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Abstract

This thesis investigates some important aspects of the atmospheric branch
of the hydrological cycle in the modern day climate from an observational
perspective. Data quality is evaluated, focusing on two state-of-the-art
reanalysis products, ERA-I and JRA-55. Regional-scale discrepancies among
reanalyses and observations, especially in their annual cycles, are found in the
warm pool, Amazon, Gulf stream and Indian subcontinent regions. In the
tropics, oceanic evaporation and its temporal variability are notably greater
in JRA-55 than in ERA-I and satellite-based estimates, while both reanalyses
overestimate precipitation. Higher tropical precipitation and evaporation,
accompanied by a slightly lower level of total column water (TCW), might
suggest a more intense hydrological cycle, but this can be an ill-defined concept
especially when analysis increments mask “spin-down” errors in reanalysis
models. Analysis increments arise to remove unphysical residuals in the
atmospheric water budget, and these are explored via a cluster analysis to
identify regimes with common behavior. Consistent for ERA-I and JRA-55, the
regime with the largest negative residuals (greater moisture outputs than inputs)
exceeding 50 % of mean precipitation occurs during the dry season of some
low latitude regions that feature strong seasonality, high evapotranspiration
and high moisture divergence. Errors in the moisture divergence are likely
responsible because they correlate strongly with the budget residual.

Empirical Orthogonal Function (EOF) and Self Organizing Map (SOM)
analyses are applied to identify the dominant inter-annual patterns of
vertically-integrated moisture divergence variability. They reveal that the
transition from strong La Niña through to extreme El Niño events is not a linear
one and that the EOF orthogonality constraint results in the patterns being split
between leading EOFs that are non-linearly related. The SOM analysis captures
the range of responses to the El Niño-Southern Oscillation (ENSO), indicating
that the distinction between the moderate and extreme El Niños can be as great
as the difference between La Niña and moderate El Niños, from a moisture
divergence point of view.

On diurnal time scales, horizontal moisture fluxes vary in response to
thermodynamic and dynamic effects. TCW shows a global scale diurnal
cycle that peaks around ∼ 1800 − 2100 local time with a peak-to-trough
magnitude of ∼ 0.4 mm. Semi-diurnal variations in surface winds and pressure,
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consistent with atmospheric tidal theory, create a westward propagating
moisture convergence/divergence wave along the equator.

Finally, the importance of Tropical Cyclones (TCs) as a source of freshwater
for the North American continent is estimated using an ensemble of schemes
designed to attribute onshore moisture fluxes to TCs. Averaged over the
2004–2012 hurricane seasons and integrated over the western, southern and
eastern coasts of North America, the seven schemes attribute 7 to 18 % (mean
14 %) of total net onshore flux to Atlantic TCs. A reduced contribution of 10 %
(range 9 to 11 %) was found for the 1980–2003 period, though only two schemes
could be applied to this earlier period. Over the whole 1980–2012 period, a
further 8 % (range 6 to 9 % from two schemes) was attributed to East Pacific
TCs, resulting in a total TC contribution of 19 % (range 17 to 22 %) to the
ocean-to-land moisture transport onto the North American continent between
May and November. The inter-annual variability does not appear to be strongly
related to ENSO.
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E/ET Evaporation/Evapo-Transpiration
ENSO El Niño-Southern Oscillations
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ITCZ Intertropical Convergence Zone
JRA-55 Japanese 55-year Reanalysis
MJO Madden-Julian Oscillation
OLR Outgoing Longwave Radiation
PC Principle Component
QBO Quasi-Biennial Oscillation
SOM Self-Organizing Maps
SST Sea Surface Temperature
SPCZ South Pacific Convergence Zone
TC Tropical Cyclones
TCW Total Column Water
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Chapter 1

Introduction

1.1 Introduction

Water, in all its physical forms, plays a crucial role in modulating our climate
in various ways across multiple time scales. Although it only contains a small
proportion of water, the atmosphere is by far the most dynamic and far-reaching
hydrological branch, bridging the oceanic net source and the terrestrial net sink
of moisture. Short-term variability in precipitation, evaporation, atmospheric
total column water vapour and moisture transport shape the atmospheric
hydrological cycle of the modern day climate, and their long-term variations
are intimately linked with the global energy budget (Allan, 2012; Held and Soden,
2006; Allen and Ingram, 2002) and climate change scenarios (Allan et al., 2014).
Theoretically, observations of all these components should lead to a closed water
budget in the atmosphere, on the surface, or between ocean and land, at either
global or regional scales. However, the current observation systems are found to
give unsatisfactory estimates and the distribution of error/uncertainty is uneven
over time, among different variables, and across different regions around the
globe.

Precipitation is a crucial source of freshwater to land and on average around
114 Eg (1 Eg = 1018g) of water is precipitated over global land every year
(Trenberth et al., 2011). The spatial distribution of this quantity, and perhaps
more importantly its temporal variability, have a profound impact on humanity,
society, agriculture and all other life forms on or beyond land. Its predicted
change under global warming has attracted much attention from both within
and outside the scientific community, and a broad consensus has been reached
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regarding first order global precipitation changes, such as the “wet getting
wetter and dry getting drier” response (Kirtman et al., 2013), and the moistening
of the mid-latitudes (Hartmann et al., 2013). However, even state-of-art climate
models are still much less consistent in predicting precipitation changes than
temperature. Insufficient observations, understanding and models of dynamic
processes hamper our ability to confidently predict future changes (Shepherd,
2014; Flato et al., 2013; Demory et al., 2014). First and foremost, monitoring of
precipitation is unsatisfactory. Currently there are still large areas over ocean
and land where precipitation is most intense but direct observation is sparse.
This deficiency affects not only in situ observations, but subsequently leads
to greater uncertainties in remote sensing and model (including reanalysis)
precipitation estimates.

Water in its gas form, a quantity often measured as specific humidity, is an
important factor in the formation of clouds and precipitation, the redistribution
of water and energy, the modulations of the atmospheric radiative forcing,
and numerous air-borne chemical reactions. As the largest greenhouse gas,
water vapour both contributes positively to radiative forcing and responds
positively to a warming surface, making it a critical chain linking the energy
and water cycles. Although vapour accounts for only about 0.25 % of the mass
of the atmosphere (Gimeno et al., 2012), around 40 Eg of water is transported in
vapour form from ocean to land every year, replenishing terrestrial hydrology
(Trenberth et al., 2007, 2011). As the growing human population is becoming
increasingly reliant on freshwater security, and is faced with future changes to
the hydrological regimes that we have already adapted to, understanding this
transport process is of great importance.

Solid-form water that covers the sea or land surfaces exerts a strong control
on the surface albedo. Polar amplification and to a lesser extent, altitude
amplification effects (Serreze and Barry, 2011; Pepin and Lundquist, 2008) are
closely related to the albedo feedbacks due to seasonal snow and ice
retreat. Cryosphere dynamics impact global sea level, ocean circulation,
marine ecosystems and ocean productivity (Vaughan et al., 2013), and better
representation of this component is being incorporated into Earth System
Models (ESMs) (Flato et al., 2013).

Lastly, phase transitions, e.g. evaporation and condensation, bridge the
energy and water cycles (Liu et al., 2015). Globally, recycling of continental
evaporation/evapotranspiration (E/ET) is responsible for 67 % of rainfall over
land (van der Ent et al., 2010) and over 50 % of the solar energy absorbed by



1.1 Introduction 3

land is converted to latent heat through ET (Jung et al., 2010; Hartmann et al.,
2013), thus making it an important modulator of the soil moisture, surface
temperature and precipitation (Wang and Dickinson, 2012; Jung et al., 2010; Koster
et al., 2004). However, benchmark large-scale ET observations are still lacking,
and large uncertainties are found among available datasets.

Figure 1.1: Global observed hydrological cycle. The background figure shows the
estimates of the observed hydrological cycle adjusted from (Trenberth et al., 2007) to
apply to 2002-08 (1000 km3 for storage and 1000 km3 yr−1 for exchanges). Superposed
are values from the eight reanalyses for 2002-2008 (colour coded as given at the top-right
of the panel). The exception is for ERA-40, which is for the 1990s. For the water
vapour transport from ocean to land, the three estimates given for each are (i) the actual
transport estimated from the moisture budget (based on analyzed winds and moisture).
(ii) the E-P from the ocean, and (iii) P - E from the land, which should be identical.
Figure adopted from Trenberth et al. (2011).

Putting all components together, Gimeno et al. (2012) states: “The hydrological
cycle may be summarized as the evaporation of moisture at one location and
precipitation elsewhere, balanced by the atmospheric, oceanic, and hydrological
transport of water.” Fig. 1.1 (Trenberth et al., 2011) gives a schematic illustration
of this picture, with variables quantified from best observations available at the
time, but with various degrees of uncertainties among them. On average, 426 Eg
of water vapour is evaporated from the ocean surface in a year, of which 386 Eg
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(90 %) returns to the ocean as oceanic precipitation, and the remaining 40 Eg
(10 %) gets transported onto land. To close the budget in the long run, an equal
amount of water should return from land to ocean in the form of surface flow
and ground water flow. In addition to this ocean-land water balance, closure
in atmospheric water budget should be observed in an air column of arbitrary
shape and size, from the scale of a grid cell, to a watershed, or up to a continent,
all governed by the following equation:

dS
dt

= E− P−5 ·Q− R (1.1)

which expresses the storage change over time (dS
dt ) as the combined effect

of evaporation input (E), precipitation (P) and divergence (5 · Q) outputs,
and a non-physical term (R) that accounts for residuals/errors. For a closed
budget, R = 0. Taking the global land as a whole and omitting storage
changes and residuals in the long-term mean, about 114 Eg of water precipitates
over land every year, of which 74 Eg (65 %) is contributed by terrestrial
evaporation-transpiration, and the remaining 40 Eg (35 %) is transported from
ocean and converges over land (Fig. 1.1).

The above gives only a crude depiction of the global hydrological cycle, but even
with our modern day technology and knowledge, quantification of the mean
annual global cycle is still an ongoing challenge, let along its variability over
different spatio-temporal scales. Taking the ocean-to-land moisture transport as
an example, consistency is expected among these three quantities: the integrated
divergence over ocean (5 ·Q), the moisture surplus from excessive oceanic E
over P (E − P over ocean), and the moisture deficit from excessive terrestrial
P over E (P − E over land). However, as shown in Fig. 1.1, these are poorly
balanced in some of the state-of-art reanalysis products. Disagreements in other
variables are also present, particularly precipitation and evaporation, where the
spread among reanalyses is about 20 % and 30 %, respectively. At a regional
scale, datasets exhibit different biases over different time scales.

Water and energy are redistributed at a global scale by the atmospheric
circulation. Fig. 1.2 shows the seasonal mean December-January-February
(DJF) and June-July-August (JJA) moisture transports, computed by vertically
integrating layered moisture fluxes from the NCEP/NCAR reanalysis (Trenberth
and Guillemot, 1998). The plot summarizes the major characteristics of the global
moisture flows: it is dominated by the zonal component, with easterlies in the
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tropics and westerlies in mid-latitudes, and subtropical highs in-between; strong
seasonality over storm track and monsoon regions; and stronger oceanic fluxes
than those over land. On top of these, moisture fluxes vary substantially at
different time scales with different vertical distributions as well, and it is this
circulation element that poses the biggest challenge in our prediction of future
hydrological cycle change (Shepherd, 2014; Flato et al., 2013; Demory et al., 2014).
This thesis will revisit this global pattern and investigate some important aspects
related to inter-annual variability, the diurnal cycle and tropical cyclones (TCs).
The following section lists the main aims and topics of the thesis and introduces
its structure.

Figure 1.2: Vertically integrated moisture transport for the period 1979-1995 in DJF (top
panel) and JJA (bottom panel). Figure is adopted from Trenberth and Guillemot (1998).



6 Introduction

1.2 Research aims

Successful understanding and modelling of the climate system requires solid
and detailed observations of the water cycle. This work aims to provide an
updated assessment of some key aspects of the atmospheric hydrological cycle
in the modern day climate, aspects that were selected because they offer the
potential to provide new insights into identifying the capabilities and limitations
of our global climate observing systems and new insights into the mechanisms
that drive hydrological cycle variability on multiple time and space scales. By
considering scales from the diurnal cycle and tropical cyclones up to basin-wide
patterns of inter-annual variability, hydrological cycle behaviour and processes
are identified that could be used to challenge climate model capabilities in a
diverse range of situations.

This overarching aim is structured into a series of more specific scientific
questions to be addressed:

1. How well are the key components of the atmospheric hydrological cycle
monitored by observations and reanalyses? A particular motivation here is
to assess the newest reanalysis product (JRA-55), which was not available
to be included in the inter-comparison in Fig. 1.1 from Trenberth et al.
(2011), by considering the extent to which the most modern reanalysis
products agree with each other and with other ground-based or remote
sensing observations. This analysis raises two related questions: how well
do reanalyses close the water budget, and where do the budget residuals
come from?

2. How are the temporal variations in precipitation, evaporation and
moisture transports decomposed into different time scales? What are the
contributions of annual cycle, diurnal cycle, intra-seasonal and interannual
variabilities? Each of these components is explored in greater detail,
guided by the remaining questions.

3. How does atmospheric moisture transport vary diurnally and how is it
decomposed into thermodynamic versus dynamic components?

4. What are the dominant patterns of inter-annual moisture divergence
and how are they linked to the El Niño Southern Oscillation (ENSO)
phenomenon? Since moisture convergence and divergence are inherently
linked to the atmospheric diabatic heating that creates the global
teleconnections associated with the impact of ENSO events, a further



1.2 Research aims 7

important issue to address is the dependence of the moisture divergence
responses on different El Niño warming patterns.

5. Extending the temporal spectrum to cover extreme events, can the role of
tropical cyclones in transporting moisture from ocean to land be quantified
using reanalysis data?

To answer these wide-ranging and challenging questions, multiple state-of-art
observation-based (i.e. including direct observations and reanalysis) datasets
are utilized to assess the key hydrological processes including precipitation,
evaporation/evapotranspiration, atmospheric humidity changes and horizontal
moisture transports. First, I will present an evaluation and intercomparison
of the selected datasets, taking account of dataset uncertainty assessments.
Variability is then decomposed into different time scales to assess their relative
magnitudes, and detailed analyses are performed for the annual and diurnal
cycles. Various conventional, well-established methods such as spatial and/or
temporal averages, composites, Taylor diagrams, harmonic and Empirical
Orthogonal Function (EOF) analysis are used in the investigation, together
with some new techniques that are explored to facilitate a better and more
thorough understanding, such as the introduction of uncertainty quantification
and visualization to a Taylor diagram, the application of Self-Organizing Maps
(SOMs) as a complement to EOF analysis, and a set of distance-based schemes
to attribute moisture transports to TCs. The “frozen” assimilation systems
and complete spatio-temporal global coverage of reanalyses make them a good
candidate to study short-term variability, therefore most of the analyses here are
based upon the ERA-Interim reanalysis product.

The results will provide valuable information to the research community in a
few areas. Firstly, the reanalysis-focused analyses serve as good complements to
the study of longer-term climate changes and future predictions, by contributing
to our understanding of the processes that underlie hydrological cycle changes.
The assessment of the current hydrological cycle will serve as a baseline for
hydroclimatic studies, climate change predictions and evaluations.

Secondly, some suggestions are offered to the user community based on
the assessments of the datasets evaluated here. Due to the differences
in the incorporated observations, resolutions, bias correction methods,
parameterization schemes and various pre- or post-processing procedures,
observational datasets and reanalyses may exhibit different features/qualities
which should be taken into account in a study. In particular, the evaluation of
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various hydrological variables from the newly released JRA-55 reanalysis offers
helpful guidance in choosing this product according to the specific purpose of
future research.

After assessing the quality of observational data, much effort is devoted to the
horizontal moisture transport, a process that combines the thermodynamic and
dynamic components of the hydrological cycle. Constructive new findings are
reported across a spectrum of variability, ranging from climatological annual
cycles based on three decades of observations, to inter-annual variations related
to ENSO, to diurnal cycles stemming from humidity and/or wind fields, and
finally covering the extreme water fluxes related to TC activity.

1.3 Thesis structure

The thesis is broadly divided into two parts: the first part evaluates the
state-of-art observation-based estimates of the atmospheric hydrological cycle
in the modern day climate. Chapter 2 considers the precipitation observations:
reanalysis products ERA-I and JRA-55 are compared with gauge, satellite and
combined gauge-satellite precipitation observations in their depiction of mean
precipitation patterns and degrees of temporal variability. The comparison starts
from global patterns and delves into regional scales where notable differences
are observed. Chapter 3 applies a similar evaluation process to E/ET, total
column water (TCW) and finally assesses the atmospheric hydrological cycle
from a water budget perspective. Budget residuals are examined by a cluster
analysis, providing evidence to develop a hypothesis for the causes of the
budget residuals.

The second part focuses on horizontal atmospheric moisture flux variability
across multiple time scales. Chapter 4 diagnoses two climatological variabilities:
the annual and diurnal cycles, based on 34 years of reanalysis data. Chapter
5 investigates the distinct moisture divergence responses to extreme versus
moderate El Niño events. The results, consistent with recent literature, suggest
that the conventional El Niño-La Niño-dipole way of understanding ENSO
variability needs to be updated: the difference between an extreme El Niño and
a moderate El Niño is as large as, sometimes even larger than, the difference
between a moderate El Niño and a La Niña in terms of their expression in
the moisture divergence fields. In this chapter, I also propose SOMs as a helpful
complementary method to EOFs for diagnosing non-linear behaviour. Chapter 6
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shifts the scope to extreme events and quantifies onshore moisture transports by
the Atlantic and Eastern Pacific tropical cyclones. An ensemble of estimates are
created by applying multiple TC attribution schemes to reanalysis and best track
datasets. The results provide a new quantification of the significant contribution
that TCs play in supplying moisture to the North American continent, and in
some cases, a key factor in the alleviation of sustained droughts.

Each chapter is relatively self-contained, guiding the reader into the topic by
a literature review which sets up the research background, which is then
followed by a standard data and methods-results-conclusion structure. The final
chapter (Chapter 7) gives an overall summary of the thesis and proposes some
suggestions for future work.
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Chapter 2

Evaluation of atmospheric
hydrological cycle – precipitation
observations

2.1 Research Background

We will start this chapter by first reviewing the current status and challenges
of global scale precipitation observations, the reliability and known issues
of some major datasets. The discussion will cover observations from in
situ gauge measurements, remote-sensed satellite retrievals and and those
that are produced by reanalysis models. Ideally, estimates from these three
major sources should reconcile with each other. However, each of them has
their respective strengths and limitations, and the consistency among them is
usually poor where precipitation is most intense. Moreover, the accuracy and
confidence of these measurements vary spatially and temporally, mostly due to
the limited monitoring techniques and our knowledge of the synoptic processes.
Considerations of both factors will be taken into account when we evaluate
the precipitation estimates from a newly released reanalysis product (JRA-55).
Finally some suggestions will be offered to the user community based on the
evaluation results.

Although monitoring of rainfall has a long history, global scale records of
precipitation that cover both land and ocean didn’t exist until routine satellite
observations became operational. In the past four decades, global climatologies
of monthly precipitation estimates have seen a dramatic improvement in both
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observation quantity and quality, thanks to the superior spatial coverage of
satellite remote sensing, particularly after the launch of the TRMM satellite in
late 1997 (Pan et al., 2012; Dai, 2001). On the other hand, improved upper-air
observations of other variables provides better observational constraints for
model-based precipitation from reanalysis. Equipped with more advanced data
assimilation schemes, the skill of precipitation estimates has also improved in
newer generations of reanalyses (Trenberth et al., 2011; Bosilovich et al., 2008;
Knippertz et al., 2013; Ebita et al., 2011; Kobayashi et al., 2015; Simmons et al.,
2010). The benefits of satellite observations on reanalysis precipitation is mostly
felt over ocean (Dee et al., 2011), where direct ship measurements are prone to
sampling errors, and fixed location in-situ observation is very much limited
to several rain gauges on the Tropical Atmosphere-Ocean (TAO) buoys in
the central Pacific (Andersson et al., 2011). Over land, in-situ measurements
of surface temperature and humidity impose stronger constraints on the
reanalysis models, therefore precipitation estimates tends to be more reliable
over land (Dee et al., 2011; Andersson et al., 2011). Over most of the mid-to-high
latitude land areas, the magnitude of mean precipitation variability is within
1 mm/day from both reanalysis-based and observation-based estimates (Lorenz
and Kunstmann, 2012).

Despite these improvements, global observations of precipitation have
substantial uncertainties, particularly convection-related precipitation in the
summer hemisphere (Adler et al., 2001; Bosilovich et al., 2008; Lorenz and
Kunstmann, 2012). In principle, different datasets should share consistency
in precipitation estimates, but dependencies are common in precipitation
inter-comparison studies, particularly in regions where surface observation
coverage is sparse. The lack of in-situ observations often brings down
the effectiveness of remote-sensing observations as well: due to the above
mentioned difference in terrestrial and oceanic precipitation qualities, some
satellite estimates are rescaled against gauge data before being combined with
the surface data (e.g. GPCP, (Huffman and Bolvin, 2011)), so are only marginally
different from in situ products at the basin and monthly scale (Pan et al., 2012).
On the other hand, although satellite observation has achieved near-global
coverage and increases in the temporal sampling resolution, a widespread
decrease in the number of assimilated gauges has occurred in recent decades.
For instance, the number of rain gauges available to CPC and GPCC decreased
over most of South America, Europe, Africa, Asia and Australia during the
1990s and 2000s (Lorenz and Kunstmann, 2012). Similar decreases also exist in the
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CRUTS precipitation dataset (see Fig. 4 in Hegerl et al. (2015)).

Well observed regions, including North America and Europe, have much
denser monitoring networks than other tropical and subtropical regions. In
the upgrade from version 4.0 to 5.0 of the GPCC product, the spatial coverage
was further increased in areas where monitoring had already been dense,
but little improvement is seen in regions where additional observations are
urgently needed (Lorenz and Kunstmann, 2012), particularly in the tropics where
many studies have identified problems/uncertainty maxima (e.g. interpolation
uncertainties) caused by a lack of surface observations (Lorenz and Kunstmann,
2012; Pan et al., 2012; Qian et al., 2006; Bosilovich et al., 2008). This makes
the divergence of precipitation data quality between the tropics and mid-high
latitudes even larger, and hampers the overall usefulness of the datasets in
faithfully quantifying large scale hydrological characteristics.

A paradoxical outcome of this surface coverage insufficiency is that sometimes
datasets have better agreements over such poorly observed areas than other
densely gauged basins (Pan et al., 2012). This is due to a heavy overlap in the
small number of available gauges being assimilated into different datasets over
these poorly observed regions, and a lack of data for procedures like undercatch
corrections, while in densely gauged regions the differences in gridding and
various correction procedures could lead to relatively larger discrepancies. This
feature adds extra complexity to our interpretation of uncertainties because
small discrepancy spread does not guarantee better observational quality
(Hartmann et al., 2013), and adding more datasets into the uncertainties analysis
would not provide much added value unless more independent observations
are assimilated.

However, currently there are not many effective alternatives to simply
inter-comparing as many different datasets to assess the uncertainty ranges in
large scale precipitation observations (Mo and Higgins, 1996; Andersson et al.,
2011). Many previous studies have addressed this using different datasets and
considering different spatio-temporal scales.

Trenberth and Guillemot (1998) validated the precipitation from the NCEP-NCAR
(NR1) reanalysis against the Xie-Arkin CMAP observation, and confirmed some
deficiencies of NR1 including a double SPCZ problem, tropical rainfall biased
low compared with CMAP, and insufficient ENSO-related variability. Bosilovich
et al. (2008) included NR1 alongside another four reanalyses (NR2, ERA-40,
JRA-25 and GEOS4 from NASA) in their comparison, therefore putting it in
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a wider context. Two points are worth mentioning. i) Although in general
new reanalyses show improved skills than older ones, exceptions do exist, as in
the case of NR1 and NR2: the former has both better spatial correlations and
less biases than its successor. Therefore the newer-is-better rule of thumb is
not always correct. ii) The low bias in tropical NR1 in Trenberth and Guillemot
(1998) “changes” to a high bias compared with a GPCP reference, this is
because of the known high bias of CMAP with respect to GPCP (more on this
in section 2.2). This complexity illustrates a pitfall that although words like
“biases” and “over/under-estimate” are common in such validation studies, one
should always keeps in mind that the reference datasets differ from study to
study and none is the absolute truth. And a comprehensive view is difficult to
achieve without a comprehensive collection, which leads to another challenge in
the precipitation quantification: the proliferation of existing literature on such
inter-comparison studies provide valuable information and recommendations
for researchers in different applications. However, the emergence of new data
products and an ever increasing amount of available data collections also pose
a bigger challenge for the user community to make effective selections. For
the continuation of such studies, one needs to incorporate a greater number of
datasets in the analysis to create a comprehensive review.

Instead of incorporating as much data into one single comparison, an alternative
is to select only from the “seeded players”, namely the best quality datasets
based on existing knowledge in some specific fields. Comparison is then
performed between the “seeds” and the newly emerging compilations. This
methodology will be adopted in this study, and the “seeds” we select are the
model-based ERA-I (Dee and Uppala, 2009), and the observation-based GPCP
(Huffman and Bolvin, 2011).

NR1 and NR2 have been shown to have various significant deficiencies
in hydrological aspects, as mentioned above. The MERRA (Modern Era
Retrospecitive Reanalysis) and CFSR (Climate Forecast System Reanalysis)
are both newer generation reanalyses (Trenberth et al., 2011), however, global
precipitation averages in both show abrupt increases around 1998 and 2001,
particularly over the oceans (Lorenz and Kunstmann, 2012). This has been
diagnosed as a satellite observation problem in MERRA: assimilation of
AMSU-A data brings in excessive moisture followed by excessive oceanic
precipitation (Bosilovich et al., 2011; Robertson et al., 2011). Since CFSR and
MERRA share nearly the same analysis system and input data, the same
diagnosis also applies to CFSR. The problem is severe enough to change
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the ocean into a net moisture sink (P − E > 0), therefore rendering them
unsuitable for hydrological studies (in terms of terrestrial precipitation, MERRA
has performed a land-only rerun of the reanalysis and used observations to
correct precipitation, making it perhaps the only global reanalysis that has
observation-assimilated precipitation). In addition, CFSR also systematically
over-estimates the mid-to-high latitude precipitation (Lorenz and Kunstmann,
2012). For the earlier ECMWF product ERA-40, there exists a large tropical wet
bias (creating an oceanic moisture sink during the satellite era), and spurious
temporal changes (Andersson et al., 2005; Dee et al., 2011; Hagemann et al.,
2005; Bosilovich et al., 2008; Trenberth et al., 2007), which has been substantially
improved in its successor ERA-I (Knippertz et al., 2013). ERA-I has been shown to
be the best reanalysis for atmospheric branch of the hydrological cycle (Castillo
et al., 2014).

At the end of 2013, Japanese Meteorological Agency (JMA) released its newer
version of atmospheric reanalysis dataset–JRA-55–to supersede its predecessor
JRA-25. JRA-55 benefits from third generation reanalysis techniques, and
achieved some improvements such as increased model resolution (T319L60 with
a reduced Gaussian grid system vs T106L40 in JRA-25), the introduction of
4D-VAR assimilation scheme (thus making it the first global reanlaysis applying
4D-VAR to the second half of the 20th century), a revised radiation scheme
and variational bias correction (VarBC) for satellite radiances (Ebita et al., 2011;
Kobayashi et al., 2015). The extended temporal span further back in time to
cover the pre-satellite 1958-1979 period makes it more suitable for studies of
climate change or multi-decadal variability, compared with the shorter JRA-25
(1979-2004). A couple of studies have reported some preliminary assessments
of this new product, and confirmed improvements with respect to JRA-25,
such as alleviating a dry bias over the Amazon region and the cold bias
in the lower stratosphere (Ebita et al., 2011; Kobayashi et al., 2015) and better
temporal homogeneity of temperature structure (Kobayashi et al., 2015). The
global precipitation anomalies also show better agreement with observations
(Kobayashi et al., 2015).

However, a careful and detailed assessment of various hydrological related
variables in JRA-55 has not been published yet. Therefore we include it in
our dataset selection and compare against ERA-I, as well as observation-based
estimates (the rationale for selecting GPCP will be explained in the Data and
Methods section). Our objective is to give a brief review of the reasonableness
and usefulness of these most modern reanalysis datasets in realistically
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depicting the atmospheric hydrological cycle, which is still believed to be a
challenge for the state-of-art reanalysis products. A comprehensive evaluation
and explanation of the differences between reanalyses is a non-trivial task that
goes beyond the scope of the study, so we provide only a summary of some
selected aspects that are believed to be most important for hydrological cycle.
These include precipitation P (this chapter), evaporation E, the net freshwater
fluxes (E - P) and water budget residuals (all in Chapter 3). Results of the these
validations will provide useful guidance on selecting an appropriate dataset for
subsequent analyses.

Evaluation in this chapter covers the mean annual cycle of precipitation rates,
magnitudes of variances over different time scales, and pattern correlations
with independent observations. To validate the reanalysis precipitation, the
observation-based GPCP dataset is used as the “truth”, and extra “independent”
datasets are chosen to facilitate estimations of uncertainties in observation-based
products. For such purposes, the CRUTS precipitation product (version 3.1)
(Harris et al., 2014) is used for terrestrial precipitation, and HOAPS (version 3.2)
(Andersson et al., 2010) is used over the ice-free ocean. In the end, we summarize
the performance of the reanalyses using Taylor diagrams, in which we explore
a new method to depict the observational uncertainties on Taylor diagrams by
utilizing the error estimations from the observation products.

2.2 Data and Methods

2.2.1 Precipitation observation data

For validation purposes, many good-quality observation-based products are
commonly used in the research community, including CMAP (Xie and Arkin,
1997), PREC/L (Chen et al., 2002), CRUTS (Harris et al., 2014), GPCC (Becker
et al., 2013), and various satellite retrievals including HOAPS (Andersson et al.,
2010).

There are some known problems in the CMAP precipitation over oceans,
especially for trends (Trenberth et al., 2007). Tropical precipitation has a notable
high bias resulting from unwarranted use of atoll data in CMAP (Yin et al.,
2004; Bosilovich et al., 2008; Edwards, 2007), and since GPCP does not include
the atoll stations, it is immune to such errors. In addition, over high latitude
regions north/south of 40° N/S, CMAP relies on SSM/I alone which suffers
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from coverage completeness and a dry bias at such latitudes (Edwards, 2007),
while GPCP uses TOVS data to supplement the SSM/I (Edwards, 2007; Huffman
and Bolvin, 2011). Therefore the GPCP precipitation product is preferred for
validation purposes.

CRUTS (CRU Timeseries, version 3.10) (Harris et al., 2014) provides monthly
time series of 10 variables (including temperature and precipitation) compiled
from over 4,000 weather station records and has global land coverage (except
Antarctica). The high spatial resolution (0.5° × 0.5°) makes it suitable for
regional climate variability studies as well, and it has been used to derive
gridded drought indices (e.g. van der Schrier et al. (2013)). The 3.1
version of CRUTS has been shown to have comparable quality with GPCC
precipitation over most of the globe, despite fewer input stations, therefore it
is chosen as an “independent” observation to help quantify the observational
uncertainties.

GPCC provides monthly land-surface precipitation with global coverage, based
on 67,200 stations world-wide that feature record durations of 10 years or longer,
and is used as the land surface reference in GPCP. However, it differs from GPCP
in the inclusion of various gauge bias corrections including under-catch bias in
the latter (GPCC includes bias corrections in the Arctic). In addition, the merge
of satellite observations in GPCP allows global ocean coverage. Therefore the
GPCP data is used as the major observational reference, and some GPCC data is
used to help diagnose the Indian sub-continent discrepancies observed in GPCP
and CRUTS.

HOAPS was designed with the principle of retrieving multiple global ocean
surface flux components consistently within one single observation framework.
SSM/I is used as the common data source for all retrievals instead of
combining different data sources, thus achieving better homogeneity and
internal consistency (Andersson et al., 2011).

Table 2.1 lists the metadata of datasets used in the following analysis.

Table 2.1: Summary of the observation datasets containing precipitation P.

Dataset Time period Resolution (degree) Land/sea coverage Data sources
GPCP (v2.2) 1979 - 2014 2.5× 2.5 Global Merged gauge and satellite

ERA-I 1979 - 0.75× 0.75 Global Forecast model
JRA-55 1958 - 1.25× 1.25 Global Forecast model

CRUTS (v3.1) 1948 - 2010 0.5× 0.5 Land Gauges
GPCC (v6.0) 1901 - 2010 0.5× 0.5 Land Gauges

HOAPS (v3.2) July-1987 - Dec-2008 0.5× 0.5 Ice-free ocean SSM/I
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2.2.2 Taylor diagram

The Taylor diagram (Taylor, 2001) is a useful graphical device to summarize the
agreement between two patterns. By making analogous relations to the law
of cosines, a Taylor diagram represents the pattern correlations (cosine of the
angle), standard deviations (radial distances) and the centered root mean square
(RMS) differences (distance between model and reference points) in a single plot.
Spatial correlation measures the extent to which the pattern in a model matches
the reference, and the standard deviation quantifies the amplitude of variances.
Centered RMS differences summarizes these two quantities and provides an
overall evaluation. Applied with proper area weighting and temporal weighting
in computing the statistics, a Taylor diagram is especially useful in evaluating
multiple aspects of complex models or in gauging the relative skill of many
different models.

Extending the basic formulation of the Taylor diagram, some other statistics
could be added to give a more thorough view of the relationships among the
patterns being examined, such as an extra dot (or line) for each model point
to represent the systematic bias (Taylor, 2001), and an extra “independent”
observation to indicate the observational uncertainty (Taylor, 2001; Bosilovich
et al., 2008, 2011). In this chapter we will apply this technique to compare
the precipitation estimates in ERA-I and JRA-55 with an observation-based
dataset (GPCP v2.2). In addition to the centered RMS differences offered by a
standard Taylor diagram setup, the overall biases of each reanalysis will also be
quantified on the diagram. Another “independent” observation (CRUTS 3.1 and
HOAPS v3.2) will be plotted alongside the GPCP reference to help quantify the
uncertainties from observations. In addition, a new approach to estimate such
observational uncertainty using the random error of the observational dataset
will be explored.

2.2.2.1 Bias estimate on a Taylor diagram

The centered RMS difference (E) between a model point (M) and the
observational reference (O) is defined as (Wilks, 2011, chap. 8):

E = MSE− (M̄− Ō)2 (2.1)

where MSE is the mean squared error; M̄ and Ō denote the mean of M and
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O, respectively. Eq.2.1 shows that the Taylor diagram represents a model as
the debiased MSE, which is the MSE after subtraction of contributions due to
overall bias errors (Wilks, 2011, chap. 8). And when represented geometrically,
the quantities E1/2, RMSE and |M̄− Ō| form a right-angle triangle (Taylor,
2001).

E could be represented using a standard Taylor diagram setup as a vector (
−−→
OM)

pointing from the reference towards the model point. To visualize the bias, one
could draw another vector (

−→
MB) from the model point, perpendicular to

−−→
OM,

with a length of ‖ M̄− Ō ‖. The direction of the bias arrow follows a lateral
convention: leftward pointing denotes negative bias and rightward positive.
When there is a relatively good match of the standard deviations between
the model and reference, this scheme helps distinguish the bias directions
better.

2.2.2.2 Depicting observational uncertainty on a Taylor diagram

Although used as a reference, an observation of a variable is itself uncertain.
Various sources of uncertainties and biases add up throughout the processes of
monitoring, data collection and pre-processing, bias corrections, and accumulate
into the final synthesized product (Hartmann et al., 2013). It is usually difficult
to account for all the potential error souces, which could lead to a paradoxical
interpretation that small uncertainty ranges indicate a better product/estimation
(Hartmann et al., 2013). Observational uncertainty is typically depicted on
a Taylor diagram by adding another independent observation of comparable
quality, so that the difference between the two can be used as an indication of
the observational uncertainty (Taylor, 2001; Bosilovich et al., 2008).

However, this conventional approach has two main limitations. i) datasets may
have common data sources and hence are not really independent. ii) it does not
make use of the error estimates that some dataset developers have been able
to quantify. Therefore, we intend to overcome these limitations by utilizing the
error estimates provided by GPCP (this chapter) and OAflux (in next chapter)
as a supplimentary uncertainty measurement, thus making full use of these
valuable first-hand information from the data providers. Bias errors were
neglected in the error computation in GPCP, therefore the RMS error should
be interpretated as dominated by random fluctuations that arise from sampling,
measurement and algorithm effects (Janowiak et al., 1998; Huffman and Bolvin,
2011). Detailed explanation of the error derivation is missing in the OAflux
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documentation (Yu et al., 2008), therefore we will interpret their error data as
RMS errors assuming independence between different data sources, and a larger
monthly mean standard deviation at a grid box represents a larger uncertainty
range among input data sources (Yu et al., 2008). Given these random errors in
the reference dataset, there will be a region on the Taylor Diagram around the
reference point where “reality” could reasonably lie, and the purpose here is
to map out this region, using the published error estimates. However it is not
clear whether the errors in each grid cell are independent of each other, or there
are consistent regional structures in the error field. Therefore, theoretically all
possible combinations need to be enumerated to cover a full range of uncertainty
estimate. Here we propose a method that allows a meaningful uncertainty
range depiction using finite computations, based upon certain assumptions of
the error distrubtions. The statistical interpretation of the results will also be
discussed in the end.

This method to estimate an uncertainty range involves some manipulation of
the RMS error E (note this is the observational RMS error offered by the data
provider, and it is distinct from the RMS between the model and reference on
a Taylor diagram): Ex = f (E). The effect of function f () is to give a particular
redirection of the error field, ranging from completely coherent errors chosen
to maximise the difference from the reference field in some metric, to assigning
completely random errors at each grid box. When added to the observation (O),
the resultant Uncertainty Variable (UV) U = O + Ex represents one possible
realization of the error-contaminated observation, and could be plotted out on
the Taylor diagram as another evaluation point. And a series of such realizations
will delineate the range of uncertainties stemmed from random errors.

The first two realizations one could easily obtain are:

{
U1 = O + E
U2 = O− E

(2.2)

where the error standard deviation at each grid box is added (subtracted) from
the observation. It can be proved (not shown) that the resultant points U1

and U2 will be symmetrical about the vertical line going through the reference
point (x = 1 if normalized, see a sample plot in Fig. 2.1). However, these two
points are not included in the plots in the results section, as will be explained
below.

The signs and magnitudes of the errors should be allowed to vary spatially.
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Using the standard deviations (±E) as the boundaries of the error distribution
at each grid box, and assuming grid box error independency at any time, the
scenarios of maximum and minimum standard deviations of a UV could be
achieved using:



U3 = O + E3

U4 = O + E4

E3 = [e1 · sgn(o1 − Ō), e2 · sgn(o2 − Ō), ...,
en · sgn(on − Ō)]

E4 = −E3

(2.3)

Where U3 and U4 are the Uncertainty Variables with maximum (σmax) and
minimum (σmin) standard deviations, respectively. And sgn() is the sign
function. Maximum standard deviation is achieved by adding (subtracting) a
capped (assuming standard deviation as the local upper boundary) positive
error to (from) the grid boxs where they are above (below) average. And doing
the opposite gives the UV with minimum standard deviation. Again due to the
symmetrical property, U3 and U4 are mirror images about the x = 1 vertical line
(see U3 and U4 in Fig. 2.1).

