Some Statistical Problems in Sequential

Meta-analysis

April 20, 2016



Some Statistical Problems in
Sequential Meta-analysis

Samson Henry Dogo

Supervisors

Prof. Elena Kulinskaya and Dr. Allan Clark

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

at the University of East Anglia,

School of Computing Sciences, Norwich, April 2016.

(©This copy of the thesis has been supplied on condition that anyone who consults it is understood
to recognise that its copyright rests with the author and that no quotation from the thesis, nor any
information derived there from, may be published without the author or supervisor’s prior written

consent.



Abstract

The objective of meta-analysis is to combine results from several independent studies in
order to make evidence more generalisable and provide evidence base for decision making.
However, recent studies show that the magnitude of effect size estimates reported in many
areas of research have significantly changed over time. These temporal trends can be dramatic
and even lead to the loss or gain of the statistical significance of the cumulative treatment
effect (Kulinskaya and Koricheva, 2010). Standard sequential methods including cumulative
meta-analysis, sequential meta-analysis, the use of quality control charts and penalised z-test
have been proposed for monitoring the trends in meta-analysis. But these methods are only
effective when monitoring in fixed effect model (FEM) of meta-analysis. For random-effects
model (REM), the analysis incorporates the heterogeneity variance, 72 and its estimation
creates complications. This thesis proposes the use of a truncated CUSUM-type test (Gombay
method) for sequential monitoring in REM, and also examines the effect of accumulating
evidence in meta-analysis. Simulations show that the use of Gombay method with critical
values derived from asymptotic theory does not control the Type I error. However, the
test with bootstrap-based critical values (retrospective Gombay sequential bootstrap test
for REM) leads to a reduction of the difference between the true and nominal levels, and
thus constitutes a good approach for monitoring REM. Application of the proposed method
is illustrated using two meta-analytic examples from medicine. Two kinds of bias associated
with accumulating evidence, termed “sequential decision bias” and “sequential design bias” are

identified. It was demonstrated analytically and by simulations that both types of sequential



biases are non negligible. Simulations also show that sequential biases increase with increased

heterogeneity.
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Chapter 1

Introduction

1.1 Brief history of meta-analysis

Since the middle of the 20th century, there has been considerable increase in the volume
of scientific research in nearly every field with new findings daily challenging the existing
evidence. There is a need to carefully summarize the available literature and perform a
review of the data. Traditional method of assimilating accumulating information based
on discursive reviews can not adequately provide accurate, reliable and valid summaries
of research (Glass et al., 1984), and thus more objective methods are required. Meta-
analysis is a statistical method that provides the first step to such objectivity (Schmidt,
1992), allows to combine results from many studies and accurately estimate the effect of
interest (Hedges, 1987, Rosenthal, 1978). Such analyses have become a very commonly
used methodology for quantitative review in the medical and social sciences.

Meta-analysis started with a paper on a medical problem by Pearson (1904). He



analysed data on the correlation between inoculation and mortality for different groups
of soldiers across the British Empire and found a statistical significance in the effect
(correlation coefficient). This is considered to be the first meta-analysis. Pearson was
very critical about the consistency of individual study results and how future research
can be improved, and thus his work possesses the characteristics of a correct meta-
analysis (Vorosbcsuk, 2010). Further contributions and advances in the subject were
made by Cochran (1937), Fisher (1934), Pearson (1933), Tippett et al. (1931), Yates
and Cochran (1938). In particular, Pearson (1933) and Tippett et al. (1931) inde-
pendently proposed a method for combining statistical tests using the product of the
p-values across studies. Pearson (1933) commented that “when a number of indepen-
dent tests of significance have been made, it sometimes happens that although few or
none are significant, the aggregate gives an impression that the probabilities are on the
whole lower than would often have been obtained by chance”. These early procedures for
statistically combining results of independent studies, though important, were under
utilized (Cooper, 2007).

The use of meta-analysis in the social sciences and education research started in
the 1970’s, first with publications by Glass (1976) and Smith and Glass (1977) on
integrating findings in education and psychotherapy. Glass (1976) coined the term
“meta-analysis” and defined it as a statistical analysis of large collection of results from
individual studies for the purpose of integrating findings. Meta-analysis is a quanti-
tative statistical analysis of several independent studies on the same topic with the

purpose of testing the pooled data for statistical significance. Glass (1976) argued



that such analyses are needed to contain and make sense of the large volumes of re-
search literature available in education and social sciences. Meta-analysis has gained
acceptance and is now used in many areas of science as the formal statistical method
for quantitative evidence synthesis. It is used in numerous applications to synthesize
and strengthen evidence about the treatment efficacy and provide evidence for deci-
sion making. Meta-analysis helps to decide when evidence of benefit or harm of a new
intervention is statistically significant and scientifically convincing to adopt or reject
the investigated treatment (DerSimonian and Laird, 1986, Leimu and Koricheva, 2004,
Pogue and Yusuf, 1997, Kuppens and Onghena, 2012). It is now accepted in medicine as
the standard statistical technique used for gauging sufficiency in accumulated evidence.
This is evidenced by the rising number of publications using meta-analysis in medical
science which has increased exponentially in recent years. For example, the number of
publications on MEDLINE about meta-analysis has increased from less than 300 in 1985
to more than 3000 in 2005, see Khoshdel et al. (2006), Kulinskaya and Morgenthaler
(2012). In addition, there is large number of books written and published primar-
ily focusing on meta-analytic methods. See Chalmers et al. (2002), Hedges (1987),
Hedges and Olkin (1985), Schmidt (1992), Rosenthal and DiMatteo (2001) for further
information on the history and recent developments in meta-analysis. Introduction to

meta-analysis is provided in Chapter 2.



1.2 Problem of temporal trends in meta-analysis

Meta-analysis is in several ways is a very powerful method of analysis (Arnqvist and
Wooster, 1995). It allows one to go beyond the limits of a single study and establish
what are the consistent findings about an intervention effect. Meta-analysis makes use
of both published and unpublished results, and without it useful information are left
fallow or are at least under-utilized. By combining information from several studies
meta-analysis allows the combined sample size to achieve a higher statistical power for
the outcome of interest compared to the less precise measures derived from single indi-
vidual studies. The precision with which treatment effect is estimated largely depends
on the sample size, and since meta-analysis has larger combined sample size it provides
more accurate estimates of the effect of interest. Meta-analysis facilitates the investiga-
tion of heterogeneity- a measure of inconsistency of treatment effects across all studies,
allows inference on summary estimates and generalisation of evidence. By its ability to
extract clear answers from the research literature, it has made a difference in the lives
of many patients by providing answers to clinical questions about their care, answers
that might not have been obtained from individual studies (Rosenthal and DiMatteo,
2001). Meta-analysis is also used to decide whether enough evidence has been gathered
so that further trials are unnecessary.

However recent publications in many areas of research reveal that scientific evidence
is not static and tends to change over time. New studies either strengthen or challenge

the conclusions of previous findings, resulting in changes in the effects and their vari-



ance over time. For example, Hodgson et al. (1989) found a significant decline in the
sensitivity of chest X-rays in detecting hypersensitivity pneumonitis of about 1.4 % per
annum, which they claimed to be a result of secular trends in knowledge and earlier
diagnosis or changes in the disease itself. Nieuwkamp et al. (2009) found a decrease in
case fatality of aneurysmal sub-arachnoid haemorrhage during the period 1960-1995,
which they attributed to improvement in early diagnostic and treatment strategies.
Similar temporal changes have also been reported in education (Hyde et al., 1990),
medicine (Gehr et al., 2006), psychology (Brugger et al., 2011, Twenge. et al., 2008,
Grabe et al., 2008) to mention but a few. These temporal trends in effect size esti-
mates can be dramatic and often lead to the loss or gain of the statistical significance
(Kulinskaya and Koricheva, 2010). If meta-analysis is conducted by ignoring temporal
trends when trends are actually present, its results and conclusions can be impaired
and any statistical inference about the treatment effect will be misleading. Therefore
appropriate statistical techniques that are suitable for monitoring the trends in changes
in effect size estimates are required so that results and conclusions of meta-analysis can
be interpreted based on the time it was conducted.

A number of sequential methods have been proposed for monitoring the trends in
changes in effect size estimates in meta-analysis, see Lau et al. (1992), Leimu and Ko-
richeva (2004), Pogue and Yusuf (1997), Wetterslev et al. (2008), Higgins et al. (2011),
Whitehead (1997b), Bollen et al. (2006), Kulinskaya and Koricheva (2010), Lan et al.
(2003). The methods allow researchers to gauge sufficiency of evidence (Lau et al., 1992,

Pogue and Yusuf, 1997, Wetterslev et al., 2008) and can be used for monitoring the



trends in effect size estimates (Leimu and Koricheva, 2004, Kulinskaya and Koricheva,
2010, Ioannidis and Trikalinos, 2005). However these methods of monitoring effect size
estimates are based on the solid statistical theory only in the fixed effect model (FEM)
of meta-analysis. For random-effects model (REM), the analysis incorporates the het-
erogeneity variance, 72 and its estimation creates complications in the analysis.
Chapter 3 reviews the standard sequential methods in meta-analysis. A new method
based on the use of Gombay (2003) truncated CUSUM-type test is proposed in Chapter
4. Tt is used for sequential change detection for parametric models involving a nuisance
parameter. The Gombay method consists of a sequence of score tests about a parame-
ter of interest and terminates at a fixed truncation point, see Chapter 4 for a detailed
description of the method. In the application of the Gombay methods in random-effects

model of meta-analysis, the heterogeneity parameter, 72

is treated as a nuisance pa-
rameter, a parameter that is not of immediate interest but must be accounted for in
the course of the analysis. The Gombay (2003) method has solid statistical foundations
and may constitute a better and more efficient sequential approach to monitoring effect
size estimates in random-effects meta-analysis. However, results of simulations given
in Chapter 4 show that the test based on the asymptotic critical values suggested in
Gombay (2003) is disappointing. Results of this Chapter are published in International
Journal of Mathematical, Computational, Statistical, Natural and Physical Engineer-
ing, see Dogo et al. (2015). Therefore bootstrap critical values are introduced in Chapter

5 for the use with the Gombay test for sequential random-effects meta-analysis. It is

hoped that the new method will provide an alternative approach to sequential random



effects meta-analysis as well as stimulate further research on the subject. Results of
this Chapter were submitted as Sequential change detection and monitoring of tempo-
ral trends in random-effects meta-analysis by Samson Henry Dogo, Allan Clark, Elena

Kulinskaya (2015) to Research Synthesis Method for publication.

1.3 The effect of existing evidence on meta-analysis

The idea that results from previous meta-analyses should be used for design of new
trials is widely recognised. For example, the UK Medical Research Council requires a
comprehensive review of existing evidence before funding trials (Glasziou et al., 2006).
The guidelines of several medical journals including the Journal of American Medical
Association and the Lancet state that all reports of clinical trials must include a sum-
mary with direct reference to existing meta-analyses (Goudie et al., 2010).

There are two ways of using existing evidence to inform further research. The first
is using existing information in making decision to conduct a new trial (sequential de-
cision). The second is using previous meta-analyses and systematic reviews to design
the next trial (sequential design). That is both the decision to conduct an experiment
and the subsequent design of this experiment may depend on the results of previous
experiments, and after the new experiment is conducted the results are combined in an
updated meta-analysis.

Sequential and cumulative meta-analysis are established statistical methods in fixed

and random effects models of meta analyses. See Whitehead (1997a); Higgins et al.



(2011); Bollen et al. (2006); van der Tweel and Bollen (2010) to name a very few.
Often, in a sequential analysis after each trial the only decision is whether or not to
add the next trial in a sequence of independent trials. Whilst not advocating the ap-
proach and remarking on its inherent flaws, van der Tweel and Bollen (2010) noted
“The usual approach is to repeatedly test the null hypothsis of equal effectiveness of two
treatments on the cumulative data. If the test result is not statistically significant, a
new trial is added and the test is repeated”. Moreover a systematic review can also lead
to the conclusion that a new trial is unnecessary (Goudie et al., 2010).

Chapter 6 explores a different approach to standard sequential meta-analysis in that
after K studies are accumulated and their results combined, a meta-analyst has an ac-
tive role in decision-making and the design of subsequent, (K+1)th study, participating
in the study team. The effect of evidence from previous meta-analyses on the decision-
making and the biases associated with sequential decision and sequential design are
examined. Results of this Chapter were accepted for publication as Sequential biases
in accumulating evidence by Elena Kulinskaya, Richard Huggins, Samson Henry Dogo

in Research Synthesis Methods on the 27-Aug-2015.

1.4 Outline of thesis

The outline of the thesis is as follows. Chapter 2 introduces the preliminaries of meta-
analysis including the concept of effect size, its measurement and the models used to

combine results from different studies in meta-analysis. Chapter 3 is the introduction



to sequential analysis including some sequential designs and review of the methods for
monitoring trends in meta-analysis. Chapter 4 introduces a new approach to sequential
random-effects meta-analysis. Chapter 5 presents Gombay test for REM with boot-
strap critical values. Problems to do with sequential bias in accumulating evidence are

discussed in Chapter 6. Chapter 7 is the summary and conclusions of the thesis.

1.5 Publications

e Dogo, S. H., Clark, A., and Kulinskaya, E. (2015). A sequential approach for
random-effects meta-analysis. International Journal of Mathematical, Computa-

tional, Statistical, Natural and Phisical Engineering, 9(1).

e Dogo, S. H., Clark, A., and Kulinskaya, E. (2015). Sequential change detection
and monitoring of temporal trends in random-effects meta-analysis. Submitted

on the 15-Oct-2015 for publication in Research Synthesis Methods.

e Kulinskaya, E., Huggins, R., and Dogo, S. H. (2015). Sequential biases in accu-
mulating evidence. Accepted for publication in Research Synthesis Methods on

27-Aug-2015.



Chapter 2

Preliminaries of meta-analysis

This Chapter presents the basics of meta-analysis which are fundamental in understand-
ing the methodologies used in this research. The first Section describes the theoretical
concept of effect size and its measurement. The second Section discusses the two mod-
els: fixed and random-effects models used to combine results from individual studies in

meta-analysis and their statistical properties.

2.1 Theoretical concept of effect size

Traditional methods to establish the presence or otherwise of a treatment effect in a
study are often based on the use of p-values, the probability of observing results in the
study (or results more extreme) given that the null hypothesis is true. However the
p-value is not reliable and has many controversies. The p-value depends on the sample

size, see Sullivan and Feinn (2012), Lin et al. (2013). For example, the p-value of a

10
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Figure 2.1: Relationship between sample size (n) and the average p-value calculated
from data generated from 100000 simulations of z ~ N(ug,0%/n), Hy : po = 0, 0 =
0.025 and sample size n.

two-sided single sample t-test is calculated as

X—p
s/v/n

p-value= 2 x tedf,, 1 {—

} (2.1)
where X is the sample mean, s is the sample standard deviation, n is the sample size
and tcdf,_1 is the cumulative t-distribution function with n — 1 degrees of freedom.
Using this formula, a simulation was conducted to explore the relationship between
the p-value and the sample size. To do this, data were generated from the normal
distribution & ~ N(ug,0?/n), and the p-value was calculated using (2.1) with u = gy,
0? = 0.025 and n taking values from 1 to 500. The procedure was repeated 100000
times for each value of n and the average of p-values plotted against n, see Figure 2.1.
Clearly, the p-value depends on the sample size n, in fact the p-value tends to zero with

11



increase in the value of n. Therefore, even when there is no treatment effect of practical
importance, increase in sample size can lead to a very small p-value and thereby results
in false rejection of the null hypothesis (false positive result). The p-value does not
inform the researcher of the benefits, harms or magnitude of the treatment effect.
If the p-value is small and the null hypothesis is rejected, the researcher can only
conclude that the treatment effect is significantly different from zero which has no
practical relevance. Anscombe (1956) remarked that the use of p-value is irrelevant,
what is needed for researchers is the effect size and its standard error. Effect sizes are a
necessary compliment to statistical significance testing because they provide important
information that such tests alone can not offer (Ledesma et al., 2009).

Effect size is an alternative statistical tool for evaluating the effect of a treatment. It
measures how large or small is a relationship between two or more variables in sampled
data. Effect size is the common currency that summaries the findings from a specific
area of research (Becker, 2000). It is an objective and standardized measure of the
magnitude of the observed effect (Field, 2005). For binary data it is often calculated as
odds ratio, risk difference or relative risk. For continuous data it is often calculated as
mean difference, means ratio, standardized mean difference or correlation.

Effect sizes are usually presented with their confidence intervals. The confidence
interval (CI) is an interval containing the population parameter with a specified level
of confidence.

