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ABSTRACT 

Bacterial resistance to antimicrobials is a global threat that requires development of innovative 

therapeutics that circumvent its onset. The use of Transcription Factor Decoys (TFDs), DNA 

fragments that act by blocking essential transcription factors in microbes, represents a very 

promising approach. TFDs require appropriate carriers to protect them from degradation in 

biological fluids and transfect them through the bacterial cell wall into the cytoplasm, their site of 

action. Here we report on a bolaform cationic surfactant, [12-bis-THA]Cl2, with proven 

transfection activity in vivo. By studying the physical-chemical properties of its aqueous solutions 

with light scattering, cryo-TEM, ζ-potential, absorption and fluorescence spectroscopies, we prove 

that the bolaamphiphiles associate into transient vesicles which convert into one-dimensional 

elongated structures over time. These surfactant assemblies complex TFDs with extremely high 

efficiency, if compared to common cationic amphiphiles. At Z+/- = 10, the nanoplexes are stable 

and have a size of 120 nm, and they form independently of the original morphology of the [12-bis-

THA]Cl2 aggregate. DNA is compacted in the nanoplexes, as shown through CD spectroscopy and 

fluorescence, but is readily released in its native form if sodium taurocholate is added. 
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Introduction. 

The “golden age” of antimicrobial breakthrough lasted 60 years from the discovery of penicillin 

in 1928 and supplied the large majority of the drugs in current use [1]. However, bacteria naturally 

develop resistance, and contributory factors include: the limited number of therapeutic targets that 

antimicrobials act on; the greater need due to the demands of modern medicine and aging 

populations; their misuse and overuse; most importantly, the failure to find new antimicrobials to 

restock the pipeline [2]. Hence, antimicrobial resistance now constitutes a serious global threat [3]. 

Several alternative approaches to traditional small molecule discovery are being developed, such 

as bacteriophage therapy [4], antibodies [5], peptidomimetics [6] and nucleic acid therapies [7]. 

Previous work has demonstrated the efficacy of oligonucleotide Transcription Factor Decoys 

(TFDs) in controlling gene expression in both eukaryotic [8] and bacterial cells [9]. However, 

oligonucleotide delivery faces an important challenge: how to transport an enzymatically labile, 

negatively charged molecule across biological fluids and through the bacterial cell wall. 

The bacterial membrane is negatively charged due to the presence of phospholipids such as 

phosphatidylglycerol, cardiolipin, or phosphatidylserine [10]. The structural integrity of the 

membrane can be disrupted by initial electrostatic interaction using cationic lipids or surfactants. 

These are commonly employed as vectors for non-viral gene delivery for therapeutic purposes, as 

they are effective in the condensation and transfection of genetic material [11]. Among others, 

cationic bolaamphiphiles are attractive targets for the development of novel agents for nucleic acid 

delivery. They are a class of surfactants constituted by two functional hydrophilic headgroups 

linked by a hydrophobic moiety. Dequalinium, an approved antimicrobial, is a symmetric bolaform 

surfactant with two identical cationic headgroups. This molecule can complex plasmid DNA, 
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protecting it from DNAse attack [12,13] and transporting it into cellular mitochondria in vitro [14], 

which share some of the properties of bacterial cell walls. 

In this work, we present a cationic bolaamphiphilic molecule, the symmetric 10,10’-(dodecane-

1,12-diyl)-bis(9-amino-5,6,7,8-tetrahydroacridinium) chloride or [12-bis-THA]Cl2 (Scheme 1), 

which has demonstrated the potential of delivering TFDs in pathogenic bacteria in animal models 

to block essential genes [15]. The mechanism of transfection by [12-bis-THA]Cl2 is being 

investigated but it is assumed that binding is driven by electrostatic interactions between the 

delocalized charge of the quaternary ammonium and the negatively charged components of the 

bacterial cell wall. In a similar manner, the interaction between the cationic bolaamphiphile and 

the negatively charged phosphate backbone of the oligonucleotide may lead to strong binding and 

condensation of the TFD, to render it resistant to nuclease digestion. Here we analyze the physical-

chemical properties of an aqueous suspension of [12-bisTHA]Cl2 and its complex with a TFD to 

better understand its properties and inform strategies for its successful formulation. 

 

 

Scheme 1. Chemical structure of 10,10’-(dodecane-1,12-diyl)bis(9-amino-5,6,7,8-

tetrahydroacridinium) chloride, or [12-bis-THA]Cl2. 
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Experimental section. 

Materials: 

[12-bis-THA]I2 was synthesized by Shanghai Chempartner Co., LTD. [12-bis-THA]Cl2 was 

obtained by anion exchange of [12-bis-THA]I2 (see details in Supporting Information, SI§). 