The space in between U3 and U4 is delineated by inserting six intermediate dots
interpolated from the standard deviation range σmax − σmin:

σt = σmin + f (σmax − σmin), f = {0.10, 0.25, 0.40} (2.4)

Only the left half ( f < 0.5) of the empty space is interpolated by computation,
and the right half could be obtained by a symmetrical transformation.

To give a full range of uncertainty estimate, the distance between the point of U
and O should be maximized, at any given target standard deviation σt. This is
equivalent to minimizing the correlation between U and O subject to a given
standard deviation of U, thus constituting a Lagrangian multiplier problem
where the target function to minimize is f (U) = corr(U, O), and the equality
constraint is g(U) = σU − σt = 0. To numerically solve this, the Augmented
Lagrangian method (ALM) is applied. An ALM function is first constructed
as:

Φ(U) = f (U) +
µk
2

g(U)2 − λkg(U) (2.5)
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where µk and λk are the penalty parameter and Lagrangian multiplier at the kth
step, respectively.

During each iterative step, a gradient descent algorithm is used to solve the U
that minimizes the ALM function:

Uk = argmin
U

Φ(U) (2.6)

Where argmin
U

is the arg max operator. Note that ui is always kept in the

range [−ei, ei] throughout the process (constrained by the local error standard
deviation ei). Before stepping into the next iteration, µk and λk are updated
following:

{
µk+1 := 30× (k + 1)
λk+1 := λk − µkg(U)

(2.7)

where := denotes parameter updating.

Since the interpolated standard deviation (σt) only needs to be approached
approximately, a relatively slow-growing penalty parameter updating function
is adopted here. Experiments show that a few iterations are usually sufficient to
reach convergence at a reasonable level (see a sample in Fig. 2.2).

The area delineated by the above derived UVs form a section-like shape
in the Taylor diagram (Fig. 2.1), and represents the range of uncertainties
stemming from the observational error. Care needs to be taken in its statistical
interpretation: at each designated standard deviation level σt, the correlation
corr(U, O) has been deliberately minimized, so that the resultant UVs
encompass the largest area possible surronding the reference point, therefore
representing the largest possible uncertainty spread given the observational
error. However, at grid box level an arbitrary boundary ±ei is set to the local
error’s distribution, although the range [−ei, ei] only accounts for around 68 % of
probabilities in a Normal distribution. Moreover, after the minimization process,
the errors Ex are mostly distributed at their extremes: exi being close to ±ei or
0 (see Fig. 2.2d, the author is unable to give a sound mathematical explanation
to this). Therefore, the uncertainty range estimated above is a combination of
locally constrained random error distribution (within [−ei, ei]), and a globally
deliberated spatial pattern. However, the following Monte Carlo experiment
suggests that the local error distribution constraint has little effect on the error’s
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Figure 2.1: A sample plot of the observational uncertainties estimated from the random
error on a Taylor diagram. Data used to generate the plot are the tropical precipitation
from GPCP (v2.2) in JJA season, during the period of 1988-2008, and the RMS error data
provided by GPCP for the same spatio-temporal region. U1 is the Uncertainty Variable
(UV) obtained by adding the RMS error onto the observation: U1 = O + E, and U2 is
U2 = O−E. U3 and U4 are the UVs with maximum and minimum standard deviations,
respectively. Ux are the correlation-minimized UVs interpolating the space between U3
and U4. Three random UVs (Ur) obtained by randomly sampling a Normal distribution
at each grid box are shown as small black dots.

size (variance of Ex).

Assuming grid box errors are independent and Normally distributed at all grid
boxes, a random error Er can be obtained by randomly sampling a Normal
distribution N (0, ei) at each grid box i. The resultant UV is simply Ur = Er +O.
A number of such random UVs could then be generated to form a Monte Carlo
test. The results (small black dots in the sample figure Fig. 2.1 and figures
in the results section) suggest that these random points are mostly distributed
directly above the reference point, and aligned along the section arc formed
by correlation-minimized UVs. The former property is a result of the grid
box independence assumption and therefore the random error has near zero
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Figure 2.2: Process of the Augmented Lagrangian multiplier method in generating the
uncertainty estimates shown in Fig. 2.1. (a) the convergence of the equality constraint
function g(X) during 5000 iterations. (b) convergence of the correlation coefficient to be
minimized. (c) convergence of the augmented Lagrangian function. (d) distribution of
error coefficients (exi = f · ei) at the end of computation. The three most frequent values
for f are −1.0, 0 and 1.0.

covariance with the observation (Var(O, Er) ' 0), and the latter suggests that
although the local error distribution is constrained by its standard deviation
±ei, the constraint on the variance of the resultant error Var(Ex) is negligible:
the variance of Ex is of similar magnitudes as those of the random UVs (note
that minimizing the correlation of O + Ex and O is equivalent to maximizing
the variance of Ex). Finally, as there is usually a tightly packed cluster of the
random UVs on the Taylor diagram, only three of them are retained in the final
plots.

2.3 Results

2.3.1 Long term mean annual cycle of precipitation in

1988-2008

The mean annual cycle of precipitation is computed from monthly ERA-I,
JRA-55, GPCP (version 2.2), CRUTS (version 3.1) and HOAPS (version 3.2)
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during the time period of overlap (Jan 1988 to Dec 2008). All computations are
done using their original resolution (ERA-I: 0.75°× 0.75°, JRA-55: 1.25°× 1.25°,
GPCP: 2.5° × 2.5°, CRUTS: 0.5° × 0.5°, HOAPS: 0.5° × 0.5°), except when
computation involves data on two different grids, when they are regridded to
the lowest resolution (2.5°× 2.5°). GPCP is used as the reference and differences
in Jan and July mean precipitation rates are displayed in Fig. 2.3 and 2.4.
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Figure 2.3: Absolute differences of the mean Jan precipitation (mm/day) from 1988 to
2008 between GPCP and (a) ERA-I, (b) JRA-55, (c) CRUTS and (d) HOAPS. Four selected
tropical regions are highlighed with green boxes in (a), defining the sample regions of
the Warm Pool (10°− 20°N, 130°− 140°E), west Amazon (5°− 15°N, 60°− 70°W), Indian
sub-continent (8°− 18°N, 70°− 90°E) and Gulf stream region (30°− 40°N, 65°− 75°W).

Compared with GPCP January precipitation, ERA-I shows a wet bias in the
tropical convergence zones (ITCZ, SPCZ, equatorical IO and central Africa),
and weak dry biases over the majority of extra-tropical ocean and land, with
the exception of a slightly stronger precipatation region in the northern Pacific
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Figure 2.4: As Fig. 2.3 but for July.

storm track. A moderately underestimated rainfall in the Gulf stream region
is apparent in ERA-I. The dry biases over extra-tropical land are of comparable
magnitudes as the difference between CRUTS and GPCP (Fig. 2.3c). The wet
bias found in Congo basin in ERA-I is well-known (Trenberth et al., 2011; Lorenz
and Kunstmann, 2012) and suggested to be related to a cold bias in its surface
temperature analysis (Lorenz and Kunstmann, 2012).

JRA-55 mostly shares the similar spatial pattern as ERA-I in January but
with larger magnitudes, particularly in the tropics. Continental Australia and
southern Africa have more rainfall than in GPCP and ERA-I. The wet bias found
in ERA-I central Africa is mostly gone in JRA-55, but the large dry bias over the
Amazon is clearly visiable in both reanalyses. This Amazonian dry bias has
persisted from their respective predecessors (ERA-40 and JRA-25) (Bosilovich
et al., 2008; Ebita et al., 2011; Kobayashi et al., 2015). In the case of JRA-25,
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Figure 2.5: Zonal average of long term mean precipitation rates (mm/day) in ERA-I
(red), JRA-55 (blue) and GPCP (black), during 1988-2008.

the dry bias was suggested to be the problem of unrealistically high surface
pressure. In JRA-55 the observational data from SYNOP stations of surface
pressure over Amazon region were entirely excluded, due to their inconsistency
with the background fields. A prelimiary evalution by Ebita et al. (2011) shows a
much improved agreement of Amazon basin precipitation with GPCP (v2.1)
in JRA-55 than in JRA-25, during 1980 to 1991, particularly during boreal
summer and autumn seasons, but the peak values during boreal winter are
still underestimated. Results in Fig. 2.3 (and later in Fig. 2.7) confirm that these
biases are largely consistent during the 1990-2010 decades as well. Both ERA-I
and CRUTS display some negative biases in Amazon compared with GPCP,
but the surface gauge coverage of GPCP and CRUTS is much sparser over the
Amazon (except near the Atlantic coast) than other continental regions, thus
raising the observational uncertainty.

Over the oceans, HOAPS has higher precipitation over regions with high
local variability, including the ITCZ and NH storm track regions, consistent
with Andersson et al. (2011). Since both HOAPS and GPCP use satellite-based
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retrievals to provide oceanic estimations, the observed difference is likely due to
the additional Infrared retrievals from GOES and TOVS, and OLR information
in the GPCP product. Moreover, HOAPS has been found to have higher
mean precipiation rate over the central Pacific region, contrary to other satellite
retrievals (Andersson et al., 2011). The co-location of largest wet biases in HOAPS
and high precipiation variances will be explored further in the next section.

In July, ERA-I and JRA-55 have in general similar global patterns of biases with
respect to GPCP (Fig. 2.4). As in January, JRA-55 has large wet biases over the
deep convection regions in the tropics, and the pattern corresponds well with the
positive moisture increments (see Kobayashi et al. (2015) Fig.11), and therefore is
likely to be caused by the spin-down problem of the forecast model that renders
a water-leaking atmosphere – a similar problem as in ERA-40 (Andersson et al.,
2005; Bosilovich et al., 2008) and ERA-I (Trenberth et al., 2007, 2011).

Over western North America and central Africa, JRA-55 biases are the opposite
sign to ERA-I. In the NH, the mid-to-high latitude land is systematically wetter
than GPCP and CRUTS for both reanalyses, which seems to be a common
problem for reanalyses and is likely related to the increase in summer time
convective precipitation (Lorenz and Kunstmann, 2012). In the SH, there exists a
seasonal north-south shift of a dry bias over the Amazon region in JRA-55. In
July the dry bias moves to the north of the basin (Fig. 2.4b, and in Jan it shifts
deep into the basin (Fig. 2.3b)). Both reanalyses and CRUTS show some negative
biases compared with GPCP over the Indian subcontinent, with ERA-I being
the most biased. However, this region of dry bias is surrounded by notable wet
biases over the Bay of Bengal, the Indian Ocean and the Arabian Ocean, similar
to the land areas in the maritime continent, parts of the Southeast Asian and
Madagascar.

The oceanic precipiation in HOAPS shows better agreement with GPCP in
boreal summer (Fig. 2.4d), but still has some wet biases of about 4 mm/day over
the cold tougue region, accompanied by a dry bias surrounding central America
and along the Gulf stream region. Mid-latitude oceanic rainfall in HOAPS is
systematically lower than that in GPCP, which relies on SSM/I retrievals for
the tropical - subtropical regions but incorporates TOVS inputs in the 40 - 70
latitudinal bands (Andersson et al., 2011; Klepp et al., 2010).

The zonal average plot in Fig. 2.5 reveals that the largest discrepancies among
datasets are in the low latitudes. The good agreement shared by both reanalyses
and GPCP in the mid-to-high latitudes is compromised in the deep tropics,
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following the seasonal shift of the deep convection zones. Overall, JRA-55
has the highest tropical precipitation, followed by ERA-I. This feature is more
spread out in boreal winter, covering a meridional range of 15°S− 5°N, while
in summer it is compressed to a narrower band of 5°N − 10°N.

2.3.2 Precipitation time series for sample regions

To examine the observed discrepancies among datasets in more details, time
series of four selected regions are plotted out in Fig. 2.6 - 2.10. Region definitions
are listed in Table 2.2, and a rectangular box for each region is shown on
Fig. 2.3a.

Table 2.2: Sample region definitions.

Region Spatial domain Land/ocean
Warm Pool 10°− 20°N, 130°− 140°E ocean box

west Amazon 5°− 15°N, 60°− 70°W land box
Gulf stream 30°− 40°N, 65°− 75°E ocean box

Indian sub-continent 8°− 18°N, 70°− 90°E land and ocean

2.3.2.1 Warm pool region

This region is located in the tropical warm pool area, east of the Philippines.
It is affected by the Asian monsoon and covered by the ITCZ in boreal
summer, therefore serves as a useful measure of the skills in depicting deep
tropical convection by the reanalyses. Consistent with previous discussion,
both reanalyses appear biased high, with JRA-55 being so to a greater extent
(53% more than GPCP on average for JRA-55, and 31% for ERA-I). JRA-55
shows excessive precipitation than other datasets during most of the year
(Fig. 2.6b), and its difference peaks in July-Aug, when the ITCZ shifts over this
region, enhancing both convection and precipitation frequencies. ERA-I shows
good agreement with GPCP and HOAPS in terms of seasonal cycle amplitude
(Fig. 2.6b), but the wet season starts earlier in spring and finishes later in winter.
All datasets display similar year to year and intra-seasonal variability in general
(Fig. 2.6c, d), but JRA-55 and HOAPS have larger variances over different time
scales (see also section 2.3.3).
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Figure 2.6: Precipitation time series for a sample box over the warm pool in
northwest Pacific (10° − 20°N, 130° − 140°E). (a) monthly precipitation time series
during 1988-2008. (b) mean annual cycle. (c) annual mean time series. (d) anomalies
with respect to the mean annual cycle of each time series.

2.3.2.2 West Amazon

Although improved compared with JRA-25, the JRA-55 still has the lowest mean
DJF precipitation over Amazon region (Fig. 2.7b), but is closer to GPCP and
CRUTS in JJA. ERA-I shows a weaker seasonal cycle. The poor agreement in
year to year (Fig. 2.7c) and intra-seasonal variability (Fig. 2.7d) reflects the large
observational uncertainties in this area due to insufficient surface monitoring,
which is a shared problem in many other major river basins around the world
(Qian et al., 2006; Biemans et al., 2009). In terms of year-to-year variability,
ERA-I has the lowest RMS difference (0.32) with GPCP, compared with CRUTS
(0.58) and JRA-55 (0.88). The large DJF dry bias in JRA-55 makes its long-term
mean precipitation 15% lower than GPCP. Another notable feature is the large
year-to-year and intra-seasonal variations in the CRUTS time series (Fig. 2.7c, d).
The temporal variance decomposition analysis (section 2.3.3) suggests that this
is due to the inclusion of some grid cells with very high, and possibly spurious
variances into the time series calculation.

Insufficient data exchanges with the Brazilian network leaves gaps in the
Amazon basin, and subsequently introduces large interpolation errors (more
on this in Section 2.3.3).
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Computations with the Amazon box shifted eastward by 5° longitude (so that
it does not include a local maximum in the eddy variances) shows better
agreements of CRUTS with others. Similar high variance regions also occur
in CRUTS around the circumference of the Amazon basin, in the Himalayas
region, maritime continent and Ethiopia (Fig. 2.18d).
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Figure 2.7: Same as Fig. 2.6 but for the west Amazon region.

2.3.2.3 Gulf stream

Precipitation rates over this region feature a semi-annual cycle with alternating
high and low values in winter, spring, summer and autumn (Prat and Nelson,
2014). This feature can be observed in Fig. 2.8b, but with considerable
discrepancies among datasets: HOAPS summer precipitation is so low that the
second harmonic of the semi-annual cycle is barely noticable, while JRA-55 is
biased wet in summer. Despite discrepancies in the annual cycle, anomaly time
series show better agreements among datasets, except that HOAPS features a
much higher intra-seasonal variance, which is more visible in Fig. 2.18e.

2.3.2.4 Indian sub-continent

During the summer monsoon season, precipitation in this area has opposite
biases over land (dry biases in ERA-I, JRA-55 and CRUTS wrt GPCP, Fig. 2.9b)
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Figure 2.8: Same as Fig. 2.6 but for the Gulf stream region.
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Figure 2.9: Same as Fig. 2.6 but for the Indian subcontinent land areas.
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Figure 2.10: Same as Fig. 2.9 but for the surrounding ocean areas.

and over ocean (wet biases in ERA-I, JRA-55 and HOAPS wrt GPCP, Fig. 2.10b).
Over ocean, the difference is most prominent in JRA-55, and is part of the
leaking tropical atmosphere problem in the forecast model discussed above.
Such a systematic bias makes the JRA-55 value 65% higher than GPCP estimates
on average (Fig. 2.10c). However, uncertainties in this area in the GPCP estimates
are also larger, as represented by the large long-term mean RMS error values
over the Bay of Bengal (Fig. 2.11b). An abrupt drop of ERA-I annual mean
precipitation in this region occurs around 1992 (Fig. 2.10c). This is likely to be
part of a more general problem caused by the drying effect of the 1D+4D-Var
rain assimilation scheme which responds to the changing volume of SSM/I
radiances from the DMSP satellites (Dee et al., 2011; Trenberth et al., 2011).

Over land, GPCP reports higher values than the other three datasets during
June - Oct (Fig. 2.9), when the Indian continent is controlled by the summer
monsoon and precipitation rates are enhanced largely by increased frequency of
non-showery rains (Dai, 2001). Although model-based reanalysis precipitation
is generally biased in tropics (Trenberth and Guillemot, 1998; Andersson et al., 2011;
Lee and Biasutti, 2014), few studies have demonstrated such a difference between
observations from GPCP and CRUTS, and the large contrast in the sign of the
biases over ocean and land. There are relatively big uncertainties in the GPCP
July estimations over the Bay of Bengal and along the western coast of the
Indian sub-continent, as represented by the 1979-2012 mean July RMS errors
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(Fig. 2.11), but the land errors are not particularly high compared with other
tropical regions. On the other hand, although there was a big drop in the station
numbers in India available to CRUTS dataset around 1985/86, due to reduced
data exchanges after that, there is not enough evidence to imply a drop in the
quality of estimation, as interpolation methods attempt to allow for the drop
off. Also, the time-means for CRUTS are determined mostly by the 1961-1990
climatology of New et al. (1999), based on a much denser network of stations
with adjustment for elevation dependence.

-3

-2.4

-1.8

-1.2

-0.6

0

0.6

1.2

1.8

2.4

3

3.6

4.2

4.8

5.4

(a) CRUTS-GPCP

lon

la
t

42 48 54 60 66 72 78 84 90 96 102 108 114

-6

0

6

12

18

24

30

36

-6

0

6

12

18

24

30

36

-3

-2.4

-1.8

-1.2

-0.6

0

0.6

1.2

1.8

2.4

(b) GPCC-GPCP

lon

la
t

42 48 54 60 66 72 78 84 90

-6

0

6

12

18

24

30

36

-3

-2.75

-2.5

-2.25

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

(c) GPCP ms-GPCP

longitude

la
ti
tu

d
e

42 48 54 60 66 72 78 84 90 96 102 108 114

-6

0

6

12

18

24

30

36

-6

0

6

12

18

24

30

36

-2.7

-1.8

-0.9

0

0.9

1.8

2.7

3.6

4.5

5.4

6.3

(d) GPCP ga-GPCP

longitude

la
ti
tu

d
e

42 48 54 60 66 72 78 84 90

-6

0

6

12

18

24

30

36

Mean July difference 1988-2008 (mm/day)

Figure 2.12: Mean July precipitation differences (mm/day) during 1988-2008. (a)
difference of CRUTS - GPCP. (b) difference of GPCC - GPCP. (c) difference of GPCP
multiple satellite data (GPCP-ms) and GPCP. (d) difference of GPCP gauge data
(GPCP-ga) and GPCP. The rectangular region of west/east Indian sub-continent are
labelled out in (a).

To diagnose this difference in more detail, the GPCC Full data reanalysis
(version 6) data, and two intermediate GPCP products (GPCP-ga and GPCP-ms)
during the same time period are compared (Fig. 2.12, 2.14). GPCP-ga (GPCP
gauge) and GPCP-ms (GPCP multi-satellite) are the two major components for
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Figure 2.13: Map of the meteorological sub-divisions of India. Figure is from the Indian
Institute of Tropical Meteorology.

the combined satellite-gauge product of GPCP. The former is based on version
6 of GPCC Full data reanalysis and v4 of GPCC Monitoring Product, and the
latter is a combination of GOES Precipitation Index (satellite IR observations),
SSMI (SSMIS) emissions and scatterings, and TOVS IR observations during the
SSMI period. The combined satellite-gauge product reflects, subject to some
weightings taking into account error variances, both the remote and surface
estimations. Therefore some examination of these components could help to
trace the source of the observed discrepency.

Fig. 2.12 displays the Indian sub-continent mean July precipitation differences
in CRUTS, GPCC, GPCP-ms and GPCP-ga when compared with GPCP. CRUTS
is much drier than GPCP (Fig. 2.12a), same as discussed above. GPCC and
GPCP-ms have opposite biases wrt GPCP, and since the former forms the basis
of the surface source and the latter the remote source for GPCP respectively, the
difference reveals the large discrepencies and uncertainties between surface and
remote observations, particularly over the western coasts and Ghat regions. The
complex topography over this region makes reliable and representative gauge
monitoring difficult, and being along the coast line poses extra challenges to
satellite observations (National Research Council, 2009, chap. 4). Fig. 2.12d shows
similar wet anomalies over the western Indian as in GPCC, much as expected.
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Figure 2.14: Spatial mean of July precipitation (mm/day) over the west (blue), east (red)
and the combined (green) region of Indian sub-continent, in different datasets. The west
region in IITM is approximated by the areal average over sub-divisions of 21, 22, 23, 24,
32, 33, 34 and 35 (see Fig. 2.13), and the eastern box by sub-divisions of 6, 7, 8, 19, 20,
25, 26, 27, 28, 29, 30 and 31.

Note that some differences are to be expected between the original GPCC
data and GPCP-ga, as various corrections are applied to the gauge estimations
in GPCP, including wind-induced undercatch, side-wetting and evaporation
(Huffman and Bolvin, 2011). The gauge undercatch errors are particuarly high
during winter in the high latitude regions or over mountain ranges where
solid-form precipitation dominates (Lorenz and Kunstmann, 2012). The Catch
Ratio (CR) (catch efficiency of gauge measurements) increases to above 80 %
in the low latitudes (20 − 40°N) (Adam, 2003), but can still be increased by
a systematic bias adjustments by ∼ 5 − 10%, which is slighted higher than
the adjustments following the method of Legates (1987). As GPCP adopts the
same method of Legates (1987) (Huffman and Bolvin, 2011), differences of similar
magnitude should be expected by the bias correction on a latitudinal band
scale.

The Indian sub-continent is further divided into western (6°− 25°N, 66°− 76°E)
and eastern (6°− 25°N, 76°− 87°E) sub-regions (as illustrated by dashed boxes
in Fig. 2.12a). The western region covers the coastal plains and western Ghats,
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where intense monsoon rainfall is observed along a narrow region in summer
(New et al., 2002). And the eastern region covers the arid areas on the lee side
of the Ghats in the south, and the Chota Nagpur Plateau in the north. The
Indian Institute of Tropical Meteorology (IITM) rainfall data (Sontakke et al., 1993)
are also included as a reference. This dataset provides monthly mean rainfall
estimates over 30 meteorological sub-divisions of Indian (Fig. 2.13), based on
a selected network consisting of 306 relatively uniformly distributed stations
for which rainfall data are available from 1871. The mean rainfall level in the
western box is approximated by the areal weighted average over the sub-divisions
of 21, 22, 23, 24, 32, 33, 34 and 35 (see Fig. 2.13), and the eastern box by
sub-divisions of 6, 7, 8, 19, 20, 25, 26, 27, 28, 29, 30 and 31. Spatial averages
of mean July precipitation for both regions and the merged combination are
shown in (Fig. 2.14), which shows better agreement among datasets for the
eastern region (red), while the western part (blue) contributes most of the overall
(green) differences. For the western region, gauge estimates from GPCC are the
wettest, closely followed by the GPCP-ga. Multi-satellite (GPCP-ms) estimates
are lower by about 54 %, but the combined effect is GPCP being higher than
CRUTS by about 1 mm/day. The IITM is slightly higher than the others over the
eastern region, possibly due to the approximations in using the sub-divisional
averages to represent a rectangular region. However, the western region in IITM
is notably lower than GPCC (by about 52 %) and GPCP-ga (by about 48 %).

It is possible to further de-compose and examine the multi-satellite estimates
in GPCP into individual contributing sources, as such intermediate products
are offerred available on their official website. It is likely that considerable
uncertainties and errors exist in both surface and satellite observations over
the western region, and further investigations are required to diagnose such
differences. On the other hand, good agreements over the eastern region
between GPCC gauge and GPCP satellite may suggest a small dry bias in
CRUTS.

2.3.3 Temporal variances of precipitation

Precipitation in different regions exhibits different modes of variability and
reflects different influences from the key processes that drive precipitation
(Ruane and Roads, 2007). Therefore correctly representing these frequency
characteristics is another requirement for precipitation datasets. In this
chapter focus will be placed on time scales from intra-seasonal to inter-annual
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using monthly data, while findings based on the diurnal-semidiurnal
moisture divergence computed from 6-hourly data (which forms an effective
approximation for precipitation) will be discussed in Chapter 3.

Fig. 2.15 compares the temporal standard deviations of different precipitation
datasets by showing the ratios of standard deviations. Computation of standard
deviations uses 21 years of monthly values, therefore encapsulating variability
over intra-seasonal, annual and inter-annual time scales. To decompose
contributions from different time scales, variances of the mean annual cycle,
annual means (11-month filtered after removing the annual cycle) and the
intra-seasonal anomalies (after subtracting the mean annual cycle and annual
means) are shown in Fig. 2.16 - 2.18. The contriubtions from cross-term
covariances are marginal and therefore not shown.
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Figure 2.15: Ratios of precipitation temporal standard deviations in (a) ERA-I, (b)
JRA-55, (c) CRUTS and (d) HOAPS with respect to that of GPCP. Computation of
standard deviations uses 21 years (1988-2008) of monthly values.

ERA-I shows insufficient variability over the Amazon and the Indian
subcontinent mainly due to a smaller annual cycle amplitude (Fig. 2.15,
Fig. 2.16a, c), consistent with the previous section. Variability over the equatorial
Indo-Pacific region is smaller than GPCP (Fig. 2.15a), which could be explained
by the less pronounced intra-seasonal variances in ERA-I (Fig. 2.18a,c).
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Figure 2.16: Global maps of temporal variances ((mm/day)2) of precipitation associated
with mean annual cycle in (a) ERA-I, (b) ERA-55, (c) GPCP, (d) CRUTS and (e) HOAPS.
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Figure 2.17: Same as Fig. 2.16 but for variances of annual means, therefore relecting
year to year variability.
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Figure 2.18: Same as Fig. 2.16 but for variances of the intra-seasonal anomalies.
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Therefore the impact of MJO cycles on precipitation in ERA-I are likely to
be underestimated in magnitudes. Intra-seasonal variances over the Kuroshio
current region are also lower than in GPCP.

Variability in JRA-55 is systematically overestimated in the tropical oceans
(Fig. 2.15), with considerable contributions from all time scales (Fig. 2.16, 2.17
and 2.18). Variability related to the Asian monsoon, seasonal ITCZ location
changes, intra-seasonal MJO and inter-annual ENSO cycles are all notably
higher. Similar to ERA-I, the Amazonian variability is underestimated due to
the underestimated winter rainfall.

HOAPS shows a higher degree of variability in both tropical and extra-tropical
oceans compared with GPCP (Fig. 2.15d). The difference is more pronounced
where both the background precipitation rate and variability are high, these
regions include the ITCZ, SPCZ, the Warm Pool region and storm track regions
in both hemispheres. Unlike JRA-55, the difference mainly stems from the
intra-seasonal time scale (Fig. 2.18e). This is partly but not entirely due to
the higher resolution of HOAPS: after regridding the 0.5°× 0.5° HOAPS data
onto the 2.5°× 2.5° GPCP resolution, the observed difference is reduced but still
remains.

As noted during the analysis of precipitation in the west Amazon region,
there are some isolated regions with high temporal variance in the CRUTS
precipitation. These are particularly prominent in the intra-seasonal variance
(Fig. 2.18d). Delaunay triangulation is used to interpolate the station
precipitation anomalies onto the CRUTS regular grid (Harris et al., 2014). In areas
with sparse observations, station records that have intermittent observations
can result in large changes in the triangulation topology, perhaps introducing
spurious variance into the grid-cell precipitation. The difference over Maritime
continent shown in Fig. 2.15 is partly caused by regridding errors when
converting the CRUTS standard deviations to a much lower resolution.

2.3.4 Pattern comparision using Taylor diagrams

To summarize the similarity of the spatio-temporal patterns in these datasets,
Taylor diagrams of the precipitation in tropical/extra-tropical land/ocean
regions are generated for each season, and the results are shown in Fig. 2.19 -
2.22. GPCP is used as the observational reference, and CRUTS (HOAPS) is used
as a second observation to provide information on observational uncertainties
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over land (ocean). Note that the observations are not strictly independent and
contain shared data sources, therefore the comparisons of GPCP and CRUTS
and HOAPS do not encompass all the observational uncertainties, but should
be interpreted as a measure of the minimal uncertainty one should expect from a
reanalysis dataset (Bosilovich et al., 2008). Uncertainty ranges derived from GPCP
error estimates are also displayed on the Taylor diagrams as derived earlier in
section 2.2.2.2, and overall biases are illustrated using triangles.
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Figure 2.19: Taylor diagrams for the monthly mean precipitation estimates during
1988-2008 over tropical land. GPCP is used as the reference dataset (asterisk), and
reanalyses are labelled as solid circles. A second observation-based dataset is included
to indicate the observational uncertainty (CRUTS for land in this figure and Fig. 2.21
and HOAPS for ocean in Fig. 2.20 and 2.22). Solid triangles denote the overall biases of
the datasets. A bias point located on the right-hand side of the model point indicates
positive bias, and left-hand indicates negative. Bias magnitude is measured as the
spatail mean difference between a model dataset and the GPCP reference, normalized
by the standard deviation of GPCP ((M̄− Ō)/σŌ, see Eq. 2.1). This is represented as
the distance between the bias point and the corresonding model point. Observational
uncertainties based on GPCP’s random error are illustrated by black pluses and dots,
and the space they encompass represents the range of uncertainty stemmed from
random error perturbations.

For both tropical land (Fig. 2.19) and ocean (Fig. 2.20), ERA-I shows better
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Figure 2.20: Same as Fig. 2.19 but for tropical ocean areas.

agreement with GPCP in both correlation and standard deviation. It is also
very close to CRUTS (HOAPS) for all seasons, suggesting comparable quality as
those “independent” observations. Consistent with previous discussion, oceanic
variability in JRA-55 is overestimated by about 50% for all seasons, and to a
lesser extent ( 20%) over tropical land, but the patterns are still highly correlated.
Both reanalyses are biased high in the tropics, with JRA-55’s bias being notably
higher. And all data points lie outside the uncertainty range of GPCP (except
for the oceanic HOAPS in MAM, Fig. 2.20b), suggesting that the differences are
significant and are less likely to be caused by errors in GPCP.

Unlike in the tropics, JRA-55 is of comparable quality to ERA-I over
extra-tropical land (Fig. 2.21), and out-performs it over extra-tropical ocean
(Fig. 2.22). Over extra-tropical land (Fig. 2.21), both ERA-I and CRUTS are
dry biased with respect to GPCP in boreal autumn and winter, and this may
due to the undercatch corrections applied in GPCP product (Bosilovich et al.,
2008). During the rest of the year all datasets are relatively clustered and
are aligned along the edge of GPCP uncertainty range, therefore implying
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Figure 2.21: Same as Fig. 2.19 but for extra-tropical land areas.

better agreement. Over extra-tropical ocean (Fig. 2.22), JRA-55 matches well
with GPCP with little bias, while ERA-I and HOAPS tend to be drier in all
seasons. Note that the GPCP errors over extra-tropical ocean are much larger
and are mostly distributed over storm track regions in both hemispheres and
polarward from about 40° N/S (Fig. 2.11). Satellite observations form the only
input data source for oceanic precipitation in GPCP, and SSMI(SSMIS) coverage
over the high latitude oceans are limited by the orbit of the DMSP satellites,
therefore TOVS(AIRS) retrievals are used to fill up the gaps from about 40°
N/S polarward (Huffman and Bolvin, 2011). Accompanied with this transition
from microwave-based low-to-mid latitude retrieval to IR-based high latitude
retrieval, the bias adjustment method for the TOVS estimates also changes
(Andersson et al., 2011). Greater uncertainty in these retrievals and methods
explain the notable increase in error magnitudes polarward from 40°N/S in
GPCP.
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Figure 2.22: Same as Fig. 2.19 but for extra-tropical ocean areas.

2.4 Conclusions and Discussion

This chapter assessed the challenges in providing a reliable global scale
precipitation estimate, and reviewed some known problems in the atmospheric
reanalyses and observations. Based on knowledge from the literature, ERA-I
and GPCP were selected as the best model- and observation-based products
to evaluate the newly released JRA-55. Comparison of the long-term mean
precipitation rates and variability magnitudes reveals strengths and deficiencies
in both ERA-I and JRA-55.

Both ERA-I and JRA-55 tend to over-estimate precipitation in the tropics,
particularly for JRA-55 which is biased high by around 4 mm/day. The regions
of high biases co-locate with regions of positive humidity analysis increments
in JRA-55 (Kobayashi et al., 2015), and is likely to be caused by the spin-down
problem of the forecast model that renders a water-leaking atmosphere. ERA-I
has the similar problem but to a lesser extent (Trenberth et al., 2007, 2011) . The
examination of some selected tropical regions suggests that regional biases in
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the mean precipitation are connected to biases in either the strength or phase of
the seasonal cycle.

Large discrepancies are observed over the Indian sub-continent among
reanalyses and observations. The difference arises from disagreements between
surface gauges and satellite measurements. High gauge estimates over the
western Ghat regions from GPCC, which is then inherited by GPCP, make
large contrast to the satellite retrievals in GPCP and the gauge values from
CRUTS.

In the mid-to-high latitudes, JRA-55 out-performs ERA-I in the matches of
both spatial patterns and magnitudes of variances, as illustrated in the Taylor
diagrams. ERA-I and CRUTS have slightly lower winter precipitation in
extra-tropical regions. Both reanalyses overestimate summer time precipitation
in mid-to-high latitudes, which is a shared problem among many reanalyses
(Lorenz and Kunstmann, 2012), and confirms that the deficiency in the
representation of convection is still a large source of uncertainties.

Based on the above conclusions, some suggestions could be offered to users in
choosing between ERA-I and JRA-55 for precipitation-related studies: for the
tropics, caution is needed in using either of them, as they both suffer from a
leaking atmosphere problem and systematically over-produce rainfall, but this
is particularly pronounced in JRA-55, thus giving some preference to ERA-I.
In addition, the Indo-Pacific region in ERA-I has insufficient variability, and
the effect of intra-seasonal variability (e.g. MJO cycles) on precipitation is less
pronounced than in GPCP, which in turn is less pronounced than JRA-55 and
HOAPS. Variability in JRA-55 seems to be overestimated over time scales from
intra-seasonal to inter-annual. Over the problematic tropical land regions, like
the Amazon and central Africa, the lack of sufficient observations makes a solid
validation impossible, and no evidence of improvement has been seen in recent
decades. For studies with a mid-to-high latitude focus, the new JRA-55 product
serves as good candidate.

We did not analyse precipitation variability over longer time scales, which is an
important climate change topic and has significant social implications. However,
due to the inherent heteorgeneity of reanalysis products, analysis of long-term
or decadal changes requires careful treatments of the data (Bengtsson et al., 2004),
or the use of specialized reanalysis that are designated for such purposes (e.g.
20CR reanalysis or the newly produced ERA-20C).

In generating the Taylor diagrams we explored a novel method to address
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the observational uncertainties by using the estimated errors of the reference
dataset. Such error data provide valuable information and put the variables
in an uncertainty context, thus allowing more realistic and objective validations.
However, not many studies make full use of such information. One of the earlier
efforts is Janowiak et al. (1998), which compared NR1 precipitation against GPCP
with the random errors of GPCP taken into consideration. The Augmented
Lagrangian multiplier method explored here allows such considerations to
be incorporated into the highly summative Taylor diagrams. However, some
technical details remain to be clarified, for instance should it be proved
that the correlation-minimized uncertainty variables are distributed along a
strict section arc, and encompass the full range of uncertainties in spite of
the locally constrained error distribution, then the Augmented Lagrangian
multiplier computation could be replaced by a simpler calculation of the
maximum/minimum standard deviation uncertainty variables, plus the average
of a few cases with randomly sampled errors (which are all computationally
trivial), with the uncertainty range depicted by an arc going through them.
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Chapter 3

Evaluation of atmospheric
hydrological cycle – evaporation,
total precipitable water and the
water budget

3.1 Research Background

In the previous chapter, we reviewed the state-of-art global scale precipitation
observations and evaluated precipitation in the newly released JRA-55
reanalysis. Significant biases were identified in the latest reanalyses in the
rain-rich low latitudes, highlighting the drawbacks in the current numerical
models and the uncertainties in the large scale precipitation estimates. However,
even greater uncertainties lie in the evaporation/transpiration observations,
which are seldom observed directly at a continental/global scale (Trenberth et al.,
2011; Zhang et al., 2010). Oceanic evaporation provides 86% of the water to fuel
the global hydrological cycle (Gimeno et al., 2010), and local evaporation plays
a significant role in supplying the precipitation over a considerable proportion
of the land masses (van der Ent et al., 2010). Therefore, a good knowledge of
the atmospheric load of water and the evaporation/transpiration would form
a solid ground for a reasonable precipitation estimate. Incorrect humidity
forcing can potentially lead to biased precipitation simulations in numerical
models, and violations of a closed water budget highlight limitations of both
observations and models.
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This chapter will follow up the discussion of the large scale hydrological cycle
and shift the focus to evaporation/evapo-transpiration (E/ET) and total column
water (TCW) estimates in observations and reanalyses. After assessing the
major ingredients of the atmospheric water budget, we will consider the budget
residuals in ERA-I and JRA-55 reanalyses. A clustering analysis is used to
classify the atmospheric hydrological cycle over global land into a few regimes,
allowing us to associate the budget residuals with contextual characteristics of
the hydrological cycle. Results regarding individual budget terms are then used
to help trace the origins of the largest residuals, and consequently reveal the
causes responsible for the non-negligible residuals in ERA-I and JRA-55.

3.1.1 Land evaporation observations

Land evaporation/transpiration is a central process that links the water, energy
and carbon cycles. Globally, recycling of continental ET is responsible for
67 % of rainfall over land (van der Ent et al., 2010) and over 50 % of the solar
energy absorbed by land is converted to latent heat through ET (Jung et al.,
2010; Hartmann et al., 2013), thus making it an important modulator of the soil
moisture, surface temperature and precipitation (Wang and Dickinson, 2012; Jung
et al., 2010; Koster et al., 2004). Knowledge of large scale ET is important to our
understanding of the energy and water cycle changes in a warming climate, and
a robust observation of that is essential to the assessment of the prediction of
future changes (Rodell et al., 2015).

