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Abstract. Three different models were applied to study the

reproduction, survival and dispersal of Mnemiopsis leidyi in

the Scheldt estuaries and the southern North Sea: a high-

resolution particle tracking model with passive particles, a

low-resolution particle tracking model with a reproduction

model coupled to a biogeochemical model, and a dynamic

energy budget (DEB) model. The results of the models, each

with its strengths and weaknesses, suggest the following con-

ceptual situation: (i) the estuaries possess enough retention

capability to keep an overwintering population, and enough

exchange with coastal waters of the North Sea to seed off-

shore populations; (ii) M. leidyi can survive in the North Sea,

and be transported over considerable distances, thus facili-

tating connectivity between coastal embayments; (iii) under

current climatic conditions, M. leidyi may not be able to re-

produce in large numbers in coastal and offshore waters of

the North Sea, but this may change with global warming;

however, this result is subject to substantial uncertainty. Fur-

ther quantitative observational work is needed on the effects

of temperature, salinity and food availability on reproduction

and on mortality at different life stages to improve models

such as used here.

1 Introduction

1.1 Background

The comb jelly Mnemiopsis leidyi originates from temper-

ate to sub-tropical waters along the east coast of the USA

(Purcell et al., 2001; Costello et al. 2012). M. leidyi is no-

torious for its highly adaptive life traits: a fast growth rate

combined with high fecundity, early reproduction, the ability

of self-fertilisation, and a euryoecious lifestyle tolerating a

wide range of environmental parameters (temperature, salin-

ity, water quality) are characteristics which favour its estab-

lishment and fast expansion in invaded areas (Purcell et al.,

2001; Fuentes et al., 2010; Jaspers et al., 2011; Salihoglu et

al., 2011).

M. leidyi was introduced in the Black Sea in the early

1980s (see also the comprehensive review by Costello et

al., 2012), probably through ballast water (Vinogradov et al.,

1989). The presence of M. leidyi together with eutrophica-

tion and overfishing caused a deterioration of the ecosystem,

which finally degraded to a low biodiversified “dead-end”

gelatinous food web (Shiganova, 1998). This led to an eco-

nomic loss/collapse of the pelagic fish population, in particu-

lar anchovies and sprat fisheries (Kideys, 1994, 2002). M. lei-

dyi then spread further into the Sea of Azov (Studenikina et

al. 1991), the Sea of Marmara (Shiganova, 1993), the Aegean

Sea (Kideys and Niermann, 1994), and the Levantine Sea
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(Kideys and Niermann, 1993). In 1999, M. leidyi was trans-

ported from the Black Sea to the Caspian Sea (Ivanov et al.,

2000). M. leidyi spread from the eastern Mediterranean to

other regions of the Mediterranean: it was recorded in 2005

in the northern Adriatic Sea (Shiganova and Malej, 2009) and

in 2009, blooms were reported in waters off the coasts of Is-

rael (Galil et al., 2009), Italy (Boero et al., 2009), and Spain

(Fuentes et al., 2010).

M. leidyi was also transported from the north-western At-

lantic to northern European waters (Reusch et al., 2010); first

records date back to 2005 and originate from Le Havre har-

bour in northern France (Antajan et al., 2014), Danish ter-

ritorial waters (Tendal et al., 2007), and Norwegian fjords

(Oliveira, 2007). By 2006 M. leidyi had been reported in the

western Baltic Sea (Javidpour et al., 2006), in the Skagerrak

(Hansson, 2006), in the Scheldt estuaries and Wadden Sea

(Faasse and Bayha, 2006), and the German Bight (Boersma

et al., 2007). In 2007, the species was found in Limfjorden

(Riisgård et al., 2007) and in Belgian waters in the harbour

of Zeebrugge (Dumoulin, 2007; Van Ginderdeuren, 2012). In

the following years the species remained present in the west-

ern and central Baltic Sea (Javidpour et al., 2009; Jaspers

et al., 2013), Kattegat, Skagerrak and inshore Danish wa-

ters (Tendal et al., 2007; Riisgard et al., 2012), and Wadden

Sea (Kellnreitner et al., 2013; van Walraven et al., 2013). In

most of these areas the highest densities are observed in sum-

mer, although in the Wadden Sea, as well as in the Baltic,

the species has been observed in all seasons. In the Scheldt

area M. leidyi is observed in Lake Veere, Lake Grevelingen,

the eastern Scheldt, and the western Scheldt. In this area, M.

leidyi is observed every year, with the highest densities in

summer as well (Gittenberger, 2008).

Since 2009 M. leidyi has been observed frequently along

the French coast of the North Sea (Antajan et al., 2014). This

is particularly worrying because the North Sea is the home of

commercially important fish stocks, including spawning and

nursery grounds (Ellis et al., 2011), and also shares the de-

pleted state of fish stocks that characterised the Black Sea

when M. leidyi was introduced (Kideys, 1994; Daskalov,

2002; Mutlu, 2009). Furthermore, model predictions from re-

cent work from Collingridge et al. (2014) suggest that large

parts of the North Sea are suitable for M. leidyi reproduc-

tion in summer months, with some of the highest risk ar-

eas along the southern coastal and estuarine regions of the

North Sea, due to a combination of high temperatures and

high food concentrations. The presence and potential estab-

lishment of M. leidyi in the southern North Sea is therefore

cause for concern, and there is a need to further expand our

understanding on the mechanisms involved in the dynamics

of M. leidyi populations and its potential spread from source

locations where it is established.

In this paper we apply three different models to simulate

aspects of the transport, survival, and reproduction of M. lei-

dyi in the Scheldt estuaries and the North Sea. We use the

combined results to provide insight into the potential spread-

Figure 1. Model grid of the Delft model in blue and definition of the

areas in red. (a) eastern Scheldt estuary, (b) western Scheldt estu-

ary, (c) eastern Scheldt mouth, (d) western Scheldt mouth, (e) Zee-

brugge harbour area and (f) southern North Sea.

ing and population dynamics of M. leidyi at a range of spatial

and temporal scales in the area, which could not have been

obtained with each model individually.

1.2 Study area

1.2.1 Scheldt estuaries

The western Scheldt is the Dutch part of the estuary of the

Scheldt River which flows from France to Belgium and en-

ters the North Sea in the Netherlands, see Fig. 1. The total

surface area of the western Scheldt is approximately 310 km2

and it has a length of about 60 km. The average channel depth

is 15–20 m (Meire et al., 2005) and the estuary has extensive

tidal flats. The Scheldt River has an average fresh-water dis-

charge of 104 m3 s−1 and the upstream part in Belgium has

the characteristics of a tidal river. The salinity at the Belgian–

Dutch border ranges from 2 to 14 and the maximum tidal

range is 5 m. The Scheldt is considered well mixed, except in

periods of peak river discharge (Meire et al., 2005).

The eastern Scheldt estuary is the former mouth of the

Scheldt river and has a connection to the Rhine and Meuse

river system; see Fig. 1. The total surface area of the eastern

Scheldt is approximately 350 km2 and it has a length of about

40 km. The inner part of the estuary is forked, with a smaller

branch to the north and a wider branch to the south-east.

Following the 1953 storm surge, waterworks have been con-

structed which isolate the eastern Scheldt from most of the

fresh-water input, transforming the estuary into a well-mixed

tidal bay. In the mouth of the estuary a storm surge barrier has
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been constructed which is usually open, but can be closed

under extreme weather conditions. The barrier reduces the

exchange of water with the open-sea by 28 % (Smaal and

Nienhuis, 1992).

The two estuaries are only connected by sluiced water-

ways. Both estuaries have a protected status as a nature re-

serve.

1.2.2 Southern North Sea

The southern North Sea is a relatively shallow shelf sea with

depths less than 80 m. The most prominent feature is the

Dogger Bank, which rises up to less than 30 m water depth,

and is separated from the Norfolk Banks to the south-west

by the Silver Pit. The latter has a depth of over 50 m. To the

south-east of the Dogger Bank are the Oyster Grounds, with

depths of 40–50 m. The Southern Bight is situated further

south, and consists of a deep channel (depth up to 50 m) in

the west and a shallow area (depths typically less than 30 m)

in the east. The channel is connected to the Strait of Dover to

the south.