There are many ways to construct the confidence intervals for effect size including

the inversion approach (see Venables (1975), Harlow et al. (1997)), bootstrap method

12



(see Efron (1987), Efron and Tibshirani (1994), Efron (1982)), and the most commonly
used method which relies on the asymptotic normality of the distribution of effect size
(Hedges and Olkin (1985);Hess and Kromrey (2004). The following Sections present the
common effect size measures in meta-analysis together with their confidence intervals,

based on the asymptotic normality. These CI's at (1-a)% are generally given by

Cl =y £ 21_q/2V/var(y), (2.2)

where y is the effect size measure and z;_,/, is the (1—a/2)-th percentile of the standard

normal distribution.

2.2 Effect size measures

There exist different types of effect size measures used in meta-analysis depending on
the type of data and the objective of the research. Here we consider only those that

are relevant to this research.

2.2.1 Effect size measures for continuous data

In meta-analysis, effect size measures for continuous data are used when studies out-
comes are measured on a continuous scale. These outcomes include variables such
as height, weight, blood pressure and temperature. The research interest is usu-
ally focussed on comparing mean difference or ratio between treatment and control

groups (Sutton et al., 2000). The effect size measures for continuous data are grouped
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into two families, the d (difference) and r (relationship). We begin with the d family,

starting with mean difference.

2.2.1.1 Mean difference

The mean difference measures the amount by which a treatment intervention changes
the outcome on average compared with the control. It is useful when different studies
outcomes are measured on the same scale.

Consider a study in which the outcomes are measured as means in two groups,
treatment and control, and the focus is to compare the means. Let u; and p. be the
means of the treatment and control groups estimated by the sample means X; and X,

respectively. The mean difference is given by
0 = py — e, estimated by 9 = X, — X... (2.3)

Its variance is given by

~

var(v) = % + Z—é‘, estimated by var(v) = i—tj + i—é, (2.4)

2

where ¢ and o2

2 are the variances of the treatment and control groups estimated by

their sample variances S? and S?, respectively, and n; and n. are the sample sizes of
the treatment and control groups, respectively. The mean difference has the advantage

of easy computation and it is easily interpretable.
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2.2.1.2 Standardized mean difference

The mean difference effect size depends on the units of the measurements of the studies

outcomes, and thus can not provide any meaningful information to the researcher when

scale differs across the studies. To address this problem, the mean difference in (2.3) is

scaled by dividing it with an appropriate standard deviation to obtain the standardized

mean difference effect size measure. The standardized mean difference conveys the size

of the effect relative to the variance in the sample data. The main assumption is that
2 2 2

the variance is constant across the groups; o, = o; = 0°. There are three different

ways described below to define the standard deviation in the denominator.

Glass’s Delta

According to Glass (1976), the most reasonable procedure to calculate the effect size is
to divide the mean difference by the control group standard deviation. His argument was
that pooling two variances could lead to different standardized values of the identical
mean difference within an experiment where several treatments were compared to a

control (Hedges, 1981). Glass’s delta is given by

A = BB estimated by A= %, (2.5)

c

where S, is the estimate of the control group standard deviation. The variance of

Glass’s Delta is calculated by

Ny + Ne A?
A) = . 2.
var(A) o + 2(n. — 2) (2.6)
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The differences in sample variances across groups can introduce bias in the effect size
estimate thereby makes the Glass’s Delta unreliable. We do not pursue this measure

further.

Cohen’s d

This effect size measure was proposed by Cohen (1988) as the mean difference divided
by the pooled standard deviation to correct the likely bias in the Glass’s Delta effect

size estimate. The Cohen’s d is given by

d = F=Ee | estimated by d= th;fc, (2.7)

where

5, = \/(nt —1)SZ + (n. — 1)52. (2.8)

Ng + Ne

The variance of the Cohen’s d is given by

. 2
var(d)= M= Me 4 (2.9)

M 2(ny — ne)

Hedges (1981) g

This is another alternative standardized mean difference estimator of the effect size

given by
X, — X,
== ‘< 2.10
9= "5, (2.10)
where S,y is the pooled standard deviation suggested by Hedges (1981) as
(ne — 1)S? + (n. —1)S2
Sy = <. 2.11
pH \/ ng+ne — 2 ( )
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The Hedges’s ¢ is biased especially when the sample size is small. Hedges and Olkin

(1985) proposed a correction factor given by

and the approximately unbiased estimator is given by

g =gxJ (2.13)

In general, the standardized mean difference effect size is easy to calculate and
has consistent interpretation across different research studies. However, the unit-less
values of its estimates require a more sophisticated acquaintance with the details of the
application (Gibbons et al., 1977). Moreover, standardized mean difference effect sizes
are only useful when research findings are not required to be expressed in the units of

their measurement.

2.2.1.3 r family

The r or correlation family of effect sizes includes measures of the association between
two variables. Correlation is well known to many researchers and is the most widely
used effect size measure (Field, 2005), especially when research interest is in the rela-
tionship between variables in the treatment and control groups. The r family include
the Pearson’s product moment correlation () when both variables are continuous, the
phi coefficient(¢) when both variables are dichotomous, point biserial coefficient (r,)
when one variable is continuous and one is dichotomous, and the Spearman’s rank cor-
relation coefficient (rho (p)) when both variables are ranked.
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When the population correlation is close to 1 the distribution of its sample estimates
becomes skewed (Rosenthal et al., 1994) and this makes the correlation r unstable. Also,

it makes the combination and interpretation of correlations difficult and complicated.

1+r

The Fisher’s transformation, Z = %log (ﬁ) is usually used to stabilize the variance
of the sample correlation. The distribution of Z is approximately normal with variance
equal to 0*(Z) = (n —3)~!, where n is the sample size. The Fisher’s transformation, Z

is the effect size measure usually used in meta-analysis of Pearson correlations.

2.2.2 Effect size measures for binary data

A binary outcome is a response which assumes one out of two values. These values
may be in the form of yes or no, agree or disagree, success or failure, effective or
ineffective, exposed or unexposed, conform or not conform, etc. In many sciences,
experiments are often conducted to compare treatment and control groups with the
outcomes measured on binary scale. Table 2.1 is an example of a contingency table
showing how binary outcomes from comparative studies can be summarised. In the
next sections, the common effect size measures for binary data used in meta-analysis

are presented.

2.2.2.1 Risk difference

The risk difference is an important effect size measure often used in meta-analysis. It
describes the absolute changes in the risk that are attributed to the treatment arm. It is

simply the difference between the probabilities of an event in two groups. Consider an
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Table 2.1: An example of a contingency table for binary outcomes in comparative

studies
No. having event | No. not having event | Sample size | P(event)
Treatment Group | X ng — X ng ﬂ = X/ny
Control Group Y Ne—Y Ne ﬁc =Y/n,

experiment in which two groups, treatment (t) and control (c¢) are compared in respect
to outcomes measured on a binary scale. Let P; and P, denote the probabilities of the
event, and n; and n. be the sample sizes of the groups, respectively. The risk difference
effect size is estimated by

RD=P — D, (2.14)
and its variance is given by

var(RD) = Pl =Po) Pl =Py (2.15)

Uz Uz

Risk difference is the simplest procedure for estimating the effect from binary outcomes.
However the range of its variability is restricted by the magnitude of the probabilities

P, and P, (Hedges et al., 1999) which is a major disadvantage to the effect size.

2.2.2.2 Relative risk

Relative risk is widely used in medicine because it is easy to understand and interpreted

by both clinicians and the patients. It is simply the ratio between the probabilities of
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an events in the treatment and control groups. Relative risk is estimated by
RR = P,/P,, (2.16)

and it takes values from 0 to oo. The variance of the log of its estimate is approximately

1-P, 1-PFP.
+ .
ntPt ncPc

var(log P/{f{) ~ (2.17)

2.2.2.3 0Odds ratio

The odds is another form of expressing probabilities, and it is widely used in gambling.
The odds is the ratio of the probability that an event of interest occurs to the probability
that it does not occur. When binary experimental outcomes are generated from two
treatment arms, the effect size can be measured by the ratio of the odds of the event of
interest between the two groups and the parameter is called the odds ratio. Odds ratio

is estimated by
P./(1-P,)

N== —, (2.18)
P./(1 - P)
and the variance of the sample log odds ratio is approximately
N 1 1 1 1
var(log7) = + (2.19)

nPy  ng(1 —Py) + n.P. * n.(l—P,)’
Remark 2.2.1. [t is important to note that we do not provide a detailed discussion of
the effect size measures presented above. The usage of any of the effect size measure
depends on the objectives of the study, the practical importance and the type of scale
in which the studies outcomes were measured. FEffect size measures should be chosen
in such a way that the results of meta-analyses are easily interpretable and comparable

across all studies.
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2.3 Models for combing results in meta-analysis

A fundamental issue in meta-analysis is the choice of an appropriate model that de-
scribes the underlying effect sizes from the different studies. There are two models used
to combine results in meta-analysis; the fixed- and random-effects models (Hedges and
Vevea, 1998, Hunter and Schmidt, 2000, Sutton et al., 2000). These models use differ-
ent assumptions that lead to a different calculation and interpretation of the combined

effect.

2.3.1 Fixed effect model

Fixed effect model (FEM) of meta-analysis assumes that all the included studies inves-
tigate the same population and therefore share a common location parameter. Denote
by v1, y2, ..., yx the estimates of treatment effects derived from K studies. When yis

are sample means or mean difference, the fixed effect model is given by

where 6 is the common location parameter, e; ~ N(0,0?) is the sampling error, o? are
the within-study variances, for i=1, 2, ..., K. For other effects measures, approximate
normality of y!s holds when the sample sizes n; of the studies are relatively large.
Appropriate estimates S? of the variances o? are easily calculated for all effect sizes used
in meta-analysis and are habitually treated as known constants (Viechtbauer, 2007).

In FEM, each study is assigned a weight proportional to the inverse of the within-
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study variance, which is denoted by w; = 1/S?. The combined effect is estimated as a

weighted mean of the individual effect estimates given by

K
where W = > w;. The variance of the combined effect is given by the inverse of the
i=1

sum of weights, W1,

2.3.1.1 Inference in FEM

Standard inference in FEM is based on approximate normality of the distribution of
the combined effect, éFEM ~ N (6, W=1). Therefore the confidence intervals of the

population treatment effect are given by
~ 1
QFEM + Zlfa/ZW_E. (222)

To test the hypothesis for the presence or otherwise of a treatment effect, Hy : 6 =0

against H; : 6, # 0, the Wald’s statistic
Zy = W%|éFEM| (2.23)

is compared with the critical values for the standard normal distribution.

Often, in order to test the hypothesis of homogeneity of treatment effects, Hy : 6; =

0y = ... = Ok = 0 against §; # 0;, for some 7 # j, the Cochran Q statistic
K
Q= Z wi(y; — Open)’. (2.24)
i=1

plays an important role in meta-analysis. It is widely used in inference on heterogeneity
of treatment effects. The Q statistic is routinely assumed to follow the chi-square
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distribution with K — 1 degrees of freedom 2 _,, though this is true only for very large

sample sizes, see Hoaglin (2015).

2.3.2 Random-effects model

Random-effects model (REM) is generally preferred to the fixed effect model (Hunter
and Schmidt, 2000) due to its ability to account for variation across the studies. The
random effects model allows generalisation of mean effects 6; across studies and it
assumes that they are sampled from a population of parameters with mean #. Random-

effects model is a two level model given by

yi = 0; +ei; e, ~ F(0,07)
(2.25)
0; =0+ €5 € ~ G(0,7%),
where F' and G come from an arbitrary short-scale families of distribution and o? and

72 are the within- and between-study variances, respectively. The most popular choice

is two normal distributions. Then marginally the random effects model is defined by

yi=0+&; &~ N0, 72 + 01-2). (2.26)

The between-study variance, 72 describes the degree of inconsistency among the effect
estimates. The special case where 72 = 0 implies that the effect sizes, 6, = 0, = ... = O
are homogeneous (Viechtbauer, 2007), and the resulting model reduces to FEM in
(2.20). The weights assigned to studies in REM are inverse variance weights defined by

*

wi = w;(7?) = (72 + 0?)7!. Estimated values of 72 and o2 are substituted in practice.

Similar to FEM, the combined effect in REM is estimated as a weighted mean of the
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individual effect estimates, Oppy = S wiy;/ S wr.
5 i

2.3.3 Mixed-effects meta-regression model

Effect estimates on some study-level covariates such as patients mix, time, climate
change, etc. This increases heterogeneity between the studies effects, and it is difficult
to use the standard random-effects model to describe the results. Meta-regression model
allows results from studies to relate to study-level covariates. The mixed-effects meta-
regression model is based on the assumption that y;|z; ~ N(z;8,72 + 0?), where y; is
the estimated effects from the ith study, i =1, 2, ..., K, x; is the vector of the study
level covariates and [ is a p x 1 vector of regression parameters. Thus the model is
described by

yi = ;B +0; +e;; 0; ~ N(0,7%) and ei ~ N(0,0?). (2.27)

Equivalently, matrix form (Jackson et al., 2014) of this model is
Y|X ~ N(XB,A+721), (2.28)

where Y is a column vector containing the y;, X is the K x p design matrix whose ith

row is z;, A is a diagonal matrix containing the o? and I is K x K identity matrix.

2.3.3.1 Estimation of heterogeneity in treatment effects, 72

The between-study variance, 72 has a crucial role in assessing the degree of consistency
of treatment effects across the studies (Higgins et al., 2003), and thus its estimation is an

important issue in meta-analysis. This section introduces some of the common methods
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for estimating 72. Each method differs in terms of precision and bias in estimating 72,
and therefore may have a different effect on sequential testing of the treatment effects.
In Sections 4.3 and 5.2, the DerSimonian and Laird (1986), Higgins et al. (2011), Paule
and Mandel (1982) and REML estimators of 72 are used to examine by simulation how

this affects the sequential testing for random-effect meta-analysis.

Method of moments

Suppose, a; are constants corresponding to the effect estimates y; for i=1, 2, ...., and

that the combined effect, § = 3" a;5;/ 3" a;. Then the expected value is

E {Za(y - é)?} = Zai(7'2 + 02 /n;) — Zaf(# +02/n;)/ Za (2.29)

where 0? and n; are the variances and sample sizes, respectively (DerSimonian and

Kacker, 2007). Equation (2.29) can be simplified to obtain

E {Z a;(y; — é)Q} =72 {Z a; — Za?/Zal}—i—{Z azo?/n; — Z (aiaf/ni)/Zai} :
Z A Z Z (2.30)

Substituting S? for ¢ and solving (2.30) for 72, the moment estimator of 72 is given

by

> ai(y: — 0)* — {ZaiSf —~ Za?Sf/Zai}

z Sa-yalYa

7

(2.31)

~2 .
MM =
The value of 7%;,, is constrained to non-negative values, and the constants a; are usually

chosen as the weights assigned to the studies.
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The Cochran (1954) method

The Cochran (1954) method is a moment method where a fixed constant 1/ K is assigned
to each study as the weight, and K is the number of studies in the meta-analysis.
The combined effect is determined by the arithmetic mean of the effect estimates,
0o = f:lyi/[(. Substituting 0o for 6 and 1/K for a; in (2.31), the Cochran (1954)

estimator is defined by

K 1 K
- - 02— 2
=2 Wi~ 0o) K;S” (2.32)

i=1

and is also constrained to non-negative values.

DerSimonian and Laird (1986) Method

The DerSimonian and Laird (1986) estimator can be calculated by substituting w; =

n;/&? in (2.31). The estimator is given by

) Q- (K-1

i, =2 (2.33)
K
Sw

K . K
where Q = " w;(y; —0)? and C' = > w; — *
i=1 =

=1

Il
=
oo

o

Il
—

wg

Higgins et al. (2011) Method

Higgins et al. (2011) proposed an estimator of 72 specifically for sequential testing. The
estimator is modified from DerSimonian and Laird (1986) method using semi-Bayes
approach and is defined by

Ty = —————=, (2.34)



where A and 7 are parameters of a prior inverse gamma distribution for 72.

Paule and Mandel (1982) Method

Denote w}(7%) = (72 + 02) !, the weights assigned to studies in REM as a function of
72, Define Q(72) = S wi(72)(y; — 0(72))2. The Paule and Mandel (1982) estimator of
72 is calculated from the solution of the estimating equation for the expected value of

the @ statistic under Hy given by
Q*(%) — (K —1) =0, (2.35)

The Paule and Mandel (1982) estimator is statistically optimal, in the sense that the
estimator is not biased and has minimum variance, when the distribution of the effect
estimates is normal. However the method does not generally require any normality

assumptions (DerSimonian and Kacker, 2007).