The TFD was manufactured and purified by HPLC at AxoLabs (Kulmbach, Germany). It 

consists of 77 base pairs deriving from the two following sequences: 5' CTT GGT TTT TCC AAG 

TAA TAC GAC AAA ACT AGT TAA ATT TCA TTG AAG GAA TAA AAA TAT AAT TAT 

AGA ATT GAT TA 3'; 5' TAA TCA ATT CTA TAA TTA TAT TTT TAT TCC TTC AAT GAA 

ATT TAA CTA GTT TTG TCG TAT TAC TTG GAA AAA CCA AG 3'. These oligonucleotides 

were suspended in water at concentrations of 5 10-7 mol/L, mixed in equal volumes and annealed 

by heating to 95 °C for 2 minutes and then allowed to cool to room temperature. They were then 

ligated with T4 DNA ligase overnight at 16 °C to form a monomeric circle, containing the binding 

site for the transcription factor, and purified by ethanol precipitation. Unligated products were 

removed by an Exonuclease I digestion step following which the TFD was reprecipitated and its 

concentration adjusted to 1 mg/mL. 

Ultrapure water was obtained by means of a Millipore Elix® 3 water purification system. 

 

Sample preparation: 

[12-bis-THA]Cl2 solutions were obtained by adding the powder in water and stirring by means 

of a vortex mixer (dilute solutions) or sonicating in an ultrasound bath (concentrated solutions). 

[12-bis-THA]Cl2/TFD nanoplexes were prepared by mixing the two aqueous solutions in the 

appropriate proportions. 
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Methods: 

Inductively-coupled plasma atomic emission spectroscopy (ICP-AES) analysis of the residual 

iodine content in [12-bis-THA]Cl2 was carried out using a Varian 720-ES spectrophotometer 

(Melbourne, Australia). 

Elemental analysis was performed using a CHN-S Flash E1112 Thermo Finnigan elemental 

analyzer. 

Thermogravimetric Analysis (TGA) was performed on a TA Instruments SDT Q600 (New 

Castle, DE, USA). Between 4-7 mg of [12-bis-THA]Cl2 dry powder was weighed in an aluminum 

pan and heated up to 500 °C at 10 °C/min. 

Surface tension measurements were carried out on a Teclis Instruments (formerly I.T. Concept, 

Longessaigne, France) dynamic tensiometer using the pendant drop method. All measurements 

were carried out at 25 °C. 

Steady-state fluorescence of [12-bis-THA]Cl2 solutions was measured on a LS50B 

spectrofluorometer (Perkin-Elmer, Italy). The spectra were recorded in the corrected mode, 

between 300 and 500 nm, with an excitation wavelength of 244 nm and 2.5 nm slits. For each 

sample, 20 acquisitions were collected at 25 °C and averaged. 

Light Scattering (LS) experiments were performed on a Brookhaven BI9000-AT digital 

autocorrelator, equipped with a green laser (λ = 532 nm; Torus, mpc3000, LaserQuantum, UK). 

The scattered intensity was collected at 90°, using a pinhole aperture of 200 µm. The samples were 

placed in glass tubes, which were immersed in a thermostatic cell filled with decahydronaphtalene 

to match the glass refractive index. The scattering intensity of pure toluene was used as a standard. 

In the Rayleigh-Gans-Debye regime [16], the intensity Is of the light scattered by a monodisperse 
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colloidal solution is a function of the number concentration of particles, c, and the scattering vector 

 𝑞⃗⃗  . The modulus q is equal to: 

 

𝑞 =
4𝜋𝑛𝑠

𝜆
𝑠𝑖𝑛

𝜃

2
           Eq. 1 

 

with λ being the wavelength of the incident light I0, ns the refractive index of the medium, and θ 

the collection angle of the scattered light. As such, Is can be written: 

 

𝐼𝑠(𝑞 , 𝑐) = 𝐼0
𝑓(𝜃)

𝑅0
2 𝑐𝑉𝑠∆𝜌2𝑉𝑃

2𝑃(𝑞 )𝑆(𝑞 , 𝑐)       Eq. 2 

 

where f(θ) is a geometrical factor, R0 the sample-to-detector distance, Vs and VP the solvent and 

particle volumes respectively, and Δρ the “contrast” or difference of refractive indexes between 

particles and suspension medium. P( 𝑞⃗⃗  ) and S( 𝑞⃗⃗  , 𝑐) are, respectively, the form factor and the 

structure factor (the latter is equal to 1 in very dilute solutions). In a Dynamic Light Scattering 

(DLS) experiment, we exploit the time correlation function of the random fluctuations in scattered 

intensity due to Brownian motions in solution [17]. By fitting the autocorrelation function with the 

appropriate algorithms, one can derive the diffusion coefficient of the particles and, by assuming 

a spherical shape, their average hydrodynamic diameter (DH) through the Stokes-Einstein law: 

 

𝐷0 =
𝑘𝐵𝑇

3𝜋𝜂𝐷𝐻
           Eq. 3 
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where kB is Boltzmann’s constant, T the absolute temperature, and η the medium’s viscosity. 