However, the current estimates of global ET have considerable uncertainties.
Long-term annual mean ET has an uncertainty of 50 % among datasets
(Vinukollu et al., 2011; Jiménez et al., 2011). This is to a large extent due
to the limited spatial representativeness of direct ET measurements (Wang
and Dickinson, 2012), and various limitations in the large-scale, indirect
measurements.

Eddy covariance flux tower sites (e.g. FLUXNET, (Baldocchi et al., 2001)) provides
regional scale ET measurements, but their total number around the globe is still
quite limited (720 tower locations out of which 464 are active, at the time of
writing) and the distribution is irregular and biased towards the mid-latitudes
in the NH (see Fig. 2 in Jung et al. (2009)), therefore the representativeness of
these point-scale in situ measurements is still an open question (Trenberth et al.,
2011).
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Indirect estimates that benefit from the spatial and temporal coverage of satellite
retrievals rely on the quality of the empirical or semiempirical model. The most
commonly used models include the Monin-Obukhov similarity theory (MOST)
which provides the foundation for many land surface models (LSMs) (Wang
and Dickinson, 2012), and the Surface Energy Balance System (SEBS) which
estimates ET through sensible heat flux estimations (Vinukollu et al., 2011). The
Penman-Monteith model and its simplifications such as the Priestley-Taylor
model are also widely applied, and various derivations have been developed
to better account for vegetation types (Wang and Dickinson, 2012; Vinukollu et al.,
2011). Both Penman-Monteith and Priestley-Taylor model evaluate Potential
Evapo-transpiration (PET), which is closer to the observed evaporation over
energy-limited regions such as wetlands. The accuracy of surface temperature
and soil moisture observations from remote sensing is often an additional
barrier for satellite-based estimates. Other approaches include quantifying
the basin or continental scale ET through the surface or atmospheric water
budget, and up-scaling of the FLUXNET observations using a machine learning
algorithm (Jung et al., 2009, 2010).

The LandFlux-EVAL project is one of the recent efforts to resolve the
uncertainties in global ET among various datasets. ET estimates are categorized
into four main classes depending on the conceptual framework of the dataset:
diagnostic class (that is more observation-based and uses simple empirical
models), LSM class, reanalyses class, and AR4 climate model simulations
(Mueller et al., 2011). Systematic differences are observed among classes and
datasets coming from the same category tend to cluster. A considerable amount
of uncertainty is related to models (Vinukollu et al., 2011), but forcings can be
critical for the resultant ET patterns, particularly for precipitation and radiation
(Vinukollu et al., 2011; Mueller et al., 2011, 2013). Other factors include vegetation
types and their representation in models, the stomatal conductance effect and
its responses to various atmospheric forcings including a rising CO2 level. Land
use change is likely to have an important role in affecting regional ET, but is
largely absent in reanalysis products (Hagemann et al., 2005).

Overall, a robust and consistent global scale land ET reference dataset is still
lacking. Unlike in the case of precipitation where a good quality reference
could be used as a surrogate truth to evaluate a new data product, no such
reference exists for ET, instead, one should include an ensemble of multiple
datasets spanning a range of categories as the reference (e.g. Mueller et al.
(2011)). Alternatively, the surface water budget can be used as a physical
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constraint on ET, which will transfer the uncertainties in ET onto the estimates of
precipitation, surface runoff and soil moisture storage change. On a long-term
annual mean time scale when the storage change term is negligible, this
transference of uncertainty still pays off and gives a more reliable estimate,
particularly in the well gauged basins (Vinukollu et al., 2011). Therefore, we
restrict the evaluation of land ET in JRA-55 and ERA-I to long-term annual
means and use an inferred ET value by subtracting surface runoff (GRDC-WBM,
(Fekete et al., 2000)) from precipitation (GPCC, (Becker et al., 2013)) as the
reference.

3.1.2 Ocean evaporation observations

Similar to the land surface, ocean surface water fluxes are estimated with much
better spatio-temporal resolution using remotely sensed variables compared
with the in situ measurements obtained from ships and buoys that suffer from
inherent undersampling. However, lack of in situ data coverage over oceans
makes the calibration and validation of satellite-based estimates difficult, and
is responsible for the poor performance of reanalyses in their evaporation
and precipitation estimates (Andersson et al., 2011; Bourras, 2006). Various
satellite-based E products are constructed on a set of bulk formulae that
relates turbulent flux to meteorological variables such as SST, surface wind, air
temperature, humidity and radiation. Among these the vertical distribution of
humidity is found to have a large influence on both satellite-based products
(Bourras, 2006) and reanalyses (Bosilovich et al., 2011; Kumar et al., 2012; Brown
and Kummerow, 2014). In the tropics where observations from moored buoys are
available (e.g. Global Tropical Moored Buoy Array), reanalyses tend to show
systematic high biases with respect to OAFlux (Bosilovich et al., 2011), which in
turn is slightly overestimated compared with buoy fluxes (Kumar et al., 2012).
Outside the tropics, datasets show better agreement with each other, though in
situ observations are largely absent.

3.1.3 Total column water observations

There exists a strong relationship between the air temperature (largely relecting
underlying SST), total column water (TCW) and precipitation. The water
holding capacity of the atmosphere is defined by Clausius-Clapeyron (C-C)
function, which predicts a ∼ 7 % increase in the atmospheric vapour load for
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1°C of mean surface temperature rise (Held and Soden, 2006). Sufficient vapour
is a prerequisite to rainfall, and this thermodynamic relationship between TCW
and precipitation is particularly strong in the low latitudes, where large scale
mean-flow is the major component of atmospheric circulation (Trenberth, 2011).
Based on this relationship, the strength of the hydrological cycle can be defined
in a reservoir-flux model: a faster increase in TCW rates with respect to the mean
precipitation implys slower recycling and longer life time of water (Held and
Soden, 2006; Trenberth, 2011). Unlike evaporation and precipitation, reanalysis
TCW estimates are combined observation-model products, and congruences
with remotely sensed TCW observations are expected. Therefore, the analysis
of TCW in reanalyses will be approached from a combined P-TCW relationship
perspective, and results obtained are helpful in explaining the observed P biases
in reanalyses.

Section 6.2 introduces the datasets used in this chapter in addition to the two
reanalyses ERA-I and JRA-55. The hydrological regime classification using a
K-means algorithm is explained in full detail in this section. Section 6.3 presents
the evaluation of terrestrial ET, oceanic E and TCW. After which the water
budget residuals are analyzed in a hydrological regime framework, and causes
of the largest residuals in both reanalyses are examined.

3.2 Data and methods

3.2.1 Evaporation observation data

As discussed in the previous section, a reliable reference dataset for land
ET is lacking, so a budget-inferred approach is adopted here. Gridded land
precipitation from GPCC (Becker et al., 2013) is used in preference to GPCP
due to its higher spatial resolution (1.0°× 1.0° compared with 2.5°× 2.5°). This
allows a more accurate measure of mean ET when gridded values are areally
integrated over global land. A runoff climatology product GRDC-WBM (Fekete
et al., 2000) is obtained from the Global Runoff Data Center (GRDC). This dataset
combines streamflow observations with water balance model estimates to give
a continuous gridded field of monthly climatological runoff at a resolution of
0.5°× 0.5° (Fekete et al., 2000).

The inferred ET from surface water budget is defined as:
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ET = P− R− dS (3.1)

where P is precipitation, R is surface runoff and dS is the change in local water
storage, all represented in mm/day. The storage change term dS can have
substantial seasonal variations and may inter-annually change due to human
water use (Wang and Dickinson, 2012), therefore the assumption of dS being
negligible is only valid when taking the long-term annual means (Wang and
Dickinson, 2012), thus limiting our analysis to only the climatology.

Two oceanic evaporation datasets are used as the observational reference.
OAFlux (Yu et al., 2008) provides evaporation estimates over the global open
ocean at 1-degree resolution for 1958 - 2012. This product blends surface
meteorological variables from multiple sources including satellites and NWP
reanalysis products in a variational manner that minimizes the least square fit
error at each time step (Yu et al., 2008). Then version 3.0 of the COARE bulk
algorithm is applied to compute the evaporation. From an energy-budget point
of view, OAFlux was found to close the budget better than other alternatives
(Trenberth et al., 2009, 2011). Accompanying the monthly E values, OAFlux also
provides an error estimate for each corresponding month at each grid box, thus
allowing uncertainty estimation to be carried out. The augmented Lagrangian
multiplier method introduced in the previous chapter is applied to this random
error, and the resultant uncertainty range is shown on the Taylor diagrams in
the comparisons of oceanic E.

HOAPS (v3.2, Andersson et al. (2010)) was introduced in the previous chapter
to evaluate oceanic precipitation. As it is designed with the principle of
using one observation framework (SSM/I only) to derive multiple variables
(Andersson et al., 2010), computations involving multiple variables can have
better homogeneity and internal consistency. Therefore it is selected here as
another observational reference for both E and TCW.

3.2.2 Total column water vapour data

Besides HOAPS, the RSS total precipitable water vapour (TPWV7, available
at http://www.remss.com/measurements/atmospheric-water-vapour/) is also
obtained to facilitate the comparison of TCW. This dataset provides 1-degree
TPW estimates by merging version-7 of the passive RSS microwave geophysical
ocean products. TPW values are obtained from SSM/I F08 through F15, SSMIS
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F16 and F17, AMSR-E and WindSat radiometers, which have been carefully
inter-calibrated at the brightness temperature level, making it suitable for
climate studies. Data are available for 1988 - 2012, from which the period 1988 -
2005, when HOAPS data are available, is retrieved for computation.

3.2.3 Moisture divergence

Horizontal moisture divergence is computed following Trenberth and Guillemot
(1998):

5 ·Q = 5 · 1
g

∫ Ps

0
qvdp (3.2)

Specific humidity (q), horizontal winds (v) and surface pressure (Ps) at 0.75°×
0.75° resolution are obtained from ERA-I for the period of 1979-2012. Horizontal
moisture fluxes are computed on each of the 60 sigma levels using 6-hourly
data, to capture as much covariance of q and v as possible. Since the daily
and subdaily data from JRA-55 were not released at the time of writing, only
pre-diagnosed monthly moisture divergence data were obtained.

3.2.4 Budget residuals

The atmospheric water budget of an air column is defined as:

dS
dt

= E− P−5 ·Q− R (3.3)

where dS/dt is the tendency of water storage, and R is an unphysical residual
term that stems from the errors/uncertainties in the measurements of other
physical terms, and represents the violation of a closed water budget. Specific
to reanalysis, it is the result of the data assimilation scheme which assimilates
observations to the forecast fields to form an analysis at the end of each time
step, creating a difference between the analysis and forecast fields, thus the
name “analysis increment” is given (Trenberth et al., 2011; Mo and Higgins, 1996;
Dee et al., 2011)

Defined in the above manner, positive residuals suggest that the atmosphere
is “flooding”, meaning excessive moisture input (E), or insufficient moisture
output (P and5·Q), or a combination of the two. Conversely negative residuals
suggest a “leaking” atmosphere: too much water output than input. Unlike
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the land surface, atmospheric water storage change is usually 1 - 2 orders of
magnitude smaller than other terms on a monthly basis. However it is included
in the budget formulation for the sake of stringency.

3.2.5 Hydrological regimes defined by K-means clustering

A K-means clustering is used to classify the global land into six regimes, defined
by the characteristics of the overlying atmospheric hydrology. Regions within a
regime share more similarities than with locations in a different regime. Then
the water budget is computed at a regime level rather than grid-box level,
thus overcoming the noisy residual map problem (see Fig. 1 in Seager and
Henderson (2013)). A link between the quantified residuals and the contextual
characteristics of the hydrological cycle is built at the same time, providing
more informative results and facilitating tracing of the origins of the residuals
(i.e. budget imbalances). The large-scale water budget has been analyzed
previously at a continental or hemispheric level (e.g. Trenberth et al. (2007)),
however, there is no natural relationship between the partitioning of land
masses and the classification of their hydrological features. And as will be
shown in the results, a single continent may contain multiple hydrological
regimes that range from the driest to the wettest climate, and treating them
indiscriminately will inevitably lose valuable details and potentially lead to
misleading conclusions.

A K-means algorithm is chosen in preference to alternative clustering methods
due to its simplicity in formulation and the freedom in choosing a cluster
number. Hierarchical clustering has a drawback that the merging and splitting
are determined in a “greedy” manner that once a sample is allocated into one
group, it has no chance to be re-allocated into a another group in the subsequent
process (Wilks, 2011, chap. 15).

To perform the clustering, global maps of long-term average E, P, 5 ·Q and
dS are combined to form the observation set, where each observation is a
4-dimensional real vector x, representing the water fluxes in that grid box. All
grid boxes are treated as independent (no area weighting is applied), and the
observation matrix [X] has a dimension of (N × 4), where N is the number of
grid boxes in the dataset.

At any given number of clusters K, a standard K-means clustering seeks to
partition the N observations into K (K ≤ N) sets: P = {P1, P2, ..., PK}, so that the
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cost function is minimized:

I([X] , χ) = argmin
P

N

∑
i=1
‖ xi − µ2

c ‖ (3.4)

where χ is the allocation function that defines the partitioning:

χ(xi) = c (3.5)

and µc is the reference vector (cluster center) for xi.

The cost function defined above is a measure of the within-cluster sum of
squares (WCSS). The algorithm converges to a state that optimizes the grouping
of observations: the distance (usually measured by Euclidean distance) between
any observation xi and its reference vector µc is smaller than with any
other reference vector. However, the cost function does not always converge
towards a global minimum and different initial reference vectors usually lead to
convergences at different local minima. Therefore the computation is repeated
10 times starting from randomized initial states, and the one that minimizes the
cost function most is selected as the solution.

The number of clusters K is a critical choice made by the user and therefore
involves some degrees of subjectiveness. Depending on the specific problem
being solved, the influence of this choice differs and different techniques may
be used to facilitate the decision making. In some cases a prior knowledge
of a correct cluster number exists, or the clustering can be easily visualized.
However, in many other cases that involve clustering of high dimensional data,
selecting an appropriate cluster number requires some extra work, such as
experimenting at different K and choosing through trial-and-error.

To help determine an appropriate K, we applied two information criteria metrics
to the clustering results. In addition to the geometric interpretation of the
K-means algorithm described above, a probabilistic interpretation based on a
Gaussian mixture model also leads to the same formulation (Dreyfus, 2005, chap.
7). Based on a few assumptions that simplify the model, the cost function of
K-means can be expressed as a function of the log-likelihood (l) of the Gaussian
mixture model, and the cluster number K:

ln(I) = ln(Nn)− 2l
Nn
− 2 ln(K)

n
− ln(2π)− 1 (3.6)
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After training, the maximized log-likelihood is substituted into the formulation
of Bayesian Information Criteria (BIC, Schwarz (1978)) and Akaike Information
Criteria (AIC, Akaike (1974)) to compare results at different K:

{
BIC(k) = −2l + k ln N
AIC(k) = −2l + 2k

(3.7)

In both cases, the first term quantifies the goodness of fit of the model, and the
second term penalizes overfitting. Note the difference between k and K: the
former is the number of free parameters in the Gaussian mixture model, which
equals to K(n + 1). In our case the number of dimensions in the observation
vector is n = 4.

Clustering is performed at K ranging from 1 to 29, and BIC/AIC values at each
setup are computed. Both criteria start to converge at K = 20 (Fig. 3.1), a number
similar to the Köppen-Geiger classification (Peel et al., 2006). The Köppen-Geiger
classification is a widely used climate classification system that classifies global
land areas into five major schemes combining temperature, precipitation and
vegetation types into the classification criteria. Each major scheme is further
divided into a number of second level types, which in turn are divided into
third level types, resulting in a total of 13 second level types and 22 third
level types (Peel et al., 2006). An “elbow” (a transitional point beyond which
additional parameters give decreased added value) is observed at K = 6, which
is then selected as the number of regimes. Clustering using higher numbers
(K = 7, 8, and 10) are also performed, and the results show consistent large
scale patterns with the K = 6 setup, but adding more regional details, such
as some transitional zones between the major regimes. In all cases, the largest
fractional residuals are located in broadly the same regions, therefore only the
results of K = 6 are presented.
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Figure 3.1: Bayesian Information Criteria (BIC) and Akaike Information Criteria (AIC)
values of the K-means clustering results for different cluster numbers (K). Observation
set is the mean 1979-2012 January ERA-I data with oceans masked out. At each K,
clustering is repeated 10 times from which the optimal one is selected as the solution.

3.3 Results

3.3.1 Mean annual ET over land

Global mean annual terrestrial ET during 1979 - 2010 are estimated for ERA-I,
JRA-55 and the inferred ET (P− R), and the results are represented in mm/yr
(area weighted) and 103 km3/yr (areal integrated) to facilitate comparison with
literature. Antarctica and Greenland are excluded from computation, and care
has been taken to ensure that the land areas in three datasets are consistent
(∼ 130, 144, 580 km2). The annual averages of global ET are listed in Table 3.1
together with a number of previous estimates.

ERA-I suggests an annual mean ET of 80.0 ± 1.0 103km3/yr (615.1 ±
7.2 mm/yr), and JRA-55 75.5 ± 0.8 (579.8 ± 6.0). Both fall in the range of
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multi-reanalyses ensemble in Trenberth et al. (2011) (72 in JRA-25 to 100 in
R2), the range of 504 − 664 mm/yr suggested by Trenberth et al. (2009), and
the model range estimated by the Global Soil Wetness Project 2 (GSWP-2,
58 − 85 103km3/yr). However, they are both larger than the surface budget
inferred ET (61.9 103km3/yr) and the benchmark product by Mueller et al. (2013)
(493 mm/yr). Both reanalyses are higher than the Jung et al. (2010) estimates
(65 ± 3 103km3/yr) by 23% and 16%, respectively.

This overestimation by ERA-I and JRA-55 is consistent with the tendency
of reanalyses to overestimate ET compared with other categories of land ET
estimates (Mueller et al., 2011, 2013). Mueller et al. (2013) found that the ensemble
of four reanalyses (ERA-I, MERRA, JRA-25 and CSFR) shows the highest ET
estimates (563 mm/yr) compared with the LSM category (423 mm/yr) and the
Diagnostic products (∼ 500 mm/yr). The Jung et al. (2010) estimates did not
take in to account wetlands or inland water bodies including lakes and seas,
therefore is likely to be low biased (Trenberth et al., 2011).

Table 3.1: Global land mean annual ET from ERA-I, JRA-55, P-R inferred and a set of
previous estimates. The computations in both reanalyses and P-R inferred ET exclude
Antarctica and Greenland and the land mask has a total area of ∼ 130, 144, 580 km2.

Datasets Global ET Spatial grid resolution, Temporal extent
mm/yr ×103 km3/yr mm/d

ERA-I 615.1± 7.2 80.1± 0.9 1.69± 0.02 0.75 degree, 1979-2010
JRA-55 579.8± 6.0 75.5± 0.8 1.59± 0.02 1.25 degree, 1979-2010

P-R 475.4 61.9 1.3 1.0 degree, 1979-2010
Dirmeyer et al. (2006) GSWP-2 LSMs 58-85 1 degree 1986-1995

Trenberth et al. (2011), reanalyses 72-100 2002-2008
Trenberth et al. (2009), reanalyses 504-664 1985-1989, 2000-2004

Mueller et al. (2013), merged 493 1989-1995, 1989-2005
Jung et al. (2010), FLUXNET upscaling, 65± 3 0.5 degree, 1982-2008

3.3.2 Mean evaporation over ocean

Fig. 3.2 compares the oceanic evaporation in ERA-I, JRA-55, HOAPS and
OAFlux. Data from their overlapping period (1988 - 2008) are averaged in
January and July, and a mutual land-sea mask that combines the grids of
dynamic sea ice in HOAPS and OAFlux is used to isolate the valid pixels.

Compared with OAFlux, ERA-I, JRA-55 and HOAPS all show some degrees of
overestimation in the tropics. ERA-I has the best overall match with OAFlux,
but is higher by ∼ 1 mm/day (around 15 % of the climatology) over the Arabian
Sea and the subtropical high areas of the winter hemisphere (Fig. 3.2a,b).
Overestimation in JRA-55 is systematic and particularly strong in the tropics
for both seasons (Fig. 3.2c,d). This leads to an overall high bias of 1.0 mm/day
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(1.1 mm/day) in the 30°N− 30°S latitudinal band, and 0.7 mm/day (0.8 mm/day)
globally in January (July). A high bias with similar magnitude is also found in
its predecessor JRA-25 (Bosilovich et al., 2011). Note that precipitation in JRA-55
is also systematically high biased (see Chapter 2), reflecting an overestimated
hydrological cycle intensity. HOAPS has alternating positive and negative
differences with respect to OAFlux latitudinally, and the patterns correspond
well with the differences in the temporal variability of E, as will be shown in
the following section.
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Figure 3.2: Comparisons of the mean January (left column) and July (right column)
oceanic evaporation in ERA-I (first row), JRA-55 (second row) and HOAPS (third row)
with the OAFlux reference. Data used are from their common time period 1988 - 2008,
and unit is mm/day. A mutual mask that combines the grids of dynamic sea ice in
HOAPS and OAFlux is used to isolate the valid pixels. Missing areas are plotted in
grey.
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3.3.3 Temporal variances of oceanic evaporation

Standard deviation is used as a measure of the temporal variability in a dataset,
and their differences are shown in Fig. 3.3. Computation of standard deviations
uses 21 years of monthly values, therefore consists of contributions from annual
cycle, inter-annual and intra-seasonal time scales. These components are later
decomposed by computing the variance associated with the mean annual cycle,
the year-to-year variance represented by the 11-month filtered anomalies, and
the intra-seasonal variance (variance of the anomalies after subtracting the mean
annual cycle and the annual means). The component variances are shown in
Fig. 3.4 - 3.6.
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Figure 3.3: Ratios of the evaporation standard deviations of (a) ERA-I, (b) JRA-55 and
(c) HOAPS with respect to that of OAFlux. Computation of standard deviations uses
21 years of monthly data during 1988 - 2008.

ERA-I and JRA-55 have comparable standard deviations with OAFlux over most
of the ocean (Fig. 3.3a,b), except in the tropics the JRA-55 variability tends to
be higher by up to ∼ 170 %. Variability over the Kuroshio current and Gulf
stream regions shows slight low biases in both reanalyses. Decomposed into
components, the observed differences have contributions from the mean annual
cycle (Fig. 3.4a,b), inter-annual (Fig. 3.5a,b) and intra-seasonal (Fig. 3.6a,b) time
scales.
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Greater magnitudes of differences are observed between HOAPS and OAFlux
(Fig. 3.3c), with similar spatial patterns as the January mean differences
(Fig. 3.2e): higher values of mean E correspond to higher degrees of variability
over the tropical convergence zones, and lower values of E co-locate with
lower standard deviations over the Kuroshio current and Gulf stream regions
in HOAPS. Similar correspondence can also be identified in the subtropical
Pacific in the southern hemisphere (Fig. 3.2f and Fig. 3.3c). The decomposed
difference suggest that the lower variability in the Kuroshio current and Gulf
stream regions in HOAPS mainly stem from differences in the strength of the
annual cycle (Fig. 3.4c), while differences in the tropics arise because HOAPS
E fluctuates more strongly on intra-seasonal and especially inter-annual time
scales (Fig. 3.5c, 3.6c). The notably higher degree of intra-seasonal variability is
also observed in HOAPS’s P estimates (see Chapter 2).
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Figure 3.4: Ratios of standard deviations in the annual cycle of oceanic evaporation in
(a) ERA-I, (b) JRA-55 and (c) HOAPS with respect to that of OAFlux.



3.3 Results 67

-80°

-40°

0°

+40°

+80°

-80°

-40°

0°

+40°

+80°

0° +60° +120° 180° -120° -60°

(a) ERA-I/OAFlux

0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5

-80°

-40°

0°

+40°

+80°

-80°

-40°

0°

+40°

+80°

0° +60° +120° 180° -120° -60°

(b) JRA-55/OAFlux

-80°

-40°

0°

+40°

+80°

-80°

-40°

0°

+40°

+80°

0° +60° +120° 180° -120° -60°

(c) HOAPS/OAFlux

Figure 3.5: Same as Fig. 3.4 but for standard deviations over inter-annual time scales.
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Figure 3.6: Same as Fig. 3.4 but for standard deviations over intra-seasonal time scales.
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3.3.4 Oceanic evaporation pattern comparison using Taylor

diagrams

Spatio-temporal patterns in datasets are summarized in the Taylor diagrams
for tropical/extra-tropical oceans for each season, and the results are shown in
Fig. 3.7 and 3.8. OAFlux is used as the observational reference, and HOAPS
as a second observation to provide information on observational uncertainties.
Uncertainty ranges derived from the OAFlux error estimates are also displayed
on the Taylor diagrams (see Chapter 2 for methodology), representing the area
on a Taylor diagram where “reality” could reasonably reside, if the OAFlux
error estimates are valid. Overall bias of a dataset is shown as a triangle of the
corresponding colour.

Over tropical oceans, little difference in performance is observed across seasons
(Fig. 3.7). Throughout the year, JRA-55 and HOAPS show very similar
correlations and standard deviations, which match the reference slightly less
well than ERA-I. All three datasets show positive overall biases in the tropics
with the JRA-55 bias being notably stronger, as suggested in Fig. 3.2. Data points
all lie outside of the uncertainty range of OAFlux, suggesting the differences are
significant.

Comparisons over the extra-tropical ocean show more seasonal variations
(Fig. 3.8), which mostly stem from HOAPS. In DJF HOAPS has the best pattern
correlation with OAFlux (0.98), and the JJA standard deviation has a close match
(0.98). However in MAM and SON the variability in HOAPS is lower by around
21%, and is largely due to lower E strengths associated with the Kuroshio
current and Gulf stream (Fig. 3.2e reveals such a difference in January but
similar differences are also found in other months). Similar to the tropics, scores
for both reanalyses are largely consistent throughout the year with comparable
quality. JRA-55 still has the largest positive bias but with a smaller overall
magnitude than in the tropics (note the scale difference in the radial axis).
Except for HOAPS in DJF season, all data points lie well outside the OAFlux
uncertainty range.
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Figure 3.7: Taylor diagrams for the monthly evaporation estimates during 1988-2008
over tropical oceans. OAFlux is used as the reference dataset (asterisk), and reanalyses
are labelled as solid circles. HOAPS is included to indicate the observational
uncertainty. Solid triangles denote the overall biases of the datasets. A bias point
located on the right-hand side of the model point indicates positive bias, and left-hand
indicates negative. Bias magnitude is measured as the spatail mean difference between
a model dataset and the OAFlux reference, normalized by the standard deviation of
OAFlux (See Chapter 2). This is represented as the distance between the bias point and
the corresonding model point. Observational uncertainties based on OAFlux’s random
error are illustrated by black pluses and dots, and the space they encompass represents
the range of uncertainty stemming from random error perturbations.
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Figure 3.8: Same as Fig. 3.7 but for extra-tropical oceans. Note the scale along the radial
axis is different from Fig. 3.7.
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3.3.5 Mean total column water

Unlike the type C variables of P and E that are simulated by the reanalysis
model, moisture is classified as a type B variable and is influenced by both the
model and the assimilated observations (Kalnay et al., 1996; Kistler et al., 2001),
therefore is considered as more reliable. Indeed, the differences from HOPAS
observations over most of the ocean (Fig. 3.9) are below 10 % of the climatology,
even for the tropical convergence zones where both reanalyses show systematic
low biases. Pattern comparisons using Taylor diagrams (Fig. 3.10) also confirm
the very good matches among datasets. However, in judging whether an
observed difference is significant or not, the fractional perspective is only one of
the many factors that need to be taken into account, the possible implications for
the related broader questions are equally important. TCW provides necessary
thermodynamic conditions for precipitation to occur and can also influence
precipitation rates under a given circulation field. In the case of reanalysis,
an incorrect moisture estimate can bias precipitation simulations, possibly due
to assimilation of problematic satellite retrievals (Bosilovich et al., 2011; Robertson
et al., 2011). To investigate the possible implications of such observed TCW
differences in the water budget, scatter plots of TCW against P are created
for ERA-I, JRA-55 and HOAPS. HOAPS is selected as a reference because of
its SSM/I framework in deriving TCW and P, thus offering better internal
consistency.

The scatter plots (Fig. 3.11) for each dataset are created by spatially averaging
monthly TCW and P values over their respective ITCZ, where absolute TCW
differences are largest. Computations using a single ITCZ definition (e.g. the
ITCZ defined using ERA-I P field) for all three datasets give qualitatively
consistent results. The ITCZ region is defined as the tropical ocean where
long-term mean P is above 6.0 mm/day. For ERA-I and JRA-55, monthly values
from 1979-2012 are used, while for HOAPS the available data cover a shorter
period of 1988-2006. As shown in Fig. 3.11, a linear relationship between P
and TCW (P = a + b× TCW) is observed for all three datasets, but with varying
slopes and intercepts. The slope is a measure of the thermodynamic dependency
of P, and the difference between intercepts can be regarded as a systematic P
bias. ERA-I shares broadly the same range of TCW variability as HOAPS in
January, but with slightly higher values of P (Fig. 3.11a). In July, ERA-I generates
comparable levels of P as HOAPS at a lower level of TCW (Fig. 3.11b). More
notable differences are exhibited by JRA-55, which maintains a higher level of P



72
Evaluation of atmospheric hydrological cycle – evaporation, total

precipitable water and the water budget

-80°

-40°

0°

+40°

+80°
(a) ERA-I - HOAPS, Jan

5.5 4.5 3.5 2.5 1.5 0.5 0.5 1.5 2.5 3.5 4.5 5.5

mm

-80°

-40°

0°

+40°

+80°
(c) JRA-55 - HOAPS, Jan

-80°

-40°

0°

+40°

+80°

0° +60° +120° 180° -120° -60°

(e) TPWV7 - HOAPS, Jan

-80°

-40°

0°

+40°

+80°
(b) ERA-I - HOAPS, July

-80°

-40°

0°

+40°

+80°
(d) JRA-55 - HOAPS, July

-80°

-40°

0°

+40°

+80°

0° +60° +120° 180° -120° -60°

(f) TPWV7 - HOAPS, July

Mean annual cycle 1988-2005

Figure 3.9: Comparisons of the mean January (left column) and July (right column)
oceanic total column water (mm) in ERA-I (first row), JRA-55 (second row) and TPWV7
(third row) with the HOAPS reference, for their common time period 1988 - 2005. A
mutual mask that combines the grids of dynamic sea ice in HOAPS and TPWV7 is used
to isolate the valid pixels.

at an even lower level of TCW in both seasons. In both January and July, JRA-55
shares the same slope as HOAPS (b = 0.6 day−1), therefore the difference in
their intercepts (δa = −18.0 + 20.9 = 2.9 mm/day) suggests a 2.9 mm/day high
bias in JRA-55 at an equivalent TCW level. In both seasons ERA-I has a slightly
lower slope (bJan = 0.4 day−1 and bJuly = 0.3 day−1), making its bias smaller
at higher TCW levels. To examine whether the observed differences are due
to the different time period of the reanalyses and the HOAPS data, another
computation using the common 1988-2006 period gives qualitatively consistent
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Figure 3.10: Taylor diagrams for the DJF mean total column water estimates during
1988-2005 over (a) tropical, (b) extra-tropical and (c) global oceans. HOAPS is used as
the reference dataset (asterisk), and reanalyses are labelled as solid circles. TPWV7 is
included to indicate the observational uncertainty. Overall bias of a dataset is labelled
in the legend, measured in mm. As little seasonality is observed only the DJF results are
shown.

results (not shown).

These counter-intuitive low-moisture-high-rainfall results illustrate that
problems exist in the reanalysis weather system: either stronger circulation
in reanalyses associated with an overestimated hydrological cycle intensity (in
particular, the Hadley cell intensity), or a spin-down problem of the forecast
model that renders a water-leaking atmosphere. Previous studies (Andersson
et al., 2005; Trenberth et al., 2007, 2011; Kobayashi et al., 2015) have shown evidence
that support the latter in the cases of ERA-40, ERA-I and JRA-55. However,
the reliability of the reanalysis-based estimates of circulation strength is also
questionable. The tropical static stabilities in ERA-40 and NECP-I have been
found to have a weakening tendency during the past decades, caused by the
assimilated top-cool radiosonde profiles that have increasing tropical lapse rate
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(Santer, 2005; Mitas and Clement, 2006). The result of this thermal structure is
that circulation is strengthened in order to balance the diabatic heating, which
in turn is overestimated in both ERA-40 and NECP-I (represented by the wet
biases in P, see Chapter 2). Whether similar problems also exist in ERA-I
and JRA-55, and to what extent the internal consistency of the climate system
is compromised by the data assimilation scheme and the related long-term
hydrological intensity responses are questions that remain unanswered. The
TCW-P scatters displayed here show only one aspect of the internal consistency
problems in reanalyses.
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Figure 3.11: Scatter of P verus TCW over the ITCZ region in ERA-I (blue), JRA-55
(red) and HOAPS (green). ITCZ is defined as the tropical ocean area where mean
January (a) and July (b) precipitation is above 6.0 mm/day. ERA-I and JRA-55 data are
from 1979-2012, and HOAPS data period is 1988-2006. A line fitting the scatter (by
least squares) of a dataset is shown using the corresponding colour, and the resultant
intercept (a) and slope (b) are labelled on the plot.

3.3.6 Water budget and residuals over global land

We have examined two major terms – E and P – in the atmospheric water
budget, and covered some basic aspects of the TCW. The time tendency
of TCW on a monthly time scale is usually the smallest term. Horizontal
divergence of moisture combines dynamic and thermodynamic components of
the hydrological cycle, and plays a critical role in the tropical moisture budget
(Trenberth and Guillemot, 1995, 1998), therefore we will devote the remaining
chapters of the thesis to the discussions of its variability over various time
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scales. The water budget is rarely closed perfectly in any observational dataset
or combinations of them, the violations of this physical constraint highlights
problems in the existing estimates, and analysis of the residual can provide
insights into the possible causes. In this section the budget residual over global
land areas will be studied with a hydrological regime approach.

The atmospheric hydrological cycle over global land as depicted by ERA-I is
classified into six regimes using a K-means algorithm. Data are regridded to
the native resolution of GPCP (2.5° × 2.5°) to reduce the computational costs
and avoid regridding errors in the GPCP values. Observations of E, P, 5 ·Q
and dS at grid boxes (with Antarctica excluded) are treated as independent
samples, and seasonality is addressed by performing a clustering for January,
July and the annual mean separately, using the 1979-2012 climatologies. Note
that although usually being negligible compared with E or P, the storage change
term (dS) may have comparable magnitudes as the residual, therefore it is
retained in the budget equation to ensure more accurate quantification of the
residual. Nevertheless, the observation data used for the clustering analysis is
not normalized, therefore variances of P, E and 5 ·Q will dominate that of dS.
Moreover, as the budget is usually relatively closed (E ' P+5·Q), the effective
number of dimensions in determining the clustering is two, which allows the
clustering results to be easily visualised by a 2-D scatter plot.

3.3.7 Hydrological regimes in ERA-I

Fig. 3.12 displays the region definitions of clustering in January, July and the
annual mean in ERA-I. Regime numbering is arbitrarily defined by the order of
the sorted P values. Similarities with the Köppen-Geiger climate classification
(Fig. 3.13) can be readily observed, such as the wettest regime (regime 6)
is located with the tropical forest (Af, the Köppen-Geiger notation), tropical
monsoon (Am) and tropical savanna (Aw) climate types; the driest regime
(regime 1) is found over the desert climate (BW) in north Africa, the Arabian
peninsula and the central Australia. Climate types that are characterized by
greater seasonal variations are represented by the differences in the January and
July regimes: the Asian monsoon region is represented by the second driest
regime (regime 2) in January (Fig. 3.12a) and the two wettest regimes (regime
5 and 6) in July (Fig. 3.12b); The tropical savanna in Brazil has more rainfall
in boreal winter (regime 5 and 6 in January) than in summer (regime 2 in
July). And many of the temperate climate types are identifiable as regimes
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Figure 3.12: Regime definitions of the atmospheric hydrological cycle over global land
in ERA-I. Regimes are defined by clustering the hydrological variables using the January
(a), July (b) and (c) annual means of the 1979-2012 data.

with intermediate precipitation amounts in the July and annual mean classes
(Fig. 3.12b,c).

However, the clusters are distinguished by more than just the precipitation
amount, as shown when the cluster centers are visualized on P, E and P,
5 ·Q scatter plots (Fig. 3.14). Across global land, there exists a good linear
relationship between P and5·Q (Fig. 3.14b, d and f). Since the budget equation
is strictly linear, a similar linear relationship is expected between P and E, but
this is not the case (Fig. 3.14a, c and e). The range of variability in E is much
smaller than that of P and 5 ·Q (Trenberth and Guillemot, 1998; Mueller et al.,
2013), so the nonlinear behaviour is not very distinct in the P v.s. 5 ·Q scatter
plots. A dividing line could be drawn through P ' 3 mm/day that separates
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Figure 3.13: Updated world map of the Köppen-Geiger climate classification. From Peel
et al. (2006).

the global land masses into one group where variability in P is more related
to E, and a group where P corresponds more closely to transported moisture
than to locally evaporated. The division in the main moisture sources also
corresponds to mean rainfall amounts. It should be noted that in the reanalysis
system, feedbacks in the hydrological cycle do not function in the same way as
in reality: P is simulated by a numerical weather prediction model, and E from
a land surface model/scheme, which uses meteorological forcings as inputs.
Therefore, there exists a more direct influence of P on the soil moisture and E,
but the feedback in the opposite direction is rather indirect: the assimilation
of humidity observations in each forecast cycle means the impacts of E on
humidity and subsequently P can only be secondary.

The average water budget for each regime is computed and the results are
shown in Fig. 3.15 in the form of stacked bars. For each regime, the
budget-inferred P is shown as the amount of convergence (cyan) added on top
of E (green). P from reanalysis is plotted as a blue pillar, and the P estimates
from GPCP (red pillars) are shown as a reference. Note that the difference
between the budget-inferred P (left pillar) and the reanalysis P (mid-pillar) is
the quantified budget residual. The storage change term dS is too small to
show but it is included in the calculation. The resultant residuals (i.e. the ERA-I
budget imbalance due to assimilation increments, Eq.3.3) from such calculations
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Figure 3.14: Scatter plots of E vs. P (left column) and 5 ·Q vs. P (right column) over
global land in January (first row), July (second row) and annual mean (third row). Data
are the ERA-I 1979-2012 climatologies (with Antarctica excluded). Cluster centers from
the K-means clustering are superimposed onto the scatter dots using coloured dots (see
key in panel b).
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are plotted as the dotted lines onto the y axis on the right, as percentages of the
corresponding reanalysis precipitation.
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Figure 3.15: Water budget and residuals for the regimes derived from ERA-I in (a)
January, (b) July and (c) annual mean. For each regime, the budget-inferred P is shown
by the pillar on the left that consists of 5 ·Q (cyan) on top of E (green). If 5 ·Q is
positive ( net divegence takes water away), it is plotted as a white bar, coming down
from and overwriting the green E bar. P from ERA-I (dark blue) and from GPCP (red)
are also plotted. Error bars denote the spatial standard deviations around the regime
mean. Fractional residuals (residual divided by mean P, in percentage) are plotted as
red squares, using the right-hand y-axis scale.