Maximum likelihood method

All the methods discussed above are moment estimators with the exception of Paule and
Mandel (1982) which is iterative. There are other alternative approaches for estimating
72 based on maximum and restricted maximum likelihood. The standard assumption
in random-effects model is that the distribution of the effect estimates is normal, y; ~

N (6, 7% + ¢2). The log-likelihood function of § and 72 is then given by

1(0,7%) = —%Zlog(TQ +0?) — lzw +C, (2.36)

2 72+ o?
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where C is a constant. Setting the partial derivatives with respect to # and 72 equal to
zero and solving the resulting equation, the maximum likelihood (ML) estimates of 6

and 72 are given by

Orpar = Swiys/ Swi and 7y, = ot i € (2.37)

where w; = (72+07)7! is the weight assigned to studies in REM. The solution of (2.37)
is determined iteratively starting with an initial value 735,, = 7¢, and should the result

converge to a negative value, it is truncated at zero (Viechtbauer, 2007).

Restricted maximum likelihood method

In a finite sample the maximum likelihood estimator, 7,; underestimates the popula-
tion heterogeneity (Corbeil and Searle, 1976), and it is negatively biased (Corbeil and
Searle, 1976, Viechtbauer, 2005). The restricted maximum likelihood (REML) is the
alternative approach to correct the underestimation. Its log-likelihood function is given

by

1 yi — 0
2\ _ 2 REM)
T)——§ZIOg(T + o) logZT2+U ——Z T o2 +C’, (2.38)

where C is a constant. Setting the partial derivative equal to zero and solving the

resulting equation, the restricted maximum likelihood estimate is given by

- > w?[(yi — Orr)* — 07 L !
2w 2wy

(2.39)

and also computed iteratively in the same manner as in 73;;.
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2.3.3.2 Confidence intervals for 72

The confidence interval (CI) for 72 indicate the precision with which the heterogeneity
variance is estimated. It contains important information for the associated analysis
of heterogeneity (Viechtbauer, 2007). Several methods for constructing the confidence
interval for 72 have been proposed, but presented here are only a few that can be applied

to the estimators of 72 discussed in Section 2.3.3.1.

Wald-type confidence intervals for 72

From the maximum and restricted maximum likelihood functions of 72 in equations

(2.36) and (2.38), respectively, it can be shown (Viechtbauer, 2007, Rao et al., 1981) that

the variances, var(73;;) = 2> w? and var(T3py.) = 2 (Z w? —2

Sl (Zw)?\ 7T
Sw T <Zwi>2> :
Based on the asymptotic normality of 7%,; and 75,,7 the 100(1 — )% Wald confidence

intervals for 72 are given (Biggerstaff and Tweedie, 1997, Viechtbauer, 2007) by

T 21-a/24/ 2 Z w? (2.40)

and

I L Tu (T
TremL F 1—a/2\/2 (Z ; ZZwi+<Zwi)2) , (2.41)

where 2(1_q) is the 100(1 — «/2)th percentile of the standard normal distribution.

Biggerstaff and Tweedie (1997) method

The Biggerstaff and Tweedie (1997) method is based on the Cochran Q-statistic given
in equation (2.24) and used for constructing CI for 72 estimated by DerSimonian and
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Laird (1986) method. The expected value and variance of the Q-statistic are given by

BIQI = (K — 1) + (S + &) 72 and var[Q] = 2(K — 1) +4 (S + £ ) 72 +2 (5, + 28

(2.42)
where S; = ) (w;)” and K is the number of studies. Using this, Biggerstaff and Tweedie
(1997) proposed to approximate distribution for 72 by a gamma distribution with shape
and scale parameters given by v(72) = (\IIEa[TQ[]c,%}Z and ¢(7?) = %512], respectively. Let
f(y/7(7?)) be the approximate density of 72, the 1 — a percent CI is the obtained

1ggerstall an weedie, 1 lechtbauer nding the two values of 7¢ that
(B'gg ffand T die, 1997, Viechtb ,2007) by finding th | f 72 th

satisfy the following equation

o0

/ Fu/ (7)) = a2 (2.43)

Q/¢(7?)

Profile likelihood method

The profile likelihood method uses the contour plots of the profile likelihood of 72 to
construct CI, see Viechtbauer (2007), Hardy and Thompson (1996). A contour plot
is a two dimensional plot that shows one-dimensional curves, called contour lines. In
other words it is a plot that displays 3-dimensional relationship in two dimensions. For
example, a 95% CI of 72 can be obtained when contour plots of the profile likelihood

of 72 satisfy the equation

L(TQ) > L(7A'2) — 384/2, for L(TQ) = _% Zln (7-2 + 0-12) . %IHZ <T2J1FU2> _ %Z (yi—0)?

T2+O'Z~2 ?

(2.44)
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where 3.84 is the 5% point of the x? distribution (Viechtbauer, 2007, Hardy and Thomp-

son, 1996).

Bootstrap confidence intervals

Viechtbauer (2007) proposed the use of parametric and non-parametric bootstrap pro-
cedures for obtaining the Cls of 72. In this method, a set of B bootstrap estimates {77:
b=1, 2, ..., B} of 72 are obtained from B bootstrap samples of the data. Then ordering
the set {7?: b=1, 2, ..., B} in ascending order the 1 — « percent CI’s are given by the

(100a¢/2)th and 100(1 — «/2)th empirical percentiles of the 77.

2.3.3.3 Inference in random-effects model

As in FEM, standard inference in random-effects model is based on the asymptotic
normality of the combined effect, Orgy ~ N (6, (3 w)™'). The confidence intervals

are defined by

Oren £ 21-ap (Z w;k) (2.45)

N[

where 21_q/ is the (1—a/2)"™ percentile of the normal distribution. Due to the addition
of the heterogeneity variance in REM, its confidence intervals are wider in comparison
to FEM. Therefore the inference in REM is more conservative in terms of statistical
significance of the combined effect.

To test for the presence or otherwise of a treatment effect, the Wald statistic,

[un

Zy = <Z w;F)a |éREM’ (2.46)
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is compared with the critical values of the standard normal distribution. The Q statistic
given in (2.24) is used to test the hypothesis of heterogeneity for the existence of the

variance component 72, Hy: 72 =0 vs H, : 72 > 0.
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Chapter 3

Review of sequential methods and
methods for monitoring trends in

meta-analysis

In recent years, temporal changes in effect size have been reported in many fields of
research. Examples are given in Hodgson et al. (1989); Nieuwkamp et al. (2009); Hyde
et al. (1990); Twenge. et al. (2008); Gehr et al. (2006); Grabe et al. (2008). Temporal
changes in effect sizes present a serious danger to the validity of results and conclusions
of meta-analysis, and thus several methods have been proposed to monitor the trends
so that results and conclusions in meta-analysis can be interpreted based on the time
it was conducted. This Chapter reviews the common methods used for monitoring
the temporal trends in magnitude of effect sizes in meta-analysis with special focus on

sequential methods in meta-analysis. The first Section introduces sequential analysis.
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The second Section reviews the standard sequential methods in meta-analysis including
‘simplistic methods’ for monitoring trends in meta-analysis. The third Section focuses

on adaptive methods for sequential decisions in clinical trials.

3.1 Sequential analysis

Sequential analysis was initially introduced during World War II in response to the
overwhelming demands for methods of testing the efficiency of aircraft gunnery (Lai,
2001). In this method of analysis the sample size is not fixed in advance, instead data
are evaluated as more observations are collected, and further sampling is stopped in
accordance with a predefined stopping rule as soon as significant result is observed.
Sequential methods are popular in many areas where sequential monitoring of process
outputs is required. For example, they are used in engineering, monitoring of prices of
goods and services and quality control. In meta-analysis, sequential methods are in-
creasingly becoming popular, see Whitehead (1997a); Higgins et al. (2011); Bollen et al.
(2006); van der Tweel and Bollen (2010) as examples. They are used for gauging suf-
ficiency in accumulating evidence (Lau et al., 1992, Pogue and Yusuf, 1997, Wetterslev
et al., 2008) and serve as an appropriate statistical tool to monitor any possible trends in
meta-analysis. This Section introduces three sequential methods; the sequential prob-
ability ratio test, the CUSUM scheme and group sequential methods. The properties
and the advantages of the sequential methods in the context of meta-analysis are also

highlighted.
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3.1.1 Sequential probability ratio test (SPRT)

Introduced by Wald (1945), SPRT is a sequential test for a simple null hypothesis
Hy against a simple alternative hypothesis H;. It is based on a likelihood ratio which
is treated as a function of the observations. Consider a sequence of independent and
identically distributed random variables X;, X5, X3, .... with the same probability
density function, f(X). To test the null hypothesis Hy : f = fy against the alternative

hypothesis H; : f = fi1, the SPRT stops sampling at the stage

N:inf{n>1:/\n§é(A,B)}, (3.1)

where

=15 o

is the likelihood ratio at stage n and 0 < A < B < oo are stopping boundaries. When
stopping occurs, decisions are taken as follows. If \, < A decide Hy, if \,, > B decide
H;. The choice of the stopping boundaries, A and B depends on the pre-specified Type

I and II error probabilities.

3.1.1.1 Stopping boundaries and the error probabilities

The decision not to reject or reject a statistical hypothesis depends on the costs asso-
ciated with committing an error (Hubbard and Bayarri, 2003). This could be a Type
I or Type II error. The Type I error (false rejection) is the probability of deciding H
when Hj is true; while the Type II error (false acceptance) is the probability of decid-
ing Hy when H; is true. To establish their relationship with the stopping boundaries,
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denote the Type I and Type II error probabilities by o = P(H;|H,), the probability
of Hy given that Hy is true and § = P(Hy|H;), the probability of Hy given that H; is
true, respectively. Let X = (x4, 29, ..., z,) and p;(X) = ﬁlf](xz), j=(0,1). Define the
decision sets Ry={(z1, ..., ,); N =n and Ay < A} and Ri={(x1, ..., ,,); N =n and

An > B}. The power of the test is given by

1 — 3 =P(H,|H)

- / p1(X)dX

[ ix

Ry

= / Apo(X)dX (3:3)

R1

5 [irar
Ry

=Ba.
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Similarly,
l—a=1- P(H1|H0)
=P (Ho|Ho)

_ / po(X)dX

Ro

:/Aglpl(X)dX (3.4)

Ro

>A / p1(X)dX

Ry

=A""P(Ho|H,)
—A"13
Treating the inequalities of (3.3) and (3.4) as approximate equalities and solving for A

and B, the stopping boundaries are defined by
A=pB/(1-a)and B=(1-p)/a (3.5)

See the detailed derivation in Lauritzen (2004) and Nowak (2011).

3.1.1.2 Sample size of SPRT

The expected sample size of SPRT is the average number of observations required
before a decision is arrived at. The formula of the expected sample size for the SPRT is
derived based on the Wald’s equation, see Nowak (2011). The Wald’s equation states

that if N is a stopping time with respect to an independent and identically distributed
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sequence {X,, : n > 1}, and if E[N] < co and E[|X|] < co then

E {i Xn} = E[N]E[X] (3.6)

Since X7, Xs, .... are independent and identically distributed random variables, the

logarithm of the likelihood statistic in (3.2)

log(A Zlog F1(X)/ fo(X0)) (3.7)

is a sum of independent and identically distributed variables. Let N be the first n > 1

such that log(\,) ¢ (a,b), where a = log(A) and b = log(B). Therefore, by (3.6),
E [log(An)] = i E;[N], (3.8)

where p1; = E; [log fl/fg‘Hj}, for j=0, 1. But E[log(Ay)] = a Pr(\, < A) +bPr(\, > B),
see Siegmund (1985). It follows that the expected sample size of the SPRT under the

null and alternative hypotheses are given by

Eo[N] = py* {alog (%) + (1 —a)log (

N

() =t {0 = oyiow () + 1o (12 ), (310)

where pg = Eollog(f1/fo)] and uy = Eq[log(f1/fo)], (see Siegmund (1985)).

and

For the case of testing a simple null hypothesis against a simple alternative hypoth-
esis, Wald and Wolfowitz (1948) showed that the SPRT leads to optimal solution of

testing H, against H;, in the sense that it minimizes both E¢[N| and E;[N] among
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all tests whose sample size N has a finite expectation under Hy and H; with error

probabilities satisfying
Po(Reject Hy)< o and Py (Reject Hy)< . (3.11)

Remark 3.1.1. The optimality and the applicability of SPRT to any observations with
known distribution are desirable properties in sequential testing. However the SPRT is
designed for testing a simple null hypothesis against simple alternative, and therefore its
optimality property is restricted to such situations (Lai, 2001, Siegmund, 1985). This
lack of optimality in general may have serious consequences that can prevent its uses in

meta-analysis.

3.1.2 The cumulative sum (CUSUM) scheme

Shewhart (1931) introduced statistical quality control charts, a class of sequential
methods for monitoring and evaluation of the quality of products from continuous pro-
duction line. In his monitoring scheme, a statistic is computed from fixed size samples of
observations taken at regular intervals, which is then compared to predefined monitor-
ing boundaries. If the value of the statistic is within the boundaries, the process is said
to be in control. If the current value crosses the boundaries, then the process is out of
control and corrective measures need to be taken to put the process back under control.
However Shewhart (1931) sequential monitoring chart is a “single sample” scheme with
the decision solely depending on the current sample although the results of previous

samples are available on the chart (Lai, 2001). Motivated by these shortcomings, Page
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(1954) modified the SPRT to develop the CUSUM scheme. The CUSUM scheme is
a good alternative procedure for monitoring process when detection of small changes
is important. It has the advantage of incorporating all information in the sequence of
values (Montgomery, 2000).

Consider a sequence of independent and identically distributed observations, X7,
Xy, X3, .... and a reference point k£ chosen between the target value pp and the value
corresponding to a point in the observations considered to be just unsatisfactory pu;.
The CUSUM statistic is computed by summing the successive differences X; — k for

i=1, 2, 3, .... to build up a series given by
Sp = i(XZ — k). (3.12)

i=1
A graph of the statistic S,, against the sample number (time) is called the CUSUM
chart. If the path of the CUSUM chart is moving horizontally, then the process is in
control. But if at any point of sampling the path rises significantly above or falls below
the target value, o then the process is said to be out of control and something must
be done to correct the process. A CUSUM chart designed to detect an upward trend
is called upper CUSUM and the CUSUM chart for detecting downward trend is called

lower CUSUM. The recursive formulae starting from zero for computing the upper and

the lower CUSUMSs are given by

S =max{0,X, — (no + k) + S;_1} and S, = max {0, (uo — k) — X + S,_1 },

(3.13)
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Figure 3.1: V-mask Procedure

respectively. The constant k = (11 — p19)/2 is a reference point chosen mid-way between
the mean target value o and the value of the parameter p; considered to be just

unsatisfactory.

3.1.2.1 Methods for detecting a change in mean of a process using a CUSUM

scheme

The common methods of deciding when there is a change in monitored process using the
CUSUM scheme include decision interval scheme, V-mask procedure and the CUSUM

procedure.
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V-mask procedure

A visual method for deciding when a change in monitored process occurred using the
CUSUM is the V-mask procedure described by Barnard (1959). This method super-
imposes a V-shaped mask on the CUSUM chart in such a way that the vertex of the
V-mask is pointed forward at a distance d (lead distance) from the latest point on the
chart. The angle between the two arms of the V-mask is 26, where § = /ABO = /OBC
is the angle between an arm of the V-mask and the horizontal axis, see Figure 3.1.
Performance of the V-mask procedure is measured by the lead distance, d and the
angle 6, which are often chosen empirically (Wieringa et al., 1999). As long as the
plotted values of the CUSUM remain within the arms of the V-mask, the process is in
control. However if a point on the chart reaches or crosses the arms, then the process
will be considered to have gone out of control. The probability of Type I error in the
V-mask procedure is proportional to the lead distance, d and the angle § (Montgomery,
2000, Woodward and Goldsmith, 1967). See Barnard (1959) and Wieringa et al. (1999)

for more discussion of this method.

Decision interval scheme

In the decision interval scheme, a reference point & is chosen mid-way between the value
of the parameter under the null hypothesis, po and the value of the parameter under
the alternative hypothesis, ;. Then say for an upper CUSUM, as long as the S is less

than k, the process is in control. If at any point in sampling the value of S reaches or
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crosses the reference point k, a CUSUM chart is started. When the CUSUM reaches or
crosses the decision interval line A, then it is concluded that the process has gone out

of control. The general detection criterion for this scheme is given by

St>horS; < —h (3.14)

n — n

A reasonable choice for the value of the decision interval line h is usually set at h = 50,
where ¢ is standard deviation of the observation, see Montgomery (2000). However,
the decision interval line can also be determined to satisfy a desired average run length
ARL (which we shall discuss later) using a method called the thumb rule. For detecting

a shift with magnitude A = py — g # 0 and A > k, the thumb rule is defined by

h
ARL(A) =1+ (3.15)

Shu and Jiang (2006) derived a relationship between the ARL approximation by Sieg-

mund (1985) and the the decision interval line given by

_log {1+ 2k*ARL, + 2.332k}
a 2

h — 1.166. (3.16)

Figure 3.2 is an example of a two-sided decision interval scheme. See Montgomery
(2000), Wieringa et al. (1999), Woodward and Goldsmith (1967) for a detailed descrip-

tion of the decision interval scheme.