The tides in the southern North Sea are semi-diurnal, with

dominant M2 tidal amplitudes over 2 m along the UK east

coast, near Dover Strait, and in the German Bight, and am-

phidromic points in the central southern North Sea and in the

Southern Bight of the North Sea (e.g. Davies et al., 1997).

Maximum surface currents at spring tide are about 1.4 m s−1

in the western and southern parts of the Southern Bight, re-

ducing to 0.3 m s−1 in the central-southern North Sea (Hy-

drographical Survey, 2000).

Wind can induce depth-averaged surge currents of up to

1 m s−1 (Flather, 1987). The time and depth-averaged atmo-

spherically induced residual currents are about one-third of

the tidal residuals and directed to the north in the Southern

Bight, and to the north-east in the southern North Sea (Pran-

dle, 1978). Combined residual current speeds in the Southern

Bight are approximately 0.05 m s−1 (Prandle, 1978).

Thermal stratification occurs in summer in the northern

parts of the southern North Sea, whereas the southern parts

remain well-mixed, and are separated by the Frysian Front

(Otto et al., 1990). Under stratified conditions, a subsurface

jet induced by density differences transports water around the

north, east, and south-east slopes of the Dogger Bank into

the Oyster Grounds (Brown et al., 1999; Hill et al., 2008).

The thermal stratification breaks down in the autumn, and is

absent throughout the winter.

On a more local scale, fresh-water outflow of the river

Rhine forms a plume along the Dutch coast to the North, re-

sulting in density-driven coastward near-bottom currents of

several cm s−1 (Visser, 1992). A similar plume is present in

the German Bight and associated with the river Elbe (e.g.

Schrum, 1997). UK coastal waters converge in the East An-

glian plume, which is mostly recognisable by its elevated lev-

els of turbidity. This plume crosses the North Sea in a north-

eastward direction, from the coast of East Anglia to the south

of the Dogger Bank (see Dyer and Moffat, 1998, for a de-

tailed description).

1.3 Multi-model approach

Three existing models were used: (i) Delft 3-D (in the re-

sults and discussion referred to as Delft model), (ii) GETM–

ERSEM–BFM (3-D General Estuarine Transport Model–

European Regional Seas Ecosystem Model–Biochemical

Flux Model) model with particle tracking (General Individu-

als Transport Model – GITM) (in the results and discussion

referred to as the GETM model) and (iii) the dynamic en-

ergy budget (DEB) model (in the results and discussion re-

ferred to as DEB model). By deploying the strengths of the

individual models, and through combining and intercompar-

ison of the results, this study provides insight into the po-

tential spreading and population dynamics of M. leidyi at a

range of spatial and temporal scales in the area that could

not have been obtained with each model individually, and

without the investment required to develop a single model

to encompass all. The Delft model implementation, at high

spatial resolution and with its native particle tracking mod-

ule using passive particles, provided insight into the poten-

tial role of the Scheldt estuaries as a nursery and source of

M. leidyi, and in the role of estuarine–marine exchange pro-

cesses. The GETM model with particle tracking (GITM) was

developed to include a simple reproduction model, and was

used to study transport, connectivity, and population dynam-

ics at the scale of the North Sea. The DEB model was then

used for fixed hypothetical locations using prescribed tem-

peratures to simulate in greater detail how temperature and

food concentrations dynamically affect the eco-physiology

of a growing, developing and/or reproducing individual. In

this model age and size at important life history can depend

on the prior temperature and food experienced by the indi-

vidual. The DEB model was used to both gain confidence in

the simple reproduction model in the GETM model and to

expose its limitations.

2 Material and methods

2.1 Delft3D

2.1.1 Hydrodynamics

Delft3D is an integrated modelling suite used to simulate

three-dimensional flow, sediment transport and morphology,

waves, water quality and ecology, and the interactions be-

tween these processes. More specifically, the hydrodynamic

module simulates non-steady flows in relatively shallow wa-

ter, and incorporates the effects of tides, winds, air pressure,

density differences (due to salinity and temperature), waves,

turbulence, and drying and flooding (Lesser et al., 2004).

The model application of the southern North Sea uses a

curvilinear boundary-fitted c-grid. The domain decomposi-
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tion technique creates extra resolution by inserting an in-

termediate and a fine-sized domain near the Dutch coast

(Fig. 1). The horizontal resolution ranges from 0.5 km near

the coast to 25 km near the open boundaries, resulting in

22 473 active computational elements. The vertical dimen-

sion consists of 12 σ transformed layers with the highest res-

olution near the sea bed and the sea surface. The shallow-

water hydrostatic pressure equations are time integrated by

means of an alternating direction implicit (ADI) numerical

scheme in horizontal directions and by the Crank–Nicolson

method in the vertical direction. The solution is mass con-

serving at every grid cell and time step. This code is extended

with transport of salt and heat content and with a k-ε turbu-

lence model for vertical exchange of horizontal momentum

and matter or heat. Along the open-sea boundaries tidal har-

monics for water level are imposed consisting of 50 astro-

nomical constituents. The model was forced using meteoro-

logical data from the High-Resolution Limited Area Model

(HIRLAM) run at the Royal Dutch Meteorological Service

(KNMI) (Undén et al., 2002): two horizontal wind veloc-

ity components, air pressure and temperature, archived ev-

ery 6 h. The fresh-water discharges from 18 rivers were in-

cluded in the model. Seven of these discharges varied tem-

porally (historic daily averages) and 11 were constant (based

on long-term averages).

The primary focus of the hydrodynamic model is the rep-

resentation of the water level and tidal flow velocities along

the Dutch coast and in the estuaries. The results of the model

have been applied and validated against observational data in

the modelling of suspended matter (van Kessel et al., 2011),

eutrophication (Los et al., 2008) and the transport of fish lar-

vae (Bolle et al., 2009; Dickey-Collas et al., 2009).

2.1.2 Particle tracking in Delft3D

The particle module of Delft3D uses a numerical advection

scheme for particles that is fully compatible with the lo-

cal mass-conserving advection properties of the underlying

flow field at the discrete level of that field (Postma et al.,

2013). Horizontal dispersion is accounted for by a random

walk step. The depth varying vertical diffusion as calculated

by the hydrodynamic turbulence model is incorporated by a

stochastic bouncing algorithm to move the particles in the

vertical. The algorithm closely approximates the analytical

solution. For the purpose of this study, passive particles were

used.

The particle tracking module is run offline, for this purpose

the hydrodynamic results are stored on an hourly basis. The

particle model itself runs with a timestep of 5 min.

For the simulation of biological vectors a module is

available to simulate development and vertical migration

behaviour. The development is divided into an unlimited

amount of stages where the duration of the stage is depen-

dent on the age of the particle and the accumulated tempera-

ture encountered over that stage (Bolle et al., 2009). For each

stage the behaviour can be set with its own parameterisa-

tion. Apart from neutral buoyancy the types of behaviour are

positive buoyancy, negative buoyancy, diurnal vertical migra-

tion, selective tidal transport and settling towards the sea bed.

Growth and mortality based on food availability and preda-

tion were not incorporated in the model. At the start of this

study, we had no information suggesting migration behaviour

for M. leidyi. Hence, use of passive particles was assumed to

be sufficient to study the potential exchange between the es-

tuaries and offshore waters.

2.1.3 Application: estuaries

The Delft3D model was applied to determine the potential

connectivity of M. leidyi between the eastern and western

Scheldt estuaries and the North Sea. Applying the hydrody-

namic situation from 2008, a run with a uniform initial dis-

tribution of particles over the estuary volume (particles m−3)

was performed for each estuary and for each month of the

year. The boundaries of the estuaries are shown in Fig. 1. In

all, 500 000 particles were released simultaneously. The hor-

izontal dispersion coefficient was set to 1.0 (m2 s−1) and no

behaviour was included (neutral buoyancy).

