined without explicit delocalisation: the
chromophores may share in the probability distribution of not just the excitation

location, but of the location of the whole two-interaction fluorescence process.

This chapter concerns single-photon fluorescence, a process whose elementary
microscopic description is a one-photon absorption event quickly followed by the
emission of one photon from the same chromophore. The analysis is tailored for
application to a molecule containing N chemically-identical chromophores in the
solution phase, yielding predictions of fluorescence rate and anisotropy.
Fluorescence anisotropy values outside the range -0.2 — 0.4 are predicted under
certain conditions, which is novel for single-photon fluorescence in an isotropic

solution.

2. MQED of fluorescence

The absorption and the re-emission of light are discrete photon-molecule
interactions that together comprise the fluorescence mechanism. The MQED
description is identical to Rayleigh scattering if no overall molecular transition is
described. The effective quantum amplitude of such a two-interaction process is
delivered by the second term of equation (2a.13).

F|Hye |R)(R|Hiy |
MF.=Z< | '"‘él Z<ER| [ (4b.1)

R
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The double Dirac bracket is evaluated, using an E1 (electric dipole)
approximation, as the scalar product of a linear electric displacement with the

relevant molecular response:
(F|Hin | RY(R|Hip | 1) = &7 (" - ") (d* - ) (4b.2)

The molecular response p' is the chromophore’s transition dipole moment for the
transition between those states indicated by symbols in superscript; each electric
displacement d is associated with a transition involving a change of the

occupation number of a specific radiation mode."

A prime mark (“) indicates the
mode of the output photon(s), k’ ; unprimed symbols denote properties of the
input mode k. So the superscript 01 signifies a transition in which the radiation
state reduces from one input photon to none; the superscript 1°0 signifies an
increase from zero to one output photon. Evaluating the Dirac brackets according

to equations (2a.4-9) yields:

fr  rO

he M
Mg, = Jkk' ge. B 4b.3
f2gV ' 'Z E,, +hck +ihcy, (4:3)

Here, the symbol Ey, refers to the energy of the molecule in initial state 0 minus
its energy when in state r. The volume of quantization V, which represents the
average volume containing exactly one photon, can be explained as the irradiance

of a beam being proportional to ick/V . In equation (4b.2), an imaginary part #cy,

has been added to the energy denominator: this is the damping discussed in

chapter 2a section 6.

The summation over r in equation (4b.3) yields just one term, as the fluorescence

process entails excitation of the molecule to occupy one definite electronic state r

during the process’ intermediate era R. Thus the basic quantum amplitude consists
of a single term that may be decomposed into scalar and tensor parts:

1 k1/2 krl/Zv—l .
M. = ele u"u® 4h.4
i 2(9([k+E0r/hC+i7/r eEaie (40.4)

Note that the molecular parts of equation (4b.4) are equivalent to a damped
transition polarisability (E1° response) tensor given by equation (3a.6), with only
one state r and the “anti-resonant” term omitted as it is insignificant near

resonance.>*
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fr r0

fr r0
a“fo(—k',k):hiZI: lui luj + luj :ui ]
C

~| K+E,, /ic+iy, —k'+E, /Actiy,
(4b.5)

Ni 1 fr r0
nc| K+ E, fhe+iy, |4

A field-centric “radiation reaction” formulation produces an equivalent

polarisability derivation.”

3. Quantum interference

For a multichromophore molecule, it should be understood that absorption of the
input photon is associated with distinct quantum amplitudes Mg, for each of its N
chemically-identical chromophores. The subsequent emission event may
originate from any of those chromophores, and emissions from each of them are
indistinguishable — the identity of the individual chromophore engaged in a

particular fluorescence process is unobservable.

The underlying reason is that, since no measurement is made on the system’s
intermediate state R, the molecular wavefunction Wr does not collapse in a way
that could localise the excitation on any one chromophore unit. This superposition

is consistent with the wavefunction:
N

Yo =N g, (4b.6)
A

Here, ¢, is the wavefunction for the molecule with all chromophores unexcited

except for A, which is the one excited to its higher stationary state r.

As always, the quantum amplitude for the overall process, as observed, consists of
a sum of amplitudes for all mechanisms consistent with the observation. Here, the
identity of the active chromophore is part of this unspecified mechanistic
information. Phase issues connected to this summation are discussed in section 6

of this chapter.

The observable rate of fluorescence is now given by application of the Fermi rule:
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2

C=2zh"p,

N
2. Mq
A

”[ pikkV™ ] (4b.7)

" 2nel | (k+E,, /hC) 472

N(N-1)/2

N
Xei'ejelie| (Zﬂi“rﬂf\m/!;\frlhmo +2 z /uiAfr,UjArO/Jf frlulBrOj
A A=B
The first N terms of this rate equation represent the combined fluorescence from
the N individual chromophores — this fluorescence rate is what may be predicted if
the Fermi rule is applied separately to each chromophore’s fluorescence. The
additional N (N -1)/2 terms are the quantum interference that arise from the

position of the fluorescence process being unspecified.

Although the quantum interference terms describe a certain sharing of
fluorescence activity between chromophores, this formulation does not entail
excitation delocalisation via any exciton or FRET effect — the analysis here is thus
distinct from theories based on inter-chromophore coupling.'®’ Microscopically,
the fluorescence mechanism is itself single-centre. Quantum interference in the
observable rate of fluorescence is a quantum measurement phenomenon, not

evidence for real mixing-of-states between chromophores.

4. Rotational average

To describe the fluorescence of a molecule in solution, an isotropic average must
be applied to the molecular response tensors. The field vectors are unaffected, as
the input light is presumed to be from a source fixed in the laboratory reference
frame, and the observed output photons must have polarisation aligned to the
receiving spectrometer. With chevron brackets indicating a continuous integration
over the three Euler angles of molecular orientation,"”’ the rate result averages as

follows according to the method outlined in chapter 2b:

T Y2 |(k’V_2
<F> = 2 : 7 5
2hey | (k+Ey, /hC) +7;
N(N-1)/2

N
noAf Afr Ar0o  Afr Ar0 Afr Ar0 Bfr Bro |y(4)
xeiejekel(z Ly, 2 E Wy, jliik“lﬂvé
A

(4h.8)

A+#B
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This averaged-rate result may apply to the fluorescence of a solute molecule
rotating stochastically with no well-defined orientation, or alternatively an
ensemble average of the fluorescence from many randomly-oriented molecules,
which individually do not exhibit any appreciable rotation.® The chromophores
within the molecule are also not necessarily fixed in orientation relative to each

other.

The 1) double-tensor is reported in appendix 8b. Applying the Kronecker deltas,
the tensor parts of each of the N(N+1)/2 rate terms thus acquire the following

general form:

Afr  Ar0, Bfr Br0j(4)
ekel Hy H, H, H: Iukl ApvE

:(,u 3'L; ) { [3(e,_e)2_1:|(ﬁAfr_ﬁAro)(ﬁ
+[4—2(e’.e)2] (‘Aff.ABfr)( ro ABrO)

+[3(e’-e)2 _1:|(l"lAfr _ﬁBrO)(lfiAro .ﬁBfr) }

i

B fr ABrO)

(4b.9)

The magnitudes of each chromophore’s absorption and emission dipoles will all
be equal provided they are chemically similar, permitting the factorisation above.

Each of the bracketed dot-products corresponds to a physical angle in the system:

e {=cos(e'-e) is the angle between the polarisation vectors of the input

absorbed light and the emitted light. Parallel fluorescence is the £ = O° case;

perpendicular fluorescence is the £ = 90° case.
e 0,=cos™(""-i*") is the angle between the absorption and emission

dipoles for chromophore A. Each chromophore’s 8 angle represents some
undetermined combination of molecular rotation (during the state r lifetime),
and a natural difference in the orientation of the two dipoles relative to the
molecule. If the intrinsic physical properties of chromophore species A dispose

it to have emission and absorption dipoles that are parallel, then the
reorientation @, must be entirely due to molecular rotation — with sufficient
stochastic rotation, this averages tod, =90°. The opposite limit is where

molecular rotation is negligible (due to the lifetime of state r being vanishingly

short, or the molecule being trapped in a cold and viscous solvent), such that

the value of 8, is wholly set by intrinsic chromophore properties.
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o Y= cos’l(;i”‘) -ﬁBro) is the angle between the absorption dipoles for

chromophores A and B. This is the difference in orientation between A and B

at the time of absorption. Likewise, 5 = cos*l(ﬁAfr -;13”) is the angle at the

time of emission. The y angles describe the shape of the multi-chromophore

molecule at the two transition times. Note that V/Z\ES = l//i,&" =0°.

~Bfr

o Lastly, z,,=cos (""" )is the angle between the dipole of A’s

absorption and the dipole of B’s emission. Each y angle represents some
undetermined combination of the relevant y and 6 angles, determined by the

precise configuration and dynamics of the multi-chromophore system. Note

that ¥g., is distinct from g, and that . = 0, .

All of the above angles are required to have definite values between 0° and 180°.

With this angular nomenclature, our N(N+1)/2 rate terms each become

/ i (4) Afr Ar0 Bfr Br0O
eiejeke,<l >yﬂ My,

fr ro)2
- M{ [3cos’ ¢ ~1]cos6), cos b,

30 (4b.10)

+[4-2cos’ ¢ | cosy/ e’ cosy g

+[3cos2 ¢ —1] COS ¥ a5 COS Xg:a }

Resubstituting these results into the rate equation (4b.8) yields the rotationally-
averaged rate;

T pfkkfv—Z fr 102
F =

x{ 2N — N cos’ £ +(3cos’ g“—l)ZN:cos2 0,
A

N(N-1)/2

+ > [ (3cos® ¢ ~1)cos 6, cos (4b.11)

A=B
+(4-2c0s” ¢ )cosy pe’ cosy sy
+(3c08” ¢ ~1) 08 7,5 COS 744 ] }
Recall that the first line is equivalent to a transition polarisability, a. This formula

allows us to predict the observable rate of fluorescence for any particular multi-

chromophore system in solution, in terms of its internal angles and dynamics.
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4b: Anisotropy of fluorescence in solution

5. Fluorescence anisotropy

The anisotropy of fluorescence is a readily-measured observable, offering a
reliable means of examining the detailed fluorescence behaviour of molecules in
solution. It is quantified as a function of the relative rates of emission with
polarization that is parallel or perpendicular to the input mode, which must be

measured separately:®%!

rotcolow (4b.12)
Lo +20 g

The theoretical maximum anisotropy of r =1.0 indicates zero perpendicular

fluorescence; the minimum of r = — 0.5 indicates zero parallel fluorescence;

isotropy, indicated by r = 0, results from fluorescence that is independent of (.

Anisotropy is also commonly formulated as the equivalent quantity called

polarization ratio, P, straightforwardly related to r as:"

3r

P— (4b.13)
2+r
Substitution of the solution-phase predictions of equation (4b.11) as the
arguments of equation (4b.12) yields a testable formula for r:
N N(N-1)/2
~N+33"cos’0,+ . [3c086,C080, —2C08y pp° COSY 45 +3C0S 1,5 COS 5.5 |
r= A Az N(N-1)/2 (4b.14)

5N +10 > cosy s COSY o

A=B

For any molecule of interest whose internal structure is known, equation (4b.14)
may be directly applied. There are too many uncorrelated variables for a generic
analysis, so what follows in this section is an overview of the results for certain

limiting cases.

Firstly, the case of l//ﬁé’s = l//EBm =(0°for each pair A#B. This represents a condition
where all of the absorption dipoles are parallel, and all of the emission dipoles are

also parallel. This constrains the values for all 6, and y,5 angles to one angle for

the absorption-emission orientation difference, labelled 6. The anisotropy result is

independent of N:
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4b: Anisotropy of fluorescence in solution

_ 3cos?H-1

o - (4b.15)

This is well known to be true for N = 1, and for a parallel ensemble of arbitrary N.
See equation 10.20 of ref.'®!, The maximum and minimum anisotropy values are
0.4 (at # = 0° or 180°) and —0.2 (at & = 90°), consistent with single-photon
fluorescence in an isotropic solution. A prediction of MQED theory via Fermi rate

equations has re-derived a result that is familiar to fluorescence spectroscopy.

Next, consider the case of 6,= 0° for all chromophores, which specifies that each

individual chromophore’s absorption dipole and emission dipole are parallel in

space (the molecule is rigid and fixed in orientation). This implies the equalities

Ve =Wis = Zas = Xa:a TOr each pair A#B, so all those angles are subsumed into

a single variable labelled y ;.

N(N-1)/2

BN?+N+2 ) cos’y,,
looo = N(Nflj;gZ (4b.16)
1I0N+20 > ¢S’y g

A=B

This yields a maximum anisotropy value of 1.0, for a N=3 molecule whose
chromophores are mutually orthogonal, and for any configuration of
chromophores whose dipoles all point toward or away from a common centre and
are positioned at the vertices of a Platonic solid. Here, it is the minimum of

anisotropy that takes the value of 0.4, when all angles y,, = 0° or 180°.

Equation (4b.16) is further analysed in figure 4b.1.
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11
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Figure 4b.1: Plot of equation (4b.16) with the assumption that all angles v ,, are

equal, subsumed into a single abscissa y. The N=3 curve represents a trigonal
pyramidal molecule, approaching a trigonal-planar geometry at w =120°. With

N=4, it is not possible to have all six angles y ,; be equal unless y =0° or

w =109.47° (a tetrahedral molecule).

It is known that a tetraphenylporphyrin molecule with square planar symmetry
(and corresponding fourfold degeneracy in its excited state) may exhibit
r>0.7."Y The conjugated bonds of this system hold the component groups
together inflexibly — therefore, if molecular rotation is controlled, equation
(4b.16) will be applicable as the correct anisotropy equation. If the four phenyl
branches are treated as separate dipolar chromophores, then according to equation
(4b.16):

N=4

Was =Vec =Weo = Wap =90°
Wac =Wep =180°

Sl =07

(4b.17)
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4b: Anisotropy of fluorescence in solution

The experiment in ref.™ observed anisotropy values in exactly this region with
ultrafast measurements, such that the intermediate state lifetime was vanishingly
short and thus 6 =0°.

6. Discussion

The issue of quantum uncertainty in the intermediate state between absorption and
emission deserves further comment. The results of this chapter rest on a certain
coherence being retained by the system, described as a superposition of states by
equation (4b.6). It is important to recognise that the selection of a specific

superposition state, in which the phases of each ¢, are equal, is the origin of

equation (4b.7) having identical (unweighted, unphased) contributions from each
fluorescent chromophore. This condition is physically consistent with each
chromophore experiencing input radiation with nearly the same optical phase,
because the dimensions of the molecule will usually be much smaller than the
optical wavelength. Alternative molecule states, with different relative phase
factors, would constitute another acceptable basis set — summation over which

would lead to statistically-weighted results.

This formulation of fluorescence theory, incorporating quantum interference
between chromophores, should more fully capture the advanced geometric effects
governing the fluorescence behaviour of multi-component molecules. Insofar that
the fluorescence behaviour of a multi-chromophore system is related to its
capacity for electronic energy exchange or RET, the analysis developed here may
also be adapted to contribute to optimisation of RET efficiency in light-harvesting

compounds.™?

There is relatively little existing theoretical work describing the basis for a range
of r values beyond the limits of equation (4b.15), with the most-cited theories
often appealing to the possibility of complex effects of coherence in systems of
multiple energy levels.™® The anisotropy derivations of this chapter can explain
and predict such observations based only on the assumptions of the MQED

framework.
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Chapter 5: Effects of non-resonant light on one- and two-

photon absorption

1. Introduction

The multi-order theory of molecule-light interactions can include the interactions
of photons that are not resonant with a molecular transition.!*! Off-resonant laser
light is known to physically interfere with elementary absorption and two-photon
absorption processes, passively interacting with the molecule and thus observably
modifying the absorption intensity.”” In principle, the fields attributable to
vacuum modes could perform the same passive interactions, but analysis suggests
that the resulting modifications would be negligible. The optically-modified
process is a higher-order mechanism, which may allow molecular transitions that
are formally forbidden for unmodified absorption.'®! The theoretical treatment of
such a high-order multiphoton transition is familiar from descriptions of

multiphoton fluorescence and the optical Kerr effect. ™!

