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ABSTRACT 

Sulforaphane (SFN) is an isothiocyanate found mostly after consumption of broccoli, 

but also other cruciferous vegetables such as cauliflower or cabbage. 

Isothiocyanates have been researched for over 20 years in the field of cancer. They 

show many different bioactivities, of which the majority are positively associated 

with cell health and are possibly collectively responsible for protective effects of SFN 

against toxin-induced cell death. 

This study aims to investigate the bioactivities of SFN on neuronal cells. PC-12 and 

SH-SY5Y cells were used to resemble neuronal-like systems to research especially 

autophagy as well as nuclear factor E2-related factor 2 (Nrf2) and how these 

pathways might influence neuroprotective abilities of SFN. 

Basal assessments confirmed that SFN can induce Nrf2-driven phase II enzymes, as 

determined by qPCR as well as immunoblotting. The elevation of the main 

autophagy marker light chain 3-II (LC3-II) by SFN could be observed dose-

dependently at protein level. In addition, SFN pre-treatment provided statistically 

significant cytoprotection against H2O2- and 6-hydroxydopamine- (6-OHDA) 

induced cell death.  

Further, DJ-1, a multifunctional protein, was selected for investigation with SFN, since 

it is highly implicated with neuronal cell health. SFN induced DJ-1 protein levels 

dose-dependently. In addition, tunicamycin-induced ER-stress was significantly 

reduced by SFN, as shown using the ER-stress marker CHOP on protein and RNA 

levels.  

To intensify the research of SFN and autophagy, primary neuronal cells (PNCs) were 

developed from embryos from Atg16L1 wild type and knock out (KO) mice. Atg16L1 

is a protein necessary for autophagosome formation. Immunostainings assessed 

that autophagy was indeed fully supressed in KO cells. Preliminary results suggest 

that autophagy is involved in the neuroprotective effects of SFN. 

Conclusively, SFN was able to significantly protect all neuronal cells investigated 

from H2O2- or 6-OHDA-induced cell death. SFN’s ability to activate autophagy as 

well as DJ-1 may contribute to its protective effects. 
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1 INTRODUCTION 
1.1 SULFORAPHANE 

1.1.1  GENERAL INTRODUCTION 

Since the 1990s, epidemiological and human intervention studies have suggested 

an inverse association between the intake of plant foods like turmeric, garlic or 

cabbage, and risk of cancer or a number of other chronic diseases (Surh 2003; 

Ferrari et al. 2010). A variety of phytochemicals, i.e. chemicals naturally occurring in 

plants, have been shown to  enhance the metabolism and elimination of 

xenobiotics, like drugs, pesticides or carcinogens, thus antagonising their 

carcinogenicity (Zhang et al. 1992). 

Cruciferous vegetables (CV) of the family Brassicaceae have become a research 

area of particular interest, since they have been associated with a reduced risk of 

development of a range of cancers (Verhoeven et al. 1996; Talalay & Fahey 2001). 

Such vegetables include broccoli, cabbage, kale, Brussels sprouts, cauliflower, 

mustard, wasabi, cress and radish (Verkerk et al. 2009; Fahey et al. 2001; Fimognari 

et al. 2008). They contain many beneficial dietary compounds, such as vitamin C, 

carotenoids, fibre, flavonoids and glucosinolates (McNaughton & Marks 2003). The 

sulphur containing glucosinolates are present in almost every CV and are 

responsible for their distinct aroma (Fahey et al. 2001; Vermeulen et al. 2006). 

Anticarcinogenic properties of CVs were first reported in the 1980s (Albert-Puleo 

1983). A decade later, sulforaphane (SFN) was identified as the chemical primarily 

responsible for the bioactivity of broccoli, leading to further research in this area 

(Dinkova-Kostova & Kostov 2012; Zhang et al. 1994; Zhang et al. 1992). Studies on 

the molecular targets of SFN have led to a greater understanding of its mechanism 

of action. SFN shows a range of potential therapeutic effects and therefore is a 

potential candidate for therapeutic use in humans (Guerrero-Beltrán et al. 2010).  

One CV can contain several glucosinolates, some with “anti-nutritional” properties, 

such that their inclusion in the diet can reduce the nutritional value of a meal 

(Griffiths et al. 1998). For example, the hydrolysis of β-hydroxyalkenyl glucosinolates 

creates β-hydroxyalkenyl isothiocyanates, which can further cyclise to oxazolidine-

2-thiones - which may have goitrogenic effects  (Fahey et al. 2001).  Conversely,  
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“nutritional” or “functional” glucosinolates may have therapeutic and prophylactic 

properties (Fahey et al. 2001). Over 120 different glucosinolates have been 

identified in cruciferous plants, however few occur in dietary crucifers (Juge et al. 

2007). Glucosinolates are β-thioglucoside N-hydroxysulfates with a side chain (R) 

and a sulphur-linked β-D-glucopyranose moiety (Fahey et al. 2001). 

Glucosinolates, as opposed to their metabolites, are mostly biologically inactive 

(Vermeulen et al. 2006). In plants, they are accumulated in vacuoles in close 

proximity to myrosin cells, which are separate cells with vacuoles containing the 

enzyme myrosinase (Kissen et al. 2009).  A natural defence mechanism is activated 

by cutting, grinding or chewing of plant tissue, when myrosinase is released and 

hydrolyses the glucosinolates into isothiocyanates (ITCs) and other metabolites 

(Fimognari et al. 2008; Kissen et al. 2009). ITCs are considered the major metabolite 

at pH 5-8, whilst at pH 2-5 in the presence of Fe2+ or guided by the heat-sensitive 

epithiospecifier protein (ESP) mostly nitriles and elemental sulphur are produced, 

and at pH >8 thiocyanates are generated (Figure 1) (Fimognari et al. 2008; Grubb 

& Abel 2006; Matusheski et al. 2004).  

 

 

Figure 1: Metabolism of glucosinolates to their break down products. 

Myrosinase catalyses the hydrolysis of glucosinolates to different end products, 

such as isothiocyanates, nitriles, or thiocyanates; depending on the reaction 

conditions. Adapted from (Dinkova-Kostova & Kostov 2012). 

Cooking vegetables or applying pressure, which is often performed to inhibit activity 

of microorganisms and spoilage enzymes and therefore enhance storage life 

(preferably without affecting the quality of the product),  inactivates myrosinase 

(Ghawi et al. 2012). Exposure to temperatures between 35°C and 70°C, for a 

duration as short as three minutes, has been shown to reduce myrosinase activity 

considerably in broccoli (Ludikhuyze et al. 1999; Oliviero et al. 2014) or green 

cabbage (Ghawi et al. 2012). High pressure-thermal inactivation has presented 



Chapter 1 | Sandra Bednar 

 

p a g e  17 of 156 

 

synergistic as well as antagonistic effects  at pressures below 200MPa, which may 

also differ between Brassica species (Ghawi et al. 2012). 

In humans, glucosinolates are metabolised to ITCs by the bacterial flora of the 

gastrointestinal tract, although their activity is considerably less than that of 

myrosinase (Fahey et al. 2001; Shapiro et al. 2001; Lampe & Peterson 2002). After 

absorption, ITCs are conjugated to glutathione and are eliminated through the 

mercapturic acid pathway (Figure 2; shown for the example of SFN) (Vermeulen et 

al. 2008).   

 

Figure 2: The mercapturic acid pathway shown for SFN 

GST, glutathione-S-transferase  
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1.1.2  SULFORAPHANE AND ITS METABOLISM IN HUMANS 

SFN [1-isothiocyanato-4-(methylsulfinyl)-butane] is the primary breakdown product 

of the glucosinolate glucoraphanin, which is found in cruciferous vegetables such 

as broccoli, cabbage, kohl rabi and cauliflower (Figure 3) (Juge et al. 2007). 

SFN is subject to metabolism by glutathione γ-glutamyltranspeptidase, 

cysteinylglycinase and N-acetyltransferase to form mercapturic acid (Figure 2) 

(Shapiro et al. 2001). This compound can be easily measured in urine by HPLC (High 

performance liquid chromatography) and UV spectroscopy after 

cyclocondensation with 1,2-benzenedithiol to form 1,3-benzodithiole-2-thione, and 

therefore mercapturic acid serves as a reliable biomarker for the measurement of 

cruciferous vegetable intake (Fimognari et al. 2008). 

 

Figure 3: Chemical structures of glucoraphanin and sulforaphane. 

 

1.1.3  BIOAVAILABILITY OF SULFORAPHANE 

Ye et al (2002) performed the first human study of bioavailability of SFN, in which 

four volunteers consumed a single dose of 200µmol of ITCs obtained from broccoli 

sprouts. A peak concentration of 0.9-2.3µmol/l ITCs was detected in plasma, serum 

and erythrocytes 1 hour after consumption, with a half-life of 1.8h. At 8h, elimination 

of 58% of the dose was detected, whilst clearance in urine was 369±53ml/min, 

indicating active renal tubular secretion (Ye et al. 2002). During this study, a reliable 

and sensitive method to determine ITC levels in plasma and blood was created (Ye 

et al. 2002). All metabolites generated during the mercapturic acid pathway (Figure 

2) belong to the class of dithiocarbamates (DTC), which can be quantified as their 

cyclocondensation product with 1,2-benzenedithiol by spectroscopy. As ITCs are 

rapidly and completely converted to DTCs in human tissues, this can be a very useful 
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analytical method, although it does not distinguish between ITCs and DTCs (Ye et 

al. 2002). 

A more recent human randomised blinded cross-over study compared the 

bioavailability of broccoli sprouts and a broccoli supplement (Clarke et al. 2011). 

Consumption of six supplement pills (containing 121µmol glucoraphanin) by study 

subjects produced peak plasma concentrations of total SFN metabolites after 6 

hours, whilst intake of 40g of broccoli sprouts (containing 150µmol glucoraphanin) 

resulted in a peak of total SFN metabolites after 3 hours and at a 7-fold higher 

concentration than the supplement pills, which did not contain any myrosinase.  

Urinary excretion of SFN metabolites following consumption of broccoli sprouts 

peaked between 3 and 6 hours, in contrast to a delayed excretion of later than 6 

hours following consumption of the supplements (Clarke et al. 2011). 

A number of studies in humans have shown significant differences in bioavailability, 

absorption and excretion kinetics depending on the cooking or storage method of 

the vegetables. Vermeulen et al (2008) observed a peak plasma concentration of 

SFN from consumption of 200g raw broccoli after 1.6 hours, compared to a peak 

after 6 hours following intake of cooked broccoli. The amount of ITCs derived from 

cooked vegetables was 2-10 times lower than from raw vegetables – as long as the 

raw vegetables were fully chewed. However, even after consumption of raw 

broccoli, only 37% of sulforaphane mercapturic acid was recovered in urine. This 

may be because glucoraphanin was not fully converted to SFN, or because SFN 

was not fully absorbed from the gut (Vermeulen et al. 2006; Vermeulen et al. 2008).  

The effect of cooking time and type of cruciferous vegetables on SFN bioavailability 

has been investigated by several research groups, showing that blanching or short 

microwaving of ~2 minutes is to be favoured over cooking (Holst & Williamson 2004; 

Rungapamestry et al. 2007; Saha et al. 2012). Saha et al (2012) also presented a 

comparison between broccoli soup prepared from fresh or frozen broccoli, in which 

the bioavailability of SFN was tenfold higher for soups made from the former as 

compared to the latter. 

Inter-individual variation in SFN bioavailability has been observed in a number of 

studies, and can be explained by a polymorphism in the GSTM1 gene, which results 

in lack of GSTM1-1 protein (Holst & Williamson 2004). A human cross-over study on a 

single meal of broccoli investigated the pharmacokinetics involved in this 
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polymorphism and found that GSTM1-null subjects excreted more SFN over 24 hours 

in urine and plasma, and at a greater rate, than GSTM1-positive individuals (Gasper 

et al. 2005). This lead to the assumption that GSTM1-positive persons benefit from 

the consumption of CVs more. 

However, contrary to these findings, a nested case-control study in a female 

Shanghai-based cohort investigated the association between urinary 

isothiocyanate concentrations and colorectal cancer risk with the potential 

modifying effect of GST genotypes (Yang et al. 2010). Apart from finding an inverse 

association between urinary ITCs and colorectal cancer risk, this study also 

demonstrated that ITCs had protective effects in GSTM1-null patients. Urinary ITC 

concentration was lower in GSTM1-null women than in women who carried this 

gene, suggesting that the metabolic clearance rate varies by GST genotype. This 

supports the theory that individuals with GST deletion may be less efficient in 

metabolising and eliminating ITCs, and thus can be exposed to higher 

concentrations of ITCs, with an increased benefit from consumption of cruciferous 

vegetables in terms of their health-promoting effects (Lampe & Peterson 2002; Holst 

& Williamson 2004; Yang et al. 2010). The difference found in metabolic clearance 

rate and thus the different theories on GSTM1 being beneficial in reducing cancer 

risk can amount to the Chinese study being a population study, compared to a 

feeding study. A prolonged feeding study might reflect habitual dietary intake 

among populations that consume CVs routinely (Lampe 2009). These different 

results indicate that further understanding is necessary on how genotype influences 

the disposition of ITCs. 

Of interest, more recent human bioavailability studies of SFN following r broccoli 

consumption have showed a bioconversion of SFN into erucin (ERN), another 

isothiocyanate (Vermeulen et al. 2006; Clarke et al. 2011; Tarozzi et al. 2013). A 

mouse study found this conversion to be tissue dependent, with a higher ratio of 

ERN in the liver, kidney and bladder, even when feeding SFN alone (Bricker et al. 

2014). Although investigations into possible differences into the bioactivities of SFN 

and ERN exist, it is still not clear whether this conversion is important for the beneficial 

effects of glucosinolates (Jana Jakubikova et al. 2005; Tarozzi et al. 2013; Bricker et 

al. 2014).                                                                             .
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1.1.4  BIOACTIVITY OF SULFORAPHANE 

The bioactivity of SFN has been investigated in numerous studies, as outlined in the 

following sections.  To date, induction of phase II enzymes by SFN is the most 

comprehensively researched effect of this compound. 

A) Effects on detoxification enzymes.  

Phase I enzymes – modification 

Cytochrome P-450 (CYP) enzymes (phase I enzymes) are essential components 

in the metabolic pathways of numerous endogenous compounds, but may also 

cause the activation of carcinogens (Skupinska et al. 2009). SFN is known to inhibit 

several CYP enzymes such as CYP1A1, 1A2, 2B1/2, 2E1 and 3A4. CYP 3A4 is 

among the most important enzymes of the P-450 family, as it contributes to the 

metabolism of over 50% of clinically used drugs and xenobiotics (Gross-

Steinmeyer et al. 2010). The nuclear hormone receptor, steroid and xenobiotic 

receptor (SXR), is one of the most important mediators of CYP 3A4 expression. SFN 

has been shown to inhibit SXR-co-activator interactions by binding directly to SXR 

(Fimognari et al. 2008). 

Phase II enzymes – conjugation 

As noted, the effect of SFN on phase II enzymes has been extensively studied. 

SFN is known to induce genes encoding phase II enzymes, which metabolise a 

variety of reactive carcinogens, mutagens and other toxins. These genes include 

those encoding NAD(P)H:quinone oxidoreductase (NQO1), GSTs, uridine 5-

diphosphate-glucuronosyl transferase, ferritin, γ-glutamate-cysteine ligase, 

epoxide hydrolase and catalase. An increase in levels of the NR-E2-related factor 

2 (Nrf2) transcription factor activity is thought to be responsible for induction of 

these genes (Fimognari et al. 2008). Under normal conditions, Nrf2 is bound tightly 

to the Kelch ECH associated protein 1 (Keap1), which results in ubiquitination and 

proteasomal degradation of Nrf2 (James et al. 2012). ITCs can react with the 

sulfhydryl groups of Keap1, liberating Nrf2, which then translocates into the 

nucleus and binds to the antioxidant response element (ARE), activating the 

transcription of phase II enzymes (Figure 4; a more detailed graph is presented in 
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Figure 13, p.44) (James et al. 2012; Dinkova-Kostova et al. 2002; Dinkova-Kostova 

& Talalay 2008). 

Dinkova-Kostova et al (2007) have investigated the relationship between SFN 

and phase II enzymes in mouse and human skin after topical application of 

broccoli sprout extract, and detected an induction of NQO1 in humans and of 

NQO1, GST A1 and heme oxygenase (HO-1) in mice. Statistical analysis 

demonstrated increases of 1.5 – and 2.7-fold in mouse and 1.5- and 4.5-fold in 

humans after application of single and multiple doses (Dinkova-Kostova & 

Talalay 2008). An induction of phase II enzymes like transferases and catalases 

could also be found in liver, prostate, kidney and colon (Fimognari et al. 2008; 

Cheung & Kong 2009). 

A study by Zhao et al. (2007) has investigated the protective effects of SFN upon 

the permeability of the blood brain barrier (BBB). Using a rodent model of brain 

injury, it was demonstrated that through activation of Nrf2 regulated genes such 

as like GST and HO-1, the vulnerability of the BBB to injury is reduced by SFN. The 

loss of endothelial cell markers as well as tight junction proteins, which are the 

 

Figure 4: Overview of modulation of  Keap1/Nrf2 by SFN 

By modulating Keap1 via their sulfhydryl groups, Nrf2 is released from Keap 1 

and translocates into the nucleus, where it binds to the ARE to activate the 

transcription of phase II enzymes.  Nrf2, NR-E2-related factor 2; Keap1, Kelch 

ECH associated protein 1; ARE, antioxidant response element; sMaf, small 

musculoaponerotic fibrosarcoma; GST, glutathione-S-transferase; HO-1, 

hemeoxygenase-1; NQO1, NAD(P)H:quinone oxidoreductase. 
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two most critical components of the BBB, could be reduced by administration of 

SFN after brain injury. 

SFN has been found to protect primary cultures of mouse cortical neurons from 

5-S-cysteinyl-dopamine-induced neurotoxicity. Concentrations between 0.01-

1µM SFN modulated the Keap1/Nrf2 pathway, leading to an increased 

expression of GST, TR-1 and NAD(P)H oxidoreductase (Vauzour et al. 2010). 

Phase III transporters – transport and excretion 

Phase III transporters belong to a family of ATP-binding cassette membrane 

transport proteins which are also called multidrug resistance proteins. As they 

transport not only unmetabolised drugs and endogenous substrates, but also 

products of phase I and II drug metabolism, they have been termed phase III of 

the detoxification system (Harris & Jeffery 2008). SFN is known to regulate the 

phase III transporters P-gp (P-glycoprotein) and MRP (multidrug resistance protein 

1), which contribute, in part, to the detoxification of many xenobiotics (Fimognari 

et al. 2008; Harris & Jeffery 2008). 

B) Cell cycle 

Cell division is classified into two stages: mitosis (M) and interphase, which itself 

can be further divided into G1, S and G2 phases. The cell cycle is controlled by 

several mechanisms to ensure correct cell division (Vermeulen et al. 2003). 

Impairment of these mechanisms can lead to disease, thus the cell cycle has 

been investigated in relation to cancer, as alterations in genetic control may 

lead to unrestrained cell proliferation (Vermeulen et al. 2003). This mechanism 

represents an important target in the treatment of cancer as well as other 

diseases. 

Research on SFN in the cell cycle has shown mostly induction of G1 or G2/M cell 

cycle arrest (Parnaud et al. 2004; Pledgie-Tracy et al. 2007; Shan et al. 2006; J 

Jakubikova et al. 2005), but in some cell lines S-phase induction has also been 

reported. A study investigating the effects of broccoli sprout extract on human 

bladder cancer UM-UC-3 cells has shown that 7.5-30µM extract leads to arrest in 

both S and G2/M phases (Tang et al. 2006). 
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C) Apoptosis 

Lower concentrations of SFN have been shown to induce early apoptosis in 

human bladder cancer T24 cells (Shan et al. 2006). Pledgie-Tracy et al (2007) 

have reported that SFN induces apoptotic cell death in breast cancer cells; and 

studies in blood, brain, colon, ovary, pancreas, prostate and skin cancer cell lines 

have documented the ability of SFN to induce apoptosis (Zhang & Tang 2007). 

The pre-treatment of SH-SY5Y cells, a neuronal-like cell line derived from a human 

neuroblastoma, with SFN before the addition of 6-hydroxydopamine (6-OHDA) 

resulted in a reduction in several apoptotic events such as  mitochondrial 

depolarisation, caspase 3 and 9 activation and DNA fragmentation, as well as 

necrosis (Tarozzi et al. 2009). In healthy SH-SY5Y cells, SFN was able also prevent 

apoptosis. 

D) Autophagy 

Autophagy is a pathway mainly activated through starvation to degrade 

unnecessary cell organelles and consequently replenish the cells with amino 

acids and other small molecules. It is an important mechanism for cell 

homeostasis, and impaired autophagy is linked to many illnesses including 

neurodegenerative diseases (Rubinsztein et al. 2005; Pan et al. 2008). A study in 

2006 first reported that SFN could induce autophagy as a human defence 

mechanism against SFN-induced apoptosis (Herman-Antosiewicz et al. 2006). This 

research was conducted using the human prostate cancer cell lines PC-3 and 

LNCaP. Subsequently, Nishikawa et al (2010) observed induction of autophagy 

after treatment with SFN,  in the human colon cancer cell line WiDr. 

Autophagy is discussed in more detail in Chapter 1.4. 

E) NF-κB pathway 

The nuclear factor kappa B (NF-κB) pathway has been linked to inflammation, 

cancer cell survival and progression, as this transcription factor binds to the 

promoter of many pro-inflammatory genes such as those encoding 

cyclooxygenase (COX-2), tumour necrosis factor α (TNF-α) and inducible nitric 

oxide synthase (iNOS) (Cheung et al. 2009). COX-2 is the key enzyme in the 

production of prostaglandins from arachidonic acid, and prostaglandins are 
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central mediators of inflammation (Tsatsanis et al. 2006). Over-expression of COX-

2 too has been associated with human bladder cancer (Shan et al. 2009).  Shan 

et al (2009) reported that SFN inhibits the binding of NF-κB to the COX-2 promoter, 

leading to down-regulation of COX-2 expression in human bladder cancer T24 

cells. The exact mechanism by which SFN inhibits the pathway is not yet 

established, but it may block the “inhibitor of κB”-kinase (IκK), which is an 

upstream enzyme of   NFκB (Cheung & Kong 2009). 

