Review:

Clostridium difficile: a healthcare associated infection of unknown significance in adults in sub-Saharan Africa.

Alex Keeley¹, Nick J Beeching¹,²,³, Paul Roberts⁴, Alastair Watson⁵, Mike Beadsworth¹,².

1. Tropical and Infectious Disease Unit, Royal Liverpool University Hospital, Prescot Street, Liverpool L7 8XP, United Kingdom
2. Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
3. NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
4. Department of Infection and Immunity, Royal Liverpool University Hospital, Prescot Street, Liverpool, United Kingdom
5. Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ United Kingdom

Corresponding author: Mike Beadsworth, Tropical and Infectious Disease Unit, Royal Liverpool University Hospital, Prescot Street, Liverpool L7 8XP, United Kingdom, mikebeadsworth@liverpool.ac.uk, +44 151 7062000
Abstract:

Background:

Clostridium difficile infection (CDI) causes a high burden of disease in high-resource healthcare systems, with significant morbidity, mortality and financial implications. CDI is a healthcare-associated infection for which the primary risk factor is antibiotic usage and it is the leading cause of bacterial diarrhoea in HIV infected patients in USA. Little is known about the disease burden of CDI in sub-Saharan Africa, where HIV and healthcare associated infection have a higher prevalence and antibiotic usage is less restricted.

Aim:

To review published literature on CDI in sub-Saharan Africa, highlighting areas for future research.

Methods:

English language publications since 1995 were identified from online databases (PubMed, Medline, Google Scholar, SCOPUS) and personal collections of articles, using combinations of keywords to include *C. difficile*, Africa and HIV.

Results:

Ten relevant studies were identified. There is considerable variation in methodology to assess for carriage of toxigenic *C. difficile* and its associations. Eight studies report carriage of toxigenic *C. difficile*. Three (of four) studies found an association with antibiotic usage. One (of four) studies
showed an association with HIV infection. One study showed no association with degree of immunosuppression in HIV. Two (of three) studies showed an association between carriage of toxigenic *C. difficile* and diarrhoeal illness.

Conclusion:
Whilst the carriage of toxigenic *C. difficile* is well described in sub-Saharan Africa, the impact of CDI in the Region remains poorly understood and warrants high quality research.

Keywords:
Clostridium difficile, sub-Saharan Africa, diarrhoea, HIV, antibiotics

Introduction:
Clostridium difficile, an anaerobic Gram-positive spore-forming bacterium, was first described in neonatal gut, and was initially presumed to be a commensal organism in 1935. Later, it was recognised to cause pseudomembranous colitis via toxin production and it has since emerged as a major enteric pathogen. Its clinical significance ranges from asymptomatic carriage to life threatening colitis, with significant associated morbidity and mortality. *C. difficile* colonises the large bowel following ingestion of spores, which are heat and acid resistant. The spores can be found in all healthcare settings and in the general environment. Gut damage in susceptible individuals results from production of two exotoxins, TcdA and TcdB, whose action is cytotoxic. The emergence of the 027/BI/NAP1 strain, with
dramatically increased cytotoxin production, is responsible for the observed increased prevalence and virulence of \textit{C. difficile} in recent years.8-10 This strain emerged in North America and Western Europe and rapidly disseminated worldwide.11

The primary risk factor for \textit{C difficile} infection (CDI) is antibiotic usage. CDI is known to be the cause of up to 25\% of antibiotic associated diarrhoea.12 CDI was originally described following clindamycin use but is now known to complicate the use of many broad spectrum antibiotics, particularly cephalosporins, co-amoxiclav and fluoroquinolones.3, 13 Following antibiotic usage, there is an imbalance in the normal gut flora and \textit{C. difficile} overgrowth can lead to pseudomembranous colitis in susceptible individuals.14 Other described risk factors for CDI include hospital admission, exposure to an infected carrier, advanced age and immunosupression.15 The importance of proton pump inhibitors and of other interventions that reduce the gastric acid barrier in increasing susceptibility to CDI remains controversial.16, 17 There is a described relationship between CDI and HIV in USA where it is known to be the leading cause of bacterial diarrhoea in HIV-infected populations, but it is not clear how much this reflects increased exposure to healthcare compared to HIV negative individuals.18, 19 Only two studies show a convincing associated between CDI and low CD4 count, and interpretation of these results is difficult given the high rates of \textit{C. difficile} colonisation in HIV infected populations.19-22
While CDI has been extensively researched in well-resourced health systems, there are few published studies about CDI in sub-Saharan Africa. It is known that healthcare associated infections cause a greater disease burden in healthcare systems with fewer resources. Furthermore the main risk factor for CDI is antibiotic usage and in sub-Saharan Africa there is widespread availability of broad-spectrum antibiotics and fewer controls on their usage. Finally, HIV is far more prevalent in sub-Saharan Africa than in USA or Europe. It is, therefore, possible that CDI plays an important role in diarrhoeal illness in sub-Saharan Africa, yet there are very few published data on the subject. Published infection rates vary greatly, with some authors describing 0% prevalence in Kenya and Zambia, whilst the highest published rate is from Nigeria at 43%. The nature of the relationship between HIV and CDI in sub-Saharan Africa remains poorly understood.

