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Abstract

The genome of an organism is its complete set of DNA nucleotides, span-

ning all of its genes and also of its non-coding regions. It contains most of

the information necessary to build and maintain an organism. It is there-

fore no surprise that sequencing the genome provides an invaluable tool for

the scientific study of an organism. Via the inference of an evolutionary

(phylogenetic) tree, DNA sequences can be used to reconstruct the evolu-

tionary history of a set of species. DNA sequences, or genotype data, has

also proven useful for predicting an organisms’ phenotype (i. e. observed

traits) from its genotype. This is the objective of association studies.

While methods for finding the DNA sequence of an organism have existed

for decades, the recent advent of Next Generation Sequencing (NGS) has

meant that the availability of such data has increased to such an extent

that the computational challenges that now form an integral part of bio-

logical studies can no longer be ignored. By focusing on phylogenetics

and Genome-Wide Association Studies (GWAS), this thesis aims to help

address some of these challenges. As a consequence this thesis is in two

parts with the first one centring on phylogenetics and the second one on

GWAS.

In the first part, we present theoretical insights for reconstructing phylo-

genetic trees from incomplete distances. This problem is important in the

context of NGS data as incomplete pairwise distances between organisms

occur frequently with such input and ignoring taxa for which information

is missing can introduce undesirable bias. In the second part we focus on

the problem of inferring population stratification between individuals in a

dataset due to reproductive isolation. While powerful methods for doing

this have been proposed in the literature, they tend to struggle when faced



with the sheer volume of data that comes with NGS. To help address this

problem we introduce the novel PSIKO software and show that it scales

very well when dealing with large NGS datasets.
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Chapter 1

Introduction

Arguably, one of the most ambitious scientific projects of our time is the 1000 genome

project [14], which aims to capture the genetic variability of humans by obtaining

genetic information from a large number of individuals from all geographic regions

of the world. The potential applications of such information are boundless, ranging

from shedding light into the historic origins of modern human populations, to studying

the susceptibility of individuals to disease and thus personalised medicine. Despite

its obvious practical utility, the 1000 genome project would not have been possible

without the advent of Next Generation Sequencing (NGS), which made such a wide-

scale study of genetic diversity feasible. For this reason, NGS data holds great promise

in scientific development for the foreseeable future.

To better understand the power (and challenges) of NGS, we first elaborate on se-

quencing techniques used before NGS technologies became popular. The genome of

an organism is its complete set of DNA nucleotides, spanning all of its genes and in-

clusive of its non-coding regions. It contains all the information necessary to build

and maintain an organism. It is therefore no surprise that access to its genome via

nucleotide sequencing provides an invaluable tool for the scientific study of an organ-

ism. Examples of such studies include elucidating the evolutionary past of a set of

species (via e. g. the inference of a phylogenetic tree [6]), or predicting an organisms

phenotype (i. e. observed traits) from its genotype which is the objective of association

studies [124].

Attempting to obtain the DNA sequence of an organism of interest has historically

received a lot of interest. One of the earliest sequencing technologies to obtain wide-

1



spread use is Sanger sequencing [107]. Although it has led to interesting early results,

one of its major disadvantages is its high cost and relatively low throughput. Alter-

native genotyping technologies include Restriction Fragment Length Polymorphism

(RFLP) [105], Random Amplified Polymorphic DNA (RAPD), Simple Sequence Re-

peats (SSR, or microsatellites) [2], Amplified Fragment Length Polymorphism (AFLP)

[118]. (see [124] and [13] for an overview of the advantages and disadvantages of

each of these technologies). Although different in detail on how they reveal genetic

differences in the organisms under consideration, they all represent a cheaper alter-

native to Sanger sequencing and also tend to produce more data. It is therefore no

surprise that a number of methods have been proposed to analyse data generated by

them (e. g. [98, 41, 43] to name just a few).

While ideally all present genetic differences would be useful and desirable to have,

identifying them all tends to be very difficult to realise in practice. To overcome this,

the aforementioned technologies output genetic information in the form of so called

(genetic) markers, which are a form of observable variation of the genome of the sam-

ple under investigation. They have been traditionally used as stand-ins for large unse-

quenced portions of the whole genome. The number of found markers tends to be much

lower than the length of a genome, resulting in potentially patchy genome coverage.

Nevertheless, they proved very useful in early genetic studies. Having said that, studies

such as the 1000 genome project would have been infeasible with them. The technol-

ogy that made such large-scale projects a reality is NGS, which is an umbrella term

covering recent high-throughput genotyping technologies [53]. The principal marker

generated by such technologies is the Single Nucleotide Polymorphism (SNP) [76],

and the key characteristic of all technologies covered by this term is the abundance of

marker they produce.

Recognizing the potential of NGS for many biological problems has meant that

NGS technologies are quickly becoming the norm in genotyping. They have the ad-

vantage of providing vast amounts of data at a very low cost. In turn, this has allowed

for unprecedented detail in genomic studies [15] and has made whole genome se-

quencing a reality [117, 14]. NGS is not restricted to DNA sequences [47] and also

has applications in medicine [11]. While the advantages of NGS are indisputable,

the abundance of data produced by it has introduced hard computational challenges,

ranging from basic tasks such as data storage [67] to more advanced topics such as

2



reconstructing evolutionary scenarios from this data they produce. Furthermore pop-

ular tools for analysing genetic marker data (e. g. STRUCTURE, see Chapter 2, Sec-

tion 2.5.3) tend to struggle when applied to NGS data, some taking weeks to run even

on powerful computing clusters for even modest-sized NGS datasets [51]. Similarly,

sequence-based phylogenetic methods quickly become impractical on datasets of this

scale. In this thesis, we focus on some of the challenges faced by phylogenetics and

association studies when faced with NGS data.

Model-based phylogenetic approaches [27, 58, 37] have proven to be very powerful

approaches to reconstructing the evolutionary history of extant species. However, with

the explosion of dataset size brought about by NGS, such methods tend to suffer long

runtimes due to the explosion of the number of trees which must be searched [60] as the

space of such trees is dependent on the number of taxa (e. g. organisms or species) to be

analysed. Distance-based methods which work by inferring phylogenies from pairwise

distances (measures of dissimilarity) between extant species can potentially provide a

solution for this. Although they have been criticised for reducing the complexity of

genotype data to a single number (viewed as a measure of how different two extant

species are), they have proven to work reasonably well in practice [41]. Additionally,

due to their relatively low runtime complexity (compared to model-based methods

such as e. g. likelihood or Bayesian methods), they are suitable for working with NGS

data. Output from them can be used in phylogenetics studies as-is, or can be used as a

starting point to speed up more sophisticated methods [27, 58].

While distance-based methods are very well studied [106, 17, 41], NGS data in-

troduces new challenges for them, in the form of missing data, i. e. pairs of extant

species for which distances are not known. There are several factors that could lead

to this, such as incomplete sample selection or the failure of an experimental assay.

Ignoring missing distances can introduce undesirable bias [55]. Novel distance-based

approaches that can cope with missing data might therefore provide an avenue for

carrying out phylogenetic inference with the potential of avoiding the need to repeat

potentially costly experiments in the event of failure. While significant work has been

carried out to attempt to reconstruct tree-like evolutionary scenarios (also called phy-

logenetic trees) from incomplete distances [17, 73], many important questions still

remain, including the following one. Given that there is considerable redundancy in a

distance matrix, for which pairs of taxa are the distances required so that the available
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incomplete distances uniquely determine a phylogenetic tree? This question is relevant

because it could provide researchers with an answer to the question of whether the col-

lected data (with potential missing values) is sufficient for a phylogenetic analysis, or

if improvements in accuracy should be obtained by collecting more data or repeating

failed experiments to attempt to fill gaps in the data. This problem, however, has been

found to be NP-hard in general [33], but recent work has provided answers to this ques-

tion under restricted circumstances [56]. In Chapter 3, we present theoretical work that

addresses the question of when an incomplete distance matrix uniquely determines a

special kind of phylogenetic tree, known as an ultrametric tree [57].

A further area where NGS data has proven highly useful is association studies.

Here, one attempts to find links between an individual’s genotype and phenotype. Put

differently, the aim is to infer which regions of a genome encode traits of interest. As-

sociation studies can be done by generating purpose-built populations with desirable

properties. They are known as mapping populations, and for them, finding genotype-

phenotype links is straight-forward [13] using linkage analysis. While the computa-

tional tools for mapping populations are well understood and can be applied even to

NGS data, they have several drawbacks. Firstly, obtaining a mapping population can be

quite a laborious and costly endeavour [87, 24]. Secondly, since such populations are

synthetically produced, they may not contain sufficient genotypic diversity to resolve

causative loci (e. g. SNPs) at a satisfactory level [94].

To address these limitations of linkage analysis [124], an alternative method known

as association mapping or linkage disequilibrium mapping has been proposed [103].

Instead of using a purpose-built population, such methods use samples from naturally

occurring populations. Not only does this eliminate the need for (potentially) diffi-

cult to obtain mapping populations, but it also exploits the naturally occurring genetic

diversity of samples to provide increased mapping resolution and number of genetic

markers. In the form of potentially spurious links between genotype and phenotype,

association mapping also poses computational and statistical challenges. These are

mainly attributable to unaccounted-for relatedness between natural samples (acces-

sions) which can occur due to population structure or familial relatedness [124, 98].

A method that has proven very successful in accounting for such confounding fac-

tors in association mapping are Mixed Linear Models (MLM) [122]. They work by at-

tempting to fit a linear model to a dataset where the predictor variables are the genomic
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markers and the predicted value is the phenotype data. MLMs have been extended to

also take into account population stratification and relatedness between individuals,

and have been shown to reduce false-positive association between genotype and phe-

notype [122]. Recent work has allowed MLMs to also be able to efficiently deal with

NGS data [123, 70, 71]. For MLM methods to work effectively however, population

structure and familial relatedness must be computed, and while the latter can be done

efficiently [3], the former still poses a significant challenge for NGS data. Due to this,

the second part of the thesis is dedicated to this problem. In Chapter 5, we present the

novel PSIKO software tool. This includes details concerning its implementation as

well as a demonstration of its effectiveness for even large NGS datasets. As detailed

there, PSIKO provides a significant boost in speed from already existing approaches,

while also producing results that are strikingly similar to those approaches.

Reflecting the two areas of research considered, the organisation of the thesis is

structured into two distinct but interrelated parts. Part I is dedicated to phylogenetic

analysis applied to NGS data, and Part II to association studies applied to such data.

Preceding them is a literature review for the areas. We next present details on the

various remaining chapters of this thesis.

Chapter 2 In this chapter we introduce background concepts relating to graph theory

and phylogenetic trees. We then review some of the most popular approaches for phy-

logenetic tree reconstruction, focusing mainly on distance based methods. Subsequent

to this, we review population structure inference from sequence data. We formalise

the problem from a computer science perspective, and then review popular algorithms

which aim to tackle it.

Part I: Phylogenetic methods for dealing with NGS data

Owing to their importance in the study of NGS data, we dedicate the first part of

the thesis to the study of phylogenetic inference from distances. Due to the poten-

tial of NGS data for incomplete pair-wise distance information we focus on work to

help address this problem. We provide details of both novel theoretical work and ef-

ficient implementation of existing algorithms for tree reconstruction from incomplete

distances in popular open-source phylogenetics packages.

Chapter 3 This chapter is based on [57]. We present novel theoretical results per-
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taining to reconstructing a special kind of phylogenetic tree (ultrametric tree) from

incomplete distances. We mainly discuss when such a tree can be uniquely recon-

structed (lassoed) by an incomplete distance matrix.