The simulations were performed from the first high tide

of the month to the first high tide after a period of 30 days,

which corresponds with two spring neap cycles. At the end

of the simulation the position of the particles within six pre-

defined areas was scored and reported as a percentage of the

number of particles released, resulting in a connectivity ma-

trix. The areas were the eastern Scheldt estuary, the western

Scheldt estuary, the eastern Scheldt ebb–tidal delta, western

Scheldt ebb–tidal delta, the Zeebrugge harbour area, and the

remainder of the North Sea as far as covered by the outer

model domain (Fig. 1). To test the sensitivity of the results

for the release moment, the July runs for both estuaries were

also performed from low tide towards low tide over a period

of 30 days.

In addition to the simulations described above, model runs

were carried out with initial conditions based on observa-

tions. These initial conditions were constructed using zero-

order extrapolation of the measurements in the lateral direc-

tion of the estuary and interpolation in the longitudinal direc-

tion with a zero value outside the estuary. Model runs were

carried out from the date of measurements until the next set

of measurements available for comparison.

For the western Scheldt the model was run from 1 Septem-

ber to 1 December 2011. The initial field was based on sam-

ples collected on 1 September and 1 December 2011 in the

western Scheldt onboard RV Zeeleeuw at three different lo-

cations using a WP3 net (Ø 1 m, mesh size 1 mm) in oblique

hauls. Ctenophores, including M. leidyi, were isolated from

the samples and identified morphologically, counted and

measured (oral–aboral length) on board (Vansteenbrugge et

al., 2015).

Ocean Sci., 11, 405–424, 2015 www.ocean-sci.net/11/405/2015/
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For the eastern Scheldt the initial condition was con-

structed from measurements on 28 September 2012 onboard

RV Luctor using the same gear and method. The model was

compared with data from the MEMO cruise on 20 Octo-

ber 2012 (Bandura, 2013). The model was run with 2011 hy-

drodynamics for the same period because a hydrodynamics

simulation for 2012 was not available. The runs with non-

uniform initial condition will be referred to as the realistic

runs.

2.2 Particle tracking IBM coupled to

GETM–ERSEM–BFM

2.2.1 Particle tracking IBM (GITM)

The individual behaviour model (IBM) GITM includes phys-

ical particle advection and diffusion, and biological devel-

opment and behaviour. The advection–diffusion elements of

GITM were based on a re-coded version of the Lagrangian

semi-analytical advection–diffusion method developed by

Wolk (2003). This method ensures that particles follow

stream lines exactly. Furthermore, a random walk method

with advective correction (Visser, 1997) was included to sim-

ulate diffusion (Hunter et al., 1993). This method uses a con-

stant diffusion coefficient in the horizontal direction and a

variable diffusion coefficient in the vertical direction. The lat-

ter is based on the vertical diffusivity obtained from the tur-

bulence closure model in the hydrodynamics model GETM

(see also Sect. 2.2.2). The combined hydrodynamics model

(GETM) and particle tracking model (GITM) were applied

recently to simulate the transport of plaice larvae in the North

Sea (Tiessen et al., 2014).

The biological development and behaviour module of

GITM allows particles to progress through a user-defined

number of egg and larval development stages, using phys-

ical and biological information from the GETM–ERSEM–

BFM model (e.g. temperature and food fields). However,

these mechanisms were not used here. Instead, the model was

modified to include a simplified version of the reproduction

mechanism suggested by Salihoglu et al. (2011), elements of

which originate from the model of Kremer (1976). This re-

production mechanism was implemented to affect the num-

ber of individuals represented by a super-individual (parti-

cle). The main simplifications were (i) each super-individual

was assumed to represent a number of adults of average

mass, (ii) egg and juvenile stages were assumed to be in-

finitely short to allow for (i), (iii) food stocks were assumed

not to be impacted upon by M. leidyi. Including the latter

would require either inclusion of a comb jelly functional type

in ERSEM–BFM, or development of full, on-the-fly coupling

and feedback between ERSEM–BFM and GITM. These op-

tions were considered to be beyond the scope of this study.

As a result, the survival and reproductive success of individ-

uals simulated by the present model implementation should

be considered an overestimate. The reproduction mechanism

was implemented as follows: all values and constants were

taken from Salihoglu et al. (2011) unless specified other-

wise. Genetic evidence suggests differences between north-

ern and southern populations (Reusch et al., 2010). How-

ever, we have not found corresponding evidence in the litera-

ture for differences in physiological response to temperature;

hence, it is assumed that the parameter values suggested by

Salihoglu et al. (2011) are a reasonable first approximation

for populations in the North Sea.

Eggs were only produced if temperature and salinity

were above the thresholds of 12 ◦C and 10, respectively

(Lehtiniemi et al., 2012; see, however, Sect. 4.3). M. lei-

dyi exhibits synchronised spawning (Pang and Martindale,

2008). In the model, this behaviour was not included, and

egg production was spread over time. As in the model eggs

were not released as separate particles, and predation pro-

cesses were not explicitly included, the influence of this sim-

plification on the modelled adult population is expected to

be small. The number of eggs produced per time step ne de-

pended on food availability:

ne =
fFa

we

, (1)

where Fa is the food intake of the adult population

represented by the super-individual [mg C timestep−1],

we =0.1 µg C the average mass of an egg, and f the pro-

portion of food turned into eggs. The adult food intake was

calculated as

Fa = na

fa

1000
ccdwaGaAa

dt

24× 3600
, (2)

where na is the number of adults represented by the super-

individual, Fa the adult food concentration [mg C m−3]

(taken here as mesozooplankton from the GETM–ERSEM–

BFM model, see Sect. 2.2.2), wa = 2.8 mg C the average

mass of an adult, dt the time step [s], ccd = 73 mg mg−1C a

factor to convert carbon weight to dry weight for high salin-

ities, Aa = 0.72 the adult assimilation efficiency, and Ga the

adult clearance rate [l mg−1 dry weight day−1]:

Ga = a0

[(
wa

cw2c

)−b]
ekT , (3)

where a0 = 0.09 L mg−1 day−1 is an empirical constant, b =

0.5 a power, k = 0.05 ◦C−1 a decay coefficient, cw2c =

0.574 mgCmg−1 a conversion factor of wet weight to car-

bon weight, and T temperature [◦C].

In Eq. (1), the proportion of food turned into eggs f was

calculate as

f = 0.01Tfe
cf(wa/cw2c), (4)

where cf = 0.115 mg−1 is an empirical constant, and Tf a

temperature function given by

Tf = aT e
bT T , (5)
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where Tf, min = 0.01 is a minimum introduced here to pre-

vent negative values, and aT = 0.03 and bT = 0.14 empirical

constants. Out of the three functions suggested by Salihoglu

et al. (2011), we have chosen this one over the linear func-

tion preferred by Salihoglu et al. (2011), which has a cut-

off at a rather high temperature of approximately 14 ◦C. For

the reference run example of Salihoglu et al. (2011), the or-

der of magnitude of the number of eggs (several hundreds)

produced using these equations corresponded with the ob-

servations for small individuals presented by Kremer (1976)

and Reeve et al. (1989). Note that a direct comparison is im-

possible because the conditions of the observations, as far as

reported, cannot be fully represented with the current model.

Subsequently, the number of eggs calculated in Eq. (1) was

subjected to egg and juvenile mortality. The number of sur-

viving eggs nes was calculated using a constant daily mortal-

ity rate me = 0.7 and assuming an egg phase duration of 1

day:

nes = (1−me)ne. (6)

Juvenile mortality was calculated as a combination of a daily

background mortality mj = 0.27 and food availability. Egg

and juvenile daily mortalities were calibrated to reproduce

the results of the reference run example of Salihoglu et

al. (2011). The surviving juveniles njs after application of the

background mortality were

njs =
(
1−mj

)Djnes, (7)

where Dj is a temperature-driven duration of the juvenile

stage in days:

Dj = ad+ bdT , (8)

where ad = 76.0 and bd =−2.4 are constants based on

the graphs with model results presented by Salihoglu et

al. (2011).