F) Cell proliferation and mitosis 

The potential beneficial effects of SFN upon reproduction of viable cells has also 

been the focus of several studies. Zanichelli et al (2011) observed increased 

proliferation in human mesenchymal stem cells after intake of low doses (0.25µM 

and 1µM) of R-SFN. However, higher doses (5µM and 20µM SFN) had a cytotoxic 

effect. In the breast cancer cell lines MCF7 and SUM159, SFN elicited 

antiproliferative effects with IC50 (half maximal inhibitory concentration) values of 

16µM and 10µM SFN respectively (Li et al. 2010). Azarenko et al (2008) have 

discovered that the mechanism by which SFN elicits inhibition of mitosis is 

effective suppression of microtubules dynamics and stabilisation of microtubules.   

G) Dopaminergic cells 

Han et al (2007) demonstrated that SFN can protect dopaminergic (DAergic) 

cells from the cytotoxicity of tetrahydrobiopterin (BH4) and 6-OHDA, both 

compounds known to generate oxidative stress and cause selective death of 

DAergic cells. SFN does not protect DAergic cells from MPP+-induced toxicity. 

MPP+, unlike the compounds mentioned above, does not produce DA quinone 

as its principle mechanism of toxicity. This suggests that SFN may  elicit  a 

protective effect in DA cells from   toxicity resulting from quinone generation (Han 

et al. 2007). 

H) Serotonin Receptor 

Mastrangelo et al (2008) reported that SFN at 5, 10 and 20µM dose-dependently 

down-regulated the serotonin receptors 5HT1A, 5HT2C and 5HT3A in Caco-2 cells 

after exposure to SFN for 48 hours. In contrast, nAChR (Nicotinic acetylcholine 

receptor) was up-regulated after exposure to SFN. Previous studies have shown 

that induction of neurotransmitter receptors plays a role in the progression of 
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colon cancer cells like HT-29 (Mastrangelo et al. 2008). To our knowledge, only 

one study has explored the interaction between SFN and serotonin. 

I) Antibiotic activity against Helicobacter pylori 

Several researchers have documented activity of SFN as an antibacterial agent 

against Helicobacter pylori (Fahey et al. 2002; Haristoy et al. 2003; Yanaka et al. 

2009). Studies in mouse models as well as human interventions have shown SFN 

to have both a direct antibacterial effect on H. pylori and an indirect, systemic 

effect by accessing the cytoprotective phase II response via Nrf2, as explained 

above (Yanaka et al. 2009). Direct effects in humans were explained by the 

activity of both glucoraphanin and its bioactive metabolite SFN on the gastric 

membrane mucosa, thus reducing gastritis. Since H. pylori  has been linked to the 

progression of stomach cancer, the findings support the suggestion that SFN can 

act as a dietary prophylactic agent against the development human gastric 

cancer (Yanaka et al. 2009). 

Thus, SFN is a powerful phytochemical that can activate multiple molecular targets 

resulting in detoxification of a variety of carcinogens. SFN may also act to protect 

cells from neurotoxins, demonstrate antibiotic activity, and induce early apoptosis 

as well as autophagy (Figure 5). However, these effects are not yet fully understood, 

and to date have been subject to limited investigation in neuronal cells. Hence, the 

research focus of this study was neuronal cells. 
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Figure 5: Overview of bioactivity of SFN 

This graph highlights pathways which are influenced by SFN. Green 

arrows indicate an upregulation, while a red arrow shows a 

decrease.  
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1.2 NEURODEGENERATIVE DISEASES 

Neuronal cells are electrically excitable cells that transmits information through 

electrical and chemical signals. They are the most important element of the 

central nervous system (Loeffler G. 2003). 

1.2.1  CENTRAL NERVOUS SYSTEM  

The central nervous system (CNS) is responsible for converting external stimuli as 

registered by the sensory organs into sensation, the control of motor skills,  as well as 

the coordination of many vital functions (Loeffler G. 2003). It consists of the brain 

and the spinal cord.   

The BBB isolates the CNS from the blood stream and thus from the rest of the body, 

and protects the nervous system from fluctuations in metabolism as well as from 

exposure to toxins. The major components of the BBB are a layer of brain capillary 

endothelial cells and the contiguous tight junctions between them (Zhao et al. 

2007). Gases like O2 and CO2 and a wide range of lipid-soluble molecules (subject 

to factors such as molecular weight or number of rotatable bonds) can passively 

diffuse across the BBB (Abbott et al. 2010). Other essential substances such as amino 

acids must pass through this barrier by active  transport (Loeffler G. 2003).  

The integrity of the BBB is essential for maintaining brain function and homeostasis 

(Zhao et al. 2007). Several diseases such as stroke, epilepsy, brain tumours, and 

neurodegenerative diseases like Alzheimer’s disease (AD) and Parkinson’s disease 

(PD) have been associated with a dysfunctional BBB (Abbott et al. 2010). As noted 

above, SFN has been reported to protect endothelial cells of the BBB by increasing 

expression of Nrf2-regulated genes including HO-1 and GST (Zhao et al. 2007). 

In order to elicit possible protective effects in neurodegenerative conditions or 

improve brain function, SFN should penetrate the BBB and accumulate in the CNS. 

According to Benedict et al. (2012) SFN is able to pass through the BBB in rats. This 

was also observed in various other animal models (Tarozzi et al. 2013).  
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1.2.2  NEURODEGENERATIVE DISEASES 

Neurodegenerative diseases (NDs) can be characterised by a progressive loss of 

neuronal cell function or even cell death. As NDs are age-related and the elderly 

proportion of the population in developed countries is growing, the reported 

incidence of NDs is also increasing (Melo et al. 2011). Although many theories have 

been proposed, the underlying mechanisms of neurodegeneration remain 

unknown.  Most neurodegenerative disorders are late-onset, progressing slowly, and 

clinical research suggests they have long asymptomatic phases before the first signs 

of illness appear (Golde 2009). 

Parkinson’s Disease (PD) is mainly characterised by a loss of dopaminergic cells in 

the substantia nigra, which is located in the midbrain and involved in the regulation 

of movement, but also by accumulation of the α-synuclein protein in specific brain 

regions (Lees et al. 2009). Through the reduction in dopamine production – typically 

a PD patient has lost 80% of dopamine-producing cells – the motor nervous system 

is unable to control coordination and movement (Zlokovic 2008). Symptoms of PD 

include muscle tremor, stiffness, and slow movement or inability to move, together 

with psychological symptoms such as insomnia, depression, and fatigue (Lees et al. 

2009). PD is the second most common neurodegenerative disease, affecting 

approximately 6.3 million people worldwide and 120,000 in the UK 

(www.parkinsonsawareness.eu.com 2012; European Brain Council 2011). The age 

of onset of PD is usually over 60 years, but 10% of patients are diagnosed in their 40s 

or earlier (EuroPa 2014; Lees et al. 2009). Although most cases are sporadic, several 

genes have been linked to familial PD, such as the genes encoding Parkin, α-

synuclein, PINK1, DJ-1 and LRRK-2 (Lees et al. 2009). To date, no cure is available, 

although levodopa and dopamine agonists can reduce symptoms of PD by 

replacing the lost dopamine. Dopamine itself cannot be used, since it cannot pass 

the BBB (Loeffler G. 2003). 

In Alzheimer’s Disease (AD), the synthesis of acetylcholine is reduced. AD is the most 

common form of dementia. Long-term memory loss, confusion and mood swings 

are the classic symptoms of AD. In 2011, over 600,000 cases were estimated in 

England (alzheimers.org.uk 2012). More than 25% of the population over 85 years 

old are believed to suffer from AD in Germany (Loeffler G. 2003). AD is typified by 

two classic changes within the brain; firstly an extraneuronal accumulation of 
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amyloid plaques consisting of β-amyloid peptide, and secondly intraneuronal 

deposits of neurofibrillary tangles composed of hyperphosphorylated tau protein 

(Lee et al. 2013). Although hardly distinguishable from sporadic AD in terms of 

phenotype and clinical manifestation, 5-10% of AD cases have been estimated to 

be genetic (Selkoe 2001). AD  has been described as a multifactorial disease 

involving a variety of molecular triggers, including synaptic failure, mitochondrial 

dysfunction, inflammation, loss of calcium regulation and faulty cholesterol 

metabolism (Querfurt & LaFerla 2010). As with PD there is currently no curative 

therapy for AD, but acetylcholinesterase inhibitors such as donezepil or 

galantamine can retard the degenerative process. 

Huntington’s Disease (HD) is a neurodegenerative disease resulting from  mutation 

of the “Huntington’s gene”, which encodes the protein huntingtin (Ross & Tabrizi 

2010). According to the Huntington’s Disease Association, over 6,000 patients in the 

UK have reported symptoms of HD (www.nhs.uk 2011). HD patients display random, 

uncontrollable movements (chorea), abnormal posture and difficulties in chewing 

and speaking. The symptoms usually develop in people between 30-50 years of 

age, progressing to death within 15-20 years (Walker 2007; Ross & Tabrizi 2010; 

Krobitsch & Kazantsev 2011). At present only symptomatic drug therapy is available. 

The chorea can be reduced by benzodiazepines, neuroleptics and tetrabenazine, 

while rigidity can be alleviated by levodopa or baclofen. However, use of all of 

these medications may also result in severe side effects (Ross & Tabrizi 2010). 

Research is therefore focusing on finding suitable biomarkers to investigate early-

intervention strategies (Walker 2007). 

One of the most common neuromuscular diseases is Amyotrophic Lateral Sclerosis 

(ALS), also known as Lou Gehrig’s disease or Motor Neuron Disease (MND). ALS 

results from death of both upper and lower motor neurons. Muscle weakness and 

atrophy spread throughout the body, eventually affecting moving, swallowing and 

forming words. Worldwide, between 0.4 and 1.8 persons per 100 000 population 

develop ALS, although Guam is a notable exception with a 50 times higher 

prevalence (Europe 2014). The cause for this higher incidence of ALS may be 

environmental, as a seed of plant Cycas cicinalis L. is a traditional source of food 

and medicine in this country, but also contains a potent neurotoxin (Spencer et al. 

1987). The age of onset of ALS is 40 to 70 years, with an average age of 55 at 



Chapter 1 | Sandra Bednar 

 

p a g e  31 of 156 

 

diagnosis (Europe 2014). The drug riluzole reduces damage to motor neurons by 

activating the glutamate transporter and to date is the only treatment known to 

improve survival; however, it cannot repair damage already sustained by motor 

neurons (Europe 2014). 
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1.2.3  NEUROTOXICITY AND NEUROPROTECTION 

As there are no known curative treatments for neurodegenerative diseases, current 

scientific research is focussed on investigating mechanisms of neuroprotection as 

well as neurotoxicity. However, without knowing the underlying mechanisms of cell 

death in NDs, it is challenging to establish targets for treatment (Melo et al. 2011). 

Dietary phytochemicals may represent a potential source of neuroprotective 

agents. Melo et al. (2011) have reviewed the role of oxidative stress in NDs, and 

discussed recent developments including clinical trials undertaken with several 

potential neuroprotective agents such as antioxidants, metal chelators and 

antiglutamatergic agents. Selegiline and rasagiline, which are selective 

monoamino oxidase B (MAO B) inhibitors, are the most promising drugs in PD tested 

in clinical trials, (Melo et al. 2011). 

SFN has been shown to have neuroprotective effects in a number of animal models 

and in in vitro studies, using 6-OHDA and H2O2 as toxins to induce neuronal cell 

death (Guerrero-Beltrán et al. 2010).  Most of the studies in that review observed a 

relationship between the induction of Nrf2 and cell protection (Innamorato et al. 

2008; Soane et al. 2010; Vauzour et al. 2010). 
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1.3 NEURONAL CELL LINES 

As neurodegenerative diseases are increasing in prevalence in the developed 

world, with no effective curative treatments available, animal and in vitro studies 

are important to gain insights into the mechanism underlying these diseases 

(Biedler et al. 1973). The following cell lines are of 

special value to the study of neuronal cells. 

1.3.1 PC-12  

Amongst all neuronal cell lines, the PC-12 cell line is 

one of the most studied to date (Green 1995). This 

line was cloned by Greene and Tischler (Greene & 

Tischler 1976) from a rat pheochromocytoma. In culture medium containing serum 

PC-12 cells undergo mitosis and show some properties of adrenal chromaffin cells. 

The cells are also able to synthesise acetylcholine and the catecholamines 

dopamine and norepinephrine, but not epinephrine (Greene 1978; Greene & 

Tischler 1976). When nerve growth factor (NGF) is added to culture medium, neurite 

outgrowth can be seen after about 7 days (Figure 6; Das et al. 2004).  

 

NGF is known to have a variety of effects on neurons, including increase in cell size, 

induction of certain enzymes involved in neurotransmitter synthesis and the 

stimulation of neurite outgrowth as well as increasing the survival of these neurones 

(Greene 1978). 

As PC-12 cells have been utilised in scientific research for many years, a number of 

different cell culture protocols have been developed. Most employ a culture 

medium of DMEM (Dulbecco’s Modified Eagle Medium) or RPMI 1640 (Roswell Park 

Figure 6: PC-12 cells day 1 and day 2 after seeding. 

PC-12 

Shape: round, elliptical, 

clumpy 

Size: 5-31 µm 

Cell cycle: 3-5 days 
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Memorial Institute 1640) with glutamine, supplemented with heat-inactivated horse 

serum, foetal bovine serum and penicillin/streptomycin, at varying percentages. 

Cultures are maintained at 37°C with 5% (v/v) CO2, and for experimental purposes 

the cells are used at 70-80% confluency (Aykin-Burns et al. 2005; Das et al. 2004; Fujii 

et al. 1982; Green 1995; Robinson & McGee  Jr. 1985; Sadasivan et al. 2006). 

 

Figure 7: PC-12 cell differentiation observed following treatment with NGF 

after 0 (A) and 7 days (B) (Das et al. 2004). 

 

1.3.2 SH-SY5Y 

In the early 1970s, SK-N-SH cells were established 

from a bone marrow biopsy of a neuroblastoma 

patient (Biedler et al. 1973). The SH-SY5Y cell line is a 

thrice cloned subline of the neuronal phenotype (N 

type) of SK-N-SH (Ciccarone et al. 1989). Culture 

medium for SH-SY5Y is composed of DMEM or  MEM:F12 Ham 1:1 (Eagle’s Minimum 

Essential Medium : Ham’s F12 Medium) plus 10% (v/v) fetal bovine serum and 

penicillin/streptomycin. 

The SH-SY5Y cell line shows many characteristics of dopaminergic neurons and 

therefore is potentially a useful cell model for PD. Not only do SH-SY5Y cells possess 

the ability to synthesize dopamine and noradrenaline, but they also can be 

differentiated into a more distinct dopaminergic neuronal phenotype in the 

presence of agents such as retinoic acid (Cheung et al., 2009).   

Although SH-SY5Y is considered a good cell model for PD and is widely used, this 

cell line may not be a suitable model when the cells are in an undifferentiated state. 

Undifferentiated cells do not express high levels of dopaminergic synthetic 

SH-SY5Y 

Shape: round, elliptical 

Cell cycle: 7-8 days 

Number of generations 

after isolation: 20 
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enzymes, and display fewer dopamine receptors; also, they are less sensitive to 

neurotoxins and neuroprotective agents (Xie et al. 2010). 

 

Upon differentiation of SH-SY5Y cells, cell proliferation ceases and neurite outgrowth 

can be observed, with morphological parallels to living neurons in the human brain. 

Several protocols for differentiation exist, and  different agents induce alternative 

phenotypes which can therefore be used as different neuronal cell models 

(adrenergic/dopaminergic/cholinergic) (Xie et al. 2010).  

 

 

Figure 9: A: SH-SY5Y cells in regular culture medium B: SH-SY5Y 

cells differentiated with retinoic acid at day7 (Lopes et al. 2010). 

Figure 8: SH-SY5Y cells cultured at low and high density. 



Chapter 1 | Sandra Bednar 

 

p a g e  36 of 156 

 

1.3.3  PRIMARY NEURONAL CELLS 

In contrast to the immortal cell lines mentioned above, primary neuronal cells 

(PNCs) do not divide in culture. They are plated directly after isolation from animal 

brain tissue (Gennaro Giordano and Lucio G Costa 2011).  These cells are also used 

to study basic characteristics of neurons and the potential neurotoxicity of 

chemicals. After plating, PCNs form synapses and become electrically active, 

demonstrating a neuronal phenotype, before they eventually die (Gennaro 

Giordano and Lucio G Costa 2011). 

The first primary neurons were cultured in vitro in the early 1900s, using ‘hanging 

drop’ method, which was simple to assemble and suitable for microscopic imaging, 

but problematic for cell and morphological identification (Millet & Gillette 2012). 

Many alternative methods have since been developed. 
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1.4 AUTOPHAGY 

As one of the more recent target fields identified for SFN, autophagy has also been 

associated with neurodegeneration and is therefore a pathway of great interest for 

this study. Autophagy is one of the main degradation mechanisms within the cell, 

which is most often triggered by starvation (Rubinsztein et al. 2007). Various forms of 

autophagy have been identified, which all share the common element of 

transporting cytoplasmic organelles into the lysosome (Mizushima 2007). The three 

major types of autophagy in eukaryotic cells are macroautophagy, 

microautophagy and chaperone-mediated autophagy (CMA), which differ in the 

mechanism by which cellular components are imported into the lysosome. Some 

proteins contain certain pentapeptide motifs recognised by a lysosomal receptor 

protein, which enables these proteins to pass the lysosomal membrane, however a 

chaperone (CMA) is needed to unfold the substrates (Rubinsztein et al. 2007; Jaeger 

& Wyss-Coray 2009). In macroautophagy, a double-membrane vesicle 

(phagophore) sequesters cytoplasm and/or organelles into a double-membrane 

limited organelle (autophagosome). The autophagosome then fuses with a 

vacuole/lysosome, in which the contents undergo degradation owing to the acidic 

environment within the lysosome (Figure 10) (Yang & Klionsky 2009). In 

microautophagy, the lysosome secludes cytoplasmic content without a pre-

lysosomal sequestration stage (Rubinsztein et al. 2007). As SFN has been linked to 

the activation of macroautophagy, it is the most relevant mechanism for this project 

and will now be referred to as autophagy. 

 

The induction of autophagy starts with the activation of the Atg1-ULK complex 

(Figure 11). The association of mTORC1 (TOR complex 1; TOR = target of rapamycin) 

Figure 10: Outline diagram of autophagy. 

This diagram shows the formation of the autophagosome in response to 

starvation, subsequent sequestration of damaged proteins and organelles, 

and fusion with the lysosome, which results in free amino acids. 
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with this complex and the activity of mTORC1 is controlled by cellular nutrient status. 

During starvation, the amount of free amino acids within the cytoplasm is 

insufficient, which triggers the dissociation of mTORC1 from the ULK1/2 complex, 

which in turn leads to partial dephosphorylation of Atg13 and ULK1/2 (Yang & 

Klionsky 2010). Nucleation begins with the recruitment of Atg proteins for formation 

of the phagophore. Atg14, a Beclin1-binding protein and a specific subunit of the 

PI3K III complex (class III phosphatidylinositol 3-kinase), mediates nucleation of the 

phagophore membrane. The protein Bcl-2 (B-cell lymphoma 2) prevents this step 

by binding to and inhibiting Beclin1, another component of the PI3K-complex 

together with the catalytic subunit Vps34 (vacuolar protein sorting 34) (Yang & 

Klionsky 2010). Vps34 generates phosphatidylinositol triphosphate (PI3P) necessary 

for autophagy by targeting PI3P binding proteins, and initiates activation of the first 

of two ubiquitin-like reactions (Gottlieb & Carreira 2010; Nixon 2013). First, the Atg12-

Atg5-Atg16 complex is formed and directed to the phagophore assembly site (PAS) 

for phagophore elongation (Nixon 2013). Atg7 (a ubiquitin-activating enzyme) and 

Atg10 (a ubiquitin-conjugating enzyme) mediate the covalent binding of Atg12 to 

Atg5, which then conjugates with Atg16 to form a tetrameric structure which 

assembles on the phagophore (Yang & Klionsky 2009; Gottlieb & Carreira 2010). The 

Atg12-Atg5-Atg16 complex induces a second ubiquitin-like reaction, which involves 

the removal of the terminal cysteine residue of LC3 (microtubule-associated protein 

1 light chain 3; homolog of yeast Atg8) by Atg4, a cysteine protease, to form LC3-I 

(Klionsky et al. 2011; Nixon 2013). Cytosolic LC3-I is then lipidated by Atg7 (a 

ubiquitin-activating enzyme) and conjugated to phosphatidylethanolamine (PE) by 

Atg3 (a ubiquitin-conjugating enzyme) to form LC3-II (Gottlieb & Carreira 2010).  

LC3-II is a useful marker of autophagosome formation. Although larger than the LC3-

I form, it migrates faster during electrophoresis and is identified at an apparently 

lower molecular weight (LC3-I at 18kDa and LC3-II at 16kDa) owing to its lipidated 

state (Cherra 3rd et al. 2010). Alternative methods to assess autophagy are 

described subsequently (see p.42). 

LC3-II is attached to both the interior and exterior of the phagophore, but once 

autophagosome formation is completed it is recycled from the outer membrane by 

the activity of Atg4, which separates LC3-II from PE (Yang & Klionsky 2009; He & 

Klionsky 2009). This is followed by fusion of the autophagosome with a lysosome to 
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form an autolysosome. The acidic environment of the lysosome facilitates the 

degradation of the inner autophagophore membrane, which is mediated by a 

number of lysosomal acid hydrolases (He & Klionsky 2009). Amino acids and other 

small molecules which result from the degradative process are transported into the 

cytosol through permeases, to be utilised in protein synthesis and maintenance of 

cellular function (Chen & Klionsky 2011). 

Vacuole membrane protein 1 (VMP1) also interacts with Beclin1 and is necessary 

for autophagy, as it localises to the plasma membrane or the endoplasmic 

reticulum (ER) (Klionsky et al. 2011). 