Depending on the samples, the fitting of the autocorrelation function of the scattered intensity at 

90° was performed either with the cumulant method [17] or by inverting the autocorrelation 

function with the CONTIN algorithm [18]. 

ζ-potentials were obtained from electrophoretic mobility measurements, performed on a 

Brookhaven ZetaPALS (Phase Analysis Light Scattering) instrument, equipped with a laser 

operating at 659 nm. The scattered intensity was collected at 15° to determine the electrophoretic 

mobility; the ζ-potentials were then calculated through the Helmholtz–Smoluchowski equation. 

Cryogenic transmission electron microscopy (cryo-TEM) experiments were carried out at the 

Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France. The specimens 

were rapidly frozen by plunge-freezing in liquid ethane, cooled by liquid nitrogen (LEICA EM 

CPC, Wien, Austria). The cryofixed specimens were mounted into a Gatan cryoholder (Gatan inc., 

Warrendale, PA) for direct observation at –180 °C in a JEOL 2100HC cryo-TEM operating at 200 

kV with a LaB6 filament. Images were recorded in zero-loss mode with a Gif Tridiem energy-

filtered-CCD camera, equipped with a 2k×2k pixel-sized chip (Gatan Inc., Warrendale, PA). 

Acquisition was accomplished with the Digital Micrograph software (version 1.83.842, Gatan inc., 

Warrendale, PA). 

Circular Dichroism (CD) measurements were performed using a Jasco J-715 spectropolarimeter. 

The solutions were contained in quartz cells with optical path lengths of 1 cm or 1 mm depending 

on the sample. CD spectra were recorded at room temperature in the 200-400 nm range. 

UV-vis spectra were acquired at 25 °C on a Varian Cary 100 Bio spectrophotometer, equipped 

with a Varian Cary temperature controller. 
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Results and Discussion. 

The compound [12-bis-THA]2+ is a bolaform cationic surfactant of molecular formula C38H52N4. 

The iodide salt is soluble in DMSO and methanol, and only sparingly in water. When DMSO 

solutions are dispersed in water by vigorous stirring, a suspension of crystallites is formed, which 

precipitates within some hours. On the other hand, the chloride salt (Scheme 1) shows higher water 

solubility, which in principle implies a higher bioactivity.  For these reasons, the subject of this 

investigation was the chloride salt. 

At 25 °C [12-bis-THA]Cl2 dissolves in water up to 1 mg/mL (1.6 10-3 mol/L). Such difference 

in solubility with respect to the iodide salt is expected: indeed, ions with similar polarizabilities 

(e.g. two “soft” ions such as [12-bis-THA]2+ and I−) tend to form stronger ion pairs and are 

therefore less soluble salts. Examples of different phase behaviors arising from a simple counterion 

exchange are very common in colloid science: for instance, aqueous solutions of 

hexadecyltrimethylammonium bromide (CTAB) and chloride (CTAC) are characterized by the 

presence of large elongated micelles in the former case and globular micelles in the latter [19], 

because of the higher association of the counterion with the cationic assemblies. 

Below the solubility limit, the system appeared slightly opalescent as prepared, indicating the 

presence of self-assembly aggregates of some kind (large enough to scatter visible light). At higher 

concentrations, a saturated solution was obtained. The binary systems containing 80 wt%, 50 wt%, 

30 wt%, and 20 wt% water showed no evidence of formation of liquid-crystalline phases. 
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Aqueous solution behavior of [12-bis-THA]Cl2 

Bolaform surfactants are known to self-assemble in solution, leading to a wide range of 

aggregate morphologies depending on their chemical structure: tubules, fibers, ribbons, micelles 

and vesicles are among the common nano- and micrometric supramolecular structures reported for 

bolaamphiphiles [20]. Dynamic Light Scattering (DLS) was used here to infer the hydrodynamic 

size of [12-bis-THA]Cl2 assemblies. For relatively concentrated dispersions (1.0 10-3 mol/L), the 

DLS analysis shown in Figure 1 yielded Z-average hydrodynamic sizes of 120 ± 20 nm, with 

elevated polydispersity (∽ 30%). 

 

 

Figure 1. a) DLS autocorrelation function corresponding to a solution of 1.0 10-3 mol/L [12-bis-

THA]Cl2, and fit of the experimental data with the cumulant method. b) Intensity-weighed 

hydrodynamic size distribution obtained by CONTIN analysis of a). 