CUSUM procedure

The Page (1954) CUSUM procedure is a special case of repeated sequential probability
ratio test (RSPRT), where the stopping boundaries a = log A = 0 and b = log B = h.
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CUBUM

Figure 3.2: Decision Interval Scheme with the red points above the upper interval line
(h) indicate out-of-control signal in the upper CUSUM.

In SPRT the decision rule is a function of the exit time, N =inf{n > 1: X, ¢ (4, B)}
and A\, = ﬁl%, see (3.1) and (3.2). At the exit time when A\, > A, the SPRT
terminates in favour of Hy. But in the CUSUM procedure instead of terminating the
test, the SPRT is continually restarted as long as the decision favours H, until the time

when A, > B and the decision favours H;. This is to say that the CUSUM procedure is

a repeated SPRT. To define the CUSUM procedure, consider the following hypotheses.
Hy: X1, ..., Xn ~ fo

(3.17)
Hy: Xy, oy X1~ fo and X, ..., X, ~ [,

44



where K is an unknown time of change. The likelihood ratio for the hypotheses is given

by
IT fo(Xo) IT A(X)
Ane = ——— =K , (3.18)
[T fo(X:)

and the maximum likelihood ratio is

Snk Zzlog (f1(Xi)/ fo(Xi))

(3.19)
=S, —gg;{gn Sk.
Page (1954) proposed the stopping rule for the test as
N={n:S, =¥, Sk > h}, (3.20)

where h is determined by the stopping boundaries of SPRT such that a = log A =0
and b =log B = h.

The optimality of the CUSUM in terms of optimal stopping time have been well
established. See for example Moustakides (1986), who proved its optimality property

similarly to the optimality in sequential probability ratio test.

3.1.2.2 The average run length (ARL) of a CUSUM

The average run length (ARL) is used as a major criterion for selecting a suitable
CUSUM procedure (Woodall, 1983) as well as a tool for evaluation of its performance.
It is the average number of observations required before a CUSUM scheme signals an
alarm for a change. A high ARL should be expected when the process is operating

at a satisfactory level and low when it is operating at unsatisfactory level. There are
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numerous ways to calculate the ARL, however we present here the Page (1954) integral

method and Siegmund (1985) approximation of the ARL.

Page (1954) integral method:

In equation (3.12), Hy is accepted when S, = zn:l(XZ — k) is less than or equal to zero,
and therefore only the first X such that (X — k&) > 0 is necessary to accumulate scores.
Let z be the first score such that it is bounded by 0 and h. The CUSUM is a repeated
SPRT and terminates at the first time when a test crosses the boundary line h. In this
case a single SPRT is defined by a path starting at z and ending either at 0 or at h.
For a new observation X, the current score results to z + X — k, provided it belongs
to the open interval (0,h). If z+ X — k < 0, the test stops and a new test is started
from 0, and for z 4+ X — k > h the test stops and decision is taken. Let P(z) denote the
probability that a test starts at z and ends at point z < 0. Denote N(z) as the average
sample number of the test starting at z. Let L(z) denote the ARL of the CUSUM that
starts at z, but all subsequent tests start at 0. Let f(X) denote the probability density
of the observations, and F'(x) be the cumulative distribution. For a single test that
starts the score z the probability of the first event is P(k — z), and for the subsequent
event the probability is P(y), where y = z + X — k. Page (1954) proposed that the
probability of a test that starts from z can be generalised by the following Fredhorlm’s

integral equations of second kind given by

P(z):F(k—z)+;P(y)f(y+k—z)dy, 0<z<h. (3.21)
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Similarly,

N(z)zl—i—th(y)f(X—l—k—z)dy,ngghand (3.22)
L(z) =14+ L0O)F(k—z)+ th(y)f(X +k—2)dy, 0 <z <h. (3.23)

0

Page (1954) showed that the ARL of the CUSUM solution of equations (3.21) and
(3.22) is given by

L(0) = ———2 (3.24)

where N(0) and P(0) are special cases where z = 0.
Equations (3.21) and (3.22) are usually solved numerically. Examples of such numer-
ical results include the statistical nomograms for computing the ARL of the CUSUM

by Woodall (1983) and Dobben de Bruyn (1968).

Siegmund (1985) approximation:

The Siegmund (1985) approximation formula for the ARL of the CUSUM is the most
simple and the most widely used method. The formula is derived based on a one-sided

CUSUM and it is given by

e 2Bb L 9N — 1
ARL = AZ , (3.25)

for A #0, A = * — k for the upper CUSUM and A = —6* — k for the lower CUSUM,
k = (14 o) /2 is the reference point, §* = (u; — o) /o, o is the standard deviation and
b = log(B) is the upper boundary of the SPRT described in (3.2). The ARL under the

null hypothesis is calculated when 6* = 0, and under the alternative hypothesis when
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0* # 0. The ARL of the two-sided CUSUM can be calculated from the formula

1—1+1 (3.26)
L L, Ly '

where L; and L, are the ARLs of the lower and upper CUSUMs, and L is the ARL of

the two-sided CUSUM.

Remark 3.1.2. The ability of the CUSUM to include all information from the sequence
of observations as well as detect small changes is important and makes it a desirable
statistical tool for monitoring trends in meta-analysis. Unfortunately, in the CUSUM
scheme it is required that the sequence of observations be independent and identically
distributed, and this may not be satisfied in meta-analysis. However there are exten-
sions of the CUSUM scheme developed by Gombay (2003), and Gombay and Serbian
(2005) which have the CUSUM properties and can therefore serve as a good alternative

procedure to monitor the trends in meta-analysis.

3.1.3 Group sequential methods

Clinical trials investigate the effectiveness of new drugs or therapeutic procedures. Tri-
als last for several weeks, months or years with their results accumulating continuously
over the duration. Ethical, administrative as well as economic reasons often require that
the accumulating data be evaluated at intervals to allow for early stoppage. Among
the methods suggested for evaluation of the accumulating data at intervals is the use of
repeated significance testing (see Armitage et al. (1969) and McPherson (1974)). How-
ever periodic evaluation of the accumulating data using standard significance testing
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can greatly inflate the Type I error (Armitage et al., 1969). ARMITAGE et al. (1975)
showed that repeated significance testing can be a useful sequential method. Pocock
(1977) used normal response with known variance to illustrate how the desired Type I
error can be achieved in multiple significance testing of accumulating data. The proce-
dures are referred to as the group sequential methods (see Chow et al. (2007), Jennison
and Turnbull (2000)). They have multiple advantages. For example, group sequential
methods are as efficient as the fully sequential methods in terms of low expected sam-
ple size and allow early stoppage of trials while retaining the overall error probability
(Jennison and Turnbull, 2000). In meta-analysis they are used to address the issue of
inflated Type I error in cumulative meta-analysis (see Pogue and Yusuf (1997), Higgins
et al. (2011), Whitehead (1997a)) as well as to determine when sufficiency is attained
in cumulative evidence.

To illustrate the general approach to group sequential methods, consider a clinical
trial in which a treatment arm is being compared with control arm, and a planned
total of N patients is divided into K groups. Let the response be a normal variable
with variance o2, and the means p; and p. for treatment and control groups, respec-
tively. The interest is to test the null hypothesis of no difference between the means,
Hy: 0= pu —p. =0 against Hy : 6 = uy — p. # 0. Assume that equal number of n
patients are accumulated in each arm of the experiment at each interim analysis. At

the k-th interim analysis a standardized statistic is calculated as

nk nk
Ty = —is {21 X, — ZIX} for k=1, 2, ..., K, (3.27)
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where X;; and X; are the observations in the treatment and control groups, respectively.

The variance o2

is unknown and is usually estimated from the sample data at each
interim analysis. For each of the standardized statistics Zj, a critical value C} is chosen
and the test terminates with the rejection of Hy if Z;, > C}; and if the test continues to
the K-th analysis and Zx < Ck, the test terminates and Hj is accepted. In each of the

analyses, a nominal level  is chosen to achieve a pre-specified Type I error probability

«. In other words

P(Zl Z Cl or ZQ Z CQ or...or ZK Z CK) = Q. (328)

3.1.3.1 Sample size calculation based on power requirement

Sample size calculation based on power requirement is an important issue in planning
controlled trials. Consider the problem of testing the null hypothesis of no treatment
difference, Hy : 0 = u; — pi. = 0 against the two sided alternative Hy : 0 = py — p. # 0
with a significance level a and power 1 — 8 at u; — p. = £60. In a fixed sample size
test the standardized statistic in (3.27) reduces to Z; = {Z Xy — i XCZ}, and

i=1
Hy is rejected if Zy > 21_, + 213, where z is the critical value of the standard normal

distribution (Jennison and Turnbull, 2000). The expected value

e 5
=+0/{n/(202)}.

Since it is often preferred to recommend a superior of the two treatments, the negative

V2ono?

E[Z] = [
(3.29)

value is ignored in practice. Therefore, equating the positive value 01/{n/(202)} with
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Z1—a/2 + 218, and solving for n the sample size in the fixed sample test is given by
2
ng = {z1—ap2 +21-5} 20°/6°. (3.30)

The maximum sample size ny in a treatment arm of a group sequential test required
to reject the null hypothesis with significance level a and power 1 — ( at pu; — p. = £6
is a function of K, a and 3, and is proportional to ¢?/6* (Jennison and Turnbull,
2000). Since in the fixed sample test the sample size is also proportional to 02/62, a
ratio of the maximum sample size of group sequential test to the sample size of fixed
sample test is defined as a function R(K, «, ). The values of R(K,«a, ) are usually
calculated numerically for different group sequential designs and provided as tables in
many statistical textbooks. It follows that for a group sequential test with a maximum
of K interim analyses the sample size per treatment arm n, and the number of patients
per treatment arm per group m, needed to achieve a power requirement of 1 — 3 are
given by

ng = R(K,a, f)ny and my, = R(K,a, f)ns /K, (3.31)
respectively. For a detailed derivation and discussion see Jennison and Turnbull (2000),
Chow et al. (2007) and the references therein.
3.1.3.2 Pocock’s Test

The Pocock (1977) test is the most straightforward and widely used method. The
Pocock’s critical values, C, = Cp(K, «) are functions of the Type I error probability,

«a and the total number of planned interim analyses K. In Pocock’s test the repeated
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Figure 3.3: Pocock type monitoring boundaries with a maximum of 5 interim analyses

significance testing is conducted at a constant nominal level ', and therefore the same
critical value is used throughout the interim analyses. For example, the Pocock’s critical
values for two-sided test in a group sequential experiment with 5 interim analyses at
0.05 significance level are equal to Cp(5,0.05) = +£2.413 (see Figure 3.3).

The decision in Pocock’s test after analysis k=1, 2, ..., K-1 is that if | Z;| > Cp(K, )
then stop and reject Hy; otherwise continue to analysis k-+1. After analysis K, if
|ZKk| > Cp(K, ) then stop, reject Hy; otherwise stop and accept Hy. The sample size
per treatment arm and the number of patients per treatment per arm per group needed
to achieve a power requirement of 1 — [ in Pocock’s test is determined in the same

manner as in (3.31) with R(K, «, 5) = Rp(K, «, ).
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Figure 3.4: O’Brien-Fleming type monitoring boundaries with a maximum of 5 interim
analyses

3.1.3.3 O’Brien-Fleming test

In the O’Brien and Fleming (1979) test the nominal significance level increases as
the testing progresses, and therefore the test has relatively wider boundaries, and it is
more conservative at the early stages (see Figure 3.4). This characteristic is desirable in
clinical trials to prevent the possibility of spurious findings when information available
in the analysis is still small. Another advantage of the O’Brien-Fleming test is that
it allows the investigators to perform interim analyses at the last stage with a higher
significance level nearly equal to the nominal level. The decision to continue or stop

the trial is the same as in Pocock’s test.
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3.1.3.4 The error spending design

The Pocock’s and O’Brien-Fleming tests require the number of interim analyses to
be specified in advance and the groups be equally spaced with equal information size
(number of observations). However, in practical situations these conditions are difficult
to satisfy. For example, in consecutive clinical trials the decision to run another trial
may lead to the choice of a larger or smaller sample size for the next study. As a result,
the information accumulated at each interim analysis may not be equally spaced, and
the implication is that the overall Type I error may be far from the target value (Chow
et al., 2007).

Lan and DeMets (1983) introduced a flexible method that provides a solution to
stopping boundary problem that can be readily adapted to clinical trials and cumulative
meta-analyses (Pogue and Yusuf, 1997). The procedure is based on a spending function,
a(t) which characterises the rate at which error rate is spent. The spending function,
a(t) is non-decreasing. It assigns the proportion of the Type I error probability spent
at each interim analysis. The variable ¢ is the information fraction which at k-th
interim analysis is determined by the total amount of information at k divided by the
expected maximum information in the analysis, ty = I/ Iax. The scale of information
fraction, tnay is chosen so that the maximum is 1, and the spending function satisfies
the conditions «(0) = 0 and (1) = a. The choice of a spending function, a(t) results
in a choice of a particular group sequential method.

Suppose the standardized statistics Z for k=1, 2, .... in (3.27) correspond to the
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information fraction ¢, and that 0 < t; <ty < ... < tx = 1. In the spending error design
the critical value C} at the information time ¢; is determined from the accumulated

information between 0 and ¢; by solving the equation
P(Z, > Cy or Zy > Cy or...or Zy, > Cy) = afty). (3.32)

Note that the critical values Cj are determined by the spending function a(t) and the
information fractions ¢, ts, ..., t;, but does not depend on future information fractions
or the number of interim analyses K. However if the experiment continues to the time
tgas, the critical values Ck, Ciiq, ..., Ckyy can be defined to satisfy the probability
P(Z; < Cy or Zyyq1 < Cryq O Zgyo < Ciag or..or Zyyy > Cryy) = altpy) — alty),
where () — a(ty) is the increase in the significance level between the t; and 5.
The alpha spending functions for Pocock and O’Brien-Fleming test are respectively

given by
a(t) = min {alog[l + (e — 1)t], a} and a(t) = 2 {1 — ®(z42/V1)}, (3.33)

where @ is the cumulative distribution function of the standard normal distribution.

3.1.3.5 Whitehead triangular test

The triangular test is described using the score statistics, Si = Z,\/I; for k=1, 2, ...,
K, where I} is the information size corresponding to the k-th interim analysis. The
score statistics Sy are assumed to be multivariate normal with Sy ~ N (01, I;), and to
have independent increments Sy, So — S, ..., Sk — Sk_1 (Jennison and Turnbull, 2000).
For group sequential testing of the null hypothesis Hy : 8 < 0 against an alternative
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H; : 8 > 0 with Type I error a at 6 = 0 and power 1 — a at § = §, Whitehead and

Stratton (1983) proposed a general continuation region for the score statistic defined as
Se(L=-2log (%) + 2 U=2log(2)+ 1)), (3.34)

where [, is the information at interim analysis k=1, 2, ..., K. These are the monitoring

boundaries of the triangular test, and the maximum information of the test is chosen

such that 0 < [ < m (Jennison and Turnbull, 2000). If the boundaries meet
2a

at the final stage, the K-th interim analysis, then the maximum information of the

triangular test can be calculated by

4a
Imax = - .
5 (3.35)

For the case of unequal information increments at the interim analyses, Whitehead
(1997b) used a result due to Siegmund (1985) and modified the boundaries of the

triangular test in (3.34) to

L=—2log (L) +0.583 /M 1 B0 and U = 2log (L) — 0.583, /e 4 0k

The triangular test terminates at the first time when Sy ¢ (L,U), and at termination
Hy is rejected if Sy > U, and H, is accepted if Sy < L. Figure 3.5 is an example of a

one-sided triangular test. The two-sided (double) triangular designs are also available.
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Figure 3.5: Whitehead triangular test
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3.2 Methods for monitoring trends in meta-analysis

The methods for monitoring trends in meta-analysis can be subdivided into two groups:

simplistic and sequential methods.

3.2.1 Simplistic methods for monitoring trends in meta-analysis

The “simplistic methods” for monitoring trends in magnitude of effect size can be de-
scribed as initial or chronologically first approaches. They are easy and straightforward
approaches in terms of calculation and interpretation of results, but have considerable

draw-backs.