Induction of autophagy. Although the major physiological inducer of autophagy is 

nutrient depletion, it is also activated as a cellular response to various stress 

conditions including ER-stress, hypoxia, DNA damage and increased levels of ROS 

(Kroemer et al. 2010). Figure 12 displays most of the proautophagic pathways and 

their mechanisms of initiation. Sirtuin1, for example, is a deacetylase that senses 

environmental stress (Kroemer et al. 2010), while AMPK (5' adenosine 

monophosphate-activated protein kinase) is modulated by the energy status of the 

cell according to the AMP:ATP ratio (Efeyan et al. 2015).  

Selection of defective cargo. Autophagy has many physiological roles. It is 

responsible for the disposal of damaged organelles, the turnover of long-lived 

proteins and the clearance of proteins susceptible to aggregation. Although 

autophagy is generally considered a nonselective pathway for the degradation of 

cytoplasmic bulk organelles, some types of selective autophagy also exist (Yang & 

Klionsky 2009). The protein p62 directly binds poly- or mono-ubiquitin via its ubiquitin-

associated domain to LC3 and thus links ubiquitinated organelles to the autophagic 

pathway for degradation (He & Klionsky 2009; Klionsky et al. 2011). p62 is described 

in more detail on page 42. 

When autophagy is impaired or inactivated, this can result in cytoplasmic protein 

inclusions composed of misfolded proteins and conglomeration of deformed 

organelles, which may underlie the development of conditions such as diabetes, 

myopathy and neurodegeneration (Komatsu & Ichimura 2010).   



Chapter 1 | Sandra Bednar 

 

p a g e  40 of 156 

 

 

 

 

 

 

Figure 11: Schematic representation of the major components in the mammalian 

autophagy pathway.   

Autophagy can be divided into induction, elongation and vacuole formation. The Atg 

proteins (shown in dark blue) can be grouped according to their different functions 

throughout the pathway. Atg1 (not shown) is important for the formation of the ULK1/2 

complex. The Atg12-Atg5-Atg16 complex is necessary for vesicle expansion, while LC3-

II (Atg8 in yeast) is involved in the completion of the autophagosome. (Arrows indicate 

activation, while blunted arrows show inhibition. Adapted from (Yang & Klionsky 2009; 

He & Klionsky 2009; Yang & Klionsky 2010; Gottlieb & Carreira 2010; Chen & Klionsky 

2011; Klionsky et al. 2011; Nixon 2013).     
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Figure 12: Selection of Autophagy Regulators  
These diagrams show both starvation induced and stress induced signalling cascades. Displayed 

are the sirtuin-1, AMPK and AKT/ERK pathways on the left and pathways triggered by ER-stress, 

hypoxia, ROS and p53 on the right. 

Sirtuin1, a deacetylase that senses environmental stress, (1) connects with tuberous sclerosis 

complex 2 (TSC-2) to further inhibit mTORC, (2) leads to deacetylation of Atg genes like Atg5, Atg7 

and LC3, and (3) can deacetylate FOXO3 to enhance the expression of proautophagic Bnip3.  

AMPK can be activated either by energy depletion (-> liver kinase B1(LKB1)) or through cytosolic 

Ca2+ (->calcium/calmodulin kinase kinase-β (CaMKKβ). When activated, it induces ULK1/2, 

inhibits mTORC, and can activate TSC-2 to in turn inhibit mTORC. 

The inhibition of TSC-2 can also be initiated by AKT and ERK1/2 in response to growth factors.  

ER-stress can lead to several unfolded protein response s(UPR) such as PERK (PKR-like elF2α kinase), 

ATF6 (activating transcription factor-6) and IRE1 (inositol requiring enzyme 1), of which IRE is the 

only negative regulator of autophagy. Hypoxia can induce PERK and DJ-1, which regulates 

autophagy by an unknown mechanism.  

Oxidative stress induces autophagy via ROS and p53. ROS can activate PERK, Atg4 and JNK1 (c-

Jun N-terminal kinase-1). P53 is activated by different types of stress, including ROS. p53 plays a 

dual role, as nuclear p53can activate autophagy via AMPK and JNK1, but also inhibit autophagy 

via its cytoplasmic functions. Arrows indicate activation while blunted arrows in red indicate 

inhibition. Adapted from (Kroemer et al. 2010). 
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Methods to measure autophagy. The basic approach to investigating autophagy is 

assessing the number of autophagosomes present within the cell. This can be 

achieved either by counting the punctae produced in a GFP-LC3 puncta formation 

assay by fluorescence microscopy, or by detection of the LC3-conversion through 

immunoblotting (Mizushima et al. 2010). LC3 in general is an important marker, as it 

is involved in autophagosome formation, and the change from LC3-I to LC3-II 

should correlate with the number of autophagosomes produced (Mizushima & 

Yoshimori 2007). However, autophagy is a dynamic process that can be influenced 

at many steps, and the amount of LC3-II alone cannot indicate if a compound has 

induced autophagy, or alternatively if the degradation pathway/fusion of the 

autophagosome with the lysosome is inhibited (Klionsky et al. 2008). Therefore, 

several authors have recommended determining the so called “autophagic flux” 

and thus including autolysosome formation to cover both  autophagosome 

synthesis as well as its degradation (Klionsky et al. 2008; Mizushima et al. 2010; 

Rubinsztein et al. 2009). By adding lysosomal inhibitors such as bafilomycin, which 

neutralises the lysosomal pH and therefore inhibits the degradation process; and 

comparing samples in the presence or absence of  a particular compound, the 

more dominant pathway (synthesis or degradation) can be assessed (Rubinsztein 

et al. 2009).  

Another option is to differentiate between autophagosome and autolysosome 

formation by using a tandem fluorescent-tagged LC3 plasmid (mRFP-GFP-LC3) 

which can be visualised by fluorescent microscopy. As GFP is degraded in the 

acidic environment of the lysosome, only a red signal is visible, whereas in the intact 

autophagosome  yellow fluorescence results from the combination of mRFP and 

GFP (Kimura et al. 2007). 

Another marker used to measure autophagy is p62, which is also called 

sequestosome 1(SQSTM1) in humans or ZIP in rats (Bjorkoy et al. 2009). It is a 

multifunctional protein containing several protein-protein interaction domains, 

suggesting that p62 is involved in the regulation of multiple signalling pathways 

(Salminen et al. 2012). p62 appears to selectively bind to toxic cellular waste and 

control its degradation or aggregation, by autophagy or proteasomes (Lamark et 

al. 2009; Salminen et al. 2012). Within the autophagic process, p62 is degraded 

(Figure 11), but also interacts with Nrf2 (Rusten & Stenmark 2010). As a marker for 
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autophagy, p62 levels would be expected to decrease over time when autophagy 

is induced.  

However, SFN can increase the levels of “free” Nrf2 by reacting with the thiol groups 

present in Keap1 and so disrupting the Nrf2-Keap1 complex, thus, especially after 

longer treatment times with SFN, p62 levels should be rising (Cheung & Kong 2009; 

Tufekci et al. 2011). Jain et al. (2010) reported a positive feedback loop between 

p62 and the Keap1-Nrf2 pathway, which in theory can be broken either by 

autophagy (degradation of p62) or the accumulation of small MAF proteins 

(repression of p62) (Figure 13). 

Autophagy and Neurodegenerative Diseases. A common factor in NDs is the 

presence of intracellular protein accumulations. As autophagy is an important 

pathway for degradation of such proteins, reduced activity of this process could 

contribute to the development of neurodegenerative diseases (Rubinsztein 2006; 

Rubinsztein et al. 2007; Sarkar 2011). A recent review has summarised the function 

of autophagy in development of PD, AD and HD, indicating different impairments 

within the autophagic pathway in each condition (Details see Table 1; Cheung & 

Ip 2011). Autophagy may therefore represent an interesting therapeutic target for 

these NDs, to reduce the levels of toxic protein aggregates and enhance the 

cellular response to stress (Nixon 2013). However, knowledge of  alterations in 

molecular mechanisms of autophagy in NDs is incomplete; and to date studies 

have reported  conflicting outcomes as to whether manipulation of autophagy  

can result in adequate neuronal survival (Cheung & Ip 2011; Jaeger & Wyss-Coray 

2009). 
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Figure 13: Modulation of the Nrf2 pathway and p62 by SFN. 

In basal conditions, two Keap1 molecules bind to Nrf2, resulting in polyubiquitinated of 

Nrf2 and degradation by the proteasome. SFN can bind to Keap1 by interacting with 

cysteine thiol groups to impair the ubiquitination of Nrf2. Nrf2 then translocates into the 

nucleus, where it binds to the antioxidative response elements (ARE) upstream of 

cytoprotective genes such as GST and HO-1, but also p62. SFN increases autophagy, 

which results in degradation of p62. Binding of p62 to Keap1 results in further activation of 

Nrf2 and therefore leads to a positive feedback loop. 
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Neurodegenerative 
disease 

Autophagy deregulation 

PD  Defective targeting of damaged mitochondria or mitophagy 

  Impaired lysosomal degradation 

AD  Generation of β-amyloid from autophagic vacuole 

  Impaired clearance of autophagic vacuole 

HD  Defective cargo recognition 

  Elevated autophagosome formation following mutant huntingtin expression 

ALS  Defective cargo recognition 

  Impaired autophagosome-lysosome-endosome fusion 

Table 1 Autophagic impairment in Parkinson‘s disease (PD), Alzheimer‘s disease 

(AD), Huntington‘s disease (HD) and amyotrophic lateral sclerosis (ALS).  

Mutation of Parkin and PINK1 are associated with targeting of damaged 

mitochondria to the mitophagy pathway in PD, but there is also increased 

autophagosome formation and possibly impaired lysosomal degradation. 

Pharmacological activation of autophagy can improve the clearance of α-

synuclein and is neuroprotective. AD is characterized by increased 

autophagosome formation together with elevated β-amyloid production from the 

autophagic vacuole, as well as impaired clearance of autophagic vacuoles. HD 

has been associated with defective cargo recognition and - when challenged 

with mutant huntingtin - elevated autophagosome formation, although the 

application of an autophagy inhibitor can also alleviate accumulation of mutant 

huntingtin and toxicity. mTOR is sequestered into huntingtin inclusions, which 

causes activation of autophagy. ALS has been associated with p62 mutations, 

resulting in impaired substrate recognition. Mutant ALS2-mediated Rab5 [which 

has been associated with the Beclin1/Vps34 complex (Ravikumar et al. 2008)] 

suppression can result in dysfunctional fusion of the autophagosome with the 

lysosome or endosome, thus decreasing the rate of lysosome protein degradation, 

increasing autophagosome accumulation and subsequent neurodegeneration 

(adapted from Jaeger & Wyss-Coray 2009; Cheung & Ip 2011; Nixon 2013) 
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1.5 PROJECT AIMS 

 

 To verify previously reported bioactivity of SFN in neuronal cell lines 

Based on the reviewed literature, the actions of SFN on neuronal cells have 

not been well researched. Some previously described bioactivities of SFN in 

other cell lines have been linked to potentially beneficial effects in NDs. The 

effects of SFN will be determined by measuring effects on the cell cycle, 

apoptosis, autophagy and the expression of phase II enzymes, as well as the 

capacity of SFN to protect neuronal cells from toxin-induced cell death. PC-

12 and SH-SY5Y cell lines will be used to simulate neuronal cells. 

 

 To investigate ER-stress regulators as potential downstream targets of SFN 

Targets tested will include DJ-1, a protein associated with PD, as well as 

CHOP, a marker for ER-stress, while ER-stress will be induced by tunicamycin.  

The role of DJ-1 in reducing ER-stress will be further researched by silencing 

DJ-1 using siRNA. 

 

 To examine the importance of autophagy in SFN-mediated cell survival 

This study will examine whether primary neuronal cells generated from 

Atg16L1 deficient mice show a reduced capacity to recover from H2O2-

induced cell death in the presence of SFN. The occurrence of autophagy 

will be compared in SFN-treated Atg16L1 knock out (KO) and wild type (WT) 

cells. Furthermore, the effect of impairment of autophagy on the protective 

effects of SFN will be determined. 
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2 MATERIALS AND METHODS 
2.1 CELL CULTURE 

2.1.1 PC-12 CELLS 

2.1.1.1  MEDIA USED FOR ROUTINE CULTURE OF CELLS 

The PC-12 cell line was maintained in Kaighn’s Modification of Ham’s F-12 Medium 

(F-12K; LGC Standards; contains 1.26 g/l D-glucose), supplemented with 2.5% (v/v) 

Fetal Bovine Serum (FBS; Invitrogen), 15% (v/v) Horse Serum (HS; LGC Standards) and 

1% (v/v) Penicillin-Streptomycin (PEN/STREP 5000U/ml; Gibco). This media 

composition will be referred to as complete PC-12 media from this point forward. 

The cells were usually grown in 75cm2 flasks with 12ml medium at seeding density of 

1 – 1.5x106 cells. 

2.1.1.2  SUBCULTURE OF CELLS 

All flasks were labelled with name, date of seeding, cell line and passage number. 

Prior to subculture, the cells were checked for the ideal cell confluency (~70-80% 

growth density) and any signs of contamination. The cells were detached with TE 

(0.25% (w/v) trypsin/1mM EDTA; Gibco) and cell numbers were calculated using a 

haemocytometer. 

At a seeding density of 1 – 1.5 x 106 cells were split every 3-4 days.  

2.1.1.3 CRYOPRESERVATION AND CONTROLLED FREEZING OF CELLS 

An estimated number of cryotubes were labelled with the user name, cell line, 

passage number, date and amount of cells (usually 1,5 x 106).  The cells were then 

harvested as described above (2.1.2). The cells were spun down (5mins at 200G) 

and freezing medium (complete media + 5% (v/v) DMSO) was added. The 

resuspended cells were transferred into cryotubes in 1ml aliquots which were then 

put into a freezing container (Nalgene®Mr. Frosty, Sigma-Aldrich) at -80°C for one 

day and then kept in liquid nitrogen for long term storage. 
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2.1.1.4  DIFFERENTIATION OF PC-12 CELLS 

Plates were coated with collagen at a concentration of 0,4mg/ml and placed in 

the incubator at 39°C for 30mins. PC-12 cells were then seeded into 12-well plates 

at a density of 10.000 or 20.000 cells/well using DMEM-Hi media (Gibco) 

supplemented with 15% (v/v) Foetal Bovine Serum (FBS; Invitrogen) + 1% (v/v) 

Penicillin-Streptomycin (PEN/STREP 5000U/ml; Gibco). After 2-3 days only ~75% of the 

media was changed to not stress the cells. 2 days later, at ~50% confluency, the 

media was replaced with NGF-containing media [DMEM-Hi + 15% (v/v) FBS + 1% 

(v/v) P/S + 50ng/ml NGF]. Going forward, fresh media was added every 2-3 days 

until differentiation was visibly confirmed (usually within 5-7 days after start of NGF 

treatment).  

2.1.2 SH-SY5Y CELLS 

2.1.2.1 MEDIA USED FOR ROUTINE CULTURE OF CELLS 

The SH-SY5Y cell line (ATCC-CRL-2266) was kept in a 1:1 mixture of Eagle’s Minimum 

Essential Medium (MEM; LGC Standards; contains 1 g/l D-glucose) and Ham’s F12 

Medium (F12-HAM; Sigma Aldrich; contains 1.802 g/l D-glucose) supplemented with 

10% (v/v) FBS and 1% (v/v) PEN/STREP. The volume of medium used in routine cell 

culture was 12ml in a T75 flask. The cells were usually grown in 75cm2 flasks with 12ml 

medium at seeding density of 2x106/flask. 

1.1.1.1 SUBCULTURE OF CELLS 

The cells were detached with TE (0.25% trypsin/1mM EDTA; Gibco) and counted with 

a haemocytometer. SH-SY5Y cells also include floating cells, which were spun down 

at 200G for 5mins, resuspended in fresh media and then added to the new flask. 

When 2 x 106 cells were seeded, they could be harvested after 8-10 days. 

1.1.1.2 CRYOPRESERVATION AND CONTROLLED FREEZING OF CELLS 

See 2.1.1.3 
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2.2 MTT ASSAY 

3-(4,5-Dimethyilthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma Aldrich) is 

a yellow coloured tetrazol, which is reduced into a purple formazan in living cells. 

5mg/ml MTT was dissolved in sterile PBS. The MTT reagent was kept at 4°C, protected 

from light, and used within 3 months.  

Cells were seeded in 96 well plates 100µl/well at 1 x 106/10ml (SH-SY5Y: 1.5 x 

106/10ml). The first column was used as blank control samples. The following day, 

the cells were checked for complete attachment. The media was changed twice 

over the next two days, the second time replaced by different treatment solutions 

for each column. The plate was kept in the incubator for 24h. Prior to the MTT 

treatment, 800µl of MTT solution was added to 8ml pre-warmed media. The media 

was removed from the plate and replaced by the MTT/media mix. After a 1h 

incubation at 37°C, MTT/media was removed from the wells. 100µl DMSO, serving 

as a solvent of the purple formazan precipitate, was added to each well and mixed 

thoroughly by pipetting. The plate was then slightly tapped to ensure even and 

bubble-free distribution before reading it at 550nm test wavelength and 630nm 

reference wavelength.  

 

 

Mean Absorbance of Sample 
Mean Absorbance of Control 

x 100 % Viability =  
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2.3 WESTERN BLOT 

2.3.1 PROTEIN EXTRACTION 

To minimize protein degradation, samples and lysis buffer were kept on ice as much 

as possible. Cells were lysed in NP40 lysis buffer {Tris-EDTA pH8 (2mM), NaCl (150mM), 

Glycerol (10% (v/v)) and Nonidet P40 (1% (v/v))} plus Complete Protease Inhibitor 

mini tablet [EDTA-free], incubated on ice for 30min, dislocated from the plates using 

cell scrapers, and finally centrifuged at 13000rcf at 4°C for 15min. The supernatant 

was collected into cold 0.5ml Eppendorf tubes and stored at -20°C. 

Nuclear protein extraction. Cells were washed with ice-cold PBS (incl. phosphatase 

inhibitors) before they were evenly covered with 1x Hypotonic buffer and 

incubated on ice for 30min while kept in motion. After dislocating the cells from the 

plates using cell scrapers and collecting them in individual Eppendorf tubes, 

detergent was added to each vial. These tubes were vortexed for 10sec at highest 

setting and centrifuged for 80sec at 14.000g at 4°C. The supernatant (cytoplasmic 

fraction) was transferred into a pre-chilled Eppendorf tube and stored at -80°C until 

used. The nuclear pellet was resuspended in complete lysis buffer and again 

vortexed for 10 sec at highest setting. After incubation for 30min at 4°C in motion, 

another 30sec vortex and centrifugation for 10min at 14.000g at 4°C, the 

supernatant (nuclear fraction) was transferred into a pre-chilled Eppendorf tube 

and stored at -80°C until used (see appendix Table 8, p.135, for details on solution 

compositions). 

Total protein was collected unless otherwise noted. 

2.3.2 PROTEIN QUANTIFICATION (BRADFORD ASSAY) 

The Bradford assay is a colorimetric protein assay based on the binding of the dye 

Coomassie Blue G-250 to protein. Bovine serum albumin (BSA; Thermo Scientific) was 

used to create a standard dilution series, for which samples were prepared within 

the range of 0.25 – 2mg/ml. All standards and samples were prepared in duplicates. 

The samples were transferred into cuvettes and read in a spectrophotometer at 

595nm. The absorbance was read from the standard curve to convert the results 
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into protein concentrations in mg/ml. Usually, 20ng of protein was used for 

separation and further investigation. 

2.3.3  WESTERN BLOT 

2.3.3.1 GEL ELECTROPHORESIS – SDS PAGE 

Samples were mixed with 4x loading buffer (NuPage LDS sample buffer (4x); 

Invitrogen) and DTT (Sigma Aldrich) to obtain final concentrations of 70% (v/v) 

sample, 25% (v/v) loading buffer and 5% (v/v) DTT (1M).  10µl/20µl/30µl samples were 

prepared, from which a calculated volume containing 20ng protein was loaded on 

a gel. After mixing all contents with vortex, the samples were put in a heating block 

set to 98°C for 5min to denature the protein.   

The gels contained either 10% (v/v) or 12.5% (v/v) resolving gel and were prepared 

not longer than 3 days before use, wrapped in cellophane and kept in the fridge. 

Depending on the amount of samples, either 10- or 15-well combs were used. The 

gels were placed in a MINI Protean Tetra Tank (Bio Rad) for four gels or a MINI 

Protean Tank (Bio Rad) for one or two gels, according to manufacturer’s instruction. 

The electrophoresis was run at 200V for 30-35 minutes (Tetra Tank) or at 25mA for 40-

60 minutes (Regular Tank). The run was stopped when the blue dye from the sample 

loading buffer has come close to the bottom of the gel. 

2.3.3.2 SEMI-DRY GEL TO MEMBRANE TRANSFER 

To transfer the proteins from the gel onto the membrane, the Trans-Blot SD Semi-Dry 

Transfer Cell (Bio Rad) was used. A transfer buffer was made up of 10% (v/v) transfer 

buffer (10x; Bio Rad), 20% (v/v) methanol (Sigma Aldrich) and 70% (v/v) water (MQ). 

Pre-cut filter paper was soaked in this transfer buffer. PVDF-membranes were 

incubated in methanol for 10sec before they also were left in transfer buffer for 

about 10mins. The filter paper, the membrane, the gel and again some filter paper 

were laid onto the plate. The filter paper is pressed a little with the fingers to remove 

most of the liquid before building this sandwich. After each layer is applied, a small 

glass pipette is rolled gently over it to remove unwanted bubbles. One gel was run 

at 15V, two at 25V for 50mins. 
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2.3.3.3 MEMBRANE BLOCKING AND STAINING 

After the transfer, the membrane was washed in PBST 0.1% (PBS pH 7.4 containing 

0.1% (v/v) Tween 20). Then the membrane was put into a box with 25ml of blocking 

buffer (Fisher Scientific) to block for 1-2 hours. The antibodies were prepared in a 1:1 

solution of blocking buffer and PBST 0.5% (PBS pH 7.4 containing 0.5% (v/v) Tween 

20) accorded to recommended dilutions (see Table 2).  