 

For samples more dilute than 4.5 10-4 mol/L, the scattering intensity was only slightly higher 

than that of pure water. This is likely due to a combination of low concentration and low contrast 

between the surfactant assemblies and water (see Equation 2). Therefore, the size and 
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polydispersity of [12-bis-THA]Cl2 aggregates in dilute solutions cannot be determined by means 

of DLS. Similarly, the very low scattering invalidated any attempts to reliably measure the ζ-

potential of these colloidal objects. Even synchrotron small-angle x-ray scattering (SAXS) 

experiments on aqueous solutions of [12-bis-THA]Cl2 at maximum solubility were unsuccessful, 

yielding spectra that were very similar to those of pure water. For these reasons we turned to 

cryogenic transmission electron microscopy (cryo-TEM) in order to determine the type of 

aggregates formed by [12-bis-THA]Cl2. Imaging of a freshly prepared solution (1.8 10-4 mol/L, 

Figure 2) showed that this surfactant forms a mixture of elongated colloidal structures and (most 

probably monolayer) vesicular assemblies termed bolasomes. The former appear to be short 

needle-like objects [21], while the latter have irregular shapes and diameters around or below 100 

nm, and they appear sometimes aggregated in groups of 2-3 vesicles. Despite the difference in [12-

bis-THA]Cl2 concentration, this compares well with the DLS analysis. Similarly, in a work 

involving aqueous solutions of Dequalinium, a cationic bolaamphiphile with a very similar 

chemical structure to [12-bis-THA]Cl2, the authors observed bolasomes with sizes of 300 nm 

(determined by negative-staining TEM) [12]. 
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Figure 2. Cryo-TEM image of an aqueous solution of [12-bis-THA]Cl2, 1.8 10-4 mol/L, as 

prepared. White arrows: vesicular structures; black arrows: needle-like structures. 

 

A precise knowledge of the threshold concentration for aggregation is of primary importance to 

formulate amphiphilic drugs in water or physiologically relevant media; therefore, we focused our 

efforts in finding the onset concentration for the formation of [12-bis-THA]Cl2 aggregates. 

Previous literature on symmetric bolaform surfactants demonstrates that very similar 

thermodynamic principles of self-assembly apply as for classic surfactants [22]. However, the 

driving force for aggregation is lower than for the corresponding single-headed amphiphiles, due 

to the presence of the second polar headgroup, and this leads to generally higher critical aggregate 

concentrations (CAC). We attempted to determine a CAC for [12-bis-THA]Cl2 in water by 

tensiometry with the pendant drop method. The surface tension vs. time curves showed a 

monotonically decreasing trend without reaching the expected equilibrium plateau (see Figure S2, 

SI§). One tentative explanation might be found by looking more closely at the structure of the 
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bolaamphiphile: the positive charge of the headgroups is mostly localized on the central amino-

pyridinium ring, while the benzene and cycloalkyl groups are less polar. In addition, the alkyl 

chains connecting the two headgroups should kink to accommodate both polar ends into the water 

subphase. Likely, the adsorption at the interface in the energetically favored conformation is a 

slow process, if compared to traditional single-chained surfactants. While a clear drop in surface 

tension is observed, its equilibrium value could not be appreciated in our experimental time frame 

(up to several hours). 

As mentioned, the very low scattered intensity even in relatively concentrated samples prevents 

a reliable determination of the CAC with static light scattering. Also, the traditional method 

involving pyrene as a fluorescent probe for hydrophobic environment [23] could not be used, due 

to mutual interference between pyrene and [12-bis-THA]Cl2 fluorescence. 

Indeed, [12-bis-THA]Cl2 shows absorption and fluorescence behavior due to its quinolinium 

subunits [24]. The absorption and fluorescence of aqueous solutions of [12-bis-THA]Cl2 at 

different concentrations, ranging from 8.0 10-6 mol/L to 1.6 10-3 mol/L, were measured and 

analyzed (Figures S3-S4, SI§). The fluorescence spectra were characterized by a relatively broad 

band centered at 373 nm, the intensity of which linearly increased with growing surfactant 

concentration until 4.0 10-5 mol/L and reached its maximum at 8.0 10-5 mol/L (Figure 3). This 

behavior is consistent with the increase in concentration of isolated fluorophores (surfactant 

monomers). For higher concentrations, the linearity was lost and the intensity began decreasing. 

This intensity decrease could be an indication of the self-assembly of [12-bis-THA]Cl2, where the 

close proximity between fluorophores in the ground state results in a significant fluorescence self-

quenching. A data analysis through a classic Stern-Volmer approach [25] could provide important 

information about this concentration-dependent behavior. However, in our experimental 
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conditions, the absorption properties of [12-bis-THA]Cl2 gave also rise to a strong primary inner 

filter effect, which contributed to the concentration-dependent decrease of fluorescence intensity. 