Chapter 4 This chapter is based on [91] and concerns the implementation of several

existing phylogenetic reconstruction methods that take as input an incomplete distance

matrix. We present technical details pertaining to their implementation and also bench-

mark them against existing implementations of said methods to show that, in most

cases, our implementation of a method in question is more efficient.

II: Population Structure inference from NGS data

As is well documented [51], population structure can lead to spurious genotype-

phenotype associations. Algorithms to correct for this tend to have a long runtime,

making them impractical for NGS data.

Chapter 5 This chapter is based on [92], and concerns the introduction of the novel

PSIKO algorithm, which aims to efficiently deal with (global) ancestry inference for

NGS datasets. We study PSIKO’s ability to make inferences about population struc-

ture, and compare it against existing state-of-the-art methods, showing its very fast

runtime.

Chapter 6 This chapter is based on [93] and concerns the introduction of the PSIKO2

algorithm, an extension of PSIKO to also allow for localised ancestry inference of

genomic regions. Being able to do this is especially important when studying recently

admixed individuals, as it provides population history resolution that would be hard to

obtain via global ancestry inference - see Chapter 5. We assess PSIKO2’s ability to

infer local ancestry by comparing it to state of the art approaches which aim to also

solve this problem.

Chapter 7 In this chapter, we present concluding remarks with regards to the research

presented in this thesis. We review our major results and also present avenues of po-

tential future work that could be of interest.
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Chapter 2

Background

2.1 Chapter Summary

In this chapter we provide background on the relevant areas considered in this thesis.

The first part is concerned with reviewing relevant concepts and algorithms in phy-

logenetic analysis. The second part reviews some of the major concepts and popular

algorithms in association studies.

2.2 Introductory concepts in graph theory

In this section, we introduce some of the basic graph-theoretical concepts used below.

We follow [56]. We start with the concept of a graph. A graph G, is an ordered pair,

consisting of a set V (G) of vertices and a set E(G) ⊆
(

V (G)
2

)
of edges. If e = {a,b}

is an edge of G, then we say that a and b are ad jacent and that e is incident on a

and b. The degree of a vertex of G is the number of edges in G incident with it. A

path in G is a sequence of pairwise distinct vertices v1,v2, ...,vn ∈ V (G),n≥ 1, such

that {vi,v(i+1)} ∈ E(G), 1 ≤ i < n− 1. A cycle in G is a path P : v1,v2, ...,vn where,

in addition, we have an edge between v1 and vn. A graph is said to be connected if

there is a path between all pairs of two of its vertices. A subgraph G′ of G is a graph

such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G), and if {a,b} ∈ E(G′) then a,b ∈ V (G′).

If G′ is a subgraph of G then we say that G′ spans G if V (G) = V (G′). We say that

G′ is an induced subgraph of G if for any two vertices x,y ∈ V (G′), we have that
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{x,y} ∈ E(G′) precisely if {x,y} ∈ E(G). A supergraph of G is a graph of which G is

a subgraph. A connected component of a graph G is a maximal induced subgraph H of

G that is connected, that is, no supergraph of H that is also an induced subgraph of G is

connected. If we associate to a graph G a function w : E(G)−→R≥0 then we say that

(G,ω) is a weighted graph and call ω(e) the weight of the edge e ∈ E(G). Moreover,

we call ω the edge-weight function of G. Furthermore if to each edge in a graph G

we associate a direction, then we say that G is a directed graph. We call the directed

edges in a directed graph G arcs, and denote an arc starting at some a ∈ V (G) and

ending at some b ∈V (G) by (a,b). The set of arcs of a directed graph G is denoted by

A(G). A directed path in a directed graph G is a sequence of pairwise distinct vertices

v1,v2, ...,vn ∈V (G) such that (vi,vi+1) ∈ A(G).

2.3 (Unrooted) phylogenetic trees

In this section, we review the concept of a phylogenetic tree on a finite, non-empty

set X . Such trees have been introduced in the literature within an unrooted and rooted

context and are generally used to model the evolution of a set X of extant taxa. We first

provide a formal definition and then show how such trees can be characterised in terms

of certain combinatorial objects that arise from e. g. sequence data. We will mainly

focus on tree reconstruction from distances (i.e. measures of dissimilarity) between

elements of X , reviewing some of the most popular methods that have been introduced

for this for both complete and incomplete distance sets. We start by introducing further

terminology concerning graphs. Assume from now on that X is always a finite non-

empty set.

A tree is a connected graph that contains no cycles (see e. g. Figure 2.1). An un-

rooted phylogenetic tree T on X is a tree with leafset X which does not have degree-2

vertices. If the set X is of no relevance to the discussion, then we refer to a phylo-

genetic tree on X as just a phylogenetic tree. Then a lea f of T is a vertex of degree

1. For example a is a leaf of T in Figure 2.1. Any other vertex of T is said to be an

interior vertex. A phylogenetic tree is called binary if all interior vertices are of degree

3. Suppose T is a phylogenetic tree. The set of all leaves of T (the lea f set) is denoted

by L(T ). We call an edge incident with a leaf x the pendant edge of x and denote it by

px. In Figure 2.1, the edge {v,a} is a pendant of a.
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a

b

c

d

e

T

v

Figure 2.1: An example phylogenetic tree on leaves X = {a,b,c,d,e}.

We denote by (T,ω) the edge-weighted phylogenetic tree T on X with associ-

ated edge-weight function ω : E(T ) −→ R≥0. For (T,ω) an edge-weighted phyloge-

netic tree, we denote the set of edges on the path between two vertices u,v of T by

E(T,ω)(u,v). The phylogenetic distance d(T,ω)(a,b) (as defined in [38]) between two

leaves a,b of T is simply

d(T,ω)(a,b) = ∑
e∈E(T,ω)(a,b)

ω(e)

We say that two phylogenetic trees T1 =(V1,E1) and T2 =(V2,E2) on X are equivalent

if there is a bijective map ϕ :V1−→V2, such that {x,y}∈E1 if and only if {ϕ(x),ϕ(y)}∈
E2, and ϕ(x) = x holds for all x ∈ X . See Figure 2.2 for an illustrating example.
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2

T2
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Figure 2.2: Example of three phylogenetic trees T1, T2 and T3 on X = {1,2,3,4}. T1 is

equivalent to T2. T3 is not equivalent to either T1 or T2.

2.3.1 Rooted Phylogenetic Trees

A rooted phylogenetic tree T on X is a rooted tree with leafset X and with a specially

chosen non-leaf vertex ρ of T called the root of T . Note that the root may be of degree

two. For convenience, we will assume that all rooted phylogenetic trees are always

directed away from the root. Unless stated otherwise, all phylogenetic trees considered

in Section 2.3 are assumed to be unrooted. It should be noted that all definitions for

unrooted phylogenetic trees carry over to the rooted framework in a canonical way (see

e.g. [110] for details). Furthermore, suppose T is a rooted phylogenetic tree. Then we

say that a vertex v of T is an ancestor of a vertex u, denoted by v �G u if and only if
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there is a directed path between v and u. See for example Figure 2.3.

a b c d e

ρ

v

u

Figure 2.3: An example rooted phylogenetic tree on leaves X = {a,b,c,d,e}. The

vertex v is an ancestor of u.

2.4 Characterising Phylogenetic Trees

We next look into how phylogenetic trees can be characterised by simple combinatorial

objects. Such characterisations are useful as these alternative objects are generally

more easily obtained from biological data than phylogenetic trees themselves, and thus

might lend themselves to approaches for reconstructing phylogenetic trees from them.

We first look at objects describing unrooted phylogenetic trees, called splits and also at

how to build phylogenetic trees from sequences. We conclude with looking at how one

might obtain rooted and unrooted edge-weighted phylogenetic trees from distances.

2.4.1 Characterisation of unrooted phylogenetic trees in terms of

splits

In this section, we review how certain combinatorial objects known as splits can be

used to reconstruct phylogenetic trees. We begin with some definitions and then review

what conditions splits need to satisfy in order to give rise (in a well defined sense) to

a (unique up to equivalence) phylogenetic tree. We finish by presenting an algorithm

which can be used to construct phylogenetic trees from splits.
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A split S = {A,B} of X is a bipartition of X into two non-empty, disjoint subsets

A,B ⊆ X such that A∪B = X . It is usual to denote S by A|B, or, equivalently B|A. A

split is said to separate two distinct elements x,y of X if either x∈ A and y∈ B or y∈ A

and x ∈ B. A split A|B is called trivial if |A| = 1 or |B| = 1. A set of splits Σ on X

is called a split system on X . Note that if A = {a1,a2, ...,ak} and B = {b1,b2, ...,bl}
for k, l ≥ 1 then we will write a1a2...ak|b1b2...bl rather than {a1a2...ak}|{b1b2...bl}.
A weighted split system is a tuple (Σ,ω), where ω : Σ−→R≥0 is a weight function on

Σ.

We next explore the relationship between phylogenetic trees on X and split systems

on X . Suppose T is a phylogenetic tree on a set X . Then T induces a split system Σ(T )

on X in the following way. Suppose e is an edge of T . Then removing e from T results

in the split Se = A|B, where A is the set of all leaves present in one of the resulting

two connected components of T , and B is the set of all leaves of T in the other. One

by one, we continue in the same fashion for all edges in T , and put Σ(T ) = {Se|e ∈
E(T )}. Then we say T displays a split S on X if S ∈ Σ(T ). More generally, we say

that a split system Σ on X is displayed by T if Σ ⊆ Σ(T ). Note that a weighted split

system, (Σ(T ),ωΣ(T )), ωΣ(T ) : Σ(T )−→ R≥0, can be obtained from an edge-weighted

phylogenetic tree (T,ω) by setting ωΣ(T )(Se) = ω(e), for all e ∈ E(T ). See Figure 2.4

for an example.

a

b

c

d
e

T

5 4

x y

Figure 2.4: A phylogenetic tree with two weighted edges x and y. We have that Sx =

ab|ecd and ωΣ(T )(Sx) = 5. Similarly Sy = cd|abe and ωΣ(T )(Sy) = 4.

Motivated by this observation, we are interested in the following two questions for
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the remainder of this section:

(i) Which conditions does a split system Σ need to satisfy such that a phylogenetic

tree can be reconstructed from it, which displays Σ as described above.

(ii) If a phylogenetic tree T can be constructed from a split system Σ when is that

tree the only tree (up to equivalence) that displays Σ.

Our review will be based on [48]. One of the most important results in phylogenetics

[8] (which addresses the above questions) states that a split system Σ on X is compati-

ble if and only if for all pairs of distinct splits S1 = A1|B1, S2 = A2|B2 in Σ, one of the

following intersections is empty:

A1∩A2,A1∩B2,B1∩A2,B1∩B2 (2.1)

Given that any two splits displayed by a tree satisfy Condition 2.1, it follows that

checking if a split split system Σ can be represented by a phylogenetic tree T such that

Σ = ΣT can be done in O(|Σ|2) time.