3.2.1.1 Homogeneity analysis

In meta-analysis, homogeneity analysis is usually conducted to test the hypothesis of
no difference in treatment effects across studies. When testing the homogeneity of k
studies, the Q statistic in (2.24) is compared with the chi-squared distribution with k—1
degrees of freedom, ) = zk:lwi(yi — éFEM)2 ~ Xi_,. If the null hypothesis is rejected, it
means that the studies are heterogeneous. To use this method for monitoring temporal
trends in meta-analysis, studies arranged in a chronological order are subdivided into
subgroups according to publication year, for example, by decades, then homogeneity
analysis is conducted across the subgroups. The approach is simple, and has been used

by many researchers, see Higgins et al. (2003) as an example. However this method

ignores the gradual character of temporal changes and their possible occurrence within
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as well as between study groups. Therefore, it is a ‘crude method’ (Kulinskaya and

Koricheva, 2010).

3.2.1.2 Correlation/regression

Correlation and regression are popular statistical methods used to studying relation-
ships between two or more variables. In meta-analysis, the relationship between the
effect size and year of publication (Jennions and Mgller, 2002) can be measured by the

Pearson’s product moment correlation given by

,O(X, Y) _ [(X — NX)(Y — ,UY)]7 (337>

0x0y

where px and py are means, and ox and oy are standard deviations.

Alternatively, the trends in meta-analysis are often estimated using the regression
slopes, see Shi and Copas (2004) for an example of a meta-regression model of alcohol
use versus breast cancer. The regression model for monitoring changes in effects size
in random-effects meta-analysis is based on the assumption given (Baker and Jackson,
2010) by

yi ~ N(O +t;8,7° + o), (3.38)

where y; is the estimated treatment effect from the ith study at the time point ¢;, 0 is
the mean treatment effect, 3 is the regression coefficient, 72 is the between-study vari-
ance and o? is the within-study variance usually assumed to be known but estimated
by the sampling variance. The regression model in (3.38) is valid only when linear

trends are suspected, however Baker and Jackson (2010) proposed a general model for
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monitoring the trends that can accommodate both linear and non-linear trends based
on the assumption given by y; ~ N (8 exp(—(T,, — T;)$), 7> + 07), where T, is the date
for the most recent study, 7; is the date for the 7th study and ¢ is the shape parameter.

Correlation and regression constitute reasonable approaches for monitoring trends
in meta-analysis, however the methods require that the magnitude of the effect sizes ex-
hibit monotone increase or decrease with time which is not always possible (Kulinskaya

and Koricheva, 2010, Leimu and Koricheva, 2004).

3.2.1.3 The use of standardized testing

Standardized testing may also be used to establish the presence or otherwise of temporal
changes in a meta-analysis. For example, a null hypothesis of no difference between the
results of a current study and the combined results of previous studies can be tested

by calculating the Z statistic

Z = (Y — Yp—1)V Wk, + Wg—1, (3.39)

where gy, and y,_; are the estimate from the current study and the combined effect of
previous studies, respectively, and wy, and wy,_; are the corresponding weights, (see loan-

nidis and Trikalinos (2005), Koricheva et al. (2013) for more discussion of this method).

3.2.2 Standard sequential methods for meta-analysis

Several sequential methods for meta-analysis have been proposed for monitoring tem-
poral changes in magnitude of effect sizes. This Section reviews four different methods
that are widely used.
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Figure 3.6: Forest plot of CMA of BGC vaccine for tuberculosis. Data and results are
obtained from R library metafor (Viechtbauer, 2010), and results are combined using
fixed effect model.

3.2.2.1 Cumulative meta-analysis

Historically, the first method proposed by Lau et al. (1992) was cumulative meta-
analysis (CMA) which can be described as an open sequential test. The method involves
pooling effect size estimates in a cumulative manner as new trial results are published.
More exactly, CMA entails conducting a series of meta-analyses with successive addi-
tion of new effect size estimates from studies at interim analyses. Lau et al. (1992) had
proposed the use of CMA for monitoring interventions across several randomized con-
trolled trials, with the goal of understanding when evidence becomes definitive. CMA

is routinely used for monitoring temporal changes in effect sizes (see Lau et al. (1992),
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Figure 3.7: Forest plot of CMA of BGC vaccine for tuberculosis. Data and results
obtained from R library metafor (Viechtbauer, 2010), and results are combined using
random-effects model.

loannidis and Trikalinos (2005), Leimu and Koricheva (2004)). When the results are
arranged in a chronological sequence according to year of publication, the plotted values
of the combined effects, ék and confidence intervals calculated consecutively for k=1, 2,
..., K can reveal temporal patterns (Kulinskaya and Koricheva, 2010).

Suppose y; for i=1, 2, .... are the effect size estimates obtained sequentially. The
cumulative effect at the k-th interim analysis is estimated by ék = i Wiy / i w;, where

i=1 i=1

w; are the weights assigned to the studies according to the meta-analytic model used.
Plotted values of estimates of cumulative effects against time allow visual monitoring of
tangential increase or decrease in effect size over time. Figures 3.6 and 3.7 are examples

of forest plots of CMA of BCG vaccine for tuberculosis. Data and results are obtained

from R library metafor (Viechtbauer, 2010) and results are combined using fixed- and
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random-effects models, respectively.

Cumulative meta-analysis can reveal whether there is consistency in the results of
consecutive studies and indicate a point at which no further studies are required be-
cause the definitive conclusion is reached. Further, it has the advantage of revealing
uneven irregular changes in effect sizes as well as multiple shifts in opposite directions
(Leimu and Koricheva, 2004). CMA as a graphical tool is useful for initial inspection
of the data, but as in any visual method it might be subject to misinterpretation, and
therefore needs to be supplemented by a formal statistical method (Kulinskaya and
Koricheva, 2010, Leimu and Koricheva, 2004, Koricheva et al., 2013). In addition, by
definition CMA involves repeated analysis of the accumulating evidence and thus, even
if there is no treatment effect, multiple testing involved leads to the inflation of Type I

error.

3.2.2.2 Sequential meta-analysis

The second group of methods is sequential meta-analysis (SMA). These methods involve
the use of formal group sequential boundaries to monitor CMA and were proposed by
Pogue and Yusuf (1997) to address the issue of inflated Type I error in CMA. The
crossing monitoring boundaries of group sequential methods can indicate significant
change in cumulative effect and may be used to stop a meta-analysis when there is
sufficient evidence of effect based on pre-specified significance level and power (Higgins
et al., 2011). There are several group sequential designs which can maintain the overall

significance level, however Lan and DeMets (1983) alpha spending method is more
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flexible in the sense that it does not require the number or the times of interim analyses
to be specified in advance (See Section 3.1.3.4). Since meta-analysis is a continuous
process and the number of interim analyses is not known in advance, Pogue and Yusuf
(1997) suggested the use of Lan and DeMets (1983) method for SMA.

A key issue in conducting a SMA is the calculation of the optimum information
size (OIS) needed to define the monitoring boundaries. The OIS is the amount of
information needed to detect a significant treatment effect had a well-designed trial
been planned. It is a function of the maximum sample size required to achieve the
power requirement for the test at the given significant level. Lan and DeMets (1983)
used standard methods with small significance level o and high power 1 — 3 of 90% or
95% to calculate the maximum sample size. For example, for the mortality rates P, of
10% in the control group, and treatment effect, A = P, — P;, the Type I error may be
set at 1% and the power at 90%. The sample size per treatment required to achieve

the power requirement is given by

n=2x (ZQ+Z175)Z/22P*(1—P*)’ where P* = (Pc + Pt)/2 (3.40)

The calculation of the OIS is based on fixed effects model and hence the method is only
appropriate for FEM. A number of methods were proposed to correct this. Wetterslev
et al. (2008) used a heterogeneity inflated OIS to account for heterogeneity in treatment
effects, but this method is problematic (Kulinskaya and Wood, 2014). Whitehead
(1997a) describes the use of standard stopping boundaries for random-effects meta-

analysis. Bollen et al. (2006) and van der Tweel and Bollen (2010) used the double
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triangular test in a retrospective meta-analysis.  Higgins et al. (2011) proposed a
sequential method for random-effects meta-analysis that uses a semi-Bayes procedure
to update evidence on the among-study variance, starting with an informative prior
distribution that may be based on findings from a previous meta-analyses. A common
issue for these methods is that the monitoring boundaries are generally defined based
on FEM and do not incorporate the presence of heterogeneity in treatment effects. As
a result, as revealed by simulations, these methods have shown a considerable inflation
of the Type I error when the values of 72 are large, see Higgins et al. (2011), Wetterslev
et al. (2008). Therefore using such methods in random-effects model can lead to spurious

statistical inference.

3.2.2.3 Use of quality control charts

In the theory of control charts, variability in on-line process measurements is assessed
by constructing monitoring boundaries. These boundaries are also known as control
limits and are constructed based on the distribution of the observed values of the
process. When the process mean is within the control limits, the process is said to
be statistically in-control (variability is due to chance). However if at any stage the
process mean crosses the control limits, the process will be considered to be out-of-
control (variability is due to assignable causes and corrective action needs to be taken).
There are several quality control charts including Shewhart (1931) and Page (1954)
CUSUM charts, see Section 3.1.

Kulinskaya and Koricheva (2010) proposed the use of quality control charts for
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detection of outliers and temporal trends in meta-analysis. The use of QC charts in
meta-analysis is straightforward if the sequential effect estimates are independent and
their distribution can be approximated by the normal distribution. For example, let
yi ~ N(0,0?) for i=1, 2, .... be estimates of effect size from consecutive studies and 6 be
a target value. The control limits for monitoring the meta-analysis are determined based
on the values of § and ¢?. As more studies are conducted and results are combined,
if the mean of the process is close to 6, the process is said to be in-control (no change
in treatment effect). However, when adding the results of new studies and the mean
crosses the control limits, then the process will be considered to be out-of-control (there
exists a change in treatment effect). The method is simple and had successfully been
applied to fixed effect model. However for random-effects model the estimation of 72
introduces dependency between the sequential effects (Kulinskaya and Koricheva, 2010)
and hence their distribution is not consistent with the standard assumptions of the QC

charts.

3.2.2.4 Penalised Z testing

The last group of methods involves the “penalised Z test” introduced by Lan et al.
(2003). This is an alternative approach to address the issue of inflated Type I error in
CMA. The method is based on the use of the law of iterated logarithm to ‘penalize’
for the multiple testing in CMA. The usual Wald test for significance of the combined

effect at the k-th interim analysis is adjusted by a constant factor, and is defined by

. sw
/AT loglog(Ty,)
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where A is the adjustment factor determined using simulation, S(k) is the sum of the
estimates of treatment effects up to the k-th interim analysis and I'y, is the sum of weights
assigned to studies. Lan et al. (2003), Hu et al. (2007) claim that the ‘penalized Z test’
exhibits a good control of the Type I error in CMA both in FEM and REM when a
reasonable value of A is used. For example, the value of A = 1.5 was found to control
the Type I error in FEM, while the value of A = 2 was found to control the Type I
error in REM when relative risks, odds ratio and risks difference effect sizes were used
to combine results of up to 25 studies (Hu et al., 2007). The choice of A is important
in controlling the Type I error, however its value varies according to the type of effect
measure, number of studies, average studies size and amount of heterogeneity in the
treatment effects. Therefore the determination of the ‘reasonable value of A\’ can be

difficult in practice.

3.3 Adaptive clinical trials

In clinical trials, trial procedures and statistical methods are usually pre-specified at
the beginning of the trial. However if they are wrongly chosen this may lead to failure
in the study. Adaptive clinical trials allow modification of trial procedures and the
statistical methods in an ongoing trial based on data accumulating during the progress
of the trial, while maintaining the integrity and validity of the trial. The purpose is
to provide investigators the flexibility to identify the best/optimal clinical benefit of

the test treatment under study without compromising the validity and integrity of the
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intended study (Chow et al., 2008), as well as increase the probability of success of the
intended trial. The procedure in adaptive clinical trials is such that at some stages
during the trial a decision is made on whether to abandon or continue with the trial,
based on review of accumulated information from preceding stages. If the decision is
to continue, then the next study is designed using the results from the previous stages
(Jennison and Turnbull, 2005). There are several adaptive methods in clinical trials
that include sample size re-estimation, adaptive randomization, adaptive dose finding
and adaptive hypotheses, but for the purpose of this work only sample size re-estimation

is discussed here.

3.3.1 Sample size re-estimation

In calculating the sample size of a clinical trial, investigators usually make assumptions
about the expected treatment effect and the variance of the outcome variable(s). If the
assumptions are not correct and the actual values of the parameters differ substantially
from the expected, the sample size may be too small or large, thereby under-powering
or overpowering the study, both of which have serious consequences. For example, an
underpowered study may lead to inability to detect the treatment effect and making
the trial inconclusive. While an overpowered study leads to wastage of resources that
may be used elsewhere. Sample size re-estimation allows the parameter estimates to be
updated during an ongoing trial, and then used to modify the sample size accordingly.

Suppose that after n; observations per group have been taken, the standardized

statistic Z; = /n1/262(Y; — X;) is computed. Assume n; is large enough so that
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0o can be estimated after n; observations has been taken. Proschan and Hunsberger
(1995) proposed a standard method for calculating the number of the additional ob-
servations ms = ny(z1) based on the observed z; using conditional power (CP). Let
C'Ps(ng, z4]21) denote the conditional probability that Z based on nj + ny observations
exceeds the critical value z,, given that Z; = z;, and that (u, — p1,,)/0 = J. Proschan

and Hunsberger (1995) conditional power approach is given by

OPnz,Za\Z1 =Pr (Z > Za|Zl = 21,5)

_1_Z{Za\/m_Zl\/2—m_n25} (3.42)

2n9
where the treatment difference in standardized form ¢ is replaced with the observed
estimate.

Sample size calculation generally requires that the standard deviation of the pro-
cess/observations be known. When the standard deviation is unknown, it is estimated
from previous data on the topic or at least from a pilot study. However treating es-
timates obtained from data observed at interim stage as true values lead to the same
problem faced at the original calculation of the sample size before conducting the study.
More so, when a clinical trial starts with a small sample size, re-estimating the sample
size based on observed treatment difference instead of the actual clinical difference that
need to be detected can cause bias and be misleading (Chow et al., 2008). Chapter 6
provided more discussions on sample size re-estimation with regard to sequential bias

in accumulating evidence in meta-analysis.
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Chapter 4

A sequential method for

random-effects meta-analysis

As earlier mentioned in the introductory Chapter, temporal changes in magnitude of
effect sizes reported in many areas of research can impair the validity of results and
conclusions in meta-analysis. Standard sequential methods proposed for monitoring
the trends are based on solid statistical theory only in fixed effect approach, and there-
fore are not suitable for sequential random-effects meta-analysis. The major obstacle
in simple application of the sequential methods in random-effect meta-analysis is han-
dling of the between-study variance, 72 (Higgins et al., 2011). When the number of
studies are few many estimators of 72 underestimate it. This Chapter introduces the
use of a truncated CUSUM-type test (Gombay method) for the sequential random-
effects meta-analysis. The Gombay method is a sequential change detection test for

parametric models in the presence of a nuisance parameter. A nuisance parameter is a
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parameter that is not of immediate interest but must be accounted for in the course of
the analysis. So in the application of the method in random-effects meta-analysis, the
between-study variance is treated as the nuisance parameter. The Gombay method is
a large-sample method suitable for most practical problems whether their observations
are independent or not.

Section 4.1 describes the Gombay method. Section 4.2 formulates the Gombay
method for random-effects model of meta-analysis. Section 4.3 is the report on a sim-
ulation study of the Gombay test for sequential REM with standard critical values
obtained from asymptotic theory. Discussion of the Gombay method based on critical

values derived from asymptotic theory is presented in Section 4.4.

4.1 The Gombay Method

Before presenting the Gombay method we briefly introduce the score test which is

closely related to the Gombay method.

4.1.1 Score test

The score test introduced by Rao (1948) is a fixed sample size test of a null hypothesis
that a parameter of interest takes a particular value. Let X be an independent random
variable with density f(X,w), where w is a parameter of interest. The score test statistic

for testing a null hypothesis Hy : w = wy is defined (Rao, 1948) by




where p(w) = 2 log[f(X,w)] is known as the score vector and I(w) = var [pu(w)] =
EX[(,u(w))Q} = Ex [(% log[f(X,w)])? is the Fisher information and the derivatives
taken at wg. Under the null hypothesis the statistic S(w) is x? distributed with 1
degrees of freedom (Rao, 1948).