Juvenile starvation was implemented by comparing the

daily food intake Fj with the average daily weight gain wg

required to reach the mass at the end of the transition stage

waj = 1.5 mg C:

wg =
waj−wj

Dj

, (9)

where wj = 0.13 mgC is the average mass of a juvenile. The

daily juvenile food intake was calculated as

Fj =
fj

1000
ccdwjGjAj

(
1−Lj,

)
(10)

where fj is the juvenile food concentration [mg C m−3]

(taken here as microzooplankton from the GETM–ERSEM–

BFM model, see Sect. 2.2.2), Aj = 0.75 the juvenile assim-

ilation rate, Lj = 0.06 a metabolic loss fraction, and Gj the

juvenile ingestion rate [Lmg−1 day−1]:

Gj = 0.4× 12.3×

(
wj

cw2c

)0.574

+ 0.1. (11)

Then finally, by combining the results of Eqs. (7), (9), and

(10), the number of new adults recruited nar into the existing

population in the time step under consideration (i.e. assum-

ing infinitely short egg and juvenile duration, but including

mortality calculated over their normal duration) was calcu-

lated as

nar =min

(
1,
Fj

wg

)
njs. (12)

Adults were assumed not to survive temperatures less than

2 ◦C. For such low temperatures, there is no reproduction in

the model. As the maturation in the model is artificially com-

pacted into a single time step, this means that there are then

no juveniles, so a similar rule for juvenile mortality is not

relevant. For temperatures above that, a background mortal-

ity of 2 % was imposed for completeness following Salihoglu

et al. (2011). There is evidence to suggest that M. leidyi can

survive lower temperatures (Costello et al., 2006b), so this

element of the model may be refined. As offshore water tem-

peratures in the south-western North Sea only very rarely fall

to such low levels, however, the results presented here are not

expected to change if such a refinement was implemented.

Also, a daily starvation mortality rate of 13 % was used for

food concentrations less than 3 mg C m−3, based on the ob-

servation that M. leidyi can survive without food for up to 17

days (Oliveira, 2007), and observations of the lowest concen-

trations of zooplankton at which M. leidyi has been found in

the field (Kremer, 1994). The latter results in approximately

10 % of the population surviving after 17 days. It is likely

that in reality, starvation mortality is temperature-dependent,

so subject to the availability of suitable observations, this el-

ement of the model may be improved.

2.2.2 GETM–ERSEM–BFM

The coupled physical–biogeochemical model GETM–

ERSEM–BFM was used to produce hydrodynamics and food

fields for the particle tracking model. GETM is a public

domain, three-dimensional finite difference hydrodynami-

cal model (Burchard and Bolding, 2002; www.getm.eu). It

solves the 3-D partial differential equations for conserva-

tion of mass, momentum, salt, and heat. The ERSEM–BFM

(European Regional Seas Ecosystem Model – Biogeochem-

ical Flux Model) version used here is a development of the

model ERSEM III (see Baretta et al., 1995; Ruardij and Van

Raaphorst, 1995; Ruardij et al., 1997, 2005; Vichi et al.,

2003, 2004, 2007; Van der Molen et al., 2013; www.nioz.nl/

northsea_model), and describes the dynamics of the biogeo-

chemical fluxes within the pelagic and benthic environment.

The ERSEM–BFM model simulates the cycles of carbon, ni-

trogen, phosphorus, silicate, and oxygen, and allows for vari-

able internal nutrient ratios inside organisms, based on exter-

nal availability and physiological status. The model applies

a functional group approach and contains six phytoplankton

groups, four zooplankton groups and five benthic groups,
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the latter comprising four macrofauna and one meiofauna

groups. Pelagic and benthic aerobic and anaerobic bacteria

are also included. The pelagic module includes a number of

processes in addition to those included in the oceanic version

presented by Vichi et al. (2007) to make it suitable for tem-

perate shelf seas: (i) a parameterisation for diatoms allowing

growth in spring, (ii) enhanced transparent exopolymer par-

ticles (TEP) excretion by diatoms under nutrient stress, (iii)

the associated formation of macro-aggregates consisting of

TEP and diatoms, leading to enhanced sinking rates and a

sufficient food supply to the benthic system especially in the

deeper offshore areas (Engel, 2000), (iv) a Phaeocystis func-

tional group for improved simulation of primary production

in coastal areas (Peperzak et al., 1998), and (v) a suspended

particulate matter (SPM) resuspension module that responds

to surface waves for improved simulation of the under-water

light climate (Van der Molen et al., 2014).

2.2.3 Application: North Sea

The GETM–ERSEM–BFM model was run from 1991 to

2009, and hot started from a 50-year hindcast carried out

with an earlier version (Van Leeuwen et al., 2013). Hourly

hydrodynamics and food fields were stored from June 2008

to February 2009. The particle tracking model IBM GITM

was run from 1 June 2008 to 31 January 2009, releasing three

particles per day from the 1st of June to the 30th of October

near the surface in each of six grid cells just seaward of the

Dutch estuaries, corresponding with expected bloom times

(e.g. Collingridge et al., 2014). The particles were assumed to

be passive tracers. Upon release, each particle was assumed

to represent 1000 M. leidyi individuals. Daily particle posi-

tions, particle characteristics and environmental conditions

were stored. The results were processed into density contour

maps, and into time series of properties aggregated over all

the particles. In the following, this run is called the standard

run. The standard run did not produce M. leidyi bloom con-

ditions, because very few juveniles survived due to a combi-

nation of a long juvenile duration and the imposed daily ju-

venile mortality. Hence, additional runs were carried out to,

specifically targeting these factors, to investigate how blooms

might occur. To illustrate the effect of temperature on repro-

duction, and to compare with the response in warmer waters,

an additional scenario run was carried out in which the par-

ticles experienced 10 % higher temperatures. The sensitivity

to juvenile mortality was assessed by a model run with two-

thirds of juvenile mortality at normal temperatures, and a run

with four-thirds of juvenile mortality at the 10 % higher tem-

peratures.

To study inter-connectivity between ports and estuaries

along the French Channel coast and areas in the southern

North Sea, a model run was carried out releasing 20 parti-

cles per day at one grid cell in the mouth of the river Seine,

and one grid cell in the mouth of the river Somme during the

same period as in the previous simulations.

Figure 2. Energy flux scheme of the standard DEB model. Boxes:

variables. Arrows: energy fluxes in Jday−1. The equations for each

flux can be found below. Grey circle: metabolic switch associated

with puberty: the individual stops allocating towards maturation and

starts allocating towards puberty. EX: food (J ), EP: faeces (J ), E:

reserve (J ), V : volume of structure (cm3), EH: cumulated energy

invested in maturation, andER: cumulated energy invested in repro-

duction. The energy fluxes are functions of the model parameters

which can be found in Table 1.

2.3 Dynamic energy budget model

2.3.1 DEB model

DEB theory (Kooijman 2010) describes the uptake and use

of food for all organisms under conditions in which food

densities and temperatures vary. The standard DEB model is

the simplest of a large family of DEB models. Augustine et

al. (2014) carried out a literature review on eco-physiological

data for M. leidyi and estimated DEB model parameters for

this species (see Table 1). The formulation of the standard

DEB model applied to M. leidyi is well documented in Au-

gustine et al. (2014). We refer to that study for details.

In short in the DEB theory, the state of the individual is

quantified by energy fixed in reserve (E, J ), volume of the

structural component (V , cm3), and its maturity level (EH,

J ); see Fig. 2. The model closes the full life cycle from

egg to adult. Stage transitions are assumed to occur at fixed

maturity levels, quantified by the cumulated amount of en-
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Table 1. DEB model parameters used in the simulations. The parameter values are taken from Augustine et al. (2014); ∗ denotes parameters

which increase by a factor 8.6 during metabolic acceleration (i.e. Es
H <EH <E

j
H). The values are given at a reference temperature of 20 ◦C.