While this result simultaneously addresses the above two questions, it is not im-

mediately clear how to reconstruct the phylogenetic tree defined by a compatible split

system Σ. To answer this question, we now turn our attention to the special case that

Σ is compatible. Given a compatible set Σ of splits on X , there exists a reconstruc-

tion method which returns the phylogenetic tree on X which displays precisely Σ. It is

called tree popping and was first described in [79]. It works by taking the splits in Σ in

an arbitrary order and constructs a sequence of phylogenetic trees T1,T2, ...,Tk, k = |Σ|,
such that for all 2 ≤ i ≤ k tree Ti differs from Ti−1 in that it displays the split Si, in

addition to all the splits displayed by Ti−1. This is done by letting T0 be a single-vertex

tree, whose vertex v is labelled by the set X . Now suppose that Ti−1 has been generated

by processing splits S1,S2, ...,Si−1. Then Ti is produced from Ti−1 by adding a new

vertex and labelling that vertex such that the split Si is also displayed by tree Ti. See

Figure 2.5 for an example. See [110] for details on how this approach can be extended

to general partitions and Chapter 4 for our implementation of it into the ape software

package ([86]).
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Figure 2.5: Steps of the tree popping approach, for a split system containing the split

12|34 and all the trivial splits. The splits which expand the tree are shown on the

arrows.

2.4.2 Phylogenetic trees from sequences

The idea behind sequence-based tree reconstruction is to represent a taxon (e.g a

species) x as a sequence, that is a string of symbols over a finite alphabet A (e.g

A = {A,G,C,T} in the case of DNA sequences). In order to reconstruct a phylo-

genetic tree from a set of n sequences, an alignment needs to be constructed first for

the sequences. This is represented by a matrix, such that each column of this matrix

represents a position in the alignment, and the number of columns l is the length of

the alignment. In addition to the initial alphabet, this matrix may contain a special gap

character commonly denoted by −. The exact way of computing such an alignment

has O(ln) runtime complexity, which severely limits its applicability to large datasets.

To alleviate this problem, a greedy heuristic has been proposed in [54], which simulta-

neously constructs a phylogenetic tree (called a ”guide tree”) while aligning an input

set of sequences. This greedy heuristic is prone to propagating suboptimal choices

made early on in the algorithm, thus affecting the overall accuracy of the output align-

ment. To address this problem, a consistency principle was proposed in [83], which

lead to the development of a generation of more accurate aligners such as T-Coffee

14



[83], Clustal-W [12] and MUSCLE [28]. More recently, Clustal-Omega has been pro-

posed, which seems to hold great promise for aligning even large NGS datasets [111].

Key to its fast runtime is an embedding of the input sequence in an appropriately cho-

sen space, which allows for highly efficient computation of the guide tree required for

efficient alignment.

Given a set X of |X |= n sequences, and an alignment over this set, the number of

non-isomorphic binary phylogenetic trees that can be obtained for such an alignment

is equal to 3×5× ...× (2n−5). For modern datasets, this number tends to be huge,

implying that an exhaustive search is infeasible. To overcome this some heuristics have

been developed to reconstruct such trees from this type of data. The most popular ones

are the Maximum Parsimony ([29]), Maximum Likelihood ([36]) and Bayesian ([77])

based, and each of them employs a different optimization criterion.

2.4.3 Phylogenetic trees from distances

A popular method for reconstructing phylogenetic trees on some set X is via distances

on X . Intuitively, the aim is to measure and display the degree of relatedness between

two elements of X based on how far apart they are with respect to certain measures

of dissimilarity. If the measure of dissimilarity captures the evolutionary signal in the

data, then closely related elements in X should be grouped closer together in the re-

turned phylogenetic tree T on X than those that are more distantly related. Distance

methods are popular as phylogenetic tree reconstruction algorithms based on distances

are efficient. However they tend to lose phylogenetic signal as they work on secondary

data (distances from sequences) rather than primary data (sequences). Nonetheless,

with an appropriately calculated distance, they have proven successful in modern phy-

logenetic studies as a means of getting a quick snapshot of the data or as a way of

restricting the search of the MP and the ML approaches to hopefully only promising

regions of the search space ([114]).

This section is concerned with distance based edge-weighted phylogenetic tree re-

construction and is structured as follows. We start by clarifying the link between phy-

logenetic trees on X and distances on X and then review some of the popular methods

for constructing phylogenetic trees from distances.

We start by formalising the concept of a distance. A distance d on X is a symmetric
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map d : X ×X −→ R≥0. As explained in Section 2.3, an edge-weighted phylogenetic

tree (T,ω) on X gives rise to a distance d(T,ω) on X . Now that we know how to

go from edge-weighted phylogenetic trees on X to distances on X , we can ask the

converse question: given a distance d on X , when can we go from d to an edge-

weighted phylogenetic tree (T,ω) on X such that d = d(T,ω)?

2.4.3.1 Characterising edge-weighted phylogenetic trees in terms of distances

Interestingly, the distance d(T,ω) constructed above from an edge-weighted phyloge-

netic tree (T,ω) is additive, where we say that a distance D on X is additive if for any

a,b,c,d ∈ X the following four-point condition holds ([9]):

D(a,b)+D(c,d)≤ max(D(a,c)+D(b,d),D(b,c)+D(a,d)) (2.2)

If D is an additive distance on X , then there exists a unique edge-weighted phylogenetic

tree (T,ω) such that d(T,ω) = D ([9]). In this case we say that D is displayed by (T,ω).

Therefore one of the main problems of interest in distance-based phylogenetic tree

reconstruction is the following: given an additive distance D on X , how can we find an

edge-weighted phylogenetic tree (T,ω) on X such that D is displayed by (T,ω). Since

distances coming from real data are seldom additive, it is also of interest to develop

methods that find ’good’ edge-weighted phylogenetic tree estimates from distances

which do not respect the four-point condition (i. e. inequality 2.2).

2.4.3.2 Reconstructing edge-weighted phylogenetic trees from distances

One of the most widely used algorithms for reconstructing phylogenetic trees from

distances is the neighbour joining algorithm (NJ), described in [106]. For a given

distance D on X it essentially iteratively reconstructs an edge-weighted phylogenetic

tree of minimum length (i.e sum of lengths of all edges), with the restriction that the

path length between any two leaves is at least as big as the respective entry in D. It

does so by employing a greedy heuristic that approximates D [44].

To ease the representation of an outline of NJ, we call the elements of X taxonomic

units. On a high level, NJ works as follows. Given a distance D on X . Then choose

a pair x,y that minimises a certain criterion (intuitively, this criterion minimises the
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total sum of edge-weights obtained if we merge x and y into a cherry). Next ’merge’

x and y into a taxonomic unit z and calculate a new distance D′ from D (following

[106]) for the set X ′ = X −{x,y} ∪ z. Also, compute the length of the edges {x,z}
and {y,z}. Finally, set X = X ′ and repeat the above until |X | = 2. When this stage

is reached, create a tree with two leaves and label them with the two elements of X .

By reversing the merging process described above an edge-weighted phylogenetic tree

on the original set X is then reconstructed. A more detailed explanation of the above

process may be found in [44]. It is known that NJ is consistent in the sense that if

D = d(T,ω) for some edge-weighted phylogenetic tree (T,ω), then up to equivalence

with T , (T,ω) will be returned by NJ.

Due to noise and variability in the data, it is generally too much to hope for that

a given distance is additive. To alleviate this problem several NJ-like methods have

also been proposed such as BioNJ [41], MVR [43], UNJ [42]. Based on simulation

studies, all have been shown to have higher topological accuracy than NJ when the

input distances are not additive ([17]). Common to all these methods is that they follow

the same agglomerative framework as NJ, see [17]. Implementations of the above

alternatives for NJ can be found in the package PhyD* ([17]).

Another method used for reconstructing phylogenetic trees from distances is the

triangles method ([49]). Before describing this method we need to introduce some

further terminology. We start with introducing a generalised form of a cycle, known as

a k−dcycle. Let k ≥ 1 and let G = (V,E) be a graph. If we can find a set C ⊆ E, such

that every vertex to which an edge in C is incident has degree at least k+ 1, then we

say that C is a k−dcycle. For instance a cycle is a 1−dcycle. A complete graph with

4 vertices is a 2−dcycle. A graph that has no k−dcycles is said to be k−dacyclic. If

a graph is k−dacyclic it is called a k−d tree. See Figure 2.6 for an example of a 2-d

tree, or twotree for short. In what follows, twotrees are assumed to have edge-weights.
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Figure 2.6: (i) An example of a twotree with leaves {a,b,c,d}. Edge weights are

shown on the respective edges. The induced subgraph on {a,b,c} is a triangle. (ii)

The steps indicated as (1) and (2) carried out by the triangle method to transform the

twotree in (i) into an edge-weighted phylogenetic tree.

With the above in mind, we next outline the triangle method. Given a distance D

on X with n = |X | ≥ 2, it essentially comprises of two parts. The first one is a greedy

reconstruction of a twotree Gn−2 associated to D, and the second comprises of recon-

structing an edge-weighted phylogenetic tree (Tn−2,ωn−2) on X from (Gn−2,ωn−2),

where |X |= n.

We start with presenting an outline of the first part of the algorithm. For D and X as

above, the reconstruction of Gn−2 from D is simply an adaptation of Prim’s minimum-

spanning tree algorithm [96]. We begin by choosing two elements x, y from X such

that D(x,y) is the smallest over all pairs of elements in X . We then create an edge-

weighted graph G0 with V (G0) = {x,y} and E(G0) = {{x,y}}, with edge- weight

function ωG0
: E(G0)−→R≥0, defined by putting ωG0

({x,y}) = D(x,y). Note that G0

is clearly a twotree. We now look for an element x ∈ X such that the distance L(x)
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between it and G0 is minimal. For Y a non-empty set, D′ a distance on Y and G a graph

with V (G)⊆ Y , this distance was defined in [49] to be

L(x) =
1

2
miny,z∈Y,y6=z(D

′(x,y)+D′(x,z)−D′(y,z)).

Suppose y,z ∈ V (G0) minimize the distance between x and G0. Then we add two

edges e1 = {x,y} and e2 = {x,z} to E(G0). This results in a new twotree G1. We

set ωG1
(e1) = D(x,y) and ωG1

(e2) = D(x,z). We continue adding elements of X in

this manner until V (Gn−2) = X holds, thus obtaining a sequence (Gi,ωGi
) of edge-

weighted twotrees, 0≤ i≤ n−2. This concludes the first part of the triangles method.

An iteration of it is shown in Figure 2.7.

y z

x

D(y, z)

D(y, x) D(z, x)

Gk� 1
y

z

x

(i )

(i i )
D(y, x)

D(z, x)

D(y, z)

Figure 2.7: An iteration of the two-tree construction of the triangles method. (i) shows

how the distance between x and an already constructed two-tree containing y and z is

computed. The green distance is subtracted from the red distances. We are then left

with twice the distance between x and the path between y and z, hence why we need to

divide this difference by two. By finding the pair y,z minimising this quantity, we get

the distance between x and the two-tree. (ii) shows how an already existing two-tree

Gk−1 containing y and z is extended to also contain x. The new vertex is attached to

Gk−1 via the edges {x,y} and {x,z}, with edge weights as indicated.

The second part of the triangle method is concerned with obtaining an edge-weighted

phylogenetic tree from the twotree found in step 1. For this, we take the twotrees in the

order in which they were constructed in the first step. Let x1 = a, x2 = b,x3...,xn de-

note the order in which the elements of X have been added to G0. We first obtain from
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(G1,ωG1
) an edge-weighted star-tree (T1,ω1) on {x1,x2,x3}, that is an edge-weighted

phylogenetic tree whose leaves are x1,x2,x3 and which has a single interior vertex, u,

such that

ω1({u,x1}) =
1

2
[D(x1,x2)+D(x1,x3)−D(x2,x3)],

ω1({u,x2}) =
1

2
[D(x2,x1)+D(x2,x3)−D(x1,x3)],

ω1({u,x3}) =
1

2
[D(x3,x1)+D(z,x2)−D(x1,x2)].