 

To the secondary antibody, SDS was added to reach a final concentration of 0.01% 

(v/v) to reduce the background of 

the red IR signal (680nm), as recommended by the supplier. The membrane then 

was incubated with the primary antibody with gentle movement over night at 4°C. 

After 15-18 hours, the membrane was washed 4 times with PBST, before the 

secondary antibody was applied and left for 1 hour. Again, the membrane was 

washed 4 times with PBST and once with PBS prior to finally keeping it in PBS at 4°C 

until imaging by the Odyssey® Imaging System. For long term storage, the 

membrane was dried out on tissue for 1-2 hours, then on a fresh tissue for another 1-

Type of AB Antigen Host Dilution Size / IR Dye Supplier Cat.no. 

Primary β-actin goat 1:10000 42kDa Santa Cruz 

Biotechnology 

sc-1615 

Primary LC3 rabbit 1:2000-

1:5000 

18kDa + 

16kDa 

Sigma L7543 

Primary p62 guinea 

pig 

1:2500-

1:5000 

62kDa Progen GP62-C 

Primary Nrf2 (C-20) 

(cytosol) 

rabbit 1:500 57/100kDa Santa Cruz 

Biotechnology 

sc-722 

Primary Nrf2 (H-300) 

(nuclear) 

rabbit 1:500 57kDa Santa Cruz 

Biotechnology 

sc-13032 

Primary α-synuclein rabbit 1:2000 14-19kDa Millipore AB5038 

Primary SAM 68  

(C-20) 

rabbit 1:10000 68kDa Santa Cruz 

Biotechnology 

sc-333 

Primary TR-1 rabbit 1:2000 55kDa Abcam AB16840 

Primary HO-1 mouse 1:2000 30/60kDa Abcam Ab13248 

Primary DJ-1 rabbit 1:1000 23kDa Santa Cruz 

Biotechnology 

sc-32874 

Primary CHOP 

(L63F7) 

mouse 1:1000 27kDa Cell Signalling 2895 

Secondary goat donkey 1:10000 -/680 Li-Cor 926-68024 

Secondary rabbit donkey 1:10000 -/800 Li-Cor 926-32213 

Secondary guinea pig donkey 1:10000 -/800 Li-Cor 926-32411 

Secondary mouse donkey 1:10000 -/800 Li-Cor 926-32212 

Table 2: Antibodies used in western blotting 
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2 hours before put on labelled whatman paper and wrapped in cellophane. The 

membrane must be protected from light. 

2.3.3.4 IMAGING WITH ODYSSEY 

The membranes were imaged using the Odyssey® Infrared Imaging System and 

analysed using the Odyssey software. The intensity of each channel – 700 for the 

red and 800 for the green signal – was adjusted to receive the best image results. 

The intensity measured for each band was aimed to be at least 10, but not higher 

than 200. The box drawing feature in the software enables to quantify the value 

selected in this specific area. Quantifying the bands makes calculations possible, 

such as normalisation, simply by dividing the value of the protein of interest by the 

value of the loading control. 
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2.4 RNA/DNA EXPERIMENTS 

2.4.1 RNA EXTRACTION 

RNA extraction was carried out using the SIGMA RNA-extraction kit GenElute 

(Sigma-Aldrich) following the provided instructions. After lysing the cells, they were 

run through a filtration column for 2mins. The column binds the RNA, which is washed 

and 3 times prior to elution of pure total RNA. 

2.4.2 RT-PCR 

The RNA was transcribed into cDNA by using the SuperScript II kit (Invitrogen) 

following the provided instructions. In addition to the kit, Random primers, RNasin 

Plus (both Promega) and dNTP Mix (10mM; Invitrogen) were acquired. 1µg RNA was 

used in a 12µl reaction volume. After the SuperScript II RT is added, the mix is 

incubated at 25°C for 10min and at 42°C for 50min, before inactivating the reaction 

at 70°C for 15min.  

2.4.3 PCR 

The following reaction mix was assembled (Primers used can be seen in Table 3): 

Component Volume (µl) 

cDNA from RT-PCR 

(~83ng/µl) 
4 

5x GoTaq Flexi Buffer 10 

MgCl2 (25mM) 8 

dNTPs (10mM) 1 

Fwd primer (10µM) 2 

Rev primer (10µM) 2 

dd H2O 22,5 

Go Taq (5u/µl) 0,5 

Final volume 50 

 

 Fwd primer 
Temp. 

(C°) 
Rev primer 

Temp. 

(C°) 

CHOP CCTTGGAGACGGTGTCCAGC 69.4 CGCAGGGTCAAGAGTAGTGAAGG 68 

Actin GAGGCCCCCCTGAACCCTAAG 70.7 GAACCGCTCGTTGCCAATAG 66.7 

Table 3: CHOP and actin composition forward and reverse primer and annealing 

temperature. 
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2.4.4 TAQMAN REAL-TIME PCR 

mRNA levels were quantified by real-time RT-PCR (TaqMan®) using the AB 7500 PCR 

system. Probes and Primers were obtained by Applied Biosystems, as can be seen 

in Table 4. The experiments were carried out in a 96-well plate in a total volume of 

25µl per well. The samples were set up in 3 technical replicates. A standard curve 

containing 2 technical replicates was also present on each plate. “No template 

controls” (no cDNA, just water) were added to each plate. Data were normalised 

against the housekeeping gene 18S ribosomal RNA.  

 
Gene name  

Reporter / Quencher 
Primers and Probes Supplier 

G
O

I 

GST - rat  

Glutathion-S-transferase 

FAM/TaqMan MGB 

perfect probe 

Applied Biosystems 

TaqMan Gene 

Expression Assay 

TR-1 - rat 

Thioredoxin reductase 1 

FAM/TaqMan MGB 

perfect probe 

Applied Biosystems 

TaqMan Gene 

Expression Assay 

GST-α - human 

Glutathione-S-transferase 

FAM/TAMRA 

Forward: 5’ –CAGCAAGTGCCAATGGTTGA- 3’ 

Reverse: 5’ –TATTTGCTGGCAATGTAGTTGAGAA- 3’ 

Probe: 5’ –TGGTCTGCACCAGCTTCATCCCATC- 3’ 

Applied Biosystems 

TaqMan One-Step RT-

PCR master mix 

reagents kit 

TR1 - human 

Thioredoxin reductase 1 

FAM/TAMRA 

Forward: 5’-CCACTGGTGAAAGACCACGTT -3’ 

Reverse: 5’ –AGGAGAAAAGATCATCACTGCTGAT- 3’ 

Probe: 5’ –CAGTATTCTTTGTCACCAGGGATGCCCA -

3’ 

Applied Biosystems 

TaqMan One-Step RT-

PCR master mix 

reagents kit 

APP – rat 

 

FAM/TaqMan MGB 

perfect probe 

Applied Biosystems 

TaqMan Gene 

Expression Assay 

SYN – rat 

FAM/TaqMan MGB 
perfect probe 

Applied Biosystems 

TaqMan Gene 

Expression Assay 

H
G

 

18S ribosomal RNA 

FAM/TAMRA 

Forward: 5’–GGCTCATTAAATCAGTTATGGTTCCT-3’ 

Reverse: 5’-

GTATTAGCTCTAGAATTACCACAGTTATCCA-3’ 

Probe: 5’TGGTCGCTCGCTCCTCTCCCAC-3’ 

Applied Biosystems 

Table 4: Probes and primers used for qPCR 
 

2.4.5 TRANSFECTION WITH PLASMIDS 

Cells were seeded on cover slips in 24-well plates (30.000 cells in 500µl/well). The 

transfection reagent Xtreme Gene HP (Roche) was used for transient transfection 

on PC-12 cells according to the manufacturer’s instructions. For this project, the 

following plasmids were used, which were a kind gift from Dr. R. Roberts, Babraham 

Institute, Cambridge: 
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 mRFP-LC3 

 Atg16L1-GFP 

 p62-tomatored 

 mRFP/GFP-LC3  

PC-12 cells were seeded at a density of 30.000/well. A 1:3 mixture of 1µg plasmid 

DNA and X-tremeGENE HP DNA Transfection Reagent was prepared in serum-free 

media and added drop-wise to the wells after a 15-30min incubation period at 

room temperature to allow complex formation. After 48h, cells were treated with 

DMSO (0.025%), SFN (2.5, 5 and 10µM) or HBSS for 4h, then the treatment medium 

was removed. To fix the cells, they were covered with 200µl ice cold pure 

MeOH/well and left for 5mins. Then cells were washed with PBS, before 200µl of DAPI 

(1:2000; Sigma) were added for 2mins. After this step, cells need to be protected 

from light. After removal of the DAPI solution, the cells were left in PBS. Cover slips 

were carefully removed from each well and washed first in PBS, then in water, 

before placed topside down onto a drop of Hydramount (national diagnostics) on 

labelled glass slides. The slides were left for 15mins to harden, after which they were 

put into a sample box and kept in the fridge until imaging. They were visualised 

under the ZEISS Axioplan 2 imaging microscope and analysed using the Axio Vision 

Release 4.8 software. All results were magnified to 100x objective. 

2.4.6 TRANSFECTION OF PC-12 CELLS WITH SIRNA 

siRNA experiments were carried out according to recommendations from QIAGEN 

using their HiPerfection Transfection Reagent Kit.  

PC-12 cells were seeded at a density of 1x106/96well plate. The next day they were 

treated with the siRNA-HiPerfect mix as recommended (see Table 5). Another 24h 

later treatment with SFN was initiated. One day later the plates were either 

measured using MTT or exposed to H2O2 for another 24h, to be then analysed 

according to the experiment layout.  

The same procedure was followed for 6 well plate experiments at a seeding density 

of 1x106/plate (~80 000/well). 
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 96 well plates 

(amounts/well) 

6 well plates 

(amounts/well) 

Volume of HiPerFect Reagent (µl) 0.75 12 

Total volume of medium on cells (µl) 120 2300 

Final siRNA conc. 5nM 10nM 10nM 20nM 

siRNA of a 2µM stock solution (µl) 0.375 0.75 12 24 

Table 5: siRNA-HiPerfect mix components 
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2.5 FLOW CYTOMETRY 

2.5.1 CELL CYCLE ASSAY 

Cells were seeded in a 6 well plate (PC-12: 200 000; SH-SY5Y: 300 000 – 350 000/well). 

At 70-80% confluency, the wells were treated with different concentrations of SFN 

(2.5-20µM) for 24h. Then the media was collected in allocated tubes. The adhered 

cells were washed with PBS before detaching them from the plate with trypsin and 

adding them to the corresponding vial. The tubes were spun down at 270G for 5 

minutes. The pellets were resuspended in PBS and spun down again. This time, ice-

cold 70% (v/v) ethanol was added while vortexing the tube. Then the tubes were 

kept at -20°C. 

Next, the tubes were spun down at 500G for 5mins. The ethanol was removed and 

the cells were washed with PBS. A mixture of PBS, RNase-A (0.5mg/ml) and Triton-

X100 (0.3% v/v) was prepared, of which 25µl were added to each tube, after which 

the cells were resuspended in 50µl PBS. The samples were incubated at 37°C for 

30mins.  

After the incubation, 3µl propidium iodide (1mg/ml; Sigma-Aldrich) was added to 

each sample, which were then run on the BD Biosciences Accuri C6 flow cytometer. 

After gating the cells on a forward and side scatter plot excluding most likely debris 

(gate P1), forward scatter height and area data were used to gate for singlet cells. 

These were plotted on a histogram with FL2-A as filter setting for the x-axis. A 

minimum of 5000 events in gate P1 was collected. A method optimisation table can 

be found in the Appendix 1 (Table 3). Data was further analysed using the FlowJo 

Software. 

2.5.2 ANNEXINV/PI APOPTOSIS ASSAY 

The cells were seeded in and collected from 6-well plates as mentioned above 

(2.5.1), but instead of fixing the cells with ethanol, they were resuspended in 500µl 

binding buffer (1x!) provided with the AnnexinV-FITC Apoptosis Detection Kit 

(eBioscience). 100µl of this cell suspension was transferred into a new labelled tube. 

Next, 2µl AnnexinV-FITC (included in the kit, concentration information not 

provided) and 10µl PI (20µg/ml; included in the kit) were added. After incubation 
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at room temperature under light protection, the samples were run on the BD 

Biosciences Accuri C6 flow cytometer. 

The gated cells (P1) where then filtered by FL1-A on the X-axis and FL3-A on the Y-

axis on a new scatter plot. This could then be divided into 4 squares which show the 

different stages between healthy (AnnexinV-/PI-), apoptotic (AV+/PI-) and necrotic 

(AV+/PI+) cells. A minimum of 10000 events in gate P1 was achieved unless otherwise 

noted. Data was further analysed using the Kaluza Software. 

In cytoprotection assays cells were treated with SFN at an earlier stage (at ~60-70% 

confluency) to avoid overgrowth of cells at the end of the experiment, when cells 

were treated with H2O2 or 6-OHDA for 24h after SFN-pre-treatment (see method 

optimisation in appendix, Figure 48, p.136). 
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2.6 MOUSE WORK 

2.6.1 ANIMAL MAINTENANCE 

The mice used for the experiments mentioned were a kind donation of Prof. Uli 

Mayer’s lab at UEA. All mice were handled in accordance with Home Office 

regulations. They were kept in specific pathogen free conditions in individually-

ventilated cages and were routinely screened for common mouse pathogens. For 

generating primary neuronal cells, pregnant female mice were killed by schedule 

1 method 14-16 days into the pregnancy. 

2.6.2 RETRIEVING EMBRYONIC BRAINS 

The sacrificed pregnant mouse was dissected to extract the vitelline bag, which 

was then put into a Ca+2- and Mg+2-free PBS solution containing 33mM glucose (PBS-

glucose) and kept at 4°C. The dead embryos were removed and placed into 

individual wells of 6 well plates containing PBS-glucose. After decapitation of the 

embryos, the heads were placed into fresh individual wells filled with PBS-glucose. 

Under a microscope an incision at the back and either side of the head was made 

and with gentle pressure on top of the head the brain was released into the solution 

and immediately removed with a small sieve and placed into a labelled 1.5ml 

Eppendorf tube filled with PBS-glucose. 

2.6.3 GROWING PRIMARY NEURONAL CELLS 

Fire-polished Pasteur pipettes were rinsed with heat inactivated FBS before gently 

dissociating the cells of each Eppendorf tube. After 5-10 minutes, the non 

dissociated elements formed a pellet. The supernatant was pipetted into a fresh 

Eppendorf tube and centrifuged at ~200g for 5mins at room temperature. After the 

supernatant was removed, the cells were mixed with DMEM/F12 +10% (v/v) mixed 

hormones (see Table 6) in an amount based on number of wells to be plated, and 

seeded into poly- D-lysine pre-coated (incl. coverslips; for immunohistochemistry) or 

poly-ornithine pre-coated plates (for AV/PI experiments) [Coating Procedure see 

Appendix 8.4.3]. 

After 2 days, first morphological signs of differentiation could be observed. After 4 

days, the media was changed. After a week, treatment with SFN was started. For 
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AV/PI experiments, this was followed by a 4h exposure to H2O2 in Hepes buffered 

media (HBM) and further 20h of media + 10% (v/v) mixed hormones. 

Table 6: List of components of mixed hormones solution. 

This mixture is added to DMEM/F12 1:1 (Gibco, 11320-740, (1x), liquid – with L-

glutamine, without HEPES) as medium 

 MEDIUM FINAL CONCENTRATION SUPPLIER + CAT.NO. 

TRANSFERIN 100µg/ml Sigma T-2036 

INSULIN 25µg/ml Sigma I-1882 

PUTRESCINE 60µM Sigma P-7505 

SODIUM SELENATE 30nM Sigma S-9133 

PROGESTERONE 20nM Sigma P-6149 

2.6.4 MOUSE GENOTYPING 

The tail of each embryo used mentioned above was kept at 4°C until genotyped 

using PCR. About 150µl of proteinase K lysis buffer was added to each tail biopsy 

and left over night in a rotating incubator at 55°C. The lysate was then diluted 10 

times using distilled water, of which 3µl was used in a PCR reaction. 

The following reaction mix was assembled: 

Component Volume (µl) 

DNA (1:10 dilution from lysis) 3 

10x buffer (containing MgCl2) 5 

dNTPs (25µM) 0.5 

Primer mix (20pmol/µl) 1 

Taq 2 

dd H20 X  

Final volume 50 
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For amplification of genomic DNA, a touchdown PCR method was applied: 

95°C – 10 min 

95°C – 45 sec  

65°C – 1min/ minus one degree each cycle 

 10 cycles 

72°C – 1 min  

95°C – 45 sec  

55°C – 1min 

 25-30 cycles 

72°C – 1 min  
72°C – 10 min 
4°C   –  on hold 

The PCR products were then run on a 1% agarose gel. 
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2.7 IMAGING 

2.7.1 IMMUNOFLUORESCENCE 

Cells were fixed by adding ice cold pure methanol for 5 minutes. After several 

washes with PBS, the slides were blocked with 2% (w/v) BSA in PBS at room 

temperature for 1h. This solution was then replaced by the primary antibody (see 

Table 7) at room temperature for 1h. After 3 washes with 2% (w/v) BSA in PBS the 

second antibody was left on for 40 minutes at room temperature. Once the 

antibody and BSA was washed off, a solution of DAPI 1:5000 was added to the wells 

for 5-10 minutes. Following more washes, the slides were finally mounted using 

Hydromount (national diagnostics) and dried under protection of light. The slides 

were imaged under the microscope. 

2.7.2 MICROSCOPY 

Fixed cell images were captured at x63 magnification on a Zeiss Axioplan 2 

microscope, unless specified otherwise. Images were analysed with the Axioplan 

software version 4.7.1. IMARIS was used to calculate autophagy punctae. 

 

 

TYPE OF AB ANTIGEN HOST DILUTION SUPPLIER CAT.NO. 

PRIMARY LC3 rabbit 1:1000 Sigma L7543 

PRIMARY p62 guinea pig 1:1000 Progen GP62-C 

SECONDARY rabbit donkey 

594 

1:500 Invitrogen * 

SECONDARY guinea pig goat 488 1:500 Invitrogen * 

Table 7: List of antibodies used for immunofluorescence 

* These secondary antibodies were a kind gift from Matt Jefferson, Wileman lab, 

University of East Anglia. 
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2.8 STATISTICS 

For all results with 2 or more biological replicates, standard deviation and, if 

appropriate, Student’s t-test were calculated and, if statistically significant, were 

labelled with the P-value. Whenever more than pairwise comparisons were 

investigated within a data set, ANOVA was used to test for significance and post-

hoc t-tests were adjusted according to Bonferroni. 
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3 BIOACTIVITIES OF 

SULFORAPHANE ON PC-12 AND 

SH-SY5Y CELLS  
3.1 BACKGROUND & AIMS 

Before this study was initiated, no publications reported the actions of SFN on PC-12 

cells. However, Shibata et al. (2008) investigated cruciferous vegetable extracts on 

PC-12 cells on the search for the most potent natural enhancer of NGF-dependent 

neuritogenesis. Japanese horseradish (Wasabia jabonica) with its major ITC 6-

methylsulfinylhexyl isothiocyanate (6-HITC) was identified as the richest source of 

neurotrophic inducers within the Brassicaceae, and was further investigated on 

neurite outgrowth and the involvement of NGF. It was shown that 6-HITC could 

enhance the NGF-induced neurite outgrowth. 

Shavali & Sens (2008) demonstrated that SFN could protect SH-SY5Y cells from 

cytotoxicity caused synergistically by arsenite and dopamine. Concentrations 

between 0.1 and 2.5µM showed significant recovery of cell survival in a dose 

dependent manner, while the cell viability was reduced in 5µM SFN samples. In a 

different study, SFN could protect SH-SY5Y cells against H2O2 or 6-OHDA-induced 

cell death (Tarozzi et al. 2009). They also demonstrated significant increases in total 

GSH level, NAD(P)H quinone oxidoreductase-1, GSH-transferase and –reductase. 

The SFN concentrations used were between 1.25 and 2.5µM for 12 or 24h, followed 

by a 24h exposure to 300µM H2O2 or 100µM 6-OHDA. 

SFN has been introduced in depth in chapter 1 (page 15).  The aim of this chapter 

is to validate previous findings, therefore cell cycle, apoptosis, Nrf2 and Nrf2/ARE-

driven genes as well as autophagy will be measured. To investigate SFN in PC-12 

cells, basic assessments will be made to optimise concentrations of SFN and time 

lines for further experiments including toxins. 

Initiation of autophagy by autophagy. The first report of SFN inducing autophagy by 

measuring autophagy endpoints like autophagosome formation also looked into 
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the mechanism of action involved. 3-methyladenine (3-MA, a class III PI3K blocker) 

was effective to inhibit SFN-induced autophagy, so PI3K III could also be a target of 

SFN (Herman-Antosiewicz et al. 2006). SFN has previously been reported to reduce 

Bcl-2, an inhibitor of Beclin-1 and thus autophagy (Singh et al. 2005). The production 

of mitochondria-derived ROS by SFN has also been found to be a trigger for 

autophagy induction (Xiao et al. 2009). A more recent study in SH-SY5Y cells and 

cortical neurons however has suggested that the ROS further activates ERK, which 

in turn induces autophagy (Jo et al. 2014). Interestingly, the initial investigation of 

SFN and autophagy has argued against an involvement of ERK in sulforaphane-

induced autophagy. They reported an ERK activation by SFN, but since an inhibitor 

of ERK applied simultaneously failed to reduce LC3 production, it was concluded 

that ERK may not be involved in the mechanism of SFN on autophagy (Herman-

Antosiewicz et al. 2006). It is possible that SFN has several targets to initiate 

autophagy, or that it works differently in separate experiment models. The 

mechanism of autophagy initiation by SFN will not be investigated in this study. 
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3.2 RESULTS 

3.2.1  CELL VIABILITY OF SFN IN PC-12 CELLS 

To determine a dose range of SFN which keeps cells intact, cell viability was 

assessed using the MTT assay. To estimate the IC50 value, the results were analysed 

using the GraphPad Prism software. In 80% confluent PC-12 cells, 50% of cell survival 

can be expected at approximately 36.9µM SFN in 24h-treatments (=IC50) (Figure 14). 