This chapter deals with one- and two-photon absorption rates and predicts how
they may be modified by the passive influence of an auxiliary non-resonant light
source.”! The calculations here are tailored to the scenario of a single molecule in
solution, as this describes systems of practical interest and simple experiment
design.® The rate of absorption may be derived from the measured fluorescence

of a sample through which a resonant beam and a non-resonant beam cross.

The physical character of photons is affected by the refractive properties of the
liquid medium through which they propagate, so the MQED of interactions must
accommodate the modification of electric displacement by the medium’s
refractive index. Additionally, the orientation of a solution-phase molecule is
randomised by thermal agitation between each absorption event, so the observed
rate of absorption will be an average of the theoretical static-molecule rate results
at all possible orientations. In sections 4 and 5, the rotationally-averaged rates of
optically-modified one- and two-photon absorption are calculated using advanced
methods for high-rank tensor isotropic averages. The outcome is a rigorous
analysis of the correspondence between details of the molecule’s electronic

response and the polarisation states of the two beams.
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2. MQED model of absorption

This chapter focuses on the excitation of a molecule in solution by a process of
either single-photon absorption or two-photon absorption. The absorbed photons
implicate the presence of an input light source (ideally a paraxial laser beam)
whose wavelength is resonant with the molecule’s stationary state gaps.
Simultaneously, an auxiliary off-resonant beam is introduced — this cannot excite
the molecule, but may passively interact in a way that modifies the absorption
processes. Specifying the auxiliary beam radiation as “off-resonant” means that
neither a single photon nor two photons have sufficient energy to excite the

molecule to its higher state, and therefore the molecule is transparent to this light.

The throughput of off-resonant light becomes a part of the absorption process. As
shown in figures 5.2 and 5.4, the following interaction events occur: one or two
resonant absorptions, annihilation of one off-resonant photon, and the creation of
one off-resonant photon. The absorption of the excitation beam and the (elastic
Rayleigh) forward-scattering of the auxiliary beam are effectively instantaneous
and cannot be meaningfully separated. Lower-case state labels r, s, t denote the
state of the molecule within the respective intermediate system states R, Sand T.
The molecule is in ground state 0 within the initial system state (1), and in
excited state a within the final state ( F ). In this nomenclature, it is the second-in-
time interaction event which transitions the whole system from R to S.

Even though these processes involve multiple photonic interactions, the overall
molecular response tensors are constructed from combinations of transition dipole
moments: a two-event transition is modelled as two dipolar interactions (E1%) that
comprise a transition polarizability tensor, a; a three-event transition is modelled
as three dipoles (E1°%) that comprise a hyperpolarisability tensor, §; four events are
E1’, comprising a “second” hyperpolarisability, y.!*’ Each of these response

tensors has its own symmetry features and selection rules.?
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Figures 5.1-4: Feynman diagrams for: (5.1) elementary one-photon absorption;
(5.2) one-photon absorption engaging with forward scattering of a passive beam,
showing one of six time orderings; (5.3) two-photon absorption; (5.4) two-photon
absorption engaging with forward scattering of a passive beam, showing one of 24
time orderings. In all these cases, the molecule is excited a«—0. The excitation
beam is shown as blue and the auxiliary beam shown as green (the implication
that the auxiliary wavelength is longer than the excitation wavelength is consistent

with the photon energy inequalities in section 2).
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The auxiliary light is distinguished from the absorbed photons by a prime mark on

all variables associated with it. The absorbed photons have energy 7ick = EM for
one-photon absorption, and 27ck = EN for two-photon absorption; the
requirement of the auxiliary beam to be off-resonant is written as 7ck’ < ENM' for

one-photon absorption, and 27ck’ < EM for two-photon absorption.

For a molecule in solution, the surrounding matter can be expected to modify the
electric field properties of radiation, which affects the character of all interactions.
In a solid matrix, it would be correct to invoke a polariton formulation, but for an
essentially-transparent liquid medium, all media effects may be approximated as
an electronic “field dressing”."" For each radiation mode, the dressing is
quantified as the medium’s refractive index n, whose definition involves the

angular frequency o, wavevector magnitude k, and group velocity vy: -

&)

on, =ck ; v =22-C (5.1)
(@) =0 9T A -
kN,
This formulation of dressed fields in the condensed-phase renders the quantum
description of radiation as intermediate between photon and polariton.”**? The
result is a modified form for the electric displacement experienced by the

molecule, such that equation (2a.4) is changed to:

hev o) (N2 +2
1 _ 0Yg (o) = f
| _'[ 2cV j {3n(1;2) [0 ~ s B (5.2)

This once again implies a mode expansion over transverse plane waves — each

mode is defined by a polarization state » and wavevector k; the vector €k) is the

electric field unit-vector of such a wave (overbar indicates complex conjugation).
This calculation describes a single-centre process, with all events occurring at the
one molecule’s position, so there are no phase factors dependent on relative

displacement.

Additional background information for this absorption model is detailed in ref.l,
but without accommodating local solvent effects. Section 3 of this chapter applies
the MQED analysis to the auxiliary-beam-modified absorption behaviour of a

single molecule that is fixed in some static orientation.

109



5: Effects of non-resonant light on one- and two-photon absorption
3. Rate equations
3.1 Dirac brackets

The rate of a multi-interaction-event process is given by equation (2a.5) in terms
of Dirac brackets for each interaction. Using equation (5.2) instead of equation
(2a.4), each interaction event is either a photon annihilation:

nY 0 +2
<S|Him|R>:—i[250Vj waz( k ](Hsr'e(n'k))<RadS|a(77,k)|RadR> (5.3)

n.k 3nk

Or it is a photon creation:

Y N2 +2
(s|H,[R) :+i[2govJ > ol [k_J(u €, ) (Rad, |a),,, | Rad) (5.4)

7.k

The operators &, ,

) and a(ka) each apply to either photon creation or annihilation,

with quantum algebra as in equations (2a.5-9). In the following subsections, the
symbol q is again used to represent the number of photons within the system

volume V that have polarization state » and wavevector k. In the initial radiation
state |Rad,> , the excitation beam and auxiliary beam are both present in their
initial states: there are g photons in volume V that have polarization state # and
wavevector k corresponding to angular frequency w, associated with electric
fields e and refractive index n; there are also ¢’ photons in volume V that have
polarization state ” and wavevector k’ corresponding to angular frequency ’,

associated with electric fields e'and refractive index n’.

3.2 One-photon absorption

Elementary single-photon absorption, illustrated by figure 5.1, is a single photon-
annihilation event whose quantum amplitude is given by a single Dirac bracket.

Using the dressed-field E1 approximation of section 2, this evaluates as:

e[ (£

Absorption combined with forward-scattering of auxiliary light, illustrated by

figure 5.2, is a three-interaction process whose quantum amplitude is given by the
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third-order term of equation (2a.13). No other terms need to be considered — the

three-event process represents the leading modification to simple absorption.

Z<F|Him|S><S|Him|R><R|Hmt|'>
RS (EI—ES)(EI—ER)
n " n?+2)(n2+2Y
_ _inl2nr 1/2 1
—eelziy] oo o0
as  sr r0
Xeie;éliz Ha Hy K

£ (E(;\/slol + EIRS’ad )(Exol + E|F:zad )

The assumption of high irradiance in the auxiliary beam justifies the

approximation qN =@ +YN , which leads to the appearance of g’ as the
auxiliary intensity factor. The sum-over-states for all R and S includes a sum over
six time-orderings of the three events and over all possible molecular states r and
s. In each time-ordering, the dipole component indices {a,b,c} are a unique
permutation of {i,j,k}, such that contraction with the electric field vector
components results in a set of scalar products. The complete result of the sum-
over-states is a tensor that encapsulates the molecule’s E1° response to
microscopic electric fields, so the molecular part of equation (5.6) (the dipole

moments and energy differences) is a form of transition hyperpolarisability tensor,
labelled 5;° .*!

Following the Fermi rule, the overall quantum amplitude of single-photon
absorption is the sum of the above two amplitudes (combining the modified and
unmodified mechanisms), and the observable rate is calculated according to

equation (2a.12):

2
7pe| U [n*+2) (0o
r, =——| — e.e. A :
1¢ h |:C€0:|( 3n ] |]{lu| /uJ
2
II n,2+2 =t At ,,a0 pal
+| — e u B 5.7
{Cgo}( 3n ] & H ﬂ,m (5.7)

2 4
1 I’ n’2+2 1=t A' pa0 pal
+Z 3n’ € €1CnEn P ﬂjmn
Ce, n

The “photon density” ¢ /V is not directly measurable, but beam irradiance is, so

this rate equation has been expressed in terms of excitation beam irradiance
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| =hcqe/V and auxiliary beam irradiance I’ =7icq'w'/V . The second term of

equation (5.7), which is linear in I’, is quantum interference between the two

absorption mechanisms.

3.3 Two-photon absorption

The process of two-photon absorption entails either exactly two annihilation
events, illustrated by figure 5.3, or two annihilations combined with forward-
scattering of auxiliary light, illustrated by figure 5.4. The quantum amplitude is
given as the sum of a second-order term of equation (2.13) for the former and a

fourth-order term for the latter.

In the second-order mechanism, the two absorbed photons are in principle
indistinguishable which means there is only one unique time-ordering of the two
events. This may be thought of as two combined single-photon absorptions from
different excitation beams, at the limit of the two beams becoming equal in
wavelength and parallel in polarisation. If each fictitious beam is at half the
intensity of the actual excitation beam (ergo, photon density = g/2V), then the

guantum amplitude becomes:

3 {F i [R)(R| Hi 1)

= (EI—ER)
2 ar r ar r
_(n)a[gq1 “Zw n?+2 ce Y 1
4ey )V | q 3n ) 4 B +vho

The E1% molecular response tensor may be constructed from the normalised and

(5.8)

index-symmetrised sum of the two time-order-dependent double-absorption
molecular responses — i.e. the mean of the two absorption dipole pairs. This
demonstrates that the E1 approximation accommodates transitions that entail a

shift in permanent dipole and those that do not.™**!

o _ Lo M+
aijoszz L] (5.9)

~  EM+hoe

The auxiliary-modified mechanism involves four interaction events, and is

evaluated via the same method:
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(F[Hi[T)(T[Hin [S){S[Hine [R)(R[Hin [1)
RST ( ET)(EI —Es)(E| ER)

2 , 1/2 2 2 2 2
h ) qq|g-1 [N +2) (n“+2 e
“l25,) Vi g | ““Tan 3 ) T (510
0
at ts, . sr 10

lud luc lub lua
RoT (El —ET)(EI — Es)(El — ER)

X

Once again, the approximation qN =@ +YN is employed. The sum-over-states
includes a sum over 24 time-orderings, and in each time-ordering the indices
{a,b,c,d} are a different permutation of {i,j,k,1}. The complete result of the sum-

over-states is an E1* molecular response tensor, so the molecular part of equation

(5.10) is a second-hyperpolarisability tensor, labelled ;(,Jk, Ref.”®! discusses the

selection rule implications of this. The indistinguishability of the two absorbed
photons implies that only half of the 24 time-orderings are truly distinct — this
degeneracy has been hidden within the structure of the y tensor, and will reappear

as a certain index-symmetry.

The Fermi rule rate of two-photon absorption, combining the modified and

unmodified mechanisms, is likewise calculated according to equation (2a.12):
AR R
quj:ﬁ{g} ( 3n j eiejeke'{“ij %
' ”?
J{c(lgo Mns:z] €nen 2" Ziimn (5.11)
+1[|_'T(n'2+2j e 4 7 }
4| cg, 3n’ iimn A klop

Again, photon density has been expressed as irradiances | and I'. In the case of the

excitation beam, using a single value for I implies that the photon-density is not
significantly diminished by the first absorption event. Explicitly, the

approximation (q—1)/V = q/V has been employed, which assumes constant high

beam intensity. The appearance of the factor [(q-1) /q]l'2 in equations (5.8) and

(5.10) has been deliberately ignored — this contains information on the beam’s

second-order coherence,™ and may be replaced by a rate factor g®.
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Within any finite system volume at any one time (absent any special boundary
conditions), the number of vacuum fluctuation photons with any specific
polarization state and wavevector will be very small.*! So if the auxiliary light is
not a coherent beam but merely a vacuum mode whose photons ¢ are transient

quantum fluctuations, then g’/ ~0. This will give rise to no observable

modification to absorption — an auxiliary beam of definite irradiance 1" is needed.

4. Tensor contractions
4.1 Scalar rate factors

In each of the quantum amplitudes expressed by equations (5.5), (5.6), (5.8) and
(5.10), the tensor parts consist of N field vectors e contracted with the Nth-order
molecular response tensor. Each thus forms a scalar inner-product. The indices i, |,
k, etc. represent Cartesian components of the tensors in a laboratory-fixed frame,

as the molecule and beams are in fixed orientations in space.

The six rate terms are therefore each expressible as a tensor contraction between a
set of field vectors and a composite molecular response tensor for the 0«—a
transition. Equations (5.7) and (5.11) are re-written in concise form to isolate

these orientation-dependent tensor contraction parts:

2 2
r _7Pe 1 jfn"+2
Yo e,

- [ e deltse]
ce, 4| ceg, 3n’
7Z'p,: e n2+2)
e 5.13
R I
& 4| ceg, 3n’

The label C27is used for the tensor contraction that appears in the Bth term of the

A-photon absorption rate equation. The values of N in each of these contractions is
the sum of the Ns for the two quantum amplitudes that interfere to produce this

rate term.

114



5: Effects of non-resonant light on one- and two-photon absorption

In this formulation, selection rules (i.e. a molecule intrinsically forbidding certain
kinds of excitation interaction) are represented by certain molecular response

tensors having zero magnitude: If one unmodified single-photon absorption is

forbidden, this means p“° =0, and thus C}? and C}’ disappear; if one unmodified
two-photon absorption is forbidden, this means o“° =0, and thus C? and C3’

disappear.

4.2 Rotational average

If the molecule is strongly aligned to the beam, such that molecular orientation is
static in the reference frame of the fields, then equations (5.7) and (5.11) are the
complete results for absorption rate. Such alignment may be forced by a molecule
that preferentially orients its response dipoles to the auxiliary beam polarization
vector — then if this direction is defined as the z axis, the indices k, I, m, n'in
equation (5.7) become limited to z; and the indices m, n, o, p in equation (5.11)

become limited to z.

But for the case of a molecule rotating freely in solution, the rotational-average of
these results must be calculated. This average, denoted by chevron brackets, is a
continuous integration over the three Euler angles which relate the molecule’s
orientation to the laboratory-fixed frame. See chapter 2b for a full explanation of

this calculation and the standard evaluation method based on 1™,

The two beams are assumed to be fixed in space, their sources at rest in the
laboratory frame. This means the field vectors have well-defined components
fixed in this frame, so their indices i, j, k... belong to the set {x,y,z}. The right-
hand factors in equations (5.7) and (5.11) are components of the molecular
response tensors in that same frame. It is necessary to express the response tensor
components in terms of a molecule-fixed frame, with indices 4, y, {... that instead
belong to the set of unit vectors that are the natural orthogonal triad for the

molecule’s structure.

In the fluid phase, the six contractions that appear in equations (5.12) and (5.13)

average to:

<C11¢> =€,8, | @ My 1 (5.14)
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<C12“’>:ei1§2§{3e{4 19 11,8, 5 (5.15)
(CY) =48,8/88:els 1” B1ziBoss (5.16)
(CH*) =€,6,88 1 00,21, (5.17)
(C3) =ene, B8 8eels 1 @iy Zinass (5.18)

=

26\ _ = = ./ = Al 8) =
<C3 >_eileizei3ei4ei5ei6ei7ei8 I X 1256 X 13478 (519)

These are then evaluated according to 1™ = %), m{"g{"), \, as outlined in
chapter 2b.™*"!

If the beams are plane waves, the field vectors have no imaginary part, so
(e-e)=(e-e)=1and (e'-e')=(e’-&)=1. Therefore, every Kronecker delta in the
tensor f %), contracting with field vectors will yield either 1 or (e-e’). Similar
degeneracy effects in the contraction with g{"),,, ,, cause the molecular response

tensor components to be reduced to a set of the natural invariant scalars.

4.3 Unmodified absorption

The B=1 terms give the rate of absorption via a mechanism with no auxiliary
beam involvement, as illustrated by figures 5.1 and 5.3. They are independent of
e’, So may be evaluated straightforwardly without any reference to the

polarisation vector angles that dominate the calculations of the following section.