We refer the reader to Fig. 2 and to the original study (Augustine et al., 2014) for the physiological interpretation of the parameters.

Eb
H 1.5× 10−3 J κ 0.7 k̇J 0.002 d−1

Es
H 4.4× 10−3 J κR 0.95 v̇∗ 0.21 cmday−1

E
j
H 3.2 J

[
ṗM

]
5.0 Jcm−3 day−1 {ṗAm}

∗ 3.0 Jcm−2 day−1

E
p
H 42.0 J [EG] 78.0 Jcm−3 TA 1.05× 104

ergy invested in maturity. The model encompasses three life

stages: embryos (does not feed, and allocates energy to matu-

ration), juveniles (feeds, and allocates energy to maturation),

and adults (feeds, grows, and allocates energy to size-related

reproduction). Growth is possible in all of the life stages as

long as enough energy is mobilised to cover somatic mainte-

nance costs. Birth is defined as the moment when feeding is

switched on (EH = E
b
H) while puberty (EH = E

p
H) is defined

as the moment juveniles start allocating energy to reproduc-

tion (ER) instead of maturation.

M. leidyi is characterised, along with a variety of other

species, by a so-called metabolic acceleration during on-

togeny, which means that the embryo and early juve-

nile stages develop more slowly than later stages (Kooij-

man, 2014). M. leidyi was found to begin to accelerate its

metabolism sometime after hatching at maturity level Es
H.

The end of the acceleration was found to coincide with

the end of the transitional stage defined in the model as:

EH = E
j
H (Augustine et al., 2014). Metabolic acceleration is

defined as an increase in energy conductance and surface-

area-specific assimilation during that phase; this acceleration

is implemented in the model by applying a shape coefficient

(V/Vs)
1/3 where Vs is the structure at the onset of accelera-

tion to both of the parameters designated with an asterisk in

Table 1.

Food uptake is taken proportional to organism surface

area and is converted into reserves with a constant effi-

ciency. A fixed fraction κṗc of reserve is mobilised towards

growth and somatic maintenance while the remaining frac-

tion (1− κ)ṗc is mobilised towards maturity maintenance

plus maturation (in embryos and juveniles) or reproduction

(in adults). Somatic maintenance has priority over growth,

and hence growth ceases when κṗc no longer suffices to

cover somatic maintenance.

2.3.2 Set-up and Application

The DEB model and parameters presented in Augustine et

al., 2014 (see Table 1) were used to simulate effects of food

and temperature on key life history traits of M. leidyi. Food

and temperature are treated as forcing variables; reproduc-

tion, mass, and timing of stage transitions are model output.

We performed two original simulation experiments. In the

first experiment we simulated juvenile stage duration and re-

production rates as function of temperature for three different

levels of constant food availability. In the second experiment

we simulated the change in reproduction rates for organisms

of three different size classes subject to time varying tem-

perature and food availability. We extracted the temperature

and the (juvenile and adult) food densities experienced by a

particle in the GETM model. Note that food density from the

GETM model was converted from mgC m−3 to mol C L−1

for input into the DEB model.

Food availability for an individual is quantified by the

scaled functional response f which relates ingestion to food

density in the environment, X:

f =
X

K +X
(13)

0<f<1, where 0 reflects starvation and 1 optimal food con-

ditions (feeding ad libitum).K (mol C L−1) is the half satura-

tion coefficient where K =

{
J̇XAm

}{
Ḟm

} , and Ḟm (Lday−1 cm−2)

is the surface area specific food searching rate.
{
J̇XAm

}
(mol day−1 cm−2) is the maximum surface-area-specific in-

gestion rate. Assuming a digestion efficiency of κX = 0.8,

and that food has a chemical potential ofµX = 525 kJ mol−1,

we can relate
{
J̇XAm

}
to the maximum surface-area-specific

assimilation rate {ṗAm} (a model parameter, see Table 1) by

the following relationship:
{
J̇XAm

}
= {ṗAm}/κX/µX. Thus,

K is a very context-specific parameter because it both re-

flects the capacity of the organism to search for prey, the

food quality of the prey and the intrinsic maximum assimila-

tion capacity of the individual. For the purpose of this study

we assumed that
{
Ḟm
}
= 4 L day−1 cm−2. Laboratory exper-

iments have shown that Mnemiopsis can exert important be-

havioural control over feeding rates (Reeve et al., 1978) and

feeding rates do not necessarily saturate as function of prey

density. To simplify the model we did not extend Eq. (13) to

consider effects of behaviour on the process of feeding.

All rates and ages were corrected for the effect of temper-

ature using an Arrhenius type relation that describes the rates

k̇ (T ) at ambient temperature, as follows:

k̇(T )= k̇(T1)∗e

[
TA
T1
−
TA
T

]
, (14)

where T is the ambient temperature (K), TA the Arrhenius

temperature (K), and T1 =293 is the reference temperature
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(K). This relationship assumes that the temperature experi-

enced by the organism is within its tolerance range. Below or

above that tolerance range physiological performance starts

to be negatively impacted (Kooijman 2010), but we do not

account for this here.

The weight of the organism is computed as the sum of the

weights of E and V . We convert volumes and energy to car-

bon mass using a carbon density of 0.0015 gC cm−3V , ele-

mental frequencies C : H : O : N taken to be 1 : 1.8 : 0.5 : 0.15

and assuming a chemical potential ofE, µE = 5.50 kJmol−1

(Lika et al., 2011); see Augustine et al. (2014) for a motiva-

tion of the choices for these constants and ratios. Age and

size at onset of acceleration, end of acceleration, and first

reproduction are evaluated by integrating over maturity. Re-

production rates R are given by R = κRṗR/E0 where E0 is

the initial energy content of an egg. ṗR is specified in Fig. 2

(row 8) and κR is the reproduction efficiency (see Table 1).

3 Results

3.1 Estuaries (Delft model)

The results of all the monthly eastern Scheldt model runs

with the Delft model using a uniform initial condition are

presented in Table 2. The retention within the estuary ranged

from 56 to 66 % (60 % on average), while on average only

10 % of the particles remained in the estuary mouth. The con-

nectivity with the western Scheldt was low, 2 % on average.

No clear seasonal pattern was found.

The final depth-averaged concentration pattern (m−3) for

the eastern Scheldt July simulation is given in Fig. 3. The

concentration was calculated by counting the particles within

a hydrodynamic grid cell, dividing by the volume, averag-

ing over all cells in the vertical, and scaling relative to an

assumed initial concentration of 1.0 m−3. Deep in the es-

tuary the concentrations were still close to 1.0 m−3 and no

exchange had happened.

The results of all of the monthly western Scheldt model

runs using a uniform initial condition are presented in Ta-

ble 3. The retention within the estuary ranges from 51 to

69 % per month (65 % on average), while on average 20 %

of the particles remained in the estuary mouth. The con-

nectivity with the eastern Scheldt was low, 2 % per month

on average. In general, the retention was larger in summer

and autumn than in winter, due to lower river discharges.

The final concentration pattern for the July run is given in

Fig. 3. Concentrations in the inner part of the estuary were

reduced by fresh water inflow from the river Scheldt. The

retention was negatively correlated with the river discharge

(r ≤−0.76, p<0.001).

The sensitivity test for the release time showed an in-

creased retention of 5 % for the eastern Scheldt July run and

a 3 % increase of retention for the western Scheldt July run.

This difference could be explained by the fact that simula-

tions starting at low water begin with inflow, whereas simu-

lations starting at high water begin with outflow.

The initial conditions and results of the realistic runs for

the western and eastern Scheldt are presented in as contour

plots of M. leidyi densities (ind. m−3) as calculated by the

model together with the observed values as coloured circles

using the same scale (Fig. 4).

For the western Scheldt there is a good match in the mid-

dle of the estuary. At the innermost station there is overesti-

mation of the concentration. The relative high measurement

outside the estuary is not met by the model. The correlation

coefficient r between the model and observations excluding

the station outside the estuary is 0.28.