The contributions from the two phenomena are difficult to separate, making the CAC 

determination through the Stern-Volmer approach very complicated [25]. 

 

 

Figure 3. Steady state fluorescence intensity at the emission maximum (373 nm) as a function of 

[12-bis-THA]Cl2 concentration in water. 

 

An analysis of previous literature shows that in some instances it is not possible to determine a 

critical micellar concentration (cmc) or a CAC for bolaamphiphilic molecules in solution [26,27]. 

In the case of Dequalinium, isothermic titration calorimetry, laser light scattering and Monte Carlo 

simulations cast doubts on the existence of a clear-cut monomer-to-aggregate transition [28]. By 

comparing our experimental results with the existing literature, we could not identify any clear-

cut aggregation threshold, which can be outside the concentration range accessible with our 

experimental techniques. Alternatively, the surfactant may aggregate in oligomers undetectable 
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with DLS: in this case, aggregation would not proceed through pseudophase separation, but would 

rather be a stepwise phenomenon. 

The slow equilibration processes of [12-bis-THA]2+ at the air/water interface prompted us to 

monitor a possible time evolution of the size of the self-assemblies in solution. Light Scattering 

(LS) measurements were performed on solutions at different concentrations (9.0 10-4, 4.5 10-4, 3.0 

10-4, and 1.5 10-4 mol/L) and temperatures (4 °C, 25 °C and 37 °C). LS experiments were 

performed right after the preparation of the samples (t = 0) and 48 hours later (t = 48 h); the results 

are presented in Figure 4. 

 

 

Figure 4. Normalized scattering intensity (I/I0, where I = sample and I0 = toluene) of aqueous 

solutions of [12-bis-THA]Cl2. 

 

By comparing the I/I0 values at t = 0 and t = 48 h for the three batches of samples, it can be 

noticed that the solutions stored at 4 °C retained the scattering intensity observed immediately after 

preparation (even 7 days later, data not shown). The solutions stored at higher temperatures (25 

°C and 37 °C) underwent a dramatic reduction of intensity over time. After ruling out the presence 

of a precipitate, the analysis of the autocorrelation functions revealed a decrease of the average 
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size. For example, the mean hydrodynamic diameter of the aggregates in a 9.0 10-4 mol/L solution 

stored at 25 °C was reduced by 50% over 24 hours, and a new population of scattering objects 

appeared after 5 days with a diameter below 10 nm (Figures S5-S6, SI§). On the other hand, the 

sample stored at 4 °C retained the same average size. We verified the irreversibility of this 

phenomenon by cooling to 4 °C the samples that had been stored at 25 °C and 37 °C, and by 

stirring with a vortex mixer: in neither case did the systems revert to their initial state. 

Since we could rule out precipitation, chemical reactions and molecular cleavage by means of 

UV-Vis and 1H NMR analyses (data not shown), the phenomenon originating the loss of scattered 

intensity and the reduction of the apparent hydrodynamic diameters calculated via the Stokes-

Einstein equation must be a morphological transformation of the colloidal assemblies. The 

intensity of light scattering scales with the squares volume of the scattering objects (Equation 2), 

so that large colloidal aggregates contribute a correspondingly higher scattering intensity. Also, 

we recall that cryo-TEM imaging (Figure 2) evidenced the co-existence of elongated objects, 

probably fibers, with bolasomes. The hydrodynamic size of a rod-like structure can be calculated 

according to Equation 4: 

 

𝑅𝐻 =
𝐿

2𝑠−0.19−
8.24

𝑠
+

12

𝑠2

          Eq. 4 

 

where L = length of the rod and s = ln (L/r), with r = radius of the rod [29]. Assuming for example 

a rigid rod of about 100 nm length (such as those observed in Figure 2) and 1 nm radius (compatible 

with [12-bis-THA]Cl2’s molecular size), we obtain a hydrodynamic diameter DH ≈ 26 nm. If the 

bolasomes were transient aggregates formed by the bolaamphiphile upon dissolution, converting 

entirely into fibers over time, this would account for the lower scattering intensity and smaller 
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calculated size. Such transformation is clearly of spontaneous nature, as it proved to be 

irreversible: this evidence strongly hints at the fact that the final morphology represents the state 

of thermodynamic equilibrium of the system. 