(€)= (wR) (5.20)

<Cf¢>:%(aﬂﬂ&g +2%4@4) (5.21)

Every field vector is the same e, so every Kronecker delta in the tensor f\,,

yields a contraction equal to 1. Therefore, the results are a sum of every natural

invariant (C}? has only one, C¥ has two) multiplied by a coefficient derived from

m", and the sum of all coefficients comes to (N +1) .

rs !
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5: Effects of non-resonant light on one- and two-photon absorption

5 Dependence on beam polarisation geometry

5.1 Inter-polarisation angle

The scalar (e-e") is under direct experimental control, as the angle cos™(e-¢’) is

simply the difference in polarisation orientation for the absorbed and auxiliary
beams at the molecule’s position. The implication is that apart from irradiances |
and I’ and coherence, this angle is the only property of the pair of beams to
determine the absorption rate in rotationally-averaged cases. The direction of the

Poynting vectors S & S or wavevectors k & K’ are not relevant.

An experiment designed to interrogate molecular behaviour, extracting maximum
information concerning the magnitudes of molecular response tensor natural
invariants, should measure absorption rates with different values for cos™(e-¢").
The following subsections predict the results for the two extreme cases: choosing
cos'(e-e") =0°represents a case of parallel polarisations, denoted e|e’, which
results in (e-e’)=1; choosing cos(e-e’) =90° represents a case of perpendicular
polarisations, denoted e L e’, which results in (e-e)=0. The results (5.20-29)

may be directly substituted into equations (5.12) and (5.13), giving the one- or
two-photon absorption rate for the fluid phase, for a given polarisation geometry.

5.2 Parallel polarisations, e|e’

With parallel polarisations, every Kronecker delta in the tensor %),  vieldsa

contraction equal to 1, just like in the B=1 rate terms. Each rotationally-averaged

C becomes a sum of all natural invariants multiplied by a coefficient > ., m{",

seS’
where the set S’ is defined as all s values that yield the chosen natural invariant

from the contraction of molecular response tensors with g&%),; .

<C12¢ >€||e' = %(ﬂzﬁxg + 2/”154,14 ) (5.22)

e 1 - - — -
(C¥)" ===( 2B,,Bs +2B., By + 2B, Boey + 2Bic, B,

105 - - ’ 3 (5.23)
+2,0: By + 2B, By + 2B, B + Bie By )
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elle’ 1 _ _ _ _ _
<C§¢> = ﬁ(aﬂﬂwx 20 Xy 200 Ky + 200 K e + 80‘/147&@) (5.24)

e 1 — _ _ _
< §¢> = E( Xoage Xypee T leigglyygg + Zluyglygsg + 2/1’/1,1557(%7;

8% 1o Xocze + 2 X e Ko T 30 ie Xz + 8 s Xngoe (5.25)
+ 8}(/1755)?/1474 +167(Ayygﬂ?zggc +16}(zygeﬂ?/mc + lemyﬂ?gse

+ 2/{1}/&9%4’{1}/ + Slﬂyﬂusié’{yg + 4;{1717?{5{5 + 41&}{8?{5&7 + 161&}%(?{678 )

Every element in the m™ matrix contributes once to the coefficients, so in each

averaged C the sum of all coefficients comes to (N +1)_1.

5.3 Perpendicular polarisations, e L ¢’

With perpendicular polarizations, every contraction of the field vectors with

f N Yields 0 if the factor (e-e’) appears, or 1 if it does not. So each rate term
becomes a sum of all natural invariants, each multiplied by a coefficient

r;i123---N

> reem{”, where the set R is defined as all r values for which the £}
seS’

contraction result is 1, and the set S’ is again defined as all s values that yield the

chosen natural invariant.

<C12¢ >ele' = %(Zﬂzﬁﬁg - /ﬁﬁgg ) (5.26)

ele’ 1 7 B 7 B
(c¥) = 2_10( BB Y128y By = 2B By — 2B Py (5.27)

_2ﬂi§§lgy/w a zﬂiﬁ'gﬁy a zﬂi@“wgﬂ{ a ﬂiﬁ('gﬁw )

ele’ 1 _ _ _ _ —
<C§¢> = E(%’zﬂwx QU Xy V00 Xy — Qe X ppe =A% Xy ) (5.28)
g I L A 7 7
< 3 > = @( X Xyee TOXaace X = Xanye Xycee — Xanee Xt

- 4;(11%9;?;{45 + 8/1//1;{4;71755 + 16//{1%“5/?&7{6 - 4%1;/}{/?}{58 (529)
- 4;(/1%5/1_//1{;{ - 8%/1;//5/?&{{5 - 81/1}{5;?/1@5 - Zﬂylyﬂ?g{as

- lﬂygsl{é’ﬂy - 4/}{&715/1/{4’75 + Z}.Myl@:{g + zﬂygslggﬂ.}/ + 4/{1;%4’%;’5;/5 )
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5: Effects of non-resonant light on one- and two-photon absorption
If a certain natural invariant’s coefficient is zero, ZreR’ mfsN) =0, this implies that
seS’

the absorption interaction process does not engage with that particular form of

molecular electronic response.

5.4 Depolarisation ratio

The scale of the effect on absorption of choosing cos™(e-e’) may be quantified by
the ratio of the e||e’ and e Le’ rate results. The value of this ratio indicates the

range of absorption rates that are under experimental control via manipulation of

beam polarisation. This is equivalent in definition and analytic role to the Raman

spectroscopy concept of depolarization ratio.!*®

It must be noted that each of the second-term contractions C,” are derived from

the product of two different quantum amplitudes (either expressions (5.5) and (5.6)

for single-photon absorption, or (5.8) and (5.10) for two-photon absorption), while
the corresponding C;¥ and C.? are each derived from the square of one of them.
This implies that if C/¥ =0 (unmodified absorption is forbidden) or C.’ =0
(modified absorption is forbidden), this is because one of the quantum amplitudes

has zero magnitude, and ergo C.? =0.

If absorption in the fluid phase is only possible with auxiliary beam involvement,
the (C;¥)=0 case, then it follows that T, o< (C5*) . So the depolarisation ratios
are expressible as:

ele Ap ele
r ()

FeilAlz’ = <C§¢ >e||e’ (530)

For single-photon absorption (A=1), the results of expressions (5.23) and (5.27)
apply here. If all eight of the 4 natural invariants are taken to be approximately
equal, then the ratio will evaluate as 1/5. The maximum possible value is 3, in the
case of the natural invariant ﬂuyﬁm being far greater than the other seven. For

two-photon absorption (A=2), expressions (5.25) and (5.29) apply. If all 17 of the

xx natural invariants are equal, then the ratio will evaluate as 3/35. The
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5: Effects of non-resonant light on one- and two-photon absorption

maximum possible value is 6, achieved When y,,.. 7 ... X110 Zpes+ Xovee Zoves

OF X 4o Xy 1S dOMinant.

If fluid-phase absorption is not modified by the auxiliary beam, the case of

<C§¢ > =0, then the beam’s polarisation geometry is irrelevant. The ratio will have

a default value of 1.

6 Discussion

The absorption processes analysed in this chapter may be nonlinear and include
annihilation and re-creation of coherent photons, but they are fundamentally
distinct (and experimentally distinguishable) from even-order transitions of no net
excitation, such as the optical Kerr effect."’*% That said, it is possible that a high-
order multiphoton interaction (such as four- or six-wave mixing) may lose its
character of a coherent parametric process by resonant absorption at an
intermediate state: The absorption would then become identifiable as a discrete
process, physically distinct from the other interaction events, as it would be

separated by a definite time delay and possibly a Stokes frequency shift.

In the fluid phase, with molecules freely rotating, the correct basis set for the
molecular electronic response to absorption transitions is formed by the natural
invariants that appear in equations (5.20-29). Their magnitudes contain all
information regarding the relevant molecular responses. The natural invariant
values are in large part determined by molecular structure, with the self-index-
contraction pattern related to molecular symmetries. The results of sections 4 and
5 offer insights concerning the interplay of field geometry, molecular orientation
and the symmetry of the molecule’s structure. The variation of molecular response
with beam polarisation and molecular orientation allows for straightforward

measurement of interactions that are sensitive to such geometric considerations.”!

In cases where the conventional single-photon or two-photon absorption
mechanism is forbidden, an auxiliary-beam-modified absorption mechanism
becomes necessary for any measurable absorption to occur. The results of section
5, which require high-order (up to N=8) rotational averaging methods, show some

of the symmetry considerations that become important in such cases. These results
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5: Effects of non-resonant light on one- and two-photon absorption

may be of particular interest to application in fluorescence spectroscopy
experiments, as they permit information to be gained from manipulation of the
easily-controllable beam parameters of intensity and polarisation direction. The
depolarisation ratio defines the range of absorption-rate variation that is under the

control of auxiliary beam polarisation.

In the vacuum case (n = 1), the results of section 5 here exactly reduce to a
rotational average of the results reported by ref."”! — the advanced symmetry
selection-rule discussion in that paper also applies to these results. The
depolarization measurement detailed in section 5 of this chapter is another tool for
the analysis of symmetry rules, as it is a straightforward measurement that may be
related to natural invariant magnitudes. These analytical methods should be useful
for better understanding some of the advanced symmetry effects that arise in

nonlinear solution-phase interactions.

As outlined in section 2, this chapter has employed a “dressed-field”” formulation
of molecular QED, with functions of refractive index n involved in the
fundamental equations. This formulation differs from the media-modified MQED
theory employed in chapter 3a and refs.**?, being more appropriate to this

single-molecule problem.

Interpretation of equations (5.7) and (5.11) show that if an absorption process
requires the involvement of an auxiliary beam, then the rate’s proportionality to
the square of auxiliary beam intensity 1’2 helps to identify the observed process
as optically-modified absorption as opposed to sum-frequency absorption or

similar. The depolarisation ratio measurement is a further means of verification.

Practically, nonlinearity in the auxiliary beam implies a need to use intense lasers
as the beam source, as implied by the comments in section 3 regarding photon
density q’/V . This may suggest that complicating effects of molecular re-
alignment could arise, as the molecule might preferentially orient itself according
to the auxiliary beam polarization. However, thermal agitation (Brownian motion,

etc.) will usually overcome any such orientation-forcing.

The auxiliary beam has been described as undergoing forward scattering, such
that the output photons experience no change in physical state. In principle, it is

therefore possible for the observation of modified-absorption to serve as proof of
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5: Effects of non-resonant light on one- and two-photon absorption

the involvement of these photons without their explicit annihilation. This
constitutes a form of weak measurement of the auxiliary photon state. New kinds

of weak-measurement experiment may be imagined from this basis.*?"
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Chapter 6: Hyper-Rayleigh scattering including

multipolar contributions

1. Introduction

Rayleigh scattering, well-known as the cause of the atmosphere’s light blue
colour, is a photonic process consisting of single-photon absorption, concerted
with one emission. The output photon is of equal wavelength and in a random
direction, and the molecule returns to its initial state.™ It is favourable at low
luminosity, and is allowed by all atoms and molecules — scattering rate is
determined by the E1? response tensor, polarisability a, which is finite for all

matter due to its spatially-even optical-susceptibility parity.

A higher intensity of light input leads to related processes that involve more
photon-absorption interaction events. The scattering process in which a molecule
absorbs two photons and emits a second-harmonic is called hyper-Rayleigh
scattering (HRS).”” Note that the term “second harmonic generation”
conventionally refers to a different process — a beam interacting with a solid
material, generating coherent half-wavelength emission in the same direction as

the input mode, not the scattering of photons described here.

The HRS process has applications in the spectroscopic analysis of minerals and
condensed-phase nanoparticles.®™! The rate of HRS is determined by the E1°
response tensor, hyperpolarisability p.**”" Simplified “push-pull” models of
molecular dynamics have been developed for predicting the principal
components of molecules,® ™ often using a two-level approximation,™ ™ whose

limitations have been identified and much discussed."*™**!

For centrosymmetric molecules, all molecular state wavefunctions y have a parity
that is either gerade (Symmetric with respect to spatial inversion) or ungerade
(antisymmetric). Consider the full integral form of the Dirac bracket that describes

the molecular transition in an E1 interaction, such as in equation (2a.3):

(flnfi)= [, Ay dr (6.1)
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6: Hyper-Rayleigh scattering including multipolar contributions

The integration is over all of three-dimensional space, so if the integrand is overall
ungerade then the result will be zero. An electric dipole i is naturally ungerade,

as it consists of opposing positive and negative electric poles. According to the
rules for combining gerade and ungerade (equivalent to multiplying +1 and -1),
the integrand will thus be ungerade unless the molecule’s initial and final state
wavefunctions are of opposite parity. Therefore, an E1 interaction must impose a
parity reversal on a centrosymmetric molecule, or else be forbidden. This is the

Laporte selection rule.*

In a process of scattering there is no net molecular transition, such that the

molecule’s final state is also its initial state. In figure 6.1, this is shown as

| f)=|i)=|0). In particular, scattering preserves the spatial parity of the

molecule’s state, and so the Laporte rule forbids a scattering process for
centrosymmetric molecules that consists of an odd number of interactions. It
follows that HRS, entailing three interactions and no overall molecular state
change, is forbidden for molecules of sufficiently high symmetry. But second-
harmonics may still be generated by such media — this chapter provides an

explanation for this observation.

Going beyond the E1 approximation, considering additional terms of equation
(2a.2), allows for additional multipolar interaction mechanisms, which may be
immune to the symmetry arguments above which forbid HRS."?% This chapter
describes mechanisms that enable conventionally-forbidden HRS, using a QED
derivation with an extended interaction Hamiltonian to calculate a more complete

rate equation for HRS.

2. Process specification

Hyper-Rayleigh scattering is a photonic process of one molecule undergoing three
photonic interaction events: two input photons are annihilated, and one second-
harmonic output photon is created with unspecified direction of propagation.
Observations of HRS are typically made on a sample of the molecule-of-interest
in liquid solution. This chapter will not consider resonance effects — the two
intermediate molecular states (labelled r and s as usual) must be presumed non-

stationary.
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0

—hck’

hck

Iﬂ

hck

Figure 6.1: Molecular Feynman diagram for hyper-Rayleigh scattering, showing
one of three (or six) time-orderings. The molecule finally returns to its initial state
0. The output photon, whose properties are denoted by labels bearing a prime

mark (*), is a second-harmonic of the input light, such that 7ck’ = Ack + Ack .

The HRS process is incoherent, such that each individual occurrence is
unconnected and singular. The total HRS rate is thus a simple sum of the HRS
rate for every molecule in the sample. This is in contrast to the multi-chromophore
fluorescence described in chapter 4b, where the identity of the active
chromophore is undetermined. For coherent second-harmonic-generating

processes in fluid media, the M1 and E2 interactions are forbidden.?*??

The “E1 approximation” is the case where all interaction events are describable
with an interaction Hamiltonian of purely electric dipole character — only the first
term of equation (2a.2). The electric quadrupole (E2) and the magnetic dipole
(M1) are jointly the next-leading interaction Hamiltonian terms, as they both arise
from the multipolar transformation of the second order of the minimal coupling
interaction.! Thus, the leading corrections to the E1 approximation of HRS
will be where one of the three interactions has M1 character or E2 character. This

choice of multipolar description is more fully explained in the next section.
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The output photon and the interaction which creates it are distinguished from the
absorptions by the presence of a prime mark (’). This chapter considers five

possible HRS mechanisms:

e (E1% is the HRS mechanism conforming to the E1 approximation. The label
indicates that there are three E1 interactions. A more systematic label might
be (E1°E1).

e (ELM1EY’) is where one absorption event is an M1 interaction. The label
indicates that the other absorption event and the emission event are both E1.

e (E1E2EY’) is where one absorption event is E2.

e (E1°MY’) is where both absorption events are E1 interactions but the emission
is M1.

e (E1°E2’) is where the emission is E2.

Where Mg, is the quantum amplitude for a certain HRS mechanism, the following
form of the Fermi rule gives the rate of the HRS process for a sample of N
randomly-oriented molecules that are chemically similar. Chevron brackets

denote an isotropic average over all molecular orientations.

| >
M,(:I,EP) L+ M (EIMIED) g (EIEZET) | p o (E*m2) M (E’e2)

FI FI FI + Mg

N

FF,—<27zh1pF > > Mg

Mechanisms

Molecules

(6.2)
= 27N 1 p, <

2>
According to the pattern of equation (2a.12), this rate equation expands into 15
terms, for which the rotational average must be calculated separately.