See Figure 2.6 for a graphical representation of the second part of the triangle method.

The justification for the above equations is similar to Figure 2.7, (i).

Suppose now that we have constructed an edge-weighted phylogenetic (Ti−1,ωi−1)

obtained from considering all twotrees up to Gi−1, i ≥ 2. We now wish to obtain the

edge-weighted phylogenetic tree (Ti,ωi) from (Ti−1,ωi−1) by considering (Gi,ωGi
).

Suppose x ∈ V (Gi) \V (Gi−1), and that {x,y},{x,z} ∈ E(Gi) \E(Gi−1). We set α =
1
2
(D(z,x)+D(z,y)−D(y,x)). Then we choose an edge e′ = {v1,v2} on the path be-

tween y and z in (Ti−1,ωi−1) and subdivide it in Ti by a vertex vx such the length of

the path from z to vx in Ti is α . We also add the edge {vx,x} to E(Ti). We define

ωi : E(Ti)−→ R≥0 as follows.

ωi(e) =





ωi−1(e) if e ∈ E(Ti−1)\{e′}
1
2
(D(y,x)+D(x,z)−D(y,z)) if e = {vx,x}

α− ∑
e∈E(Ti−1,ωi−1)

(z,v2)
ωi−1(e) if e = {vx,v2}

ωi−1({v1,v2})−ωi({vx,v2}) if e = {v1,vx}

(2.3)

We proceed in this fashion until we obtain (Tn−2,ωn−2). See Figure 2.8 for a

depiction of the above equations. See Chapter 4 for our implementation of the triangles

method into ape[91].
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x

v1 v2

vx

α

Figure 2.8: A depiction of how the new leaf x is attached to an already constructed

phylogenetic tree on the path between y and z. The edge {v1,v2} is subdivided by a

vertex vx to which we attach x. Edge weights are computed as in Equation 2.3.

2.4.3.3 Characterising rooted phylogenetic trees from distances

The algorithms presented in Section 2.4.3.2 work well for constructing edge-weighted

phylogenetic trees. While such trees are useful for viewing groupings in the data, they

suffer from the fact that they do not easily lend themselves to identifying e.g. ancestral

relationships in the data. To this end, rooted edge-weighted phylogenetic trees (see

Section 2.3) have been proposed. In this section we look at how edge-weighted rooted

phylogenetic trees can be constructed from distances.

One way of obtaining edge-weighted rooted phylogenetic trees from distances is

by first obtaining an edge-weighted phylogenetic tree (using e.g. NJ) and then rooting

such a tree using for example, an outgroup. This method is advantageous because it

provides a good way of going from edge-weighted unrooted phylogenetic trees to edge-

weighted rooted phylogenetic trees which are easier to interpret from a biological point

of view. It however suffers from the fact that finding an outgroup can be problematic.

Another popular way of obtaining edge-weighted rooted phylogenetic trees from

distances on a set X is by assuming a molecular clock. Roughly speaking, this as-

sumption postulates that all individuals in X evolve at a constant evolutionary rate.

While it has been observed that such an assumption does not hold in general, if all

individuals under consideration are from the same species, as is the case in many

population-genetic studies, this assumption is reasonable ([51]). Put differently, the

molecular clock assumption is assumed to be satisfied for studies concerning, for ex-

ample, intra-specific evolution of a selectively neutral gene. As all elements in X are

assumed to evolve at constant rates, an immediate consequence of this assumption on

an edge-weighted phylogenetic tree (T,ω) depicting the evolution of taxa in X is the

21



identifiability of the root of T . In the ideal case it is located at equal path length from

all leaves in X , in which case (T,ω) is called a dendrogram, or an ultrametric tree.

Suppose D is a distance on X . Similar to the unrooted case, if there exists an edge-

weighted rooted phylogenetic tree (T,ω) on X such that d(T,ω) = D, we say that (T,ω)

displays D. A distance D on X is displayed by a unique (up to equivalence) edge-

weighted rooted phylogenetic tree if the following condition, known as the ultrametric

condition holds for any a,b,c ∈ X ([19]):

D(a,b)≤ max(D(a,c),D(b,c)) (2.4)

Another way of obtaining edge-weighted1 rooted phylogenetic trees on X is by

attempting to transform a distance on X such that it respects the ultrametric condition.

One way to do this is via the Farris transform ([34]). Alternatives include [64, 69].

Once such a distance matrix is computed one can apply Algorithm 1 to obtain a rooted

phylogenetic tree on X .

2.4.3.4 Constructing rooted edge-weighted phylogenetic trees from distances

In this section, we review algorithms for constructing rooted edge-weighted phyloge-

netic trees from distances. Given a distance d on X , Ascending Hierarchical Cluster-

ing (AHC, Algorithm 1) can be used to produce a dendrogram (T,ω) on X . On a high

level, AHC starts by putting each element of X in its own cluster. Then it chooses the

two clusters that are closest under some distance D′ on clusters on X and then merges

them together into a new one. Using D′, the distance between this new cluster and all

remaining clusters are then computed. The algorithm continues in this fashion until

there is just one cluster left. There are many flavours of this algorithm, all of which

will produce the dendrogram (T,ω) for which d = d(T,ω) holds if d is ultrametric, or a

dendrogram which approximates d as closely as possible (in a least squared sense) if

it is not. The only step where the flavours of this algorithm differ is in the computation

of the distances between the newly merged cluster and the already given clusters. With

Ci, C j and Cu denoting three clusters, and Ck the cluster obtained by merging Ci and

C j, some of the types of distances for clusters of X considered are as follows:

1Note that some of the edge-weights might be negative which, strictly speaking implies that the

reconstructed rooted phylogenetic tree is not a rooted edge-weighted phylogenetic tree.
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• single linkage: D′(Ck,Cu) = min(D′(Ci,Cu),D
′(C j,Cu))

• complete linkage: D′(Ck,Cu) = max(D′(Ci,Cu),D
′(C j,Cu))

• average linkage: D′(Ck,Cu) = 0.5(D′(Ci,Cu)+D′(C j,Cu))

• Wards minimum variance method [119]:

D′(Ck,Cu) =
|Ci|+ |Cu|

|Ci|+ |C j|+ |Cu|
D′(Ci,Cu)+

|C j|+ |Cu|
|Ci|+ |C j|+ |Cu|

D′(C j,Cu)

− |Cu|
|Ci|+ |C j|+ |Cu|

D′(Ci,C j)

Algorithm 1 Ascending Hierarchical Classification (AHC)

Input: a distance d on a set X and a distance D on the powerset of X , s.t.

D({x},{y}) = d(x,y) for all x,y ∈ X

Output: a dendrogram (T,ω) on X

k = n = |X |
V (T ) = {vx} for all x ∈ X , E(T ) = /0

ret=
⋃

x∈X{{x}}
index({x})=0, for all {x} ∈ ret

while k > 1 do

let Ci, C j be two clusters in ret such that D(Ci,C j) is minimal

ret← ret\{Ci,C j}
Ck =Ci∪C j

ret← ret∪{Ck}
compute D(Ck,Cu) for all Cu ∈ret

index(Ck) = D(Ci,C j)/2

V (T ) =V (T )∪{vCk
}

add the edge e1 = (vCk
,vCi

) to E(T )
add the edge e2 = (vCk

,vC j
) to E(T )

ω(e1) =index(Ck)-index(Ci)

ω(e2) =index(Ck)-index(C j)

k← k−1

end while
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2.4.4 Characterising phylogenetic trees in terms of incomplete dis-

tances

As we have seen above, if a distance D on X respects certain conditions (Equation 2.4),

D is displayed by a unique (up to equivalence of the underlying rooted phylogenetic

tree) edge-weighted phylogenetic tree. However, what is needed is that the value

D(x,y) is known for all x,y ∈ X . But with real data this value need not always be

available. Missing distances can occur due to e.g. experimental error, unreliable reads

for example for genomic data, or incomplete taxonomic coverage ([17]). We are thus

left with an incomplete distance on X , and are interested in finding an edge-weighted

rooted/unrooted phylogenetic tree (T,ω) which correctly represents the given known

distance values of D. Unlike the case where D is given for all pairs of elements in X ,

(T,ω) need not be uniquely determined by D if D has missing values (see Figure 2.9

for an example in the unrooted case).

a

b

c

d

a

bc

d
1

1

1

1

1

1

1

12

2

Figure 2.9: Suppose D is a distance on X = {a,b,c,d} where only the distances be-

tween the pairs (a,b) and (c,d) are known. Then both trees depicted above with edge-

weights as indicated have the same value for (a,b) and (c,d).

The structure of the remainder of this section is as follows. We begin by defining

some concepts which are necessary for discussing incomplete distances. We then look

at how incomplete distances define unrooted, and later rooted, phylogenetic trees. Fi-

nally, we look at algorithms which can be used to reconstruct phylogenetic trees from

incomplete distances.

2.4.4.1 Incomplete distances preliminaries

In this section we review some preliminary concepts required to explain known results

on how incomplete distances uniquely determine phylogenetic trees. Suppose that
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(T,ω) is an edge-weighted phylogenetic tree on X . In what follows we consider an

incomplete distance D on X in terms of a set of cords, i.e a set L⊆
(

X
2

)
, where {x,y} ∈

L if and only if D(x,y) is given. We denote an element {x,y} ∈ L as xy. If (T ′,ω ′)

is a further edge-weighted phylogenetic tree, we say that (T,ω) and (T ′,ω ′) are L-

isometric if d(T,ω)(x,y) = d(T ′ω ′)(x,y) holds for all cords xy ∈ L. Loosely speaking

this means that (T ′,ω ′) is a competing tree of (T,ω) with respect to L. We say that T ′

refines a phylogenetic tree T on X if, up to equivalence, T can be obtained from T ′ by

collapsing edges of T ′ (see e. g. [110]). In that case, we will also call T ′ a refinement

of T . Note that every phylogenetic tree is its own refinement.

As stated above, incomplete distances do not always uniquely define a phyloge-

netic tree. A set L ⊆
(

X
2

)
with

⋃
A∈LA = X is called a lasso if it contains some in-

formation which allows us to recover an edge-weighted phylogenetic trees to a certain

extent (e. g. its edge-weights or topology). The following types of lassos have been

proposed in [26] (and further studied in [56]) to capture the different ways in which an

incomplete distance on X can uniquely determine an edge-weighted phylogenetic tree.

Suppose T is a phylogenetic tree on X . We say that L⊆
(

X
2

)
is

(i) an edge-weight lasso for T if, for all proper edge-weightings ω and ω ′ of T , we

have that ω = ω ′ holds whenever (T,ω) and (T,ω ′) are L-isometric

(ii) a topological lasso for T if, for every phylogenetic tree T ′ on X and any edge-

weightings ω of T and ω ′ of T ′, respectively, we have that T and T ′ are equiva-

lent whenever (T,ω) and (T ′,ω ′) are L-isometric.

(iii) is a strong lasso for T if L is simultaneously an edge-weight and a topological

lasso for T .

(iv) a weak lasso for T if, for every phylogenetic tree T ′ on X and any edge-weightings

ω of T and ω ′ of T ′, respectively we have that T ′ is a refinement of T whenever

(T,ω) and (T ′,ω ′) are L-isometric.