The aim of this review is to describe current published literature regarding CDI in adults in Sub-Saharan Africa and to highlight areas warranting further research.

Clostridium difficile Infection in Sub-Saharan Africa:

In order to identify studies assessing CDI in adults in sub-Saharan Africa we performed a literature search for “*Clostridium difficile*” AND “Africa” in PubMed and Scopus. All relevant papers in English from 1995 onwards were included in the review and their bibliographies were reviewed for relevant papers. Papers looking at adults and children were only included if it was possible to
distinguish between the two populations. In total ten relevant studies were found. Data were extracted from relevant papers using a standardised proforma.

Results:

Ten studies looked for toxigenic *C. difficile* carriage in sub-Saharan Africa. Of these, eight describe toxigenic *C. difficile* carriage. There is considerable variation in laboratory methodology used to identify *C. difficile* and in the populations studied. Furthermore there is wide variation in the methodology used to assess the association of CDI with recent antibiotic usage, with HIV, with presence of symptoms of diarrhoea, and with degree of immunosupression. Table 1 summarises current published studies of CDI in adult populations in different countries in Sub-Saharan Africa.

Discussion:

The majority of published studies, and all studies after the year 2000, describe carriage of toxigenic *C. difficile* in adult populations in sub-Saharan Africa. In three studies, which assessed recent antibiotic exposure, there was a significant association between antibiotic exposure and CDI, however no studies were designed to implicate individual antibiotics.29, 30, 34 These findings are consistent with the well-described risk factor of antibiotic usage in high resourced healthcare systems. In three of four studies, which assessed association with HIV status, no association was found. The only study
claiming an association between HIV status and CDI was from Nigeria and has significant methodological flaws, which require the conclusions to be viewed with caution. The lack of association between CDI and HIV status differs from observations in high-resource healthcare systems. The only study to assess the association between degree of immunosuppression in HIV and CDI is from Malawi. It showed no significant association between carriage of toxigenic C. difficile and severe immunosuppression (CD4 cell counts <50 x 10^6/L), although numbers in this group were small. This warrants assessment in a larger study population. The disease burden of CDI in sub-Saharan Africa, particularly in areas of high HIV prevalence, has yet to be well characterized and warrants further research.

A further area of uncertainty is the role that C. difficile plays in diarrhoeal illness, as opposed to asymptomatic infection and incidental detection, in populations studied in sub-Saharan Africa. Table 1 shows that a wide variety of laboratory methods have been used to detect C difficile in the different studies, with different sensitivities and specificities. Methods that use cytotoxicity or immunogenic assays to detect C. difficile toxin, reliably detect invasive CDI but sensitivity is variable and dependant on laboratory technique, while PCR based methods used alone probably result in overdiagnosis. Only one study used the two step diagnostic algorithms currently recommended in many countries, using assays for faecal C difficile glutamate dehydrogenase (GDH) as a screening test for presence of infection followed by confirmatory PCR for cytotoxin genes to diagnose invasive disease potential. The majority of studies assessed C. difficile in patients
with diarrhoea and did not compare these to non-diarrhoeal controls. However
the most robust study of CDI in sub-Saharan Africa showed a clear
association between detection of toxigenic *C. difficile* and symptomatic
diarrhoeal illness in South Africa.29 Another study of adults and children in
Tanzania detected toxigenic *C. difficile* in 9 of 141 subjects with diarrhoea
compared to none in the stools of 109 symptom free controls.34 Whilst
asymptomatic carriage has been well documented and demonstrated to
contribute to ongoing transmission of *C. difficile* in well-resourced healthcare
systems, its significance in sub-Saharan Africa remains to be characterised
altogether. 21, 22, 39, 40

Only one study on CDI in South Africa described outcomes.33 There was an
observed 66.7\% mortality rate for patients with CDI and diarrhoea. However
there was no statistical difference in mortality between patients with or without
C. difficile, nor in length of stay and intensive care admission. Twelve percent
of patients with CDI required colectomy, a finding that was significantly
associated with the presence of toxigenic *C. difficile*. Whilst the presence of
toxigenic *C. difficile* has been described in sub-Saharan Africa, its extent and
clinical significance remain poorly understood.