Ty, =2zNhi"p,

{

+2Re < M |(:|E13)M '(:||51E2E1’)> +2Re < M '(ZIIElMlEl')M'(:IlflEZEl’)> n <‘ M '(:I|51E2E1’)‘2>

2 3
>+ 2 Re<M I(:llzl )M'(:IlilMlEl’) > + <‘M '(:IIElMlEl')‘2>

(E2) = (Er?mr) E1miEr) 7 (E2MY) e1e2er) o (EPMIT) (63)
+2R9<MF. Mg >+2Re<M<F. M}, >+2Re<|v|§, M, >
+ <‘M '(:IIElZMl’)

+2Re < M '(:II51E2E1')MF|I51 EZ’)> +2Re < M (et Ml’)m:l £2) > N <‘ M (Er’e2)

2 3\ _ (E12E>’ ’ -
>+2Re<M(FIEl)MFIE1E2)> 2Re<M(F$1M1El)M—FIE1E2)>
2> }
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3. Quantum amplitudes

The five quantum amplitudes Mg, are each given by the three-interaction term of
equation (2a.13).

(P Hin[S) (S [Huw [R)(R[Hin 1)

MFI:RZS: (EI_ER)(EI_ES)

(6.4)

For each interaction event, equation (2a.2) gives the complete interaction
Hamiltonian, Hix. In the previous section, the sum over various multipolar
Hamiltonian terms has been subsumed into the sum of five quantum amplitudes
for the five mechanisms — these are two complementary forms of the sum-over-
mechanisms discussed in section 5 of chapter 2a. In this analysis, with five
distinct mechanisms identified, each interaction event is described as either purely
an E1 interaction, or purely an M1 interaction, or purely an E2 interaction. The
relevant interaction Hamiltonian will thus be the single scalar-product found in

the term of equation (2a.2) that corresponds to the type of interaction being

described:

HE = g ip.dt (6.5)
HM) = _m.b (6.6)
HE? =—&"Q;V,d’ (6.7)

The relevant electric and magnetic fields are given in photonic form as mode

expansions:
. hcke, k)i — i
_ 'Z o |:e(77,k)a( 1kgikr _ gk gikg 'k-f] (6.8)
K.n 2V

b=i,

I:b(ry kg (rR)gikr _ kg f(n,k)e—ikf] (6.9)
2C80

The partial-del operator in H&? evaluates as:

vjeﬂ“zie 9N =tik, et (6.10)

]
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HRS is a single-position process, so r=0 in all of the above equations. The
operators a and a' each apply to either photon creation or annihilation, with
guantum algebra as in equations (2a.6-7). The three Dirac brackets of the Mg

numerator will therefore each be one of the following six results:

e The Dirac bracket for an E1 absorption event:

<S|Hi(n'§1’|R>=—(i ZZC\/ ]«/qu el (6.11)
0

e The Dirac bracket for an E1 emission event:

hc —(ar
—v] (G +1)k" o €57 (6.12)

0

SR
e The Dirac bracket for an M1 absorption event:

R e (613

2ceg,

e The Dirac bracket for an M1 emission event:

(5| HE[R) [ - }/(% DK m 5 (6.14)
0

e The Dirac bracket for an E2 absorption event:

< | Hl(nF;Z) ’\qu k Qj"el(k ”)k (615)

e The Dirac bracket for an E2 emission event:

1/ (op +1)k" Q" g“ k! (6.16)

Throughout this chapter, the unprimed symbol q refers to the average number of

(S|IHE?|R) =

int

input photons occupying volume V before the first absorption event. The volume

V is defined as the average volume that contains one output photon (Aack’ of
energy) after HRS. The input beam irradiance may be expressed as | =c’gk /V ,

with number-density g/V representing the average number of input photons
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occupying a unit volume. Each absorption interaction is the annihilation of one

input photon (g = g, —1) ; each emission interaction is the creation of one output
photon (g =0 +1). The initial system state | has no radiation of the output mode
(g, =0), but there is some flux of the input mode, such that volume V contains g,
photons. These equations have used the approximation of high input flux,
q~+/q(q—1) ; but as HRS is an optically nonlinear process, a g® factor should in

general be included to describe beam coherence.

In general, with six time-orderings for each HRS mechanism, the
distinguishability of the three interaction events creates six potentially-distinct
amplitude terms. But for the HRS mechanisms where the two absorption events
are indistinguishable, there are only three distinct time-orderings and so the
amplitude has only three unique terms.

What follows are the complete derivations of the five quantum amplitudes, with

the molecular response tensor assigned a single symbol.

3
(e?) . [ hck }? o
My ' =-Iq gO_V €€ e

3 o
= | (Eo —Hick)(E,, —2AcCk)

wo R
+ +
(Eor —7ick ) (Egg +7ick)  (Ey, + 27k ) (Ey, + hick )

(6.17)

3
. (hck )2
=-l Q[_V] € €; & B

(EIM1ET) _ i 12 hk 2 =
Mg =3 qc (%_V] eb,g

2

r,s

(4 M g +mi® 1 1)
(Eqr —hick ) ( Eqq — 271CK)

(6.18)

(24 g m®+mi 1 1) . (24 " m® + 1 m" 1)
(E,, k) (Ey, +/1ck) (B, +2/ck)(Ey, + k)

3

i k2o
:_chm(ﬁj e b8 Jy
0
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3
5
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4. General rate equation

Substituting-in the quantum amplitude results (6.17-21) above into equation (6.3),

the rate equation for HRS becomes:

T =270 Npe qzv_s{ ¢’k (&, & 8& &, & Hyy Bumn)
+c’k? Re<ei € &g b,e; B ‘]Imn>

+%Ck <eb € g Db.e r:‘Jijk‘J_Imn>

~

31,4 = 4
—C k Im<e| e ek el e e ﬂ(|j)kK(lm)no>

+%czk4 Im<ei e,k & &b, e K(ij)kl‘J_mn0>

+%C3k5<eie k& €8, K,e, K(u)le<mn>op>

—2c?k? Re(eie g8 &b Bid (|m)n>

—ck3Re<e. e, b, & b,el i, ‘]_Imn>

+c k4lm< IZ g b K(.,)k.~]('mn)o>

+ck®(e e;b/ & &b J(IJ)kJ('lm)”>

+4csk“lm<ei eje7(€,§men o B K (Im)n0>

—2¢%k* Im<ei &8 k'e Db e K{.,)k|~]_mno>

-2c°k* Re<ei &8 K &,8 k.8, Ky K(mn)0p> (6.22)
—4c%k! Im<ei e;& ki€, &, by K('ij)k|~]_('mn)o>

(mn)op

+4c3k5<eiejéL k&8, €0 K KK > }

The second-“order” interaction Hamiltonians H&? and H™ are typically

int int

weaker than H& by a ratio of approximately the fine structure constant

int
(=137).1* Thus the higher-order tensors J, J’, K, and K’ will be similarly lesser in
magnitude relative to B, if the latter is not reduced to zero by symmetry
considerations: For a centrosymmetric molecule, it is known that p=0. The tensors
J, J', K, and K’ describe even-order molecular susceptibilities, so the very same

symmetry arguments suggest that these are nonzero for all molecules.

The first rate term, ‘M €[ , would normally dominate the HRS process due to its

BB dependence on molecular response — but centrosymmetry causes the (E1°)
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6: Hyper-Rayleigh scattering including multipolar contributions

mechanism to be forbidden. The four terms of quantum interference between
(E1%) and the higher-multipole mechanisms (i.e. the rate terms with a single
factor) are largely irrelevant: with a finite p they are insignificant compared to the

‘Mﬁm i term; and in the p=0 case they vanish along with it.*® The 10 rate terms

not involving (E1%) only become significant under the p=0 condition.

This means that normally only the first line of equation (6.22) is significant; but in
the centrosymmetric case, the 10 terms with no B factor will dominate the HRS

rate.””? What follows are the full calculations for these ten multipolar rate terms.

5. Rotational averages and experimental setups

Moving from static results to fluid, the rate terms of equation (6.22) are each

rotationally-averaged according to the standard method outlined in chapter 2b.

<Vi1 . ‘ViNTil..,iN > = fr Vig++-Vin My G T/u.../m

6.23
:{fvil...ViN}r mrs{ng1.4.zN}s | )

This is an Einstein index-summation of scalar factors: r is the index of
experiment-specific radiation scalars, produced by applying Kronecker deltas f to
the radiation vectors v (which in each rate term is a product of e, €, b, b, and k
variants); s is the index of natural-invariant molecular scalars, produced by
applying Kronecker deltas g to the two-factor molecular response tensors T; mys is

a dimensionless number given in appendix 8b.

Information about the structure of the input and output radiation modes is required

in order to evaluate the radiation scalars{ f v;,...v; } . This chapter considers four

choices of experimental setup:

e “Parallel”: Linearly-polarised light is input; light of parallel polarisation is
detected from an orthogonal position.

e “Perpendicular’: Linearly-polarised light is input; light of perpendicular
polarisation is detected from an orthogonal position.

e “Preserved”: Circularly-polarised light is input; light of preserved left-

polarisation is detected from a forward position.
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e “Flipped”: Circularly-polarised light is input; light of reversed polarisation

(left to right) is detected from a forward position.

These are illustrated in figure 6.2. The “parallel” and “perpendicular” HRS
experiments may be compared in order to determine the depolarisation ratio of
scattered radiation — simply take the ratio of the parallel and perpendicular HRS
rate values. The same is true for the “preserved” and “flipped” setups — the ratio

of their rates gives the reversal ratio of HRS.!?’!

b

(“Parallel” setup) (“Perpendicular” setup)

7 Z
Ve A

(“Preserved” setup) (“Flipped” setup)

Figure 6.2: lllustrations of the four example experimental setups. The cube
represents a sample of N condensed-phase molecules, each of which is an
individual HRS system. Input light is shown in orange with wavevector k; output

light in blue with wavevector K’
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6: Hyper-Rayleigh scattering including multipolar contributions

The choice of experimental setup specifies the orientation of the radiation vectors
e, € b, b, and k in the input and output modes. These ten vectors each have a
magnitude of unity (note the carat on the k vectors appearing in the rate equation).
Accordingly, each is expressible as a combination of the standard-basis Cartesian

unit vectors {%, Yy, 2}.

P.orP. Parallel ~ Perpendicular Left-circular Right-circular
input output output polarisation  polarisation
1 .. .. 1 .. ..
e = 2 % 5 ﬁ(x+|y) E(x—ly)
1 .. .. 1
é= % % 5 E(X_Iy) E(Xﬂy)
. =i, (N
b= % _3 & E(x+|y) ﬁ(x—ly)
. I e i -, .
b= i _5 K %(x—ly) —2(x+|y)
k= 2 y y 2 2

Table 6.1: Evaluation of the field vectors in equation (6.22).

The values of their dot products are hence derived by straightforward comparison
of their Cartesian components listed here — e.g. in the “parallel” experiment,
(k-b")=2-(-2) =-1; and in the “perpendicular” experiment, (€ -b") =X-X=1.
The constituent factors of any radiation scalar { f v;;...v, } may be easily derived

from table 6.1 in this way.

For example, consider the rate term arising from the square of the (E1°E2”)

mechanism:

o=

> o <ei ejél: k/'€,E,€, k;) K('ij)kl K('mn)op> (6.24)

The field tensor g, e, k'eee IZ; is contracted by application of Kronecker deltas
f to produce a set of radiation scalars {f e ;8 kg8 e IZ;} . According to
r

equation (2b.7), the set of r values has cardinality of 105. But because the vectors
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6: Hyper-Rayleigh scattering including multipolar contributions

e, € and Kk’ each appear twice, degeneracy ensures that there are only 23 distinct
scalars. As this rate term is an eighth-rank rotational average, each of the scalars

has four dot-product factors, which can be derived from table 6.1. The radiation

scalars! fe e k'e.e e k'! are evaluated in table 6.3 at the end of this chapter.
i~j~k ™M ¥m~¥n~o tp p

r

The other 14 terms of rate equation (6.22) have their own set of radiation scalars,
which likewise evaluate as dimensionless numbers in each setup. These numbers

may be complex, but the Fermi rule keeps the rate result real.

Each rate term also has its own set of molecular scalars{gT,, . m}s . Each of these

IS a natural invariant of the molecule’s intrinsic electronic behaviour, as discussed

in chapter 2b.

For the rate term arising from the square of the (E1?E2’) mechanism, the

molecular response tensor K/ K/

i Kmnyop 18 CONtracted by application of Kronecker

deltas g to produce a set of molecular scalars {g K K(’mn)op

}S . The bracketed
subscript indices indicate index-symmetry, and this implies degeneracy which

reduces the set of 105 independent s values to just 36 distinct natural invariants.

The molecular scalars {g Ky, K/

(K (mn)op}s are evaluated in table 6.4 at the end of

this chapter.

Each of the other 14 rate terms has a two-factor molecular response tensor (arising
from a combination of two HRS mechanisms) which likewise evaluates as a set of
natural invariant scalars. Any real molecule will have in-principle-measurable

values for each of its natural invariants.

With the radiation scalars { f v, ...v, } and molecular scalars {gT,, , }. each
derived for all possible values of r and s, it is possible to calculate the rotationally-
averaged rate term as a simple unweighted sum of 152 or 105 terms, according to
equation (6.23).1%%% The radiation scalars and the m,s elements are each
dimensionless numbers that can be precisely known for each experimental setup,
but the molecular scalars are unknown properties of the molecule, the natural
invariants of its interactions, and must remain as labelled variables. In calculating
the sum over r and s, the final result is a weighted sum over the set of these

natural invariants.
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For our example rate term, equation (6.23) becomes:

<e' e'§l’< kI’ Emén e(’) k K(u)kl K(’mn)0p> (6 2 )
.25

I
——

~ == A L (8)
f ei ejek kI emen eo kp}r m {g K(u)kl (mn)op}

The values of the three scalar factors in each of the 11025 terms are given in table
6.3, table 6.4, and tables 8b.3-8. The radiation scalars and m® elements are
numbers, so the 36 natural invariants can factorise out. Thus for each
experimental setup, the predicted value of this averaged-tensor is a weighted sum
of the 36 natural invariants, each multiplied by a number coefficient.

The outcome of equation (6.25) is reported in table 6.5 at the end of this chapter.
This is the most succinct statement of the rate term that is possible without
making additional assumptions about the molecular properties. The equivalent
data derived for the other nine non-(E1°) rate terms can be found in the

supplementary material of ref.".

6. Simple case

An assumption of ideal molecular symmetry lets us set all of the natural invariants

in each rate term to be equal. This means total degeneracy in the index s, so we

may define a single molecular scalar T ={gT, | thatis the same foralls.

Then, in the final rate equation for each experimental setup, each averaged-tensor

is reduced to a single molecular scalar T multiplied by a single dimensionless

rs *

coefficient, x, =>" {fv,...v,,} m
VeV T ) =% T (6.26)
So the complete 10-term ( p=0) version of rate equation (6.22) becomes:

[y, =27, Np. q°V >
x{ ek’ 27%,;93]-%,; Re(J’3)+x

+0%K4 [ =27 x5 IM(KT) 4%, Im(K ) (6.27)
2%y IM(K'T)=4x,.5 Im(K'J )}
K)+

+c3k5[ 27 X |[K K|=2%, R(K
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3

3 3 -

= g = 3

o o o o
1/35 1/105 2/35 2/35
0 0 —4/35 4/35
—2/105 1/7 2/35 2/35
0 0 2/35 0
1/35 —-1/105 2/35 0
-1/35 1/105 —2/35 | -44/105
0 0 2/35 —4/15
1/63 1/105 2/315 2/315
0 0 4/315 4/315
1/63 1/315 2/315 2/315

Table 6.2: Values of x; for use in equation (6.27). Many thanks to Matthew D.

Williams for calculating the first seven rows, which require 6th- and 7th-order

rotational averages.

