

University of East Anglia

School of Chemistry

Date: March 2016

The Design and Synthesis of a Novel Thiamine Cofactor for Potential Biocatalysis

PhD Doctoral Thesis of
Ryan Tinson

Submitted in partial fulfilment of the requirement for the award of
Doctor of Philosophy

“This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived from there must be in accordance with current UK Copyright law. In addition, any quotation or extract must include full attribution”.

Preface

The research in this thesis of 260 pages is, to the best of my knowledge, original except where due reference has been made to previous work.

R. A. J. Tinson

March 2016

Acknowledgements

I would like to start by thanking my supervisor Dr G. R. Stephenson for giving me the opportunity to study for a PhD. I am very grateful for the support and advice that has been given to me over the past few years, and the valued skills and opportunities that I have learnt for my future career in research.

I am extremely grateful for the Interreg funding and the amazing memories I have gained during my visits to France and conferences. I have made many new friends/colleagues along the way, and have enjoyed spending time in France embracing the French way of life and their love of strong coffee and beer/cidre.

During my studies, both this side of the English Channel and in Normandy, I have been extremely grateful to meet a collection of lecturers/post-docs who have been kind, welcoming and helpful. These include Dr C. Hamilton for his extensive help in biological testing and interesting discussions about bikes. Dr K. Hamilton for his chemistry advice, kind approachable nature and for giving up his time to proof read this thesis. Dr S. Bew for allowing me to use his hydrogenation equipment and for putting up with my poor taste in lab music. Of CERMN Caen, I'd like to thank Prof R. Bureau and Dr A. Lepallieur for their help with the *in silico* modelling and finally, Dr Y. Chan for all his help, assistance and borrowed lab items (which have all been returned!!) You have all made my last three years much easier and have given wise advice to save precious time.

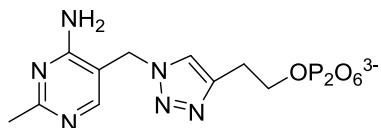
I would also like to thank some special people who have kept me climbing the mountain of stress throughout the PhD. These include, James "mini eggs" Harvey for saving my life in France, Alix "the brummie" Horton and Rebecca "beyonce" Turner for all your great friendships, support and help. I would especially like to say a massive thank you to Dr Julien Doulcet for your welcoming, kind and extremely helpful nature. You have provided me with loads of laughter, a better understanding of the French language (not all good!!) and your love of NOFX which I can now recite perfectly. Other special thanks are to Dr Ketan Panchal for some tasty Indian cuisine, Melton Mowbray pork pies cakes (not bakewell's) and your positive demina which has given great support throughout my studies. During these past three years I have also made some amazing new friends including, Dr Oli McGaw, Dr. Doyle Cassar, Dr. Mark Walton, S. Banananaaaaa, Cesar "Barcelona" Hurtado, Lisa "the marathon" Cooper, Victor Zchorichenko, Sarah Delf, Dr Paulina Glowacka, Fran "who through that snowball" Kinsey, Edmund "poonnnneeyy" Poon, Jamie "Jesus" Martin. I hope to continue my friendship with you all over the future years and share many of laughs together. I'd also like to thank all the other great people in UEA chemistry 3rd floor Organic Chemistry that I have not been able to mention.

Lastly, the support and constant driving force provided by my family Alan, Liz and Rhys, has at times provided a much needed boost to keep me focused and dedicated during this period of study. My family is one of the reasons I choose to study for a PhD and I hope this thesis is enough to achieve that outcome.

Finally, I would like to thank my amazing wife Jo Tinson who has supported me throughout these past three rollercoaster years. She has maintained a positive outlook to my PhD studies and at times, dealt with a very stressful Ryan. She has supported me financially and psychologically throughout and has always kept me laughing and happy, even though she was stressed herself. I am very lucky to have such an amazing wife, especially one that is a great cook, and which has been of great benefit in the concluding stages of my PhD and in writing this thesis.

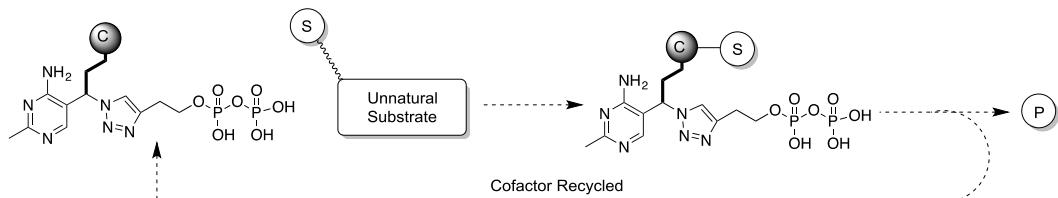
Abbreviations

Ac	Acetyl
Å	Ångstrom
Aq	Aqueous
Ar	Aryl
Abs	Absorption
ADH	<i>Alcohol dehydrogenase</i>
AIBN	Azobisisobutyronitrile
Atm	1 atmosphere = 10 Pa
BBN	9-Borabicyclo[3.3.1]nonane
BINOL	1,1-bi-2,2-naphthol
BOC	<i>tert</i> -butyloxy carbonyl
B.p	boiling point
Bn	Benzyl
BSA	Bovine serum albumin
Bu	Butyl
Bz	Benzoyl
Cat.	Catalytic
CCE	Corey-Chaykovsky epoxidation
Conc/cc/c.	Concentration
CM	Cross Metathesis
CuAAC	Copper catalysed Azide-Alkyne Cycloaddition
d	Days
DABCO	1,4-diazabicyclo[2.2.2]octane
DBU	1, 8-Diazobicycloundec-7-ene
DCM	Dichloromethane
DIBAL-H	Diisobutylaluminium hydride
DIP-Cl	Diisocamphenyl borane chloride
DIPEA	Diisopropylethylamine
Dil.	Dilution