Turning to geometrical considerations, the type and shape of self-assembly aggregates in 

solution can be predicted by the packing parameter of the amphiphile: P = V lc / A0, where V is the 

volume of the hydrophobic chain, lc its length, and A0 the polar headgroup area [30]. In particular, 

vesicles will form for ½ < P < 1, while P ≈ 1 leads to infinite flat bilayers. A symmetrical bilayer 

does not have a spontaneous curvature, therefore the existence of vesicles is thermodynamically 

unfavorable for a binary system [31]. Nevertheless, exceptions to this rule exist. Let us consider a 

classic example among single-headed surfactants: NaAOT is characterized by P ≈ 1 and it forms 

lamellar and bicontinuous (locally flat) cubic phases in water. However it also forms stable 

unilamellar vesicles at very low surfactant concentration (CVC = 7.8 10-3 mol/L) [32], where 

curved vesicles are thermodynamically more stable than isolated bilayer stacks. In this case, the 

curvature is allowed thanks to the bilayer asymmetry achieved by packing a lower number of 

molecules in the inner leaflet of the vesicle [31]. On the other hand, the symmetrical shape of the 

[12-bis-THA]Cl2 molecule would suggest elongated structures such as fibers or ribbons rather than 

spherical vesicles. The vesicular aggregates that form with an energy input, such as vortexing or 

sonicating to facilitate dissolution, are therefore short-lived and the bolasomes observed with cryo-

TEM in a freshly prepared solution of [12-bis-THA]Cl2 are irreversibly destroyed over time to 

form fibers (Scheme 2). In the abovementioned case of Dequalinium, where bolasomes were 

observed, no temporal evolution of these structures was reported by the authors. 

The [12-bis-THA]Cl2 bolasomes are nevertheless metastable at 4 °C, when thermal fluctuations 

are probably not enough to disrupt any intermolecular forces, maybe comprising weak π-π 
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interactions between the aromatic rings, which contribute to the bolasome assemblies. Therefore, 

by playing with storage temperature, we are able to control the morphology of [12-bis-THA]Cl2 

aggregates. 

 

 

Scheme 2. Representation of the transition from bolasomes to one-dimensional elongated 

structures (fibers). 

 

 

Interaction of [12-bis-THA]Cl2 with DNA 

As mentioned, [12-bis-THA]Cl2 is mixed with an oligonucleotide transcription factor decoy to 

form a novel type of antimicrobial; therefore, the interaction between the bolaamphiphile and DNA 

was studied using a model TFD constituted by a double-stranded oligonucleotide, composed of 77 

base pairs and especially rich in thymine and adenine. 

Aqueous solutions of this TFD and [12-bis-THA]Cl2 were mixed in proportions leading to a 

positive-to-negative charge ratio Z+/- = 11 (with the bolaamphiphile at 1.8 10-4 mol/L). The 

dispersion became opalescent, and LS experiments showed a scattered intensity about 20 times 

higher than for the neat bolaamphiphile. DLS analysis confirmed the presence of aggregates in 

suspension, with hydrodynamic sizes of 150 ± 20 nm and about 20% polydispersity. A cryo-TEM 

image of these aggregates is shown in Figure S7, SI§. The ζ-potentials were in the order of 30 ± 2 
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mV, in agreement with the excess of positively charged species. These experimental findings 

suggest complexation of the TFD by [12-bis-THA]Cl2, as expected by charge compensation 

considerations and by the vast body of literature about the formation of nanoplexes, i.e. 

amphiphile-DNA complexes, when DNA is added to a cationic surfactant solution. By maintaining 

an excess of positive charge, the TFD complexation would be complete, and the interaction of the 

nanoplex with the bacterial membranes, rich in negatively charged lipids, would be favored. 

Importantly, the same type of aggregates were obtained regardless of the “age” of the initial [12-

bis-THA]Cl2 solution, as shown by DLS analysis in Figure S8, SI§. This proves that the properties 

of the [12-bis-THA]Cl2/TFD complex are independent on the morphology of the initial 

bolaamphiphile assemblies. From an applicative standpoint, this peculiarity could represent a great 

advantage in the design of the final formulations to be used as antibacterial agents, even though 

other variables, such as time and temperature stability of the complex, necessitate further 

evaluation. 

When DNA forms complexes upon interaction with cationic surfactants, it assumes a condensed 

state and loses its chiral secondary structure. In this case, the interaction between nucleic acids and 

the cationic surfactant can be evaluated using CD spectroscopy, that exploits the differential 

absorption of left- and right-circularly polarized electromagnetic radiation by a sample [33]. The 

TFD, dissolved in ultrapure water at the concentration of 90 µg/mL (corresponding to 1.9 10-6 

mol/L), was titrated with the aqueous bolaamphiphile solution up to and above the isoelectric 

point. The [12-bis-THA]Cl2 concentration in solution varied between 0 and 1.7 10-4 mol/L, 

corresponding to Z+/- variation from 0 to 1.8. These values are far from the Z+/- = 11 used in the 

earlier tests, since we are now looking at the transformations occurring near the isoelectric point. 
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Figure 5a reports five representative spectra obtained in this titration experiment (the entire set of 

data and the corresponding absorption spectra are available in Figures S9-S10, SI§). 