The regime with highest P (regime 6) has the largest wet bias in ERA-I (Fig. 3.15),
which is mostly caused by the wet biases over the Congo and the Amazon
basins (see Fig. 1.3 and 1.4 in Chapter 2). Going from the driest (regime 1)
to the wettest (regime 6), there is a general tendency of increasing contribution
from converged moisture to precipitation, consistent with previous discussions.
This can be readily observed by comparing the precipitation constitutions in
regime 4, 5 and 6: precipitation in regime 4 is largely dominated by evaporation
in both seasons and the annual mean, and the extra rainfall in regime 5 and
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6 in addition to regime 4 are mostly contributed by convergence. This is
due to the relatively uniform evaporation distributions in tropical Africa and
South America, compared with a much narrower band of enhanced moisture
convergence following the seasonally shifting ITCZ that co-locates with regime
6 (not shown). In regime 6, converged moisture contributes the majority of
total precipitation. Regime 2 in both seasons and the annual mean is the only
regime that has significant net moisture divergences over land. In these areas
evaporation is the only water supply for precipitation. It is also the regime that
shows the largest fractional residuals. Therefore this regime will be examined
in more details.

Regime 2 has the largest negative budget imbalance (residuals) when expressed
as a percentage of the mean precipitation, with P exceeding E −5 ·Q. Since
ERA-I P is quite a close match with GPCP P, the large relative residuals in the
regime 2 atmospheric water budget are likely to be caused by either low biased
E or high biased 5 ·Q or a combination of both. Both variables lack a reliable
reference dataset, so their temporal variability is examined instead.

Fig. 3.16 shows the time series of the hydrological variables in regime 2, and
Table 3.2 lists the correlation coefficients between the absolute residuals and E,
P, 5 ·Q and dS. Note that the relative residuals, R/P, should not be used for
the correlations because dividing by P imparts a relationship with P even where
none exists. The correlations with E, P and dS are all trivial or moderate, but
are strong and significant with 5 ·Q. Overestimated divergence is likely to be
the cause of the negative residuals. Note that the annual mean divergence in
this regime is positive throughout the period 1979-2012 (Fig. 3.16c), which is
physically impossible for surface runoff to occur.

Table 3.2: Correlation coefficients between time series of budget residual and E, P 5 ·Q
and dS. The p value for each coefficient is shown in parentheses, and correlations that
are significant at 0.01 level are shown in bold.

E P 5 ·Q dS
Jan 0.07 (0.72) 0.09 (0.62) −0.84(< 0.01) -0.30 (0.08)
July -0.18 (0.32) -0.22 (0.21) −0.75(< 0.01) −0.42(0.01)

Annual 0.40 (0.02) -0.17 (0.34) −0.68(< 0.01) 0.07 (0.68)

To further substantiate this hypothesis, composites of low-residual (time
points when the fractional residual is more than 1 standard deviation above
its mean, and therefore closer to zero residual), mid-residual (time points
when the fractional residual lies within 1 standard deviations of its mean)
and high-residual (fractional residual below -1 standard deviation; note that
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Figure 3.16: Time series of hydrological budget variables averaged spatially over regime
2 in (a) January, (b) July and (c) annual mean. Fractional residuals (i.e. the budget
residual as a percentage of the mean precipitation) are plotted onto the y-axis on the
right.

residuals are all negative, therefore below -1 standard deviation implies further
departures from a closed budget) are defined. Fig. 3.17 shows the anomaly fields
of 5 ·Q, moisture fluxes and 500 hPa geopotential height in the above defined
composites. It can be seen that the low-, mid- and high-residual composites
correspond to anomalous convergence, neutral and anomalous divergence of
moisture over the regime 2 regions of tropical Africa and Asia. The anomalous
moisture fluxes are mostly directed on-shore for the convergence case and
off-shore otherwise. Associated with this circulation pattern difference, the
pressure fields also display distinct distributions: a low pressure system is found
to the north of regime 2 over land in the low-residual composite (Fig. 3.17b), and
when the circulation is found to be anomalously divergent there is a strong high
pressure system taking control over land (Fig. 3.17f).

Similar analyses are also performed for each of the four major land masses that
are classified into regime 2 in July (Fig. 3.12b): South Africa, Central Asia, South
America and western US. Residuals over western US are not particularly large,
neither are they systematically positive or negative. The fractional residuals
of regime 2 in July with and without the western US region are −76.6 % and
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Figure 3.17: Composites of anomalous5·Q (coloured grid cells in left column), column
integrated moisture fluxes (vectors in both columns) and 500 hPa geopotential height
(contours in right column) in 1979-2012 January. The first row shows the low-residual
composite, second row mid-residual and third row high-residual composite. 5 ·Q is
in the unit of mm/day, moisture fluxes in kg/m/s, and a scaling vector is shown at the
bottom of each plot. For 5 ·Q only the land boxes that are classified as regime 2 are
plotted.
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−87.9 %, respectively. And the correlation statistics as shown in Table 3.2 change
to −0.16 (p = 0.37) with E, −0.14 (p = 0.42) with P, −0.79 (p < 0.01) with5·Q
and −0.40 (p = 0.02) with dS, if western US is excluded from the computation.
Therefore this region is not included in the subsequent analyses. Correlations
with the residual time series (Table 3.3) suggest that for South Africa, Central
Asia and South America, moisture divergence is the dominate modulator of
residuals.

Composites of 5 · Q and moisture flux anomalies are also created for these
regions (Fig. 3.18). Only the low- and high- residual composites are shown
for brevity. Consistent with previous findings, low-residual composites are
associated with anomalous moisture convergence and high-residual composites
associated with anomalous divergence.

Table 3.3: Same as Table 3.2 but for South Africa, South America and Central Asia in
July.

South Africa South America Central Asia
E -0.20 (0.25) -0.26 (0.14) -0.07 (0.69)
P 0.05 (0.79) -0.01 (0.98) -0.24 (0.18)
5 ·Q −0.89(< 0.01) −0.69(< 0.01) −0.70(< 0.01)

dS 0.03 (0.88) -0.27 (0.12) 0.13 (0.45)



84
Evaluation of atmospheric hydrological cycle – evaporation, total

precipitable water and the water budget

(a) South Africa, low-res

6 12 18 24 30 36 42 48 54 60

-36

-30

-24

-18

-12

-6

0

6

-36

-30

-24

-18

-12

-6

0

6

21
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(b) South Africa, high-res

6 12 18 24 30 36 42 48 54 60

-36

-30

-24

-18

-12

-6

0

6

-36

-30

-24

-18

-12

-6

0

6

53
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

(c) South America, low-res

-84 -78 -72 -66 -60 -54 -48 -42 -36 -30 -24

-36

-30

-24

-18

-12

-6

0

6

-36

-30

-24

-18

-12

-6

0

6

63
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(d) South America, high-res

-84 -78 -72 -66 -60 -54 -48 -42 -36 -30 -24

-36

-30

-24

-18

-12

-6

0

6

-36

-30

-24

-18

-12

-6

0

6

65
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(e) Central Asia, low-res

0 30 60 90

18

24

30

36

42

48

54

18

24

30

36

42

48

54

67
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(f) Central Asia, high-res

0 30 60 90

18

24

30

36

42

48

54

18

24

30

36

42

48

54

57
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.18: Composites of anomalous 5 · Q (coloured grid cells, mm/day) and
moisture fluxes (vectors, kg/m/s) in South Africa (first row), South America (second
row) and Central Asia (third row). Only land boxes that are classified as regime 2 in
July are plotted. Left column shows the low-residual composites, and right column the
high-residual composites.
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3.3.8 Hydrological regimes in JRA-55

Hydrological regimes are also defined using JRA-55 data during the same
time period, and the regime definitions and budget bar charts are displayed
in Fig. 3.19 and Fig. 3.20, respectively. Notable similarities with the regime
definitions in ERA-I can be observed in January and July (Fig. 3.19a,b). Some
differences are found in the annual mean definitions, mostly in the Euro-asia
and North America continents. The regime level budgets (Fig. 3.20) are also
qualitatively consistent with the ERA-I results. Moreover, regime 2 stands out
again as the one with the least closed budget in January and July.
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Figure 3.19: Same as Fig. 3.12 but defined by JRA-55.

Fig. 3.21 shows the time series of hydrological budget variables in regime 2
using JRA-55 data. Same as for ERA-I, 5 ·Q has the strongest correlation with
the budget residual in January (−0.34, p < 0.05) and July (−0.65, p < 0.01).
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Figure 3.20: Same as Fig. 3.15 but for JRA-55.

The weaker correlation in January is to some extent caused by the high biases
in JRA-55 P during 1979-1989 (Fig. 3.21a). For 1990-2012, the correlation with
5 ·Q is stronger: −0.74 (p < 0.01). For annual means the largest correlation is
with P (−0.63, p < 0.01), suggesting P as a stronger modulator. However, as the
regime definitions are different from those found in ERA-I, the results of annual
means can not be directly compared.

Composites of5·Q and moisture fluxes (not shown) using the same procedures
as in ERA-I are also created for regime 2 in JRA-55, and the results lend further
supports to the hypothesis that for regime 2 in the respective season, moisture
divergence is closely related to the variation of the budget residual and therefore
is likely to be the major cause of it.
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Figure 3.21: Same as Fig. 3.16 but for JRA-55.

3.4 Conclusions and discussion

This chapter completes the assessment of atmospheric hydrological cycle
observations by addressing estimations of E and TCW. Greater degrees of
uncertainty are expected in the large-scale land surface ET observations,
largely due to the inherently limited spatial representativeness of the direct,
in situ measurements, and the limitations of the various model-based indirect
approaches. A high quality benchmark ET dataset is not available until recently,
however, the ET estimates by this benchmark product by Mueller et al. (2013) is
sensitive to which ensemble members it incorporates, and therefore still bears
considerable uncertainties. This lack of a reliable reference for ET limits our
assessment to a global annual mean level. Global land ET from ERA-I and
JRA-55 falls within, but near the higher end, of the range of estimates from
literature, consistent with previous findings (Mueller et al., 2011, 2013).

Oceanic E is examined in more depth. Both reanalyses and HOAPS show some
degrees of higher values compared with OAFlux in the tropics, with JRA-55
being the most biased. In terms of spatial patterns, the matches between OAFlux
and both reanalyses are satisfactory, and there is little seasonal variation in their
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performance. HOAPS shows higher levels of E in the ITCZ compared with
OAFlux, and lower values in the Kuroshio current and Gulf stream regions. This
pattern corresponds well with the differences in temporal standard deviations.
Similar associations between the mean fields and local variability are also
observed in its precipitation estimates (Andersson et al. (2011), also see Chapter
2).

Since humidity is assimilated into the reanalyses through 4DVAR schemes, good
matches were expected among datasets for TCW. The Taylor diagrams confirm
this, though systematic differences do exist and the possible implications may
not be trivial despite the differences in the tropics being mostly below 10 %.
Through the examination of P and TCW relationships in the ITCZ, we confirm
that tropical convection in reanalyses is problematic. As they both maintain
a higher level of precipitation with a lower level of TCW, the overestimation
of P is likely due to the spin-down problem in the reanalysis model that
produces high rainfall rates and then rapidly adjusts down (Andersson et al.,
2005). Associated with this spin-down is the positive analysis increments in
the tropics that bring the humidity level back up to the observations (Kobayashi
et al., 2015). However, from a dynamic-thermodynamic decomposition point
of view, the interpretation of this low-water-high-rainfall phenomenon is that
the circulation and/or hydrological cycle in reanalyses may be too intense. To
balance the diabatic heating associated with an overestimated precipitation, the
adiabatic cooling that combines the vertical wind and temperature structure
needs to be more effective (Mitas and Clement, 2006). The temperature profile
in reanalyses, particularly the upper-troposphere section, has been questioned
(Santer, 2005; Held and Soden, 2006; Mitas and Clement, 2006), rendering the
circulation responses uncertain. In fact, intensity in the hydrological cycle
context is an ill-defined term. It has been given explicitly or implicitly different
interpretations in studies (e.g. Quan et al. (2004); Mitas and Clement (2005);
Bosilovich et al. (2005); Held and Soden (2006); Vecchi and Soden (2007); Sohn and
Park (2010); Zhang and Song (2006); Zahn and Allan (2011)), and has subsequently
been “measured” through various perspectives using various variables and
metrics. This to a certain extent fuels the controversy in the debate over recent
decades’ hydrological responses (e.g. Sohn and Park (2010); Held and Soden (2006);
Zahn and Allan (2011); Vecchi and Soden (2007) and the references within). Before
the issue of tropical spin-down in reanalyses is solved, conclusions drawn from
reanalyses regarding “intensity” responses should be treated with caution.

We analyzed the budget residuals over global land through a hydrological
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regime approach. This, on one hand, is because the residual distribution itself
is rather noisy (see Fig. 1 in Seager and Henderson (2013)), and on the other
hand we believe that the budget needs to be closed for a good reason. Lorenz
and Kunstmann (2012) noticed that in terms of the continental surface water
balance, MERRA shows the least residual (2.6× 1015 kg/yr) compared to ERA-I
(9.0× 1015 kg/yr) and CFSR (19.0× 1015 kg/yr). That is to some extent the result
of the compensation between an overestimated land ET and an underestimated
surface runoff. Therefore we seek to use a more informative approach that
allows the residuals to be quantified in the context of the local hydrology.

The hydrological regimes defined using ERA-I and JRA-55 show very similar
geophysical locations in January and July, and in both cases regime 2 is found to
be the one that has the largest fractional budget residuals. This regime features
large local E and net divergence of moisture, and co-locates with the regions
where the meridional component of the moisture fluxes are strongest (see Fig.
9 in Trenberth and Guillemot (1998)), suggesting that the meridional circulation in
reanalyses may contain errors. Correlations of the residual time series with other
variables suggest that moisture divergence is likely to be the major cause, and
subsequent composite analyses lend further support to this hypothesis. Reliable
references for land ET and moisture divergence are lacking, and confidences in
the P observations are compromised by the sparse gauge distributions in these
tropical regions (Lorenz and Kunstmann, 2012; Pan et al., 2012; Bosilovich et al.,
2008). Therefore a correlation analysis can bypass these difficulties. However,
this does not imply that other variables are reliably or correctly estimated in
this case. It is possible that ET and P estimates may also contain biases, and
certain degrees of error cancellation may occur that help to reduce the residual.
As we emphasized, the budget residual is just one aspects of the quality of a
dataset, and a closed budget does not necessarily imply correctness in all budget
variables.





91

Chapter 4

Annual and diurnal cycles in
horizontal moisture fluxes

4.1 Research background

Vertically integrated moisture fluxes give a picture of the horizontal
re-distribution of moisture and energy by the atmospheric circulation, and
reflect the modulating effects over different time scales, including large scale
climate modes (e.g. ENSO, MJO, NAO), synoptic weather systems and
land-ocean interactions and so on. The temporal spectrum of moisture fluxes
generally corresponds to variability at different spatial scales, and requires data
with a suitable resolution and tailored methods for specific analysis purposes.
This chapter will look into the horizontal moisture fluxes using the ERA-I
reanalysis, with the flux signals decomposed into different time scales and their
interactions. The nature of the reanalysis dataset restricts the range of the time
spectrum one could include: the relatively short time span (1979 onwards) and
various observation heterogeneity issues (Trenberth et al., 2011; Bengtsson et al.,
2004; Bosilovich et al., 2011) make decadal and inter-decadal analysis mostly
impossible, and the 6-hourly (forecast period is 12 hourly in ERA-I) temporal
resolution places some barriers on analysis of diurnal cycles . These are taken
into account in the subsequent analysis and care is taken in distinguishing
artifacts of the dataset from the true signals when interpreting the results.

Horizontal winds and humidity are decomposed into three major time scales
separately: the mean annual cycle, mean diurnal cycle and the eddy component.
The mean annual cycle accounts for the climatological seasonal variations and
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therefore forms the backbone of the moisture fluxes. Relative to this backbone
component, the mean diurnal cycle explains anomalous moisture transports by
variational winds and humidity fields during the course of a day, a relatively
small scale feature which is most prominent over complex orography and
coastal areas, but also reveals global scale patterns in phase with the diurnal
solar heating. These two components are both based on the long-term averages
(1979-2012 mean) and reflect the climatological mean behavior. Variations
over individual years, seasons and the shifts of diurnal variability as well are
represented collectively by the “eddy” component. The term “eddy” is used
in a general sense to account for variations that are not accounted for by the
mean annual and diurnal cycle components. This chapter will diagnose the
annual and diurnal cycles and will then focus on diurnal variability; and two
major aspects of the “eddy” component, namely the inter-annual variability in
the tropical Pacific and the extreme fluxes associated with tropical cyclones are
discussed in more details in Chapter 5 and 6, respectively.

4.1.1 Diurnal and semi-diurnal cycles

Two most fundamental modes of variability of the global climate system are
the seasonal and diurnal cycles, both are associated with regular solar heating
variations (Yang and Slingo, 2001). During the course of a day, Sea Surface
Tempearture (SST) warms by the direct daytime solar heating and cools by
nighttime radiative cooling. This diurnal variation of the top few meters of
ocean has been studied for several decades. Sverdrup et al. (1942) and Roll (1991)
reported the existence of diurnal SST changes based on vessel temperature
observations. Later studies using either in situ (e.g. Bruce and Firing (1974),
Price et al. (1987), Yokoyama and Konda (1996), Webster et al. (1996), Kawai and
Kawamura (2002), Matthews et al. (2014)) or satellite observations (Deschamps and
Frouin (1984), Gentemann et al. (2003), Stuart-Menteth (2003), Sykes et al. (2011))
confirmed the universality of the diurnal SST cycles. The amplitude of the
variation has been found to be around 0.2 - 0.6 K on average, but can reach
up to 5 K in extreme cases (Kawai and Wada, 2007).

Note that the term “SST” in general refers to the water temperature at the
ocean surface, but there is a complex temperature profile in the top few
meters and the resultant layers have different correspondences with different
measuring instruments and implications on air-sea interactions. For instance,
the theoretical temperature at the immediate contact interface between ocean
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and air is defined as “interface SST”, which is directly relevant to oceanic heat
fluxes but can not be measured directly by current techonology (Kawai and Wada,
2007). At ∼ 10− 20 µm depth the temperature is “skin SST”, which is measured
by Infrared satellites. The more penetrating microwave satellite instrument
measures “subskin SST”, at a depth of ∼ 1 mm. What ships and buoys usually
measure is the “depth SST” at around ∼ 1 m depth. Diurnal variability exists
in all of the above mentioned layers, but with different features (Kawai and
Wada, 2007). Most reanalysis products use a prescribed SST as the boundary
condition (the Climate Forecast System Reanalysis (CFSR) is a partially coupled
reanalysis (Kumar et al., 2013)), and in the case of ERA-I, four SST data products
are used in succession (Dee et al., 2011), but are all “bulk SST” or “depth SST”
measurements (even though satellite retrievals may be assimilated) interpolated
onto the model time step. However, as this chapter is mostly concerned with
atmospheric mositure fluxes, the “SST” that is most relevant is the “interface
SST”, or the “skin SST” which is close enough to “interface SST” (Kawai and
Wada, 2007). In the rest of the chapter we will be using the term “SST” in a
general sense to refer to the temperature near the surface. However, it is helpful
to note these subtle differences and be aware of possible problems caused by
the mis-match of the boundary condition “SST” and the atmospheric responses
it forces.

Furthermore, model experiments confirmed that the inclusion of a diurnal solar
insolation forcing is responsible for the observed diurnal cycles in SST (Schiller
and Godfrey, 2003, 2005). The effect is not restricted to the SST itself, but has
implications for various atmospheric properties through air-sea interactions,
including humidity and surface heat fluxes (Dai and Trenberth, 2002, 2004;
Schiller and Godfrey, 2003, 2005; Zeng and Dickinson, 1998; Yang and Slingo, 2001).
Currently many climate models use a slow varying SST as boundary condition,
this lack of diurnal SST forcing has been suggested to be a significant deficiency,
which leads to insufficient diurnal variations in air temperature, pressure and
precipitation (Dai and Trenberth, 2004). Little added value is observed when
the day-to-day variation is introduced onto the monthly mean SST values, this
missing piece can only be retrieved when temporal resolution below one day is
resolved (Zeng and Dickinson, 1998).

The difference due to the lack of diurnal cycle in model simulations is most
prominent but not restricted to diurnal time scales. For instance, on a regional
scale, an SST anomaly due to the exsitence of the diurnal warm layer can reach
0.8 °C, with a daily mean of 0.2 °C (Matthews et al., 2014); surface heat fluxes
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can increase by the order of 50 W/m2 during the daytime when diurnal SST is
incorporated, and the time mean value can be above 10 W/m2 (Kawai and Wada,
2007). Neither are negligible for the atmosphere.

In addition to this bottom-up influence through diurnally varying surface
temperature forcing, the atmosphere oscillates from the top-down at diurnal
and semi-diurnal periods as well. With manifestations in atmospheric pressure,
temperature and wind fields, these diurnal/semi-diurnal oscillations are also
known as “atmospheric tides” (Lindzen, 1967; Dai and Wang, 1999; Deser and
Smith, 1998). Previous studies have documented the existence of this tidal
variation in surface wind and pressure fields, particularly over tropical oceans
(Dai and Wang, 1999; Deser and Smith, 1998). Excited by the absorption of solar
radiation by ozone and water vapour, the tidal oscillation decreases towards the
surface, during which the diurnal component has been largely dampped out,
leaving only the semi-diurnal component (Lindzen, 1967; Deser and Smith, 1998).
As the Quasi-biennial Oscillation (QBO) affects this semi-diurnal variation via
the ozone concentration, a signature of QBO is imprinted in the surface pressure,
forming the basis of QBO reconstruction from SLP data (Brönnimann et al., 2007).
Models have been developed to describe the semi-diurnal oscillation of surface
pressure, and via the horizontal momentum equations, the surface wind fields
(Deser and Smith, 1998; Ueyama and Deser, 2008).

In regard to the global scale hydrological cycle, much attention has been focused
on the diurnal cycle of deep convection and associated precipitation (e.g. Yang
and Slingo (2001); Dai et al. (2007); McGarry and Reed (1978); Janowiak et al.
(1994); Sui et al. (1997)), however there have been few studies that combined the
diurnal variations in humidity and wind fields to diagnose the moisture flux
diurnal cycles and their seasonal differences. This is partly due to the lack of
high spatio-temporal resolution observations in water vapour and winds. Tian
et al. (2004) used combined water vapour and window radiances from multiple
satellites to analyse the upper troposphere humidity (UTH) diurnal cycles,
and documented a certain phase lag between the UTH, high clouds and deep
convection diurnal cycles. However this has limited implications in terms of
large scale moisture transports, due to the low levels of humidity in this section
of the troposphere. Dai and Trenberth (2002) provided evidence for the diurnal
variations in precipitable water (PW) over continental North America. The GPS,
ground-based microwave radiometer and radiosondes observations give largely
consistent results in the diurnal PW cycles, and the vertical profile created from
radiosondes illustrates the vertical differences in the diurnal amplitudes and
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phases. In particular, a clear distinction between the boundary layer and the
free troposphere was identified.

Inspired by these early efforts, this chapter attempts to extend the analysis to
cover the global scale mid-to-lower troposphere where the majority of moisture
transports reside, and highlight the seasonal evolutions of diurnal cycles. To
overcome the low temporal sampling deficiency of the reanalysis data, we
modified the conventional approach in diurnal cycle studies, which is to obtain
the seasonal means of some sub-daily data then use harmonic analysis to
describe the diurnal cycles. Instead we computed the annual cycle harmonics of
the synoptic hours and obtained the diurnal cycles from the differences among
them. Some information of the diurnal cycle is inevitably lost, but we still
retrieve a robust diurnal signal that is embedded in the annual cycles and a
smooth seasonal evolution can be easily visualized. Section 4.2 explains the
method in detail, and the diurnal moisture fluxes due to variability in humidity
and the atmospheric tides are shown in Section 4.3.2 - 4.3.5.

4.2 Data and Methods

4.2.1 Mean annual cycle of winds and humidity

ERA-Interim (ERA-I) 6-hourly specific humidity (q) and horizontal winds (u, v)
on model levels 31-60 (∼ 230 hPa to surface) are used to compute the column
moisture fluxes. At each level, the 6-hourly annual cycles of u, v and q are
computed by averaging across 34 years (1979-2012), and the resultant time series
are fitted by a harmonic analysis (mean plus first 3 harmonics) at each of the
synoptic hours separately at 00, 06, 12 and 18 UTC:


Xa00 = µ00 + ∑3

j=1 Sj00

Xa06 = µ06 + ∑3
j=1 Sj06

Xa12 = µ12 + ∑3
j=1 Sj12

Xa18 = µ18 + ∑3
j=1 Sj18

(4.1)

where X stands for u, v or q. Subscript a denotes annual cycle, µ is the mean at
a synoptic hour, and the jth harmonic at the same synoptic hour is represented
by Sj. Note that although termed as “annual cycle”, the inclusion of up to the
third harmonic implies that semi-annual cycle variability is also captured.
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The means of the above harmonics across synoptic hours are equivalently
the harmonics of the daily means, and are repeated four times to give the
“mean annual cycle” time series: ua, va and qa, each of which has a length
of 365× 4 = 1460 (29th Februray in leap years are deleted):

Xa =
Xa00 + Xa06 + Xa12 + Xa18

4
(4.2)

4.2.2 Mean diurnal cycle of winds and humidity

The deviations of each synoptic harmonic with respect to the “mean annual
cycle” are defined as the “mean diurnal cycle”:


Xd00 = Xa00 − Xa

Xd06 = Xa06 − Xa

Xd12 = Xa12 − Xa

Xd18 = Xa18 − Xa

(4.3)

These are “zipped” together in days to a form a time series Xd, with a length
of 1460. Note that the diurnal cycle defined in this manner represents the
systematic differences across synoptic hours that are embedded in their mean
annual cycles. As the mean annual cycle only up to the third harmonic has
been retained, the observed diurnal differences are likely to be underestimated,
both due to the 6-hourly sampling of ERA-I and to the loss of higher order
harmonics. However, for the same reason any observed diurnal variation is
robust, and previous studies have confirmed that the four-times-daily sampling
frequency is able to reveal diurnal cycles (Sykes et al., 2011).

4.2.3 Eddy component of winds and humidity

The “eddy” components are defined as the residual:

Xe = X− Xa − Xd (4.4)

Note that the “eddies” defined above are distinct from “anomalies” in that their
time averages are not zero definite, as both Xa and Xd are fitted harmonics:

Xe = X− Xa − Xd = X− Xa − Xd 6= 0 (4.5)
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Fig. 4.1 illustrates the definitions of mean annual cycle, mean diurnal cycle
and eddy meridional wind components for a sample grid box (located at
5°N, 120°E). Note that the mean diurnal cycle varies in both amplitude and
phase through the year, and the mean annual cycle has step-wise changes across
days.
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Figure 4.1: The diagnosis of annual cycle, diurnal cycle and eddy components
illustrated using the timeseries of meridional wind (v m/s) at sigma level 60, 5°N, 120°E.
The mean annual cycle (red; va) is obtained by separate harmonic analysis (Eq. 4.1) at
each of the four synoptic hours of the 34-year average (black; here shown with the four
synoptic hours concatenated into a single timeseries through the climatological year).
The mean of the four annual cycles (Eq.4.2) is repeated at the four synoptic hours in
each day resulting in small step changes between days (more easily seen in the inset
plot). The mean diurnal cycle (blue, vd) is given by the deviation of each of the four
annual harmonics (fitted to the data from the four synoptic hours) from their mean (Eq.
4.3). The eddy wind (green; ve) is the residual from an individual year’s data and these
1979-2012 climatological cycles (Eq.4.4), shown here for one example year (1979).
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4.2.4 Moisture fluxes by cross terms in winds and humidity

Interactions between wind and humidity fields over the three time scales give
rise to a mean moisture flux that can be represented by 9 terms, the product of
3 terms for wind and 3 terms for humidity:

Vq = (Va + Vd + Ve)(qa + qd + qe) = (Vaqa + Vaqd + Vaqe+

Vdqa + Vdqd + Vdqe+

Veqa + Veqd + Veqe)

(4.6)

The last term Veqe is the eddy covariance. The cross terms in (4.6) represent
interactions across time scales, e.g. Vaqd is the flux resulting from diurnally
varying humidity advected by the background mean flow, and Veqa is the flux
created by eddy wind scaled by the mean humidity. When taking a time
average (across 34 years), these cross terms, including the covariance term,
are not zero definite, as explained above. Furthermore, when these fluxes
are vertically integrated, a third term (surface pressure) is introduced into the
computation:

F =
∫ P60

P31

Vq
g

dP =
∑60

i=31 Viqi∆Pi

g
(4.7)

The computation is done using model level data, therefore the pressure
increment term in (4.7) is:

∆Pi = ∆Ai + ∆BiPs (4.8)

where Ai and Bi are level dependent constants that define the terrain following
sigma levels in ERA-I. Equation (4.7) implies that the vertically integrated
horizontal moisture flux is a combination of the mass of the atmospheric column
(equivalently surface pressure), the humidity load (specific humidity measured
in kg/kg) and the wind speeds.

Integrations that involve only the “mean annual cycle” and/or “mean
diurnal cycle” in wind and humidity are annual cycles in nature, therefore
the 34-year mean annual cycle of surface pressure is used in the vertical
integration. Computations that involve “eddy” component are performed for
each individual year, using the surface pressure of the corresponding year. The
covariances with surface pressure also imply that the time averages (across 34
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years) of the following cross terms are not zero definite:


VaqePsi = Va · qePsi = Va · qe · (Ps + P′si) 6= 0

VdqePsi = Vd · qePsi = Vd · qe · (Ps + P′si) 6= 0

VeqaPsi = qa ·VePsi = qa ·Ve · (Ps + P′si) 6= 0

VeqdPsi = qd ·VePsi = qd ·Ve · (Ps + P′si) 6= 0

(4.9)

where Psi is the surface pressure in the ith year, Ps the 34-year average and P
′
si

the ith year’s anomaly.

The 9 terms of 34-year averages shown in Eq. 4.6 can be further averaged into
calendar months to give an integrated view of the different scale interactions
in generating temporally coherent moisture fluxes. Hereafter we will be using
overbars X to denote averages across 34 years, and angle braces <> to denote
monthly means, e.g. the January mean of VaqdPs is < VaqdPs >Jan.

Note that < Vaqd >= 0, as in any given day the sum of qd00, qd06, qd12 and qd18

is zero by definition (Eq. 4.2, 4.3). However, the inclusion of the pressure term
incorporates interactions between diurnally varying qd and Ps and gives rise to
non-zero values in < VaqdPs >. Similarly, the non-zero values in < VdqaPs > are
due to the interactions between Vd and Ps. The reader will be reminded what a
specific term truly represents in the subsequent discussions, and Table 4.1 gives
a summary of the flux components and their interpretations.
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Table 4.1: Notations and interpretations for the terms in the temporal break down of
horizontal moisture fluxes. When zonal fluxes are discussed, V is replaced by U.

Notation Derivation Meaning
VaqaPsa VaqaPs = Va · qa · Ps = VaqaPsa Product of “mean annual cycles” in wind Va,

humidity qa and the annual cycle of surface
pressure Psa

VaqdPsa VaqdPs = Va · qd · Ps = VaqdPsa Diurnally varying humidity q and surface
pressure Ps advected by mean background
winds Va

Va · qePs VaqePs = Va · qePs Eddy humidity qe advected by mean
background winds Va

VdqaPsa VdqaPs = Vd · qa · Ps = VdqaPsa Diurnally varying wind Vd and Ps scaled by
mean background humidity qa

VdqdPsa VdqdPs = Vd · qd · Ps = VdqdPsa Covariance in the diurnally varing wind Vd,
humidity qd and surface pressure Ps

Vd · qePs VdqePs = Vd · qePs Eddy humidity qe advected by diurnally
varying winds Vd

qa ·VePs VeqaPs = qa ·VePs Eddy wind Ve scaled by mean background
humidity qa

qd ·VePs VeqdPs = qd ·VePs Eddy wind Ve scaled by diurnally varying
humidity qd

VeqePs / Covariance in Eddy wind Ve and humidity qe
< X > / Calendar-month mean of the term X

4.3 Results

4.3.1 Monthly mean moisture fluxes

Horizontal moisture fluxes integrated through the mid-to-low troposphere are
decomposed into time scales of mean annual cycle, mean diurnal cycle, eddy
covariance and interaction components, as described in the previous section.
The resultant 9 combinations are averaged across January and July (Fig. 4.2
- Fig. 4.5) to illustrate the contributions from different time scales and scale
interactions in generating temporally coherent fluxes.

As the mean annual cycle consists of the mean and the seasonal harmonics, it
is not surprisingly the largest contributor to both zonal and meridional fluxes
in both seasons (subplot (a) in Fig. 4.2 - 4.5). The mean January zonal fluxes, or
more precisely the January mean of the fitted annual cycle, generally follow the
lower tropospheric zonal wind: easterly trades in the tropics and westerlies in
mid-latitudes (Fig. 4.2a and 4.3a). The SH mid-latitude zonal fluxes are stronger
in summer (January), weakening and shifting equatorward in winter (July),
while in the NH there is a contrast between ocean basins: the North Pacific
westerly fluxes are stronger in winter and the North Atlantic westerly fluxes
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Figure 4.2: January mean zonal column moisture fluxes (kg m−1s−1) decomposed
into different time scales and their interaction terms. From the top to bottom row,
wind components are mean annual cycle, mean diurnal cycle and eddy component,
respectively. From the left to right column, humidity components is the mean annual
cycle, mean diurnal cycle and eddy component, respectively. For example, (a) shows the
integrated flux by mean January zonal wind and mean January specific humidity, and
(e) is the combination of mean diurnal wind and mean diurnal humidity. For detailed
explanation see the Data and Methods section and Table 4.1. Note that subplot b, d, f,
h are scaled up by 102 for easier labelling.
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Figure 4.3: Same as Fig. 4.2 but for July averages.
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are slightly stronger in summer. The annual cycle reverses the direction of the
zonal moisture fluxes in the equatorial and North Indian Ocean, linked to the
monsoonal circulations. The meridional moisture fluxes (Fig. 4.4a and 4.5a)
are weaker overall, and reveal the transport around the subtropical high and
subpolar low pressures of the ocean basins, especially prominent in the summer
hemisphere, and poleward transport in the NH storm track regions during the
winter. Monsoonal changes are again promiment over the Indian ocean and the
Euroasian land mass, and seasonal variations can be observed over the tropical
convergence zones.

Eddy covariance terms (subplot (i) in Fig. 4.2 - 4.5) constitute the second largest
contributor to horizontal fluxes. Storm track regions in both hemispheres are
highlighted in these terms, where mid-latitude cyclones and depressions play an
important role in the poleward transport of moisture and heat. Zonal fluxes are
mostly eastwards with some notable exceptions, such as the far northern Pacific
and NW Atlantic where the eddy covariance transports moisture westwards
in Jan. Meridional fluxes are nearly all poleward and associated with the
mid-latitude storm-tracks. They play almost no role in meridional transport
of moisture in the South Asian summer monsoon.

Non-negligible fluxes are also seen in interaction terms that involve the mean
annual cycle and eddy components. For instance < qa · VePs > (subplot (g) in
Fig. 4.2 - 4.5) accounts for the fluxes of eddy wind scaled by mean background
humidity, and is of the same order of magnitude as the eddy covariance term.
A shearing zone in the zonal flux (Fig. 4.2g, 4.3g) is observed in the mid-latitude
of the summer hemisphere, and a series of wave-like patterns can be seen
in the meridional flux in the mid-latitudes in both hemispheres (Fig. 4.4g,
4.5g). The < Va · qePs > term (subplot (c) in Fig. 4.2 - 4.5) also shows some
regional variations with a smaller magnitude. Patterns embedded in these terms
consist of interactions between wind, humidity and surface pressure across
multiple time scales, detailed analysis of which goes beyond the scope of this
chapter.

Terms that involve the mean diurnal cycle in either wind or humidity (<
VaqdPsa >, < VdqaPsa >, < VdqdPsa >, < Vd · qePsa > and < qd · VePsa >, see
the mid row and column in Fig. 4.2 - 4.5) are all negligible in terms of monthly
mean fluxes. The largest of these (< VdqdPsa >) only accounts for a few tenths
of kg m−1 s−1 of moisture transport and is largely confined to some tropical
regions with complex orography or along the coasts. And the other terms are
two orders of magnitude smaller (note that all these terms except < VdqdPsa >
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Figure 4.4: Same as Fig. 4.2 but for January mean meridional moisture flux.
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Figure 4.5: Same as Fig. 4.2 but for July mean meridional moisture flux.
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have been scaled by 100 relative to the other terms in Fig. 4.2 - 4.5). This
implies limited net effect of diurnal variations in generating temporally coherent
mositure fluxes, however, as explained in the previous section, the diurnal cycles
obtained from fitted harmonics are likely to be underestimated. When averaged
across a month, the short-term fluxes created by interactions between q and
Ps (VaqdPsa, see Table 4.1), or between V and Ps (VdqaPsa) are largely cancelled
out. In other words, the daytime increase of moisture load is roughly balanced
by nighttime decrease, or a roughly equal amount of moisture is transported
by the wind in one direction as in the opposite direction at the end of a day.
Systematic convergence/divergence during a fixed period of a day is required
for a notable net effect to accumulate. This explains the coastal and complex
terrain maxima/minima observed in diurnal-involved combinations, and is
indicative of the land-see-breeze and mountain-valley-breeze effects.

Although being negligible in terms of time-accumulated net effects, diurnal
variations can be significant or have well organized spatial patterns. The latter
can be observed in the < VdqaPsa > component, where four evenly spaced
troughs are found along the equator in the zonal flux (Fig. 4.2d, 4.3d), and
similar wave-patterns with some cross-equator asymmetric features can be
seen in the meridional component (Fig. 4.4d, 4.5d). These are the result of
atmospheric tidal oscillations and aliasing in the 6-hourly ERA-I data, explained
further in the following sections.

4.3.2 Diurnal cycles of Total Column Water and zonal moisture

flux–spatial patterns

To examine the diurnal variability in horizontal moisture fluxes due to the
humidity changes, the mean diurnal cycles of UaqdPsa are created by averaging
the four synoptic hours across DJF and JJA, respectively. The results are shown
in Fig. 4.6. In the tropics, a westward propagating maximum/minimum along
the equator completes a cycle in a day. In the mid-latitude the direction of the
flux anomaly is not always consistent with the tropical counterparts within the
same longitudinal band, e.g. at 06 UTC in DJF the Kuroshino current region has
westerly flux anomalies, opposite to the equatorial easterlies (Fig. 4.6).