 

Figure 14: Cell viability of PC-12 cells following exposure to SFN for 24h. 

PC-12 cells were treated with DMSO (0.05%) or different 

concentrations of SFN (10-40µM) for 24h. Cell viability was assessed by 

MTT and measured on a plate reader using 550nm as test wavelength 

and 630nm as reference wavelength. Each bar represents the 

average of six biological replicates (± standard deviation; *P<0.05 

compared to control). 
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3.2.2  EFFECT OF SULFORAPHANE ON CELL CYCLE ARREST IN PC-12 AND SH-SY5Y 

CELLS 

SFN on cell cycle in PC-12 cells. The results shown in Figure 15 indicate that SFN 

leads to S phase arrest in PC-12 cells. Untreated controls were primarily in the G1 

phase (51.83%) with smaller percentages in the S phase (28.97%) and G2/M phase 

(17.1%). DMSO (0.01%) samples did not show a significant change compared to 

vehicle control samples. Following SFN treatment, the percentage of cells in the S 

phase increased in the 1.25 and 2.5µM samples to 42.39% and 42.35%, which was a 

significant change compared to control and DMSO samples. The 5µM samples of 

one batch were lost, therefore a statistical significance compared to control or 

DMSO samples could not be calculated. Although SH-SY5Y showed a similar 

tendency, we only present a single observation and thus this experiment would 

need to be repeated (see appendix p.141, Figure 53). 

 

 



Chapter 3 | Sandra Bednar 

 

p a g e  69 of 156 

 

 

Figure 15: Cell cycle assay of SFN in PC-12 cells. 

Cells were exposed to media only, DMSO (0.01%) or different concentrations of 

SFN for 24h. The distribution of cells in different cell cycle stages was obtained by 

flow cytometry and FlowJo software. A shows sample figures with SFN 

concentrations from 1.25µM-10µM,, while B displays the average of 3 biological 

replicates of samples ranging 0.625-5µM SFN (n=3, unless otherwise marked; ±SD;              
.   P<0.02 vs control,      P<0.02 vs DMSO). 
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3.2.3  EFFECT OF SULFORAPHANE ON PHASE I I  AND ANTIOXIDANT ENZYME 

EXPRESSION 

First, 18S rRNA was assessed to be a suitable reference gene in PC-12 cells by using 

the GeNorm Kit provided by Primer Design (data not shown). After a 4h treatment 

with media only, DMSO (0.01%) or 5µM SFN, RNA was extracted, transcribed to 

cDNA and quantified via Taqman. This experiment was carried out in 4 biological 

and 2 technical replicates. 18S rRNA was amongst the most stable reference targets 

and was therefore used throughout all qPCR experiments. 

Nrf2 nuclear protein levels in PC.12. Nrf2 levels of nuclear protein were investigated 

over a variety of time points. At 2h, Nrf2 protein levels showed a 3 fold induction for 

5µM and 10µM SFN treatments (Figure 16). Individual blots show a visible increase of 

protein expression from DMSO controls up to 10µM SFN. A dose dependent trend 

can be seen in an accumulated graph, showing 4 individual time points (see 

appendix Figure 55, p.143). 

SFN on TR-1 gene expression in PC-12. Results in Figure 17 show a dose dependent 

increase in TR-1 expression on RNA level. After a 4h treatment with 2.5µM SFN, a 2.7 

fold increase was determined, while a 3.3 fold increase was found for 5µM 

treatment. 10µM SFN presented a 3.1 fold increase. HBSS, a positive control of 

autophagy, halves TR-1 levels compared to control, indicating no involvement of 

the autophagic pathway in the induction of TR-1 levels by SFN. These results only 

reflect the average of two biological replicates. 2h and 6h samples were also 

investigated in single biological replicates, which also showed an increase in TR-1 

expression in all SFN-treatment samples, the lowest in 2h samples (see Appendix 

Figure 56, p.144). Figure 18 presents a similar picture in protein expression, where the 

increase was strongest at 5µM SFN concentration after a 24h treatment with SFN. 

SFN on HO-1 protein expression in PC-12. Results presented in duplicates show a 

several fold increase of HO-1 protein levels when cells were treated with 10µM (5 

fold) and 20µM (25 fold) SFN for 24h. Lower concentrations (2.5µM and 5µM SFN) 

only produced minor change (Figure 19). This antibody presented itself as a dimer. 

Hardly any bands were visible at the expected size of 30-33kDa, however, at 

~60kDa strong bands could be detected. This phenomenon has been described 

within the antibody data sheet, but also by Hwang et al. (2009) documenting that 

HO-1 is in fact more stable and functions better as a dimer/oligomer in the ER.  
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SFN on GST gene expression in PC-12. 4hour treatment with SFN shows a 6-8 fold 

increase in 2.5, 5 and 10µM treatments, however in a non-dose dependant manner 

(Figure 20). HBSS, a positive control for autophagy, showed a decrease in GST levels, 

suggesting that autophagy does not play a role in the induction of GST by SFN, as 

would be expected. These results only reflect the average of two biological 

replicates. 2h and 6h samples were also investigated in single biological replicates, 

which showed a lower induction of GST by SFN (see Appendix Figure 57, p.145).  

SFN on TR-1 and GST gene expression in SH-SY5Y. In SH-SY5Y cells, 2h exposure to 

SFN could not elevate TR-1 levels higher than 1.4-fold compared to control. 

However, after 6h of SFN treatment induction of up to 3.2 fold (2.5µM SFN) could be 

observed (see Appendix Figure 58, p.145). Looking at GST levels, a dose-dependent 

response was observed. The lowest SFN concentrations presented a 2-fold increase 

compared to control samples both after 2 and 6 hours (see Appendix Figure 59, 

p.146). The highest induction of GST gene expression levels was found in the 2hour 

sample of 5µM SFN treatment. These experiments were only carried out with one 

biological replicate, as they were preliminary investigations only, and therefore 

would need further repeats to be of significant value. 

Short interfering RNA (siRNA) was introduced to mimic a knock down of both GST 

and TR-1, and an optimal dosage of 10nM siGST and siTR-1 could be determined by 

qPCR to be used in future experiments on cell protective effects of SFN in GST or 

TR-1 reduced PC-12 cells (data not shown).  
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Figure 16: Nrf2 expression in PC-12 cells after 2h SFN treatment as 

determined by western blot. 

PC-12 cells were treated with DMSO (0.02%) or various concentrations 

of SFN (2.5-10µM) for 2h. Nuclear protein was collected and blots were 

imaged using Odyssey. The graph shows the average of two 

biological replicates (n=2; ±SD). 

 

 

Figure 17: TR-1 expression in PC-12 cells after 4h SFN treatment as 

determined by qPCR. 

Cells were treated with media alone, DMSO (0.02%), HBSS and different 

concentrations of SFN (2.5-10µM) for 4h. 18S rRNA was used as 

housekeeping gene. Bars show qPCR results as fold change compared 

to control samples. Each bar represents the average of two biological 

replicates carried out in 3 technical replicates (n=2). 
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Figure 18: TR-1 expression in PC-12 cells after 24h SFN treatment as determined 

by western blot. 

Cells were treated with media alone, DMSO (0.01%), or various 

concentrations of SFN (2.5-10µM) for 24h. The blots were imaged by Odyssey 

and show TR-1 bands at 55kDa and loading control β-actin at 42kDa. The bars 

represent the average of both biological replicates shown in the western 

blots (n=2, ±SD). 

 

 

Figure 19: HO-1 expression in PC-12 cells after SFN treatment as determined by 

western blot. 

Cells were treated with control media, DMSO (0,01%) or different SFN 

concentrations and incubated for 24h. The blots were imaged by Odyssey 

and show HO-1 bands at 60kDa and loading control β-actin at 42kDa. The 

bars represent the average of both biological replicates shown in the western 

blots (n=2; ±SD). 
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Figure 20: GST expression in PC-12 cells after 4h SFN treatment as determined by 

qPCR. 

Cells were treated with media alone, DMSO (0.02%), HBSS or various 

concentrations of SFN (2.5-10µM) for 4h. 18S rRNA was used as housekeeping 

gene. Bars show qPCR results as fold change compared to control samples. Each 

bar represents the average of two biological replicates, carried out in 3 technical 

replicates (n=2; ±SD). 
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3.2.4  SULFORAPHANE AND AUTOPHAGY 

Several experiments were carried out to investigate the effect of SFN on PC-12 and 

SH-SY5Y cells in relation to autophagy. For western blotting, a reliable method using 

the Odyssey imaging technique was developed (see page 53). The main target 

investigated is LC3-II, an autophagy related protein necessary for autophagosome 

formation. It is derived from LC3-I by the use of Atg7 and Atg3 (more detail on page 

38). Also, transient transfections with various plasmids connected to autophagy 

were carried out. 

Effect of SFN on LC3-II in PC-12 cells. SFN induced LC3-II protein levels in western blot 

experiments. The optimal dose, determined by a dose-response experiment was 

10µM, which was taken further into a time-response experiment (Figure 21). 20µM 

showed a greater effect (5 fold induction), however, at this concentration there is 

also the risk of reducing cell viability. The results of this experiment suggests that 3 

hours was the most effective treatment time to observe LC3-II induction in PC-12 

cells (data not shown). 

Effect of SFN on p62 expression in PC-12 cells. Figure 22 shows a time-dependent 

induction of p62 protein levels after treatment with 5µM SFN. However, the positive 

controls for autophagy torin and HBSS reduce p62 levels, showing the opposite result 

to that observed in SFN-treated samples. This can be explained by the fact that p62 

also interacts with Nrf2, another major target of SFN (explained in more detail on 

page 42). By taking into account the rise of p62 through the positive feedback loop 

with Nrf2 and SFN inducing Nrf2 however, one should expect p62 levels to rise in the 

presence of SFN. This makes it difficult to interpret the results on p62 levels, as it does 

not clearly state that autophagy is present. 

Effect of SFN on LC3-II in SH-SY5Y cells. In Figure 23, a dose-dependent induction of 

LC3-II protein levels was observed. Even levels as low as 5µM SFN show a 3-fold 

increase, gradually rising to almost 23-fold (mean) activation in 20µM SFN samples.  

Effect of SFN on p62 in SH-SY5Y cells. As explained above in PC-12 cells, SFN does 

not show the expected results in relation to autophagy. This can also be seen in 

Figure 24, as a clear dose-response from 2.5µM to 20µM SFN can be seen after 24h 

treatment, resulting in almost 25-fold increase compared to control samples. The 

high variability in the data within the 4 biological replicates means that the results 
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are not statistically important, although in one 20µM sample a 62-fold increase was 

observed compared to the control. 

 

 

 

 

Figure 21: LC3-II expression in PC-12 cells as determined by western blot. 

Cells were cultured either in media alone, in DMSO (0.05%) or in various concentrations of 

SFN (2.5-20µM) for 17h. The blots were imaged using Odyssey and show LC3-I bands at 

18kDa, LC3-II at 16kDa and loading control β-actin at 42kDa.The graph shows the 

quantification of LC3-II after normalisation with β-actin expressed as fold change 

compared to control. The bars represent the average of 3 blots (n=3, ±SD).  
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Figure 22: p62 expression in PC12 cells as determined by sestern blot. 

Cells were cultured either in DMSO (0.05%), Torin (250nM), HBSS or 5µM SFN for 4, 8, 

12 and 24h. The blots were imaged using Odyssey and show p62 bands at 62kDa 

and β-actin at 42kDa. The graph shows the quantification of p62 after 

normalisation with β-actin expressed as fold change compared to DMSO control. 

The bars represent the average of 2 blots (n=2, ±SD). 
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Figure 23: LC3-II expression in SH-SY5Y cells after a 24h treatment with SFN as 

determined by western blot. 

A Cells were cultured in media, DMSO (0.02%) or various concentrations of SFN 

(2.5-20µM) for 24h. Appropriate amounts of DMSO were added to each SFN 

sample to adjust for equal amounts. The blots were imaged by Odyssey and show 

LC3-I bands at 18kDa, LC3-II at 16kDa and loading control β-actin at 42kDa.           

B shows the quantification of LC3-II after normalisation against β-actin. Each bar 

represents the average of 4 biological replicates (n=4; ±SD). Statistical significance 

compared to control samples *, or to DMSO samples ** (P<0.05). 
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Figure 24: p62 expression in SH-SY5Y cells after a 24h treatment with SFN as 

determined by western blot. 

A Cells were cultured in media, DMSO (0.02%) or various concentrations of SFN (2.5-

20µM) for 24h. Appropriate amounts of DMSO were added for adjustment of equal 

DMSO amounts. The blots were imaged by Odyssey and present p62 bands at 

62kDa and the loading control β-actin at 42kDa. B Each bar represents the 

average of 4 biological replicates after normalisation against β-actin (n=4; ±SD) 
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Bafilomycin experiment. To assess the autophagic flux, the lysosome-inhibitor 

bafilomycin (BAF) was added either alone or in combination with SFN. The results 

presented in Figure 25 show that samples treated with BAF mostly induce LC3-II 

production. SFN on its own moderately increases LC3-II levels, while the 

combination of BAF and SFN can induce LC3-II bands between 4 and 12 fold in 4h 

and 8h treatments compared to control samples only treated with DMSO. These 

observations indicate that SFN mostly induces autophagy by enhancing 

autophagosome synthesis, but also increases autophagosome degradation, which 

explains the reduced or unchanged LC3-II levels after only SFN treatment. As these 

findings are simply momentary observations of the dynamic process autophagy, 

the results can only verify that SFN is inducing autophagy and suggest that increase 

of autophagosome synthesis plays the major role in the mechanism involved.  

Transient transfections on PC-12 cells. The clearest results to visualize the autophagic 

process were obtained by the transfection with the p62-tomato red and mRFP/GFP-

LC3 plasmids.  

p62-transfected cells show increased punctae-formation from 2.5, 5 and 10µM SFN 

treated cells Figure 26. These punctae represent autophagosomes, in which p62 is 

present until degraded within the autolysosome. In this experiment, induced p62-

levels are already present after 4 hours. 

The tandem- or traffic light- plasmid mRFP/GFP-LC3 helps elucidate a time pattern 

for the autophagic process. Figure 27 shows the images obtained after 4 hour 

treatment with media only, DMSO in media, HBSS or 2.5, 5 and 10µM SFN. As the 

punctae seen in this figure are all orange, and also the separate channels GFP and 

mRFP seem to overlap, there does not appear to be any autolysosome formation 

present.  

 

 

 

 

A 

B 



Chapter 3 | Sandra Bednar 

 

p a g e  81 of 156 

 

 

Figure 25: Bafilomycin (lysosome inhibitor) on PC-12 cells. 

Cells were cultured in either DMSO (0.05%), 100nM bafilomycin (BAF; lysosome 

inhibitor), 5µM SFN or the combination of BAF and SFN for 2, 4 or 8 ours. The blots 

were imaged by Odyssey and show LC3-I bands at 18kDa, LC3-II at 16kDa and 

loading control β-actin at 42kDa. The graph shows the quantification of LC3-II 

after normalisation against β-actin expressed as fold change compared to 

vehicle control (0.05% DMSO). Each bar represents the average of 4 biological 

replicates (n=4; ±SD). 
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Figure 26: Transient Transfection of PC-12 cells with p62 tomato red plasmid. 

Cells were cultured for 4 hours in either media alone, DMSO (0.025%), HBSS or 

various concentrations of SFN (2.5-10µM). DMSO was added where necessary to 

reach equal amounts. The scale bar shows 10µm. 
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B 

Figure 27: Transient transfection on PC-12 cells with mRFP/GFP-LC3 plasmid. 

Cells were cultured for 4 hours in either media, DMSO (0.025%), HBSS, or various 

concentrations of SFN (2.5-10µM). DMSO was added to SFN samples when 

necessary to reach equal amounts. Pictures shown represent 100x magnification 

under the fluorescent microscope, scale bars show 10µm. The top 2 rows show 

merged images, while the nest two rows only present the green or red channel, as 

indicated. 
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3.2.5  NEUROPROTECTIVE EFFECTS OF SULFORAPHANE ON PC-12, DIFF PC-12 

AND SH-SY5Y CELLS 

3.2.5.1  SULFORAPHANE ON APOPTOSIS 

Dose-dependent increase of apoptosis by SFN in PC-12 cells. A preliminary 

experiment was conducted to measure the effect of SFN on apoptosis in PC-12 

cells and determine a concentration of SFN to use for further experiments. The 

AnnexinV/PI Flow Cytometry results (see appendix Figure 60, p.147; gating see 

Figure 51, p.138) show that 1.25, 2.5, 5 and 10µM SFN increases apoptosis in a 

dose-responsive manner. It was decided to use 2.5µM SFN in future experiments. 

3.2.5.2  NEUROPROTECTIVE EFFECTS OF SULFORAPHANE ON PC-12 CELLS 

Cell-protective effect of SFN against H2O2-induced apoptosis in PC-12 cells. H2O2 

was used to induce apoptosis and investigate if SFN pre-treatment can protect 

these cells (Figure 28; gating see Figure 49; p.136). 600µM H2O2 reduced cell viability 

to 40% and 800µM H2O2 to 35%, on average. SFN-pre-treated samples increased the 

numbers of viable cells to 63% and 61%, respectively. The average recovery rate 

was 25% for both 600 and 800µM H2O2 samples. However, the standard deviation 

hides the great differences that could be seen within individual data sets (see 

appendix Figure 61, p.148), which can be explained by slightly different confluency 

stages at the start of the experiments. From this point onwards, experiments were 

seeded and treated at the exactly same time in the day to increase experiment 

reliability.  

Cell-protective effect of SFN against 6-OHDA-induced apoptosis in PC-12 cells. Cells 

pre-treated with 2.5µM SFN show a higher resistance against 6-OHDA (another 

cytotoxin and ER-stress inducer) than untreated. Figure 29 shows the percentage of 

events in the healthy cells gate (AnnexinV-/PI-) (gating see Figure 50, p.137). 600µM 

6-OHDA reduced the percentage to 34,97%, 800µM 6-OHDA even to 21,75%. Cells 

pre-treated with SFN however presented 50.99% (+600µM 6-OHDA) and 38.76% 

(+800µM 6-OHDA) in an average of 6 biological replicates, which is a recovery of 

15,74% and 17,57% with P<0,01. 
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Figure 28: Effect of SFN on H2O2-induced apoptosis in PC-12 cells measured by flow 

cytometry. 

Cells were pre-treated with either DMSO (0.025%) or 2.5µM SFN for 24h. Then these 

solutions were replaced with either serum-free media, 600µM or 800µM H2O2 for 

another 24h. The collected samples were analysed using the AnnexinV/PI kit and 

a flow cytometer. Bars are the average of 4 biological replicates with about 

10.000 events each (n=4; ±SD). 
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Figure 29: Effect of SFN on 6-OHDA-induced apoptosis in PC-12 cells measured by 

flow cytometry. 

Cells were pre-treated with 0.025% DMSO or 2.5µM SFN for 24h and then treated with 

either serum-free media or 6-OHDA (600 and 800µM) in serum free media. Each bar 

shows the percentage of viable cells and represents the average of 6 biological 

replicates with 10.000 events each (n=6; ±SD; ***P<0.01). 
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3.2.5.3  NEUROPROTECTIVE EFFECTS OF SULFORAPHANE ON DIFF PC-12 CELLS  

Cell-protective effect of SFN against H2O2-induced apoptosis in PC-12 cells. Cells 

pre-treated with 2.5µM SFN show a higher resistance against H2O2 than untreated. 

Figure 30 shows the percentage of events in the healthy cells gate (AnnexinV-/PI-). 

Cells pre-treated with SFN reduced the percentage of apoptotic cells induced by 

300µM H2O2 highly significantly (P<0.01), while SFN rescued cells exposed to 500µM 

H2O2 significantly (P<0.02).  

3.2.5.4  NEUROPROTECTIVE EFFECTS OF SULFORAPHANE ON SH-SY5Y CELLS 

Cell-protective effect of SFN against H2O2-induced apoptosis in SH-SY5Y cells. 

AnnexinV/PI assays have also been carried out on SH-SY5Y cells showing minor 

cytoprotection (data not shown). 

 

 

Figure 30: Effect of SFN on H2O2-induced apoptosis in DIFF PC-12 cells measured by 

Flow Cytometry. 

Cells were pre-treated with media or 2.5µM SFN for 24 hours and then treated 

with either serum-free media, 300 or 500µM H2O2 in serum-free media. Each bar 

shows the percentage of gates of viable cells and represents an average of 4 

biological replicates with 10.000 events investigated by AnnexinV/PI (n=4; 

**P<0,01; *P<0,02). 
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3.3 SUMMARY 

The data presented in this chapter confirm that SFN has similar effects on neuronal 

cells as previously reported on other cell lines (see 1.1.5). 

The effects of SFN on the cell cycle in PC-12 and SH-SY5Y cells suggest a dose-

dependent increase in the S-phase of the cell cycle, while results in DIFF PC-12 could 

not be obtained due to polyploidy (data not shown). This however is an indirect 

confirmation that the PC-12 cells have actually differentiated (Ignatius et al. 1985).  

In PC-12 cells SFN also increased nuclear protein levels of Nrf2 as well as the Nrf2/ARE 

driven enzymes GST and TR-1 at mRNA levels and HO-1 on protein level.  

SFN dose-dependently induces autophagy and apoptosis in PC-12 and SH-SY5Y 

cells. Autophagy was measured by LC3-II and p62 formation at a protein level, 

transient transfections with autophagy-related plasmids as well as LC3 flux. A 

positive feedback loop between Nrf2 and p62 lead to an increase of p62 samples 

rather than a reduction. Torin and HBSS were used as positive autophagy controls.  

An experiment to assess autophagic flux assessed that SFN is likely increasing LC-II 

levels by enhanced autophagosome formation rather than by inhibition of its 

degradation.  