We present examples of each kind of lasso in Figure 2.10.
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T1 T2

Figure 2.10: Suppose L = {ab,ac,bc,be,ae,ce,ed,cd} is a set of cords on X =

{a,b,c,d,e}. Then L is both an edge-weight and a topological (and hence strong)

lasso for the phylogenetic tree T1 and L′ = L−{bc} is a weak lasso for T1. Moreover,

T2 is a refinement of T1.

For L as above, we denote by Γ(L) the graph with vertex set X and edge set L. See

Figure 2.11 for an example. It was shown in [26] that if L is a topological lasso, then

Γ(L) is connected and if L is an edge-weight lasso, then Γ(L) is strongly non-bipartite

(i.e. every connected component is non-bipartite). The converse of the previous state-

ments does not hold (see Figure 2.11).
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Γ(L) :
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(iv)

Figure 2.11: For the set L = {ab,ae,be,ac,ce,bd,a f ,e f} on X = {a,b,c,d,e, f}, the

Γ(L) graph is shown in (iv). As can be easily checked, (T,ω) and (T1,ω1) are L-

isometric, but T1 is not equivalent with T . Hence L is not a topological lasso for

T . Again as can be easily checked, (T,ω) and (T2,ω2) are L-isometric and T2 is

equivalent with T1 but ω1 6= ω2, hence L is not an edge-weight lasso for T .

2.4.4.2 Characterising unrooted trees in terms of incomplete distances

In this section we present some known properties when a set L⊆
(

X
2

)
of cords uniquely

determines a phylogenetic tree on X . All of the results reviewed here were established

in [26], and the reader is referred to that paper for details on the proofs. We begin by

reviewing certain types of sets of cords called covers which are known to be lassos for

phylogenetic trees and then review the concept of a shelling.

Covers For the following let L be a set of cords and let T denote a phylogenetic tree on

X . For every interior vertex of T , we denote the connected components of T obtained

by deleting v as C1,C2, ...,Cn. If for every Ci we can find a set Si of leaves of Ci such

that for any pair Cl,C j there exists a ∈ Sl,b ∈ S j such that ab ∈ L then we call L a

cover of T . See Figure 2.12 for a schematic illustration of this property. In addition L

is called a triplet cover for T if each of the sets Si is of size one (i.e. one representative
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leaf is chosen for each connected component at each interior vertex). The name stems

from the fact that for binary phylogenetic trees each vertex is covered by a triplet of

leaves.

It was shown in [26] that triplet covers are edge-weight lassos for binary phyloge-

netic trees. The authors of that paper also showed that if a set L of cords is a triplet

cover for two L-isometric edge-weighted phylogenetic trees (T,ω) and (T ′,ω ′), then

T and T ′ must be equivalent and ω = ω ′.

Another type of cover of interest is the pointed cover. Suppose we fix an element

x ∈ X . We say that L is a x-pointed cover of a phylogenetic tree T if L is a cover, and

furthermore for every interior vertex v of T the following holds. There exist elements

a, b of X such that ax ∈ L,bx ∈ L, and v lies simultaneously on the paths from a and

b, a and x and b and x. If, for a cover L on X we have an element x ∈ X as above, then

we call L a pointed cover. In [26] it was shown that pointed covers are strong lassos

of binary phylogenetic trees.

a

a
′

b

b
′

c c
′

ba

c

a

a
′

b

b
′

x

(i) (ii) (iii)

c
′

a
′

b
′

v v v

C1 C2

C3

C2 C2C1 C1

C3
C3

Figure 2.12: For v an interior vertex of a phylogenetic tree T and a,a′,b,b′,c,c′ leaves

of T , we illustrate the conditions needed to be satisfied by v for the types of covers

reviewed here. A cover is depicted in (i). A triplet cover is depicted in (ii), and an

x-pointed cover is depicted in (iii). For all 3 types of covers, we depict a cord xy

between two leaves in L by a dashed line from x to y. For each example, we depict the

connected components obtained by deleting v.

Suppose we have a split A|B of a set of taxa X . Then the set A∨B = {ab : a ∈
A,b ∈ B} is called a bipartite cover. Suppose now T is binary. Then we say that
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a bipartite cover A∨B is t-strong if for every cherry C = {a,b} of T , we have that

A∩C 6= /0 6= B∩C. It was shown in [26] that t-strong bipartite covers are topological

lassos but not edge-weight lassos (see Figure 2.13).
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b d
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(T1, ω1)
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c
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1.5

(T2, ω2)

Figure 2.13: For the edge-weighted phylogenetic trees, (T1,ω1) and (T2,ω2), on X =

{a,b,c,d} depicted in i) and ii), the bipartite cover obtained from ac|bd is t-strong.

Note that D(T1,ω1)(x,y) = D(T2,ω2)(x,y) for all xy ∈ {a,c}∨{b,d}.

Shelling Given a phylogenetic tree T on X and a set L ⊆
(

X
2

)
of cords. If L lassos

T , then it is hoped that the cords in L can somehow be used to infer other cords not

given in L. This gives rise to the concept of a shelling, which can be seen as a way of

iteratively inferring a missing distance for the cords on
(

X
2

)
from the cords contained in

L. Hence we say that L is T -shellable if the following holds. There exists an ordering

a1b1,a2b2, ...ambm of the cords in
(

X
2

)
\L such that for any aibi there exists two pivot

elements xi,yi ∈ X \{ai,bi} such that with Y = {ai,bi,xi,yi} the following property is

satisfied. The cord xiyi must be such that the quartet aixi|biyi is displayed by T , and

such that all elements of
(

Y
2

)
except aibi are in L∪{a1b1,a2b2, ...,ai−1bi−1}.

Any such ordering is called a T -shelling of
(

X
2

)
\L and if a set L has such a T -

shelling, it is called an s-lasso for T . It was shown in [26] that s-lassos of any phy-

logenetic tree T are in fact strong lassos of T . See Figure 2.14 for an example of a

shelling.
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f

T

Figure 2.14: The set of cords L= {ab,ae,be,a f , f e,bc,cd,bd,ac,ec} is a shelling for

the depicted phylogenetic tree T on X = {a,b,c,d,e, f}. The missing cords in
(

X
2

)
can

be inferred from the quartets induced by T in the following order: b f , from quartet

ab| f e; ad, from quartet ab|cd; ed, from quartet ae|cd; f c, from quartet ac| f e; f d,

from quartet a f |cd.

Note that although similar in nature, twotrees and shellings are two different con-

cepts. More precisely, every twotree is a shelling, but there exist shellings that are

not twotrees. An example of this fact is provided by the phylogenetic tree T in Fig-

ure 2.15(i) and the set L of cords depicted in Figure 2.15(ii) in the form of Γ(L). This

example was constructed by the author and is published in [56]. It is easy to check that

the cords in
(

X
2

)
\L have a shelling ordering given by ab,ab′,b′x,b′y,xa′,xa′′,ya′,ya′′,ba′,ba′′,

with pivot elements (x,y),(a′,a′′),(a,b),(a,b),(a,b′),(a,b′),(a,b′),(a,b′),(a,b′),(a,b′),

respectively. But obviously Γ(L) is not a twotree.
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Figure 2.15: (i) a binary phylogenetic tree T . (ii) the Γ(L) for a set L of cords.

2.4.4.3 Characterising rooted trees in terms of incomplete distances

A lot of work has been put into understanding when incomplete distances uniquely

determine edge-weighted phylogenetic trees [56, 33]. While many interesting results

have been established, which present certain easy to check conditions for when a set of

cords can be an edge-weight, topological, weak/strong lasso, a general characterisation

of such lassos is still missing [26]. In Chapter 3 we extend the above concepts to rooted

phylogenetic trees.

2.4.5 Reconstructing phylogenetic trees from incomplete distances

In the previous section we reviewed results which told us how and to what extent in-

complete distances determine phylogenetic trees. In this section we review algorithms

which are used to reconstruct phylogenetic trees from incomplete distances. We start

with algorithms for phylogenetic trees and continue with reviewing incomplete dis-

tance reconstruction of rooted phylogenetic trees.

2.4.5.1 Unrooted phylogenetic trees from incomplete distances

In [17] several methods have been proposed for reconstructing phylogenetic trees from

incomplete distances. They adapt all of the steps mentioned for agglomerative methods

for complete data to handle missing entries in the input distance matrix. The methods
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have the advantage that they are very fast. Also simulations indicate that they work

well in practice (see [17]). An alternative method for edge-weighted phylogenetic

tree reconstruction from incomplete distances which does not use the agglomerative

framework is presented in [49]. This method has the advantage that it is interesting

from a theoretical point of view when it comes to studying edge-weighted phylogenetic

tree reconstruction from incomplete distances.

The above methods attempt to handle missing distance information by building

phylogenetic trees around the missing entries. Methods which make use of the additive

and ultrametric (see Section 2.4.3) inequalities to fill in missing distances are presented

in [74]. Then construction methods for complete data are used to produce an edge-

weighted phylogenetic tree. We conclude by remarking that all of the methods in

this section have been implemented in the popular R-based ape phylogenetics analysis

package (see Chapter 4 for details).

2.4.5.2 Rooted phylogenetic trees from incomplete distances

In [19] a method for reconstructing dendrograms from incomplete distances was pro-

posed. On a high level, this method estimates a complete distance matrix, D′, from

the incomplete input distance matrix D such that D′ is the closest to D in the least-

squared sense (see [19] for more details). Then Algorithm 1 is applied to D′ to obtain

a dendrogram.

2.5 Predictive Breeding, Association Mapping and Pop-

ulation Stratification

Predictive breeding is concerned with optimising artificial breeding practices for cer-

tain traits of interest, and although it is also carried out for animals, in this review

we focus on plants. Breeding for plants that have desirable traits for the environment

they are cultivated in is a central task for productive and qualitative agriculture. The

classical strategy for doing this is via expensive and time-consuming field trials, which

tends to involve the growing of a large number of different populations of crops, and

selecting for future crop breeding only those individuals which have those traits. This

method has many disadvantages, including:
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• The necessity of field trials, which can only be conducted in particular locations

and at particular times of the year

• The possibility of transmitting undesirable traits together with the traits of inter-

est

• The difficulty of obtaining traits with low heritability

An alternative to the above strategy is predictive breeding, an example of which

is Marker-Assisted Selection (MAS, see [101]). Here, instead of growing the plants

in order to observe their phenotypic properties, one uses genetic information found

in seeds to determine which traits the plant will exhibit once grown. This eliminates

the need for expensive field trials and uncertainty in observed phenotypes. However a

link between the plant’s genotype and phenotype is required, and finding such a link

is no easy task. Next generation sequencing has become central to developments in

this field, by allowing for unprecedented amounts of input data to the above strategy.

While it provides increased accuracy and power for MAS, it also introduces a series

of computational challenges. Before going into more detail about genotype-phenotype

mapping, we review some basic terminology below.

Quantitative traits are agriculturally important traits (e.g yield, disease resistance)

that are controlled by possibly many genes. The particular locations of the traits on the

genome are known as Quantitative Traits Loci (QTL) and checking for their presence

or absence in a crop dataset allows one to make predictions about which traits each of

those crops will exhibit.

Usually QTLs are identified relative to a marker which represents an observed

difference between organisms or species that make up a dataset. With the advent of

NGS, genetic markers are quickly becoming the norm in QTL-identification.

Genetic markers can be viewed as observed differences on the sequence level. They

can be thought of as flags that can pinpoint the location of the gene on its genome.