 

 

Figure 5. Titration of a 77-bp TFD (90 µg/mL, or 1.9 10-6 mol/L) with [12-bis-THA]Cl2. a) CD 

spectra for five significative positive-to-negative charge ratios (Z+/-). For the sake of clarity, 1 in 

every 8 points were traced. b) Plot of the CD values at 249 and 280 nm, from spectra in Figure S9, 

as a function of Z+/-.  

 

The initial shape of the CD spectrum is characteristic of DNA in B-conformation: it presents a 

positive peak at 280 nm, originating from base stacking, and a negative peak at 249 nm, due to the 

helicity of the double strand. In particular, the negative band is quite intense, as typical of chiral 

DNA strands with high A+T base content [33]. The CD signal of the TFD starts changing upon 

the very first addition of [12-bis-THA]Cl2, as the two oppositely charged species interact in 

solution. The CD spectrum varies slightly even above the isoelectric point (Z+/- = 1.0); at Z+/- = 

1.5, the bands of the original spectrum have completely flattened out, and further addition of 

surfactant does not lead to any change. This evidence is summarized in Figure 5b, where the trend 
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of the CD is plotted, for the wavelengths 249 nm and 280 nm, as a function of Z+/-. It is quite 

evident how the intensity reaches zero just above the isoelectric point. The same experimental 

trend has been evidenced for the condensation of different types of DNA by traditional [34] and 

gemini cationic surfactants [35,36]. 

By observing the absorption spectra in Figure S10, one can notice the condensation of the 

oligonucleotide into packed complexes as the concentration of bolaamphiphile increases: the 

higher baseline is a clear signature of the solution’s growing opalescence due to the presence of 

colloidal aggregates. This behavior can be represented by the plot of the absorbance at 400 nm as 

a function of [12-bis-THA]Cl2 concentration (Figure 6). 

 

 

Figure 6. Plot of the absorbance values at 400 nm from the absorption spectra in Figure S10 as a 

function of Z+/-. 

 

To corroborate these results, we monitored the change in fluorescence intensity of [12-bis-

THA]Cl2 upon titration with the TFD. The results are presented in Figure 7 as a function of 1/Z+/-
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. Starting from a large excess of positive charge (Z+/- = 17, or 1/Z+/- = 0.05 in Figure 7), we 

witnessed an almost linear increase of fluorescence intensity up to a plateau; in correspondence of 

Z+/- = 1, the fluorescence was quenched and kept decreasing with further increase of TFD. These 

results are in good agreement with those obtained by CD spectroscopy. 

The electrostatic interaction between the oppositely charged species is the main driving force 

leading to the 1:1 complex between [12-bis-THA]Cl2 and DNA, similarly to what found by other 

authors for classic cationic surfactants [37], gemini surfactants [35,36], and bolaamphiphiles 

[38,39]. This can be an advantage compared to certain cationic species which necessitate higher 

Z+/- values to saturate the DNA: for example, other authors reported Z+/- = 4 for poly(ethylenimine) 

[40], Z+/- = 10 for TTAB and Z+/- = 30 for DTAB [34], which necessitate higher amounts of 

typically cytotoxic compounds to reach full condensation. To account for this higher binding 

efficiency, it is well known that planar aromatic and heterocyclic compounds, even uncharged, can 

interact with DNA thanks to different types of interactions: in a groove-bound fashion (a mix of 

hydrophobic, electrostatic, and hydrogen-bonding interactions), or by intercalation between the 

DNA base pairs [41]. In our case, [12-bis-THA]Cl2 presents two positively charged condensed 

heterocyclic headgroups, each carrying an amine substituent: it is likely that DNA complexation 

by this bolaamphiphile results from several forces at play. 
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Figure 7. Plot of the fluorescence intensity at 373 nm as a function of the reverse of the positive-

to-negative charge ratio, 1/Z+/-. Here 1/Z+/- was used instead of Z+/- to better render the trend of the 

fluorescence intensity over the course of the titration. 

 

When DNA is packed into nanoplexes, it assumes a condensed state similar to denaturation. 

However, for the TFD to perform its therapeutic action, it needs to be renatured. In other words, 

the cationic carrier must release its DNA payload at the desired delivery site and in a biologically 

active form. Here, we show that the TFD/[12-bis-THA]Cl2 complex is reversible by breaking it 

with sodium taurocholate (NaTC), a common detergent used for the solubilization of lipids and 

previously employed for the dissociation of DNA/cationic lipid complexes [42]. Indeed, due to its 

negative charge, NaTC competes with the TFD’s polyanionic backbone for interaction with [12-

bis-THA]Cl2. 