To continue the worked example of the previous section, the values of x,... for

each experimental setup (the final row of table 6.2) are calculated by simply

adding all 23 of the coefficients in the relevant column of table 6.5.5"

7. Discussion

The higher-multipolar interaction moments m and Q are usually ignored as

negligible, but if the (E1%) HRS mechanism is forbidden by symmetry, then they

become necessary for the HRS process. The four mechanisms involving M1 and

E2 interactions are allowed for all molecules, and the rate of HRS arising

therefrom should be non-negligible. The nonzero rate results of this chapter lead

to the conclusion that HRS is universally allowed. Centrosymmetric HRS should

be weaker than conventional HRS by a factor in the ballpark of 1372 Use of near-

resonant wavelengths, such that Ack or Ack’ is chosen to be near to an energy gap
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for the molecule’s ground state, may enhance the tensors J, J’, K, or K’ by a much

greater degree,® turning the “forbidden” HRS process into a measurable signal.

The depolarisation and reversal ratios of HRS provide a new method for uniquely
characterising different molecules. Experimental equipment that automatically
switches between the detection of different polarisation states may be used,
combining two setups into one experiment that can directly test the results of this

chapter.?”*

One notable prediction of these results comes from comparing the preserved and
flipped rates in the case of J and J’ tensors being negligible compared to the K
and K’ (i.e. the M1-involving mechanisms are near-forbidden). This reversal ratio
evaluates as 1, indicating total reversal of circularity for forward emission of
second-harmonic photons. The powers of k in equation (6.27) suggest that this

observation will be most likely at shorter wavelengths.
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3
3 o

z 2 ¢ 3

o o u a
r= Radiation scalar g & £ F
1,2,14,15,16,17,29,30 (e'-e*)(e'™*-e)(e-k')(e* k') 0 0 0 0
3,13,18,28 (e* - e*)(e'* - e)(e- k')(e"- k") 0 0 0 0
4,5,19,20 (e-e')(e™*-e)(e* - k') 2 0 0 0 0
6,21 (e* - e*)(e-e')(e"* - e)(k'- k') 1 0 0 0
7,8,10,11,22,23,25,26 (e-e*)(e'™*-e)(e*-k')(e'- k') 0 0 0 0
9,12,24,27 (e-e*)(e'-e*)(e*-e)k'-k) | 1 | 0 | 1| O
31,32,92,93 (e-e)(e'- e*)(e* k')(e™ k') 0 0 0 0
33,91 (e-e)(e*-e*)(e' k')(e™ k') 0 0 0 0
34,35,37,40,98,99,101,104 | (e - e*)(e-e')(e* - k')(e'* - k') 0 0 0 0
36,43,94,97 (e*-e*)(e-e')(e-k')(e™ k' 0 0 0 0
38,41,102,105 (e-e*)n2(e' - k')(e'™* - k') 0 0 0 0
39,42,44,45,95,96,100,103 | (e - e*)(e'- e*)(e - k')(e'* - k') 0 0 0 0
46,47 (e-e)(e™ - e')(e* k') 2 0 0 0 0
48 (e-e)(e*-e*)(e™ - e')(k'- k') 1 110 )|0
49,50,52,54,55,57,59,60 (e-e*)(e'™*-e')(e-k')(e*- k') 0 0 0 0
51,58 (e* - e*)(e'* - e')(e - k')N2 0 0 0 0
53,56 (e-e*)2(e'™* - e')(k'- k') 1 1 1 1
61,62,76,77 (e-e)(e™ - e*)(e*-k')(e"- k') 0 0 0 0
63,78 (e-e)(e™ - e*)(e'- e*)(k'- k') 1 0 0 0
64,67,69,74,79,82,84,89 (e-e')(e™-e*)(e-k')e* k') 0 0 0 0
65,70,72,75,80,85,87,90 (e-e*)(e™-e*)(e-k')e' k') 0 0 0 0
66,73,81,88 (e - e*)(e'- e*)(e-k')r2 0 0 0 0
68,71,83,86 (e-e*)(e-e')(e™* e*)(k'-k') 1 0 0 1

o~

Table 6.3: Evaluation of the 105 radiation scalars{f € €8 kege I?;} .

Symbols e and k stand for the e and Kk vectors in equation (21), and an asterisk

(*) denotes complex conjugation: e*=¢€ .
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s= (natural invariant)
1,2,16,17 K'a(ab)b K'* c(ca)d
3,18 K'a(ab)o K'* c(da)c
4,5,19,20 K'aab)e K'*bied)a
6,21 K'a(ab)e K™ b(dd)c
7,10,22,25 K'aab)e K" c(bd)a
8,11,23,26 K'a(ab)e K'* d(bo)d
9,12,24,27 K'agabye K" d(ba)c
13,28 K'a(ab)e K™ c(da)b
14,15,29,30 K'a(ab)e K'* d(cd)b
31,32 K'a(bb)a K™ ccd)d
33 K'a(bb)a K" c(dd)c
34,35,37,40 K'a(beja K™ bied)d
36,43 K'a(oc)a K" bad)c
38,41 K'abe)a K'* d(bo)d
39,42,44,45 K'abeja K" aiba)e
46,47 K'a(ob)c K'*a(ca)d
48 K'a(ob)c K™ a(da)c
49,50,52,55 K'aoe)b K™ a(ed)a
51,58 K'a(be)b K" a(dd)c
53,56 K'atbo)d K™ aiboyd
54,57,59,60 K'a(oe)d K'* a(oa)c
61,76 K'agob)e K'* c(ad)d
62,77 K'a(bb)e K" d(ac)d
63,78 K'a(ob)ec K'* d(ad)c
64,67,79,82 K'a(be)b K' c(ad)d
65,70,80,85 K'abo)o K™ gac)d
66,73,81,88 K'a(be)b K™ d(ad)c
68,71,83,86 K'a(be)d K'*pacd
69,74,84,89 K'abe)d K'™* blad)c
72,75,87,90 K'a(be)d K™ d(ab)c
91 K'a(ob)c K'* c(da)a
92,93 K'a(bb)ec K™ d(cd)a
94,97 K'atbo)o K™ (g
95,96,100,103 | K'aibeb K'* d(cd)a
98,99,101,104 | K'spe)d K*p(cd)a
102,105 K'a(beyd K" d(bo)a

Table 6.4: Evaluation of the 105 molecular scalars{g K

2

(ij)kl

K(

(mn)op

b

6: Hyper-Rayleigh scattering including multipolar contributions
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3

_E £F 3% )5

3 O c O S S ® 8
Natural = £ = 8 £ gE
invariant £ 8 £ 8 x 38 T 3
K'a(ab)o K™ c(ca)d —2/945 1/1890 -5/378 1/945
K'a(ab)o K'* c(dd)c —1/945 1/378 1/189 1/1890
K'a(ab)c K" b(ca)d -2/945 1/1890 2/189 2/189
K'a(ab)c K'* b(dd)c 8/945 | —13/1890 | -13/945 | -—13/945
K'a(ab)e K™ cibd)d —2/945 1/189 -5/378 2/189
K'a(ab)e K™ d(bo)d —2/945 1/189 -5/378 2/189
K'a(ab)c K'* da(bd)c 16/945 | —13/945 11/189 | —26/945
K'a(ab)e K'* cda)o —1/945 1/378 1/189 1/1890
K'a(ab)e K™ d(ca)b —2/945 1/1890 -5/378 1/945
K'a(bb)a K'*c(ca)d -1/945 1/378 1/189 1/1890
K'abb)a K'*c@g)e | —1/1890 | —11/1890 1/3780 1/3780
K'a(bc)a K'* bica)d —2/945 1/189 2/189 -5/378
K'a(bc)a K'* b(dd)c -1/945 1/378 1/1890 1/189
K'a(bc)a K'™* d(bo)d —-1/945 | -11/945 -5/756 -5/756
K'a(oe)a K'* diba)c —2/945 1/189 -5/378 2/189
K'a(bb)c K'* aca)d —-1/945 | —13/1890 1/189 1/189
K'a(bb)c K'* a(dd)e 4/945 17/945 | —13/1890 | —13/1890
K'atbe)b K'* a(cd)d —-2/945 | -13/945 -5/378 —-5/378
K'a(oo)o K™ a(dd)c —-1/945 | —13/1890 1/189 1/189
K'a(oe)d K™ a(bod 8/945 34/945 11/378 11/378
K'a(be)d K™ afbd)c -2/945 | -13/945 -5/378 -5/378
K'a(bb)c K'* c(ad)d —1/945 1/378 1/1890 1/189
K'a(bb)c K'* d(ac)d -1/945 1/378 1/1890 1/189
K'a(bb)c K'* d(ad)c 8/945 | —13/1890 | -13/945 | -13/945
K'a(bo)o K" c(ad)d —2/945 1/1890 1/945 -5/378
K'a(boo)o K™ dac)d —2/945 1/189 2/189 -5/378
K'a(o)o K™ dad)c —2/945 1/1890 2/189 2/189
K'a(be)d K'* blac)d 16/945 | —13/945 | -26/945 11/189
K'a(beyd K'*bad)c —2/945 1/1890 1/945 -5/378
K'a(beyd K'* d(ab)e —2/945 1/189 2/189 -5/378
K'apbje K c(@pa | —1/1890 | —11/1890 1/3780 1/3780
K'abb)e K™ d(ca)a -1/945 1/378 1/189 1/1890
K'a(be)p K™ cda)a —-1/945 1/378 1/1890 1/189
K'a(be)p K" d(ca)a —2/945 1/189 —-5/378 2/189
K'a(be)d K™ bica)a —2/945 1/189 2/189 -5/378
K'a(beyd K'* d(boa —-1/945 | —11/945 -5/756 -5/756

Table 6.5: Results for equation (24). The averaged-contraction is equal to a sum

of all 36 natural invariants K'K'*, each multiplied by a setup-specific coefficient.
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Chapter 7. Concluding comments

All of the photonic processes analysed in this thesis have been shown to strongly
depend on the precise system geometry — particularly the relative positions and
orientations of each involved chromophore. The best example is section 6 of
chapter 3b, which reports extremely complicated functions of lengths and angles,
illustrative of the fine control that molecular geometries may exert on the
efficiency of photonic processes: As seen in figure 3b.4, the energy-transfer
process in question may be entirely forbidden in one case, but then become

allowed after a very fine change of one chromophore’s alignment.

The processes described in chapters 3a, 3b and 4a are distinguished by not
entailing any net absorption or emission of external photons. Energy is transferred
between chromophores without any involvement of distant sources/detectors of
radiation: RET is a process internal to a two- or three-chromophore system;
chapter 4a concerns a process of photon emission and immediate detection, with
the detector included as part of a three-chromophore energy transfer system. In
contrast, chapter 5 describes a process in which a radiation mode interacts with a
molecule without the Fock number necessarily changing — in principle, this can

become a form of weak measurement on the radiation state.* !

The two parts of Chapter 4 therefore represent alternative treatments of similar
processes, distinguished by very different ways of framing the system — either all
photon paths are bound within the system, or emitted light escapes out and is
considered a real photon. Very different quantum measurement issues arise in
these two analyses, yielding experimentally-distinguishable outcomes. Treating
emission-and-detection as a single four-event process may be conceptually
superior, as back-coupling and degeneracy splitting are quantum effects that are
excluded when emission is restricted to a photon with specified real properties. By
including the detector as a coupled chromophore within the system and allowing
for unspecified emitter states, chapter 4a reveals the particular emission
behaviours characteristic of excitons, distinct from single-chromophore
emission.” The results provide testable models for the idiosyncratic excitation
behaviour of coupled nanoantennas, a family of systems of current technological

interest.
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7: Concluding comments

Chapter 3 gives a full MQED description of RET as a two- or four-interaction
event process, with the coupling between chromophores mediated by virtual
photons. In chapter 4a this result is directly applied to an entirely distinct energy-
transfer process (more properly described as an emission process), thus illustrating
the versatility of the MQED framework. The geometric analysis in chapter 4b
may also inform the optimisation of multi-chromophore systems for energy
exchange. This thesis contributes to understanding the very precise requirements
of molecular geometry that must inform the design of energy-harvesting

technology, and other systems where fine control of energy transfer is required.

For example, recent research seeks to develop laser technology using organic dye
molecules in the solid state, optimising laser yield via a sequence of selective RET
steps that populate the lasing chromophore’s excited state.[ Also, in light-
harvesting systems, energy from the original absorption event is directed through
a “cascade” of efficient one-way transfer steps toward the desired reaction
centre.l’® The analysis of chapters 3 and 4 may be applied to give a more
complete description of the energy transfer processes in such systems, and thence
predict the optimum positions and orientations of chromophores within the solid
matrix, and account for effects of quantum interference by nearby dye or host

molecules.

If this work is to be developed into a full MQED description of real light-
harvesting systems, then the absorption of light and all subsequent inter-
chromophore energy transfer steps should be included together and treated as one
process. The analysis of media-modified absorption provided by chapter 5 of this
thesis must be combined with the analysis of media-modified transfer provided by
chapter 3a, including all possible coupling configurations, then the system

geometry can be holistically optimised for harvesting efficiency.

The anisotropy predictions of chapter 4b are an example of the MQED method
reproducing results from complementary theoretical approaches.® The analysis in
this chapter also explains advanced spectroscopic behaviours that would
otherwise be considered anomalous, in particular the observation of extremely
high anisotropy of fluorescence at short timescales.™® The relative orientations of
dipoles within a multi-chromophore molecule have been linked to obscure but

measurable features of the total fluorescence behaviour. This has potential
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7: Concluding comments

applications in the study of protein folding and other molecular structure

problems.

Chapters 3a, 4b, 5 and 6 first give rate equations for the given photonic process as
a function of molecular orientation, then calculate the average value of that rate
over all orientations of the active molecule. The static results are valuable in
themselves, but they are directly applicable as rate predictions only if each active
molecule’s relative position and orientation is known to a reasonable precision.
Such well-ordered molecules may be found in structured energy-harvesting
materials or natural photosynthetic complexes,[B] but in the condensed phase the
rotationally-averaged rate equations must be used. Further work should extend the
geometric analyses in this thesis by challenging this static/stochastic dichotomy,
exploring intermediate cases where chromophore orientation is subject to partial
thermal disorder. For example, the 6 parameter in chapter 4b should be
unambiguously broken into its intrinsic and rotational components, in order for
fluorescence anisotropy measurements to elicit more internal geometric

information.

Chapters 5 and 6 describe high-order (nonlinear) light-interaction processes by
single molecules of unspecified orientation. With no relative position vectors, the
most important geometric variables are the propagation-direction and polarisation
state of the input beams. Such beam parameters can be finely controlled, so the
results of these chapters are well-suited to application in fluorescence
spectroscopy experiments. The only other consideration is the set of averaged
molecular response tensor components. Process selection rules are reducible to
these symmetry properties,***? and in chapter 6 the typical rules have been
undermined by considering new forms of molecular response — a conventionally-
forbidden process has been given a predicted efficiency.™! The theoretical
prospect of new forms of hyper-Rayleigh scattering opens the way to
developments in the spectroscopy of high-symmetry molecules, with potential

applications in new methods of characterising substances.

When there are many interactions of radiation with a molecule of unspecified
orientation, the rotational averages of process rate must be very high order.
Chapter 2b explains the general method, and chapter 6 provides a worked

example of an eighth-rank average involving 105x105 matrix evaluation. It is
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7: Concluding comments

hoped that publication of this thesis provides a resource for any researchers

considering similarly ambitious rotational-average calculations.

The intrinsic polarisability (E1? moment) of a molecule is used to quantify the
molecule’s propensity to undergo a two-interaction transition, just like transition
dipole (E1) moment is commonly used in physical chemistry as a measure of a
molecule’s propensity to a single interaction. The polarisability becomes central
to all photonic processes with cooperation between chromophores (discussed in
chapters 3a, 3b and 4a) or the multi-photon interactions of single chromophores
(chapters 4b, 5 and 6). Section 6 of chapter 2a provides a necessary discussion of
polarisability’s interpretation considering the problem of damping and resonance.
Polarisability theory is then given a detailed application in section 5 of chapter 3a:
With two virtual photons interacting with one chromophore, it is appropriate to
derive the tensor in full, as a factor in the process quantum amplitude. Further, the
polarisability of a medium molecule is related to the medium’s bulk optical

properties, as a means of accounting for advanced media effects.