For the eastern Scheldt run the model represented the con-

ditions in the inner estuary reasonably well with some under-

estimation in the northern branch and some overestimation

in the south-eastern branch. There is an overestimation of the

concentration in the outer part of the estuary. The correlation

coefficient r between the model and observations is 0.72.

3.2 North Sea (GETM model)

The particles in the GETM model dispersed as a plume along

the continental coast to the north, and to a limited extent to

the south (Fig. 5). The plume detached from the coast in

the vicinity of the Dutch–German border, and continued to

the north at some distance from the Danish coast. The parti-

cles that travelled furthest reached approximately the middle

of the Danish west coast. The concentration of particles de-

creased steadily along the plume, in response to both the tem-

poral distribution of the release and dispersion. The associ-

ated density of M. leidyi individuals showed a similar pattern,

but with a strong reduction in densities in winter in response

to adult mortality (Fig. 6).

The model run releasing particles in the rivers Seine and

Somme (Fig. 7) resulted in moderate transport to the west

up to Cap de la Hague, and substantial transport along the

continental coast to the north through the Strait of Dover,

along the Dutch coast and into the German Bight. Enhanced

concentrations were simulated off the Belgian coast, and M.

leidyi individuals reached the German Bight, similar to the

pattern obtained from releasing particles off the Dutch estu-

aries, but slightly further offshore. Low numbers crossed the

North Sea to the UK and were found in the Thames estuary

and off the coast of East Anglia. None of the particles crossed

the English Channel south of the Strait of Dover.

For the standard run, the total number of M. leidyi individ-

uals increased steadily as particles were released, levelling

out in response to the background adult mortality, and de-

clined when starvation set in December (Fig. 8a; dark blue

line). Food abundance for juveniles and adults was high until

the beginning of October, and declined to reach low winter

values by December (Fig. 8b, c). Average temperature expe-

rienced by the particles peaked at 20 ◦C, declining to win-

ter values of 4 ◦C (Fig. 8h). Average salinity experienced by
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Figure 3. (a) Final concentration of particles (N m−3) relative to an assumed initial concentration of 1.0 (N m−3) for the eastern Scheldt July

simulation, Delft model; (b) similar for the western Scheldt.

Table 2. Percentage of particles from the eastern Scheldt estuary per area after 30 days.

Eastern Western Eastern Western Zeebrugge rest

Scheldt Scheldt Scheldt mouth Scheldt mouth area North Sea

Jan 62.72 0.32 14.78 3.20 0.00 18.98

Feb 63.72 2.49 13.40 3.76 0.12 16.52

Mar 55.57 2.43 12.91 13.50 0.29 15.30

Apr 62.66 2.90 9.58 10.67 0.32 13.88

May 61.62 3.41 5.54 11.14 0.38 17.92

June 57.59 2.32 11.64 12.63 0.17 15.66

July 58.64 2.06 8.33 14.96 0.27 15.73

Aug 59.95 1.57 10.92 12.06 0.01 15.49

Sep 62.40 3.55 7.04 15.01 0.46 11.54

Oct 59.81 2.56 8.84 15.16 0.03 13.60

Nov 61.22 2.50 6.94 18.30 0.24 10.80

Dec 61.68 2.66 5.25 14.00 0.27 16.10

the particles increased until the beginning of October, consis-

tent with reduced precipitation in summer and their transport

away from the fresh-water source of the river Rhine, and de-

creased subsequently as river runoff increased in the autumn

(Fig. 8i). Over a million eggs were produced per hour by

the population in July, August, and September (Fig. 8d; dark

blue line). Roughly a third of the eggs survived to hatch-

ing (Fig. 8e). However, due to primarily juvenile mortality

(Fig. 8f) hardly any new adults were added to the popula-

tion (Fig. 8g). An important factor for juvenile mortality as

implemented here is the prolonging of juvenile duration for

lower temperatures, leading to strongly reduced overall sur-

vival. The scenario run with two-thirds of juvenile mortal-

ity showed some bloom potential, with new individuals con-

tributing to population growth (Fig. 8; green lines).

The model run in which the particles were made to ex-

perience 10 % increased temperatures produced significantly

different results. The maximum average temperature experi-

enced by the particles was now approximately 22 ◦C, with

winter temperatures nearly the same as in the reference sce-

nario (Fig. 8h; green line). Over 10 million eggs were pro-

duced per hour between the beginning of August and the

end of September (Fig. 8d; green line). This caused a bloom

that increased the adult population at a rate far greater than

the number of the additional particles that were released

(Fig. 8a). Increasing the juvenile mortality by one-third for

this experiment, however, prevented the bloom, and the asso-

ciated model run thus yielded results very much like those of

the standard run (Fig. 8; light blue lines).

For the model run releasing particles in the Seine and the

Somme (Fig. 8; magenta lines), the mean concentration of

food encountered was slightly lower. Average salinity was

higher, indicating a more seaward trajectory of the parti-

cles. Egg production and survival was comparable with the

standard run, considering that approximately twice as many

particles were released. As for the standard run, hardly any

adults were added to the population through reproduction.
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Figure 4. Observed density M. leidyi (individualsm−3), realistic runs for 2011. (a) and (c) initial density based on field observations (circles)

for western and eastern Scheldt, respectively. (b) and (d) final simulated density and field observations (circles) for western and eastern

Scheldt, respectively.

Table 3. Percentage of particles from the western Scheldt estuary per area after 30 days.

Eastern Western Eastern Western Zeebrugge rest

Scheldt Scheldt Scheldt mouth Scheldt mouth area North Sea

Jan 1.88 57.96 2.62 15.25 0.03 22.26

Feb 0.45 64.59 7.39 12.80 0.24 14.54

Mar 1.04 50.71 5.23 28.31 0.68 14.03

Apr 0.00 66.73 3.09 18.80 0.24 11.13

May 0.00 69.13 0.00 20.60 0.38 9.90

June 0.04 65.69 0.61 22.49 0.18 11.00

July 0.06 66.78 0.20 22.80 0.33 9.83

Aug 0.77 65.84 1.41 20.08 0.07 11.82

Sep 0.04 68.75 0.08 20.70 0.49 9.93

Oct 0.28 67.14 1.04 20.19 0.16 11.20

Nov 0.55 66.32 0.22 22.61 0.46 9.84

Dec 0.03 64.76 0.16 20.88 0.50 13.65

3.3 DEB model

From the DEB model simulations, the age at the start and

the end of metabolic acceleration as well as the age at pu-

berty for f = 1, 0.45 and 0.3 at 22 ◦C are provided in Fig. 9a

(three bottom rows). These simulations show that the tim-

ing of stage transitions is extremely sensitive to the food

level experienced by an individual. Indeed, f can be inter-

preted as the actual ingestion relative to the maximum possi-

ble one for an individual of that size. So f is a dimensionless

quantifier for food level. The duration of metabolic accel-

eration ranges from approximately 2 weeks to a little over
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Figure 5. Density of particles on the model grid (number of par-

ticles per grid cell). (a) on day 1 of the simulation (1 June 2008);

(b) on day 61 (31 July 2008); (c) on day 121 (29 September 2008);

(d) on day 240 (25 January 2009).

Figure 6. Density of simulated M. leidyi individuals on the model

grid (number of individuals per grid cell). (a) on day 1 of the simu-

lation (1 June 2008); (b) on day 61 (31 July 2008); (c) on day 121

(29 September 2008); (d) on day 240 (25 January 2009).

1.5 months at 22 ◦C, depending on the food history. Further-

more, the model predicted that an individual would mature

even when experiencing food levels only 30 % of the maxi-

mum, but that it would take 4 times longer at that low food

level than for ad libitum feeding. The adult parameter val-

ues depended on the acceleration factor given by the ratios

of structure at E
j
H and Es

H ; thus, food history has a conse-

quent impact on the duration of the acceleration phase, but

not so much on the value of the acceleration factor which

stays around 8.6 (see Table 1).

Figure 7. Density of simulated M. leidyi individuals on the model

grid (number of individuals per grid cell) for releases in the rivers

Seine and Somme. (a) on day 1 of the simulation (1 June 2008);

(b) on day 61 (31 July 2008); (c) on day 121 (29 September 2008);

(d) on day 240 (25 January 2009).