This is reflected in the terminology used for such markers. For example a genetic

marker that is close to a gene is said to be linked to that gene. Like genes, genetic

markers occupy certain positions on the genome, known as loci. A particular type of

DNA marker is a single nucleotide polymorphism (SNP). Biologically, SNPs represent

single base-pair differences between genotypes of interest.
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The remainder of this section is structured as follows. We begin by giving a brief

overview of approaches for finding genotype-phenotype association. Subsequent to

this we go into more detail about population structure, which is a confounding factor in

finding genotype-phenotype associations. We conclude by reviewing several popular

approaches which aim to infer population structure from genotype data.

2.5.1 Genotype-Phenotype association

This section aims to review popular methodologies for genotype-phenotype associa-

tion. There are two popular classes of methods for finding links between phenotypes

and genotypes. We give a brief high-level review of both.

The first class is family-based linkage mapping, or just linkage mapping. In this

case, a purpose-built population, called a mapping population, is created by breeding

some founder individuals which differ for relevant traits of interest. The purpose is

to obtain offspring that are homozygous (i. e. identical genes obtained from both par-

ents) combinations of the founders’ genotype. Once such a population is obtained,

its constituents are genotyped and have their phenotypes observed. It is hoped that

differences in phenotypes in the offspring could be explained by the observed geno-

type differences between them. Ideally, these offspring are sufficiently fine-grained

recombination of the parental genotypes to allow pinpointing the markers linked with

the traits of interest. In practice however, linkage mapping suffers from the fact that a

mapping population of sufficient size and diversity is difficult to obtain. See [13] for

details on how this approach works.

Another popular approach for identifying QTLs is association mapping, or Link-

age Disequilibrium Mapping (LD). As opposed to linkage mapping (which is applied

to a purpose built mapping population), association mapping is applied to a collection

of accessions (e. g. individuals) which spans multiple geographical regions, is of differ-

ing crop types, and is assumed to have had greater opportunities for recombination and

thus a very diverse history. Association mapping therefore has a much higher resolu-

tion than linkage mapping rendering it preferable for identifying complex traits among

very diverse natural populations (e. g. germplasm collections). A simple approach for

finding genotype-phenotype association in such a dataset is via a case-control study,

whereby one simply sequences those individuals which vary for a trait of interest and
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effects statistical tests to attempt to find loci which can explain the variability in the

phenotype. However, unaccounted for relationships between individuals of this natural

sample can introduce false-positive associations [124]. A well known example where

this has confounded a study is described in [50]. The authors of the study sought to

find a link between genotype and chopstick usage, however the genomic region which

they found linked to chopstick usage was subsequently found to be an immune system

gene which had no relation to the original trait of interest. This is due to the prevalence

of this gene in the sampled case population and not because of any functional links

between it and chopstick usage.

As it turns out, this is an important problem in many such studies and must be con-

trolled for when realising statistical tests. This confounding factor is called population

stratification (structure), and arises as a result of reproductive isolation amongst the

individuals of a population. We continue by giving a brief overview of how population

structure can arise and affect association studies and proceed with reviewing popular

computational methods used for inferring it.

2.5.1.1 Population stratification

Population stratification (structure) may be viewed as reproductive isolation between

individuals of a population. This can be due to, for example, social structure or geo-

graphical separation of species. Over time, allele frequencies between isolated groups

tend to diverge. Now, if isolated groups differ for a trait of interest, all loci at which the

two groups have different allele frequencies will be associated with the QTL for that

trait ([123]). This gives rise to a high rate of spurious genotype-phenotype association.

In this section we give a brief overview on what population structure is and how it may

be modelled.

Suppose an initially homogeneous population is split into K different groups which

cannot interact with each other for a prolonged period of time. Due to e. g. selective

pressure or genetic drift, the allele frequencies of these K groups will start to differ

from one another. Given enough time, said differences can become significant. Sup-

pose now that the K populations are allowed to once again interact. Then the resulting

offspring will be a mixture of the K populations. They are said to be admixed, and the

K populations are called the founder (populations) of the dataset. The n×K Q-matrix
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of an admixed dataset, n the number of individuals, stores in each row the proportion

of an individual’s genotype that came from one of the K founder populations. See

Figure 2.16 for an example.

Figure 2.16: A Q-matrix depicted in terms of a barplot, with each colour corresponding

to one of the three founder populations. The scale of the bars on the Y-axis represent

proportions each of them contribute to individuals which label the X-axis.

Admixed datasets can lead to high false-positive rates in subsequent association

studies. In order to correct for this effect, population structure needs to be included

in the association model, via e. g. using a Mixed Linear Model (MLM) [123]. Most

modern association tools (e. g. [4]) can take into account population structure which

is generally either represented in the form of a Q-matrix, or in the form of principal

components (PCs) obtained by applying PCA to the admixed dataset. Finding either is
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of huge current interest, and in Section 2.5.2 we review popular methods for obtaining

them.

2.5.2 Modelling Population Stratification

As alluded to above, population stratification, or population structure, can be seen

as reproductive isolation between individuals of naturally occurring populations [97].

This has the effect of inducing genetic differences between isolated sub-populations

which can cause spurious genotype-phenotype association. In this section we review

a framework which has proven quite successful for modelling this effect [97]. To aid

with this, we refer the reader to Figure 2.17 for a schematic representation. We also

introduce common notation used throughout in the context of population structure.

Notation and terminology Throughout this section, we assume that X is a dataset

given in terms of a N ×L genotype matrix, comprising L ≥ 1 loci (e. g. a SNP) and

N ≥ 1 individuals. Each individual i we view as a genotype vector xi = (xil) where

xil denotes the genotype of i at locus l. For SNP datasets in particular, genotype infor-

mation can be converted into a numeric matrix by simply having each entry store the

count of the reference allele used to construct the dataset. If such information is not

available, one could fix one of the alleles at the locus to be the reference allele [30].

We denote by K ≥ 0 the number of ancestral (founder) populations of a dataset. For

convenience, we refer to such an ancestral population as simply a founder. We denote

by P = (pkl) 1≤l≤L
1≤k≤K

a vector of frequency information, where each component of pkl

is a distribution of observed genetic information (e.g. alleles, genotypes) at locus l in

founder k (see Q-matrix below). The actual genetic information and distribution used

varies by method, hence we go into details about this in the subsections below. Fur-

thermore, for convenience we denote by pkl j the probability of allele j given by the

distribution pkl .

In addition, we denote by Q an ancestry matrix of X which is an N ×K matrix

which stores for all individuals 1 ≤ i ≤ N in each row the admixture vector qi for all

individuals 1≤ i ≤ N. The K components of this admixture vector represent the pro-

portion of i’s genotype that came from each of the K founders. Also we denote by Z

the founder matrix of X, which is an N×L matrix, where each entry zil denotes the
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founder of locus l of individual i.

Assumptions Throughout this section we make the following assumptions. Firstly, it

is assumed a given population has been split up into K ≥ 2 sub-groups (founder popu-

lations), which are evolving independently of each other and thus induce reproductive

isolation. As stated in Section 2.5.1.1, such a scenario can confound association stud-

ies, and in order to correct for its effects on a dataset X, we need to estimate the

ancestry matrix of X. For this, we first need to formalise how the individuals of X have

arisen. To this end, we assume that X contains individuals which have arisen from

a naturally occurring population. Since X might display stratification, we distinguish

between admixed and non-admixed individuals.

To generate an admixed individual i, one first randomly samples the founder of a

locus l, 1 ≤ l ≤ L , from a multinomial distribution parametrized by qi. Denote that

sample by zil. Then the genotype of l is generated by drawing from Pzil l . This is

repeated for all loci across all individuals, obtaining the genotype matrix X, as well

as the founder matrix Z. Note that a non-admixed individuals is just a special case

of the above scenario, in that one of the components of qi has value 1 and all other

components have value 0.

Figure 2.17: Schematic representation of population structure.

The above framework allows for modelling naturally occurring population struc-
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ture with a good degree of accuracy. It acts as a blueprint for algorithms under-

pinning many popular population structure inference algorithms, some of which we

review here. This also includes a brief review of computational techniques under-

pinning them, such as Markov-Chain Monte-Carlo [112] sampling to Expectation-

Maximization (EM) [20].

2.5.3 STRUCTURE

STRUCTURE takes as input a matrix of genotypes (and optionally a value for K) and

produces estimates for P and Q. In its review, we follow [98]. For that it makes as-

sumptions on how the individuals of a population have arisen. We next review those

assumptions, at the same time developing a framework within which we then present

our review of STRUCTURE. Reflecting the centrality of Markov Chains to STRUC-

TURE’s inner workings, we also review two popular approaches for constructing them:

Metropolis-Hastings and Gibbs Sampling.

The model underpinning STRUCTURE models each of the K ≥ 2 founders as a

vector of allele frequencies for each locus. It also assumes that the marker loci are in

linkage equilibrium with each other (i. e. transmitted independently to offspring), and

that each founder is in Hardy-Weinberg equilibrium (i. e. no bias towards homozygous

genotypes [113]). It takes as input a genotype matrix X, and optionally K, and attempts

to infer P and Q by sampling from the posterior distribution of these vectors given the

observed data X.

In essence STRUCTURE works by attempting to assign each individual’s genome

to one of the K founders whilst simultaneously attempting to estimate allele frequen-

cies at each locus of an individual. For this, it combines a-priori assumptions about

the nature of the model parameters (which we describe in relevant places below) with

the observed data to obtain a posterior distribution of model parameters. Since this

distribution is generally too complicated to compute, STRUCTURE employs an ap-

proach called Markov Chain Monte Carlo to sample from such a distribution. Since

Markov Chains are central to this approach, we next review two popular algorithms for

constructing such a chain. We then detail how the aforementioned framework (Sec-

tion 2.5.2) for modelling population structure is applied to STRUCTURE.
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Markov Chain - Monte Carlo

STRUCTURE relies on Markov Chains [45] to obtain random samples from a distribu-

tion. We present an outline of how such a chain may be constructed by first describing

a discrete-time random process, of which a Markov-Chain is a special case. Before

giving details below we remark that a discrete-time random process is generally used

to model a system which is in a certain state at each step and which changes states

between steps randomly. Each step can be seen as a moment in time. Examples of

such a process include random walks, or random branching processes. Note that while

the states of the system can be continuous in a discrete time random process, the steps

must be discrete.

Formally, a discrete-time random process is a sequence of random variables in-

dexed by a discrete variable (time). Then a Markov Chain is a discrete time random

process where the next state of the chain depends only on the present state. More pre-

cisely, we have P(θn = x|θ1,θ2, ...,θn−1) = P(θn = x|θn−1), where θ1,θ2, ... are the

time-indexed random variables of the Markov Chain and x is some fixed value.

In the case of a discrete state-space, a Markov Chain can be represented as a nt×nt

(nt the number of states of the space) transition table τ , where each entry τi j of τ is

the probability of moving from state i to state j. Where we have a continuous i. e. not

discrete state-space (as is the case for STRUCTURE), the next state of the Markov

Chain is drawn from a distribution conditioned only on the previous state.

Markov Chains with so-called stationary distributions (see below) are very useful

to sample a vector θ from a statistical distribution, D(θ) on θ . In general D(θ) is too

complicated to sample from directly. To overcome this problem the following approach

(which we first outline and then formalise) is widely used. For a parameter vector θ ,

let π(θ) denote the stationary distribution of a Markov Chain on θ . This means that

for large enough i (i. e. after a large enough number of steps), the state θi will represent

approximately random samples from π(θ). For instance, if θ is a convex vector (i. e. it

contains positive numbers which add up to 1), π(θ) could be a Dirichlet distribution,

since samples from such a distribution are convex vectors. Note that certain conditions

need to be respected by a Markov Chain for it to have such a distribution (see [82]).