Note that in UaqdPsa the zonal wind is kept constant (at the daily mean) during
a day, therefore the resultant flux reveals diurnal interactions between q and
Psa. However, sea level pressure has been found to have a much stronger
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Figure 4.6: Mean diurnal cycle of zonal moisture flux by the term (UaqdPsa, kgm−1s−1).
Top row shows the mean synoptic averages in the DJF season, and bottom row the JJA
season. The four columns correspond to UTC hour 00, 06, 12 and 18, respectively, and
the local solar time is labelled at the top x-axis.

semi-diurnal cycle, as the diurnal modes are largely trapped near the level
of forcing (top troposphere-stratosphere) (Lindzen, 1967; Deser and Smith, 1998).
Taking into account the 6-hourly sampling frequency of ERA-I, the variation of
Psa between the four synoptic hours is relatively small. Therefore the diurnal
cycle observed in zonal flux UaqdPsa is attributed to the diurnal cycle in the
humidity field, and this will be verified in the following.

Fig. 4.7 shows the diurnal cycle of TCW as represented by qd. The diurnal
deviations from their daily means are vertically integrated, and DJF/JJA
averages are computed at the synoptic hours. Comparing with Fig. 4.6, the
patterns in TCW and zonal flux are largely consistent, but with opposite signs
in the tropics. This is because the direction of mean background flow is mostly
easterlies (negative) in the tropics and westerlies (positive) outside. Some



108 Annual and diurnal cycles in horizontal moisture fluxes

-0.45

-0.35

-0.25

-0.15

-0.05

0.05

0.15

0.25

0.35

0.45

DJF 0 UTC

0 60 120 180 240 300

00 2016120804

-90

-70

-50

-30

-10

10

30

50

70

90

06 UTC

0 60 120 180 240 300

06 0222181410

12 UTC

0 60 120 180 240 300

12 0804002016

18 UTC

0 60 120 180 240 300

18 1410060222

-90

-70

-50

-30

-10

10

30

50

70

90

JJA 0 UTC

0 60 120 180 240 300

00 2016120804

-90

-70

-50

-30

-10

10

30

50

70

90

06 UTC

0 60 120 180 240 300

06 0222181410

12 UTC

0 60 120 180 240 300

12 0804002016

18 UTC

0 60 120 180 240 300

18 1410060222

-90

-70

-50

-30

-10

10

30

50

70

90

Figure 4.7: Same as Fig. 4.6 but for TCW (mm).

meridional banding features can be observed, particularly in mid-latitude lands
where the zonal gradients are smaller (e.g. at 00 UTC in JJA). This clear zonal
transition is replaced with irregular patterns in the tropics, where positive and
negative TCW regions tend to “wedge” into each other. This indicates different
mechanisms responsible for creating the observed diurnal cycle, and for the
tropics, it is likely that the shaping of the background convection areas (shape
and location of the warm pool and seasonally varying ITCZ and SPCZ) and the
zonal thermocline gradient are related.

The meridional averages of the TCW diurnal cycle (Fig. 4.8) are consistent
across all four seasons: the local maximum in TCW occurs in the local late
afternoon-evening (∼ 1800-2100, i.e. longitudes (degree East) 270 - 315 at 00
UTC, longitudes 180 - 225 at 06 UTC, longitudes 90 - 135 at 12 UTC, and
longitudes 0 - 45 at 18 UTC) and minimum in the local morning (∼ 0700-1000,
i.e. longitudes 105 - 150 at 00 UTC, longitudes 15 - 60 at 06 UTC, longitudes 285
- 330 at 12 UTC, and longitudes 195 - 240 at 18 UTC). This evening maximum
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is about 2-3 hours later than the surface temperature maxima in the afternoon
(Gentemann et al., 2003; Sykes et al., 2011; Deser and Smith, 1998; Sui et al., 1997),
but is in phase with the continental convection maximum (Yang and Slingo, 2001;
Dai and Trenberth, 2002). Correlations between the 6-hourly TCW and UaqdPsa

diurnal timeseries further validate the attribution to the TCW diurnal cycle, by
displaying significant (p < 0.01) coefficients all over the globe (not shown), with
negative sign within tropics and positive outside.

The same TCW diurnal cycle is also advected by mean meridional winds.
However, as the main horizontal winds (and subsequently the moisture
transports) are east-west and a strong meridional component only exists in some
regions with a much less zonally symmetric distribution (Fig. 4.4a, 4.5a; see also
Trenberth and Guillemot (1998)), the resultant diurnal variation in VaqdPsa is much
weaker (about one order of magnitude smaller) than the zonal counterpart and
only the zonal component is shown.
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Figure 4.8: Meridional means of TCW (mm) diurnal anomalies at (a) 00 UTC, (b) 06
UTC, (c) 12 UTC and (d) 18 UTC. Seasonal averages are represented in blue for DJF,
green for MAM, red for JJA and yellow for SON.

4.3.3 Diurnal cycles of TCW and zonal moisture flux–seasonal

evolution

As well as varying spatially, the diurnal cycles of TCW and zonal moisture flux
vary over the course of the year. This seasonal evolution of diurnal variability
is examined in four regions selected as case studies. The region definitions are
listed in Table 4.2 , and the seasonal evolutions in TCW and zonal flux diurnal
cycles are shown in Fig. 4.9 and 4.10.

The mean diurnal cycles computed from annual cycle harmonics allow seasonal
evolutions of the diurnal cycle to be visualized. As the two oceanic boxes are
both located in the deep tropics, it is not surprising to see largely consistent
diurnal cycle amplitudes in TCW throughout the year (Fig. 4.9a,b). When
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Table 4.2: Region definitions for diurnal cycle case studies.

Region name Geological boundaries
Cold tongue −2.5°S− 2.5°N, 100− 105°W
Warm pool 3− 8°N, 145− 150°E

North America 35− 40°N, 100− 105°W
North China 45− 50°N, 115− 120°E
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Figure 4.9: Seasonal evolutions of mean diurnal cycles in TCW (mm) in (a) Cold tongue,
(b) Warm pool, (c) North America and (d) North China. Each region is a 5 by 5 degree
rectangular box (Table 4.2). The four synoptic hours are represented by black for 00
UTC, green for 06 UTC, red for 12 UTC and blue for 18 UTC. The corresponding local
solar time is labelled in parentheses following their UTC time legend.

multiplied by the wind to obtain the zonal flux, the warm pool has reduced
diurnal amplitudes during boreal summer (Fig. 4.10b). Both of the land boxes
are in Northern Hemisphere (NH) and experience greater diurnal amplitudes
in boreal summer, and in winter the diurnal cycle nearly disappears (Fig. 4.9c,d,
Fig. 4.10c,d), consistent with what is shown in Fig. 4.6 and 4.7. This is likely due
to the limited water holding capacity and variability in winter, as the Clausius
Clapeyron equation is non-linear with respect to air temperature.

As shown in Fig. 4.9 and 4.10, the diurnal cycle phase (order of the four lines
in any given day) in TCW is generally opposite to that in UaqdPsa for the two
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Figure 4.10: Same as Fig. 4.9 but for zonal moisture flux UaqdPsa, kg m−1 s−1.

oceanic boxes (cold tongue and warm pool), and congruous for the two land
boxes (North America and North China). This is due to the low- and mid-
latitude mean zonal wind direction difference noted above. Besides, any line
crossing can be regarded as a change in the diurnal cycle phase, particularly
those that involve a change in the peak/trough times. Such changes can be
seen in the cold tongue case, where the the maximum TCW occurs around 1700
LST during Jan to mid-March, and changes to midnight-early-morning (2300 -
0500 LST) afterwards (Fig. 4.9a). Such phase changes are less frequent in the
other three regions, for instance the warm pool has fairly “parallel” synoptic
lines through the year (Fig. 4.9b, 4.10b); and in North China the maximum
(minimum) TCW/flux tends to occur in the evening (morning), whenever there
is a notable diurnal cycle (Fig. 4.9d, 4.10d).

4.3.4 Diurnal cycles of TCW – vertical structure

In the previous sections, TCW was found to have a diurnal cycle that
usually peaks in the local late afternoon - evening. This timing of daily
maximum is not inconsistent with the surface Evaporation/Evapo-transpiration
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(E/ET) responses to daytime radiative forcing. However, this latent heat
enhancement is likely to be confined to the boundary layer, and horizontal
convergence/divergence can influence TCW in the free troposphere. Previously
Dai and Trenberth (2002) documented such a difference based on radiosondes
at a North America site. The relationship between TCW and precipitation is
complex and they can be correlated positively, negatively or trivially (Dai and
Trenberth, 2002). As an exporting flux, precipitation outputs freshwater from
the atmosphere to the ground, however, re-evaporation of falling precipitation
may serve as an input flux to the lower boundary layer humidity. Besides, the
water source for precipitation is usually provided through low-level moisture
convergence from a much larger area than the actual precipitating region (Dai
and Trenberth, 2002; Trenberth et al., 2003), and usually the efficiency of rainfall
in drying the air column is only about 30 % (Trenberth et al., 2003). Therefore at
the intra-day time scale, precipitation can show a positive correlation with TCW.
Additionaly, the analysis increment issue in reanalysis data (Trenberth et al., 2007;
Bosilovich et al., 2011) prevents a budget analysis at this time scale. Therefore we
will focus on E/ET and horizonal divergence here.

To examine the vertical structure of TCW diurnal cycle, diurnal anomalies
of specific humidity (qd) and horizontal wind divergence (δ) from the same
case study regions are computed at each vertical level (Fig. 4.11 and 4.12).
The humidity profiles exhibit complicated vertical diurnal structures, and the
vertically integrated anomaly is not always consistent with the boundary layer
responses. For instance in the North America case at UTC 00 (17 LST) in JJA
(Fig. 4.11a), the boundary layer negative anomalies are compensated by the
mid-troposphere (900 - 500 hPa) positives, and the overall effect is positive TCW
anomaly with respect to the daily mean (see Fig. 4.7 and 4.9c). Similar diagnosis
holds for the North China case at UTC 12 (20 LST) in JJA (Fig. 4.11g).

This inconsistency suggests that boundary layer thermodynamic response to
daytime heating alone can not explain the observed TCW diurnal cycle, and
horizontal divergence/convergence needs to be incorporated. This mechanism
can be readily observed in the North China case, where the JJA humidity is
negatively correlated with divergence (Fig. 4.11e-h). A similar relationship also
exists in the North America case, but with some vertical misalignments between
the δ and qd profiles. At UTC 18 in this region, negative qd co-locates with
convergence anomalies in the mid-troposphere (Fig. 4.11d), possibly due to the
net export of moisture to the anomalous divergences above and below it.

Note the seasonal difference in diurnal humidity amplitudes is also revealed
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Figure 4.11: Vertical profiles of diurnal anomalies in humidity (q, g/kg) and horizontal
wind divergence (δ, 10−6s−1). Top row shows the mean profile in the North America
case study (Table 4.2), and bottom row the North China case study. Columns are the
UTC hour 00, 06, 12 and 18, respectively, each with LST hour in parentheses in each
panel. qd profiles are plotted in blue onto the bottom x-axis, and δ in green onto the top
x-axis. Both use solid lines for JJA season and dash lines for DJF.
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Figure 4.12: Same as in Fig. 4.11 but for the cold tongue and warm pool regions.

in the profiles for the two land boxes, consistent with previous sections. The
winter diurnal cycle damping occurs to humidity but not to the divergence
field, consistent with the reduced vapour holding capacity effect by the
Clausius-Clapeyron relationship.

Horizontal divergence seems to be a contributing factor to the vertical humidity
distribution in the two oceanic boxes, but can not account for the variations
very well. In the warm pool box, morning (10 LST) divergence anomalies extend
throughout the troposphere, associated with anomalous descending motion and
negative humidity anomalies (Fig. 4.12a). This morning-time stable tropospheric
condition and reduction in humidity are also reported by Sui et al. (1997). In the
afternoon (16 LST), a low-level convergence anomaly develops below 700 hPa,



116 Annual and diurnal cycles in horizontal moisture fluxes

and a mid-level divergence anomaly between 700 - 400 hPa (Fig. 4.12b). With
the help of an enhanced afternoon moisture flux, this pattern produces positive
q anomalies up to ∼ 400hPa, which is also consistent with Sui et al. (1997) (see
their Fig. 7b).

In the evening (22 LST), anomalous convergence is found throughout the
troposphere together with positive q anomalies in JJA (Fig. 4.12c), however
the variation in DJF needs further explanations. In the early morning (04
LST), an anomalous convergence layer develops in the mid-troposphere between
700 - 400 hPa, underneath an anomalous divergence layer above 400 hPa
(Fig. 4.12d). This pattern induces an anomalous ascending motion sitting on
top of a descending motion, similar to the case in North America at 11 LST
(Fig. 4.11d). This low-level nocturnal subsidence is consistent with the negative
humidity anomalies below 800 hPa. Boundary layer latent heating is also low at
this time of day.

The cold tongue box exhibits more complex behaviors. In the afternoon and at
midnight (17 - 23 LST), a low-level-convergence-mid-level-divergence structure
may explain the observed humidity increases in the mid-low troposphere in
DJF (Fig. 4.11e,f), however the JJA humidity profile at 17 LST has a fast drop
between 900 - 600 hPa that can not be explained by this argument. During the
early morning to noon (05 - 11 LST), the divergence profiles are largely reversed
with respect to 17 and 23 LST, and the resultant subsidence decreases low-level
humidity (Fig. 4.11g,h).

4.3.5 Atmospheric tides in surface pressure, winds and

moisture fluxes

The previous sections analyzed the diurnal variations in zonal moisture fluxes
that stem from the humidity changes, which was found to be related to
diurnal variations in divergence. Previous studies have identified diurnal and
semi-diurnal fluctuations in sea level pressure and wind fields, both of which
affect the column moisture flux (see Eq. 4.7), and the effect of their interactions
is represented in VdqaPsa (see Table 4.1).

Haurwitz and Cowley (1973) put forward a simple model to describe the
semi-diurnal cycle in SLP in the tropics:

P = 1.05 · cos3(θ) · sin(2t + 159°) (4.10)
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Where 1.05 is the estimated amplitude in hPa, θ is latitude, t is the local
time expressed in longitudinal degrees, and the estimated phase shift 159°
corresponds to a maximum at 0942 and another at 2142 LST (Haurwitz and
Cowley, 1973; Deser and Smith, 1998). They also showed that the phase and
amplitude of this semi-diurnal pressure wave are relatively uniform within 20°
of the equator. Using this pressure distribution pattern as the accelerating force
for the horizontal winds ( δu/δt = −1/ρ(δP/δx), δv/δt = −1/ρ(δP/δy + f u)),
Deser and Smith (1998) computed the resultant zonal and meridional wind
diurnal cycles and validated the model against observations. According to
this formulation, the zonal wind is out of phase with the pressure field, while
the meridional wind is in quadrature with the pressure field. Therefore, the
product of Ud and Ps (reflecting the interactions between Ud and Ps in UdqaPsa)
will be a wave pattern that has four zonal troughs and is negative everywhere;
and the product of Vd and Ps is a wave pattern that has doubled frequency
(quadrant diurnal cycle), with opposite signs across the equator. Both of the
two waves (Ud · Ps and Vd · Ps) propagate westward, and when scaled by the
mean background humidity load (qa), create a series of “moisture pulses” that
circulate around the earth.

To verify the theory, we created composites of UTC 00 and 12 averages for the
mean diurnal anomalies in surface pressure (Psd) and horizontal winds (Vd)
in January (Fig. 4.13). Note that by definition the average of UTC 06+18 will
be the exact opposite of the 00+12 average (Eq. 4.3), and UTC 00 and 12 are
sampling the same phase location on the semi-diurnal wave. Fig. 4.13a shows
the semi-diurnal surface pressure anomalies at UTC 00 and 12. Consistent
with previous discussion, two wave cycles are found and the amplitude has
a comparable magnitude (∼ 1.2 hPa). The signal is strongest along the equator
and decreases towards the poles, as shown in the map as well as the zonal mean
curves (Fig. 4.13b). The tropical band (30°S− 30°N) can be closely approximated
by a fitted sinusoidal wave. Zonal wind at sigma level 56 (approximately 990
hPa) has a similar zonal pattern as surface pressure but in opposite phase
(Fig. 4.13c,d), and the mean amplitude in the tropics is 0.27 m/s. The product
of Ud and Psd will be negative everywhere, as is shown in Fig. 4.13g, in which
the four troughs in the low latitudes migrate westward and complete two circles
in a day. Taking into account the four-times-daily sampling rate of ERA-I, this
specific phase is sampled repeatedly for every 6-hour time step, which explains
why it is not averaged out in the monthly mean plot (Fig. 4.2d and 4.3d).

Consistent with the theory, the meridional wind (Vd at sigma level 56) is in
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Figure 4.13: Mean diurnal anomalies in surface pressure, horizontal winds and their
products. (a) shows the mean diurnal anomalies of surface pressure (Psd) as the average
of UTC 00 and 12. (c) and (e) are the same as (a) but for the diurnal zonal and
meridional wind, respectively, both at sigma level 56 (approximately 990 hPa). Note
that by definition the average of UTC 06 + 18 is the exact opposite of 00 + 12, and 00 and
12 are both sampling the same phase location on the semi-diurnal wave. Subplot (b),
(d) and (f) show the meridional means of Psd, Ud and Vd, respectively. Three meridional
bands are created: tropic (30°S − 30°N, in red), mid-lat (30 − 60N/S, in green) and
high-lat (60− 90N/S, in blue). Note that for the meridional wind, only the southern
hemisphere bands are computed. For the tropic band in (b) and (d), and the SH mid-lat
band in (f), a fitted sine wave is plotted in black. (g) shows the product of Ud and Psd,
and (h) the product of Vd and Psd.
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quadrature with the pressure semi-diurnal pattern, and asymmetric about the
equator (Fig. 4.13e). The wave pattern is more evident in the mid-latitudes,
and has a similar amplitude as the tropical zonal wind (Fig. 4.13f). When
multiplied by Psd, this creates a quadrant diurnal cycle in the meridional mass
fluxes in each hemisphere (Fig. 4.13h). The sign asymmetry about the equator
implies alternating convergences/divergences along the equator due to these
semi-diurnal tidal oscillations (see also Deser and Smith (1998)). Again due to the
aliasing effect of 6-hourly sampling, only one phase can be sampled by ERA-I,
which is retained after a monthly mean average (Fig. 4.4d and 4.5d).

4.4 Conclusions and discussion

We have analyzed some basic aspects of the two major modes in horizontal
moisture fluxes related to regular solar heating variation: the mean annual and
mean diurnal cycles. The conventional method was modified to cater for the
temporal resolution of reanalysis data, thus allowing the mean diurnal cycle to
be constructed in association with the mean annual cycle. Interaction across time
scales and seasonal evolutions of the diurnal cycle can then be analyzed.

The mean annual (which here includes the annual mean as well as the
seasonal variation) cycle forms the majority of observed horizontal moisture
fluxes, and reflects the large scale tropic-to-pole humidity gradient and the
lower tropospheric wind field. In addition to this backbone component, eddy
covariances (which here include all variations and time scales that are not
captured by the diurnal and annual cycles and the annual mean) play an
important role in re-distributing moisture and energy, especially in the form
of mid-latitude cyclones. In comparison, the net effect of diurnal variability is
much smaller. Notable net convergence/divergence due to diurnal covariance
in humidity and wind only exists either in some tropical regions with complex
orography or land-sea contrasts.

Although the net transport by the diurnal cycle is small, it exhibits coherent
patterns in space, in the vertical profile and over the course of the year,
which deserve physical explanation. Also, although the net transport is
small, the movement of moisture backwards and forwards over the course of
the diurnal cycle is significantly larger. Therefore, we devoted effort to the
analysis of diurnal/semi-diurnal cycles. Specific humidity in the mid-to-low
troposphere was found to have a diurnal cycle that tends to peak in the late
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afternoon-evening (1800 - 2100 LST), and reach its minimum in the morning
(0700 - 1000 LST). This timing of local maximum is about 2-3 hours later
than the surface temperature maximum in the afternoon, and in phase with
the continental convection maximum (Yang and Slingo, 2001; Dai and Trenberth,
2002). It is not inconsistent with the boundary layer thermodynamic response
to daytime heating. The TCW diurnal amplitude (peak-to-peak) is about 0.4 mm
(Fig. 4.8). A previous study has reported an average daytime increase (by
diurnal SST forcing) in latent heat flux by 10− 20 W/m2 (Schiller and Godfrey,
2005). Coverting this latent heat into equivalent vapour (by assuming a mean
surface temperature of 15°C), and integrating over 12 hours, the resultant
increase in water vapour is 0.2− 0.4 mm, consistent with the TCW results found
here.

However, this scale analysis is only valid over the ocean where evaporation
is energy-limited, and the enhanced E/ET effect is largely confined in the
boundary layer. The vertical profiles of the selected case study regions further
validate this: TCW diurnal anomalies are not always consistent with the
boundary layer response, and the horizontal wind divergence seems to be better
correlated (negatively) with humidity variations. This is particularly true for the
two land boxes. However, the same argument cannot explain the two oceanic
cases very well, and a satisfactory mechanism for the TCW diurnal cycle cannot
be provided by the evidence at hand, for a number of reasons.

Firstly, the low sampling frequency in reanalysis data inhibits accurate depiction
of the diurnal cycle. Four-times-daily sampling was confirmed to be capable of
retrieving a diurnal signal, but subject to considerable accuracy losses (Sykes
et al., 2011). In addition, the method of defining diurnal cycles from annual
cycle harmonics introduces some extra deficiencies, due to the loss of higher
order harmonics. Besides, diurnal cycles can exhibit significant inter-annual
variability (Deser and Smith, 1998), which is averaged out during the data
processing stage. The recent update of the Modern Era Retrospective-analysis
for Research and Analysis (MERRA) reanalysis to MERRA-2 introduces new
data at hourly resolution, making it a promising condidate for diurnal cycle
studies.

Secondly, the meridional wave structure in the TCW diurnal cycle (Fig. 4.7) is
less well defined than in the surface pressure field (Fig. 4.13a), even over open
oceans which are free from terrain effects. In the tropics, positive/negative
TCW anomaly centers tend to “wedge” into each other zonally, rather than
displaying a meridionally uniform transition. A possible hypothesis is the zonal
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difference in the thermocline depth that shoals to the east/west of the warm
pool. SST (and mixed layer temperature) with a shallower thermocline is more
sensitive to solar heating/cooling, and consequently so are the induced latent
fluxes and atmospheric motions. Clayson and Weitlich (2005, 2007) documented
a local maximum in SST diurnal amplitude over the cold tongue region, and
this pattern disappeared in the mature phase of the 1997/98 El Niño event,
which is one of the extreme El Niños that feature extreme warming over the
eastern Pacific and a distinct pattern of moisture divergence as a response
(Chapter 5). This zonal thermocline slope may explain the observed “wedge”
features: deeper water warms up more slowly in the morning (negatives wedge
to the east, Fig. 4.7a) and cools down more slowly (positives retreat to the west,
Fig. 4.7b). The equator versus off-equator cloud cover difference may also have
some influence, but further evidence would be needed to validate this.

Lastly, although the diurnal cycle in SST has been documented for decades,
much still remains unknown about the impacts on the atmosphere (Kawai and
Wada, 2007). Enhanced oceanic convective activity has been found to have an
early morning maximum (Yang and Slingo, 2001; Kawai and Wada, 2007; Sui
et al., 1997), however, other studies also documented a secondary afternoon
maximum (McGarry and Reed, 1978; Augustine, 1984; Janowiak et al., 1994; Sui
et al., 1997; Fu et al., 1990). In addition to data and methods differences that could
possibly lead to these different findings, it has been suggested they are related
to the large-scale circulation conditions (e.g. disturbed versus undisturbed)
and intraseasonal variability (e.g. MJO) (Sui et al., 1997; Yang and Slingo,
2001). However, differences across these time scales are likely removed in the
construction of diurnal cycle time series, by firstly averaging over 34 years and
then retaining the annual cycle harmonics. A mechanism that is valid in both
disturbed and undisturbed conditions is required for the observed TCW diurnal
cycle, which may be considered as a baseline diurnal cycle that is independent
of the intraseasonal circulation changes. Thermodynamic responses in the
boundary layer and free troposphere divergence/convergence are contributing
factors to this mechanism.

Results represented in this chapter also illustrate that diurnal cycles can
exhibit significant seasonal-intraseasonal variations in amplitude and/or phase.
Continental regions in temperate climates have larger TCW diurnal variations
in summer than in winter, due to the non-linear Clausius-Clapeyron function.
Diurnal cycle phase may change multiple times over the seasons, as seen in the
cold tongue case study. A phase change count analysis (recording the number
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of line-crossings among the four synoptic hours during a year, as in Fig. 4.9,
then filtering out the cases where diurnal amplitude can not be sampled by the
6-hourly data) can be used to produce a map of phase change statistics (not
shown here), and suggests that some regions experience frequent diurnal phase
changes. Future studies that follow the conventional approach in constructing
the diurnal timeseries need to be cautious that averaging across a season may
introduce a loss in this information.

The classical atmospheric tidal theory predicts a strong semi-diurnal cycle in
surface pressure, and through horizontal momentum equations, the winds. The
6-hourly data are not capable of retrieving the semi-diurnal cycle, however, after
translating the march in time to a march in longitude, we are able to verify the
reanalysis against the predictions from theory. The diurnal/semi-diurnal cycles
in pressure and winds match well with previous studies and the atmospheric
tidal theory. The interaction between zonal wind and surface pressure is a
westward air mass flux anomaly that propagates around the Earth twice daily,
and when scaled by the background humidity load, it creates a “moisture
pulse”. The interaction between meridional wind and surface pressure gives
rise to a pattern with alternating divergence/convergence along the equator. A
diurnally oscillating meridional overturning circulation was proposed in regard
to the observed equatorial divergence pattern (Deser and Smith, 1998; Ueyama
and Deser, 2008), but the possible relationship with a morning maximum in
precipitation remains to be explored.



123

Chapter 5

Different Atmospheric Moisture
Divergence Responses to Extreme
and Moderate El Niños

The contents of this chapter have been published in the journal Climate
Dynamics (Xu et al., 2015).

5.1 Introduction

Globally around 60 % of the terrestrial precipitation directly originates from
moisture transported from the ocean (Trenberth et al., 2007; Gimeno et al., 2012).
The variability of the oceanic water supply greatly influences water availability
for all regions. Excessive transports are usually major causes for extreme
weather and flood events (Knippertz and Wernli, 2010; Galarneau et al., 2010;
Chang et al., 2012; Knippertz et al., 2013), while interrupted transports can lead to
droughts and subsequent socioeconomic stresses (Cai et al., 2012, 2014). Hence,
a clear understanding of the mechanisms that force observed changes to the
hydrological cycle is of major importance.

Most of the major oceanic source regions of atmospheric moisture are confined
to the tropics and subtropics, where the high sea surface temperature (SST)
and anticyclonic circulations provide favorable conditions for evaporation to
occur under clear sky conditions. The surplus evaporation (E) over precipitation
(P) provides a useful estimate of the net water input to the atmosphere (E -
P). However, large scale estimates of this flux are largely limited to reanalysis



124
Different Atmospheric Moisture Divergence Responses to Extreme and

Moderate El Niños

datasets, which suffer from model biases and data inhomogeneity issues (Hegerl
et al., 2015; Wang and Dickinson, 2012; Trenberth et al., 2007, 2011). Evaporation
from reanalysis is not constrained by precipitation and radiation (Hartmann
et al., 2013), spurious trends and biases can be introduced by changing satellite
observations (e.g. Bosilovich et al., 2005; Robertson et al., 2011), which also
contribute considerably to budget errors over land (Pan et al., 2012). Similarly,
precipitation from reanalysis also depends strongly on the parameterization
schemes adopted by a specific model (i.e. it is a “type C” variable: Kistler
et al., 2001; Kalnay et al., 1996). Moreover, E and P computed oceanic freshwater
fluxes show poorer performance in closing the water budget, compared with
atmospheric moisture fluxes derived values (Rodríguez et al., 2011).

Therefore, like many studies (e.g. Trenberth and Guillemot, 1998; Trenberth and
Stepaniak, 2001) we use the moisture divergence fields computed from “type B”
variables (i.e. ones that are more dependent on assimilated observations and
less dependent on model parameterizations) to balance the water budget. This
indirect approach is more reliable and consistent among observations (Trenberth,
1997a; Parker et al., 2000; Roads, 2003; Gimeno et al., 2012). Moreover, it is the
large-scale convergence rather than locally enhanced evaporation that controls
the precipitation patterns in the tropics (Mo and Higgins, 1996; Soden, 2000; Su
and Neelin, 2002; Trenberth et al., 2003; Zahn and Allan, 2011), and analysis of
the moisture divergence provides insights into the major modes of precipitation
variability, as well as the moisture sources themselves.

On interannual time scales, large-scale atmospheric variability is closely
associated with the El Niño Southern Oscillation (ENSO). Associated with the
altered Walker circulation (Bjerknes, 1966, 1969) and strengthened and shifted
Hadley cell (Oort and Yienger, 1996; Quan et al., 2004; Hu and Fu, 2007; Wang, 2002)
the atmospheric hydrological cycle is also reorganized. Recently, there have
been investigations of different types of ENSO events and their corresponding
mechanisms and impacts (Capotondi et al., 2015). Most of them take the SST
anomaly (SSTA) patterns as the starting point, and emphasize the different zonal
SSTA structures (Larkin, 2005a,b; Ashok et al., 2007; Kao and Yu, 2009; Kug et al.,
2009; Fu et al., 1986; Trenberth and Stepaniak, 2001; Trenberth and Smith, 2006; Giese
and Ray, 2011; Capotondi, 2013). Although each uses a different index definition
and separation criterion, and gives different names to the El Niño types and
emphasizes somewhat different aspects of these events, it appears that there is
some correspondence bewteen these parallel studies:

• the “1972 type ENSO” in Fu et al. (1986), the “conventional El Niño” in
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Larkin (2005a) and Ashok et al. (2007), the “Eastern Pacific (EP) type ENSO”
in Kao and Yu (2009) and Yu and Kao (2007), and the “Cold Tongue (CT)
El Niño” in Kug et al. (2009), all refer to those events associated with
anomalously warm SSTs over the eastern equatorial Pacific;

• the “1963 type ENSO”, the “dateline El Niño” and “El Niño Modoki”, the
“Central Pacific (CP) type ENSO”, and the “Warm Pool (WP) El Niño”
in the aforementioned studies define the counterpart with its warming
centered closer to the central equatorial Pacific.

The events identified by these studies are generally consistent when their data
periods overlap (see Fig. 1 in Singh et al. (2011) for a summary), suggesting
that these diverse interpretations all point to essentially the same phenomena
(Kug et al., 2009). Studies starting from spatial patterns in other variables
find a similar east-central contrast in the El Niño categorizations: surface
salinity (Singh et al., 2011), the first occurrence of significant SSTA (Xu and
Chan, 2001; Kao and Yu, 2009), sea level anomalies (Bosc and Delcroix, 2008) and
outgoing longwave radiation (OLR) in the equatorial Pacific (Chiodi and Harrison,
2010).

Empirical Orthogonal Function (EOF) analysis is a commonly used technique
in studies that describe ENSO. However the orthogonality constraint on the
resultant patterns and time-series means that they do not necessarily have direct
physical interpretations. This sometimes hampers the ability of this technique to
capture non-linear features embedded in the data, particularly when there is a
relative spread of variances across multiple EOFs all related to the same forcing.
Previous studies suggest that a complete description of different characters and
evolutionary features of El Niños cannot be captured fully by a single index,
and a second mode reflecting the zonal SST contrast is a necessary complement
(Trenberth and Stepaniak, 2001; Trenberth and Smith, 2006; Kao and Yu, 2009). These
complementary modes broadly correspond to the two flavours of El Niños, but
have serious deficiencies when considering individual events (Johnson, 2013). In
such cases additional efforts and other techniques, like regression analyses, are
required to enable a clear interpretation of the EOF results.

Similar to EOF analysis, Self-Organizing Maps (SOM) is a powerful dimension
reduction tool, but is free from orthogonality constraint. Introduced into the
geography community in the 1990s, it has been more commonly used for
determining synoptic circulation patterns and downscaling (Hewitson and Crane,
1994, 2002; Crane and Hewitson, 1998; Reusch et al., 2007; Verdon-Kidd and Kiem,
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2009; Verdon-Kidd et al., 2014). Here, we explore its potential applications in large
scale climatic analysis. In this study, we first use conventional EOF-correlation
analysis to illustrate how the tropical atmospheric moisture circulation responds
to different flavors of El Niños. Then, noting that the different types of El Niños
are associated with different patterns of anomalous moisture divergence which
may not be orthogonal, but EOF analysis imposes orthogonality, we obtain
a new perspective from a neural network algorithm (SOM). More details on
the SOM algorithm are described in Section 5.2, including data preprocessing
procedures, and the El Niño phase separation method. Sections 5.3.1, 5.3.2 and
5.3.3 show the distinct moisture divergence responses to extreme and moderate
El Niños, which is validated by the SOM results described in Section 5.3.4. A
summary and discussion is given in Section 5.4.

5.2 Methods and Data

5.2.1 Moisture divergence

In this study we use the ERA-Interim (ERA-I) reanalysis data (Dee et al., 2011) ,
a third generation atmospheric reanalysis product (Trenberth et al., 2011). ERA-I
has some major improvements over its predecessor (ERA-40) in hydrological
components (Trenberth et al., 2011), and outperforms NCEP I, II and MERRA
in depicting the global ocean-land moisture transports (Trenberth et al., 2011).
The near surface fields in ERA-I are better correlated with buoy observations
(implying more faithful air-sea water fluxes) compared to NCEP products
(Kumar et al., 2012). And it represents the latest and best reanalysis for
reproducing and interpreting the atmospheric branch of the hydrological cycle
(Trenberth et al., 2011; Lorenz and Kunstmann, 2012).

Horizontal moisture divergence was computed following Trenberth and Guillemot
(1998):

5 ·~Q = 5 · 1
g

∫ Ps

0
q~vdp (5.1)

Specific humidity (q), horizontal winds (~v) and surface pressure (Ps) were
obtained from ERA-I for the period of 1st January 1979 to 31st December 2012.
Horizontal moisture fluxes were computed on each of the 60 sigma levels using
6-hourly data, to capture as much covariance of q and ~v as possible. The
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original full resolution (0.75°× 0.75°) divergence anomaly (with respect to the
34-year mean annual cycle) was temporally averaged into calendar months,
and spatially filtered to a lower 3°× 3° resolution, before passing into the EOF
analysis.

5.2.2 ENSO events and phase separation

ERA-I SST data during the same time period were used to compute the Niño
3.4 index (Trenberth, 1997b). After filtering with a 5-month running mean to
remove intra-seasonal variability, the time-series was normalized by its standard
deviation. El Niño (La Niña) events are determined by the criterion that the
Niño 3.4 index exceeds +0.75 σ (−0.75 σ) for at least six consecutive months. If
this criterion is met, the beginning of the event is defined as the first month that
exceeded ±0.75 σ.

Tracking the evolution of El Niño events through a sequence of phases could be
achieved by defining phases according to either their calendar months or their
timing relative to the magnitude of the SSTA. Using Niño 3.4 SSTA as the index,
Xu and Chan (2001) suggested a 3-month delay in the onset time of “Summer”
type El Niños compared with “Spring” type El Niños, which also show distinct
warming structures. Considering this time shift in the evolutionary pathways,
the calendar-month approach (e.g. using Aug-Oct as the starting phase for both
types) might end up comparing events at different evolution stages, particularly
for the pre-mature phases.

Therefore, taking into account the irregularity of El Niño events, we defined
a relative-amplitude-based method to split each event into five evolutionary
phases:

1. “Pre-event” phase: three preceding months before the Niño 3.4 index
reaches the El Niño criterion (defined above);

2. “Starting” phase: from the beginning of an event to the time when the
Niño 3.4 index rises 70 % of the way up to its maximum (See Appendix for
an illustration);

3. “Peak” phase: the phase in between the “Starting” and the “Decaying”
phases;

4. “Decaying” phase: from the time when the Niño 3.4 index drops 30 % from
its maximum value to the El Niño criterion, until the end of the event;
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5. the “Post-event” phase: three subsequent months after the Niño 3.4 index
drops below the El Niño criterion.

The Niño 3.4 index experiences fastest changes during “Starting” and
“Decaying” phases (whereby we assume swift changes in the overlying
atmosphere, which is proved to be the case later). As monthly mean Niño 3.4
SST is used, linear interpolation was used to estimate the timing of the phases
more precisely (i.e. in days). The same interpolating factors are later applied
to other variables (e.g. moisture divergence) in creating the phase composites.
More details are given in the Appendix.

Unlike other El Niños that have a single maximum in the Niño 3.4 time-series,
the 1986/87 case features a dual peak, with its first peak occurring in January
1987 and the second, larger, peak in August 1987. In the phase separation
procedure described above, only the second peak was identified as the
maximum, and the presence of the first peak was not accounted for. However,
computations with the 1986/87 event excluded give very similar results, and
suggest that the major conclusions are insensitive to its inclusion.

5.2.3 Self-organizing maps

SOM is a type of neural network algorithm that introduces a specified number
of neurons into the spatio-temporal space of the input dataset, and through an
iterative, unsupervised learning process, locates these neurons in such a way
that they collectively represent the data values within the entire data space,
but individually represent local variability (Kohonen, 1990; Hulle, 2012). Unlike
EOF analysis, there are no linear or orthogonal constraints, and the neuron
distribution is determined solely by the distribution of the input data. These
characteristics allow SOM to represent the dimensions of the input variables
along which the variance in the sequence of inputs is most pronounced (Cavazos,
1999; Liu et al., 2006).

In addition to positioning the neurons within the multi-dimensional data space,
the neurons are themselves laid out in a “map” that topologically links them
so that neighbouring neurons tend to be more similar than non-neighbouring
neurons. This map is most commonly a 2D grid with a hexagonal or rectangular
layout that determines how many neighbours each neuron has (Hulle, 2012),
though other options are possible. The topological links between neighbours
facilitates examination of evolutionary paths of a physical phenomenon across
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the map’s neurons, as well as effectively visualizing high-dimensional data and
serving as an alternative classification method, as will be shown in the results
section.

Even if it is non-linear, the transition from extreme El Niño states to strong La
Niña states is nevertheless a continuum and we can represent this using SOM
with a simplified 1D map. Thus, each neuron is topologically related only to
its immediate neighbours in the 1D array of neurons (of course, each neuron
still represents a location in the multi-dimensional data space). A description
of the initialization and training formulation to obtain the SOM is given in the
Appendix.

The size of the SOM array is usually an arbitrary choice made by the user.
Analogous to other statistical methods, there is a trade-off between the degree
of generalization, the amount of detail to represent, and the capacity of the
available data sample to adequately represent the variance and distribution of
the data. Therefore some trial and error experiments are usually recommended
to determine an appropriate SOM size. In this case, a 1D array with five
neurons gives results that can be easily related to ENSO variability. Using
seven neurons (not shown) yields similar patterns with large differences only
occurring in the neutral and moderate ENSO states, where the influence of other
climate variability is relatively larger. This is consistent with Johnson (2013),
who suggested that no more than nine SOM neurons could be distinguished in
patterns of equatorial Pacific SSTA.