The predicted carbon mass at the different stage transitions

for f = 1 (ad libitum) are also shown in Fig. 9a (grey text).

Overall, the mass at the different stage transitions is less sen-

sitive to the prior feeding history than age. The predicted

mass at the end of the acceleration phase varies from 0.11

to 0.16 mg C for f = 0.3 and 1, respectively. Carbon mass at

puberty goes from 1.8 mg C for f = 1 to 0.8 mg C at f = 0.3.

The DEB model predicts that growth after puberty is ex-

tremely sensitive to food level: the predicted maximum car-

bon mass goes from ca. 80 mg C (f = 1) to 2 mg C at f =

0.3. Finally, the simulations showed that reproductive out-

put was extremely sensitive to size as well as food history

(compare values in Fig. 9c and d). A 1.8 mg C individual

might produce around 1500 eggs day−1 at 22 ◦C (Fig. 9c;

solid line), while the 0.8 mgC individual would only produce

ca. 344 eggs day−1 (Fig. 9c; dotted line).

At low food levels in combination with low temperatures,

the organism can stay in the juvenile stage for a very long

time: at 12 ◦C and f = 0.3 it could take up to 300 days to

reach puberty Fig. 10b. Yet the model predicted that at abun-

dant food and temperatures as high as 26◦ C reproduction

would take as little as 14 days to start.

The results of the second simulation experiment are sum-

marised in Fig. 10a–c. The values of the food densities and

the temperature can be found in Fig. 10a. By using the re-

lationship Eq. (13) we obtain the scaled functional response

experience by juveniles and adults (Fig. 10b).

In Fig. 10c the reproduction rates for adults of three size

classes (2.8, 5, and 10 mg C) were computed. We computed

the minimum f needed for each size class to pay its main-

tenance and found: 0.3, 0.4, and 0.5 for the smallest to the
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Figure 8. Cumulative results over all particles as a function of time for hindcast temperatures (dark blue), 1.1 times hindcast temperatures

(red), two-thirds of juvenile mortality (green), combined 1.1 times hindcast temperatures and four-thirds of juvenile mortality (light blue),

and release from the Seine and Somme (magenta). (a) Simulated number of M. leidyi individuals; (b) average juvenile food concentration

available to particles [mg C m−3]; (c) average adult food concentration available to particles [mg C m−3]; (d) total number of eggs released

per hour; (e) total number of surviving eggs per hour; (f) total number of surviving juveniles per hour; (g) total number of adults added to

the population through reproduction per hour; (h) average temperature experienced by the particles; (i) average salinity experienced by the

particles.

largest individual. Assuming that the organism stops repro-

ducing when f decreases below the minimum f to pay its

maintenance, it follows that larger individuals are more sen-

sitive to drops in food availability. However, they also repro-

duce more when food is abundant enough. In summary, the

model predicts rapid response to changes in reproduction as

function of food level and temperature.

4 Discussion and conclusions

4.1 Inter-connectivity

4.1.1 Exchange between estuaries and North Sea

Growth and mortality are not included in the Delft model

and might explain some of the mismatch between modelled

output and field measurements; for example, better growth

conditions in the inner estuary may have caused an underes-

timation of the modelled numbers in the northern branch of

eastern Scheldt. On the other hand, the overestimation in the

modelled numbers in the outer estuary could be explained by

the model not considering mortality.

The initial model conditions were based on a small set

of measurements, which do not account for potential local

patchiness in density. Also, for the eastern Scheldt, the hy-

drodynamics used were from a different year. The schematic

runs, however, show little variability between months within

the same year, indicating that there might be little variability

between the same period in different years.

The results of the Delft model indicated that about 10–

15 % of the particles released in the Scheldt estuaries were

exported to North Sea on monthly basis. This is enough for a

substantial supply of M. leidyi to coastal waters of the North

Sea on one hand, and on the other hand allows for sufficient

retention in the estuaries to facilitate blooms and an overwin-

tering population. The model suggested an increasing level

of retention towards the landward end of the estuaries, which

contributes to this mechanism. A similar process has been

described in other estuaries, such as Narragansett Bay, where

shallow, shoreward embayments serve as winter refugia for

M. leidyi (Costello et al., 2006b).

The landward (eastern side) of the western and eastern

Scheldt, where retention of M. leidyi was highest in the Delft

model, have very different environmental characteristics. The

eastern Scheldt is an enclosed tidal bay with salinities equal
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Figure 9. Results of DEB model simulations – (a) grey: carbon mass at stage transitions at f = 1. Below are presented the ages at each stage

transition for three different ingestion levels ranging from 1 to 0.3. (b) Age at puberty as function of temperature. (c–b) Reproduction rate at

puberty and at ultimate mass and respectively as function of temperature. (a–c) Simulations are for three ingestion levels: f = 1 (solid line),

f = 0.45 (dashed line) and f = 0.3 (dotted line).

to those in the nearby North Sea in the whole area (Smaal

and Nienhuis, 1993), while the western Scheldt estuary in-

cludes river inflow, resulting in a west–east salinity gradient.

The area in the western Scheldt where M. leidyi retention

is highest in the Delft model is a mesohaline area (Meire et

al., 2005). Salinities in this area are often at or below the

values for which M. leidyi reproduction appears to be lim-

ited (salinities < 15, Jaspers et al., 2011) and larval mortality

is increased (salinities < 10, Lehtiniemi et al., 2012). This

might explain why observed M. leidyi densities are 1–2 or-

ders of magnitude lower in the western Scheldt than in the

eastern Scheldt. At the start of this work, we did not have

firm evidence of vertical migration behaviour by M. leidyi.

Hence, we implemented M. leidyi as passive particles in the

models. Since then, new evidence has emerged suggesting

vertical migration behaviours (Haraldsson et al., 2014). As

such behaviour may influence particle dispersal pathways,

this should be considered in further work.

4.1.2 Exchange between coastal areas

The GETM model results suggested a general south to north

transport along the continental coast, in agreement with the

residual flow pattern (e.g. numerical model: Prandle, 1978;

radioactive tracers: Kautsky, 1973; various data: North Sea

Task Force, 1993). As a result, any estuary or harbour con-

taining an established M. leidyi population can, within 1 year,

act as a source area for estuaries and harbours along the coast

to the north at distances of tens to many hundreds of kilome-

tres. For colonisation at larger distances, M. leidyi will need

to establish a year-round population in one of the receiving

coastal embayments, which can then in turn act as a source

population in the following year. As a result, M. leidyi will be

able to survive in the connected network of estuaries tens to

hundreds of kilometres apart, as long as there is intermittent

winter survival in some of them each year. Although there

is occasional transport of M. leidyi individuals over limited

distances to the south-west, a solidly established, continu-
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Figure 10. (a) Adult and juvenile food density in combination with temperature experienced by one particle. (b) Scaled functional response

f (–) assuming
{
Ḟm

}
= 4 Lday−1 cm−2 for juveniles (light grey) and adult (dark grey). (c) We simulate the combined effects of temperature

and ingestion level on the daily reproduction rates of a 10, 5 and 2.8 mgC individual. The dashed lines assume a constant temperature of

20 ◦C. For each size class there is a minimum ingestion level for which maintenance can no longer be paid. We assumed that there was no

reproduction when f decreased underneath that minimum; see text.

ous population in the southernmost estuary or harbour is also

likely to be required.

To our knowledge, M. leidyi has so far not been found in

the UK. The model results suggested only minor potential

for M. leidyi to colonise UK waters through natural trans-

port processes from continental populations. The most likely

stretch of UK coast vulnerable to colonisation appeared to be

the East Anglian coastline. If such colonisation were to hap-

pen, M. leidyi is not expected to be able to colonise much

further along the UK coast through natural transport pro-

cesses, because the general residual coastal flow converges

from north to south in this area, and then moves offshore

across the North Sea towards Scandinavia.