Further, results of apoptosis assays have shown cell protective properties of SFN 

against H2O2- and 6-OHDA- induced apoptosis in all three cell lines at low dose.  
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4 EFFECT OF SULFORAPHANE ON 

THE EXPRESSION OF DJ-1 AND 

ER-STRESS 
4.1 INTRODUCTION 

DJ-1, or PARK7, is a multifunctional protein associated with Parkinson’s disease (PD) 

pathogenesis. It contains 189 amino-acids and belongs to the Thi/PfpI protein 

superfamily (Gan et al. 2010). DJ-1 possesses antioxidant capabilities, but has also 

been associated with cancer. When mutated, it has been linked to recessively 

inherited Parkinson’s Disease (PD), while wildtype DJ-1 has been shown to protect 

neuronal cells by removing H2O2 in response to oxidative stress (Rannikko et al. 2012; 

Bandopadhyay et al. 2004). The lack of DJ-1 has also been associated with COPD, 

which is a disease that presents a decline in Nrf2-regulated antioxidants (Malhotra 

et al. 2008). DJ-1 is highly expressed in human brain cells (Bandopadhyay et al. 

2004). 

Choi et al. (2006) observed that DJ-1 was irreversibly oxidised in brains of patients 

with idiopathic AD and PD. Brain tissues from five PD cases and five AD cases 

showed an increase in total DJ-1 protein compared to five healthy non-demented 

control subjects, especially in the acidic isoforms of the monomer of DJ-1. Also, 

cysteine and methionine oxidation of DJ-1 could be detected in PD and AD 

samples (Choi et al. 2006). 

Studies on DJ-1-deficient mice have shown indistinct motor deficits and minor 

nigrostriatal dopaminergic dysfunctions as well as higher sensitivity towards some 

toxins, but interestingly none of the mice from these studies presented 

characteristics of PD  such as loss of dopaminergic neurons, nor any major 

behavioural phenotype (Henchcliffe & Beal 2008; Pham et al. 2010). Possibly 

unknown mechanism take over the role of DJ-1 to protect healthy animals against 

the loss of DJ-1. Pham et al. (2010) undertook further research and found that DJ-1 

knockout (KO) mice demonstrated a reduction in dopamine-producing neurons in 

the ventral tegmental area as well as minor changes in behaviour, for instance 

motivational and cognitive dysfunction. Lastly, this study also shows that these KO 
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mice exhibit different measures to compensate the lack of DJ-1, which may be the 

reason no more severe phenotypes were observed - supporting the hypothesis of 

PD being a multifactorial disease. 

Many reports have found a correlation between the absence of DJ-1 and 

increased vulnerability to toxins. Lev et al. (2013) used DJ-1 KO mice to demonstrate 

enhanced sensitivity towards 6-OHDA insults compared to wild-type (WT) 

astrocytes. The DJ-1 KO showed a lower ability to counteract 6-OHDA-induced 

oxidative stress via the cellular mechanisms Nrf2 and HO-1. Also, the activation of 

the Nrf2 pathway appeared impaired in DJ-1 KO astrocytes compared to WT (Lev 

et al. 2013).  

DJ-1 is understood to be an important stabiliser of Nrf2 after its dissociation from 

Keap1 (Clements et al. 2006). Another, more recent study has suggested the 

activation of Nrf2 to be downstream from DJ-1, and that the DJ-1/Nrf2/TR1 interplay 

is important in the cellular response to oxidative stress (Im et al. 2012). Contradictory 

to these reports, Gan et al. (2010) found the Nrf2/ARE pathway to be independent 

of DJ-1. They demonstrated that the Nrf2 activator tBHQ was able to protect primary 

cortical neurons from DJ-1 KO as well as WT mice. Yokota et al. (2003) investigated 

the mechanisms of neuronal cell death caused by absence or mutations of DJ-1 

and found oxidative stress, ER stress and proteasome inhibition to be the inducers 

that can be influenced by DJ-1. Ziaei et al. (2013) showed that SFN could increase 

DJ-1 protein levels in primary corneal endothelial cells obtained from patients 

suffering from Fuchs endothelial corneal dystrophy. These cells demonstrated a 

lower expression of DJ-1 than regular corneal endothelial cells, however, after SFN 

treatment protein expression was improved. Their conclusion was that Nrf2 and DJ-1 

were acting dependant of each other, but their results did not answer which of the 

two is the instigating part. 

Although a few other research groups have briefly mentioned DJ-1 in context of 

SFN, none have investigated this relationship in depth. Our aim was therefore to 

investigate the influence SFN has on DJ-1, if it can protect PC-12 cells from ER-stress 

and if DJ-1 is connected to that. 

Figure 31 shows the presumed relationship between SFN, DJ-1, Nrf2 and autophagy, 

based on several publications (Clements et al. 2006; Im et al. 2012).  
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Figure 31: SFN/Nrf2/autophagy graph including DJ-1 

This simplified graph shows how DJ-1 fits into the SFN/Nrf2/autophagy pathway. It 

only shows the SFN-triggered pathway. SFN can bind to Keap1 by interacting with 

the thiol groups of cysteine residing in Keap1 to impair the ubiquitination of Nrf2. 

With the assistance of DJ-1, Nrf2 then translocates into the nucleus, where it binds to 

the ARE of cytoprotective genes like GST and HO-1. SFN also increases autophagy, 

a process that degrades p62 as part of the protein degradation process. However, 

p62 can also be upregulated by Nrf2, thus binding more Keap1 and, by keeping 

Keap1 occupied, increasing the amount of free Nrf2 in the cytoplasm.  
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4.2 RESULTS 

4.2.1  INDUCTION OF PROTEIN LEVELS OF DJ-1 

Western Blots with total protein as well as cytosolic protein showed that SFN could 

increase DJ-1 expression in a dose dependent manner. Different SFN-treatment 

times were investigated to optimise future experiments (Figure 32, more single 

replicate western blots can be found in the Appendices Figure 62).  

 

 

Figure 32: DJ-1 expression in PC-12 cells after SFN treatment as determined by 

western blot. 

Cells were treated with 0.02% DMSO (vehicle control) or different SFN 

concentrations and incubated for 24h. The blots were imaged using Odyssey 

and data calculated from DJ-1 bands (23kDa) against β-actin (42kDa). The bars 

represent the average of two biological replicates, the western blot at the 

bottom shows one of them. 
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4.2.2  INFLUENCE OF SULFORAPHANE ON CHOP EXPRESSION UNDER ER-STRESS 

First, the ideal concentration of tunicamycin, which is a mixture of homologous 

antibodies (containing uracil, N-acetyl glycosamine, tunicamine and a fatty acid) 

and a well-known ER-stress inducer, was ascertained by western blot against the 

antibody CHOP. CHOP (C/EBP homologous protein) is a protein expressed during 

ER-stress-mediated apoptosis and is therefore a good marker to measure ER-stress. 

SFN did not induce CHOP levels thus ER stress, but both 0.5 and 1µg/ml tunicamycin 

increased CHOP levels at 4h as well as 24h. As this was a basic assessment with sole 

intention to see if tunicamycin could in fact induce ER-stress and that SFN does not, 

a single biological replicate seemed adequate. It was determined that a 4h 

incubation with 1µl/mg tunicamycin is sufficient to increase CHOP levels 

considerably compared to tunicamycin-free samples (Figure 33).  

SFN did not change the tunicamycin-free levels, which were barely detectable, 

however, it was able to reduce the CHOP levels showing the tunicamycin induced 

ER-stress significantly. This could be seen for protein levels (Figure 35) as well as RNA 

levels (Figure 35). 

In addition, 6-OHDA was applied as an alternative ER-stress inducer, in which SFN 

also was able to reduce resulting CHOP levels significantly (Figure 36). 
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Figure 33: CHOP expression in PC-12 cells after SFN and tunicamycin treatment 

as determined by western blot.  

PC-12 cells were treated with either 0.02% DMSO, 2.5 or 10µM SFN or 0.25, 0.5 

and 1µl/mg tunicamycin for either 4h or 24h. The blots were imaged by 

Odyssey and show CHOP bands at 27kDa and actin at 42kDa. The graph 

shows the quantification of CHOP after normalisation with β-actin expressed 

as fold change compared to the vehicle control DMSO at each time point. 

Each bar represents the one biological replicate shown in the blot below. 

 

 

 

Figure 34: CHOP expression in PC-12 cells after SFN pre-treatment followed by 

tunicamycin exposure as determined by PCR. 

PC-12 cells were treated with 0,02% DMSO or 5µM SFN for 24h prior to a 4h 

exposure to either DMSO or 1µg/ml tunicamycin. RNA extractions were 

transcribed into cDNA and then run on an agarose gel before being 

visualised under UV light. 
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Figure 35: CHOP expression in PC-12 cells after SFN pre-treatment followed by 

tunicamycin exposure as determined by western blot. 

PC-12 cells were treated with 0.02% DMSO or 5µM SFN for 24h. This was replaced 

1µg/ml tunicamycin or DMSO for a further 4h exposure. The blots were imaged 

by Odyssey and show CHOP bands at 27kDa and actin at 42kDa. The graph 

shows the quantification of CHOP after normalisation with β-actin expressed as 

fold change compared to the vehicle control DMSO of tunicamycin treated 

cells. Each bar represents an average of 5 biological replicates. 



Chapter 4 | Sandra Bednar 

 

p a g e  95 of 156 

 

 

Figure 36: CHOP expression in PC-12 cells after SFN pre-treatment followed by 

6-OHDA exposure as determined by western blot. 

PC-12 cells were treated with 0.01% DMSO or 5µM SFN for 24h. This was 

replaced by 800µM 6-OHDA in serum-free media or just serum-free media for 

a further 4h exposure. The blots were imaged using the Odyssey and show 

CHOP bands at 27kDa and β-actin at 42kDa. The graph shows the 

quantification of CHOP after normalisation with β-actin expressed as fold 

change compared to the vehicle control DMSO. Each bar represents an 

average of 3 biological replicates. ** P<0.02%. 
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4.2.3  EFFICIANCY OF DJ-1 KNOCK DOWN USING SIRNA 

siDJ-1 was used to simulate DJ-1 knock down in PC-12 cells. The efficiency of this 

siRNA was then tested with western blot (Figure 37, B). Although the blot shown 

indicates that siDJ-1 can reduce DJ-1 levels in SFN-treated tunicamycin-free as well 

as in DMSO-treated tunicamycin samples, this is not the case in any of the others 

within this data set. This inconsistency could be observed in follow-up experiments. 

The graph (Figure 37, A) shows that overall (n=4) no knock down could be 

established. 

10µM SFN might have been a better choice of concentration to see a proper 

induction of DJ-1. 3 of these experiments have been carried out on a lower passage 

number of PC-12 cells, which might be less sensitive to SFN. Due to time constraints 

these assay optimisation ideas could not be addressed.  

The protein collected from the siRNA experiments was also blotted against CHOP 

to see if DJ-1 is involved in the protective effects of SFN. However, due to the siRNA 

not showing a consistent knock down, these results are mere speculation. At least 

they confirm that SFN can significantly reduce tunicamycin-induced ER-stress (see 

Appendices Figure 64, graph only showing siRNA-free samples see Figure 35). 
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Figure 37: DJ-1 expression in PC-12 cells in siRNA knockdown conditions as 

determined by western blot. 

PC-12 cells were treated with siDJ-1 before starting a 24h incubation with 5µM 

SFN. This was replaced by 1µg/ml tunicamycin for another 4h, followed by protein 

extraction. A Blots were imaged using Odyssey and show DJ-1 bands at 23kDa 

and β-actin bands at 42kDa. B shows the fold change of normalised DJ-1 protein 

levels compared to All* DMSO controls. Each bar represents an average of 4 

biological replicates. 
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4.3 SUMMARY 

DJ-1 protein levels were elevated after 24h SFN treatment.  

ER-stress levels could successfully be induced by 1µg/ml tunicamycin at 4h. SFN  did 

not cause ER-stress, but in fact reduce ER-stress levels created by tunicamycin. This 

could be shown by investigating CHOP protein levels as well as RNA levels. The 

western blot results show a highly significant reduction in CHOP levels, while PCR gel 

results are clearly visible, but were not quantified. 

siDJ-1 results were inconclusive. DJ-1 was silenced to investigate any correlation 

DJ-1 has with ER-stress, and if SFN can still protect PC-12 cells when DJ-1 levels are 

diminished. Since none of the blots on DJ-1 to review the effectiveness of the siDJ-1 

showed consistent results, any changes observed when blotting against CHOP are 

negated. Thus, this experiment model needs improving. 
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5 THE ROLE OF AUTOPHAGY IN 

CELL PROTECTIVE MECHANISMS 

OF SULFORAPHANE 
5.1 BACKGROUND & AIMS 
Autophagy has become a popular research field in the recent years. This complex 

process, which is described in more detail on page 37, is responsible for the 

organised degradation of proteins and organelles through lysosomes as a response 

to nutrient limitation to maintain the homeostasis of the cell (Jo et al. 2014). Amongst 

others illnesses, impaired autophagy has also been connected to 

neurodegenerative diseases (Metcalf et al. 2012). Autophagy-inducing agents 

have already shown to have a beneficial therapeutic impact in various mouse 

models of different neurodegenerative diseases (Nixon 2013). 

First reports of SFN on autophagy were carried out in cancer cell lines. Herman-

Antosiewicz et al. (2006) investigated SFN on pancreatic cancer cell lines PC-3 and 

LNCaP. They found that SFN could upregulate autophagosome formation and the 

recruitment of LC3 while also inhibiting the cytosolic release of cytochrome c and 

apoptotic cell death. When autophagy inhibitor 3-MA was added, LC3 production 

was reduced and apoptosis upregulated. As cell death of cancer cells by apoptosis 

is one approach to eliminate cancer, this study focused on the enhancement of 

apoptosis by adding 3-MA. In the previous chapter 3 (page 65) we could show that 

SFN is able to induce autophagy in PC-12 and SH-SY5Y cells. This chapter 

investigates the possibility of autophagy being another important player in the 

protective effects of SFN. By knocking down or out a gene in autophagy, the effect 

of SFN cell survival can be tested in an autophagy-deficient or inhibited cell.  

First, the efficiency of the two autophagy inhibitors, 3-MA and wortmannin, are 

assessed. They both block the autophagosome formation by inhibiting PI3K (Triola 

2015). However, when knocking down pathways with chemical reagents, this 

pathway might find substitute routes to restore its activation. Does chemically 

induced autophagy deficiency reduce the protective effects of SFN against 
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apoptosis? The development of Atg16L1 KO mice enabled an alternative 

methodology to chemical inhibition. 

The protective effects or SFN was shown in many different scenarios and has mostly 

been linked to the activation of Nrf2 (Guerrero-Beltrán et al. 2012; Tarozzi et al. 2013). 

Through the liberation of phase II enzymes as a reaction to oxidative stress, the cell 

can break down the harmful intruders like H2O2, 6-OHDA or other cytotoxins. In the 

absence of Nrf2-driven enzymes, SFN is still able to protect cells, to an extent, from 

toxin-induced cell death, suggesting the involvement of other pathways, such as 

autophagy. 
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5.2 RESULTS  

5.2.1  NEUROPROTECTIVE EFFECTS OF SULFORAPHANE WITH PART INHIBITION OF 

AUTOPHAGY 

3-MA and wortmannin did not significantly inhibit autophagy in PC-12 cells. 

Western blots were carried out to investigate the inhibition efficiency of the 

autophagy inhibitors wortmannin and 3-MA (Figure 38 and Figure 39). Wortmannin 

was blotted against the autophagy marker LC3-II. 5µM SFN on its own increased 

LC3-II levels. However, when paired with wortmannin (100nM), it still showed a minor 

increase in LC3-II protein levels, meaning that autophagosome formation was still 

possible.  

A similar result could be observed with 3-MA (5mM). LC3-II levels were still 

significantly increased when 3-MA was given together with SFN. 

With both inhibitors, a wide variation occurred, which also suggests unreliability. 

Therefore, alternative methods might be more suitable to study the protective 

effects of SFN in an autophagy-free environment.  

SFN decreased H2O2-induced apoptosis in presence of 3-MA. Results suggest that 

SFN cannot rescue as many cells from H2O2-induced apoptosis in the presence of 

3-MA. Instead of increasing the number of healthy cells up to almost 90%, only 80% 

healthy cells could be measured (see Appendix Figure 65, p.153) However, due to 

the fact that autophagy could not be fully suppressed (as seen in Figure 39), these 

results were not explored further. 
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Figure 38: LC3-II expression in PC-12 cells after 24h treatment with SFN in presence 

of wortmannin. 

Cells were cultured in 0.04% DMSO, 5µM and 10µM SFN and/or 100nM 

wortmannin. The blots were imaged by Odyssey and present the LC3-I bands at 

18kDa, LC3-II at 16kDa and β-actin at 42kDa. The graph shows the quantification 

of LC3-II after normalisation against β-actin. Each bar represents the average of 

the bands of 2 biological replicates (error bars = SD; n =2)). 
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Figure 39: LC3-II expression in PC-12 cells after 24h treatment with SFN in presence 

of 3-MA 

Cells were cultured in DMSO, 5µM and 10µM SFN and/or 5mM 3-MA. The blots 

were imaged by Odyssey and present the LC3-I bands at 18kDa, LC3-II at 16kDa 

and β-actin at 43kDa. The diagram shows the quantification of LC3-II after 

normalisation against β-actin. Each bar represents the average of 5 biological 

replicates (error bars = SD; n =5; *P<0.05). 
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5.2.2  ATG16L1 KO PRIMARY NEURONAL CELLS FROM MOUSE EMBRYOS 

Number of KO samples. The Mendelian ratio estimates a 1:4 chance to receive an 

Atg16L1 KO mouse from two Atg16L1 +/- mice (Figure 40). 

 

Figure 40 Simple schematics of the breeding scheme for generating Atg16L1 KO 

mice.  

The red block indicates Atg16L1 KO mouse. The percentage under each mouse 

presents the Mendelian ratio expected. For simplicity, the PGK-Cre inheritance 

has not been shown in the second generation. 

Method development and optimisation. The technique had not been previously 

established in our lab, therefore, through a number of experiments, cell retrieval and 

plating as well as treatment conditions were optimised to minimise waste and 

produce the highest number of viable PNCs per experiment. Since Atg16L1 mice 

have only a small chance of surviving, and that only for a short number of days or 

weeks, it was considered unethical to grow them until birth (Arasteh 2012). Hence, 

primary neuronal cells had to be derived from embryos (E14-16) rather than pups. 

This limited the choices of methods as well as experimental settings, since cell 

numbers were low. Since embryos had to be collected and dissected individually 

to prohibit cell contamination, there was not sufficient time to count the cells before 

plating. Thus, PNCs of each embryo were simply plated in equal parts following a 

protocol sketched out in Figure 41, which resulted in a great data variation between 

embryos. 

Primary neuronal cells were grown as described in the methods. After 7-9 days, full 

differentiation was achieved (Figure 42). 

Immunostainings of Atg16L1 KO and WT PNCs. In WT PNCs punctae can be seen in 

SFN samples, depicted in red (Alexafluor 594 (Figure 43)). These punctae seen are 
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LC3 positive autophagosomes and therefore resemble activation of autophagy. In 

KO cells, stimulation with SFN did not show the same effect, suggesting that 

autophagy is not present in these cells. The p62-Alexa488 staining presented 

inconclusive, which could again be explained by the positive feedback loop 

between p62 and Nrf2.  

A vehicle control and a positive control for autophagy were added to strengthen 

these findings. HBSS and SFN samples both showed punctae formation, while they 

were absent in KO samples (Figure 44). Quantification of autophagosomes punctae 

could be carried out using IMARIS software. Thus, a comparison of ratios 

autophagosomes/cells was carried out to calculate significant increase in LC3 

punctae of HBSS- and SFN-treated samples compared to controls (Figure 45). These 

findings confirmed that autophagy was heavily impaired in Atg16L1 KO samples. 
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Figure 41 This graph shows a sketch of the retrieval of PNCs. 

First, the pregnant mouse was dissected. Next, the embryos were placed into PBS 

in individual wells. The brain was carefully removed and pipette mixed. After 

letting cells rest, the supernatant was removed, spun down and resuspended in 

media + 10% hormones. Cells had to be plated immediately. After genotyping to 

identify Atg16L1 KO samples, experiments were carried out. 

 

 

 

 

Figure 42: Example picture of PNCs after 7 growth days. 
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Figure 44: Images of stained PNCs against LC3-Alexa594 and DAPI. 

Atg16L1 KO and WT PNCs were plated for immunostainings. They were treated 

with regular media (+10% hormones), 0.01% DMSO, 2.5µM SFN or HBSS, a positive 

control for autophagy, for 4h. Then they were stained with DAPI (nuclear stain, 

blue) and LC3 (Alexafluor 594, red). Images taken on the microscope were then 

analysed using the IMARIS software, which detects and quantifies punctae (see 

red dots on grey background). 
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Figure 45: Quantification of LC3 punctae with IMARIS. 

Atg16L1 KO and WT PNCs were plated on coverslips for immunostainings. They 

were treated with only media (+10% hormones), 0.01% DMSO, 1.25µM SFN or HBSS, 

a positive control for autophagy, for 4h. Then they were stained for LC3 

(Alexafluor 594, red) and DAPI (nuclear stain, blue). Images were quantified using 

IMARIS software. Bars represent the average of 5 or 6 images analysed (For the 

WT HBSS sample only 4 images could be taken into account because of an 

extremely high outlier). * P<0.05 compared to Control; # P<0.05 compared to 

DMSO. 
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5.2.3  NEUROPROTECTIVE EFFECTS OF SULFORAPHANE IN ATG16L1 KO PRIMARY 

NEURONAL CELLS 

Finally, PNCs were set up for AnnexinV/PI flow cytometry. This method was first 

optimised. Results show that in WT samples, SFN is able to significantly increase cell 

survival of cells against H2O2-induced cell death. In KO samples, however, this 

protective effect could not be observed, as SFN could only marginally rescue the 

H2O2-treated cells (Figure 46A). As the cells of each PNC source were plated 

individually to separate WT and KO cells, some variation between different data 

sets could be expected. The standard deviation shown as error bars in the diagram 

does therefor not accurately reflect the change observed within a data set, so a 

table was added to present those numbers (Figure 46B). SFN can recover an 

average of 18.18% of cells in WT samples, compared to only 2.94% in KO PNCs.  