In most statistical problems w is rarely only a parameter of interest. Let w = (6, 7),
such that the observed variable X ~ f(.,0,7n), 0 is a vector of real parameters of
interest and 7 is the vector of nuisance parameter. Since the interest is in inference
about the parameters of interest 6, it is important to find a way to deal with the
nuisance parameter. One way to eliminate the nuisance parameter is by conditioning
the score statistic, (see (Lindsey, 1983, Basu, 1977)). A suitable statistic is chosen, say
glx € X): (x € X,w) = (y € Y, 0) such that the conditional distribution of ¢ depends

on w only through #. The conditional score vector may be defined (Lindsey, 1983) by
g(x € X) = p(w) — E[u|T7], (4.2)

where T is a sufficient statistic whose sampling distribution depends on 6 only. If
is real-valued, the information corresponding to g(z € X) is obtained from a Fisher
information matrix for the parameters (6, 7n) given (Gombay and Serbian, 2005, Lindsey,

1983) by

]: Tog  Ipy |

1779 Inn

and the marginal information about 6, also known as the effective information, is given

by 1(0) = Igo — Ionl,, Iy, see (Bera and Bilias, 2001, Gombay and Serbian, 2005).
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4.1.2 Sequential hypotheses and Gombay test statistic

The Gombay method is a sequential change detection test for parametric models in the
presence of a vector nuisance parameter. It is closely related to the score test described
above. However the score test is a fixed sample size test of a null hypothesis that a
parameter of interest takes a particular value, while the Gombay test is a sequential
change detection test with the test statistic defined by the maximum of a sequence of
score statistics S; = S| X(j) = ¢(X1, Xy, ..., X;) calculated from the sequence of observed
data, G = max {S1, S, ..., St }. Below we describe the Gombay method introduced as
test I in Gombay and Serbian (2005). Consider a sequence of independent random
variables (r.v.) Xi, Xs, .... ~ fo, ., where f is a probability density function, # is a
(vector) parameter of interest and 7 is a nuisance parameter. Consider a test for the
composite hypothesis
Hy: 0, =0y, m;, =n;1=1, 2, .... against alternatives

0; =0y, m; = m; 1=1,2,..r,
Hli

0; =00 +A0,mp;=mn; i>r+1,

where > 1 is an unknown time of change, A6, a shift in the value of the parameter of
interest from 6y and n an unknown nuisance parameter. The null value of the vector of
parameter of interest f, can take any value from R?. In the context of meta-analysis,
comparing a treatment and a control group, the null value of the effect parameter may
be set at 8y = 07 — - = 0; while for a meta-analysis of stage IV clinical trials with

the research interest to detect any possible shift from a known effect of a treatment,

73



Table 4.1: Critical values of two-sided Gombay test C(«a), x? distribution x?(«) and

standard normal distribution Z;_,

K 10 10 50 50 50 100 100 100 1000 1000 1000
o 0.025 | 0.05 0.010 | 0.025 | 0.05 0.010 | 0.025 | 0.05 0.010 | 0.025 | 0.05
C(a) | 4.0177 | 3.4710 | 4.5032 | 3.9438 | 3.5164 | 4.4892 | 3.9606 | 3.5566 | 4.5062 | 4.0363 | 3.6772
C*(«r) | 4.5544 | 4.0077 | 4.9229 | 4.3635 | 3.9360 | 4.8859 | 4.3572 | 3.9532 | 4.8588 | 4.3889 | 4.0297
Zi—o | 1.9599 | 1.6449 | 2.3263 | 1.9599 | 1.6449 | 2.3263 | 1.9599 | 1.6449 | 2.3263 | 1.9599 | 1.6449

the null hypothesis may be set at a value other than zero, say 6y = 0,, where 6, is the
value of the known effect of the treatment from results of previous studies.
Denote » = (6,7n). The log-likelihood function at the k-th interim analysis is

l(¢) = Zle In f(X;,v), and the score vector for § and 7 is defined by

3 log foyn(X). (4.3)

Vie(6o, 1) 0

||M»

In order to define a test statistic for the hypotheses about 6, a Fisher information matrix

I for k observations is partitioned as

where

I = ( 2100, 77)), Loy = (—E%l(&,@) and I = It, = ( Eql 1(9,77)).
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Replacing the nuisance parameter n with its restricted maximum likelihood estimate

Mk, obtained from the solution of

logf (X;:6p,m) =0, (4.4)

IIMw

the conditional efficient score vector Vj is given by

K
. 0
Vi(0o, 1) = > 59 108 foon (Xi)- (4.5)
=1

This vector is also sometimes termed effective score vector and its variance I'y(6y,n) =
11 — Lip15,' o) is called effective information, (Bera and Bilias, 2001). Note that for
independent and identically distributed r.v.’s, this variance increases linearly with the
number of observations: I'y(6y,n) = kI'1(0y,n). Under some standard regularity condi-
tions guaranteeing the existence and consistence of a sequence of maximum likelihood
estimates given by Serfling (1980) and Lehmann (2001), Gombay and Serbian (2005)

showed that under Hy, as k — oo, the effective score vector can be written as

0
a_ IOg f@nk

M»

Vie(Oo, 1) =

1

0

- Z{ (log foon) I3 (6o, )121(90777)} (4.6)

A

pllqw

+ O(log log k)

k
= Z Z; + O(loglog k),

=1

where Z; are independent identically distributed (i.i.d.) random variables with expected
value E[Z;] = 0 and the covariance matrix cov(Z;) = k™ 'T'w(6y,n), for Ty(6y,n) =

1)



Iy — Lol Ir,. Tt follows that the statistic

k
B,
T, = VETk(60,n) /%> 55 108 oo (4.7)
=1

is asymptotically (k — o0) the sum of i.i.d. random variables with mean 0 and variance
1, and thus a sequence of statistics {T;} can be approximated by a standard Wiener
process. In order to use the statistic Ty, for testing the covariance I'y(6y,n) is replaced
with its estimate 'y (6o, 7x). Gombay (2003) and Gombay and Serbian (2005) introduced
a sequential change detection test based on statistic Ty in (4.7) as follows. For k =
2,3,---, K, where K is a truncation point, reject Hy in favor of a positive change

AO > 0 at time k if
1

G(K) =1Z5<k \/—?Tk > VKC(a) (4.8)

and if no such k, k < K, exists do not reject Hy. The asymptotic critical values C(«)
of this 1-sided test are calculated by
1 1
C(a) =(2loglog K)™z(—log(—log(1l — )) + 2.5loglog K — 5 log ), (4.9)

where « is the significance level and K is the truncation point or the maximum number

of observations. For the two-sided test based on |Ty|, the critical values are given by

D=

1 1
C*(a) =(2loglog K)™2(— log(—é log(1 — a)) 4+ 2.5loglog K — 5 log 7). (4.10)

Table 4.1 shows that the critical values of the Gombay test decrease with increase
in maximum number of observations (studies) K, and with increase in the value of
significance level a.. The critical values of the Gombay test are higher compared with
the critical values Z;_, obtained from standard normal distribution. See Gombay
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(2003) and Gombay and Serbian (2005) for a detailed derivation and discussion of this

method.

4.2 Formulation of the Gombay test statistic for

REM

To apply the Gombay method in random-effects model of meta-analysis, assume studies
are conducted independently and sequentially over time. However, in practice a diffi-
culty can arise in determining the order in which studies are performed or published.
For example the year of publication of two or more studies may coincide. Where such
difficulty arises the order is selected randomly. Each study estimates a treatment ef-
fect, y; for i=1, 2, .... with variance o?. Assume that there is no correlation between
the effect size estimates and the variances. Under the null hypothesis, Hy, each ef-
fect estimate is normally distributed with the same mean 6, y; ~ N (6, (w;)™!), where
w; = (72 4 02)7! is the estimate of the weight in random effects model. The mean
parameter, 6 is the population treatment effect and it is estimated at the step k as
weighted mean of the individual effect estimates, 6, = S35 wry;/ SO wF, k=1, 2, .....
Let 8 = 6, be the null value of the effect parameter. As more studies are conducted and

results are continually combined, the goal is to determine when the combined effect, 0y,

changes significantly from the null value, 6, if at all, and stop further studies.
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The log likelihood function required to define the Gombay test statistic is given by
2 1 Ak Ak 2
L(yi:e,r)—é{logwi — W (y; — bp) —1—0}, (4.11)

where C'is a constant. The efficient score statistic is Vi = S5 107 (y; — 6p). This familiar
statistic is routinely used in meta-analysis for testing a value of the mean in k studies.

Its variance is ', = Zlf E[@w}]. In the sequential setting, the Gombay test statistic is

based on the maximum of the standardised and scaled by v/k score statistics (4.8) given

by

Vk Zki Wy (y; — o)
T, = —= . (4.12)

Because the probability distribution of 72 is unknown, the expected value of the es-
timated weight @} in (4.12) needs to be approximated. Assuming that the expected
value E[7?] = 72 for i=1, 2, ..., K, the expected value of the estimated weight esti-
mates in (4.12) can be approximated by the first term in their Taylor series expansion,

E[w}] = w;(7%). The between-study variance component 72 is estimated using the full

information available from k studies, 73, or from all K studies, 72.

We proposed a sequential test using the weights w} = w;(72) and E[w}] = w}(7?) in
(4.12), and based on the maximum (over all k < K) of v/kTy, see Dogo et al. (2015).
The 72 was estimated by one of the methods by DerSimonian and Laird (1986); Higgins
et al. (2011); Paule and Mandel (1982) and the REML. In what follows, the Gombay
test statistics based on the four above estimators are denoted by GDL, GH, GM P and

GREM L, respectively.
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4.3 The simulation study.

The objectives of the simulation study presented in this Section is to evaluate the Type
I error rate and the power of Gombay test for REM with standard critical values in
relation to the number of studies K in the meta-analysis, average studies sizes n, and
the amount of heterogeneity in the treatment effects 72. The simulation study also
compares the performance of the Gombay test for REM with standard critical values
based on four different estimators of 72; DerSimonian and Laird (1986), Higgins et al.
(2011), Paule and Mandel (1982) and the REML.

The data for the simulations were generated as follows. For studies i=1, 2, ..., K,

the sample sizes were generated from normal distribution, n; ~ N (n, %) rounded to

the nearest integer and values less than 3 were truncated at 3. The sample variances,

2
i

S? were generated from the scaled Chi-squared distribution, S? ~ sy

)

Xz, _1- The
effect size estimates were generated from normal distribution, y; ~ N (A6, 0% /n; + 72),
where A@ is the difference in the null value of effect parameter 6, and the alter-
native 6y + h. Critical values were calculated based on 5 % significance level and
the null value of the effect parameter set at 6, = 0. The sequential testing starts
with a minimum of two studies and stops as soon as a boundary value is reached
or after the K interim analysis. For each combination of the following variables:
0% =1, Af = (0.00,0.05,0.10,0.15,0.20), n = (20,50, 100, 1000), K = (10, 30,50) and
72 = (0.00,0.015, 0.030,0.045, 0.060), a total of 10,000 simulations were conducted, then

the empirical power of the test to reject Hy was calculated and recorded. The values
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Figure 4.1: Overall Type I error achieved by Gombay test for REM with standard critical values
at the nominal 0.05 level based on DerSimonian and Laird (1986); Higgins et al. (2011); Paule and
Mandel (1982) and REML estimators of 72 (GDL -red line, GH - green, GPM - yellow and GREML
- purple line, respectively). K is the number of studies; n is the average sample size of studies; Af
is the amount of shift in value of the effect parameter from 6y, 72 is the value of the between-study

variance. The black straight line represents the nginal 0.05% level for the test.
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Figure 4.2: Power of Gombay test for REM with standard critical values at the nominal 0.05 level
based on DerSimonian and Laird (1986); Higgins et al. (2011); Paule and Mandel (1982) and REML
estimators of 72 (GDL -red line, GH - green, GPM - yellow and GREML - purple line, respectively).
K is the number of studies; n is the average sample size of studies; p is the power of the test and Af

is the amount of shift in value of effect parametei&ffom 6y; 72 is the between-study variance.
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Figure 4.3: Power of Gombay test for REM with standard critical values against 72 based on
DerSimonian and Laird (1986); Higgins et al. (2011); Paule and Mandel (1982) and REML estimators

of 72 (GDL -red line, GH - green, GPM - yellow and GREML - purple line, respectively). K is the
number of studies; n is the average studies size; p is the power and 72 is the between-study variance.

Af is the amount of shift in value of effect parameter from 6.
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Figure 4.4: Deviations in power Ap of Gombay test for REM with standard critical values at 5%

level from the mean powers of the four tests based on DerSimonian and Laird (1986); Higgins et al.

(2011), Paule and Mandel (1982) and REML estimators of 72 (GDL -red line, GH - green, GPM -
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size; Ap is the deviation in power from the mean power of the tests based on 4 estimators of 72, Af

is the amount of shift in value of the effect parameter from 6y; 72 is the between-study variance.



of the variables used in the simulation were specifically chosen to cover most of the

practical situations. See the results in Figures 4.1-4.4.

4.3.1 Type I Error of the Gombay test for REM

A key issue in testing of statistical hypothesis is the ability to achieve good power while
maintaining the probability of Type I error, that is, the probability of false rejection.
Figure 4.1 shows the overall Type I errors achieved by Gombay test for REM with
standard critical values based on four estimators of 7%; DerSimonian and Laird (1986);
Higgins et al. (2011), Paule and Mandel (1982) and the REML (GDL, GH, GPM and
GREML, respectively). When n=20, the values of Type I error rates achieved by the
test based on all the four estimators are below the nominal level of 0.05. But as n
increases to 50, GDL, GPM and GREML cross the nominal 5% level for larger values

of 72.

The achieved level of GH is still below the nominal level for all studied values
of heterogeneity. When n=100, the Type I error rates achieved by the tests based on
all the four estimators of 72 increase and cross the nominal level when 72 = 0.025 for
GDL, GPM and GREML and when 72 = 0.04 for GH. For all values of n and 72, GDL,
GPM and GREML produce higher Type I error rates compared to GH.

In general, the Gombay test for REM with standard critical values does not control
the Type I error rate well. The Type I errors achieved by the Gombay method increase

with increase in K, n and 72, and the tests do not control the Type I error rate. Besides,

the levels achieved by the tests in FEM when 72 = 0 are practically zero.
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4.3.2 Statistical Power of Gombay test for REM

Figures 4.2-4.4 show the analysis of the power of Gombay test for REM based on Der-
Simonian and Laird (1986); Higgins et al. (2011), Paule and Mandel (1982) and the
REML estimators of 72. As expected, the power increases with increase in the number
of studies K, average study size n and the value of the population treatment effect 6.
Figure 4.3 demonstrates that the power decreases with increase in heterogeneity 72.
This should be expected as the increase in variability makes detection of a treatment
effect more difficult. However, counter-intuitively the power increases with heterogene-
ity when n=20. The reason for this is the extreme conservativeness of the Gombay test
for REM when n is relatively small, see Figure 4.1. Without the control of Type I error
rate, a comparison of power is pointless. However, Figure 4.4 shows comparison of the
power of the tests based on four different estimators of 72 when the value of 72 = 0.06.
The differences in the power between the four tests are very small. When n = 20
GREML is more powerful, followed by GDL, GMP and GH is the least powerful. To
some extend this is also true for larger values of n, however as the value of 6 increases,
the power of GH increases and it eventually becomes more powerful compared to the

other three tests.

4.4 Discussion

This Chapter has considered the use of asymptotic Gombay method for sequential
meta-analysis that incorporates random effects and accounts for heterogeneity amount
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of the treatment effects. The Gombay test statistic for REM has been defined based
on four different estimators of 72; DerSimonian and Laird (1986), Higgins et al. (2011),
Paule and Mandel (1982) and REML methods. However, simulations of the Gombay
test for REM with standard critical values obtained from asymptotic theory show that
the test does not control the Type I error rate well. As was shown in the simulation
results, the Type I error achieved by the test is close to zero when the value of 72 is
small. In contrast, larger values of 72 lead to considerable inflation of the Type I error
rate. The Type I error of the test also depends on the values of the average sample size
n and the number of studies K in the analysis.

Without the control of type I error, the comparison of power of the tests based on
different estimators of 72 is not valid, though the test based on REML estimator of 72
appears to result in the higher statistical power compared to the tests based on other
three estimators considered.

In general, the use of Gombay method with the standard critical values obtained
from asymptotic theory is disappointing. However the Gombay method has some impor-
tant characteristics that can be improved upon to provide a better sequential approach
for random-effects meta-analysis. In particular, the lack of control of the Type I error
rate by the proposed test can be explained by the use of asymptotic approximations
based on Wiener’s process (see Gombay and Serbian (2005)) to obtain the critical val-
ues of the Gombay test.