Conclusion:
There are relatively few studies on CDI in sub-Saharan Africa, but toxigenic *C. difficile* has been detected in the majority of studies designed to look for it in the region, where it is consistently associated with antibiotic exposure. Further high quality research is needed to define the epidemiology of CDI in sub-Saharan Africa in order to clarify the extent of colonisation within community and hospitalised populations, the extent to which CDI is associated with HIV and CD4 count, and its role in contributing to morbidity and mortality.

Acknowledgment
NJB receives support from the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections at the University of Liverpool in partnership with Public Health England (PHE), University of East Anglia, University of Oxford and the Institute of Food Research. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, the Department of Health or Public Health England.

References

22. Torre D. Is *Clostridium difficile* the leading pathogen in bacterial diarrhea in HIV type 1-infected patients? *Clin Infect Dis.* Apr 15 2006;42(8):1215-1216; author reply 1216.

Riggs MM, Sethi AK, Zabarsky TF, Eckstein EC, Jump RLP, Donskey CJ. Asymptomatic carriers are a potential source for transmission of
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Country</th>
<th>Setting</th>
<th>Controls</th>
<th>Diagnostic test for CDI</th>
<th>Study size (adults)</th>
<th>CDI Prevalence (adults)</th>
<th>Antibiotic association</th>
<th>HIV association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mwachari &</td>
<td>1998</td>
<td>Kenya</td>
<td>HIV positive adult inpatients with chronic diarrhoea</td>
<td>n/a</td>
<td>Cytotoxicity assay</td>
<td>75</td>
<td>0%</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Germani &</td>
<td>1998</td>
<td>Central African Republic</td>
<td>Adults presenting to hospital with diarrhoea</td>
<td>HIV positive and negative non-diarrhoeal adult inpatients</td>
<td>Cytotoxicity assay</td>
<td>430</td>
<td>0.7%</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Zulu &</td>
<td>2000</td>
<td>Zambia</td>
<td>HIV positive adult inpatients</td>
<td>n/a</td>
<td>ELISA for toxin A</td>
<td>68</td>
<td>0%</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Samie &</td>
<td>2008</td>
<td>South Africa</td>
<td>Adults and children in hospital and community with diarrhoea</td>
<td>HIV positive and negative non-diarrhoeal adult in hospital and community</td>
<td>PCR for cytotoxin genes</td>
<td>135</td>
<td>17.8%</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Onwuema &</td>
<td>2011</td>
<td>Nigeria</td>
<td>Adults and children in hospital and community with diarrhoea</td>
<td>HIV negative (or unknown) adults in the community</td>
<td>EIA for toxin A and B</td>
<td>140</td>
<td>4.3% to 43.5%</td>
<td>n/a</td>
<td>Yes</td>
</tr>
<tr>
<td>Rajabally &</td>
<td>2013</td>
<td>South Africa</td>
<td>Adult inpatients with diarrhoea</td>
<td>n/a</td>
<td>EIA for toxin A</td>
<td>643</td>
<td>9.2%</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Beadsworth &</td>
<td>2014</td>
<td>Malawi</td>
<td>Adult inpatients with diarrhoea</td>
<td>HIV positive and negative non-diarrhoeal adult inpatients</td>
<td>ELISA for toxin A and B</td>
<td>206</td>
<td>13.6%</td>
<td>n/a</td>
<td>No</td>
</tr>
<tr>
<td>Simango &</td>
<td>2014</td>
<td>Zimbabwe</td>
<td>Adults in community with diarrhoea</td>
<td>n/a</td>
<td>Culture and EIA for toxin A and B</td>
<td>159</td>
<td>6.9%</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Kullin &</td>
<td>2015</td>
<td>South Africa</td>
<td>Adults in hospital and community with diarrhoea</td>
<td>n/a</td>
<td>PCR for cytotoxin genes</td>
<td>156</td>
<td>16%</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Seugendo &</td>
<td>2015</td>
<td>Tanzania</td>
<td>Adults and children inpatients with diarrhoea</td>
<td>Non-diarrhoeal adults in community</td>
<td>Rapid test for GDH and PCR for cytotoxin genes</td>
<td>33</td>
<td>9.1%</td>
<td>Yes</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Key: CDI = *Clostridium difficile* infection, ELISA = Enzyme linked immunosorbent assay, PCR= polymerase chain reaction, EIA = Enzyme immunoassay, n/a = not assessed, GDH= glutamate dehydrogenase (*Clostridium difficile* specific).