At certain points in each of the chapters 3-6, limiting assumptions about the
system geometry have been imposed which simplify the rate equations into a
concise form. This approach has been necessary to render the predictions of each
system’s (possibly extremely complicated) dynamics into a set of reportable
results — but it means that the results are limited to particular cases, which may not
always be those of practical interest. Nonetheless, the calculations in this thesis
may still serve as a template for the derivation of results for more useful cases:
The reader may follow the methods explained in each chapter, and apply the
general rate equations, then explore an alternative system geometry that is more

relevant to their particular application.
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Appendix 8a: Time-ordering of interaction events: State-

sequence diagrams

This appendix outlines state-sequence diagrams as an alternative diagrammatic
system to the Feynman diagrams employed in the main part of the thesis.

The elementary case of a quantum interaction process is a unitary system that
undergoes one transformative event. As a state-sequence diagram, such a process

is illustrated by figure 8a.1:

0 1

Figure 8a.1: Elementary single-event state-sequence diagram.

Time proceeds from left to right. The system, illustrated as a box, is shown in its
initial state (left) labelled “0”. The process of the system evolving into its final
state can be seen by reading the diagram rightward, following the transformative
event arrow “+1” that transitions the system from that initial state into its final
state labelled “1”.

If there is more than one event, then the different time-orderings turn the diagram

into a network of the possible state sequences, as shown by figure 8a.2.
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8a: Time-ordering of interaction events: State-sequence diagrams

0 @~ a
(B)

B
b Ha—| ab

Figure 8a.2: Elementary two-event state-sequence diagram.

This two-event process consists of events (A) and (B). Event (A) adds the

[YP4)

property “a” to the system’s state; event (B) adds the property “b”. In general, the
property “x” should be understood as “event (X) is in the system’s history”.
Therefore, the event arrows must all be drawn parallel to like events and
orthogonal to all unlike events. The combination of both events transforms the
system from initial state “0” to final state “ab”. There are two allowed routes
through the network — these are the two time-orderings, (A)(B) and (B)(A). Itis
this that creates two distinct possible states, “a” and “b”, during the intermediate

era.

For a practical example of this scheme used to describe a MQED problem,
consider the RET process that is illustrated with two Feynman diagrams in figure

2a.2. This is represented by state-sequence diagram figure 8a.3.
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8a: Time-ordering of interaction events: State-sequence diagrams
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Figure 8a.3: State-sequence diagram for resonance energy transfer.

Each box displays a system state, displaying the states of the three subsystems:
Radiation, Donor molecule, and Acceptor molecule. The lower path is the (A)(B)
time-ordering and corresponds to the left Feynman diagram; the upper path is
(B)(A) and corresponds to the right Feynman diagram. The advantage of the state-
sequence approach is that both Feynman diagrams and their relationship are

completely described with this one figure.

Figure 8a.4 is the abstract diagram with three events. Again, the occurrence of (C)
adds the property “c” to the system’s state. This network can be seen to be
comprised of the two-event diagram doubled-up — the (A)+(B) parallelogram
turning “0” to “ab” is reproduced, turning c to abc. Note that in moving from two
events top three: the number of state-sequence routes from the initial to final state
increases from 2! to 3!, and the total number of possible states increases from 2
to 2°.
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8a: Time-ordering of interaction events: State-sequence diagrams

o[ a
/=N
0 F®-] a b
(B)
\

Figure 8a.4: Elementary three-event state-sequence diagram.

ab

W

ab

This diagram has the clear structure of a cube, with the three events defining the
cardinal directions in a three-dimensional (A)(B)(C)-space. This mathematical
feature arises from treating the events as fully independent and commutative — any
time-ordering is allowed and each permutation of the same set of events has the
same outcome. The combinatorial possibilities of three transitions occurring in
any order map to a representation of a 3D state space, through which the system
moves in unit-vector leaps from the initial state “0”, to the opposing vertex of the

cube which is the final state “abc”.
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8a: Time-ordering of interaction events: State-sequence diagrams
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Figure 8a.5: Elementary four-event state-sequence diagram.

For a four-event process, the three-event diagram is doubled-up in the same way,
constructing a tesseract (four-dimensional cube) in the 4D state-space defined by
the four events. This state-sequence diagram covers 2* states and 4! time-ordering
pathways. The network of the four-event diagram precisely emulates a tesseract
projected into the 2D plane of this page: the 16 state-boxes align with vertices,

and the 32 event-lines align with the cell-edges of a tesseract.

For an example of a real four-event process captured with a tesseract state-
sequence diagram, consider the “MDA configuration” of third-body-modified
RET, the focus of chapter 3a. This is represented by state-sequence diagram figure
8a.6.
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Figure 8a.6: State-sequence diagram for the “MDA configuration” of third-body-
modified RET.

The electronic state of the chromophore M is not shown, as it remains My
throughout the process. The YZWX pathway through this network is illustrated by
figure 3a.2. The other 23 time-orderings of the MDA-configuration process,
which are enumerated separately at great length in Appendix 8c, are summarised

systematically by this one figure.

The following patterns arise in a state-sequence diagram for an interaction process
with N transition events. These are illustrated by figure 8a.7.

e The evolution of the system consists of N+1 “eras”, separated by the N events;

e The state-sequence diagram covers 2" possible states including the initial and
final;

e There are N! possible sequence routes between the many intermediate states,

identical to the time-order permutations of the N events;
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8a: Time-ordering of interaction events: State-sequence diagrams

e The diagram has the form of an N-dimensional cube with states as vertices and
events as cell-edges;
e The diagram sorts the 2" states between the N+1 eras according to the (N+1)"

row of Pascal’s Triangle.

1
N=1

N=2

N=3

N=4: 0

Figure 8a.7: The elementary state-sequence diagrams replicate Pascal’s triangle.

The trivial N=0 case is the diagram for a zero-event process, i.e. a stationary state.
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Appendix 8b: Rotational averaging of tensors: Complete

matrices

1. Sources

These are the results of the 1™ calculation method outlined in chapter 2b section
3, for even N values. The results for second, fourth and sixth ranks are as reported
in Appendix 2 of the book [ Molecular Quantum Electrodynamics by D. P. Craig
and T. Thirunamachandran (Dover Publications, 1998) ]. The results for the
eighth rank rotational average are as reported in the article [ D.L. Andrews and
W.A. Ghoul, “Eighth Rank Isotropic Tensors and Rotational Averages”: J. Phys.
Math. Gen. 14, 1281 (1981) ].

2. Second rank average, N=2

The elementary tensor f is a single Kronecker delta in two i indices.
£ = O

As there is only one f, the matrix S has just one element, provided by a
straightforward application of equation (2b.10).

S = f(2),f(2)=5ij5ij =3

The single m® element is calculated as the inverse of S, which in the single-

element limit is equal to the number’s reciprocal.

m® =gt

Wik

Finally, according to equation (2b.5), the result for I is a double-tensor of one

term.
1
(2 _ £ @m@n(2) _
| =f*m g —55}125/112

This double-tensor is responsible for the “trace” function Tr() in chapter 3a

section 5, and is used to evaluate equation (5.20).
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8b: Rotational averaging of tensors: Complete matrices

3. Fourth rank average, N=4

The tensors f® are each a pair of Kronecker deltas in i. There are three possible

permutations of four indices paired.

f1(4) = 5i125i34
f2(4) = 5i135i24
f3(4) = 6}146}23

Equation (2b.10) applies to each element of the dimension-three square matrix S.
5ij5k|5ij5k| é}jgklé}k§jl é}jéklé}l§jk 9 33

S= é‘iké‘jlé‘ijé‘kl é‘iké‘jlé‘iké‘jl é‘iké‘jlé‘ilé‘jk =3 9 3
5i|5jk5ij5k| 5il5jk5ik5jl 5i|5jk5i|5jk 339

The matrix m® is calculated via matrix-inversion.

4 -1 -1
mo-si=t1 4 1
30

1 -1 4

Applying equation (2b.5), 1 is a double-tensor of nine terms.

T
515054 4 -1 -1)(6,120u
|4 = fr(4)m§:)g§4) :% 5}13‘5}24 -1 4 -1 5/1135/124

O140iz) \71 —1 4 )\ 3,10,

This result is central to chapter 4b section 4, and is employed in the evaluation of
equations (5.21), (5.22), and (5.26).

4. Sixth rank average, N=6

The tensors f® are each a product of three Kronecker deltas in i. There are 15 of

them, representing all possible permutations of six i indices in three pairings.

f1(6) = 8,1,01340556
f2(6) = 8,120,350,46
fa(G) = 0,1,01360145
f4(6) = 0430240156
f5(6) = 0,130125046

fe(e) = 0130126045
f7(6) = 8140,5301s6
f8(6) = 0140125036
fg(e) = 8,140,260;35
flge) = 0150123046

f1(16) = 0,150i240536
fl(ZG) = 450,260,324
flge) = 0160123045
flfle) = 8460,240;35
flée) = 01601250134
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8b: Rotational averaging of tensors: Complete matrices

The result for m® is reported by Craig & Thirunamachandran (1998) as part of

their equation (A2.26). The method employed in this calculation is identical to the

N=4 case that | have explained in full above, but involving a matrix-inversion

computation of dimension 15.

-5
16

2 -5
-5 2

-5
-5
16

2

-5 2 2
2 -5
2 2

16 -5

16

-5
2 5 2

2

2 -5
-5 2

Applying equation (2b.5) of this thesis, 1 is a double-tensor of 225 terms given

by the row-square-column matrix multiplication:

| ® —

6}126}346} 56
5i125i355i 46
é‘i12§i365i 45
1391240156
5i135i255i46
5i135i265i45
6}146}236}56
5i145i 255i36
5i145i 265i35
é‘ilsé‘i 235i46
11591240136
5i155i 265i34
é‘ilGé} 235i 45
91169240735
116125034

T

= = = = = =
w w w N N N
w w
[33] B
@% s%
S a1
> >

i
Ny

&5 &5 & o & =
S & S & 9 EQO S & &0 & ™
SQ')

S S S0 0 S 0 ™ .i% S S S 0 0 0 ™
N

=
[=2]
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This result is employed in the evaluation of equations (5.23), (5.24), (5.27) and
(5.28).

5. Eighth rank average, N=8

Application of equation (2b.7) predicts 105 unique values for r and for s, and the
set of 105 tensors f® may be constructed by following the same index-
permutation pattern as in the above results. Table 8b.2 following this appendix

describes these 105 tensors f®, each of which is a product of four Kronecker

deltas in i . It must be noted that this set is overcomplete — only 91 of these tensors

f ®are linearly independent, as the other 14 may be constructed as linear

functions of the independent 91. Nonetheless, the overcomplete set is not
incorrect because this redundancy does not introduce degeneracy as defined in

chapter 2b section 4.

This overcompleteness means that there is not a unique solution for each of the
11025 elementsm® . In the calculation performed by Andrews & Ghoul (1981),
each elementm® is instead assigned a variable label. The assignment is based on

the tensor structure of the corresponding element of the S matrix, S = f® . f®.

For example, the top-right element is:

Sia0s = £7+ 12 = 6,046m000501680m = (0100055 ) (SaOmOrmOin )

mn~op~ip* jo ij“ jo~op Im~’'mn

What is of interest is that the inner product of eight deltas factorises into two self-
contained cycles of four. This factorisation is diagnostic of a certain set of

possible values for m), . There are five distinct ways that each inner product of

eight deltas may factorise into cycles, and these are each assigned a variable label
in the set {A,B,C,D,E}. The ruleset of this algorithm is given by Table 8b.1.
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S,, factorisation m®
(98)(00)(80)(30) | A
(6555)(55)(55) |B
(55558)(56558) |c
(655555)(85) |D
(555555655) E

Table 8b.1: Rules for assigning the labels A,B,C,D,E to the elements m®,

according to the tensor structure of the corresponding element S,s. Adapted from
Table 3 in Andrews & Ghoul (1981).

Tables 8b.3-8 following this appendix combine to show the resulting matrix m®
in terms of the five variable labels A,B,C,D,E. These variables have possible
values constrained by the equations (26-29) given by Andrews & Ghoul (1981). |
have chosen to use the E=0 result, as this is the simplest form of m®, most useful

for direct application in the rotational-averaging calculations in this thesis.

A=19/630 B=-23/3780 C=1/7560 D=1/756 E=0

Once again, m® enters equation (2b.5), to give 1® as a double-tensor with 11025
terms. This result is employed in the evaluation of equations (5.25) and (5.29).
Also, see chapter 6 section 5 of this thesis for a worked example of how I® is

used to calculate a rotationally-averaged process rate.
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Oi

Oi

oi

oi

r
54
55
56
57
58
59
60
61

oi

62

63

64
65

66

67

68

69

70

71

72
73
74
75
76
77
78
79
80
81

82
83

84
85

86

87
88

89

90
91

92
93
94
95
96
97

98

99
100
101
102
103
104
105

oi

Oi

oi

r

10
11
12
13
14
15
16
17

18
19
20
21

22
23

24
25

26
27
28
29

30
31

32

33

34
35

36
37
38
39
40

41

42

43

44
45

46

47

48

49

50
51

52
53

Table 8b.2: Each tensor f® is a product of four Kronecker deltas. The value of r

specifies the permutation of the four i indices.
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8b: Rotational averaging of tensors: Complete matrices

ABBBDDBDDDDBDDBBCCDEEDEEEEDEEDBC CCDE

BABDBDDDBBDDDBDCBCEDETEEDDEEEDETCBCETPD

BBADDBDBDDBDBDDCCBEEDEDETEDEDETECCBTETE

BDDABBBDDDBDDBDDEEBCCDETEEDEEDEDETEDE

DBDBABDBDBDDDDBEDECBCEDEDEEEEDEDETED

DDBBBADDBDDBBDDEEDCCBEEDETEDDETETETEDETE

BDDBDDABBBDDBDDDEEDEEBCCDETEDETEDETESBTC

DDBDBDBABDBDDDBETEDEDECBCEDETEEDEEDDE

DBDDDBBBADDBDBDEDEEEDCCBETEDEDETEDETDE

DBDDBDBDDABBBDDEDEEDEDEEBC CCDETEEDETCSB

DDBBDDDBDBABDBDEEDDEEEDECBCEDETETEDED

BDDDDBDDBBBADDBDEEEEDEEDCCBEEDDETETED

DDBDDBBDDBDDABBEEDEEDDEEDEEBCCEEDCC

DBDBDDDDBDBDBABEDEDETEEEDEDECBC CEDETETE

BDDDBDDBDDDBBBADETEEDETEDEEEDCCBDETETETE

BCCDEEDEEEEDEEDABBBDDBDDDDBDDIBIBCCDE
CBCEDEEEDDEEEDEBABDBDDDBBDDDBDCBCETD
CCBEEDEDEEDEDEEBBADDBDBDDBDBDDCCBETE

DEEBCCDEEEDEEDEBDDABBBDDDBDDBDDETEHBD
EDECBCEDEDEEEEDDBDBABDBDBDDDDBEDETDSB
EEDCCBEEDEEDDEEDDBBBADDBDDBIBDDETEDDD
DEEDEEBCCDEEDEEBDDBDDABBBDDBDDDETETDE
EEDEDECBCEDEEEDDDBDBDBABDBDDDBETEDESTC
EDEEEDCCBEEDEDEDBDDDBBBADDBDBDETDETEFTE
EDEEDEDEEBCCDEEDBDDBDBDDABBBDDEDETETD
EEDDEEEDECBCEDEDDBBDDDBDBABDBDETEDCE
DEEEEDEEDCCBEEDBDDDDBDDBBBADDIBDETETEFE
EEDEEDDEEDEEBCCDDBDDBBDDBDDABBETEDETE
EDEDEEEEDEDECBCDBDBDDDDBDBDBABEDETCE
DEEEDEEDEEEDCCBBDDDBDDBDDDBBBADETETESTC
BCCDEEDEEEEDEEDBCCDETEDEEEEDEEDABBSBD
CBCEDEEEDDEEEDECBCEDEEEDDEEEDEBABDSB