During data collection, two different populations could be detected, thus, the 

gating strategy for the AnnexinV/PI experiments in PNCs needed to be assessed 

differently than for the other cell lines that have been used for this project.  For better 

quantification, they were not only calculated as one, but also separately (Gating 

graphs see appendix Figure 66, Figure 67, Figure 68, p.154f). Unfortunately we did 

not have the time nor the tools to investigate this further. However, it could indicate 

that another cell type other than neuronal cells is also present.  
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Figure 46: Effect of SFN on H2O2-induced apoptosis in Atg16L1 KO and WT PNCs 

measured by Flow Cytometry 

A Cells were pre-treated with 0.01% DMSO or 1.25µM SFN for 24h and then treated 

with serum-free media or 100µM H2O2. The treatment was removed after 4h and 

replaced with regular medium. Samples were measured by flow cytometry. Each 

bar represents an average of 4 (KO) and 5 (WT) biological replicates with 5000 

events investigated by AnnexinV/PI (*P<0.05 compared to DMSO control, unless 

otherwise shown; ANOVA and post-hoc t-test/Bonferroni corrected). 

B This table shows the average of the difference in % of healthy cells between H2O2 

and SFN+H2O2 samples within individual biological samples (total population). 
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5.3 SUMMARY 

The autophagy inhibitors 3-MA and wortmannin showed reduced protective effects 

of SFN when given in combination with H2O2. However, western blots to assess the 

efficiency of these inhibitors depicted only partly suppression of the 

autophagosome formation and thus the autophagic pathway. Therefore, as an 

alternative method with most likely a better outcome, PNCs were plated from WT 

or Atg16L1 KO mouse embryos. 

After several optimisation steps, these PNCs were successfully grown. In addition, I 

was able to confirm absence of LC3 positive autophagosomes in Atg16L1 KO cells 

compared to WT when induced by either SFN or HBSS. This could be observed by 

immunostaining. Furthermore, AV/PI experiments indicate the involvement of 

autophagy in the neuroprotective effects of SFN in H2O2 induced cell death.  

AnnexinV/PI results showed two faintly different populations during event collection. 

Therefore the experiment was plotted as was, but also separated in those two 

groups of events. The top population resembled the result of the total population 

almost 1:1.  

Atg16L1 KO samples did not show any significant difference between controls and 

SFN pre-treated samples. Although presented with a low sample number, and 

although the carefully selected concentration of 100µM H2O2 only reduced the 

percentage of viable cells to 80%, WT samples did show that SFN could rescue PNCs 

from H2O2-induced cell death a significant amount. Due to the timely and costly 

procedure as well as availability of KO embryos, these findings could not be 

confirmed during the time at hand. 
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6 DISCUSSION AND FUTURE 

PERSPECTIVES  

6.1 EFFECT OF SFN ON CELL VIABILITY OF PC-12 CELLS 

To assess the bioactivity of SFN in neuronal cells, PC-12 and SH-SY5Y cells were 

selected as cell models. As PC-12 cells represented a novel target for SFN activity, 

cell viability of SFN on PC-12 cells was assessed and an IC50 of 36.9µM following 24h 

exposure to SFN was determined.  

Several recent publications have also reported the effect of SFN on PC-12 cells. 

Exposure to 1µM and 5µM SFN for 24h resulted in reduction of 6-OHDA induced 

cytotoxicity, and a dose- and time-dependent increase HO-1 and Nrf2 protein 

levels (C Deng et al. 2012). Deng et al (2012)  also reported that 6h pre-treatment 

with 5µM SFN decreased 6-OHDA induced ER-stress (Chang Deng et al. 2012). 

In a study described by Izumi et al. (2012), SFN was used as a positive ARE-activating 

control, at a dose of 3µM SFN applied for 9h.  Their preliminary results have shown 

that exposure to ≥10µM SFN over a period of 48h elicited cytotoxicity.  

Throughout the course of the research described in this thesis, doses of 0.625-20µM 

SFN have been used for varying periods of cellular exposure, as followed.  

6.2 EXPRESSION OF NRF2 AND NRF2/ARE-REGULATED ENZYMES IN 

PC-12 AND SH-SY5Y CELLS AFTER TREATMENT WITH 

SULFORAPHANE 

Experiments investigating the effect of SFN on PC-12 and SH-SY5Y demonstrated 

that SFN can induce the expression of Nrf2 and Nrf2/ARE regulated enzymes in both 

cell lines (see 3.2.3, p.70). This was quantified at the protein level by immunoblotting, 

and at the level of RNA by qPCR. These findings are in agreement with several 

previously (see introduction) or simultaneously conducted studies (C Deng et al. 

2012; Morroni et al. 2013). 

More recently, PC-12 cells have been used as a neuronal model to demonstrate 

the protective effects of SFN against 6-OHDA-induced cytotoxicity (C Deng et al. 

2012). Further experimental work reported in this thesis, and conducted in order to 
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understand the underlying mechanism by which SFN protects against 6-OHDA-

induced cell death, demonstrated that SFN could significantly reduce caspase-3 

activation and subsequent cell death, increase HO-1 expression, induce the 

translocation of Nrf2 into the nucleus, and activate PI3K/Akt. SFN has  also been 

reported to enhance HO-1 expression in BV2 microglial cells at a concentration of 

5-20µM when applied for 24h (Foresti et al. 2013). As noted previously, SFN protected 

SH-SY5Y cells against H2O2 and 6-OHDA-induced cytotoxicity, which was attributed 

to  observed increases in NQO1, GST and GR (glutathione reductase) (Tarozzi et al. 

2009). 

The application of SFN in a PD mouse model demonstrated protective effects 

against 6-OHDA induced neurotoxicity (Morroni et al. 2013). Mice were fed with 

5mg/kg SFN twice weekly for four weeks after a unilateral intrastriatal injection of 6-

OHDA, inducing PD-like symptoms. The reduction in motor and coordination 

functions as well as degeneration in dopaminergic neurons was ameliorated 

significantly by SFN. The authors hypothesised that expression of GST was involved 

in mediating these effects, as increases in GST protein levels were observed.  

The research presented in this thesis demonstrates that exposure to SFN can induce 

expression of Nrf2, GST, HO-1 and TR-1 in PC-12 and SH-SY5Y cells, as reported in 

other cell lines (Brooks et al. 2001; Dinkova-Kostova & Talalay 2008; Fimognari et al. 

2008).  

6.3 THE EFFECT OF SULFORAPHANE ON AUTOPHAGY MARKERS IN PC-

12 AND SH-SY5Y CELLS 

As described in chapter 3.2.4 (p. 75), an induction of autophagic markers could be 

observed in all cell lines using several different methods. Immunoblotting data 

indicated increased LC3-II protein levels following treatment with SFN, while the 

effect on p62 expression was unclear. Levels of p62 usually decreased following 

exposure to SFN for up to x hours, as it is degraded during the autophagy pathway. 

However, treatment with SFN for up to 24h resulted in a clear increase of p62 levels. 

This could reflect a positive feedback loop between Nrf2 and p62. p62 is degraded 

during autolysosome formation and therefore  decreased levels of p62 protein 

would be expected when autophagy is activated. However, p62 can also bind to 

Keap1, thus disrupting the association between Keap1 and Nrf2 and releasing Nrf2 
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into the cytosol. Subsequent translocation of Nrf2 into the nucleus results in Nrf2/ARE-

driven gene expression, including the expression of p62 since the ARE is present in 

the p62 promotor (Jain et al. 2010).  A diagram of the proposed molecular 

pathways is presented on page 44.  

SFN has been shown to increase LC3-II protein levels in previous studies, although to 

date none were conducted in PC-12 cells. Most experiments were performed using 

cells, where induction of apoptosis by SFN was the main focus of investigation. It 

was found several reported studies that by adding an autophagy inhibitor (3-MA or 

BAF), SFN-induced apoptosis could be increased in human prostate cancer, and 

breast cancer colon cancer cells (Herman-Antosiewicz et al. 2006; Kanematsu et 

al. 2010; Nishikawa, Tsuno, Okaji, Shuno, et al. 2010). 

In this thesis, an experiment using BAF to block the fusion and thus degradation of 

autophagosomes was used to assess whether SFN increased autophagosome 

formation or elicited inhibition of fusion and subsequent degradation (see chapter 

3.2.4, p. 81). This experiment was based on methodology proposed by Rubinsztein 

et al. (2009) by measuring LC3-II protein levels following cell treatment with a test 

compound, or with BAF, or with both combined; although a chemical may both 

enhance synthesis and decrease degradation simultaneously. In our study SFN 

appeared to primarily induce autophagy by increasing autophagosome synthesis, 

but SFN also activated autophagosome degradation. However, autophagy is a 

dynamic process and the methodology described in this thesis only examines single 

observations; future investigations should utilise live imaging to address this issue.  

Increased autophagosome formation following exposure to SFN was also observed 

after transient transfection of PC-12 cells with p62-tomato red and mRFP/GFP LC3 

plasmids (monomeric red fluorescence protein/green fluorescence protein; see p. 

82f).  GFP-LC3 fluorescence decreases in the acidic lysosomal environment, whilst 

mRFP-LC3 fluorescence does not (Kimura et al. 2007).  By using tandem fluorescent-

tagged LC3, the observed punctae, which correspond with the number of 

autophagosomes, can be separated to differentiate between autophagosomes 

before fusion (showing both mRFP-LC3 and GFP-LC3) and after fusion (showing only 

the mRFP signal). In the experiments described in Chapter 3.2.4 (p. 83), only 

overlapping red and green signals were detected, suggesting that at the time of 

measurement no autolysosome formation had occurred. 
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By combining live imaging with the tandem fluorescent tagged mRFP/GFP-LC3, the 

dynamic process of autophagy could similarly be divided into stages of pre- and 

post-lysosome fusion. 

6.4 THE EFFECT OF SULFORAPHANE ON CELL CYCLE ARREST IN PC-12 

AND SH-SY5Y CELLS 

Cultured PC-12 or SH-SY5Y cells treated with various amounts of SFN (0.625µM-5µM 

SFN in PC-12 and 2.5µM-20µM in SH-SY5Y cells) were harvested and analysed by flow 

cytometry to examine the effects of SFN on the cell cycle (see Chapter 3.2.2, p.68). 

A significant dose dependent cell cycle arrest in the S-stage was observed in PC-12 

cells, and this was also observed in one experiment conducted in SH-SY5Y cells. 

To date, SFN-modulated cell cycle arrest in either PC-12 or SH-SY5Y cells has not 

been reported in scientific literature. Previous reports of SFN-induced cell cycle 

arrest have described arrest mainly in the G2/M-phase, and occasionally in the S-

stage, but these experiments were conducted using cancer cell lines (Herman-

Antosiewicz et al. 2006; Matsui et al. 2007; Kanematsu et al. 2010; Pawlik et al. 2013). 

In cancer cells, cell cycle arrest often results in subsequent p53-mediated cell death 

(Vermeulen et al. 2003). In neuronal cells however, neurodegeneration is 

associated with the activation of the cell cycle, and inhibition of cell cycle proteins 

such as cyclin-dependent kinases can increase neuroprotective effects (Kruman et 

al. 2004). Thus, SFN-induced cell cycle arrest as described in Chapter X could be 

interpreted as a protective effect l for cell function. This could be analysed further 

by examining the effect of SFN upon expression of cell-cycle related proteins such 

as cyclin-dependent kinases. 

6.5 NEUROPROTECTIVE EFFECTS OF SULFORAPHANE IN PC-12, DIFF 

PC-12 AND SH-SY5Y CELLS 

The protective effects of SFN against H2O2 and 6-OHDA-induced cell death was 

assessed by Annexin V/PI flow cytometry, as well as MTT assays (data not shown). In 

all cell lines, increased cell survival was detected, which in PC-12 and DIFF PC-12 

cells was highly significant (see Chapter 3.2.5, p.84). 

Mitochondrial membrane potential has been reported to regulate a cytochrome c 

induction in apoptosis (Gottlieb et al. 2003). To investigate if a reduction in 

depolarisation of mitochondrial membranes was involved in the cytoprotective 
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effect of SFN, a JC-1 experiment was conducted as described in Chapter X. JC-1 is 

a fluorescent probe, which emits a green-orange fluorescence in cells with normal 

polarised mitochondrial membranes, while in depolarised mitochondrial 

membranes it emits only green fluorescence. This can be observed in a 

fluorescence plot by a shift from the FL-1+/FL-2+ to right to the FL-1+/FL-2- bottom right. 

This has previously been observed for SFN in the human myeloid leukaemia cell line, 

amongst other cell lines, however not to a very strong extent  (Jana Jakubikova et 

al. 2005). The results described in the appendix (p. 139) did not reveal the expected 

shift towards the green fluorescence, so it could not be determined whether SFN 

modulated the mitochondrial membrane potential. However, protective effects 

could be observed (p.139; Raw data not shown). 

Other studies have also described a positive effect of SFN on neuronal cell function 

(Guerrero-Beltrán et al. 2010). Vauzour et al. (2010) demonstrated that cortical 

neurons had an increased rate of cell survival against 5-S-cysteinyl-induced toxicity 

when pre-treated with SFN. These authors also reported that expression of NQO1 

and other detoxification enzymes was induced by SFN. 

However, most reported studies have examined the effect of SFN on Nrf2 regulated 

genes, but have not investigated the complexity of potential SFN bioactivity.  

6.6 INDUCTION OF DJ-1 BY SULFORAPHANE IN PC-12 CELLS 

Research presented in Chapter 4.2.1 (p.91) of this thesis demonstrates that SFN is 

able to increase DJ-1 protein levels after a 24h exposure to 2.5, 5 and 10µM SFN. 

DJ-1 is a multifunctional protein, and mutations of DJ-1 have been associated with 

the development of PD. To date, only a few research groups have investigated DJ-

1 in context of SFN bioactivity, for example as an agent to stimulate Nrf2 activity 

(Malhotra et al. 2008; Beal 2009). 

DJ-1 may represent a novel target mediating bioactivity of SFN. This multi-functional 

protein is thought to be important for neuronal cell health, as mutations or absence 

of DJ-1 have been associated with PD (Clements et al. 2006; Rannikko et al. 2012).  

6.7 REDUCTION OF ER-STRESS BY SFN IN PC-12 CELLS 

The endoplasmic reticulum (ER) is an important cell organelle involved in the 

process of synthesis, folding and processing of proteins, amongst others (Loeffler G. 
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2003). DJ-1 transcription is controlled by ER-stress through the transcription factor 

XBP-1 (Duplan et al. 2013). Since DJ-1 has been connected to ER-stress, the current 

thesis assessed whether SFN could protect PC12 cells from tunicamycin-induced ER-

stress. After optimising experimental conditions for tunicamycin, a significant 

reduction of ER-stress could be observed by measuring RNA and protein levels of 

the ER-stress marker CHOP. While PC-12 cells do not display an ER-stress response 

under normal culture conditions, treatment with tunicamycin for 4 hours resulted in 

increased CHOP protein levels. 24 hour pre-treatment of PC-12 cells with SFN, which 

did not modulate CHOP expression alone, significantly reduced the increase in 

CHOP levels induced by tunicamycin. A similar effect was observed when 

tunicamycin was replaced by 6-OHDA. 

This observation is consistent with the findings of Chang Deng et al. (2012) in a similar 

experimental model. Moreover, 6h pre-treatment of PC-12 cells with 5µM SFN 

reduced the cytotoxicity generated by a 24h exposure to 80µM 6-OHDA. SFN was 

also able to reduce homocysteine-induced ER-stress in immortalised human 

hepatocytes (He et al. 2014). That study could show that TR-1 and NQO1 were 

involved in the protective effect of SFN. 

6.8 EFFICIENCY OF DJ-1 KNOCK DOWN USING SIRNA 

In order to investigate whether the ER-stress reduction induced by SFN is DJ-1 

dependent, a knock- down DJ-1 model was created using siRNA, as detailed in 

Chapter 4.2.3 (p.96). Although DJ-1 protein levels were reduced in cells affected by 

siDJ-1, consistent results could not be obtained, and immunoblotting data obtained 

using this model cannot be viewed as informative. 

DJ-1 has been reported to stabilise Nrf2 on its way to the nucleus (Clements et al. 

2006). As mentioned above, Chang Deng et al. (2012) have investigated the 

inhibition of 6-OHDA-induced ER-stress by SFN in PC-12 cells, in addition  to 

underlying mechanisms including possible involvement of Nrf2. The protective 

effects of SFN were reduced in the presence of Nrf2 siRNA, suggesting the activity 

of SFN is at least partly mediated by Nrf2. Although 5µM SFN was sufficient to 

enhance Nrf2 protein expression in the cited paper, 10µM SFN may represent an 

optimal dose to induce DJ-1 expression in our experiment model. Alternatively, a 
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higher concentration of siRNA could be used, relative to 50nM Nrf2 siRNA in the 

cited study. 

Yokota et al. (2003) investigated the relationship between DJ-1 and ER-stress in 

mouse Neruo2a cells by silencing DJ-1 using siRNA. This resulted in increased levels 

of oxidative stress-, ER stress-, and proteasome-inhibition-related cell death. We 

would have expected a similar result in our experiment model. 

While exploring the activity of SFN on DJ-1, it should be mentioned that mutations in 

Parkin and PINK1 (pten-induced putative kinase 1) have equally been associated 

with the early onset familial form of PD, (Wilhelmus et al. 2012). Parkin is an E3 

ubiquitin-protein ligase that plays a vital part in the ubiquitin-proteasome system, 

while PINK1 is important in the regulation of mitochondrial and cellular redox 

balance (Wilhelmus et al. 2012). In order to promote ubiquitination and 

degradation of Parkin substrates, a complex composed of all three proteins is 

formed (PPD complex). All three proteins are involved in mitochondrial dysfunction, 

oxidative injury and faulty functioning of the ubiquitin-proteasome system (UPS) 

(Wilhelmus et al. 2012). Including Parkin and PINK1 in further investigations of ER-

stress, in the presence or absence of DJ-1, might indicate a potential role for DJ-1 in 

the development of PD. 

6.9 REDUCING AUTOPHAGY BY USE OF CHEMICAL INHIBITORS 

Although Nrf2 is probably the most important target of SFN, other mechanisms need 

to be considered when investigating the potential protective effects of this 

molecule. To examine the importance of autophagy in the neuroprotective activity 

of SFN, autophagy inhibitors were introduced into a PC-12 cell model as described 

in Chapter 5.2.1 (p.101). By suppressing autophagy, the current thesis aimed to 

determine whether neuroprotection induced by SFN was ablated in these 

experimental conditions. 3-MA and wortmannin prevent autophagosome 

formation by inhibiting class III phosphatidylinositol 3-kinases (PI3K III), which form a 

complex with Beclin1 and other components during the process of autophagy; and 

both 3-MA and wortmannin are considered useful experimental tools (Triola 2015). 

As detailed in Chapter 5.2.1 (p.101), PC-12 cells were treated with 5µM SFN together 

with 3-MA or wortmannin for 24 hours and LC3-II protein expression was analysed. 

While SFN induced, as expected, an increase in LC3-II levels, both autophagy 
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inhibitors surprisingly either elicited no change relative to control or induced a minor 

increase in LC3-II levels. Therefor an alternative method to inhibit autophagy was 

selected, as described in Chapter 5.2.2 (p.104). 

Zhang et al. (2015) applied 3-MA to PC-12 cells in their investigation of autophagy 

as a regulator of colistin-induced apoptosis. These authors also analysed the protein 

expression of LC3-II relative to 3-MA and only observed a minor decrease in LC3-II 

expression compared to control, but a clear decrease compared to colistin or 

rapamycin was recorded. 3-MA has been utilised in several studies in cancer cells 

in conjunction with SFN; however, SFN and 3-MA were investigated in a different 

context, as these study groups did not demonstrate any immunoblotting data using 

3-MA against LC3 (Herman-Antosiewicz et al. 2006; Kanematsu et al. 2010; 

Nishikawa, Tsuno, Okaji, Sunami, et al. 2010).  

Wu et al. (2010) suggested that 3-MA should be used with caution, it may transiently 

block class III PI3K, while inhibiting class I PI3K permanently; wortmannin has been 

reported to show the opposite binding affinity. 

6.10 GENERATING ATG16L1 KO PRIMARY NEURONAL CELLS AND 

ASSESSING THE PRESENCE OF AUTOPHAGY IN AGA16L1 KO 

AND WT PNCS 

To study the role of autophagy in SFN-mediated cytoprotective effects, WT and 

Atg16L1 KO PNCs were generated (see Chapter 5.2.2, p.104).  We hypothesised that 

the loss of Atg16L1 leads to the loss of autophagy, which could serve as a suitable 

cell model to investigate the neuroprotective effects of SFN in relation to the 

autophagic pathway. Atg16L1 KO PNCs did not show any morphological 

difference to WT cells.  

By investigating the number of LC3-II punctae by immunostaining, it was 

determined that Atg16L1 KO PNCs, unlike their WT counterpart, did not show any 

enhanced autophagosome formation after SFN treatment or starvation with HBSS 

(Chapter X). Thus, autophagy was indeed suppressed in this model.  

Since Atg16L1 is associated with the development of Crohn’s disease, a type of 

inflammatory bowel disease, a number of studies in Atg16L1 mice models have 

generated different gut-related primary cells to study this condition (Stappenbeck 
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et al. 2011). However, to the best of the author’s knowledge, Atg16L1 KO PNCs have 

not yet been studied.  

6.11 NEUROPROTECTIVE EFFECTS OF SULFORAPHANE IN ATG16L1 KO 

PRIMARY NEURONAL CELLS 

H2O2-induced cell death was reduced by SFN significantly in WT PNCs, but not in 

Atg16L1 KO as detailed in Chapter 5.2.3 (p.110). PNCs were pre-treated with SFN for 

24h before H2O2 was added for 4h. Analysis via Annexin V/PI flow cytometry 

detected a significant increase in cell survival following pre-treatment with SFN 

compared to untreated cells, in WT PNCs. However, in Atg16L1 KO cells no 

significant protective effect of SFN was observed, suggesting that autophagy is 

partly involved in the observed protective effects of SFN.  