5.3 Results

5.3.1 El Niño - La Niña transitions

The two leading EOFs of the moisture divergence anomalies field are found to
be ENSO-related, and they explain 15 % and 11 % of total variance, respectively.
Fig. 5.1 displays the patterns and principal components of EOF #1 and #2,
together with the climatological average moisture divergence (negative values
indicate moisture convergence or P > E).

The first EOF (Fig. 5.1a) features a westward-pointing horseshoe structure
over the tropical Pacific region that is in good agreement with the typical
ENSO SSTA pattern. Anomalous convergence collocates with the warm SST
anomalies during the mature phase of an El Niño, and the encompassing
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Figure 5.1: Subplots (a) and (b) show the EOF#1 and EOF#2 of tropical Pacific moisture
divergence (mm/day), respectively. (c) shows their principle component time-series
(PC#1 in blue and PC#2 in red). (d) is the climatological mean moisture divergence
(1979-2012).
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divergent anomalies corresponds to the negative SSTAs over the warm pool
and South Pacific Convergence Zone (SPCZ). This suggests the influences
of thermally driven circulation changes on the moisture divergence patterns,
and the climatological convergence/divergence regions (Fig. 5.1d) are shifted
eastward following the zonal movement of warm SST. Significant correlations
(p < 0.01) with Niño 4 (r = 0.68), Niño 3.4 (r = 0.85), Niño 3 (r = 0.85) and
Niño 1+2 (r = 0.70) indices lend further support to the ENSO attribution. All
warm events can be easily recognized in the PC#1 time-series (Fig. 5.1c), except
the 1994/95 event (which is also the weakest judging by the Niño 3.4 amplitude;
not shown).

Although this horseshoe-like spatial pattern of EOF#1 resembles that in the
EOF#2 of Ashok et al. (2007), from which they diagnosed the “El Niño Modoki”,
the correlation between PC#1 and the El Niño Modoki Index is not particularly
high (r = 0.31, p < 0.01). This is partly due to the different fields used in Ashok
et al. (2007) (SST) and in this study (moisture divergence), and the non-linear
responses of atmospheric circulation to the surface forcing. Therefore this
pattern does not effectively distinguish Modoki-associated moisture divergence
fields from other warm events, but rather represents the broad structure of
ENSO cycles in general.

The second EOF pattern (Fig. 5.1b) features a southwest-northeast dipole mode
over the western Pacific (west of the dateline), and a north-south gradient over
the eastern Pacific similar to that found in EOF#1 but shifted 6° equatorward.
The PC#2 time-series (Fig. 5.1c) shows more month-to-month variability than
PC#1, but some ENSO signatures are still recognizable, with the 1982/83 and
1997/98 El Niño cases being most prominent, similar to the Eastern Pacific index
time-series in Kao and Yu (2009). A closer look at the two spikes reveals that
during these two events they lag their PC#1 counterparts by about one season,
but experience fast changes, suggesting a quick restructuring of the moisture
circulation patterns.

Besides greater warming magnitudes, these two warm events (1982/83 and
1997/98) differ from the others from a number of additional perspectives (see
next section). It has previously been noted that two leading EOFs are required
to describe different evolutions of ENSO events (Trenberth and Stepaniak, 2001;
Kao and Yu, 2009). Therefore we also attribute EOF#2 to ENSO, representing the
non-linear responses not captured by EOF#1. This non-linearity is illustrated
by the outlying dots in the scatter plot of PC#2 against Niño 3.4 (Fig. 5.2). In
general, PC#2 and Niño 3.4 are negatively correlated. However, the 1982/83
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Figure 5.2: Scatter plot of PC#2 against Niño 3.4 index with all El Niño (circles) and
La Niña (triangles) events color coded. Non-ENSO months are denoted by small black
dots. Evolutionary pathways of the 1982/83 (red), 1991/92 (blue) and 1997/98 (purple)
El Niño events are illustrated by solid lines, with the final month being represented
with a solid square.

and 1997/98 events, and to a lesser extent the 1991/92 case, contaminate this
negative correlation and make the otherwise strong correlation rather poor
(r = −0.3, p < 0.01). Not all of the months during these three warm cases are
outliers, therefore to reveal the evolutionary paths of these exceptional events,
we linked the points of these events in a chronological order. Consistent for all
three of them, as the El Niño event emerges and rises in amplitude (Niño 3.4
increasing), PC#2 decreases, following the linear path defined by the negative
relationship. When Niño 3.4 approaches its maximum value, PC#2 swiftly
deviates away from the negative relationship and becomes strongly positive.
During this period (which will be shown to be the peak-to-decaying phases),
there is no further rise in the SST amplitude, yet the moisture divergence
field experiences fast changes. Subsequently, both Niño 3.4 and PC#2 decrease
towards zero.

A scatter plot of PC#1 against PC#2 summarizes the complete El Niño-La Niña
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Figure 5.3: Scatter plot of PC#1 and PC#2 with all El Niño (circles) and La Niña
(triangles) events color coded. Non-ENSO months are denoted by small black dots.
Data points for the extreme El Niño group (consists of the months of 1983-1, 1983-2 and
1998-1) are enclosed by a red ellipse; the moderate El Niño group (consists of 1991-11,
1997-8, 2002-11) by green circles, and the La Niña group (consists of 1988-12, 2007-12,
2010-11) by blue circles. Square-boxed numbers show the locations of the five SOM
neurons in PC#1, PC#2 space, i.e. regressed onto EOF#1 and EOF#2 using least squares
fit.

response (Fig. 5.3). Two linear relationships are required to fully capture the
moisture divergence responses to ENSO effects:

1. The negative La Niña-neutral-moderate El Niño correlation (r =

−0.46, p < 0.01);

2. The positive moderate-extreme El Niño correlation (r = 0.64, p < 0.01);

Although both are statistically significant, these two linear relationships
represent very different time subsets (97 % and 3 % of the data, respectively).
Despite extreme El Niños only constituting around 3 % of the total time (14
out of 408 months exceeding 2σ in Niño 3.4), both PC#1 and PC#2 show high
positive values, and the associated reorganization of atmospheric convection
and related global disruptions (Cai et al., 2014), mean that special attention to
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these extreme cases is well deserved.

Three groups of nearby points are circled in Fig. 5.3 to represent typical patterns
for extreme El Niño state (1983-1, 1983-2, 1998-1), moderate El Niño state
(1991-11, 1997-8, 2002-11) and strong La Niña state (1988-12, 2007-12, 2010-11),
respectively. Other states can be approximated by the linear relationships
defined above. The composite for each group was generated by averaging the
linear combinations of EOF#1 and #2 from the corresponding months, and the
results are shown in Fig. 5.4. The spatial pattern of the strong La Niña composite
(Fig. 5.4a) is similar to that of EOF#1, and the moderate El Niño composite
(Fig. 5.4c) but with opposite sign. This is a result of both PC#1 and PC#2
switching sign but remaining approximately the same magnitude (Fig. 5.3). The
extreme El Niño group (Fig. 5.4e) displays distinct spatial patterns and stronger
magnitudes (note the different color scale). Both the maximum convergence
and divergence in the extreme El Niño composite reach 13.0 mm/day or above,
which is more than twice the December to Feburary (DJF) climatology (not
shown). A zonally elongated convergence band occurs over the eastern Pacific,
which co-locates with enhanced precipitation anomalies (Kug et al., 2009; Cai
et al., 2012). The climatological SPCZ swings equatorward by a larger amount
than during moderate El Niños (the zonal SPCZ feature will be discussed in
the next section). A sharp meridional gradient covers the entire tropical Pacific.
This is suggested to be the response to the weakened meridional SST contrast
over the eastern Pacific (Cai et al., 2014), and the descent anomalies to the north
of the equator, mostly caused by dry advection (Su and Neelin, 2002). Lastly, the
NH branch of the Hadley cell intensifies in both the ascending and descending
branches and shifts equatorward by a larger magnitude (Hu and Fu, 2007; Quan
et al., 2004).

These expressions in the space defined by EOFs #1 and #2 of the anomalous
moisture divergence during these three event composites are a good
representation of the anomaly fields in the full dimensional space (compare
Fig. 5.4a,c,e with Fig. 5.4b,d,f). This is especially so for the strong La Niña and
extreme El Niño composites, while the moderate El Niño composite (Fig. 5.4d)
shows moisture divergence anomaly features in the South Pacific that are not
represented by only EOFs #1 and #2 (Fig. 5.4c). Note that some anomalous
features are expected when using a composite formed from only three monthly
fields.
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Figure 5.4: Composites of moisture divergence anomaly fields (mm/day) for (a,b)
La Niña group. (c,d) moderate El Niño group and (e,f) extreme El Niño group,
reconstructed from only EOF#1 and EOF#2 (a,c,e) compared with composites of the
actual fields during the same calendar months.
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5.3.2 El Niño classification

Given the unusualness of the three warm events, it is justified to make the
following El Niño classification from a moisture divergence perspective:

1. Extreme El Niño: represented by 1982/83, 1991/92 and 1997/98 cases;

2. Moderate El Niño: represented by 1986/87, 1994/95, 2002/03 and 2009/10
cases.

The 1982/83 and 1997/98 events have been found to be exceptional in various
El Niño classification studies, either from an SSTA zonal contrast point of view
(Kug et al., 2009; Kao and Yu, 2009; Larkin, 2005a,b; Giese and Ray, 2011), or by the
SSTA onset timing differences (Xu and Chan, 2001), or using variables other than
SST (Singh et al., 2011; Chiodi and Harrison, 2010). The results presented above
suggest distinct features from a moisture divergence perspective, and therefore
differentiates El Niños on a new dimension.

Unlike the unambiguity in the 1982/83 and 1997/98 cases, the 1991/92 event
falls into different groups in different studies: Kug et al. (2009) classified it into
the “Mix group” (mix of Cold Tongue and Warm Pool El Niño), and in Kao and
Yu (2009) and Singh et al. (2011) it was grouped into the EP category. Similarly in
the case of moisture divergence responses it diverges from the linear transitions
between La Niña and moderate El Niños, but not as much as the other two
extreme events (Fig. 5.2).

To examine the relationship between different El Niño responses to the SSTA
zonal structure, we also created scatter plots of PC#2 against Niño 4 (5°S −
5°N, 160°E − 150°W), Niño 3 (5°S − 5°N; 150°W − 90°W) and Niño 1+2 (0 −
10°S, 80− 90°W) indices (not shown). The negative correlation among non-El
Niño and moderate El Niño points becomes weaker as the index moves from
west to east. This suggests better correspondence between the moderate ENSO
cycle and central-western Pacific SST variations, while extreme El Niños are
more related to the east-west SSTA contrast. Moreover, Kao and Yu (2009) and
Capotondi (2013) also found consistent east-west differences in the subsurface
temperature structures associated with the two types of El Niños. Zonal SST
gradient, ocean heat content propagation and the thermocline feedback are key
to explaining the observed differences in the atmospheric circulation, moisture
divergence and subsequently precipitation responses.
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5.3.3 El Niño phase comparison

To examine the El Niño differences in more detail, each event is broken into
five evolutionary phases according to their relative Niño 3.4 amplitudes, and
the phase composites for extreme and moderate El Niños are shown in Fig. 5.5
and Fig. 5.6, respectively.

“Pre-event” and “Post-event” are both 3 months in duration by definition.
With the dual-peaked 1986/87 case excluded, “Starting” phase has an average
duration of 2.9 months, “Peak” phase around 4.0 months and “Decaying” phase
1.7 months. Therefore an El Niño would typically experience fast SSTA changes
in central Pacific within one season, then meander for a slightly longer time in
its “Peak” phase, followed by an even faster drop in SSTA in the “Decaying”
phase.

Although their onset timings and overall durations differ, the “Peak” phases
always occur during the Nov-Dec-Jan season (with the dual-peaked 1986/87
case being exceptional, where the second peak started in July-Aug of 1987).
This has been suggested to be the result of a phase-locking mechanism with
the seasonal SST cycle (Xu and Chan, 2001; see also Fig. 4 in Wang, 2002),
and such a feature would help eliminate the obstacles in inter-comparing the
amplitude-based approach and calendar-month-based approach, and promises
relationships being made with results from other studies.

Notable differences between moisture divergence anomalies associated with the
extreme and moderate groups start to emerge in the “Starting” phase (Fig. 5.5
b, 5.6b), reach a maximum in “Decaying” phase (Fig. 5.5d, 5.6d), and persist
into the “Post-event” phase (Fig. 5.5 e, 5.6e). In addition to anomalies that
are both larger and have a maximum convergence anomaly further east in the
extreme El Niño composite, an important new finding is that the extension of
the anomalous moisture convergence to the eastern Pacific moves on to the
equator during the peak and decaying phases (Fig. 5.6c,d), whereas it stays
north of the equator throughout moderate El Niños (Fig. 5.5). Shoaling of the
thermocline and the resultant influence on SST is very sensitive to the latitude
of the anomalous moisture convergence and its associated wind stress. This
latitudinal difference and the stronger westerly wind anomalies that accompany
it may contribute to the extension of SSTA further into the eastern Pacific during
extreme El Niños. The anomalous convergence also exists in balance with
a more zonally symmetric Southern Hemisphere (SH) surface pressure field
and stronger southerlies east of the dateline in the peak and decaying phases,
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Figure 5.5: Phase composites of moisture divergence anomalies (mm/day) for moderate
El Niños in (a) “Pre-event” phase, (b) “Starting” phase, (c) “Peak” phase, (d) “Decaying”
phase and (e) “Post-event phase. Green hatch overlay denotes areas where the anomaly
reverses the sign of the climatology. Surface pressure composite fields are plotted as
contour lines with a contour interval of 4 hPa, and 850 hPa horizontal wind anomalies
(m/s) are plotted as vectors.
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Figure 5.6: Same as Fig. 5.5 but for extreme El Niños.
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displacing the SPCZ to a more zonal orientation (see Cai et al. 2012).

In contrast, easterly anomalies occur over the equatorial eastern Pacific during
a moderate El Niño. Together with the off-equator position of the moisture
convergence anomaly, these act to confine surface warming to the central and
western Pacific, and deep convection does not occur in the east (consistent with
smaller OLR reductions, Chiodi and Harrison 2010).

To the north of the equator, northwesterly anomalies are stronger in the extreme
El Niños. Associated with a more compact NH Hadley cell, this dry advection
helps maintain the sharp meridional gradient in the moisture divergence field
(Su and Neelin, 2002), which is strong enough to reverse the climatology
(indicated by the green hatching in Fig. 5.6) in the “Decaying” phase. Moreover,
such a peak-to-decaying phase differentiation is not confined to the moisture
divergences observed here: the pattern correlations of SSTA from CT El
Niños and WP El Niños in corresponding phases (calendar-month-based) were
strongly positive during the peak phases of these two types of El Niños, but
swiftly become negative one season later (Kug et al., 2009). Similar results were
also found for precipitation and pressure velocity fields (Kug et al., 2009).

5.3.4 SOM analysis

Although two EOFs capture much of the time-varying ENSO signal, their
physical interpretation is hampered by their lack of independence. Both the
EOFs and the PC time-series are constrained, by definition, to be orthogonal,
but that does not mean that they are unrelated. This can be seen in Fig. 5.3,
where despite an overall zero correlation between PC#1 and PC#2, a non-linear
relationship clearly exists between the two PC time-series. Furthermore, the
pattern of EOF#2 will have been constrained so that (a) it is orthogonal to EOF#1;
and (b) it has the precise characteristics such that the projection of moisture
divergence onto it during the few extreme El Niño months when there is a
positive relationship with PC#1 exactly counterbalances the projections during
all the other months when there is a negative relationship with PC#1, so that the
overall correlation with PC#1 is zero. It is unlikely that EOF#2 will have been
unaffected by these constraints, and some ENSO-related information would
likely have been spread into higher order EOFs as a result.

This provides the motivation for our SOM analysis of the same moisture
divergence field, to explore its utility in easily capturing this non-linear
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Figure 5.7: Self-Organizing Map (SOM) neurons on moisture divergence anomalies
(mm/day); (a) to (e) are SOM neurons 1 to 5. Note that (a) uses a different color scale
than others.
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Figure 5.8: Stacked time-series of SOM training sample counts, defined as the number
of training samples allocated to each neuron in each sliding 13-month time window.

behaviour. By quantifying the distances between a carefully chosen number
of SOM neurons, an equivalent El Niño classification is also achieved.

Fig. 5.7 displays the five SOM neurons we obtained. The 1st neuron (Fig. 5.7a)
shows a good agreement with the extreme El Niño group composite in Fig. 5.4e,
both in terms of spatial patterns and the anomaly strengths. The 2nd (Fig. 5.7b)
and 5th (Fig. 5.7e) neurons resemble the moderate El Niño group (Fig. 5.4c) and
the La Niña group (Fig. 5.4a), respectively. Moving from neuron-1 to neuron-5,
one observes a gradual transition of the moisture divergence field, therefore the
remaining two neurons (neuron-3 and -4) could be expected to represent the
neutral and weak La Niña ENSO states.

This attribution is substantiated by the locations of each neuron in the space
defined by EOFs #1 and #2, by least squares estimation of the PC#1 and PC#2
coefficients that best replicate each neuron (shown by the red numbered squares
in Fig. 5.3). The sequence of neurons follows the pathway defined by the two
correlations. Fig. 5.8 shows the number of months in each sliding 13-month
window allocated to each neuron. The allocation is based upon selecting the
closest neuron, in a Euclidean distance sense, to each monthly field. The
time-series of neuron-1 displays non-zero values only during the 1982/83 and
1997/98 El Niños, and for a shorter period in the 1991/92 case. The La Niña
neuron (neuron-5) shows good correspondence with La Niña years (1983/84,
1988/89, 1999/2000/2001, 2007/08 and 2010/11). Neuron-2 becomes active
either during a moderate El Niño (1986/87, 1994/95, 2002/03 and 2009/10)
or in the early phase of an extreme El Niño (1982/83 and 1997/98). The rest of
the time period is mostly represented by neutral and weak La Niña neurons (-3
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Table 5.1: Inter-neuron distances and the means and standard deviations of intra-group
distances (mm/day). Distance (d) is defined as the geometrical distance in the
multi-dimensional space, and is related to the root mean square difference (RMS) by
d =

√
N × RMS, where N = 1120 is the number of grid boxes in data. Distance

between neuron i and j is denoted by the matrix element at row i, column j. The mean
and standard deviation of the distances between all training samples and the neuron
they are allocated to are listed in the “Mean” and “SD” columns, respectively. Column
“Size” shows the size of each group (i.e. number of months).

Neuron 1 2 3 4 5 Mean SD Size
1 0 97.6 112.8 105.2 120.6 84.7 7.5 15
2 0 46.1 62.3 81.2 71.4 11.0 50
3 0 31.8 47.6 60.7 7.4 157
4 0 32.4 58.7 7.9 111
5 0 62.6 7.7 75

Table 5.2: Correlation matrix between the 5 SOM neurons. Correlation between neuron
i and j is denoted by the matrix element at row i and column j. Note that all correlations
are significant at 0.01 level except for the one denoted by asterix (p = 0.33).

Neuron 1 2 3 4 5
1 1 0.34 -0.51 −0.03∗ -0.34
2 1 0.29 -0.70 -0.82
3 1 -0.61 -0.48
4 1 0.48
5 1

and -4). Instead of the discrete and selection-exclusive sample counting method
used here, one could also use a spatially weighted correlation time-series to
reveal more subtle features in the temporal variations of each neuron.

To validate the El Niño classifications, we computed inter-neuron distances
(Table 5.1), defined as the Euclidean distance between every two neuron pair,
and the mean and standard deviation of intra-group distances. Intra-group
distances refer to the distances between all training samples and the neuron
they are allocated to. The average and standard deviation of the intra-group
distances serve as a measure of how closely the training samples are clustering
around the neuron (though note that the distances cannot simply be averaged
or summed to represent distances across multiple groups because the distances
will be based on different directions in the high dimensional space).

As is shown in Table 5.1, the extreme El Niño neuron (N1) shows increasingly
larger distances from the moderate El Niño (97.6, N2), neutral (112.8, N3), weak
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La Niña (105.2, N4) and strong La Niña (120.6, N5) neurons. The separation
(97.6) between extreme and moderate El Niño neurons is larger than the direct
distance from moderate El Niño to strong La Niña (81.2 from N2 to N5).
Table 5.2 shows the pattern correlations between the neurons, thus removing the
effects of magnitudes in constituting the inter-neuron distances. The moderate
El Niño neuron (N2) has a much better (but opposite) pattern match with
La Niña neurons (N4 and N5), than with the extreme El Niño neuron (N1).
Therefore the distinction bewteen extreme and moderate El Niños suggested by
the SOM analysis is justified. On the other hand, differences between moderate
El Niño and neutral (46.1 from N2 to N3) is much smaller, which is consistent
with the relatively clustered data distribution in EOF #1, #2 space (Fig. 5.3).

5.4 Conclusions and Discussion

We have used EOF and SOM analyses to characterize the spatial patterns
of inter-annual variability in the atmospheric moisture divergence over the
tropical Pacific, a key component of the hydrological cycle that is linked
directly to anomalies in the surface water balance (E − P). This variability
is of course dominated by ENSO influences, with the moisture divergence
shifting eastwards to follow the eastward shift of the warmest equatorial SST
during moderate El Niños, accompanied by an equatorward rotation of the
SPCZ. The moisture divergence anomalies associated with La Niña events have
similar spatial patterns and magnitudes as moderate El Niños, but with opposite
sign. Our analysis finds, however, that the moisture divergence patterns during
extreme El Niño events are not simply a strengthening of the moderate El
Niño pattern but exhibit distinct characteristics: the tropical convergence centre
moves much further east, the NH Hadley Cell is more compact and the SPCZ
swings further towards the equator. These differences from moderate El Niño
behaviour are particularly apparent from the peak of the event through the
decaying phase, which is consistent with previous studies using other climate
variables (Kug et al., 2009; Xu and Chan, 2001).

This complex behaviour is evident in the EOF results, with a clear non-linear
relationship found between the leading two PC time-series even though they
are constrained by EOF analysis to have no linear dependence. This motivated
our use of the SOM technique, which is not constrained by the spatial and
temporal orthogonality requirements of EOF decomposition. The SOM analysis
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simplifies the non-linear relationship between two EOF patterns into a simple
sequence of five patterns (SOM neurons) representing the range of states from
La Niña to extreme El Niño. SOM neuron count time-series and inter-neuron
distance/correlation statistics further validate the classification of extreme and
moderate El Niños.

Our findings have a number of implications. First, a single index such as Niño
3.4 is insufficient to measure the range of atmospheric moisture divergence
responses to ENSO, consistent with the prior findings for other variables
(Trenberth and Stepaniak, 2001; Trenberth and Smith, 2006; Chiodi and Harrison, 2010;
Kao and Yu, 2009). An index is required to represent the SST zonal contrast
that distinguishes different types of El Niño, and is likely to be the key factor
that causes differences in moisture divergence patterns. Our results suggest
that alternatives to the conventional EOF method that are free from orthogonal
constraints, such as SOM, deserve more attention when determining additional
ENSO indices.

Second, analyses of ENSO behaviour need to consider more ENSO classes
than the basic La Niña, neutral and El Niño classification. Our analysis
of atmospheric moisture divergence demonstrates that this distinction is
present in the atmospheric branch of the hydrological cycle too, providing
a new perspective to the existing literature, and confirms the coupled
ocean-atmosphere signature of this ENSO difference that is not necessarily
implied by the SST-based analyses. The consistency with SST-based studies
is not a coincidence. The sensitivity of ocean temperature and atmospheric
convection is reversed between the central and eastern Pacific: central Pacific
SSTAs are much more effective at inducing anomalous convection than their
eastern counterpart, due to the warmer background SSTs (Kug et al., 2009;
Hoerling et al., 1997; Capotondi et al., 2015), while subsurface temperature below
the mixed layer has a stronger response to the thermocline changes over the
eastern Pacific (Capotondi et al., 2015). Therefore once the warm SST anomalies
develop over the eastern Pacific or get advected from the west in an extreme
El Niño, possibly modulated by the seasonality of Kelvin wave propagation
(Harrison and Schopf , 1984), or a proper timing of Australia and Asian monsoon
(Xu and Chan, 2001), the induced thermocline feedback could trigger large
magnitudes of deep convection over the eastern Pacific, as manifested by
OLR troughs (Chiodi and Harrison, 2010), and the moisture divergence changes
presented in this study for extreme El Niño (e.g. the first SOM neuron,
Fig. 5.7a).
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Similar concerns relate to the use of EOF analyses to classify ENSO behaviour
– due to EOF orthogonality constraints, the pattern of variation covering La
Niña to moderate El Niño events is mostly captured by EOF#1 but also partly
represented in EOF#2, which in turn partly represents the contrasting moisture
divergence response to moderate and extreme El Niños. Classifications need to
consider this complexity and ideally use methods, such as the SOM presented
here, that can represent them as separate patterns rather than the mixed form
of the EOF analysis.

Third, the observed non-linear response highlights the need for a coupled
Hadley-Walker cell view in explaining the different El Niño types. Although
commonly interpreted as a meridional circulation cell, the Hadley cell is not
zonally symmetric, but rather a 3D helix circulation where the zonal asymmetry
is modulated by the Walker circulation. In neutral ENSO condition, the
warm pool low and the subtropical highs to the east form a triangular shape
(Fig. 5.5a, see also Fig.1 in Zhang and Song (2006)). In the mature phase of
an extreme El Niño, strong eastern warming weakens or even reverses the
Walker circulation, and compresses the equatorial-low-subtropical-high polarity
(Fig. 5.6d); the pitch distance of the 3D Hadley-Walker helix circulation is
reduced. As a result, the dry air intrusion from the subtropics becomes more
effective, due to both a tighter pressure gradient and reduced opportunity for
evaporation to replenish the moisture because of the shorter travel distance. The
reduced trade winds and evaporation also play a role (Su and Neelin, 2002). As
warming is more confined to the western-central Pacific in a moderate El Niño,
the modulation of the Walker circulation is not strong enough to reverse the
equatorial-low-subtropical-high polarity.

Finally, we note limitations to this study. The limited time span of ERA-I
data allows only a small sample of seven El Niño events to be included.
Other reanalysis products that assimilate only surface observations, for instance
ERA-20C or 20th Century Reanalysis (20CR), cover a much longer period with
more El Niño events. However, the accuracy of upper-air states is compromised
prior the satellite era. Of the three extreme El Niños, two coincided with
major volcanic eruptions (the March 1982 El Chichon and the June 1991 Mt.
Pinatubo), and we did not address the possible role volcanic forcing may have
on tropical moisture divergence. Moreover, the Pacific exhibits distinct decadal
(PDO, Pacific Decadal Oscillation) to inter-decadal (IPO, Inter-decadal Pacific
Oscillation) variations, with largely consistent manifestations in SST, sea level
pressure, wind stress, thermocline evolution, Hadley circulation and ENSO
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variability (Power et al., 1999; Mantua et al., 1997; Folland, 2002; Wang and Lau,
2006; Quan et al., 2004; Trenberth and Stepaniak, 2001). The change in PDO/IPO
phase around 1976/77 has been identified as a major “climate shift” (Trenberth,
1990; Trenberth and Stepaniak, 2001), after which El Niño activity increased and
the structure of the SPCZ changed (Folland, 2002), possibly caused by the altered
zonal SST structure (van der Wiel et al., 2015). Therefore, the validity of the
results presented here might be limited to positive PDO/IPO epochs. Further
investigation with earlier datasets is needed to determine whether they hold in
La Niña dominated periods.

5.5 Appendix

5.5.1 SOM algorithms

The input moisture divergence anomaly data are organized into an (n × p)
matrix X:

X =


~x(1)

~x(2)

...
~x(n)

 (5.2)

where ~x(i) = (x(i)1 , x(i)2 , x(i)3 , ..., x(i)p ) is the ith training sample (at the ith time
point).

There are several initialization options, including using random vectors/training
samples or using leading EOFs (Hulle, 2012). Different initial neurons could
converge to slightly different final states, but the same overall pattern emerges
at the end of training. Here, neurons were initialized by taking the first five
samples from the training set X. Several SOM runs initialized with randomly
chosen training samples were also performed, yielding very similar results.
Therefore only results from the “first-5” initialized SOM are used here.

The inital neurons are adjusted iteratively to obtain the final neuron locations.
There are two basic methods that neuron adjustments could use: incremental (or
stochastic) adjustment and batch adjustment (Hulle, 2012). In the incremental
approach, neurons are adjusted using each training sample individually and in
sequence. This usually leads to stochastic behaviour in the convergence path
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and requires large numbers of iterations to reach convergence, but is more
suitable for real-time processing when a complete training set is not available
beforehand. The batch mode, used here, uses all training samples together to
calculate each iteration of neuron adjustment.

The training session consists of 300 iterations of neuron updates. In each
iteration, each training sample is allocated to its closest neuron (in a Euclidean
sense), which is called the “winner” neuron for that data sample. The training
samples allocated to a particular “winner” neuron provide information on how
to adjust that neuron, effectively moving its location in data space towards
the weighted mean of the training samples allocated to it. However, these
training samples are also used to adjust the neurons that are neighbours of
the “winner”, but subject to a weighting that depends on the topological
distance between a neighbour and the “winner” neuron. This weighting is
via a neighbourhood function, hij, between neurons i and j which ensures the
topological relationships between neurons in the SOM. The location of each
neuron i is therefore updated according to:

~mi :=
∑
j

hij~̄xjnj

∑
j

hijnj
(5.3)

where the mean (~̄xj) of all training samples allocated to a neighboring neuron
~mj is weighted by the corresponding number (nj) of training samples, and the
neighborhood function between neurons i and j. This overall mean is then
updated to ~mi.

A Gaussian is a common choice for the neighbourhood function, and is adopted
here:

hij(t) =

 exp(− ‖~ri−~rj‖2

2σ2(t) ) σ > 0

1 σ = 0
(5.4)

where ~ri and ~rj are the location vectors of the “winner” neuron i and the
neighboring neuron j, respectively. A large kernel size, σ(t), is necessary in
the early stages of the training session for the global order to take shape, but
this is then decreased monotonically during each iteration, t, of the training
session:
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σ(t) = [(σ0 + 1) ∗ (1− t
T
)] (5.5)

where [] is the floor function, and T is the total number of iterations for the
training session, 300 in this case.

5.5.2 El Niño phase separation

The phase definitions for El Niños identified using the Niño 3.4 time series are
shown in Fig. 5.9. The fast changes to Niño 3.4 and to the overlying atmosphere
mean that the 70 % criterion used to define the times of transition between
the “Starting”, “Peak”, and “Decaying” phases do not generally occur at a
calendar monthly mean value. Instead, linear interpolation between monthly
mean values was used to locate the transition time points:


f01 = T2−Tt

T2−T0

f12 = Tt−T0
T2−T0

tt = f01 · t0 + f12 · t2

(5.6)

where T is the normalized Niño 3.4 index; t is the time point represented
by the number of days since a given reference time; f01 and f12 are the
linear interpretation factors; subscripts 0 and 2 denote the two ends of the
interpolation domain, and subscript t represents the target time/data point.
Variables (e.g. moisture divergence) used to create composites for each phase
were then interpolated to time point t using the same interpolation factors ( f01

and f12).
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Figure 5.9: Normalized Niño 3.4 indices with phase separations for each El Niño
event: (a) 1982/83, (b) 1986/87, (c) 1991/92, (d) 1994/95, (e) 1997/98, (f) 2002/03 and
(g) 2009/10. Phase colors are: “Starting” (red), “Peak” (blue), “Decaying” (green),
“Pre-event” and “Post-event” (both black). Panels (a) and (c) illustrate the phase
separation from “Peak” to “Decaying” and from “Starting” to “Peak”, respectively.
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Chapter 6

Moisture transport by Atlantic
tropical cyclones onto the North
American continent

The contents of this chapter have been submitted for publication to the journal
Climate Dynamics.

6.1 Introduction

Tropical cyclones (TCs: tropical depressions, storms and hurricanes) are
powerful regional scale meteorological phenomena that are known for their
extreme wind, intensive rainfall and often very costly economical and societal
losses. Despite their destructive potential, TCs also serve as an important
source of freshwater and carry a considerable amount of water from ocean
to land, which plays an important role in modulating regional scale droughts.
Using Palmer Drought Severity Index (PDSI) and daily rainfall records from
the Cooperative Observer Network, Maxwell et al. (2012) suggested that up to
41 % of droughts over the southeastern United States during 1950 - 2008 were
terminated by single TCs, thus the term “drought busters” was coined. During
the dry years of 2006 - 2007, TC-related rainfall redressed the meteorological
drought over the Atlantic Coastal Plain by 20− 40 %, and the water deficit was
reduced by 50 % − 90 % in the Carolinas watersheds (Brun and Barros, 2014).
And for a dry continent like Australia, TC rainfall is as regarded a significant
contributor to freshwater supplies for human communities, agriculture and the
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health of ecosystems (Dare et al., 2012).

Many studies have documented the contribution of TCs to rainfall at a regional
(e.g. Rodgers et al. (2001); Larson et al. (2005); Ren et al. (2006); Brun and Barros
(2014); Konrad et al. (2002); Konrad and Perry (2010); Knight and Davis (2007,
2009); Prat and Nelson (2013); Dare et al. (2012)) or global (e.g. Jiang and Zipser
(2010)) scale. However, few studies have looked into the effects of TCs on
continental scale onshore moisture transport, which helps set up a favorable
environment for precipitation. Schumacher and Galarneau (2012) performed a
quantification of the moisture transported ahead of two recurving TCs (Erin
in 2007 and Ike in 2008), by contrasting ensemble members from THORPEX
Interactive Grand Global Ensemble (TIGGE) where the TC recurved from those
that did not. The results indicated that although being positively related, the
tropical moisture transported by TCs is neither a strictly necessary or sufficient
condition for the coincident heavy rainfalls. This illustrates the importance of
a better quantification of this moisture transport, and a better understanding of
its ultimate effect on precipitation. From a large scale water and energy budget
point of view, TCs serve as an important balancing mechanism in redistributing
tropical water and heat poleward. However, a good quantification of this
aggregated role has not been fully addressed (Hart et al., 2007).

In view of such a gap, this study develops a set of methods to isolate the
TC-related moisture transport from ocean to land, and specific to this study,
applies them to the North American continent. The column integrated moisture
fluxes are estimated from ECMWF’s ERA-Interim (ERA-I) reanalysis product
(Dee et al., 2011), and the best track observation from National Hurricane Center
(NHC) (Landsea and Franklin, 2013) is used to track the TCs. To make the
TC moisture flux attribution, a set of distance-based attribution methods is
developed and pilot tested. Similar distance-based methods are commonly
adopted by precipitation-focused studies, where the precipitation events within
a certain radius of a TC is attributed to the TC’s influence. Note that this
kind of distance-based method in general is variable dependent: the necessary
geographical vicinity for an effect to be experienced may vary from variable
to variable. A typical choice among precipitation attribution studies is 500 km
(e.g. Rodgers et al. (2001); Larson et al. (2005); Lau et al. (2008); Jiang and Zipser
(2010)). This provides helpful guidance to the spatial extent of TCs’ influence
on moisture fluxes, but should not be adopted directly without validation.

Section 6.2 describes the datasets and the TC flux attribution methods. Four
different schemes, differing in their flexibility and adaptibility, are designed
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to determine a critical TC influence radius. Section 6.3 displays the results
of applying the attribution schemes to onshore moisture fluxes, by firstly
giving an overview of the TC activities (Sec 6.3.1), followed by validations
on two sample coastal grid cells (Sec. 6.3.2). Then the distrubtion, seasonal
totals and inter-annual variabilities of TC transport are presented in Sec 6.3.3
- 6.3.5. Finally, Section 6.4 talks about the uncertainties in the estimate and a
preliminary discussion on the relationship with ENSO.

6.2 Data and methods

6.2.1 Best track TC records

The best track records of North Atlantic tropical cyclones are obtained
from the HURDAT2 (HURricane DATa 2nd generation) dataset compiled
by National Hurricane Center (NHC) (Landsea and Franklin, 2013). This
dataset is a Re-analysis effort to extend and revise the NHC’s North
Atlantic hurricane dataset (HURDAT) by utilizing an enhanced collection of
historical meteorological observations in the context of an upgraded scientific
understanding of hurricanes and analysis techniques. In addition to 6-hourly
location and time tracks of TCs, observations that are not available in real time
are synthesized, and some additional information is added onto the original
HURDAT format, including non-synoptic (other than 00, 06, 12 and 18 UTC)
best track times to help pin-point significant moments in a TC’s lifetime (such as
landfalling and maximum intensity times), and best track wind radii estimates
that provide information on the shape and size of a cyclone (Landsea and Franklin,
2013). This radii information is explored and utilized in this study to design TC
attribution schemes.

Best track records of East Pacific (EP) tropical cyclones are obtained from
IBTrACS (International Best Track Archive for Climate Stewardship) (Levinson
et al., 2010), which is an objective combination of best track records from various
regional data centers. The inclusion of East Pacific TCs gives a more complete
view of the continental freshwater inputs from TCs. However, this study focuses
mostly on Atlantic TCs.
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6.2.2 Horizontal moisture fluxes

Six-hourly specific humidity (q) and horizontal winds (u and v) observations
during 1979-Jan to 2012-Dec are obtained from ERA-I reanalysis (Dee et al.,
2011). Moisture fluxes on model levels 1 to 60 that cover the troposphere and
stratosphere are vertically integrated to form the column moisture fluxes:

{
Fu = 1

g

∫ 60
1 uqdP

Fv = 1
g

∫ 60
1 vqdP

(6.1)

where dP is the pressure increment between model levels. The annual cycles
and anomalies of Fu and Fv are defined using the 1979-2012 long-term mean as
climatology.

6.2.3 TC-flux attribution

The isolation of the moisture fluxes carried by a TC from the background flow
in which the TC is embeded is not a trivial task and the answer is highly
dependent on the definition and approach. The large scale vorticity condition
is one of the important factors for TC genesis and development (Bengtsson et al.,
2007) and a clear boundary between the background flow and the TC flow does
not usually exist, particularly when during the transition to an extra-tropical
storm. Therefore it is important to inspect the results to make sure the method
generates reasonable estimates. Furthermore, exploration of the sensitivity to
methodological choices and quantification of uncertainties may be as valuable as
the final estimated number. In view of such difficulty, an ensemble of estimates
is produced based on a range of TC influence detecting schemes, as explained
in the following.

The attribution of TC-related onshore moisture fluxes is designed following
three main principles: 1) the TC-induced moisture flux is anomalous in nature
and significant in magnitude, therefore should be separated from both the mean
annual cycle and the background flow in the flux anomalies; 2) the spatial
extent of the influence from a TC is a confined area following the movement
of the TC, centered around the TC center, but not necessarily symmetrical in
the four quadrants (NE, NW, SW and SE); 3) the temporal extent of the TC
influence is limited to the lifetime of a TC, precedent or aftermath effects are not
included.