CCBEEDEDEEDEDEECCBEEDEDEEDEDETEBBADD

DEEDEEBDDCEECEEDEEBDDDEEECEECEBDDASB

EDEEDECEEBDDCEEEDEDBDECEDETEEECDBDEBA

EEDEEDCEECEEBDDEEDDDBEECEECDEEDDSBIBEB
DEEBDDDEEECEECEDEEDEEBDDCEECEEBDDSBD

EEDCEEEDEDBDECEEEDECEDBDEDEEECDDSBUDSB
EDECEEEEDECEDBDEDEEECDDBEECEDEDBUDDD

EDEDBDECEDEEEECEDEEDECEEBDDCEEDBDDSB

EEDECEDBDEDEEECEEDCEEEDEDBDECEDDBIBD
DEEECEECEEEDDDBDEEEECEECDDBEEDBDDDD

EEDDDBEECEECDEEEEDEEDCEECEEBDDDDBDD
EDEEECDDBEECEDEEDECEEEEDECEDBDDBUDSBD

DEEEECEECDDBEEDDEEECEECEEEDDDBBDDDSB
DEEBCCDEEEDEEDEDEEBCCDEEEDEEDEBDDDE

EDECBCEDEDEEEEDEDECBCEDEDEEEEDDBDETD
EEDCCBEEDEEDDEEEEDCCBEEDEEDDETEDDBETE

DEEDEEBDDCEECEEBDDDETEDEEEECEECDETETBLC
EDEEDECEEBDDCEEDBDEDETEECDEEECEEDETCSEB
EEDEEDCEECEEBDDDDBEEDECEECEDEEEEDCC
BDDDEEDEEEECEECDEEDEEBDDCETECETEDETETDE
CEEEEDEEDDDBEECECEEEDDDBEEDECEEECETD

in the range s € {1—35} andr € {1—53}. The edge

(8)
rs 1

Table 8b.3: Elements m

of the m® matrix is bordered.
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8b: Rotational averaging of tensors: Complete matrices

EDEEEEDEEDDEEDEEBCCDEEDEEDEEDEEBCCD

EEEDDEEEDEEDEEDEDEEBCCDEETEEDEEDDETETD

DEDEEDEDEEEEDEEDDEEDEEBCCEDETEDEDETESHB
EBCCDEEDEEBCCDEEDEEEEDEEDDEEBC CCDETETE

EDEEBCCDEECBCEDEEEDDEEEDEEDEDETETETETDE

DDEEDEEBCCCCBEEDEDEEDEDETETEEDDETETEDESTC
CDEEEDEEDEDEEBCCDEEEDEEDEBCCDETETDETEETE

EEDECBCEDEEDEDEEEEDEDECBCCBCEDEEEDD
EEEDEDECBCEEDDEEEDECBCEDECCBETEDEDETE
CEDEDEEEEDEDECBCEDEDEEEEDDETEEDETEDTEFTE

ECBCEDEEEDDEEEDEEDEEEDCCBEDECBCEDED
EEDEEEDCCBEEDEDECBCEDEEEDEEDEDECBCE

BEEDEEDDEEEEDCCBEEDEEDDEEDEEEEDETEDC
DCCBEEDEDEDEEEEDEEDCCBEEDEEDCCBETEDE
DEEDCCBEEDEDEEEDCCBEEDEDEEDEEEDCCEBE
EDEEEEDEEDDEEBDDDEEECEECEDEEBDDDETEFE
EEEDDEEEDEEDEDBDECEDEEEECEEDDDBETETCE

DEDEEDEDEEEEDDDBEECEECDEEEDEDBDECED

DDEEECEECEBCCDEEDEEEEDEEDDEEDEEBDDC
DECEDEEEECCBCEDEEEDDEEEDETEDEEECDDEBE
BEECEECDEECCBEEDEDEEDEDEEEEDECEDBDE
EBDDCEECEEDEEDEEBDDCEECEEBCCDETEDETETE

EDBDEDEEECEDEEECDDBEECEDECBCEDETEEDD
CDDBEECEDEEEDECEDBDEDEEECCCBEEDEDETE

ECEEBDDCEEEDEEDECEEBDDCEEDEEEECEECD

EEDEDBDECEDEEEECEECDDBEEDEDETEDETCETESHSB
CEECDDBEEDEEDCEEEDEDBDECEEEDCEEEDETD

DCEECEEBDDEEDEEDCEECEEBDDDETEECETETCETE

EEEDECEDBDDEEECEECEEEDDDBEEDEEDCETESTC
EECEEEDDDBEDECEEEEDECEDBDEDECETETETETDE
DBDDDDBDDBBDDDEEDEEEECEECBDDDETEDETEFE

DDDBBDDDBDDBDEDEEECDEEECEDDBETEDETCTETE

BDBDDBDBDDDDBEEDECEECEDEEDBDEDEETETCD

BBDDDBDDBDDEEBCCDEEEDEEDEDEEDEEBDDC

BDBDBDDDDBEDECBCEDEDEEEEDEECEDEDBDE
ADDBDDBBDDEEDCCBEEDEEDDEEECEETEDDDEBE

DABBBDDBDDDEEDEEBDDCEECEEDEEBC CCDETETE

DBABDBDDDBEECEDEDBDECEEEDEDECBCEDED

BBBADDBDBDECEEEDDDBEEDECETEEDCCBETETDE

DBDDABBBDDEDEEDECEEBDDCEEEECDETEETCETD

DDBDBABDBDEECDEEECEDBDEDETEDEEDETCETESHB

BDDBBBADDBCEEEEDEEDDDBEECCEEEEDEEDD
BBDDBDDABBEEDEEDCEECEEBDDECEDETETETETCE

DDDBDBDBABECEDEEEECEDEDBDEEDEEDCETESTC
DDBDDDBBBACEEEDEEDEEECDDB CEETEDEEDETE

EDEEEECEECABBBDDBDDDDBDDBBDDDETEDETETE

EEECDEEECEBABDBDDDBBDDDBDDBDETCETETETDLC
DECEECEDEEBBADDBDBDDBDBDDDDBETETCEDETE
CDEEEDEEDEBDDABBBDDDBDDBDDEEBDDDETETE

CEDEDEEEEDDBDBABDBDBDDDDBECEDBDEDETC

BEEDEEDDEEDDBBBADDBDDBBDDEECDDBETETDE

EBDDCEECEEBDDBDDABBBDDBDDDEEDEEBCCD
EDBDECEEEDDDBDBDBABDBDDDBETEDEDECBTCE

in the range s € {36 — 70} andr € {1—53}. The

(8)
rs 1

Table 8b.4: Elements m

edge of the m® matrix is bordered.
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8b: Rotational averaging of tensors: Complete matrices

EEDEEEEDEEDDEEDEEBCCEEDEEDDEEDETEBTCC
EEBCCDEEDEEBCCDEEDEEEDEEDEDEEBCCDETE
CCDEEEDEEDEDEEBCCDEEDEEDEEBCCDETEDETEFTE

DEEDEEDEDEEEEDEDECBCEDEDETEEEDEDETCBC
DECBCDEEBCCDEEEDEEDEEEDDEEEDECBCETDE
BCEDEEEDDEEEDECBCEDEDEEBCCDETETEDETETDE

EDEEDDEEEDEEDEEEDCCBDEEEDEEDEEEDCCSB

EEEDEEDECBCEDEDEEEEDEEDEDECBCEDETETETD

DEDEEEEDEDECBCEDEEEDEDECBCEDEDETETETETD

EDCCBBCCDEEDEEEEDEEDDEEEEDEEDCCBETED
EEEEDCBCEDEEEDDEEEDEEDEEEDCCBETEDETDE
DEEEDCCBEEDEDEEDEDEEEEDCCBEEDETEDDETE
CBEEDDEEEEDEEDCCBEEDBCCDEEDEEEEDETETD

EDDEEEDEEEDCCBEEDEDECBCEDEEEDDETETEDE
EDEDEEEDCCBEEDEEDDEECCBEEDEDETEDEDETE
CEECEEEDDDBEECEECDEEEEDDDBEECEECDEFTE

ECDEEDEEBDDDEEECEECEEDEDBDECEDETETETESTC
EEEECEDEDBDECEDEEEECDEEBDDDETETECETETCE
EECEEEDEEECDDBEECEDEEDEEECDDBETECETDE

ECEDEDEEDEEBDDCEECEEEEDECEDBDEDETETESC
DEEECEEDECEDBDEDEEECDEEDEEBDDCETETCETE

EDEEDDEEEECEECDDBEEDDEEEECEECDDBETED
EEEDEEDEEDECEEBDDCEEEEDCEEEDEDBDETCE
DEDEEEEDCEEEDEDBDECEEDEEDECEEBDDCETE

DBEEDBCCDEEDEEEEDEEDDEEECEECEEEDDDSB

DDCEECBCEDEEEDDEEEDEEDECETEEEDETCEDSBD

BDECECCBEEDEDEEDEDEEEEDEEDCEECETESBDD
EDDDBDEEECEECEEEDDDBBC CCDETEDETETETEDETETD
EEBDDEDECEEEEDECEDBDCBCEDETEEDDETETEDE
CEDBDEEDEEDCEECEEBDDCCBEEDEDETEDEDEFTE

ECEECDDBEEDECEECEDEEDDBEEDECETECEDETE
CEDEEBDDDEEDEEEECEECDBDEDEEECDETETETCE

EEECEDBDEDEEECDEEECEBDDDETEDETEEETCETESTC

EECEEEECEDEDBDECEEEDEECEDEDBDETCETETETD
CEEEDDEEDEEBDDCEECEEECEEEDDDBETEDETCE

EDECEECEEEDDDBEEDECEDEEDEEBDDCETETCETE
DEEDEEECDEEECEDBDEDEEECDEEECEDBDETDE

EEEEDEDEEDECEEBDDCEECEEEEDEEDDDBETESTC
EDDEECEEEEDEEDDDBEECEDEEDECEEBDDCETE

BDEDEDEEBCCDEEEDEEDEECEDETEEETCEDEDSBD

DDCEEEDECBCEDEDEEEEDCEEEDETEDETEECDDSB

DBEECEEDCCBEEDEEDDEEEEDEEDCEECETEBDD
DEDBDECEDEEEECEDEDBDDEEBCCDETETEDETETDE

EEBDDCEEEDEEDEEECDDBEDECBCEDEDETETETETD
ECDDBEEDEEDCEECEEBDDEEDCCBETEDETEDDTETE
ECEECDBDECEEEDCEEEDEDBDECEEEDCETETEDE
EEEDEBDDDEEDEEEECEECDDBEECEDETEDETCETE

DECEEDDBEECEDEEDECEEBDDDEEDEEEECETESTC
CEECEECEDBDEDECEEEEDECEDBDEDECETETETETD

EEEEDDEEBDDDEEECEECEEECDDBEEDETEDCETE
EDCEEEECDDBEEDEEDCEEDEEBDDDEEECETETCE
EEDEEECEECEDEEBDDDEEECEECEDEEBDDDETE

DEEEDEEDCEEEDEDBDECECEEEEDEEDDDBTETESTC

in the range s € {71—105} andr € {1—53}. The

(8)
rs 1

Table 8b.5: Elements m

edge of the m® matrix is bordered.
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8b: Rotational averaging of tensors: Complete matrices

CEEEDEEDEEECDDBEECEDEDBDECETEEDETCETEETE

DBDEDEEECDEEECEEDEEDECEEBDDCETEEDETED
ECEEEDDDBEEDECECEEEEDEEDDDBEECEECDE
ECEDEEEECEDEDBDEECDEEECEDBDEDECETETETE
DDBEEDECEECEDEEEEDEEDCEECEEBDDETEDETE
EECEDEDBDECEEEDCEEEDEEDEEECDDBETCETDE

EECDEEECEDBDEDEECEDEEEECEDEDBDCETETED
DEEDEEBCCDEEDEEDEEDEEBCCDEEDETESBDDDE
EEDEDECBCEDEEEDEEDEDECBCEDETETEDDDBTEFE

EDEEEDCCBEEDEDEEDEEEDCCBETEDEDEDBDESTC
DEEBDDDEEECEECEBDDDEEDEEEECEECDETETDE

EEDCEEEDEDBDECEDDBEECEDEEDECETEEEDED

EDECEEEEDECEDBDDBDECEEEDCEETEDETEDETETE
BDDDEEDEEEECEECDEEBDDDEEECEECEDETETBD
CEEEEDEEDDDBEECEECDDBEEDEEDCEEECEDSB

CEEEDEEDEEECDDBECEDBDEDECEEEEDEECDD

DDBEECEDEEDECEEEEDCEEEDEDBDECETEEDCE

EECDDBEEDEEDCEECEEEEDEEDDDBEECECETESTC
EECEECDEEDEEBDDECEECEDEEBDDDETETCETETETE
DBDECEEEDCEEEDEEDECEEEEDECEDBDEDETCE
ECEDBDEDECEEEEDCEEEDEEDEEECDDBETETCEETE

ECEECEDEEBDDDEEEECEECDEEDEEBDDCETETED

EDEEDEDEEBCCDEEEDEEDEDEEBCCDEEDBDETPD
EEDDEEEDECBCEDEEEDDEEEDECBCEDEDDBTETE
DEEEEDEEDCCBEEDDEEEEDEEDCCBEEDBDDTCE

EDEDBDECEDEEEECDBDEDEEECDEEECEEDETED
EEDECEDBDEDEEECDDBEECEDEEDECETETETEDDE
DEEECEECEEEDDDBBDDCEECEEEEDETEDDETETEFE

DBDEDEEECDEEECEEDEDBDECEDEEEECEDETDSB

ECEEEDDDBEEDECEEECDDBEEDEEDCETECETEHBD

ECEDEEEECEDEDBDCEEBDDCEEEDEEDEEECDD

DDBEECEDEEDECEEEEDECEDBDEDEEECEEDESTC
EECDDBEEDEEDCEEECEEEDDDBEEDECECETETCE
EECEECDEEDEEBDDCEECEEBDDDEEDETETETCETEFE

BDDCEECEEEEDEEDDEEECEECEEEDDDBDETETETC
CEEBDDCEEEDEEDEECEDEEEECEDEDBDETETCTEETE
CEECEEBDDDEEDEEEECEECDEEDEEBDDETCETDE

EEDEEDDEEDEEBCCEEDEEDDEEDEEBCCDDBETE

EDEDEEEEDEDECBCEDEDEEEEDEDECBCDBDESTC
DEEEDEEDEEEDCCBDEEEDEEDEEEDCCBBDDCE
EEDDDBEECEECDEEDDBEEDECEECEDETETETEDETE

EDEEECDDBEECEDEDBDECEEEDCETEEDETEDETDE

DEEEECEECDDBEEDBDDCEECEEEEDEEDDETETED
DDBEEDECEECEDEEEEDDDBEECEECDEEEEDDD
EECEDEDBDECEEEDECEDBDEDECEEEEDCEETBD

EECDEEECEDBDEDECEEBDDCEEEDEEDEECETDSB
DBDECEEEDCEEEDEEDEEECDDBEECEDETEDETETE
ECEDBDEDECEEEEDEECEDEDBDETCEEEDCETETCE

ECEECEDEEBDDDEECEECEEBDDDEEDETETEECED
BDDCEECEEEEDEEDDEEEECEECDDBTETEDDETETEFE
CEEBDDCEEEDEEDEEECDEEECEDBDEDEECETETC
CEECEEBDDDEEDEEECEECEDEEBDDDEEEECDE

in the range s e {1—35} andr {54 —105} . The

(8)
rs !