Since all Markov Chains under discussion here respect them, we will not go into detail

about them.
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Capturing the idea that after long enough time i the values θi will converge to ran-

dom samples from π(θ), a Markov Chain has a burn-in period m. The chain elements

obtained before θm are usually ignored. The above may be formalised as follows.

Suppose θ1,θ2, . . . is a Markov Chain for a parameter vector θ . Let m denote its

burn-in period and c ≥ 0 its thinning interval i. e. the states θm+c, θm+2c,... give in-

dependent samples from the chain’s stationary distribution π(θ). This procedure is

called Markov Chain Monte Carlo sampling. We remark in passing that the quality of

Markov Chain Monte Carlo sampling is dependent on the choice of m and c, and care

has to be taken when choosing their values. See e. g. [98] for a discussion of appro-

priate values to consider. STRUCTURE uses algorithms like Metropolis-Hastings and

Gibbs Sampling to construct a Markov Chain with stationary distribution π(θ).

Metropolis-Hastings For a parameter vector θ , Metropolis-Hastings [80] is an algo-

rithm for constructing a continuous-state Markov Chain with stationary distribution

π(θ) as follows. Assume that the value θt for θ at time t has been sampled. Given

a user-specified distribution Q(θ ′|θt), t ≥ 1, (e. g. a Gaussian distribution with mean

set to the previous state θt and a given variance) where θ ′ denotes a sample drawn by

Metropolis-Hastings from Q(θ ′|θt). Then we associate to θ ′ a quantity α defined as:

α =
π(θ ′)Q(θt|θ ′)
π(θt)Q(θ ′|θt)

. (2.5)

To obtain the state θt+1 from θt Metropolis-Hastings puts θt+1 = θ ′ if α ≥ 1 (i.e.

we accept θ ′ as our next state). Else, we set θt+1 = θ ′ with probability α or θt+1 = θt

with probability 1−α (i.e. we accept θ ′ as the next state with probability α). It is

shown in [80] that the Markov Chain θ1,θ2, . . . obtained in this way has stationary

distribution π(θ) . STRUCUTRE makes use of Metropolis-Hastings when sampling

from the model with admixture.

Gibbs Sampling Gibbs Sampling [10, 45] is a further algorithm for constructing a

Markov Chain with stationary distribution π(θ). Gibbs sampling naturally lends it-

self to cases where the full joint distribution π(θ) is hard to compute, but conditional

distributions π(θ 1|θ 2,θ 3, ...,θ s) are easy to find for θ = (θ 1,θ 2,θ 3, ...,θ s), where

s ≥ 1. In essence, it works as follows. Suppose our state at time t is in the form of
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a vector θt = (θ 1
t ,θ

2
t , ...,θ

s
t ) where for any step t ≥ 0 and any 1 ≤ i ≤ s, we denote

by θ i
t the value for component i at step t. Then θ0 is initialised by giving it random

values. Now suppose we want to sample θ k
t , and that θ l

t has already been sampled

for all 1 ≤ l ≤ k− 1 and that θ j , 1 ≤ j ≤ t− 1 has already been sampled. We draw

θ k
t from the distribution π(θ k|θ 1

t ,θ
2
t , ...,θ

k−1
t ,θ k+1

t−1 , ...,θ
s
t−1). For example, we draw

θ 1
t from π(θ 1|θ 2

t−1,θ
3
t−1, ...,θ

s
t−1). Since conditional distributions for STRUCTURE’s

underlying population structure model are relatively easy to compute, Gibbs Sampling

lies at the heart of the method.

Models used by STRUCTURE

Next, we review the population model employed by STRUCTURE, and how the gen-

eral framework for modelling population structure in Section 2.5.2 applies to it. We

first consider the case where no admixture is assumed, that is that every individual

originates in only one of the K ≥ 2 founders. We then present the more complicated

case where we allow admixture. Given that structure accepts markers which are not al-

ways bi-allelic (microsatellites, RAPD, AFLP etc. ) it is required that each locus l has

Jl observed alleles across all individuals. Also assume that the number K of founders

for the dataset is given.

Model with no admixture

Assuming each locus l of an individual in a population X has Jl alleles, we interpret

the vectors in Section 2.5.2 as follows.

• Z is the founder vector of individual i of X, whose components are denoted zi

• Pkl = (pkl j) is a vector of multinomial distributions for alleles j = 1,2, ...,Jl of

locus l of founder k = 1,2...,K

The purpose of the model is to estimate Z and P given X. To do this STRUCTURE

uses a Bayesian approach. More precisely, using Bayes’ Theorem we have

P(Z,P|X) ∝ P(Z)P(P)P(X|Z,P). (2.6)

Put differently, the probability distribution of the founder vector Z and allele frequency

vector P given X is proportional to the probability of the vector Z times that of the
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vector P (both of which are given by some assumed prior distributions) times that of

the probability of the data given Z and P.

Since the resulting probability distribution P(X|Z,P) of X can generally not be

computed exactly, Gibbs Sampling is used to sample from it. The vectors Z and P are

found using certain summary statistics of the samples for Z and P (e. g. mean values).

With the model given in Equation 2.6 in mind, the framework in Section 2.5.2 can

be applied as follows. Assume for the moment that the founder of an individual i is

known. Then the genotypes at each locus are obtained by drawing a sample from the

respective founder’s allele frequencies (multinomial) distribution for that locus. More

formally the probability P(xil = j|Z,P) of individual i having allele j at locus l is given

as

P(xil = j|Z,P) = pzil j (2.7)

Central to Equation 2.6 are the computation of the quantities P(Z) and P(P), which

are the prior distributions for Z and P respectively. If no prior knowledge of the pro-

portions of individuals in each population is known a then to obtain P(Z), a uniform

distribution is assumed and we have

P(zi = k) =
1

K
(2.8)

To obtain a prior for P, we assume the a-priori distribution P(P) of allele frequencies

pkl of a population k at a particular locus l, to be modelled by a Dirichlet distribution

(i.e a beta distribution for a multinomial) which we denote by D(λ1,λ2, ...,λJl
). This

distribution gives the probability of having a particular vector pkl as the allele frequen-

cies of founder k at locus l, and is used to model the allele frequencies of each locus

independently. For all 1≤ j ≤ Jl, the parameters λ j control the expected frequency of

allele j in the frequency vector pkl for l. To simplify matters, STRUCTURE assumes

all λ j = 1 for all 1≤ j≤ Jl which gives a uniform distribution of the allele frequencies

of a locus.

To obtain random samples from the distribution given in Equation 2.6, STRUC-

TURE uses Gibbs Sampling as outlined in Algorithm 2.

where Zt and Pt are estimates for Z and P respectively, at step t of the Gibbs Sampling

algorithm. In other words, θt = (Zt ,Pt).
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Algorithm 2 Gibbs Sampling for the model without admixture

Input: A genotype matrix X.

Output: A series of random samples for Z and P from Equation 2.6.

Initialize Z by drawing values from the distribution given in Equation 2.8.

1. Sample Pt from P(P|X,Zt−1)
2. Sample Zt from P(Z|X,Pt)

Without going into detail (see [98]), Step 1 in Algorithm 2 corresponds to esti-

mating the allele frequencies given the founders are known and Step 2 corresponds to

estimating the founders given the allele frequencies are known.

Model with admixture

We next review STRUCTURE’s model to allow for admixture. Firstly the compo-

nents zi of the founder vector Z are replaced by zil, representing the founder of the

allele individual i has at locus l. The vector P of founder allele frequencies remains

unmodified.

With the above in mind, the a-posteriori distribution from which STRUCTURE

samples model parameters is:

P(Z,Q,P|X) ∝ P(Z)P(Q)P(P)P(X|Z,Q,P). (2.9)

Thus:

P(xil|Z,P,Q) = pzil l j and P(zil = k|P,Q) = qik. (2.10)

In other words, the probability P(xil|Z,P,Q) = pzil l j of individual i having allele

j at locus l given the founder vector Z, allele frequency vector P and ancestry matrix

Q is taken to be the frequency pzil l j of allele j at locus l in zil , and the probability

P(zil = k|P,Q) = qik of locus l having originated from founder k for individual i given

the vectors P and Q is taken to be qik.

The prior distributions for P and Z are taken to be as in the no admixture case.

To obtain a prior for Q, let β denote a real number. Then we use a Dirichlet distribu-

tion D(β1,β2, ...,βK), where βi = β for all 1 ≤ i ≤ K. Here the parameter β controls

the amount of admixture we expect to see in a given dataset. For β >> 1 the model
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assumes individuals to have inherited genome portions from all founders in equal pro-

portion, while for β << 1 the model assumes individuals to have originated from a

smaller number of founders. Note that for β tending to 0, we obtain the model without

admixture. If no prior knowledge of β is available, STRUCTURE attempts to learn

about it from the dataset under consideration. For this it assumes that β follows a uni-

form prior distribution on the interval [1,10], and updates β using Metropolis-Hastings.

Algorithm 3 provides as summary of the approach taken by STRUCTURE for

the case of admixture in a population to generate a Markov Chain with states θt =

(Pt ,Zt ,Qt) and stationary distribution P(Z,P,Q|X). Again the algorithm runs for a

burn-in period and states found at increments of the thinning interval are considered

independent samples of the stationary distribution.

Algorithm 3 Gibbs Sampling in case of admixture

Input: a genotype matrix X

Output: samples from P(Z,P,Q|X)
Initialize Z by drawing samples from the distribution in Equation 2.8.

1. Sample Qt ,Pt from P(P,Q|X,Zt−1)
2. Sample Zt from P(Z|X,Pt ,Qt)
3. Update β using Metropolis-Hastings

For both cases (i. e. with and without admixture) the means of the samples pro-

duced by Markov Chain Monte Carlo are used for inference of the desired values of

the sought vectors, P,Z and Q.

Inference of the number of founders

The problem of inferring the number K of founders for a dataset X is generally very

difficult [98]. To tackle it the following approach is proposed in [98]. From Bayes’

theorem we have

P(K|X) ∝ P(X|K)P(K), (2.11)

that is, the probability of K founders given a dataset X is proportional to the probability

of the dataset given K founders multiplied by the probability of K founders. The

computation of P(X |K) can however be computationally challenging. We next review

an approach to overcome this problem.

Suppose we generate M samples Z j,P j,Q j 1 ≤ j ≤ M via Algorithm 3. Then
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P(X|K) can be approximated by

P(X|K)≈ exp(−µ̂/2− σ̂/8)

where µ̂ is an estimate of the mean given by

µ̂ =
1

M

M

∑
m=1

−2logP(X|Zm,Pm,Qm)

and σ̂ is an estimate of the standard deviation given by

σ̂ =
1

M

M

∑
m=1

(−2logP(X|Zm,Pm,Qm)− µ̂)2

.

We remark in passing that Equation 2.11 can be seen as an ad-hoc way of estimating

K [98]. An alternative is given in [31].

2.5.4 ADMIXTURE

ADMIXTURE [1] is a model-based population structure inference tool. Unlike the

Bayesian approach employed by the former, ADMIXTURE relies on maximum like-

lihood. For this, it makes use of a block relaxation technique as well as a quasi-

Newtonian convergence acceleration criterion to considerably speed up computations,

as compared to STRUCTURE. We now review the computational model underpin-

ning ADMIXTURE.