6.2 Data and methods 155

Based on these principles we devised a set of distance-based TC-attribution
schemes that use the distance from TC centers as the major decisive threshold,
but also taking the underlying variability of moisture fluxes into consideration.
Each decision made following the above principles inevitably incorporates
some degree of subjectiveness and uncertainty, and sometimes the decision
is a balanced compromise between targeted result, analysis objectiveness and
limitations in the available data. For instance a conservative TC influence
radius guarantees a more accurate effect detection, but is likely to miss the
full extent and lead to underestimated results. A large radius can help capture
as many affected grid boxes as possible, but at the risk of falsely detecting a
TC’s effect in some cases (making a type I error). In such cases, background
flow filtering can help reduce the error by subtracting low-pass filtered flows
from the flux anomalies, thus a large portion of the falsely detected TC-fluxes
will be removed in the filtering process. However, the effectiveness of such
time filtering can be sensitive to the TC-time masking: “correctly” masking out
the time points when a grid box is TC-affected should give better estimates
of the background moisture flow. However if the number of consecutive time
points removed by masking gets too large (a common phenomenon with large
radius schemes) and the filtering kernel becomes filled with missing values, the
low-pass timeseries representing the background fluxes will be poorly estimated
and can easily be contaminated by spurious variations near the missing sections.
Enlarging the filtering window size can only help to a certain extent, as a too
large kernel will lose track of variations in the underlying background flow.
Finally, anomalous circulations associated with a TC may already be significant
prior to the TC’s approach , and may persist for some time after the TC dies
away. In such cases the captured TC-fluxes will be incomplete based on the
third principle. However, the incompleteness does not necessarily lead to
low-biased overall estimate, as both the moistening and the drying flows may
get underestimated.

A sequence of coastal boxes are first selected from ERA-I’s land-sea-mask data,
covering the coasts of Washingtion State in the northwest corner, down to the
Mexican coasts in the south, the entire Gulf of Mexico, then up to Maine in the
northeast (See the blue boxes later in Fig. 6.2). With the 0.75× 0.75° horizontal
resolution of ERA-I, a grid box has a typical length of 70 km at this latitude,
and a total of 276 coastal grid boxes are identified. The collection encompasses
all the equator-ward facing coastal lines of the North American continent, and
the east- and west- ward sides where mid-latitude zonal flows are significant.
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The inclusion of the latter helps quantifying the proportion of onshore moisture
transport by TCs.

From HURDAT2 the TC events in the study region (15 − 55°N, 40 − 130°W)
that ever reached storm intensity (maximum sustained wind speed reaching
34 knot or above) are selected. Following the movement of each TC, coastal grid
boxes that are within a certain threshold radius are regarded as affected by the
TC, and a label is attached to that grid box at that time point. Care has been
taken to avoid duplicate labels when more than one TC is present. These labels
separate the spaio-temporal coordinates affected by TCs and can then be applied
onto a variable of interest, e.g. moisture fluxes. Whenever a non-synoptic hour
in HURDAT2 is encountered, an additional record is inserted into the ERA-I
fluxes via linear interpolation between the synoptic hours that encompass that
time point.

To implement the first principle, the TC-related flux is detected from the column
integrated zonal (F′u) and meridional (F′v) flux anomalies, which are obtained
by subtracting the 34-year climatology of that 6-hour value. A background
anomaly flow timeseries (F′ub and F′vb) is estimated by taking the timeseries
of flux anomalies at a grid cell, replacing the TC-affected time points by zero
anomalies, and applying a low-pass filter. The filter used is a Gaussian-weighted
filter such that the amplitude of variations on 21-day timescales is reduced by
half, while faster variations are reduced much more and slower variations much
less:

{
F′ub(t) = F′u0(t) ∗ g(t; σ)

F′vb(t) = F′v0(t) ∗ g(t; σ)
(6.2)

where F′u0 and F′v0 are the 0-replaced flux anomalies, g(t; σ) is the Gaussian
kernel to be convolved with. The scale parameter σ is determined using:

σ = T1/2

√
ln2
2π2 (6.3)

where T1/2 is the period at which response amplitude is reduced by 50%, which
in this case is set to three weeks. The choice of 21 days covers the lifetime of the
majority of Atlantic TCs (Bengtsson et al., 2007).

The preference of a Gaussian filter over a box-car filter is that the flux anomaly
can have abrupt pulses under the impact of a TC, which can generate step-like
changes in the box-car filtered low-pass flow prior to and after the TC incident,
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due to the equal weights within the filtering kernel. The decision of replacing
TC-affected time points with 0s is a compromised balance as disscussed above:
removing these points can help improve the resultant low-pass flow but is
susceptible to spuriousness due to too many missing values. If during a certain
time period the majority are regarded as TC-affected, then it is justified to set
the background flow anomaly to zero so that all the anomalous flux is attributed
to TCs. However this will hamper the ability of background flow filtering
to reduce the type I error. The technique is not perfect and uncertainties are
expected.

After subtracting the background flow, the TC-related moisture flux is defined
as the residual flux when a TC is nearby within a certain radius. Distances are
computed as the great-circle distances, and four different schemes are explored
to define this critical radius:

1. Scheme 1: Fixed radius in the NW, NE, SE and SW quadrants. Four
distances were tried to test the sensitivity of the results: 300, 500, 700
and 900 km.

2. Scheme 2: The maximum 34 kt wind radii in all four quadrants through
the life time of a TC, scaled by a scaling factor. Three scaling factors were
considered in the sensitivity test: 2.0, 3.0, and 4.0.

3. Scheme 3: The maximum 34 kt wind radii in the corresonding quadrant
through the lifetime of a TC, scaled by a scaling factor of 3.0. For example,
if a coastal grid box is to the NW of the TC center, then the critical radius
is 3 times the maximum 34 kt wind radii in the NW quadrant.

4. Scheme 4: The 34 kt wind radii in the corresonding quadrant at the
corresonding time, scaled by a scaling factor of 3.0. For example, if a
coastal grid box is to the NE of the TC center, then the critical radius is 3
times the NE 34 kt wind radii of the TC at that time point.

Going from Scheme 1 to 4, greater degrees of flexibility and adaptibility are
incorporated: Scheme 1 applies a fixed radius to all TCs regardless of their
differences in size, shape and temporal evolutions. The use of wind radii (the
distance from the TC center where wind speeds remain at 34 kt or above) from
HURDAT2 best track provides an observational basis for the radius definition
that can vary according to the maximum size reached by each TC (Scheme
2). Scheme 3 extends this with quadrant dependency to account for shape
asymmetry of TCs. Scheme 4 is the most dynamic of all and allows the critical
radius to change over the lifetime of the TC according to observations.
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Note that the wind radii data from HURDAT2 are only available from 2004
onwards, during which missing values may be present, in which case a
backward relaxation scheme is implemented: in Scheme 4 if the wind radius in
a given quadrant at a given time is missing, relax back to the maximum of the
corresonding quadrant (Scheme 3); If all values in a quadrant are missing, relax
back to the four-quadrant maximum (Scheme 2). There is no simple relationship
between the size and central minimum pressure of TCs (Emanuel, 2005; Knaff
et al., 2007; Knaff and Zehr, 2007; Ren et al., 2007), therefore we didn’t attempt
to predict the wind radii to extend Schemes 2-4 back in time. Analysis using
Scheme 1 is extended back to 1980.

6.3 Results

6.3.1 Overview of TC activities

Fig. 6.1 displays the tracks of all Atlantic TCs during May-Nov that came within
700 km of the North American continent in each of three 10- or 11-year periods
during 1980-2012. These TCs are selected from a subset that ever reached
storm intensity (maximum sustained surface wind ≥ 34 kt) within the study
region. There are broadly two preferred pathways of TCs, one into the Gulf
of Mexico from the Caribbean Sea and the other steers along the Gulf stream
and recurves northeast ward (see also Konrad and Perry (2010)). Many of the
TCs that follow the latter path did not make landfall but rather grazed the
coastline at some distance; whether these TCs will be regarded as relevant to
onshore transport depends on the attribution scheme selected, their sizes and
the distances offshore. Moisture exchanges across the western coast may be
affected by Atlantic TCs that came from the Gulf of Mexico or eastern coast, or
occasional TCs originating from eastern Pacific. Based on the TC occurrences
the coastal lines of North America can be divided into three sections: the
western coast, Gulf of Mexico and the eastern coast (detailed definition will
be introduced later). The Greater Antilles islands (many small islands are not
represented in ERA-I.) are burried in the TC tracks and can experience impacts
from both pathways. These grid boxes are treated as a fourth section, although
estimates of TC fluxes may have larger errors due to the coarse resolution.

Increased TC activities can be observed from the track plots in Fig. 6.1 as well
as the TC number timeseries in Fig. 6.1d. A linear trend during 1980-2005 is
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evident, although after that the trend levelled off. The year 1994 seperates a
relatively quiescent decade before and an active decade after that, reflecting the
Atlantic multi-decadal mode (AMO) (Goldenberg, 2001). On top of that, strong
inter-annual variability can be observed, largely consistent with that found by
Nogueira and Keim (2011).

Fig. 6.2 displays the tracks of two major hurricanes: Rita and Katrina in 2005,
based on best track records. It is important that the TC locations from best track
and ERA-I are consistent. To evaluate the positional difference between the two,
we detected TC centers from ERA-I for these two TCs. The detection only takes
into account the relative vorticity (RV) field (at model level 48, approximately
840 hPa) and locates RV maxima via a Difference of Gaussians blob detection
algorithm. The results displayed in Fig. 6.2 suggest a good agreement between
the two, and the offsets of RV-detected centers are typically a few tens of
kilometers, which is about the scale of ERA-I’s horizontal resolution and
relatively small compared to a typical TC detection radius (will be introduced
later). However, this preliminary offset estimate may underestimate the errors
found in earlier years (Jourdain et al., 2014).

The distribution of 34 kt wind radii from best track is shown in Fig. 6.3.
Consistent for all four quadrants the distribution is highly skewed to the right,
with the maximum radii reaching up to 1185 km in the SW quadrant. As the
detecting Schemes 2 to 4 favour maximum radii (Scheme 4 may relax back onto
maximum radii in cases of missing values), these large radii records can lead to
far-reaching TC influencing circles. The majority of the TC records have a 34 kt
wind radii below 500 km, and the median value is 166 km in NW, 222 km in
NE, 148 km in SW and 185 km in SE quadrant, respectively. There is a slight
shape asymmetry with the eastern quadrants stretched further than the western
half, consistent with literature (Price et al., 1994; Liu and Chan, 1999; Jourdain
et al., 2014). Taking into account the cyclonic TC circulation and southeast-ward
facing coastal line where TCs make landfall, this asymmetry may create a more
extensive onshore transport branch than the offshore branch.
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Figure 6.1: Atlantic TC tracks during (a) 1980-1990, (b) 1991-2000 and (c) 2001-2012 that
reached storm intensity (maximum sustained surface wind ≥ 34 kt) within the study
region and came within 700 km of the North American coast. (d) The number of TCs
identified using the above criteria in May-Nov each year.
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Figure 6.2: Coastal grid boxes of the North American continent and sample TC tracks.
The coastal boxes defined from ERA-I land-sea-mask in the study region are plotted out
in blue. The best track locations of TC Rita are plotted in black in (a) and Katrina in
(b), both events occurred in 2005. The corresponding TC centers detected from relative
vorticity maxima (at model level 48) using a Difference of Gaussians blob detection
algorithm are plotted in red. A 900 km fixed radius circle is plotted following the
movement of best track TC centers. The inset plots display the differences (in km)
between the best track and blob detected TC centers, by centering the former at the
origin. Two sample grid boxes are labelled on the map: A (31.0°N, 87.0°W) and B
(33.0°N, 80.4°W).
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Figure 6.3: TC 34 kt wind radii distribution in four quadrants, for all Atlantic TC records
within the study region of 15− 55°N, 40− 130°W that reach storm intensity (maximum
sustained wind speed ≥ 34 kt) during 1980-2012. The distribution in the NW, NE, SW
and SE quadrant is shown in subplot (a), (b), (c) and (d), respectively.
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6.3.2 TC flux attribution

The effectiveness of TC flux attribution is first tested on two sample grid
boxes: box A at 31.0°N, 87.0°W in the Gulf of Mexico section, and box B at
33.0°N, 80.4°W in the eastern coast section (both labelled in Fig. 6.2). Nine
different attribution schemes are tested and the setups are listed in Table 6.1.
The fixed radius scheme (Scheme 1) includes 300 km and 500 km radii, covering
the range many precipitation attribution studies have adopted (Dare et al., 2012),
and extend further to include 700 km and 900 km, to cover the possibly larger
response areas in wind than in precipitation. Three scaling factors are applied
to Scheme 2 to test the sensitivity to symetrical sizes. And Scheme 3 and 4 with
a scaling factor 3.0 are included to test the sensitivity to shape asymmetry and
size evolution during a TC’s lifetime.

Table 6.1: TC flux attribution schemes. First column shows the detection schemes as
introduced in Sec. 6.3.2. Second column lists the parameter, either a fixed radii for
Scheme 1, or the scaling factor for Schemes 2-4. Column three indicates whether the
scheme is retained for subsequent analyses.

Scheme Parameter (radii or scaling) Retained for subsequent analysis
1 300 km No
1 500 km No
1 700 km Yes
1 900 km Yes
2 2.0 Yes
2 3.0 Yes
2 4.0 Yes
3 3.0 Yes
4 3.0 Yes

The 2005 timeseries of meridional column-integrated moisture flux anomaly at
box A is shown in Fig. 6.4 as the black curve. Based on Scheme 1 with a fixed
900 km radii (horizontal shaded band d in Fig. 6.4), the time points when a TC
(or multiple TCs) is nearby are marked as dark green shading. Therefore the
five most prominent spikes induced by TC Arlene, Cindy, Dennis, Katrina and
Rita are correctly attributed. These abrupt pulses are all positive in sign, as the
relevant TCs all passed to the west of box A (e.g. Katrina as shown in Fig. 6.2).
Tammy (Oct-5 - Oct-7) induced a negative flux anomaly, as it approached the
sample box from the east, before recurving southeast wards (not shown).

With these TC-affected time points replaced with zeros, the 21-day Gaussian
filter generates an estimated background anomaly flow (red curve in Fig. 6.4).
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Also included are the estimates from a box-car filter (blue line) and the
same Gaussian filter (green line) on the original anomaly time series (not
zero-replaced). All three estimates are based on scheme-1-radii-900. These three
filters give largely consistent estimates during the TC-free periods, but show
considerable differences in the vicinity of TCs. The box-car filter creates step-like
changes before and after Katrina and Rita, suggesting insufficient resilience to
abrupt changes. On the other hand, were the TC-affected fluxes not replaced
with zeros, the Gaussian filter also gives an unsatisfactory result (green line). It
is worth noting that the estimated background flow will be different if a different
detection scheme is used, and so will the deviations from it that are attributed
to TCs.

Despite the successful attribution of the five major TCs by the fixed 900 km
scheme, the other two cases, Ophelia and Wilma, lack an obvious response in
the flux, and therefore are likely to be false detections. This is because the
fixed 900 km radius goes beyond the actual influencing extent of these TCs.
When reduced to 700 km (shaded panel c in Fig. 6.4), the two false detections
are eliminated. Further reduction in the radius starts to induce false negative
errors, for instance the fixed 500 km (panel b) and 300 km (panel a) schemes fail
to detect Rita, and other major TCs are detected for too short a duration.

Similarly, among the three wind radii based Scheme 2 setups (Scheme 2 with
scaling factors of 2.0, 3.0 and 4.0, correponding to panel e, f and g in Fig. 6.4,
respectively), a large scaling factor inflates the detecting radius of the grid box
and tends to pick up faraway TCs whose influence cannot be discerned in this
grid cell. Such errors are evident in the scheme-2-scale-4.0 case (panel g), which
falsely detected a few periods when notable flux responses are lacking.

The more adaptive schemes (scheme-3-scale-3.0 in panel h, and scheme-4-scale-3.0
in panel i) create some closely spaced narrow and intermittent bins in the TC
time shading (Fig. 6.4). This is a combined result of the movement of the TC
and time-varying detecting radius, which can be dramatic between 6-h intervals
(Konrad et al., 2002). At least in this illustrated case the extra adaptibility does not
provide much added value to attribution accuracy, as the underlying flux shows
even more temporal coherency than the frequently alternating detecting bins.
This also demonstrates the inherent deficiency of the binary, distance-based
detection method in general.

Fig. 6.5 illustrates the attribution of zonal moisture flux at grid box B. Different
to box A, the green curve shows the Gaussian filtered time series after the
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shaded TC time points have been masked (effectively treated as missing), and
the background flow estimates are based on Scheme 2 with scaling factor 4.0
(panel g in Fig. 6.5). Large differences are observed in the estimated background
flows during late Aug-Sept, when the green curve shows spuriously high values,
due to the 2-day gap between the masked values of Katrina and Ophelia.
Remembered by its very erratic and slow moving track, Ophelia lingered for
a long time along the eastern coast at storm and hurricane intensities. Such
long-lasting effects post a big challenge to background flow estimates, as can
be seen in the box-car filter (blue curve). In such cases, replacing the TC time
points with zeros help create a better estimate (red curve).

Although false positive errors are found in the scheme-2-scale-4.0 scheme at
box A, it is able to pick up some TC impacts at box B that other schemes
failed to, for instance the full extent of Franklin, Katrina and Ophelia (when
Maria and Nate may also contribute). The correctness of the Irene and Rita
attribution may be controversial (though they are accompanied by brief spikes
of on and offshore moisture transport), and the length of Wilma seems to
be overestimated. However, this examination of individual grid cells is ad
hoc, and fine-tuning a specific scheme may overfit the selected sample and
lose generalizability. Therefore scheme-2-scale-4.0 is retained for subsequent
analyses. But we exclude scheme-1-radii-300 and scheme-1-radii-500 from
the selection, as both being too conservative. Again the highly variable
scheme-3-scale-3.0 and scheme-4-scale-3.0 detect intermittent TC effects during
Dennis and Katrina. They seem to improve the detection accuracy compared
with their symmetrical counter-part (scheme-2-scale-3.0 scheme), by eliminating
Irene from detection, but the omission of Franklin and earlier part of Wilma is
arguable. These two schemes are also retained in the ensemble.

It is worth noting that at both box A and B, no scheme is able to fully capture the
finishing stage of Katrina and Ophelia (Fig. 6.4, 6.5), even for the most expansive
scheme (scheme-2-scale-4.0). And in the case of Tammy the schemes do not
attribute the large negative (positive) zonal anomalies before (after) Oct-5 and
Oct-6 (Fig. 6.5). This is because the lifetime of these TCs are defined by best track
records, and the TC had either not existed before significant precedent flow
occurred, or already died away before the strong flow anomalies dissipated.
Relating back to the earlier discussion, these precedent and aftermath effects
are not included and it is largely a subjective choice. However, enlarging the
detection radius would be biased because the precedent effects would more
likely be captured than the aftermath effects.
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6.3.3 Spatial distribution of TC onshore transport

Following the discussion on the two case studies in the previous section, we
included seven detection schemes in the ensemble collection (Table 6.1) and
performed TC and non-TC flux separation for each coastal grid box using
difference schemes. TC-related moisture flux is defined as the difference
between the full flux anomaly and the background flow anomaly during the
green-shaded time points. The same separation procedure is also repeated
on the immediate oceanic grid boxes, whose fluxes, together with those from
the adjacent land boxes, are used to compute the mean onshore flux Fu and
Fv by averaging the two. The onshore moisture transport is computed as the
negative of the dot product of the onshore flux and the relevant coastal length
vector:

{
Tui = −Fui · dyi

Tvi = −Fvi · dxi
(6.4)

where Tui and Tvi are the TC onshore transport (in kg/s) at grid box i in the
zonal and meridional direction, respectively. dyi and dxi are the meridional
and zonal length of the grid box, with the vector direction pointing outwards
from land. The negative sign implies net onshore transport has positive values,
and vice versa. Note there exists a slight difference between the northern and
the southern boundaries of a grid box, due to the shrinking latitudinal circles
towards the pole.

To help portray the spatio-temporal distribution of TC moisture transport, the
coastal grid boxes are numbered, sorted and segmented so that number 0 - 92
covers the western coast (plotted in green in Fig. 6.6 and Fig. 6.7), 93 - 166 for
the Gulf of Mexico (including Florida, in yellow), 167 - 252 for the eastern coast
(in orange) and 253 - 275 for the Greater Antilles (in brown).

Fig. 6.6 shows the TC moisture flux distribution during 2005 using the
scheme1-radii-900 scheme. The western coast is mostly free from Atlantic TC
influences, which is also observed in many other years (not shown). Much
of the TC induced moisture exchange occurred in the Gulf of Mexico section,
within which 17 TCs made landfall in 2005. A few TCs steered along the eastern
coast and induced some onshore transport along the coast of North Carolina,
South Carolina and Pennsylvania during Sept and Oct (grid cells 167 - 190).
Previous studies have suggested inter-annual variations in prefered TC tracks,



6.3 Results 169

+16°

+24°

+32°

+40°

+48°

+16°

+24°

+32°

+40°

+48°

-120° -110° -100° -90° -80° -70° -60° -50°

0

10

20

30

4050

60
70

80
90 100

110
120

130

140 150

160

170

180

190
200

210
220 230

240

250

260
270

(a)

2005-06 2005-07 2005-08 2005-09 2005-10 2005-11
Time

0

50

100

150

200

250

Lo
ca

ti
o
n

(b) Scheme: scheme1 radii 900

9

7

5

3

1

1

3

5

7

9

10
8
k
gs
−

1

Figure 6.6: Spatio-temporal distribution of TC onshore fluxes (in 108 kgs−1) during
May-Nov 2005, using scheme1-radii-900. (a) gives a geographical reference of the
coastal line, relevant TC tracks and their landfalling locations (if any, marked using
a green triangle). The coastal boxes are numbered and ordered to represent the western
coast section (0 - 92, in green), the Gulf of Mexico section (93 - 166, in yellow), the
eastern coast section (167 - 252, in orange) and the Greater Antilles section (253 -
275, in brown). (b) shows the time-location distribution in a hovmoller plot, with TC
onshore fluxes aggregated over calendar months. Horizontal solid lines indicate section
boundaries, therefore the panels from top to bottom are the Greater Antilles, eastern
coast, Gulf of Mexico and western coast, respectively. Landfalling locations are also
marked (triangles) on the hovmoller plot.
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Figure 6.7: Same as Fig. 6.6 but for year 2010 using scheme2-scale-4.0. The tracks of TC
Danielle and its 2667 km radii (after scaling by 4.0) are plotted in red, and Igor with its
3333 km radii (after scaling) are plotted in blue.
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and 2005 witnessed more landfalls and tracks in the Gulf of Mexico and west
of the Appalachian Mts, compared to 2004 when more TCs visited the Atlantic
coastal plains east of the Appalachian Mts (Brun and Barros, 2014). Similar Gulf
versus Atlantic differences are also reported in Konrad and Perry (2010), and are
subject to influences from ENSO, Quasi-Biennial-Oscillation (QBO) and North
Atlantic Oscillation (NAO) (Gray, 1984; Pielke and Landsea, 1999; Dailey et al.,
2009; Kim et al., 2009).

In addition to moistening, TCs also have a drying effect that takes moisture
away from the continent, usually by the western or southern branch of the
spiral bands. Within the Gulf of Mexico section, this particularly active year
had two long-lasting moisture export/import zones that span 5 - 6 months, one
on the Yucatan Peninsula of Mexico and the other covering Florida. The export
zones are located to the south/west of the import counter-parts, with the TCs
travelling between (indicated by the landfalling locations in Fig. 6.6). This is
consistent with the cyclonic circulation and the broad orientation of the coastal
lines.

Due to the coarse resolution, small geographical area and island nature of the
Greater Antilles, the flux response is very noisy.

The fixed 900 km scheme, although inflexible, constrains the TC’s influence to a
reasonable extent. When scaled by a large factor (e.g. 4.0), the scheme that picks
the maximum wind radii of a TC can become very expansive for those large
TCs. Fig. 6.7 shows the distribution of TC-fluxes during 2010 detected using
scheme2-scale-4.0 scheme. Similar to the 2005 case, the Gulf of Mexico houses
most of the TC-fluxes, however part of these may be falsely detected. Fig. 6.7a
highlights two TCs that have relatively large sizes. After scaling by a factor of
4.0, Danielle’s radius of influence goes up to 2667 km, and Igor’s goes up to
3333 km, both are clearly overestimated and extend into the Gulf of Mexico.
Consequently, distant fluxes, either onshore or offshore, are falsely attributed to
TCs. As will be seen later, the overall effect is likely to be an overestimate of the
offshore fluxes.

6.3.4 Coastally integrated TC onshore transport

The overall Atlantic TC contribution to continental scale onshore moisture
transport is obtained by integrating along the coast lines:



172
Moisture transport by Atlantic tropical cyclones onto the North American

continent

T =
N

∑
i=1

Tui + Tvi (6.5)

Applying the same computation to the absolute moisture flux (annual cycle plus
anomaly) gives the total onshore transport onto the North American continent.
The time series of TC and total onshore transport during the 2005 TC season are
shown in Fig. 6.8.

Figure 6.8: Time series of the total (blue) and TC-attributed (red) integrated
onshore transport (108 kgs−1) during May-Nov 2005, by Atlantic TCs under
(a) scheme-1-radii-700, (b) scheme-1-radii-900, (c) scheme-2-scale-2.0, (d)
scheme-2-scale-3.0, (e) scheme-2-scale-4.0, (f) scheme-3-scale-3.0 and (g)
scheme-4-scale-3.0 (see Table 6.1 for the schemes). The total moisture transport
combines the annual cycle and anomaly fluxes. Time periods when any coastal grid
boxes are affected by TCs are indicated by green shading, to which a numerical ID is
attached for each relevant TC (the ID-name translation can be found in Table 6.2). The
percentage contribution by TCs to the total transport is labelled at the lower left corner
for each scheme.

Consistent with the results from the Section 6.3.2, a larger detection radius can
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Figure 6.9: Fig. 6.8 continued.

pick up more distant TCs and create more long-lasting, continous TC transports,
as indicated by the green shadings in Fig. 6.8. More adaptable schemes tend to
create intermittent hits-and-misses in the TC impact detection, as in the case
of scheme-4-scale-3.0 (Fig. 6.8g). Despite these differences, the detected TC
moisture transports are largely consistent among schemes. The integrated total
moisture transport that includes both annual cycle fluxes and flux anomalies are
also shown. Note that the TC time series differ from the total time series by the
sum of annual cycle and the estimated background flow, and the TC integration
is over different subsets of spatio-temporal coordinates, therefore it is legitimate
for the TC-related transport to be ocassionally larger than or opposite sign to
the total transport.

In some cases the total onshore transport is dominated by TC effects, as during
early July 2005 when TC Cindy, Dennis and Emily are present (Fig. 6.8, Table
6.2). The proportion is lower in more conservative schemes, but there is also
an upper limit on the more aggressive schemes: a sensible background flow



174
Moisture transport by Atlantic tropical cyclones onto the North American

continent

estimation limits the highest TC flux estimate.

The occasional drying effect of TCs is indicated by the negative red filling in
Fig. 6.8. In some cases, for instance during Oct-21 to Oct-25, this drying effect
can overtake the total transport under some schemes (e.g. scheme-2-scale-2.0,
scheme-2-scale-3.0 and scheme-2-scale-4.0). This is partly caused by the
compensating fluxes across different coastal sections in the total transport
integration, and the integration of TC fluxes usually takes only a confined
coastal section where the signal is more coherent. The false attribution error
discussed in the previous section may also contribute. Another factor is that
annual cycle fluxes may work in the opposite direction to the anomalous fluxes,
which will be discussed more later.

The seasonal onshore (offshore) moisture transport by either TCs or total fluxes
are calculated by time-integrating the positive (negative) fluxes during the
relevant time periods. The integrated amounts (in Eg, 1 Eg = 1015kg) are shown
in Table 6.2, and the percentage contributions from TCs are included in Fig. 6.8
and Table 6.2.

A total of 2.14 Eg of water vapour was transported onto the North American
continent from the western, southern and eastern coasts during May-Nov 2005,
of which about 21 % was attributed to TCs (Table 6.2). The percentage varies
from 28.6 % by scheme-1-radii-900, to 10.3 % by scheme-2-scale-4.0. This most
aggressive scheme scored the lowest percentage because both the onshore and
offshore transports are highest and the offshore amount is especially large in
absolute amount. This large drying flow is most prominent during mid-Aug,
early-Sept and mid-Oct (Fig. 6.9).

Repeating the costal integration using scheme-1-radii-900 over the study period
of 1980-2012 gives an estimation of the TC moisture transport climatology,
as shown in Fig. 6.10a. On average, September has the largest TC transport
(0.058 Eg), followed by August (0.047) and July (0.028) when the climatological
annual cycle flux indicates net offshore transport (blue fillings in Fig. 6.10a).
During the rest of the season, TC transport shows reduced intensity while the
climatological annual cycle contributes much large quantities. Integrated across
the entire season, Atlantic TC contributes around 13 % of total onshore moisture
transport during May–Nov 1980–2012.

When quantifying the proportional contribution by TCs as shown above, we
have used the total moisture transport as the denominator. Taking out the
annual cycle component, the ratio of TC- and anomaly- onshore transport
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gives a different view of the TC’s contribution. Integrated over the very active
2005 season, the moisture transport by TCs detected by the scheme-1-radii-900
scheme constitutes 28.6 % of the total onshore transport (Fig. 6.10b, Fig. 6.8 and
Table 6.2), and the percentage goes to 74.8 % if annual cycle fluxes are taken
out. This high proportion of anomalous onshore flux is due to (i) the anomalous
flux is mostly dominated by TC-fluxes during TC affected time periods, and
(ii) the TC-induced flux is more systematically orientated as onshore, while the
large compensating offshore flows are present in the total anomaly transport.
As landfalling TCs are usually associated with enhanced precipitation on the
left or right side of the track (Konrad and Perry, 2010; Atallah et al., 2007), the air
masses exiting the continent are more moisture-depleted. Lastly, during Oct-21
to Oct-25, the annual cycle flow is in the opposite direction to the anomalous
flow (Fig. 6.10), which helps to create much larger (negative) TC-transport than
the total transport as observed in Fig. 6.8.
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Figure 6.10: Coastal integral of moisture transport (kg s−1) by Atlantic TCs (red) and
the total moisture flux (blue), during May-Nov of the (a) 1980-2012 climatology and (b)
year 2005. In both panels, the TC fluxes are computed using scheme-1-radii-900 scheme,
and the total moisture flux includes annual cycle flux and flux anomalies. In (a), the
monthly integral of TC moisture transport (in Eg) is plotted onto the y-axis on the right.
The climatological annual cycle time series is smoothed by a 7-day filter, and the same
time series is shown in (b) as the thick black line. The proportion of TC-transport to
total seasonal transport is labelled at the top left corner in each panel.

Table 6.2: Seasonal onshore moisture transport (Eg) by TCs and total moisture flux
during May-Nov 2005. The percentage contributed by TCs is obtained by dividing the
net TC transport (column 4) by the net total transport (column 7). Names of the TCs
labelled in Fig. 6.8 are given in the lower section of the table, with each TC ID associated
with a name.

Scheme TC positive (Eg) TC negative TC net Total positive (Eg) Total negative Total net TC percentage (%)
scheme-1-radii-700 0.55 -0.12 0.43 3.20 -1.06 2.14 19.9
scheme-1-radii-900 0.75 -0.13 0.61 28.6
scheme-2-scale-2.0 0.54 -0.15 0.39 18.4
scheme-2-scale-3.0 0.75 -0.31 0.44 20.7
scheme-2-scale-4.0 0.75 -0.53 0.22 10.3
scheme-3-scale-3.0 0.70 -0.15 0.55 25.7
scheme-4-scale-3.0 0.60 -0.11 0.49 23.2

Mean 0.66 -0.21 0.45 3.20 -1.06 2.14 21.0
TC ID TC Name TC ID TC Name TC ID TC Name TC ID TC Name

0 Arlene 6 Gert 12 Stan 18 Nate
1 Bret 7 Irene 13 Tammy 19 Harvey
2 Cindy 8 Jose 14 Wilma
3 Dennis 9 Katrina 15 Alpha
4 Emily 10 Ophelia 16 Gamma
5 Franklin 11 Rita 17 Maria
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6.3.5 Inter-annual variability in TC onshore transport

The previous section examines the TC onshore transport in 2005 and the
1980–2012 climatology. To investigate the inter-annual variation, the same
computation is repeated for 2004–2012 for all schemes, and extended back to
1980 for the scheme1-radii-700 and scheme1-radii-900 schemes. To give a more
thorough view of the total TC contribution, we also performed attributions
to the East Pacific TCs using the scheme1-radii-700 and scheme1-radii-900
schemes, based on best track data from IBTrACS. Fig. 6.11 shows timeseries of
seasonal onshore transport in total and the component attributed to Atlantic
and East Pacific TCs, and the corresponding TC percentage of the total net
transport.
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Figure 6.11: (a) Coastally-integrated seasonal (May-Nov) net onshore moisture
transport (Eg) by the total moisture flux (thick dashed black line) and by fluxes
attributed to TCs by the ensemble of schemes considered here. (thin colored lines).
Schemes 2, 3 and 4 are restricted to 2004 onwards. (b) Percentage contribution of TCs
to seasonal onshore transport accroding to each attribution scheme. In both panels,
transports or percentages by East Pacific TCs attributed using scheme1-radii-700 (blue)
and scheme1-radii-900 (red) are shown in long dashed lines.
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Estimates from the full ensemble of attribution schemes are available during
2004 - 2012, within which good agreement is observed in 2004 and 2009. For
the other seven years, there is a wide spread among them, typically 0.25 Eg
but in 2005 the spread reaches 0.39 Eg (Fig. 6.11, Table 6.2). No scheme is
always higher or lower than the others, but scheme2-scale-4.0 gives the lowest
estimate for all years except 2008 and 2009, when it falls inside the ensemble
range. In 2010 this latter scheme reports a negative net TC transport (−0.11 Eg),
likely caused by falsely attributed offshore fluxes discussed previously. Desipte
the evident differences in the TC-attributed net transports, the schemes do
agree on the years with greater or less TC transports. This is reflected in
the significant correlations observed among all schemes during 2004–2012,
with the lowest correlation being 0.64 (p = 0.06) bewteen scheme1-radii-900
and scheme2-scale-4.0, and highest correlation being 0.97 (p < 0.01) between
scheme2-scale-2.0 and scheme4-scale-3.0. This suggests a consistent and robust
inter-annual variability in TC transport that is relatively insensitive to the
detection scheme.

During the period of 2004–2012, 2005 and 2008 stand out with large TC transport
in both the absolute and percentage senses. Desipte the total transport in these
two years being among the highest in the record, their percentage contributions
still reach 21.0 % (ensemble mean, ensemble range is 10.3–28.8 %) and 23.1 %
(ensemble mean, range: 17.6–29.3 %), respectively. Transports in 2007, 2009 and
2010 are lower than these two years by about 70 % to 87 % (based on ensemble
means), and the 2010 mean is the lowest (0.06 Eg) during 2004–2012. 2006, 2011
and 2012 have moderate TC transport, with ensemble means of 0.16 Eg, 0.17 Eg
and 0.27 Eg, respectively. These are mostly consistent with the variation in
TC-attributed precipitation by Brun and Barros (2014). However, they identified
2004 as the most TC-impacted year during 2002-2011, exceeding 2005 despite the
more activate major hurricanes in the latter. The difference was suggested to be
related with the Atlantic versus Gulf of Mexico alignments of the storm tracks,
where orographic effects can vary greatly correspondingly (Konrad and Perry,
2010; Brun and Barros, 2014). Here, moisture onshore transport is about 50 %
lower in 2004 than in 2005 (Fig. 6.11). This discrepency illustrates that although
a positive relationship is expected, the underlying processes of TC onshore
moisture transport and precipitation are distinct (Schumacher and Galarneau,
2012). Responses of precipitation to TCs may vary substantially, which is
controlled not only by the moisture plume advected by the TCs but also by
interactions with extra-tropical features, including upper level divergence and
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the presence of a front at the time of TC arrival (Konrad and Perry, 2010).

The use of fixed radii schemes allows the estimation to be made back to 1980.
Scheme1-radii-700 and scheme1-radii-900 schemes report largely consistent TC
onshore transport during 1980–2004 (Fig. 6.11), with a correlation coefficient
of 0.96 (p < 0.01). The variability is also closely related to TC activity
measurements, for instance a significant correlation (R = 0.70, p < 0.01) is
found between the scheme1-radii-700 estimates and the TC number timeseries
as shown in Fig. 6.1d, as well as with the Accumulated Cyclone Energy (ACE)
index (shown in the next section and in Fig. 6.12). A weak increasing trend
can be observed in both, although neither is statistically significant (by a
Mann-Kendall trend test).

On average, 0.15 Eg (ensemble mean) of moisture, equivalent to 11.4 % (Table
6.3) of seasonal onshore moisture transport can be attributed to Atlantic
TCs during 1980–2012, which is in good agreement with the precipitation
percentages (10 % of Florida’s annual rainfall (Knight and Davis, 2007); 4− 15 %
of the South East US (Rodgers et al., 2001; Knight and Davis, 2009; Konrad and
Perry, 2010; Prat and Nelson, 2013)). The mean value for 1980–1994, a relatively
quiet TC period (Goldenberg, 2001), is 8.8 %, and the mean for the more active
1994–2012 period is 14.1 %. However, the percentage variation is affected by
both the TC-attributed and the total transport. The relatively high percentage
values during the 1985–1995 decade are partly caused by lower total transport
(Fig. 6.11). Similarly, the 2012 percentage in some of the schemes exceeds that
in 2005, as the total transport is much lower in 2012.

Although not a focus of the study, we also give an estimation on the
contributions by East Pacific TCs (Fig. 6.11, Table 6.3), using the two fixed
radii schemes. In general, less moisture is transported by East Pacific TCs
(7.8 %, Table 6.3) than by the Atlantic ones (11.4 %). However, in some cases the
amounts are comparable, or even higher, such as in 1993 and 1997. Timeseries of
the East Pacific TC transport have mixed positive and negative correlations with
their Atlantic counter-parts during different periods, and overall no significant
correlation is observed. With this component added, moisture transport
by TCs from both basins constitutes around 0.24 Eg (19.1 % of total) during
1980–2012.



180
Moisture transport by Atlantic tropical cyclones onto the North American

continent

Table 6.3: Percentage (%) contribution to hurricane-season ocean-to-land moisture
transport attributed to TCs according to period and attribution scheme. ∗: the 1980–2012
climatology is the weighted average of the two sub-periods including all schemes
available: (10.3× 24 + 14.3× 9)/33 = 11.4.