Table 8b.6: Elements m

edge of the m® matrix is bordered.
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8b: Rotational averaging of tensors: Complete matrices

DDDBEEDECEDBDDDBBBADDBDBDEDETETEDCCEBE
ECEEBDDCEEDBDDBDBDDABBBDDECEECEDETESB
EECEDBDEDEDDBBDDDBDBABDBDEEDCETETEDED

DEEDDDBEECBDDDDBDDBBBADDB CETEETEDETETDD
DCEECEEBDDDDBDDBBDDBDDABBETECETECDETETD
EEECEDEDBDDBDBDDDDBDBDBABEDETCETETETEDE
EEDEEECDDBBDDDBDDBDDDBBBACETETEDETEDETE

EDEEEECEECBDDDEEDEEEECEECABBBDDBDDD
CEDEEDECEEDBDECEEEDCEEEDEBABDBDDDSBSB

EEEDCEEEDEDDBEECEDEEDECEEBBADDBDABTDD
EBCCDEEDEEDEEBDDDEEECEECEBDDABBBDDD

ECBCEDEEEDECEDBDEDECEEEEDDBDBABDSBTDSB
DCCBEEDEDEEECDDBEEDEEDCEEDDBBBADDSBD
DDEEECEECEDEEDEEBCCDEEDEEBDDBDDABTBEB
DEDECEEEEDEEDEDECBCEDEEEDDDBDBDBABD
BEEDEEDCEEEDEEEDCCBEEDEDEDBDDDBIBIBAD
EEDEDBDECEECEECEDEEBDDDEEDBDDBDBUDDA
EDEEBDDDEEEEDCEEEDEDBDECEDDBIBDDDSBTDB
DEEDDDBEECCEEEEDEEDDDBEECBDDDDSBDDIBB
EEEDECEDBDEECEECDEEDEEBDDDDBDDBIBDDSB
CDEEDEEBDDEDECEEEEDECEDBDDBDBDDDDSBD

EEDEEECDDBCEEEDEEDEEECDDBBDDDBDDBDD
EEECDEEECEDBDEDEEECDEEECEBDDCETECETETE
CEDEEDECEEBDDCEECEEEEDEEDDBDEDETETETCD

ECEEEEDEEDDDBEECEDEEDECEEDDBETECEDETE
EDEEBCCDEEEDEDBDECEDEEEECCEEBDDCETETE

EEDECBCEDECEEBDDCEEEDEEDEEDEDBDETCED
DEEDCCBEEDEECDDBEEDEEDCEEEECDDBETETDE

DECEDEEEECEDEEDEDEEBCCDEECEECEEBDDD
DCEEEDEEDEEEDDEEEDECBCEDETEEDECEDBDE
BEEDEEDCEEDEEEEDEEDCCBEEDECEETEDDDBE

EDBDEDEEECCEECEEBDDDEEDEEEDEEDEDETESB
EBDDDEEDEEEEDECEDBDEDEEECEEDDETETEDESC
DDDBEEDECEECEEEDDDBEEDECEDEEEEDETETDLC

EECEEEDDDBEECEECDEEDEEBDDEECEECDETETD
CDEEDEEBDDDEEECEECEEEDDDBETCEDETETETETCE

EEECEDEDBDECEDEEEECEDEDBDDETEECETETCETE
DECEECEDEEDDBEEDECEECEDEEBDDCETETCETETE
EEEDCEEEDEBDDCEECEEEEDEEDDDBETEDETCETE

ECEEEEDEEDDBDECEEEDCEEEDEDBDETCETETETDC
DDEEDEEBCCEEDDDBEECEECDEECEEBDDCETETE
EEEDEDECBCCEEBDDCEEEDEEDEEEDDDBETETCE

EEDEEEDCCBECEDBDEDECEEEEDECEDBDEDESTC
BEECEECDEEEEDEEDDEEDEEBCCCEECEEBDDD
DCEEEDEEDEEDEDEEEEDEDECBCEDETEECDDEBE
DEDECEEEEDDEEEDEEDEEEDCCBEECEDEDBDE
CDDBEECEDECEECEEBDDDEEDEEEEDEEDDETETD

EBDDDEEDEEEDEEECDDBEECEDETEDEDETEETETDE
EDBDECEEEDEECEDEDBDETCEEEDDETETEDETEDETE
CEECDDBEEDECEECEDEEBDDDEEECEECEDETESTHB

EDEEBDDDEEDEEEECEECDDBEEDEECDEEECED

EECEDBDEDEEECDEEECEDBDEDEDEEEECEECD

in the range s € {36 — 70} andr {54 —105} . The

(8)
rs !

Table 8b.7: Elements m

edge of the m® matrix is bordered.
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8b: Rotational averaging of tensors: Complete matrices

EDEDECEEEEDEEDDDBEECEEDCETEEDEDBDETCE

DDDEEDEEDEEBCCDEEDEEEECEECDEEDETEBDD
BDECEEEDEDECBCEDEEEDCEEEDEEDEEECDDSB

DBEECEDEEEDCCBEEDEDEEDECETEEEDETCEDSBD
EEBDDEECEECDEEDEEBDDDEEDEEBCCDETEDETE
CEDBDCEEEDEEDEEECDDBEEDEDECBCEDETETED

ECDDBEDECEEEEDECEDBDEDEEEDCCBETEDETDE

DBDDBBDDCEECEEEEDEEDBDDCETECEETETEDETED
DDDBDDBDEDEEECDEEECEDDBEECEDETEDETCTETE
BDBDDDDBEECEDEEDECEEDBDEDEETECDETETETCE
BDDBDCEEBDDCETEEDEEDECEEBDDCETETEDETETDE
DDDDBEDEDBDECEDEEEECEECDDBETEDETEDCETE

DBBDDEECDDBEEDEEDCEEEDEDBDECEDETETETESTC
DDBDDCEECEEBDDDEEDEECEECEEBDDDETEDETE

BDDDBEEDECEDBDEDEEECECEEEDDDBETEDETCE

DBDBDECEEEDDDBEEDECEEEDECEDBDEDETETESTC

BBBDDEDEEDEDEEBCCDEEEECEECDETEDEEBDD
ABDBDEEDDEEEDECBCEDEECEDETEEECEDEDBD

BADDBDEEEEDEEDCCBEEDDEEECEECEEEDDDSB
DDABBEECEECDEEDEEBDDEDEEDEDEEBCCDETE
BDBABECEDEEEECEDEDBDEEDDEEEDEC CBC CETDE

DBBBADEEECEECEEEDDDBDEEEEDEEDCCBETED
EDEEDABBBDDBDDDDBDDBBDDCETECEETETEDETED

EEECEBABDBDDDBBDDDBDDBDETCETEEDCETETEDE
DECEEBBADDBDBDDBDBDDDDBETEDETCETECEDETE

DEEDEBDDABBBDDDBDDBDCEEBDDC CETETEDETETDE

EEEECDBDBABDBDBDDDDBECEDBDEDETCETETETED
EDCEEDDBBBADDBDDBBDDEEDDDBEEC CETECDETE

EEDEEBDDBDDABBBDDBDDCEECETEBDDDETETDTEE

DEEECDDBDBDBABDBDDDBETECEDEDBDETCETETETD

EDECEDBDDDBBBADDBDBDEDEEECDDBTETECETDE
CCDEEDBDDBDBDDABBBDDEC CEECEDEEBDDDETE

BCEDEDDBBDDDBDBABDBDETECDETEECEDBDETDE
CBEEDBDDDDBDDBBBADDBDEEEECEECDDSBEED

EEBDDDDBDDBBDDBDDABBEEDEEDDEEDEEBCC

DEDBDDBDBDDDDBDBDBABEDEDETEEEDEDETCSBC

EDDDBBDDDBDDBDDDBBBADETEEDEEDETEEDCCSB

EDEEDBDDCEECEEEEDEEDABBBDDBDDDDSBDDB
CEDEEDBDECEEEDCEEEDEBABDBDDDBBDDDBD

EEEDEDDBEEDECEECEDEEBBADDBDBDDBDBDD
DEEDECEEBDDCEEEDEEDEBDDABBBDDDIBDDIBD
ECDEEECEDBDEDECEEEEDDBDBABDBDBDDDTDB
EEEEDEEDDDBEECEECDEEDDBBBADDBDDIBBDD
EEDEECEECEEBDDDEEDEEBDDBDDABBBDDBDD
ECEDEEECEDEDBDECEEEDDDBDBDBABDBDDDSB
CEEEDEDEEECDDBEECEDEDBDDDBBBADDSBDBD

EEBCCECEECEDEEBDDDEEDBDDBDBDDABIBBDD
DECBCEECDEEECEDBDEDEDDBBDDDBDBABDEBD
EDCCBDEEEECEECDDBEEDBDDDDBDDBIBIBADDSB
DDDEEEEDEEDDEEDEEBCCDDBDDBBDDBDDABB
BDEDEEDEDEEEEDEDECBCDBDBDDDDBDBDSBAB
DBEEDDEEEDEEDEEEDCCBBDDDBDDBDDDIBBBA

in the range s € {71—105} andr e {54 —105}. The

(8)
rs !

Table 8b.8: Elements m

edge of the m® matrix is bordered.
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Appendix 8c: Resonance energy transfer: Explicit

coupling Vj; derivation

As shown in chapter 3a, third-body-modified RET comprises four interaction
events, which may occur in any of 24 possible time-orderings. For any one time-
ordering, the MDA-configuration of the process has quantum amplitude given by
equation (3a.4):

AsA

2 ray ray MoMo DoDr DrDa
_( he j PP EyalionlincCipa 4 M M

Fl = D A rad D A rad D A rad
280\/ P.&(py #:€(4) [EaT + EOT - ET :II:EaS + Eos - Es }[EaR + EOR - ER ]

x exp(lp . (rpAnn. - rpCre.) + |(|) : (r¢Ann. - r¢Cre.))

This appendix contains the generalisation this result to find the quantum
amplitude of the overall process. This will be simply the sum of 24 terms with this

form, at the limit of infinite volume V.

The indices a, b, ¢, d are hereafter chosen to be fixed and i, j, k, | to vary
according to the rules set out in chapter 3a — therefore, the &, e, e. e4 factor is
common to all 24 terms and factors out. The photon annihilation and creation
positions rpan and rycre Will in every case be the positions of chromophores D and
M, or vice versa. The positions rsamn and rycre Will in every case be the positions

of chromophores A and D, or vice versa.

What follows are the numerators of the 24 versions of Equation (3a.4) for each
time-ordering of the four events (W), (X), (YY), (2).
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8c: Resonance energy transfer: Explicit coupling V;; derivation

WXYZ = ZZOCV TR TR T pz; PP €8 Ciers EXP(IP- (o =1y ) +i- (1 1))
2
VXY =| S | BB 5 008 4180 01Dy 1)+ 16 1)
hc ’ MM, . D,D, .- D,D, . AsA, = = ; i
WYXZ = 20 [T T Tl T p%; P 5)8o108001c B EXP(IP- (o =13y ) i~ (1 = 1))
2
WYZX = ZZCV W G D PO XP(IP- (1 =) 414 (1, 1)
L . .
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ZWYX =

ZXWY =

ZXWY =

ZYWX =

ZYXW =

8c: Resonance energy transfer: Explicit coupling V;; derivation
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These 24 terms factorise into four terms with unique exponential factors, each a

sum of six unique fractions. Within each term, the six fractions group into two

unique numerators — the first and fourth terms have five fractions with the same

numerator and one exception, the second and third terms have three fractions with

each numerator.
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The quantity E_,is the electronic energy lost by chromophore D. Similarly, the
quantity EoAﬁ,is the electronic energy “lost” by chromophore A. Since RET is the

conservative process of energy transferred from D to A, chromophore A must

gain exactly the amount of energy that D loses, which is to say Ej, =—Eg),.
Replacing all instances of the variable E ; with—Eg, simplifies the unique

denominators, yielding just 8 terms:
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The common factor [-5cp]™ immediately cancels with the top line. Factorising out
common numerators, combining denominator sums and collecting like terms

yields the relatively concise quantum amplitude expression:
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8c: Resonance energy transfer: Explicit coupling V;; derivation

It is now appropriate to expand the quantisation volume to infinity. Moving from
an enclosed finite system to a regime of infinite space modifies the nature of the
sum over p and e, described by the big sigma operator. This is now a continuous
sum over all possible vectors p, a definite integral over all of p-space (triple-

integration).

v"i?ovz [ (27[)3

The polarisation vectors g, and g, form an orthogonal triad with the

wavevector p, while g, , e, and ¢ form a triad likewise. In Cartesian unit-vector

)

notation, this implies:

Z €p)a€pp = Oab — Pa by

P-&(p)

The common factor of &, ey é. eq involves the indices a, b, ¢, d being used to
describe the two elementary polarisation vectors for each photon. In the

integration over both p and over ¢, this becomes:

MV > 8808 = (27) 6” (5 ¢¢d)d pd’e
00

V >0
P-€(p) P Ey)

Due to Kronecker deltas, the indices a and b are now symmetric with respect to

each other, likewise ¢ and d. Henceforth, u, and w4 have been suppressed into ua,

and u, respectively, implying that zaua=uatt OF tpita.

@) o (2e ) M 1™ [ [(81 - BuBy) (6 0.4y )¢
00
D,D; , DD, eXp("'i(l)'RDA) eXp(_i(P‘RDA)
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x[ exp(+ip-Ryp ) +exp(—ip-R,,) | d°p d°p

+ 1 g

The terms pertaining to the two photons p and ¢ may be separated out into two

definite integrals over three-dimensional wavevector spaces:
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My, =—(27) °he(2¢,) ° plte™e ™
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Since chromophore A only interacts with photon ¢ and likewise M with p, we
may choose to assign either a or b to the interaction on M (event W), and either ¢
or d to the interaction on A (event Z). The strict correspondence between the
indices a, b, ¢, d and the four unique photon creation/annihilation events no longer

exists, although a and b still correspond to p, likewise ¢ and d to ¢.

The p integral evaluates as follows. In converting to spherical coordinates, we use
the vector identity p- R = pR cos(6) , which suppresses the vectors into scalar

variables.
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8c: Resonance energy transfer: Explicit coupling V;; derivation

The ¢ integral evaluates as follows. The overall energy difference is best

expressed as a reciprocal length, k = —E;, /hc

T ) D,D, , D,D, eXp("‘i(P'RDA) exp(—i(p-RDA)
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= 47%(hc) 1{ SRRy }(V 200y = ViV ) Roy xp(ikRy,, )

2
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Combining these results gives the true quantum amplitude of the MDA

configuration, containing an explicit summation over all physically-realisable
virtual states D,.

Mp = (27)2(28,) " (V200 — VoV, )Rub (V785 — ViV ) Ron exp (ikRy, )

MOMO A % ﬂbo rﬂ r 11 ﬂ O rﬂb r {1
X /ua /Jd ’ Z{ < +==
Dr

EC ES —ck

This is the final amplitude result, reported as Equation (3a.5).
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Appendix 8d: Delocalised excitation: Exciton splitting

This appendix calculates the difference in energy between the two delocalised-

excitation (exciton) states of chapter 4a, section 4.

The two-emitter subsystem is in an unspecified state of excitation, with the states

of localised-excitation as the base states:

e Base state A is the state of excitation localised on emitter A, represented

by the Dirac ket |A,,B,).

e Base state B is the state of excitation localised on emitter B, represented by

the Dirac ket | A, B,,).
The relevant molecular Hamiltonian matrix for these two ket eigenvectors is:
, { €, MAB}
M BA EB
E is the total energy of the subsystem in one of the base states and M is the

quantum amplitude of a transition from one to the other. Due to the symmetry of

the subsystem, the two base states are so similar that E, =Egand M,; =M, .

The transition between the base states is a process of RET between A and B, as
reported by equation (4a.15):
My = /UiA“AO \ (k; R s ),UjBOBm
-1~ .
=(47e,) Rugexp(ikR,g) ‘uA“A"‘ ‘pB"Bm

><{[2ikRAB —2]sin® @cos’ ¢+ 1-ikR,, —k*R%, |(sin® Osin® ¢ +cos® 49)}

The delocalised exciton states (blue arrows on Figure 4a.4) are each some
combination of the base states, defined by some specific values for the

superposition coefficients ¢, and c;:

| %) =c,| A, By)+Cs| A B,)
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8d: Delocalised excitation: Exciton splitting

Substituting this generic combination wavefunction into the time-dependent

Schrodinger equation, H| W) = inoW/ét, yields the following differential

equations:

InC, =C,E) +C;M 5
ihC; =CzE, +C\M 5

Integration leads to linear expressions for the two base state coefficients:

C, = %exp(—ihl(EA + MAB)I)+%8XP(—ihl(EA ~M,g)t)

C, = GZ+ exp(—in (E, + MAB)t)—%eXP(—ihl(EA ~Me)t)

Here, G, and G. are constants of integration determined by initial conditions.
These contain information about which particular combination of base states the

subsystem occupies:

e The symmetric exciton

") is defined by G,=1,G =0 .

* The antisymmetric exciton|1 ") is defined by G,=0, G =1.

Any combination-state ¥ has total energy labelled E,, . This can be calculated with

the Schrodinger equation by factoring out the shared time-dependent phase factor

K, from the coefficients c, and c;:

W) =Ky ( Ky'ca| AL By) +Ky'cs| A B,Y )
K, =exp(-in'E, t)

Applying this factorisation to the G.=1, G_=0 case yields the total

I+> energy.

E, =E,+M,,

+

Applying this factorisation to the G,=0, G_=1 case yields the total ‘ I’> energy.
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