The initial aqueous system contained the complex at Z+/- = 1.5 ([12-bis-THA]Cl2: 2.5 10-4 

mol/L), a condition in which the bolaamphiphile is in excess and the oligonucleotide is completely 

condensed, as demonstrated earlier in this work. The complex was titrated with aliquots of NaTC, 



 24 

and the resulting CD and UV spectra are presented in SI§ (Figures S11-S12). At low NaTC 

concentration, the CD spectra are flat, meaning that the detergent is not enough concentrated to 

displace the TFD/bolaamphiphile complex. The first spectrum where the CD signal starts showing 

the features of the oligonucleotide is the one for [NaTC] = 1.4 10-2 mol/L. From this point on, the 

intensity of the bands with maxima at 248 nm and 278 nm increases; the maximum amplitude is 

found at [NaTC] = 4.2 10-2 mol/L, and further additions of detergent do not produce any variation. 

These trends are plotted in Figure 8b, displaying the CD at 248 and 278 nm. The results just 

described are summarized in Figure 8a, which compares the CD spectra for the following 

representative samples: free TFD; condensed TFD when Z+/- = 1.5; the Z+/- = 1.5 complex in the 

presence of 7.0 10-2 mol/L NaTC; free TFD with the same amount of NaTC (but no 

bolaamphiphile). This figure clearly evidences how the TFD/[12-bis-THA]Cl2 complex is broken 

in the presence of taurocholate, and the free renatured TFD is completely recovered. 

 

 

Figure 8. a) CD spectra showing the disruption of the 1:1.5 complex between the TFD and [12-

bis-THA]Cl2 using sodium taurocholate (NaTC, 7.1 10-2 mol/L). All spectra are normalized by the 
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concentration of TFD. For the sake of clarity, 1 in every 8 points was traced for each spectrum. b) 

Plot of the CD values from spectra in Figure S11 at 248 nm and 278 nm vs. NaTC concentration. 

 

These results show that the therapeutically active TFD can be released from the complex. Such 

information is important in view of the biomedical applications of the TFD/[12-bis-THA]Cl2 

complex. The release mechanism we described in the presence of a simple molecule as NaTC 

should be adapted to the conditions found in the bacterial cytoplasm. For example, the complex 

could be formulated in a stimuli-responsive fashion (e.g. to pH, redox potential, etc.) in order to 

free the TFD only once it has crossed the bacterial cell wall. Further studies are underway to better 

define the conditions of existence of this complex and to design the best formulation that will meet 

the requirements for therapeutic action at the sites of infection in the human body. 

 

Conclusions. 

Antibiotic therapy based on transcription factor decoys is a novel and specific approach to fight 

antimicrobial resistance by blocking essential genes in pathogenic bacteria. One of the main 

challenges associated with their use is the necessity of finding the right carrier to transfect them 

through the bacterial cell wall and to protect them from DNA-degrading enzymes, both in the 

biological fluids and in the bacterial cytoplasm. In this work, we have presented a new cationic 

bolaamphiphilic surfactant, [12-bis-THA]Cl2 which has proven to meet these requirements in vivo. 

We have investigated its behavior in aqueous solution, proving that it forms a mixture of vesicular 

and elongated nanostructured assemblies upon dissolution; the latter structure is the 

thermodynamically stable morphology into which the system converts entirely over time. 

Interestingly, storing the samples at 4 °C allowed us to trap the system in its metastable vesicular 
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form. Next, we have evaluated its interaction with a model TFD, confirming the formation of 

nanoplexes: the main driving force for DNA condensation appears to be the electrostatic 

interaction between the oppositely charged species, the cationic bolaamphiphile and the 

polyanionic TFD backbone. The types of aggregates were independent on the morphology of the 

initial bolaamphiphile assemblies.  

 Importantly, we have demonstrated that this complex can dissociate in the appropriate 

conditions, for example in the presence of a competing anion such as taurocholate, to release the 

TFD in its biologically active form. These findings evoke the possibility to formulate the 

nanoplexes as smart, stimuli-responsive nanocarriers allowing the controlled release of the TFD. 

Further work will focus on the elucidation of additional aspects, like time and temperature stability 

of the complex, that still need to be clarified, in view of the design of [12-bis-THA]Cl2–based 

formulations that will accomplish transport, protection, transfection and release of TFDs to 

perform a successful therapeutic action. 

 

§Supporting Information (SI). Thermogravimetric analysis of pure [12-bis-THA]Cl2; surface 

tension vs. time plots of [12-bis-THA]Cl2 aqueous solutions; fluorescence emission spectra of [12-

bis-THA]Cl2 at different concentrations in aqueous solutions and relative UV-vis spectra; circular 

dichroism titrations of the TFD with [12-bis-THA]Cl2, and of a TFD/[12-bis-THA]Cl2 complex 

with sodium taurocholate, plus the relative absorption spectra, are supplied as Supporting 

Information. 
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