Only recently, Wang et al. (2015) demonstrated for the first time that SFN can 

protect cells from lipotoxicity through activation of autophagy, and not the Nrf2 

pathway. Umbilical vein endothelial cells (EA.hy926) were pre-treated with 20µM 

SFN for 1h followed by exposure to palmitate (600µM) for 9h, which resulted in 

reduced caspase-3 protein levels in SFN pre-treated cells compared to palmitate 

treatment alone. Although analysis of Nrf2 and HO-1 levels demonstrated a dose-

dependent induction by SFN, inhibiting the Nrf2 pathway via siRNA did not reduce 

the protective effects of SFN. It was also determined that the protective effect of 

SFN was independent of the ERK, Akt and ER-stress pathways. By blocking 

autophagy using BAF or chloroquine (both of which inhibit autophagosome-

lysosome fusion), or alternatively by silencing AMPK, SFN did not induce any 

protective effects.  Therefore SFN may protect EA.hy926 cells from palmitate-

induced lipotoxicity via AMPK-dependent autophagy. It is unusual and surprising 

that the Nrf2 pathway was not involved in meditating the protective effects of SFN, 

so these findings may be specific to EA.hy926 cells.  

In future studies of the neuroprotective effects of SFN, Nrf2 could be knocked down 

in PNCs (WT) to assess the involvement of Nrf2 in mediating SFN activity. Moreover, 

cytoprotection of SFN against toxin-induced cell death could be examined in 

relation to both pathways simultaneously by silencing Nrf2 with siRNA in Atg16L1 KO 

and WT PNCs.  
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The aim of research presented in Chapter 5.2.3 (p.110) was to assess if autophagy 

was an alternative mechanism involved in the protective effects of SFN, possibly in 

conjunction with the role of Nrf2. However, the findings of Wang et al. (2015) suggest 

that autophagy may play an even greater role in cytoprotection than so far 

established.  

6.12 FUTURE PERSPECTIVES 

Based on the data presented in this thesis, the two most intriguing observations that 

should be further investigated are the SFN/DJ-1/Nrf2/ER-stress interaction as well as 

the role of autophagy in the neuroprotective effects of SFN. 

By using a knock down DJ-1 model, the effect of this protein on the cytoprotective 

effects of SFN in ER-stress could be assessed, perhaps in conjunction with silencing 

of Nrf2. Since DJ-1, Parkin and PINK1 have all previously been associated with PD (B 

et al. 2009; Wilhelmus et al. 2012), it would be of particular interest to investigate if 

the expression of Parkin and PINK1 can also be modulated by SFN.  

Further examination into the involvement of autophagy in the neuroprotective 

effects of SFN is an exciting field with many possibilities. Autophagy is a complex 

mechanism that has not fully been established. Owing to its dual role of providing 

energy as well as removing organelles, any impairment of this sensitive system can 

have a detrimental impact. As already described, several neurodegenerative 

diseases have been linked to dysfunctional autophagy (Sanchez-Perez et al. 2012; 

Sarkar 2011). 

The Atg16L1 KO system described in this thesis warrants a more detailed assessment, 

including the effect SFN on Nrf2-regulated enzymes, which can now be studied in 

an autophagy-suppressed environment. 

In addition to investigating the mechanisms underlying the cytoprotective effects 

of SFN, SFN could be studied in human intervention studies, to attempt to correlate 

identified cellular activities of SFN with neurodegenerative disease development 

and outcome. Based on evidence from animal models, Shah & Duda (2015) have 

hypothesised that phytochemicals, such as SFN, may contribute to neuroprotection 

in PD and that adopting a plant-based diet may alter disease progression and 

provide improvement in the symptomatic of PD (Shah & Duda 2015).  
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Apart from the many reports on the beneficial effects of SFN, hormetic effects of 

ITCs  have been described (Bao et al. 2014). Low doses of ITCs may have the 

potential to be either beneficial or harmful, and as the relevant molecular 

mechanisms are not fully elucidated, these should be addressed in future research. 

However, consumption of broccoli is still considered to be a dietary intervention 

which may help to prevent many types of cancers. Several epidemiological studies 

have been performed to examine links between dietary intake of isothiocyanates 

and reduced cancer risk (Verhoeven et al. 1996; Kristal & Lampe 2002), but, to the 

author’s knowledge, no epidemiological research has been undertaken to 

investigate the association of an isothiocyanate-rich diet and neurodegenerative 

diseases.  

In conclusion, this thesis has contributed to the current understanding of the 

biological activity of SFN in neuronal cells.  However, further research is required to 

explain fully the mechanisms underlying the observed neuroprotective effects of 

SFN. Increased dietary intake of SFN-containing food sources could represent a 

simple way to reduce the risk of neurodegenerative diseases, which is of a particular 

interest in today’s increasingly aging society.  
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8 APPENDICES 
8.1 FREQUENTLY USED BUFFERS AND SOLUTIONS 

5x Loading buffer 

0.625M Tris base (Ultrapure)  3.78g 

2% SDS (Sodium Doecyl Sulphate)  1g 

10% Glcerol    5ml 

10x PBS buffer (stock solution) 

 NaCl 80g 

 KCl 2g 

 Na2HPO4 11.1g   pH 7.4 

 KH2PO4 2g     add 1L ddH2O, mix well.  

Lysis buffer (NP40)  for 500ml 

20mM Tris-EDTA/HCl pH 8 for 500ml (add 10ml of this solution) [2mM EDTA] 

150mM NaCl 4.35g 

10% Glycerol 50ml 

1% Nonidet P40 5ml 

Complete volume up to 500ml with ddH2O and MIX WELL 

PBST (Phosphate Buffered Saline Tween-20) 

PBS pH 7.4 containing 0.1% Tween 20 

Transfer Buffer  for 500ml 

 10% Bio-Rad transfer buffer 10x 50ml 

20% methanol  100ml 

70% H2O 350ml 
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REAGENTS TO 

PREPARE 

COMPONENTS 
60MM PLATE OR  

3.2X106 CELLS 

100MM PLATE OR  

8.8X106 CELLS 

PBS/PHOSPHATASE 

INHIBITOR 

10x PBS 0.4ml 0.8ml 

 Distilled water 3.4ml 6.8ml 

 Phosphatase Inhibitor  0.2ml 0.4ml 

 TOTAL REQUIRED 4.0ml 8.0ml 

1X HYPOTONIC 

BUFFER 

10x Hypotonic Buffer 25.0µl 50.0µl 

 Distilled water 225.0µl 450.0µl 

 TOTAL REQUIRED 250.0µl 500.0µl 

COMPLETE LYSIS 

BUFFER 

10mM DTT 2.5µl 5µl 

 Lysis Buffer AMI 22.25µl 44.5µl 

 Protease Inhibitor 

Cocktail 

0.25µl 0.5µl 

 TOTAL REQUIRED 25.0µl 50.0µl 

Table 8: Composition of solutions necessary for nuclear protein extraction 

The nuclear extract kit was purchased from Active Motif (Cat.No. 40010). It did 

not provide the information on concentrations of the phosphatase inhibitor, lysis 

buffer AMI or protease inhibitor cocktail. 

 

 

 

8.2 METHOD OPTIMISATION TABLES AND PROTOCOLS 

8.2.1  CELL CYCLE METHOD OPTIMISATION TABLE 

 

 

 

 

Figure 47: Cell cycle assay optimisation 
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8.2.2  ANNEXINV/PI METHOD OPTIMISATION TABLE AND GATING 

 

 

 

 
Figure 49: Flow cytometry AnnexinV/PI gating for results in Figure 28, p.85. 

SFN protects PC-12 cells from H2O2-induced cell death. 

 

Figure 48: AnnexinV/PI assay optimisation table 
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Figure 50: Flow cytometry AnnexinV/PI gating for results shown in Figure 29, p.85.  

SFN protects PC-12 cells from 6-OHDA induced cell death. 



Chapter 8 | Sandra Bednar 

 

p a g e  138 of 156 

 

 

 

 

8.2.3  PLATING OF CELLS 

Experiment Size of plate PC-12 DIFF PC-12 SH-SY5Y 

Western Blot  6 wells 1x106/plate 20.000/well 1.5x106/plate 

MTT assay 96 wells 1x106/plate 1000/well 2x106/plate 

RNA extraction 6 wells 1,2x106/plate - 1,5x106/plate 

AV/PI 12 wells 70.000-140.000 / 

well/ml 

10.000-20.000 / 

well/ml 

150.000-300.000 / 

well/ml 

Cell cycle 6 wells 1.2x106/plate 10.000/well (12-well 

plate) 

1.5x106/plate 

JC-1 12 wells 80.000/well - - 

siRNA 96 wells 0.5x106/plate - - 

 12 wells 80.000-160.000 / 

well/ml 

- - 

 6 wells 1x106/plate - - 

Table 9: Seeding density chart 

 

 

Figure 51: Flow cytometry AnnexinV/PI gating for results in Figure 65, p.153. 

A dose responsive induction of apoptosis by SFN 
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8.2.4  JC-1 

PC-12 cells were seeded in 12 well plates at a concentration of 80.000 cells/well. On 

day 3, treatment with SFN or DMSO control is started. After 24h, the treatment media 

is replaced by H2O2 containing media and incubated for another 24h. On day 5 the 

staining with JC-1 is started. Treatment media is replaced by 400µl JC-1 at working 

concentration (2µM). The plate is then placed on a rocker for 30 mins. Then the 

media is removed and placed into allocated tubes and spun down. 50µl trypsin is 

added to the remaining cells and after a minute is joined by 250µl of media. The 

media of the previously spun down cells is removed and the 250µl media containing 

the attached cells are added. The pellet is resuspended and put into allocated 

1.5ml Eppendorf tubes, in which the samples are then read on the flow cytometer. 

Results did not show the expected shift towards the right if plotted against FL-1 on x 

and FL-2 on y axis, so the involvement of SFN in change of membrane potential 

could not be determined. However, protective effects could also be observed 

(Figure 52). 

 

 

Figure 52: JC-1 experiment  

PC-12 cells were treated with 0.01% DMSO or 2.5µM SFN for 24h. This was replaced 

by 600 or 800µM H2O2 for another 24h. After 30mins incubation with JC-1, samples 

were analysed using flow cytometry. Each bar represents the average of 2 

biological replicates. 
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8.3 ADDITIONS TO CHAPTER 3 

8.3.1  SULFORAPHANE AND CELL CYCLE IN SH-SY5Y CELLS 

SFN on cell cycle in SH-SY5Y cells. The data collected from SFN treatment on SH-

SY5Y cells presented a stronger indication of S phase arrest (Figure 53). However, as 

control samples could not be collected due to low recovery numbers, no direct 

comparison can be made. Still, looking at SFN-treated samples alone, an increase 

of percentage of cells can be seen in 10 and 20µM SFN (26.94% and 41.22%) 

compared to 2.5µM (22.92). This increase was followed by a corresponding 

decrease in G1 phase cell percentage. G2 phase did not change between SFN 

treatment samples. 

Cell cycle was also assessed in DIFF PC-12 cells, however they showed polyploidy 

and therefore could not be quantified properly. This result however confirms 

previous reports of DIFF PC-12 cells demonstrating this phenomenon, which confirms 

also on cellular level that PC-12 have indeed been differentiated (example graphs 

shown in Figure 54). 
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Figure 53: Cell cycle assay of SFN in SH-SY5Y cells. 

Cells were exposed to media alone, DMSO (0.05%) or different SFN 

concentrations (2.5µM-20µM) for 24h. The distributions of cells in different cell 

cycle stages was obtained using flow cytometry and FlowJo software (n=1). 
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8.3.2  EFFECT OF SFN ON PHASE I I  AND ANTIOXIDANT ENZYME EXPRESSION 

 

SFN on Nrf2 in nuclear protein of PC-12 cells 

 

 

Figure 55: Nrf2 expression in PC-12 cells after SFN treatment as determined 

by western blot. 
PC-12 cells were treated with DMSO (0.02%) or various concentrations of SFN 

(2.5-10µM) for 1h, 2h, 3h or 24h. Nuclear protein was collected and blots were 

imaged using Odyssey. The graph shows the trend of the individual time points 

(2h: n=2; all others: n=1). 

SFN on TR-1 gene expression in PC-12. 2h and 6h RNA samples were quantified 

with qPCR. SFN-treated samples show a fold change of up to 3 fold, as seen 

in the 6h 5µM SFN sample. These results (Figure 56) show a single biological 

replicate carried out in 3 technical replicates. 
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Figure 56: TR-1 expression in PC-12 cells after 2h or 6h SFN treatment as determined 

by qPCR. 

Cells were treated with media alone, DMSO (0.02%), or various concentrations of 

SFN (1.25-10µM) for 2h or 6h. 18S rRNA was used as housekeeping gene. Bars show 

qPCR results as fold change compared to control samples. Each bar represents a 

single biological replicate carried out in 3 technical replicates (n=1). 

 

SFN on GST gene expression in PC-12. 2h and 6h RNA samples were quantified with 

qPCR. SFN treatment samples show an increase in GST expression of up to 2-fold in 

2h and 4.5-fold in 6h samples, with the lower SFN concentrations showing the 

greatest induction (Figure 57). However, this result only shows one biological 

replicate, hence more repeats are necessary for a significant conclusion. 
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Figure 57: GST expression in PC-12 cells after 2h or 6h SFN treatment as determined 

by qPCR. 

Cells were treated with media alone, DMSO (0.02%), or various concentrations of 

SFN (1.25-10µM) for 2h or 6h. 18S rRNA was used as housekeeping gene. Bars show 

qPCR results as fold change compared to control samples. Each bar represents a 

single biological replicate carried out in 3 technical replicates (n=1). 

 

 

Figure 58: TR-1 expression in SH-SY5Y cells after 2h and 6h SFN treatment as 

determined by qPCR. 

Cells were treated with media alone, DMSO (0.02%) or various concentrations of 

SFN for 2h and 6h. 18S rRNA was used as housekeeping gene. Bars show qPCR 

results as fold change compared to vehicle control samples (media only). Each 

bar represents one biological replicate carried out in 3 technical replicates (n=1). 
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Figure 59: GST expression in SH-SY5Y cells after 2h and 6h SFN treatment as 

determined by qPCR. 

Cells were treated with media alone, DMSO (0.02%) or various concentrations of 

SFN (1.25-2.5µM) for 2h or 6h. 18S rRNA was used as housekeeping gene. Bars 

show qPCR results of 2h and 6h experiments as fold change compared to vehicle 

control samples (media only). Each bar represents one biological replicate 

carried out in 3 technical replicates (n=1). 
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8.3.3  NEUROPROTECTIVE EFFECTS OF SULFORAPHANE ON PC-12, DIFF PC-12 

AND SH-SY5Y CELLS  

Dose-dependent increase of apoptosis by SFN in PC-12 cells. The AnnexinV/PI Flow 

Cytometry results (see Figure 60) show that 1.25, 2.5, 5 and 10µM SFN increases 

apoptosis in a dose-responsive manner. From 8.16% cell death in control cells, 

1.25µM already presents 10.8% apoptotic cells, increasing to 28.11% in 10µM SFN 

samples. The cell number in “gate 1” decreased with higher concentrations of SFN 

most likely due to a higher occurrence of debris within the sample. 

 

Figure 60: Apoptosis of SFN on PC-12 cells measured by flow cytometry. 

Cells were cultured in 6-well plates (200.000 cells/well) and treated with media, 

DMSO (0.05%) or various concentrations of SFN (1.25-10µM) for 24 hours at ~70% 

confluency. Collected samples were used with the AnnexinV/PI kit and analysed 

on the flow cytometer. Each bar represents a single biological replicate of 10.000 

events. 

Cell-protective effect of SFN against H2O2-induced apoptosis in PC-12 cells. This 

graph shows two individual experiments consisting of two biological replicates each 

(see Figure 61). By plotting them individually, the in some cases great recovery of 

up to 40% can be seen more clearly. 
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Figure 61: Effect of SFN on H2O2-induced apoptosis in PC-12 cells measured by flow 

cytometry – individual experiments. 

Cells were pre-treated with either DMSO (0.025%) or 2.5µM SFN for 24h. Then these 

solutions were replaced with either serum-free media, 600µM or 800µM H2O2 for 

another 24h. The collected samples were analysed using the AnnexinV/PI kit and 

a flow cytometer. Bars are the average of 2 biological replicates with about 

10.000 events each (n=2; ±SD). 
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8.4 ADDITIONS TO CHAPTER 4 

 

Figure 8.6 Flow diagram of DJ-1 related experiments This lists the experiments planned 

to determine whether DJ-1 can influence the ability of SFN to protect PC-12 cells from 

tunicamycin-induced ER-stress.   
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8.4.1  ANALYSIS OF DJ-1 EXPRESSION AFTER TREATMENT WITH EMETINE, 

ANISOMYCIN AND CYCLOHEXIMIDE 

To investigate the increased DJ-1 levels, protein inhibitors like emetine, anisomycin 

and cycloheximide (CHX) were added to SFN treatment. All three compounds are 

commonly used to block protein synthesis through various pathways. This 

experiment has also been carried out at various time points. Figure 63 shows an 

example of the resulting western blot experiments. Interestingly, protein levels are 

increasing over time, especially in combined SFN + CHX, which suggests that either 

the amount of CHX used was not enough to inhibit protein translation, that the 

production of DJ-1 is in fact not due to an increase in translation, or that SFN itself is 

regulating the production of DJ-1 by inhibiting another protein responsible for 

degrading DJ-1. This was not investigated further. 

Figure 62: DJ-1 expression in PC-12 cells after SFN treatment as determined by 

western blot. 

Cells were treated with 0.02% DMSO (vehicle control) or different SFN 

concentrations and incubated for 2, 3, 4 or 24h. Nuclear protein was collected. 

Blots were imaged with Odyssey and data calculated from DJ-1 bands (23kDa) 

against SAM68 (68kDa). The bars represent one biological replicate. 
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Figure 63: DJ-1 expression in PC-12 cells after SFN and CHX treatment as determined 

by western blot. 

Cells were treated with 5µM SFN and/or 40µM CHX for 0, 1 or 3h. The blots were 

imaged by Odyssey and show DJ-1 bands at 22kDa and actin at 42kDa.    

8.4.2  CHOP EXPRESSION WITH SIDJ-1 

CHOP levels were observed under ER-stress conditions induced by tunicamycin and 

compared to basal levels when cells were transfected either with All* or DJ-1 siRNA. 

No difference could be observed between SFN pre-treated cells exposed to All* or 

siDJ-1. Since the knock-down of siDJ-1 was not successful, these results do not reflect 

any influence of DJ-1 in the ER-stress capabilities of SFN (Figure 64). Although these 

results were not relevant regarding siDJ-1, the findings once again demonstrate the 

capability of SFN to reduce tunicamycin-induced ER-stress in PC-12 cells (which can 

be seen in Figure 35). One biological replicate represented in the DJ-1 Figure 37 

had to be omitted due to outliers. 
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Figure 64: CHOP protein expression and recovery from tunicamycin-induced ER-

stress by SFN in presence of siDJ-1. 

PC-12 cells were treated with siDJ-1 before a 24h incubation with 5µM SFN. This 

was replaced by 1µg/ml tunicamycin for another 4h. Blots were imaged using 

Odyssey looking at CHOP (27kDa) and β-actin (42kDa) levels. The graph shows 

the quantification of CHOP after normalisation with β-actin expressed as fold 

change compared to the DMSO control. Each bar represents the average of 3 

biological replicate. **P<0.02 
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8.5 ADDITIONS TO CHAPTER 5 

8.5.1 ACTION OF SFN AND 3-MA AGAINST H2O2 INDUCED CELL DEATH 

Cell protective effects of SFN against H2O2 induced apoptosis in presence of 3-MA. 

The autophagy inhibitor 3-MA leads to more death in combination with H2O2 than 

H2O2 on its own. SFN cannot rescue as many cells from H2O2 induced apoptosis in 

the presence of 3-MA (Figure 65). However, due to the fact that the autophagic 

pathway could not be fully suppressed with 3-MA (see Figure 39, p.103), these results 

may not reflect an absence of autophagy at all. This however led to a different 

approach, using Atg16L1-KO PNCs instead. 

 
Figure 65: Effect of SFN on H2O2-induced apoptosis in PC-12 cells in the presence or 

absence of 3-MA, measured by flow cytometry. 

Cells were pre-treated with either DMSO (0.025%) or 2.5µM SFN and/or 5mM 3-MA 

for 24h. Then, the treatment solution was replaced with either serum-free media 

alone or 600µM H2O2 for another 24h. The collected samples were analysed using 

the AnnexinV/PI kit and run on a flow cytometer. Results show the percentage of 

viable cells. Each bar represents a single biological replicate with about 10.000 

events each (n=1). 

 

8.5.2  GATING OF AV/PI EXPERIMENTS OF PNCS 

Flow cytometry gate settings. As usual, events were gated to remove any debris 

from further calculation. Next, a graph plotting height and area of the forward 

scatter was used to gate only single cells. A forward and side scanner would 

usually be used as it is to set the gating for apoptosis. However, there was a clear 

differentiation in two cell groups visible, which were therefore gated separately as 

well as together (Figure 66Figure 67Figure 68).  
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Figure 66: General Gating – splitting into top and bottom cells 

 

 
Figure 67: AV/PI graphs of top gated cells. 
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Figure 68: AV/PI graphs of top gated cells 
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8.5.3  GENOTYPING 

 
Figure 69: Atg16L1 genotyping of mice by PCR. Using end-point PCR and gel 

electrophoresis, Atg16L1 alleles were genotyped as wild-type (+/+ or +/-) and 

knock-out (-/-). 

 

8.5.4  COATING PROTOCOL OF PLATES FOR PNCS 

Poly ornithine Coating. A solution of 15µg/ml poly-ornithine solution was prepared. 

The wells were covered with it (1ml for 12well plate) and left in the incubator at 37°C 

over night. 

Poly-D-lysine. A working solution of 50µg/ml was prepared. The surface of the 

culture vessel was covered (400µl for 12well plate) and then incubated at room 

temperature for 1h. The plates were thoroughly rinsed 3x with distilled water, as 

excess poly-D-lysine can be toxic to the cells. The coated plates are left uncovered 

under the hood until the wells have dried. Plates were used the next day, but can 

be stored at 4°C for one week when wrapped tightly in parafilm. 

Before the cells are seeded, the plates are washed twice with sterile water and 

once with sterile filtered PBS. Then the PBS is replaced by DMEM/F12 +10% FBS (v/v) 

and left in the incubator at 37°C for 2h before cells are plated. 