4.2 Comparison of DEB model and GETM model M.

leidyi implementation

There is a need to work with simple characterisations of

metabolism when performing ecosystem level modelling.

The way the biology of M. leidyi was implemented into par-

ticle tracking models in this study is a promising way to pro-

ceed. At this stage it is difficult to assess what would happen

to the output if more complex, albeit more realistic aspects

of the individual physiology (e.g. growth) were incorporated.

Would such implementations pay off in terms of adding new

insight?

Given the predicted plasticity in growth and juvenile stage

duration, future studies should consider incorporating these

processes into models designed to analyse observations that

include the size structure of populations in the field. Sim-

ulation studies using ambient temperature and zooplankton

biomass could be performed, where one starts with hatched

eggs, to study how juvenile stage duration and condition

would vary (in the absence of predation). Such results could

be compared to data of the type presented by Jaspers et

al. (2013) who recorded the size structure and abundance of

early life stages of M. leidyi in the Baltic Sea. Mismatches

between data and model might guide research aiming to un-

derstand natural mortality and food availability. The results

of the GETM model suggest that mortality has a significant

effect on the results, and that improved understanding and

formulations of mortality are required.

The simulation studies with the DEB model demonstrate

the sensitivity of the juvenile stage duration and reproduction

rates to differences in food availability and temperature. In

light of the predicted plasticity in growth and juvenile stage

duration, future studies should consider incorporating these

processes.
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It is not clear to which extent the timing of the juvenile

stage is realistic because there is no clear empirical evidence

about how stage duration depends on different food levels;

however, the values obtained here for juvenile stage duration

are within the range presented in other studies: Baker and

Reeve (1974) predict the timing of first reproduction to be

13–14 days at 26 ◦C, Jaspers (2012) (Chapter 6; see Fig. 1a)

showed that reproduction starts around 22–32 days at 19.5 ◦C

(the DEB model with parameters in Table 1 predicts 30 days).

In previous work, Augustine et al. (2014) parameterised

and validated the DEB model for M. leidyi based on an

extensive literature review of eco-physiological data. They

showed, among others, that the predictions for reproduction

rates and mass as function of length are in accordance with

reproduction rates against length and wet mass reported in

Baker and Reeve (1974), Jaspers (2012) and Kremer (1976).

The new simulations presented here in Figs. 9 and 10 thus

represent the best possible estimate of the metabolism of M.

leidyi that we can achieve to date.

Separate juvenile and adult food densities were extracted

from the biogeochemical module of the GETM model. The

GETM model provided the density (in carbon) of two size

classes of zooplankton experienced by the particles. Sub-

ject to a few additional assumptions to translate this infor-

mation into carbon ingested per individual per unit time (see

Sect. 2.3.2), the DEB model allowed us to uncouple the prob-

lem of effects of varying resources on the metabolism from

the problem of how food availability relates to assimilation

rates. It turns out that with this set of parameter values for M.

leidyi juveniles seem to experience higher food levels relative

to adults (Fig. 10b). Moreover, the model results indicated

that juveniles can maintain themselves at very low environ-

mental food levels and can wait out the bleak season espe-

cially if temperatures are low until conditions are favourable

for rapid growth and reproduction. We see from Fig. 10c that

the size structure of the population could strongly impact the

dynamics of reproduction.

The value one chooses for the food searching rate will also

determine how much energy is assimilated by the organism.

We found that
{
Ḟm

}
= 4 Lday−1 cm−2 provided theoretical

ingestion rates within the range of those recorded by Sullivan

and Gifford (2004) (Table 4), and have hence assumed this

value.

Uncertainties about reproduction rates further hampers

finding good estimates for juvenile mortality. Still too little

is known about what natural processes affect juvenile mor-

tality in the field. And our study only exacerbates to what

extent we need to know more about this.

Comparison between the two models illustrates that al-

though there are similarities, there are also substantial differ-

ences. These differences are partly due to the values chosen

for key parameters, which, at the current state of knowledge,

include substantial uncertainty. They are also partly caused

by the more sophisticated processes included in the DEB

model. There is clearly room for improvement, for instance

in the shape of a particle tracking model with particles that

represent “real” individuals through use of a DEB model for

each particle, and that can spawn independent new particles

as offspring. Such a model is likely to produce results that

differ substantially from the current particle tracking model,

and that may be more realistic. Reducing uncertainty in pa-

rameter values through observational and laboratory studies

is vital to ensure the required level of confidence in such a

model.

4.3 Survival and reproduction in the North Sea

The simulations with the GETM model indicated that food

levels in coastal waters in the North Sea were sufficient to

sustain a M. leidyi population in summer and a reduced pop-

ulation until mid-winter. Current offshore water temperatures

were too low in summer and autumn for M. leidyi to repro-

duce in large numbers. Further work is required to assess to

which extent this result would hold if feedback of M. lei-

dyi on food stocks were included. However, as the current

results suggest negligible offshore reproductive success, we

expect numbers to remain low and such feedback to be lim-

ited. The presence of M. leidyi found near the German Bight

corresponds with observations of M. leidyi in mid-winter

in these waters on the International Bottom Trawl Survey

(IBTS; ocean.ices.dk/Project/IBTS) and results from a habi-

tat model on winter survival (David et al., 2015; Antajan et

al., 2014). Our results, however, are subject to considerable

uncertainty due to the unknown effects of (juvenile) mortal-

ity that dominate the reproduction process, and to potential

adaptation to lower temperatures. In particular, production

of eggs at temperatures too low for juvenile survival does not

seem to make evolutionary sense, suggesting that juvenile

mortality may be temperature-related, rather than constant as

assumed in the GETM model. Further work is required to

elucidate these issues.

Two thresholds were included in the model that, on closer

inspection, are not in agreement with field observations, and

that should not be used in future modelling: the lethal tem-

perature of 2 ◦C for adults, and the reproduction threshold

of 12 ◦C. The lethal temperature should not be used because

M. Leidyi is known to overwinter under the ice in its native

habitat (Costello et al., 2006b). The reproduction threshold

of 12 ◦C that can be inferred from Lehtiniemi et al. (2012)

was based on field data presented by Purcell et al. (2001)

that did not include temperatures lower than 12 ◦C, and is

thus artificial. Lehtiniemi et al. (2012) also refer to Sarpe et

al. (2007) in connection with reproduction above 12 ◦C, but

this abstract does not contain such a threshold. We do not

think that either of these two thresholds has had a signifi-

cant effect on the model results, however, because (i) off-

shore sea-water temperatures below 2 ◦C are very rare in the

area of interest, and (ii) Fig. 9 shows that the egg production

in the model falls to very low levels in response to reduc-

tions in food availability and temperature-driven reductions
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in feeding and egg-production efficiency; Eqs. (1)–(5) before

the average temperature experienced by the particles drops to

12 ◦C.

The scenario simulation with increased summer tempera-

tures suggested that water temperature is an important lim-

iting condition for blooms in the North Sea. The model re-

sults suggest that blooms may occur in some years as a re-

sult of inter-annual variability in temperature, and that such

incidences may increase in frequency in the future as a re-

sult of global warming. This result is consistent with the

parameterisations in the model, and with observed repro-

duction behaviour in warmer seas (Shiganova et al., 2001).

Moreover, blooms tend to be found in estuaries, which expe-

rience higher water temperatures than the surrounding seas

(Costello et al., 2006a, b). The simulated blooms for the in-

creased temperature scenario should be considered an upper

estimate, as food concentrations are not impacted on by graz-

ing of M. leidyi in the present model implementation. Other

limiting conditions such as predation may exist as well, but

these were not included in the model. Overall, taking account

of the limitations of the models used, we conclude that there

seems to be very limited potential for an established off-

shore population and large offshore blooms of M. Leidyi in

the southern North Sea under normal conditions. Individuals

found offshore most likely originated from estuarine popu-

lations, or resulted from minor blooms initiated by exported

estuarine individuals under exceptionally favourable condi-

tions of high local water temperatures and abundant food

supply (e.g. in eddies) combined with low mortality.
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