Another problem that might have contributed to the lack of control of the Type

I error rate by the proposed method is that the Gombay method assumed that the
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sample observations have the same distribution f. However, in REM the variances of
estimated effects differ, and the sequence {T}} can by Wiener process only for very
large within-studies sample sizes which make within-study variances o2 negligible. In
the next Chapter, bootstrap critical values shall be determined for the use with the
Gombay test. The results of this Chapter are published in International Journal of
Mathematical, Computational, Statistical, Natural and Physical Engineering, see Dogo

et al. (2015).
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Chapter 5

Gombay test for REM with

bootstrap critical values

In the previous Chapter, the Gombay method was introduced for sequential moni-
toring of temporal changes in effect sizes in random-effects meta-analysis. However,
simulation has shown that Gombay test for REM with standard critical values does
not control the Type I error rate well. The standard critical values of the Gombay
method are determined based on asymptotic approximation of the distribution of the
test statistic under the null hypothesis, see Gombay and Serbian (2005). Asymptotic
theory often provides inaccurate approximation of finite sample distributions of test
statistic (Horowitz, 1997). As follows from the simulations in Section 4.3, a poor ap-
proximation of the distribution of the Gombay test statistic for REM under the null
hypothesis leads to a test that does not control the Type I error rate and has low sta-

tistical power. Bootstrap-based critical values are introduced in this Chapter for the
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use with the Gombay method. For simplicity, this test is referred to as retrospective
Gombay sequential bootstrap test for REM.

The bootstrap is a method for estimating the distribution of an estimator or a test
statistic by re-sampling the data (Horowitz, 2001). The data in bootstrap method is
treated as if it were the population with the aim to evaluate the distribution of interest.
The bootstrap is a computer-based method which substitutes considerable amounts of
computation in place of theoretical analysis (Efron and Tibshirani, 1985). Bootstrap-
based critical values produce spectacular reduction in the finite sample error compared
to the asymptotic ones (Hall and Horowitz, 1996), and provide dramatic reductions
in the difference between the true and nominal levels of a test (Horowitz, 1997). In
Section 5.1, the retrospective Gombay sequential bootstrap test for REM is presented.
Section 5.2 reports on simulations of retrospective Gombay sequential bootstrap test
for REM. Sections 5.3 and 5.4 present the application and discussion of the use of ret-
rospective Gombay sequential bootstrap test in random-effects model of meta-analysis,

respectively.
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5.1 The retrospective (Gombay sequential bootstrap

test for REM

Define the retrospective Gombay sequential bootstrap test statistic for REM for detec-

tion of a shift A# in the effect parameter from 6, by

k
_90

Gy = (5.1)

T 1I<k<K \/— \/7

k
The statistics > W (y; —6p) and Z w}(7%) are the estimates of the efficient score vector
i=1 i=1

and the value of the Fisher information at the k-th interim analysis calculated based on
the best estimate of 72 from all available K studies, 72. Note that as the knowledge of
72 is required, this is not a true sequential test. This is rather a method allowing ret-

rospective analysis of the sequential combined effects in random-effects meta-analysis.

5.1.1 Bootstrap procedure

Consider the following one- and two-sided retrospective tests for the existence of a shift
from 6y, say Af. The tests are to be performed after combining K studies. Define Ty,

for k=2, ..., K as

T, = = , (5.2)

Test: For k =2, 3, ..., K, reject Hy if T, > KC(«) (one-sided) or |T}| > KC.(«)
(two-sided) and if no such k, k < K, exists do not reject Hy. The critical values C'(«)
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and C.(«) are to be calculated by bootstrap. Let

G* =<k {\/%Tk} and G** :gngir];g[( {\/_%Tk}
The calculation of the bootstrap critical values is based on the percentiles of the em-

pirical distribution of G* and G** calculated from the set of bootstrap samples of the

data. The step procedure for the calculations are as follows.

1. From the observed data, calculate the effect estimates y;, the sample variances S?,
study sizes, n;, and other sample statistics as required, for i=1, 2, ..., K. Calculate
~2

2 using one of the methods for estimating 72 by DerSimonian and Laird (1986),

Higgins et al. (2011), Paule and Mandel (1982) or REML.

2. Use the values of 7%, the null value of the effect parameter, 6, and other sam-
ple statistics to draw B independent bootstrap samples of the effect estimates
from an appropriate distribution, i.e. the distribution of the sampled data from
studies. Calculate or generate from an appropriate distribution B bootstrap esti-
mates of the within-study variances, S,i, for i=1, 2, ..., K. A standard choice for

constructing bootstrap test is to use B=1000.

3. Use the bootstrap values {(ys,, Sli_), i=1, 2, ..., K} to calculate the estimate of
72, 72 for each sample b=1, 2, ..., B, and the corresponding estimated weights in

random-effects model as w,, = (77 + 53 )"
4. For each bootstrap sample b =1, 2, ..., B, calculate the sequential statistics

(5.3)

k
Tow = Y whi(ysi — 00)/
=1
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Find G} and G}* statistics as follows.
* __mazx -1 *k __min -1
Gy To<k<K {K QTbk}§ Gy To<k<K {K 2Tb/’c} (5.4)

5. Order the bootstrap replicates of G} and G*, as G} < G5 < G; < ... <G and
G7* < Gy < Gy < ... < GF. For a one-sided test, the upper critical values
are given by [B X (1 — «) + 1] element in the sequence of {G;}, while the lower
critical values are calculated by [B x o] element in the sequence of {G**}. Use

a/2 instead of « for the two-sided test.

Step 2 of the above bootstrap procedure is very effect measure specific. Below are
presented the details for several popular effect measures available in the R program

provided in the Appendix.

5.1.2 Sample mean

When the effect of interest y; is the sample mean of the n; normally distributed obser-
vations, and its variances S? = s?/n; for the sample variance s7, generate B bootstrap
effects yp; ~ N (6,72 + S?) and B bootstrap estimates of the within-study variances,

SZ ~ S22 fori=12, .., K.

5.1.2.1 Mean difference

When the effect of interest y; is the difference of the treatment (T') and control (C) sam-
ple means of normally distributed observations, denote sample variances in the two arms
by s%- and s3,, with the sample sizes n;r and n,c, respectively. The variance of the mean
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difference is S? = s%./n;r + s~ /nic. Generate B bootstrap effects yy; ~ N (6, 72 + S?)
and B pairs of the bootstrap within-arms sample variances, sy ~ sipXa 1/ (nir — 1)
and sy ~ sioXe _1/(nic — 1), for i = 1, ..., K. Then calculate the within-studies

variances, S = sip/nir + Stio/Nic-

5.1.2.2 Standardised mean difference

The standardised mean difference (SMD) 6 = (ur; — pei)/o is estimated by y; =
J(N:)(Xgi — Xci)/spi for the pooled sample variances s = [(nir — 1)s%, + (nic —
1)sic]/(Ni—2), where N; = nci+nr; and J = T[(N;=2)/2]/(1/(N; = 2)/2T[(N; —3) /2])
is a constant depending only on the total sample size N;. The variance is estimated by

(see (Hedges and Olkin (1985), p. 104-5))

. 2.= A, + B;y?, 5.5
(3 (Nz o 4>nCinTi Nz o 4 7 + yz ( )

N; —2)N; J? N, —2)J?

52:( ) 7 +(( )z_1>y2:
where A and B depend only on sample sizes. /nrine; /Nyy; has non-central t-distribution
with N; —2 degrees of freedom, and the non-centrality parametery/np;nc; /N;0, denoted
by t(N; —2, \/npinci/N;0). Generate B bootstrap effects y; from [J(N;)N;/\/nrinc:| X
t(N; — 2, v/nrinci/N;0) distribution and calculate their variances S7 from equation

(5.5).

5.1.3 Binomial effect measures

Denote the numbers of events in the control and treatment arms of the studies by X¢;

and Xr;, respectively. Let a = 0. When X¢; = 0 or X¢; = ney;, take a = 1/2. Estimate

93



probabilities po; = (X¢; — a)/(nei + 2a). When the effect of interest y; is the log odds
ratio or the log relative risk, discard the studies with X¢; + X7 = 0 or ng; + np; and

adjust the total number of studies K accordingly.

5.1.3.1 Log odds ratio

When the effect of interest y; is the log odds ratio, generate B vectors of length K
containing within-study log odds ratios 0y; ~ N (0, 72). Given the values of pc; and 6y,
the logits in the treatment groups are logit(pr,,)+6s. Hence calculate the probabilities
pryi and simulate the numbers of the study outcomes X7 and X¢y; from the binomial
distributions Binom(nr;, pry;) and Binom(ng;, pei), respectively. Following Gart et al.
(1985) to obtain unbiased estimators of the log odds ratios and their variances, calculate
the log odds ratios as yy; = log[(X7p:i+1/2)/(nri — X1ei+1/2)] —log[(Xcpi+1/2)/ (nei —
Xewi +1/2)] and the variances are Sg = (Xrp +1/2) 7'+ (npy — X +1/2) 7+ (Xewi +

1/2)7 + (new — Xeow +1/2)7L

5.1.3.2 Log relative risk

In case of log relative risks y;, generate B vectors of length K containing within-study
mean log relative risks y; from N (6, 72) distribution with the i-th distribution trun-
cated on the left at —logpes, @ = 1, ..., K. The use of truncated normal distributions
to restrict the range of the possible values of log relative risks is required to guaran-
tee the treatment probabilities below 1. Given the values of po; and 6,;, calculate the

probabilities in the treatment groups pry; = poiexp(dyi). Generate the numbers of the
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study outcomes X7y and Xeyp; from the binomial distributions Binom(ny;, pre;) and
Binom(nei, pei), respectively. Following Pettigrew et al. (1986) to obtain the unbiased
estimators of the log relative risk and their variances, calculate the log relative risk
as log((Xzw + 1/2)/(ng; +1/2)) + log((Xcw + 1/2)/(nei +1/2)) and the variances as

Sl?z = (XTbi + 1/2)_1 — (nT,; + 1/2)_1 + (XCbi + 1/2)_1 — (TLCZ‘ + 1/2>_1.

5.1.3.3 Risk difference

In case of risk difference y;, generate B vectors of length K containing within-study
mean risk differences ; from N (6, 72) distributions with the ith distribution truncated
to the interval

-pci, 1 — peil, © = 1, ..., K. The use of truncated normal distributions to restrict
the range of possible values of risk differences is required to guarantee the treatment
probabilities below 1. Given the values of pg; and 6,;, calculate the probabilities in
the treatment groups pry = pci + 0. Generate the numbers of the study outcomes
X7y and X¢y; from the binomial distributions Binom(nr;, pry;) and Binom(ngq, pc:i),
respectively. Calculate the risk differences as y,; = X7v; /n1i — Xcwi/nei and the variance
as SE = (Xrpi +a)(ng; — Xrwi +a)/ (np; — 2a)® + (Xeow +a) (nei — Xep +a) /(nei — 2a)3.
Use a = 0 unless X7 = 0 or X7y = np; or Xep = 0 or Xcew; = nei, in which case use

a=1/2.
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Figure 5.1: Type I errors achieved by retrospective Gombay sequential bootstrap test for REM

based on DerSimonian and Laird (1986), Higgins et al. (2011), Paule and Mandel (1982) and
REML estimators of 72 (GDL -red line, GH - green, GPM - yellow, GREML - purple line, penalized

Z-test-darkgrey, and SMA based on Pocock’s boundaries-pink, respectively) . K is the number of

studies; n is the average sample size; Af is the shift in effect parameter from 6, = 0, 72 is the
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between-study variance. The black straight line represent the nominal level of 5% for the test.
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Figure 5.2: Deviation of Type I error Aa achieved by retrospective Gombay sequential bootstrap
tests for REM from the nominal level based on DerSimonian and Laird (1986), Higgins et al.
(2011), Paule and Mandel (1982) and the REML estimators of 72 (GDL -red line, GH - green,
GPM - yellow and GREML - purple line, respectively). K is the number of studies; n is the average
sample size; A is the shift in effect parameter from 6y = 0, 72 is the between-study variance and
nominal level of the tests is a = 0.05. The black straight line corresponds to point where the
difference is zero. 97
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against Af. K is the number of studies; n is the average sample size; p is the power while Af is
the change in effect parameter from 6, = 0, 72 is the between-study variance.
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Figure 5.4: Deviations of power of retrospective Gombay sequential bootstrap test for REM from
the mean power of the tests based on DerSimonian and Laird (1986), Higgins et al. (2011), Paule
and Mandel (1982) and REML estimators of 72 (GDL -red line, GH - green, GPM - yellow and

GREML - purple line, respectively) when 72 = 0.05. K is the number of studies; n is the average
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sample size; Ap is the deviations in power from the average power of the four tests while Af is the
change in effect parameter from 6, = 0, 72 is the between-study variance.



K=20, n=20, A6=0.05

K=50, n=20, A6=0.05

3
- <
3 3
IS}
< 4
37 £
S -
4 o
s 4
8 4
CI) <
o
T T T T T T ST T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 " 000 0.01 0.02 0.03 0.04 0.05
2 2
T T
K=20, n=50, A6=0.05 K=50, n=50 , A6=0.05
8
3 g ]
S 1 (=]
o
- o
o
<
& § 4 s ° / -
S © ,/
o
8 4
_ 2 /
g /
S =
e S |
T T T T T T Q T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
2 2
T T
K=20,n=100, A6=0.05 K=50, n=100, A6=0.05
o
© 2
S A 3
o
8
o
S - 3
& ° &
o
8 S
S 5
<?
[Te]
o
=
T T T T T T <
0.00 0.01 0.02 0.03 0.04 0.05
2
T
K=20, n=1000, A6=0.05
8
[t}
8 - 3
=)
o
8 g
§ 97 & o
0 Yo}
o [=]
S 4 S
e =
T T T T T T T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

ap

ap

Ap

ap

0.005

0.000

-0.005

-0.004  0.000 0.004

-0.008

0.000 0.004

-0.004

0.000 0.005

-0.005

K=100, n=20, A6=0.05

T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05

K=100, n=100, A6=0.05

0.00 0.01 0.02 0.03 0.04

K=100, n=1000, A6=0.05

0.00 0.01 0.02

Figure 5.5: Deviations of power of retrospective Gombay sequential bootstrap test for REM from
the mean power of the tests based on DerSimonian and Laird (1986), Higgins et al. (2011), Paule
and Mandel (1982) and REML estimators of 72 (GDL -red line, GH - green, GPM - yellow and
GREML - purple line, respectively) when Af = 0.05. K is the number of studies; n is the average
sample size; Ap is the deviations in power from the average power of the four tests while Af is the
change in effect parameter from 6, = 0, 72 is the between-study variance.
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Figure 5.6: The power of retrospective Gombay sequential bootstrap test for REM based on
DerSimonian and Laird (1986), Higgins et al. (2011), Paule and Mandel (1982) and REML
estimators of 72 (GDL -red line, GH - green, GPM - yellow and GREML - purple line, respectively)
when Af = 0.05 against 72. K is the number of studies; n is the average sample size; p is the

power while Af is the change in effect parameter from 6, = 0, 72 is the between-study variance.
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5.2 Simulation Study

To evaluate the properties of the retrospective Gombay sequential bootstrap test pre-
sented in Section 5.1, a simulation study was conducted. The observed estimates of the
treatment effect were generated using the normal distribution, y; ~ N(Af, 72 + 02),
where Af is the difference in the null value of effect parameter 6y and the alternative
0y + h. The studies sizes were generated using the normal distribution, n; ~ N (n, %)

rounded to the nearest integer and truncated on the left at 3, n is the average sample

size of the studies. Estimates of sample variances, 67 were generated using scaled Chi-

o?
(ni—1

square distributions, 67 ~ 7Xn,—1- This choice ensures that E[67] = o7. Estimated
variances of estimated treatment effects y; are S? = 67 /n;. The data for each simulated
meta-analysis consisted of a total of K estimates of the observed treatment effects, their
estimated variances, and corresponding sample sizes {(v;, S?,n;), i =1,---,K}. For
each dataset four bootstrap-based tests were calculated using different estimators of 72
DerSimonian and Laird (1986), Higgins et al. (2011), Paule and Mandel (1982) and
REML (GH, GDL, GPM and GREML, respectively), the penalized Z-test by Lan et al.
(2003) with A = 2, and SMA based on Lan-DeMets alpha-spending function (Lan and
DeMets, 1983) and Pocock’s boundaries as implemented in program Ildbands from the
R package Hmisc (Casper and Perez, 2006). Following Wetterslev et al. (2008), the OIS
for SMA was inflated by an adjustment factor (1 — I?)~! for the I? inconsistency index

I? = (Q — (K —1))/Q (this method is referred to as SMA in the rest of the paper). We

used one-sided tests and the significance level was fixed at o = 0.05. The null value of
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the effect parameter was taken as 8y = 0 and the calculation of each bootstrap critical
value was based on B = 1000 bootstrap replications. We generated 1000 datasets for
each of the 270 combinations of the following variables chosen to represent a realistic

range of the parameters values:

A# = (0.00,0.05,0.10,0.15, 0.20),

n = (20,50, 100, 1000),

K = (20,50,100) and

72 = (0.00,0.01, 0.02,0.03,0.04, 0.05).