Atlantic Atlantic Atlantic East Pacific
Scheme 2004–2012 1980–2003 1980–2012 1980–2012

Scheme1-700 14.0 9.4 10.6 6.3
Scheme1-900 16.3 11.3 12.7 9.2

Scheme1 mean 15.2 10.3 11.7 7.8
Scheme2-2.0 14.2 N/A N/A N/A
Scheme2-3.0 13.2 N/A N/A N/A
Scheme2-4.0 7.1 N/A N/A N/A
Scheme3-3.0 18.1 N/A N/A N/A
Scheme4-3.0 17.3 N/A N/A N/A

Mean over all schemes 14.3 10.3 11.4* 7.8
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6.4 Conclusions and disscussion

6.4.1 TC onshore flux and its inter-annual variability

In this study we designed a range of distance-based schemes to quantify the
TC-related moisture transport. A collection of multiple schemes is included
to form an ensemble of estimates. Much as expected, TC-related moisture
transports across the continental coasts correspond well with TC tracks, either
around landfalling areas or along the Atlantic coast. The Gulf of Mexico coast
and the eastern Atlantic coast housed the majority of influcencing TCs, and
onshore (offshore) transport is typically observed on the right (left) side of the
TC center. As the land usually experiences heavy precipiation in response to
a TC’s landfall, the air masses leaving the continent from the south-west side
are more moisture depleted. Combined with slightly weaker winds on the
western quadrants, the TC-related net moisture transport is more systematically
orientated as onshore. After integration along the coast line, impacts from TCs
can dominate the total onshore transport during affected periods.

Contribution from Atlantic TCs to seasonal onshore transport across the western,
southern and eastern coasts of North American is around 11.4 % for the
1980–2012 period, and based on the TC activity and the total seasonal transport
amount, the percentage can reach 25.1 % (ensemble mean in 2012). During 2004
- 2012, all ensemble members show largely consistent inter-annual varability,
which is also broadly consistent with TC-related precipitation changes (Brun
and Barros, 2014). Among the ensemble members, no scheme constantly
produces higher or lower estimates than the others, but one attribution scheme
(scheme2-scale-4.0) produces lower estimates in all but two years and this
contributes strongly to an average ensemble spread of 0.25 Eg during 2004–2012.
The latter scheme is perhaps the most “aggressive” one, taking the quadruple
of 34 kt wind radii of a TC as the attribution threshold. This was shown to be
an overestimate for large-sized TCs, and the overall effect is influenced more by
the offshore flows, giving a lower net TC transport.

6.4.2 Uncertainties in the TC flux attribution

The size of a TC’s impact area is a critical parameter in the attribution process,
and giving an objective definition of the TC size is a difficult task (Liu and Chan,
1999). Several different definitions have been used in previous studies, including
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the radius of the outer closed isobar (ROCI) (Liu and Chan, 1999; Merrill, 1984;
Konrad et al., 2002; Konrad and Perry, 2010), the radial extent of 15, 17 and 25
m/s winds (R-15, R-17 and R-25) (Weatherford and Gray, 1988), and radial extent
of a threshold relative vorticity (Liu and Chan, 1999). A fixed 500 km radius
has been commonly used in precipitation-TC studies (Rodgers et al., 2001; Larson
et al., 2005; Lau et al., 2008; Jiang and Zipser, 2010), or as a buffer zone for the
landfalling TCs (Nogueira and Keim, 2011). Pilot tests on two sample locations
suggest that the commonly used 500 km impact radius is too conservative to
capture the full extent of moisture flux responses. In fact, the same concern has
been raised in relation to precipitation attributions (Dare et al., 2012; Rodgers et al.,
2001). As the detection radius increases, so does the risk of false positive errors.
In such cases, the removal of an estimated background flow can help reduce the
error. However, the accuracy of the background estimation drops as the duration
of TC’s impact increases, which is a natural response to an inflated detecting
radius. Incorporating extra flexibility into the detecting radius, by addressing
shape asymmetry of TCs or their time varying sizes, has limited added value
in improving the detection accuracy. The current method is a compromised
balance and further improvements are needed. For instance, all distance-based
attribution methods resort to a binary type detection strategy: a grid box at any
time is either affected or not by a nearby TC, and can jump between the two
states, either due to changes in the distance from a TC, or a different scheme
is used. Instead a smooth kernel with decreasing weights, e.g. multivariate
Gaussian, may help reduce the sensitivity to threshold radius definition, and
the risks of false positive errors as well.

In the attribution process, the temporal extent has been restricted to the life time
of TCs. This decision can lead to a scenario that significant anomalous flows are
ignored because a TC has not yet fully developed (and not yet entered into best
track records) or has already dissipated. Whether or not the preceding and
aftermath flows should be associated with a TC is an ambiguous question and
should always be made clear moving from one context to another. Some studies
have identified precedent precipitation events (PREs) that are closely related
to moisture transport prior to the arrival of a landfalling TC (Galarneau et al.,
2010; Schumacher and Galarneau, 2012). In some cases, these PREs lead the TC
arrival time by 36 hours, or 1000 km poleward of the TC (Galarneau et al., 2010).
However, not every landfalling TC is associated with such PRE events. A robust
detection scheme should have the flexibility to adjust to different situations,
and ideally make the adjustment automatically. Therefore in future work, we
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plan to perform sensitivity experiments by extending forward and backward in
time from detected TC time points by an adjustable period of time (e.g. extend
backward by 3 days to capture the moisture transport that supplies PREs).

To evaluate the uncertainties associated with misalignment of TC centers in
ERA-I and best track, we performed a test by detecting RV maxima from
the vicinity of two selected TCs. Although the results suggest overall good
agreement with best track, the misalignment is likely to be underestimated
for ERA-I. Using a similar detection method, Jourdain et al. (2014) reported
increasing TC postional errors in ERA-I back to the 1980s, when compared
with the records from International Best Track Archive for Climate Stewardship
(IBTRACS). The largest offsets are around 180 km for the less intense TCs
(see their Fig. 3). Assuming random directional distribution in the offsets,
the uncertainty range due to reanalysis positional error could be similar to
the differences between fixed 700 km and 900 km schemes. Considering the
overall good agreement between the two (Fig. 6.11), this positional error is not
contributing much to the estimation uncertainty.

Another source of error comes from the TC wind field in reanalyses. The
maximum wind speed in the vicinity of TCs was found to be underestimated
in magnitude (Bengtsson et al., 2007; Jourdain et al., 2014) but overestimated
in its lateral extent (Jourdain et al., 2014). For ERA-I, the bias of maximum
wind speed is about −9 m/s for storms and −27 m/s for hurricanes. While
the sizes of the TCs are overestimated by about 210 km (Jourdain et al., 2014).
Both suggest a significant deficit in realistically depicting TCs by reanalysis
products. The resultant uncertainty in the integrated moisture flux is difficult
to estimate, as the latter is column integrated over the entire atmosphere not
only the surface. Although it is heavily weighted towards the boundary layer,
the moisture transport associated with TCs can extend up to the tropopause
(Schumacher and Galarneau, 2012). Assuming the low biased wind speed and high
biased radial extent are systematic within the troposphere, the combined effect
is likely to be qualitatively similar to an overly aggressive attribution scheme
(e.g. scheme-2-scale-4.0), which tends to give a lower seasonal transport.

6.4.3 Relationship with TC precipitation

In this study we attempted to quantify the ocean to land moisture transport
directly related to TC activity. Like TC-related precipitation, this is a form
of freshwater influx to the land so these two quantities should be positively
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related but will not be identical because additional physical processes play
a role in converting atmospheric moisture to precipitation. Firstly, enhanced
precipitation due to a TC does not originate only from additional ocean-to-land
water vapour transport: contributions may also be made from water vapour
that is already present in the atmosphere before the TC approaches, from
convergence of water vapour from land (Schumacher and Galarneau, 2012), and
to a lesser extent from anomalous evapotranspiration during the passage of
the TC. Secondly, additional moisture transport by the TC is favourable to
enhanced precipitation but does not guarantee it. Hurricane Hugo in 1989 made
landfall in South Carolina causing around one billion dollars of damage by
its strong winds, but only produced modest rainfall (Konrad and Perry, 2010;
Cline, 2002). On the other hand, not every heavy rainfall event coinciding
with TCs can be attributed to TCs (Konrad and Perry, 2010; Schumacher and
Galarneau, 2012). The timing, location, and magnitude of ascent associated with
synoptic-scale features such as baroclinic zones and upper-level shortwaves are
just as important in determining when and where heavy rain will occur (Konrad
and Perry, 2010; Schumacher and Galarneau, 2012).

Lastly, the atmospheric moisture exchange across the coastline is relevant to the
continental-scale water budget, but this moisture can then have two different
fates. It can contribute to enhanced precipitation and return to the ocean via
land runoff, but it could also leave the continent via atmospheric transport over
another part of the coastline away from (and therefore not attributed to) the TC
and/or after some time has elapsed and the TC has dissipated. Precipitation
responses are relevant in both coastal and inland areas. Landfalling TCs and
their associated rainfall generally weaken quickly due to the isolation of the
inner core from the warm, moist ocean surface (Ren et al., 2007; Knight and Davis,
2009; Dare et al., 2012). Despite this general weakening, interactions with other
synoptic systems (Konrad and Perry, 2010; Dare et al., 2012), or local orography
(Brun and Barros, 2014) may continue to produce rainfall further inland.

6.4.4 Relationship with ENSO and future work

It is of great importance to investigate the relations of TC moisture transport
with well known modes of climate variability, including ENSO, NAO and QBO.
As this is planned in a future work we will only give some shorter comments
on the ENSO relationship here.

Previous studies have documented an ENSO influcence on Atlantic TC activity
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Figure 6.12: (a) Time series of seasonal TC onshore transport (Eg) during 1980 - 2012,
detected using scheme1-radii-700 (T700, blue solid line) and scheme1-radii-900 scheme
(T900, blue dashed line). The seasonal ACE indices (104 kt2) are plotted in red onto the
rightmost y-axis. Seasonal average (Aug-Nov, ASON) Niño 3.4 indices are plotted in
green onto the second y-axis from right. Linear trends in all time series have been
removed. Some correlation results are shown at the top-left corner. (b) The blue (red)
bars show correlation coefficients between the May-Nov seasonal T700 (ACE) and Niño
3.4 indices computed using different season definitions, ranging from the DJFM season
prior to the TC season, to ASON during the later part of the same TC season. p values
of the correlations are labelled correspondingly.

(e.g. Gray (1984); Pielke and Landsea (1999); Goldenberg (2001); Smith et al. (2007);
Bengtsson et al. (2007)). Enhanced subsidence and vertical wind shear develop
over the tropical Atlantic, in response to anomalous central/eastern Pacific
warming during El Niños. Consequently, surpressed Atlantic TC activity is
observed during warm years, and the opposite for cold years (Gray, 1984). This
negative relationship bewteen TC activity (represented by ACE) and central
Pacific SST (represented by Niño 3.4 index) can be observed in Fig. 6.12.
Correspondingly one might expect a similar negative relationship between Niño
3.4 and the seasonal TC moisture transport. However, this relationship is much
weaker and not statistically significant. Besides, there seems to be a time shift
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bewteen these two relationships: ACE is most sensitive to the Aug-Nov (ASON)
season Niño 3.4 SST (R = −0.45, p = 0.01, see Fig. 6.12a, b), while peak
correlation with TC transport is observed in MAMJ Niño 3.4 index. This lack
of correspondence is partially because, in addition to anomalous TC activity,
effective onshore transport also requires properly aligned tracks, therefore
landfalling locations in different ENSO phases need to be incorporated. Smith
et al. (2007) noticed that despite generally enhanced TCs during cold years, there
is little difference in the probability of hurricane landfalls in Florida or along the
Gulf coast compared with neutral years, and these areas are most conducive to
onshore transport as shown in our results. Lastly, the conventional El Niño
versus La Niña way of looking at ENSO variability needs to be updated. Many
studies have reported a systematic difference between an Eastern Pacific (EP) El
Niño and a Central Pacific (CP) El Niño with distinct features in many aspects
(Kao and Yu, 2009; Kug et al., 2009; Xu et al., 2015), including Atlantic TC activities
(Kim et al., 2009; Wang et al., 2014). In particular, the CP El Niños were found
to enhance Atlantic TCs in contrast to surpressing by EP El Niños (Kim et al.,
2009). Taking into account the observed increasing frequency of CP El Niños
after 1990s (Kim et al., 2009), greater complexity is added to the discussion on
ENSO variability.

6.4.5 Concluding remarks about further applications

The TC moisture flux attribution method proposed in the study is designed
to facilitate continental scale onshore moisture flux quantification, but can be
tailored to country or basin scales to cater to different purposes, although
suitable data and further improvements may be necessary. For instance, some
systematic differences in the size of TCs have been documented (Jiang and Zipser,
2010) between ocean basins, and in particular TCs in the Atlantic typically have
smaller sizes compared with those in NWP, SPA and IO regions. Therefore care
should be taken in applying the methods to other basins.
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Chapter 7

Conclusions and discussion

7.1 Key findings

This thesis assesses some important aspects of the atmospheric hydrological
cycle in our modern day climate, including the climatological distributions and
variations of precipitation, evaporation, the moisture budget and the horizontal
moisture transports. These variables constitute key components of the climatic
system, bridging the water and energy cycles, and thus their changes have global
scale impacts. The most noteworthy findings of this study are summarised
here.

7.1.1 Observations of atmospheric hydrology are still insufficient,

unevenly distributed, and have homogeneity issues, biases

and internal consistency deficiencies.

Chapter 2 identifies some deficiencies in precipitation observations: ground-based
observation is sparse where precipitation is most intense, in tropical deep convection
regions both over ocean and land. Rain gauge networks have much better
coverage and timely data exchanges in north hemisphere mid-latitude regions,
particularly in North America and European countries, while in most of other
regions routine gauge observation exchange has dropped during the most recent
decades. Case studies over the warm pool, Amazon, Gulf stream and Indian
sub-continent regions revealed that discrepancies among datasets are mostly
related to the annual cycle. The Amazonian dry biases are still present even in
the new JRA-55 reanalysis, despite improvements over its predecessor identified
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by earlier studies. Discrepancies amongst reanalyses and observations are found
over the western coast of the Indian sub-continent, and the problem was traced
down to disagreement between gauge (from GPCC) and satellite estimates (from
GPCP). Comparison with observations from the Indian Institute of Tropical
Meteorology (ITM) gauge network suggest that the GPCC estimates may be
too high by above 50 %.

A bench-mark global scale land evaporation observation dataset is still lacking.
The most recent effort is a compilation by Mueller et al. (2013), which
synthesized estimates from four categories including diagnostics, reanalyses,
land surface models and GCMs. Estimates from the same category tend to
cluster and the overall result is sensitive to the number of members each
category contains, therefore the compilation is regarded as non-robust and
uncertainties are large. In terms of the climatological annual mean land
evaporation/evapotranspiration (E/ET), both ERA-I and JRA-55 fall within, but
near the higher end, of the range of estimates from literature.

Atmospheric reanalysis products have gone through three major iterations
(Trenberth et al., 2011), and new products keep being created. However,
limitations remain. The gaps from conventional in situ observations are filled by
adding information from forecast models, but not without uncertainty. This is
particularly true for hydrological cycle related variables such like precipitation
and evaporation. Parameters are usually constrained indirectly by observations,
and approximations used in the model’s representation of moist processes
strongly affect the quality and consistency of the hydrological cycle (Dee et al.,
2011). In many respects it is better to provide seperated datasets (gauges
versus satellites) rather than combining them. Presenting more complete
datasets by infilling gives the view that there aren’t issues with data access,
and may also prohibit easy discrepancy diagnosis, as in the case of the Indian
precipitation analysis. For the ERA-I and JRA-55 reanalyses evaluated here,
both improvements over earlier products and residual deficiencies are found.
For the latter, tropical precipitation and evaporation are overestimated, and their
temporal variability are incorrect. Accurate representation of the hydrological
cycle in reanalyses is still a difficult challenge.
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7.1.2 Spin-down, analysis increment and budget imbalance in

ERA-I and JRA-55 reanalyses.

Following on from the previous discussion, analyses in Chapters 2 and 3
confirmed the analysis increment errors in ERA-I and JRA-55, which are
responsible for the high biases observed in tropical precipitation. Reanalysis
assimilation schemes introduce artificial sources or sinks of moisture into the
atmospheric water budget. This is particularly evident in the tropics where the
reanalyses have a preferred over-active state that tends to spin-down during the
rest of the forecast cycle. Assimilation of observed humidity then replenishes
the atmosphere, serving as an artificial moisture source, and creating a positive
analysis increment. The problem existed in earlier versions (ERA-40 and JRA25),
was reduced by the upgrade from 3DVAR to 4DVAR (Andersson et al., 2005;
Trenberth et al., 2011; Kobayashi et al., 2015), but still persists in ERA-I and JRA-55.
Such a problem can become even more severe when the assimilated observations
contain biases, one example being the MERRA reanalysis: during the 2000s,
the atmosphere was over-moistened by an artificial vapour source from the
AMSU-A channels, leading to excessive oceanic precipitation (Bosilovich et al.,
2011). More analyses of the sources going into reanalyses are needed. One
of such efforts is ECMWF’s on-going Observational Feedback Archive (OFA)
project, which will provide an open-access database to facilitate retrieval of
the observations used in reanalyses and other climate data products, along
with information on instrumental characterization, data quality, reanalysis
departures and data sources, etc..

The analysis increment problem has far reaching implications in various aspects,
but for the examination of the hydrological cycle we emphasize only two:
firstly, positive increment errors render a “leaking” atmosphere that generates
excessive moisture outputs compared to inputs. Similarly, negative increments
give rise to a “flooding” atmosphere where inputs overtake outputs. In either
case, the water budget is not closed, as represented by the non-zero budget
residuals quantified in Chapter 3. A cluster analysis was used to quantify
and examine these residuals at a regime (seasons and regions across the globe
sharing similar hydrological characteristics) level rather than grid cell level,
allowing the residuals to be associated with the contextual hydrological cycle.
Consistent for both ERA-I and JRA-55, the regime with the largest fractional
residual (as a percentage of mean precipitation) was constituted by the tropical
savanna in central Africa and South America, the dry winter monsoon season in
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south Asia, and some arid parts of central Asia during summer. In addition to
strong seasonality, this regime also features low levels of precipitation (mean ≤
1 mm/day), high (almost entire) dependency of rainfall on local ET, and a strong
net moisture export by moisture divergence. A non-closed budget combines
errors from all budget terms (with possible cancellations among them), however
in this case we show the major cause appears to be the moisture divergence
field: the low mean precipitation makes the fractional residual in this regime
sensitive to small errors, though it is only the second driest of the six regimes
and the driest has a budget that is much closer to being closed. Terrestrial
E/ET from reanalyses contains considerable uncertainties, however the spatial
distribution is relatively uniform in the tropics, therefore it is less likely to be
an effective distinguishing factor. The high correlations between the timeseries
of absolute residuals with moisture divergence support the hypothesis that
anomalous divergence is associated with large negative residuals and vice versa.
ERA-I and JRA-55 show largely consistent results, suggesting that some shared
errors cause them to both overestimate the moisture divergence.

Secondly, analysis increments violate the internal physical consistency of the
reanalysis system. Artificial moisture sources or sinks give moisture increments
which in turn alter the heat increment, energy balance, and then circulation
(Bosilovich et al., 2011). Putting the energy coupling aside, we observed higher
precipitation levels in both reanalyses maintained at a lower level of humidity
load, which is related to the increment and spin-down problem discussed above,
and may lead to an impression that the circulation, or hydrological cycle, in
reanalyses is more intense than in observations. In fact, a spinning-down
model tends to slow down the circulation by the extra latent heat added to the
atmosphere (Andersson et al., 2005). This “apparent” intensification effect has no
physical root, therefore violates the internal consistency. The energy component
was not explicitly addressed here, but more discussions of the hydrological cycle
intensity are included in the next section.

7.1.3 A baseline diurnal cycle in atmospheric total column

water and moisture transport.

In Chapter 4 we diagnosed the diurnal variability in the horizontal moisture
fluxes from reanalysis, and identified one dynamic and one thermodynamic
mode. The former is driven by the interactions between semi-diurnal wind
and surface pressure cycles stemmed from atmospheric tides. When scaled
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by mean background humidity load, it generates a westward propagating
moisture convergence/divergence wave along the equator. The thermodynamic
mode represents the diurnal moisture flux due to diurnal humidity variations
advected by mean annual winds (largely zonal). Atmospheric tidal theories can
predict the dynamic mode quite well, therefore we put more emphasis on the
thermodynamic component here.

First of all, the analyses did not provide a conclusive result on the causes of
the diurnal cycle in Total Column Water (TCW). Objectively this is due to
limitations in the reanalysis data (insufficient temporal resolution), and the
approach the analysis takes (identifying diurnal cycles from annual harmonics).
Furthermore, the non-closed water budget hampers budget analysis at this
time scale. Nevertheless we are able to diagnose the existence of a global
scale TCW diurnal cycle that is broadly meridionally uniform (although much
less uniform than the atmospheric tides), with a phase largely consistent with
the local maximum solar heating, and to the first order of approximation,
relatively quantitively consistent with the enhanced moisture inputs from
oceanic evaporation. On the other hand, examining the vertical profiles at a few
selected regions indicated better correspondence between specific humidity and
wind divergence, particularly over mid-latitude land areas. The correspondence
is much less clear over ocean. However, this is not necessarily inconsistent with
the surface evaporation feedback, and it is likely that both effects are required
to explain the diurnal cycle.

Despite the uncertain cause, the observed TCW diurnal cycle is likely to be very
robust, as the diagnosis is performed on fitted harmonics where inter-annual,
intra-seasonal and high frequency variability are filtered out. This frequency
isolation has some important implications. Previous studies have suggested that
the enhanced oceanic convective activity (positively correlated with TCW) has
an early morning maximum (Yang and Slingo, 2001; Kawai and Wada, 2007; Sui
et al., 1997), and others suggest a secondary afternoon maximum (McGarry and
Reed, 1978; Augustine, 1984; Janowiak et al., 1994; Sui et al., 1997; Fu et al., 1990).
The major distinguishing factor here seems to be the large-scale circulation
conditions: disturbed or undisturbed (Sui et al., 1997) and intra-seasonal
variability (e.g. MJO). However, these variabilities are removed by the harmonic
fitting, therefore the results suggest a baseline TCW diurnal cycle that can be
isolated from such intra-seasonal changes, with a peak-to-trough magnitude of
∼ 0.4 mm, and a peak phase of ∼ 1800− 2100 local time.
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7.1.4 El Niño complexity: the moisture divergence perspective.

The re-organisation of the large-scale atmospheric circulation in response to
ENSO has been explained by classical theories for the altered Walker circulation
(Bjerknes, 1966, 1969), and the Hadley cell was found to strengthen and shift
during warm events (Oort and Yienger, 1996; Quan et al., 2004; Hu and Fu,
2007; Wang, 2002). However, recent studies have identified distinct responses
to two different types of El Niños in various aspects including ocean heat
content, SST, salinity, precipitation, horizontal winds and Outgoing Long-wave
Radiation (OLR) (Xu and Chan, 2001; Yu and Kao, 2007; Kao and Yu, 2009; Kug
et al., 2009; Chiodi and Harrison, 2010; Singh et al., 2011). This classification has
some correspondence with warming strengths but structural differences are
also evident, suggesting a large-scale non-linear response pattern. Chapter
4 looked into this complexity from a moisture divergence perspective, and
confirmed the Extreme and Moderate El Niño classification (also commonly
referred to as Eastern Pacific (EP) and Central Pacific (CP) events). Following
the eastward shifted warming center in an Extreme El Niño, the zonal SST
gradient is weakened or even reversed, and the meridional gradient over the
eastern Pacific is weakened. In response, the Southern Pacific Convergence
Zone (SPCZ) swings further equator-ward, westerly anomalies develop over
the eastern Pacific to help maintain the warming, and the northern hemisphere
branch of the Hadley cell gets compressed and shifted equator-ward more than
in a Moderate El Niño. These atmospheric responses develop swiftly during the
peak-to-decaying phase of an Extreme event, when the underlying SST anomaly
plateaus at its maximum, suggesting a highly non-linear ocean-atmosphere
coupling mechanism. Each El Niño has its own characteristics, and we learn
something new from each event. Implications of such differences between
an Extreme and Moderate El Niños keep being documented, including their
distinct impacts on tropical cyclone tracks and intensities (Kim et al., 2009; Wang
et al., 2014). With frequency variations in decadal to inter-decadal time scales
and potential future changes, this classification constitutes an important factor
in our understanding of ENSO.
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7.1.5 Extreme onshore moisture transports by tropical cyclones:

a methodological discussion.

Having addressed the climatological annual and diurnal cycles of moisture
transports, we moved on to quantify a special form of extreme moisture
fluxes: onshore moisture transport by tropical cyclones (TCs). Previous studies
have looked into the attribution of precipitation to TCs, but there has been
almost no discussion of continental scale moisture transport by TCs. In
Chapter 6 we designed an ensemble of attribution schemes that use the best
track TC location records and reanalysis moisture fluxes to estimate onshore
transport. Similar to many precipitation attribution studies, the attribution is
fundamentally distance-based (using geographical vicinity to a TC centre as
the major attribution criterion), but with consideration of variations in TC size
and asymmetry, and also takes into account underlying background flow from
which the TC attributed fluxes are identified. Schemes with various degrees of
complexity and flexibility offer us an ensemble estimate from which uncertainty
and sensitivity are analyzed.

The results suggest that onshore moisture transport onto the North American
continent by Atlantic TCs has large inter-annual variability, directly caused by
variations in TC activity and their tracks. On average (1980-2012 mean across
the ensemble of estimates), Atlantic TCs alone contribute about 0.15 Eg, or 11 %
of total hurricane season moisture transport, with most of the TC transport
occurring in the Gulf of Mexico and along the eastern coast. With contributions
from Eastern Pacific TCs included, the value rises to 0.24 Eg (or 19 % of the total).
TCs form an important moisture input for the North American and many other
continents: in some cases, a single TC can alleviate or terminate a sustained
drought.

From a methodological perspective, we found that the appropriate attribution
size for moisture fluxes appears to be much larger than the 500 km radius
commonly used in precipitation attributions, and the 700− 900 km range serves
as a good reference. Including detailed information about a TC, such as
their transient size and shape variations, gives limited added value in the
attribution. This allows estimations to be extended further back in time, before
TC size observations were available, and also makes it easier to combine best
track records from different data centres, which may offer records of different
completeness and use different measures of TC sizes.
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7.1.6 Development of analysis techniques

As well as conventional, well-established analysis methods, some new
techniques were needed to answer the scientific questions that are the focus
of this thesis.

Taylor diagrams provide a powerful visual device for performance evaluations,
where the agreements on variation strength, pattern correlations and biases
can be summarized into a single plot. However, uncertainty estimation of
the observational reference has been fairly rudimentary: by adding another
independent, or often only partly independent, observation. Most of the
time, a truly independent alternative is not available. Therefore we devised
a method to incorporate the random errors estimated by the data provider
into the Taylor diagram. Introduction of this not only makes good use
of this valuable first-hand information, but also allows a more objective
interpretation. An example of the additional insight obtained by representing
this uncertainty information on the Taylor diagram is that the differences
between reanalysis precipitation (ERA-I and JRA-55) and GPCP data, while
comparable in magnitude for the tropical and extra-tropcal oceans, and clearly
more robust for the tropics due to the much larger uncertainty estimates
provided by GPCP for the extra-tropical regions (see Chapter 2). Application
to climate model evaluations is also meaningful and helpful: one could
easily visualize the overlap between the model uncertainty range (perhaps
encompassed by different realizations) and the observation uncertainty range
(by utilizing the method introduced here). In addition to GPCP and OAFlux
that provide uncertainty estimates along with their data, other observations
also have such information, such as CRUTEM4, and also for ERA-20C and 20th
Century Reanalysis (20CR) with their ensembles (10 and 56, respectively).

Empirical Orthogonal Function (EOF) analysis is a commonly used technique
in climatic studies, however the orthogonal constraint can sometimes hamper
clear and easy physical interpretations, particularly when non-linear response
patterns are the main interest. One example is the Extreme versus Moderate El
Niño complexity discussed above, where we demonstrated in Chapter 5 that the
leading two EOFs are clearly related to each other, albeit in a non-linear manner.
The EOF patterns are orthogonal, as required by the method, but their associated
Principal Components (PCs), while also required to be nominally independent
as measured by zero linear correlation, are in fact related but in a non-linear
way. The combination of their lack of independence with the orthogonality
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constraints of the EOF method, can hamper their physical interpretation: neither
of the leading EOFs of tropical Pacific moisture divergence is able to capture on
its own the pattern of response to a La Niña, or to a Moderate El Niño, or
to an Extreme El Niño event. Instead, different combinations of the two EOFs
are needed to capture each of these events. The first EOF captures most of the
transition from La Niña to Moderate El Niño, but this is also partly represented
by the second EOF, which in turn also partly represents the contrasting moisture
divergence response to Moderate and Extreme El Niños. To overcome this
limitation, we explored the Self-organizing map (SOM) algorithm in describing
the non-linear ENSO transitions. The results suggest it is a powerful tool,
not only in the synoptic circulation and downscaling analyses where it has
been mostly applied, but also to complement EOF analysis in the diagnosis
of large-scale climatic modes. A classification of ENSO atmospheric moisture
divergence modes finds that the separation between Extreme and Moderate El
Niños can be as large as from Moderate El Niños to La Niñas.

7.2 Limitations and future work

One study can not, of course, address all parts of the hydrological cycle, and
limitations exist that need to be acknowledged and that could form the basis for
future work:

1. The variability in the hydrological and energy cycles are closely coupled:
latent heat transfer vertically between the surface and the atmosphere modulates
the energy balance of both, and also has implications for cloud cover distribution
and radiative forcing of the atmosphere, which subsequently alter the entire
climatic responses to both natural and anthropogenic drivers (Wielicki et al.,
2002). Particularly over long time scales, the hydrological cycle intensity is
controlled more by energy constraints than by mass constraints (Allen and
Ingram, 2002). Such energy constraint perspectives have laid the foundation
for many important understandings of hydrological responses to a changing
climate at global (e.g. Allen and Ingram (2002); Held and Soden (2006); Chou and
Neelin (2004); Allan et al. (2014)), and at regional scales as well (Levermann et al.
(2009); Muller and O’Gorman (2011)). Over inter-annual and intra-seasonal time
scales, large-scale circulation is closely coupled with the radiative responses, one
example being the different dynamic-thermodynamic mechanisms responsible
for the observed circulation patterns during CP versus EP El Niños as
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introduced in Chapter 5 (see also Su and Neelin (2002)). From an internal
consistency point of view, inconsistency is found in reanalysis products between
their hydrological and energy cycles, possibly due to parameterization schemes
that produce too much rainfall prematurely, or due to the assimilation of
questionable observations. This thesis largely considers only the water mass
circulations without explicitly addressing the energy component. The climate
system is highly holistic, as should be its study, particularly when physical
explanation is the ultimate goal. Serving as an observation-based analysis,
this thesis was intended to have a narrower scope, but more involvement of
other components including the energy cycle should be addressed in future
studies.

2. During the diagnosis of the major characteristics of the modern day
hydrological cycle, we have put more attention on the horizontal moisture
transport, for a few reasons: firstly the far-reaching nature of moisture fluxes is
most representative of the atmospheric branch of hydrological cycle. Secondly,
in most cases the variability of precipitation can be captured quite well by the
horizontal moisture divergence/convergence. Lastly the power of reanalysis can
be better utilized in the quantification of wind and humidity fields compared
with precipitation and evaporation estimates, which both contain model and
increment errors. In the analysis of precipitation, we have restricted the
scope to climatological mean states with only brief discussion on its temporal
variability. The long-term mean distribution is a useful summary indicator
of the precipitation patterns and the quality of the datasets being evaluated,
but detailed analysis over time scales, for instance, the frequency/intensity
distributions and variations in precipitation, including extreme rainfall and
sustained droughts, are also necessary from a societal impact and risk
assessment point of view. Analyses on precipitation frequency/intensity in
reanalysis and the possible link with analysis increment distributions were
considered initially, but could not be pursued due to time limitations. Future
work could undertake modelling experiments to explore the sensitivity of the
simulated surface runoff to input rainfall frequency/intensity, an analysis on
the sensitivity of oceanic moisture transport to data resolution, and a vertical
profiling of the moisture exchange between tropics and extra-tropics.

3. Long-term changes in hydrological cycle intensity are controversial.
Previously we mentioned internal consistency issues in reanalysis products
and their association with the energy cycle. The greatest implication of
such problems perhaps lies in the quantification of long-term changes of the
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hydrological cycle. Although not included as a major topic of the thesis, this
has been a fairly active area in the research community and has raised some
controversy in the literature (Quan et al., 2004; Mitas and Clement, 2005; Vecchi
et al., 2006; Zhang and Song, 2006; Sohn and Park, 2010; Zahn and Allan, 2011).

Firstly, hydrological cycle intensity can be “viewed” in different ways. Increased
precipitation and evaporation, both being freshwater fluxes between the surface
and the atmosphere, imply intensification, and this has been confirmed by
evidence following the rising global mean temperature. However, theoretical
thermodynamic arguments suggest that precipitation increases are constrained
to a slower rate than humidity increases (Held and Soden, 2006; Allen and Ingram,
2002; Allan et al., 2014), meaning the overall circulation must slow as mean
temperature rises. In addition, circulation strength has also been measured
by quantifying the streamfunction (whose maximum value can be used as an
indicator of Hadley circulation strength, e.g. Quan et al. (2004); Mitas and
Clement (2005)), vertical wind shear (Quan et al., 2004), effective wind (Sohn
and Park, 2010), Sea Level Pressure (SLP) gradient (Vecchi et al., 2006; Sohn and
Park, 2010; Zhang and Song, 2006) and the moisture fluxes in ascending versus
descending branches of the circulation (Zahn and Allan, 2011). Despite different
time periods selected by studies that may lead to different conclusions (in some
cases this has a great impact, e.g. the inclusion of the fast increasing SLP
anomalies during 2003-2007 makes a big difference in the resultant trend in
Sohn and Park (2010)), there seems to be a discrepancy between wind-based and
pressure gradient based circulation strength: analyses using reanalysis wind
fields (streamfunction, vertical wind shear) tend to give a strengthening result,
while SLP gradient analyses tend to show overall weakening. The discrepancy is
related to internal consistency issues: in reanalysis systems, vertical velocity was
derived, based on mass conservation, from the divergence of horizontal winds,
which are in turn strongly coupled with convective processes (Zhang and Song,
2006). On the other hand, surface pressure is directly observed without obvious
sources of trend biases, while biases in the trends of the input radiosonde
temperature can affect the wind fields via altering the static stability (Santer,
2005; Zhang and Song, 2006). Therefore, the dynamic relationship between
sea level pressure and vertical velocity is not guaranteed (Zhang and Song,
2006).

Inconsistency in reanalysis system can lead to contradicting conclusions that
depend on the very definition and the perspective one subsequently chooses.
Either result (strengthening or weakening) depicts only one incomplete aspect
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of the system and therefore is not robust. Reanalysis, and to some extent
all existing observations, suffer heterogeneity and consistency issues, therefore
making a robust diagnosis of long-term change challenging. Future studies
need to take this into account, by making a closer combination of observation
and model evidence and explicitly promoting the component that is physically
consistent among various aspects. Finally, a more encompassing framework
that can incorporate different interpretations of hydrological intensity is
needed.
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C. SchaÌĹr, R. Sutton, G. J. van Oldenborgh, G. Vecchi, and H. J. Wang (2013),
Near-term Climate Change: Projections and Predictability, book section 11, pp.
953–1028, Cambridge University Press, Cambridge, United Kingdom and
New York, NY, USA, doi:10.1017/CBO9781107415324.023.

Kistler, R., E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah,
W. Ebisuzaki, M. Kanamitsu, V. Kousky, H. Van Den Dool, R. Jenne, and
M. Fiorino (2001), The NCEP-NCAR 50-year reanalysis: Monthly means
CD-ROM and documentation, Bulletin of the American Meteorological Society,
82(2), 247–267.

Klepp, C., K. Bumke, S. Bakan, and P. Bauer (2010), Ground validation of oceanic
snowfall detection in satellite climatologies during LOFZY, Tellus, Series A:
Dynamic Meteorology and Oceanography, 62(4), 469–480, doi:10.1111/j.1600-
0870.2010.00459.x.



208 REFERENCES

Knaff, J. A., and R. M. Zehr (2007), Reexamination of tropical cyclone
wind-pressure relationships, Bulletin of the American Meteorological Society,
88(3), 71–88, doi:10.1175/WAF965.1.

Knaff, J. a., C. R. Sampson, M. DeMaria, T. P. Marchok, J. M. Gross, and
C. J. McAdie (2007), Statistical Tropical Cyclone Wind Radii Prediction
Using Climatology and Persistence, Weather and Forecasting, 22(4), 781–791,
doi:10.1175/WAF1026.1.

Knight, D. B., and R. E. Davis (2007), Climatology of Tropical Cyclone Rainfall
in the Southeastern United States, Physical Geography, 28(2), 126–147, doi:10.
2747/0272-3646.28.2.126.

Knight, D. B., and R. E. Davis (2009), Contribution of tropical cyclones to
extreme rainfall events in the southeastern United States, Journal of Geophysical
Research, 114(D23), 1–17, doi:10.1029/2009JD012511.

Knippertz, P., and H. Wernli (2010), A lagrangian climatology of tropical
moisture exports to the northern hemispheric extratropics, Journal of Climate,
23(4), 987–1003, doi:10.1175/2009JCLI3333.1.

Knippertz, P., H. Wernli, and G. Gläser (2013), A global climatology of tropical
moisture exports, Journal of Climate, 26(10), 3031–3045, doi:10.1175/JCLI-D-12-
00401.1.

Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi,
H. Kamahori, C. Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi (2015),
The JRA-55 Reanalysis: General Specifications and Basic Characteristics,
Journal of the Meteorological Society of Japan. Ser. II, 93(1), 5–48, doi:10.2151/
jmsj.2015-001.

Kohonen, T. (1990), The Self-Organizing Map, Proceedings of the IEEE, 78(9),
1464–1480, doi:10.1109/5.58325.

Konrad, C. E., and L. B. Perry (2010), Relationships between tropical cyclones
and heavy rainfall in the Carolina region of the USA, International Journal of
Climatology, 30(4), 522–534, doi:10.1002/joc.1894.

Konrad, C. E., M. F. Meaux, and D. A. Meaux (2002), Relationships between
tropical cyclone attributes and precipitation totals: Considerations of scale,
International Journal of Climatology, 22(2), 237–247, doi:10.1002/joc.721.

Koster, R. D., P. A. Dirmeyer, Z. Guo, G. Bonan, E. Chan, P. Cox, C. T.
Gordon, S. Kanae, E. Kowalczyk, D. Lawrence, P. Liu, C.-H. Lu, S. Malyshev,
B. McAvaney, K. Mitchell, D. Mocko, T. Oki, K. Oleson, A. Pitman, Y. C. Sud,
C. M. Taylor, D. Verseghy, R. Vasic, Y. Xue, and T. Yamada (2004), Regions of
Strong Coupling Between Soil Moisture and Precipitation, Science, 305(5687),
1138–1140, doi:10.1126/science.1100217.

Kug, J. S., F. F. Jin, and S. I. An (2009), Two types of El Niño events: Cold



REFERENCES 209

tongue El Niño and warm pool El Niño, Journal of Climate, 22(6), 1499–1515,
doi:10.1175/2008JCLI2624.1.

Kumar, A., L. Zhang, and W. Wang (2013), Sea Surface
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