DMAP	Dimethylaminopyridine
DMS	Dimethylsulfide
DMSO	Dimethylsulfoxide
DNA	Deoxyribonucleic acid
DPPA	Diphenylphosphoryl azide
E2	Bimolecular Elimination
Enz	Enzyme
Et	Ethyl
EtOAc	Ethyl acetate
EtOH	Ethanol
Eq.	Equivalent
EWG	Electron withdrawing group
FGI	Functional group interconversion
FMO	Frontier molecular orbital
G2	Grubbs 2 nd Generation catalyst
h	hours (reaction time)
HETDP	2-(Hydroxyethyl) thiamine diphosphate
Hgmm	millimetre of mercury (760Hgmm = 1atm = 760 Torr)
HOMO	Highest occupied molecular orbital
HPLC	High-pressure liquid chromatography
hv	Irradiation with light
HWE	Horner-Wadsworth-Emmons
IPA	Isopropylalcohol
IR	Infra-red spectroscopy
L	Litre
L*	Ligand
LA	Lewis acid
LDA	Lithium diisopropylamide
LBD	Lipoyl binding domains
L/H/S	Left hand side

LUMO	Lowest unoccupied molecular orbital
LTDP	2-(2-Lactyl)thiamine diphosphate
M	Molar
MBH	Morita-Baylis-Hillman
<i>m</i> -CPBA	<i>meta</i> -Chloroperbenzoic acid
MES.KOH	2-(<i>N</i> -morpholino) ethanesulfonic acid
Me	Methyl
MeOH	Methanol
Mins	Minutes
mL	milliLitre
mM	MilliMolar
Mmol	millimoles
Ms	Mesityl
MS	Mass spectrometry
MVK	Methyl vinyl ketone
NADH	Nicotinamide adenine dinucleotide
<i>PDC</i>	<i>Pyruvate decarboxylase</i>
<i>PDH</i>	<i>Pyruvate dehydrogenase</i>
Pr	Propyl
Psi	Pound per square inch
Py	Pyridine
r.t.	Room temperature
secs	Seconds
SM	Starting material
TBAF	Tetrabutylammonium fluoride
TBAI	Tetrabutyl ammonium iodide
TBAPP	Tetrabutylammonium pyrophosphate
TBDMS	Tetrabutyldimethylsilane
ThDP	Thiamine diphosphate
THF	Tetrahydrofuran

TMEDA	Tetramethylethyldiamine
TMG	1,1,3,3-Tetramethylguanidine
TPP	Thiamine pyrophosphate
Ts	Tosyl
Uv/Vis	Ultraviolet/Visible
μM	MicroMolar
μL	MicroLitre
^nBu	n-butyl
Δ	Heat
e.e.	Enantiomeric excess
<i>m</i>	Meta
<i>o</i>	Ortho
<i>p</i>	Para


Abstract

The design and application of enzyme mimics has received more attention due to requirement of green chemistry applications within industry and academia. One way of introducing these modifications is via a cofactor, due to their location within an enzyme's active site. A number of crucial biochemical reactions in the cell require not only the enzymes for catalysis, but also the organic cofactors or metal ions. It is therefore advantageous to utilize this common structural relationship to model a novel enzyme – cofactor system capable of undergoing chemistry not commonly undertaken by this enzyme, and which could be beneficial to the synthetic chemist. Recent research has concentrated on the synthesis of unnatural vitamin B₁ motifs containing a central 1,4 - triazole motif (figure 1) first synthesised by Leeper in 2006.

Figure 1: 1,4 – disubstituted triazole ThDP

Synthesis of a cofactor that could theoretically carry out alternative reaction pathways and invoke novel enzyme-substrate pathways, whilst regenerating the cofactor *in situ* was envisaged (figure 2). Structural analogues of this coenzyme could thus be synthesised to tailor different products, thereby promoting high yields, high stereo/regiochemical control and reduced costs for industrial application.

Figure 2: Proposed novel bio catalytic pathway based on 1,4 -ThDP scaffold

The multi-step synthesis of some model compounds and their testing in *pyruvate decarboxylase* enzyme was successfully completed. Results indicated that only smaller chains are accommodated in the active site and initial attempts to synthesis a tertiary amine tether proved difficult because of intramolecular cyclisations. However, a potential novel route to benzoxyazepines was uncovered by an acid catalysed deprotection, cyclisation, elimination step. Enantiopure synthesis was also carried out, and an initial high ee% was observed, but conditions for this require further development. Lastly, the synthesis of a new difluorophosphate isostere for the diphosphate group was developed in good yield for a potential 1,4-CuAAC of our compound for further biological evaluation in *PDC* enzymes.