For each scenario the number of times the test rejects the null hypothesis was recorded.
The results are presented in Figures 5.1-5.6.

Figures 5.1 compare the overall Type I error rates achieved by retrospective Gombay
sequential bootstrap test for REM based on Higgins et al. (2011), DerSimonian and
Laird (1986), Paule and Mandel (1982) and REML estimators of 72 (GH, GDL, GPM
and GREML), the penalised Z-test and SMA. Type I error rates in bootstrap-based
tests with all the four estimators of 72 are relatively stable and close to the nominal
level. When K = 20, the values of Type I error rates achieved by GH and GDL are
somewhat higher compared to GPM and GREML, but as K increases to 50 and 100
there is very little difference between the four tests, as is clearer from Figure 5.2. Over-
all, even though there is no clear-cut winners, it appears that the GPM performs slightly
better for smaller studies, and the GREML for large studies. In contrast, the Type I

error rates for the penalised Z-test and the SMA are unsatisfactory. They are far from
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nominal value of 5% and increase with increasing values of K, n and 72. Interestingly,
the SMA Type I error rate is mostly below the nominal level and seems to be unstable
when n < 100 and K > 50, but it explodes with increasing 72 and n = 1000.

Figures 5.3- 5.6 show the analysis of power of the retrospective Gombay sequen-
tial bootstrap test for REM based on DerSimonian and Laird (1986), Higgins et al.
(2011), Paule and Mandel (1982) and REML estimators of 72. In Figure 5.3, as to be
expected, the power of the test increases with increase in number of studies K, average
studies size n and the population treatment effect . In contrast, Figure 5.6 shows
that power decreases with increase in heterogeneity variance 72. This also should be
expected because increase in variability is known to result to wider confidence interval
thereby making it difficult to detect the presence of an effect especially when it is small.
Figure 5.4 compares power between the four tests when 72 = 0.03. For K = 20 the
results show that GH and GDL are more powerful compared to GPM and GREML;
when K = 50 no clear difference in power is observed between the four tests, and as
K increases to 100, GREML becomes more powerful compared to other three tests. In
Figure 5.5 when 72 = (.05, no clear difference is observed anywhere in terms of the
power of the four tests. The power of the retrospective Gombay sequential bootstrap
tests for REM based on all the four different estimators is approximately the same.

Bias of the Type I error rate achieved in our simulations are as follows. Let
Tk = Tk(Xy,...,Xk) be a statistic for testing Hy and Ck(«) be the corresponding
bootstrap critical value. If Tk is pivotal statistic, i.e. a statistic whose distribution

does not depend on unknown parameter(s), Hall and Horowitz (1996), and Horowitz
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and Savin (2000) showed that
P{|TK| >CK(CY)} :CY—FO(KiQ), (56)

where « is the nominal level. Since our retrospective Gombay bootstrap test statistic
is asymptotically pivotal and K=(20,50,100), the maximum estimate of the bias in the
Type I error rate achieved is 0.0025 which is negligible. Similarity between the results
of the tests based on the different estimators of 72 can be explained by the fact that all
the estimators were of a similar quality in regards to bias and precision when estimating
72,

To summarise on the basis of the simulations, the use of Gombay method with
bootstrap critical values provides a remarkable reduction in the difference between the
true and nominal levels of the test in comparable to the Gombay test for REM with
critical values derived from asymptotic method. The test controls the Type I error rate
well irrespective of the number of studies, studies sizes, the amount of heterogeneity

2 and also has high statistical

in the treatment effects or the method of estimating 7
power. Therefore, this research concentrates on the application of the retrospective

Gombay sequential bootstrap test for REM in the following two examples of medical

meta-analysis.

5.3 Examples

To demonstrate the application of the retrospective sequential bootstrap tests, this
section consider two examples of medical meta-analyses. The results of the bootstrap
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tests are compared with the results obtained from CMA, CUSUM and SMA. The data
for each meta-analysis were sorted chronologically according to year of publication, from
the earliest to the latest. Where the year of publication of two or more studies coincide,
the order was selected randomly. Cumulative meta-analysis were conducted using R
package metafor (Viechtbauer, 2010). SMA was based on Lan-DeMets alpha-spending
function (Lan and DeMets, 1983) and Pocock’s boundaries as implemented in the R
package ldbounds (Casper and Perez, 2006). CUSUM charts were obtained from the R

package qcc (Scrucca, 2004).

5.3.1 Magnesium for myocardial infarction

The first application is based on the systematic review conducted by Li et al. (2007)
to examine the effectiveness of the use of intravenous magnesium for the treatment of
acute myocardial infarction. For simplicity, the data is referred to as the magnesium
data. The data consist of 23 trials published from 1984 to 2004. The outcome of interest
is mortality from acute myocardial infarction and the treatment effects are recorded as
log-odds ratios. A correction factor 0.5 was added to each entry in the data and the

log-odds ratios and its variances were calculated by

- (zr+0.5)(nc—zc) |. 24y — __1 1 1 1
Yi = log (337(;4-0.5)(712—12) » 05 (90) ~ z7+0.5 nr—xr zc+0.5 nc—zc "’ (57)

A negative value of ¢; indicates that mortality has been reduced and therefore favours
the use of intravenous magnesium. A standard random effects meta-analysis of the data

indicates a significant benefit in the use of magnesium with combined effect -0.2644
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(p-value=0.0015), 77, = 0.037 and the value of Q-statistic is equal to 56.1405 with
p-value< 0.0001. The data and the results of the analysis are presented in Tables 8.1
and 8.2 in the Appendix.

Let ¢ be the true value of the estimates of the log-odds ratio, ;. For testing
the effectiveness of the new intervention, consider the null hypothesis of no effect of
intravenous magnesium, Hy: ¢ = 0. The CMA based on random-effects model and

2 at the target value of 0 first indicates

DerSimonian and Laird (1986) estimator of 7
significant effect with value -1.01 (p-value=0.016) at trial 3. However this result may
be spurious due to the inflated Type I error rate in CMA. The CUSUM, SMA and the
penalized Z-test with the same target value indicate a significant effect at trial 7. When
the bootstrap based tests are used with the same target value of 0. GH and GDL reject
Hy at trials 5 with statistics values -0.4990 and -0.4984, respectively; while GPM and
GREML reject Hy at trials 6 with statistics values -0.5156 and -0.4892, respectively,
see Figure 5.8. Hence for this data the bootstrap-based tests are more powerful in
comparison to the CUSUM, SMA and the penalised Z-test.

Having established that intravenous magnesium is a significantly effective for acute
myocardial infarction, it is important to monitor for any possible trend in the effect
over time. In Figure 5.7, the beginning of an upward trend in the effectiveness of
the use of intravenous magnesium for the treatment of acute myocardial infarction,
so the CMA at this stage, -0.934 (cumulative log-odds ratio at trial 7) is set as the

new target value. Figure 5.7 shows the analysis of the magnesium data using CMA

based on random-effects model and SMA based on Pocock’s boundaries, the penalised
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Z-test and CUSUM. The horizontal line across the CMA corresponds to the combined
log-odds ratio of -0.934 at stage 7. The CMA plot on Figure 5.7 exhibits a gradual
increase in effect (corresponding to reduction in survival benefit), and the deviation
from the horizontal line at -0.934 becomes significant at trial 10. The CUSUM chart
also indicates the significant change at trial 10. The penalised Z-test (Hu et al., 2007,
Lan et al., 2003) with the same target value crosses the upper boundary at trial 14
and SMA at trial 15. In Figure 5.9, GH and GDL methods indicate significant change
at trial 15, while GPM and GREML indicate significant change at trials 20 and 22,
respectively. As to be expected, the CMA and the CUSUM are liberal since they
are based on fixed effect boundaries. The performance of the bootstrap based tests
is consistent with the conclusion in the simulation study that GH and GDL are more

liberal tests compared to GPM and GREML when the number of studies is not large.

5.3.2 Nicotine replacement therapy for smoking cessation

The second example is based on the systematic review by Stead et al. (2008) on testing
the effectiveness of nicotine replacement therapy (NRT) for smoking cessation. Kulin-
skaya and Koricheva (2010) have reproduced and analysed the data using QC charts,
and detected temporal changes in the effect of nicotine on smoking cessation. It will be
interesting to see if such changes can be detected by retrospective Gombay sequential
bootstrap test for REM. The data consist of 53 trials published from 1979 to 2005.

The outcome of interest is the effect of nicotine containing chewing gum compared to

108



control in aiding smoking cessation. The effect measure used is the log-relative risk

estimated by

¢ = log [’2&} with variance estimated by o2(¢) = 2L=2r 4 no—sc (5.8)

To.nr xr.nr ro.ne

A positive value of (;AS, means that NRT is effective for smoking cessation. A random
effects meta-analysis based on DerSimonian and Laird (1986) estimator of 72 indicates
a significantly different from zero; log relative risk of 0.36 (RR=1.43), p-value< 0.0001;
73, = 0.017 and Q-statistic=65.77 with p-value=0.09. This means that the studies are
not very heterogeneous, and therefore it will be interesting to see the performance of
the retrospective Gombay sequential bootstrap test for REM in comparison with the
standard methods which are based on fixed effect model. The data and results of the
analysis are presented in Tables 8.3-8.8 in the Appendix.

Let ¢ be the true value of the estimates of the log-relative risk, ngSl For a new
intervention the objective is to test the null hypothesis of no effect of chewing gum,
Hy : ¢ = 0. The CMA based on random-effects model of the data indicates a significant
result (p-value=0.031) at trial 3; SMA indicates significant result (z-value of 3.23 is
greater than the upper bound of 2.81) at trial 5. The penalized Z-test based on the
adjustment factor of A = 2 indicates significant result (test value of 1.92 is greater than
Z1-005 = 1.64) at trial 7, while the CUSUM indicates a significant result at trial 5.
For the retrospective Gombay sequential bootstrap test for REM, GDL, GH, GPM and
GREML indicate a significant result at trial 7 with test values of 0.5615, 0.5615, 0.5668

and 0.5468, respectively. Thus we conclude that there is a significant effect of NRT.
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To monitor for any possible trend in the effect over time, observe that in Figure
5.10 the CMA begins to show a gradual increase in effect from trial 5. So a new target
value of 0.41 that corresponds to the combined log-relative risk at trial 5 is set. Observe
that in Figures 5.10 and 5.12 only the CUSUM indicates a significant result at trial 38.
However it is worth to note that the CUSUM test by its definition does not take into

2

account the heterogeneity variance, 72 in random-effects model of meta-analysis, and

thus the result is likely to be spurious.

5.4 Discussion of the use of Gombay method for

sequential random-effects meta-analysis

One of the objectives in this thesis has been to find a suitable statistical method for
monitoring temporal trends in effect sizes in random-effects meta-analysis. In the pro-
cess, the use of the Gombay method which has solid statistical foundations with the
advantage of applicability to parametric models in the presence of nuisance parame-
ter was introduced in Chapter 4. However, using the Gombay method with standard
critical values derived from asymptotic theory leads to a test with incorrect probabil-
ity of Type I error rate. As commented by Horowitz (1997), ‘Asymptotic theory often
provides inaccurate approzimation of the limiting distributions of test statistic, which
can result in a test with different true and nominal levels’. Therefore, this Chapter
considered the use of bootstrap-based critical values with Gombay method for the se-

quential random-effects meta-analysis (retrospective Gombay sequential bootstrap test
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for REM). Simulations were conducted for the test based on four different estimators
of 72; DerSimonian and Laird (1986), Higgins et al. (2011), Paule and Mandel (1982)
and the REML. As have been shown, the bootstrap critical values provide a remarkable
reduction in the difference between the true and the nominal level.

The Type I error rates achieved by the retrospective Gombay sequential bootstrap
test for REM based on all the four estimators of 72 considered are close to the nomi-
nal level. The test based on DerSimonian and Laird (1986) and Higgins et al. (2011)
estimators of 72 have more statistical power compared to the test based on Paule and
Mandel (1982) and the REML when the number of studies is small and the reverse is
the case when the number of studies is large. The retrospective Gombay sequential
bootstrap test controls the Type I error better than the penalized Z-test and SMA.
Unlike the penalized Z-test and SMA where the Type I errors vary for different values
of K, n and 72, the Type I errors in Gombay test for REM with bootstrap critical
values based on all the four estimators of 72 considered are relatively stable.

This Chapter also demonstrated the application of the Gombay method to odds
ratio and relative risk effect sizes using two meta-analytic examples from medicine.
As have been shown, the method allows sequential evaluation of treatment effect and
monitoring of temporal trends in magnitude of effect sizes. Statistical significance of
the treatment effect is established in both examples while temporal trends are detected
in the first example, see Figures 5.9 and 5.12. The retrospective Gombay sequential
bootstrap test is comparable to the other methods in terms of early detection of shifts

in treatment effect. As have been seen, CMA, SMA and the CUSUM all detect change
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in magnitude of effect at stage 7. For the retrospective Gombay sequential bootstrap
test, GDL and GH indicate significant shift in treatment effect at trial 6 while GPM
and GREML at trial 5 in the first example. In the second example, the CUSUM and
SMA detect change in magnitude of effect at stage 5, while the penalized Z-test and
the retrospective Gombay sequential bootstrap tests based on all the four estimators of
72 at stage 7.

In many conventional sequential methods for meta-analysis, the between-study vari-

2 is not included in the determination of the sequential boundaries, and this

ation, 7
often leads to the inflation of Type I error when the treatment effects are substantially
heterogeneous. But in the retrospective Gombay sequential bootstrap test, the problem
is taken care of as the 72 is included in the calculation of the bootstrap critical values.
As can be seen, the retrospective Gombay sequential bootstrap test for REM controls
the Type I error better compared to the penalized Z-test and SMA.

Calculation of the bootstrap critical values requires that the entire data be avail-
able at the start of the analysis, and therefore the application of the present method
may be limited to retrospective meta-analysis. However meta-analysis is a quantita-
tive approach for systematic assessment of the results of previous research in order to
arrive at conclusions about the body of research (Petitti, 1999). Therefore, sequential
methods in retrospective meta-analysis can be used to decide whether enough evidence
has been gathered so that further trials are unnecessary. They can also be used for

deciding whether an existing meta-analysis should be updated or not. The Gombay

method with bootstrap critical values can be used prospectively when the maximum
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number of studies K required for the analysis is known in advance. Roloff et al. (2013),
Kulinskaya and Wood (2014) discussed how the maximum number of studies required
in a sequential meta-analysis can be determined in FEM and REM based on power
analysis. Their methods can be utilised for this purpose.

In general, the Gombay method with bootstrap critical values controls the Type I
error well irrespective of the number of studies, average sample size and the amount of
heterogeneity in treatment effects. The method is comparable with standard sequential
methods in meta-analysis in terms of allowing sequential evaluation of accumulating ev-
idence and early detection of shifts in treatment effect. On the basis of the simulations,
the DerSimonian and Laird (1986) and Higgins et al. (2011) estimators of 72 work well
in the Gombay test for REM work well for small and medium number of studies, while

Paule and Mandel (1982) and REML estimators are slightly better for large studies.
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cumulative effect

Cumulative meta-analysis for Stead et al. (2008) data
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Figure 5.7: Analysis of magnesium for myocardial infarction (Li et al., 2007) data using
Cumulative, CUSUM, Sequential meta-analysis and penalised Z-test for magnesium
data. CMA and SMA are based on 73;. The horizontal line is the combined log odds
ratio -0.934 (OR=0.393) at trial 7. The same value is the target value for SMA. The
red dotted line is the upper-boundary value for the one-sided test which is first crossed
at trial 13. The control limits for CUSUM chart (dashed lines) are defined at +50. The
red dashed line on the penalised Z-test plot is the one-sided upper boundary value.
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GH test for magnesium data GDL test for magnesium data
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Figure 5.8: Analysis of magnesium for myocardial infarction (Li et al., 2007) data
using the retrospective Gombay sequential bootstrap test for REM based on Higgins
et al. (2011), DerSimonian and Laird (1986), Paule and Mandel (1982) and REML
estimators of 72 (GDL, GH, GPM and GREML). The target value is set at 0, and
the red dashed lines in GDL, GH, GPM and GREML plots are the one-sided lower
boundary values.
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