2.5.4.1 Model employed by ADMIXTURE

ADMIXTURE assumes that a set X of observed genotypes is sampled from K founders,

each with its own allele frequencies vector Fkl storing the frequency of a certain type

of allele (minor or major) at locus l for founder k, where 1 ≤ k ≤ K. The frequency

vector F takes the role of the vector P in the framework outlined in Section 2.5.2 with

the only difference being its components fkl are binomial distributions parametrized

by the respective allele frequency at locus l for k. Also, each individual i of X is as-

sumed to be an admixture of each of the K founders, with qik storing the proportion of
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i’s genotype that came from founder k, 1≤ k ≤ K (see Section 2.5.2).

The framework in Section 2.5.2 applies to ADMIXTURE as follows. ADMIX-

TURE assumes all loci are bi-allelic that is, each locus in each of the K founders has a

major (more frequent) and a minor (less frequent) allele. We can denote these alleles

as 2 and 1, respectively. Then fkl is the frequency of the minor allele at locus l in

founder k. Note that this implies that fkl is a binomial distribution. Furthermore, for

each locus l of an individual i, its genotype xil can have one of three values, 1/1 (two

minor alleles), 1/2 (a major and a minor allele) and 2/2 (two major alleles). We denote

them as xil = 2,1 or 0 respectively.

When sampling an individual’s genome the framework in Section 2.5.2 is adapted

as follows. Suppose we want to sample the allele at locus l for an individual i. Then

we first sample the founder K of the respective locus from a multinomial distribution

parametrized by row i of Q (i. e. the ancestry proportions of individual i). We then

take two independent random samples from fkl . Depending on the outcome of the two

samples, we set i’s allele at l to be 0,1 or 2. Suppose now we have some estimates

for the allele frequency vector F = ( fkl), Q = (qik). Then the likelihood of each of the

above genotypes (0, 1 or 2) at a locus l for individual i is given by

P(xil = 2) = (
K

∑
k

qik fkl)
2

P(xil = 1) = (
K

∑
k

qik fkl)(
K

∑
k

qik(1− fkl))

P(xil = 0) = (
K

∑
k

qik(1− fkl))
2

With the above quantities and notation in mind, the log-likelihood Λ(X|F,Q) of X can

be conveniently written as

Λ(X|F,Q) =
N

∑
i

L

∑
l

{xil log
K

∑
k

qik fkl +(2− xil) log
K

∑
k

qik(1− fkl)} (2.12)

2.5.4.2 ADMIXTURE Inference algorithm

ADMIXTURE achieves estimates of a Q-matrix by trying to maximise Equation 2.12.

This optimisation is frequently realised using an Expectation-Maximisation (EM) algo-
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rithm [82, 121]. Indeed this approach is also used by other programs such as FRAPPE

[115]. However the sheer number of variables which need to be estimated quickly by

both of them makes such an algorithm impractical for large-scale GWAS. To speed up

inference of model parameters, ADMIXTURE makes use of two computational tech-

niques, a block relaxation algorithm and a quasi-Newtonian convergence acceleration

criterion. We first review the EM approach within a population structure framework

and then touch upon those techniques.

EM algorithm A natural way of finding estimates for F and Q is to find maximum

likelihood solutions for Equation 2.12. This, however, can be computationally chal-

lenging. To overcome this problem, EM algorithms have been used. It has proven to

be a useful tool for inferring model parameters (θ=(Q,F) in our case) in cases where

an observed data set (genotype data in our case) is assumed to be caused by a series of

K hidden variables (founders in our case).

On a high-level, EM is an iterative algorithm which alternates between an Expec-

tation step (E-step) and a Maximization step (M-step) to provide estimates of θ .

In our case the observed data is simply an input genotype matrix X, while the

hidden variables Z are the founders of each locus from each individual. More precisely,

the components of Z are zil, indicating the founder of locus l of individual i. The

EM algorithm can then be described as outlined in Algorithm 4. In the E-step, we

compute the expectation Eilk that the founder of locus l of individual i is k. We base

this calculation on our current estimates for Q and F, which in the first step are chosen

at random. In the M-step, we use the values of Eilk to estimate new values for qik, the

contribution of founder k to individual i and the frequency flgk of allele g at locus l in

founder k. We proceed in this fashion until convergence of the algorithm, (i. e. when

successive values of the likelihood differ by less than a certain threshold). Denote

by 1(x = l) a vector that has the same length as another vector x = (xi)1≤i≤l , whose

i− th element is 1, if xi = l and 0 otherwise. For example x′ = (2,2,3), we have

1(x′ = 2) = (1,1,0). Furthermore we denote by E(x) the expected value of a variable.

Also for Algorithm 4, let Et|ilk denote the value of Eilk at iteration t, and allow a similar

notation for all other quantities involved.

The EM algorithm as implemented in FRAPPE can be slow to converge [1]. For

this reason ADMIXTURE makes use of a block relaxation and a convergence accel-
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Algorithm 4 EM algorithm

Input: a genotype matrix X

Output: estimates of F and Q

Initialise Q0 and F0 randomly

Repeat for t = 0,1,2, . . . (until convergence)

1. E-step: compute Et|ilk = E(1(zil = k)|X,θt = (Qt,Ft))) =
ft|lgkqt|ik

∑K
k′=1

ft|lxk′qt|ik′
.

2. M-step: compute ft+1|lgk =
∑N

i=1 1(x=g)Et|ilk
∑N

i=1 Et|ilk
qt+1|ik =

1
2L ∑L

l=1 Et|ilk.

eration method. Block relaxation exploits properties of the likelihood given in Equa-

tion 2.12 to apply an iterative and quick to converge algorithm for optimising it. More

precisely, it sequentially optimises Q for F fixed, and then F for Q fixed. Each of these

optimisation steps is carried out by a method similar to Newton’s method, which is a

numerical method for finding the differential of a function. This iterative algorithm is

further sped up using convergence acceleration. We refer the reader to [1] for a more

detailed explanation.

2.5.4.3 The cross validation technique and its application by ADMIXTURE

In order to infer a dataset’s number K of founders, ADMIXTURE (and also sNMF- see

Section 2.5.5) use Cross Validation (CV) [82]. This is a popular technique in machine

learning that has proven useful in tuning model hyperparameters for a dataset (e. g. that

model is the one assumed by ADMIXTURE and the hyperparameter is K). We next

review CV on a general level and then outline how it is used by ADMIXTURE and

SNMF in order to infer K.

Suppose we are given a model (such as the one assumed by ADMIXTURE for

modelling population structure) and we want to tune its set of hyperparameters (e. g. K

in the case of ADMIXTURE). Then the approach taken by CV is as follows. First

the dataset is split into a number N ≥ 1 of equally sized subsets Mi,1 ≤ i ≤ N called

folds. To gauge the fitness of a fixed value of θ CV then proceeds as follows. A

fold, say Mi, is masked and the model with parameters θ is run on the N− 1 folds,

M1,M2, . . . ,Mi−1,Mi+1 . . .MN . By default, ADMIXTURE assumes N = 5 folds. The

data used by ADMIXTURE for this is the genotype matrix. Rather than represent-

ing a fold as entire individuals or loci (representing rows or columns in this matrix),
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each fold is actually a collection of cells in this matrix. This is illustrated in Fig-

ure 2.18, where each color represents a fold. As can be seen, each fold is a cell in this

matrix. This is in contrast to the way CV is realised in the wider field of machine learn-

ing, where each fold usually represents a collection of observations (individuals). The

goodness of fit of the model on Mi (which can be measured by a number of criteria, see

[82] for some of them) is then reported. This process is repeated for all 1≤ i≤ N, and

then the reported fits are merged over all i (by e. g. taking their average). This global

fit is then used to report the goodness of fit. Frequently, a number of pre-chosen values

for θ are tested in this way and the ones reporting the best fit are selected as values

for θ . For example, the value for K that reports the minimal deviation (see below) is

chosen as a dataset’s number of founders.

The above procedure can be readily applied to the problem of inferring K as fol-

lows. For each tested value of K, each one of five folds is masked in turn (i. e. its

genotype entries are set to missing values). See Figure 2.18 for an example. The

model is then trained on the remaining genotype data, obtaining estimates of the allele

frequency vector F and ancestry matrix Q. The masked values are then inferred in turn,

by setting a masked entry xil to its expected value based on the estimated F and Q, or

more precisely, x̂il = E[xil|Q,F] = 2∑k qik fkl .

Figure 2.18: Example of CV masking. The chequered rectangle is a genotype matrix

X, where each square represents the genotype of an individual at a locus. Red, green

and blue represent three different folds. These entries of X are set to missing values in

turn and ADMIXTURE is run on the remaining genotype matrix.

The goodness of fit is then the deviation d(xil, x̂il) between the actual and the pre-
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dicted genotype given by

d(xil, x̂il) = xil log(xil/x̂il)+(2− xil) log[(2− xil)/(2− x̂il)].

The value d(xil, x̂il) is squared and averaged over all masked loci to produce the good-

ness of fit D f for this particular fold f of the dataset in question i. e.

D f =
1

LN

N

∑
i=1

L

∑
l=1

d(xil, x̂il)

We proceed in this manner for all five folds (masking a different one in each turn). The

goodness of fit for K is then taken to be the average D f value for all these folds, and

the best estimate for K is the one that minimises this average.

2.5.5 sparse Non-negative Matrix Factorization (sNMF) for infer-

ring population structure

Despite ADMIXTURE’s computational efficiency, the ease with which NGS data can

be generated has led to ever larger datasets on which even ADMIXTURE struggles

[39]. In order to deal with such datasets, the SNMF tool was recently proposed in [39].

It boasts substantial increases in speed for large datasets. In addition it uses relaxed

model assumptions (e. g. linkage equilibrium or Hardy-Weinberg equilibrium are not

assumed- see Section 2.5.3) as opposed to other methods such as ADMIXTURE. In

this section we provide a high-level description of the SNMF software.

Like ADMIXTURE, SNMF assumes N multi-locus individuals genotyped at L

loci. Once again, each locus is assumed to originate from one of K pre-specified

founders. Unlike ADMIXTURE, which assumes each locus to be a sample from a

binomial distribution parametrized by the frequency of the minor (or major) allele in

an ancestral gene pool, SNMF assumes each locus to be a sample from a founder-

specific three-state multinomial, corresponding to 0, 1 or 2 copies of the major allele.

More precisely, the probability oil( j) of locus l of individual i of a dataset having

genotype j is given by:

oil( j) =
K

∑
k=1

qikgkl j, (2.13)
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where gkl j is the frequency of genotype j at locus l in founder k, j = 0,1,2, 1 ≤ k ≤
K and 1 ≤ l ≤ L. The advantage of modelling population structure with genotype

frequencies rather than allele frequencies is that assumptions such as Hardy-Weinberg

equilibrium [113] can be dropped, thus making the technique also applicable to data

sets for which it cannot be assumed.

Equation 2.13 can be written in matrix form as follows

O = QG,

where O = (oil) is an N× 3L matrix , Q is a genotype matrix of X and G = (gkl) is

a K × 3L matrix. Using the framework in Section 2.5.2, an individual i’s genotype

can then be sampled on a locus by locus basis by letting G take the role of P, and

using Q as in Section 2.5.2. To be able to find O, SNMF associates to a genotype

matrix X an enhanced genotype matrix X∗ as follows. To each locus l of individual i

of X we associate three entries in X∗, namely X∗il, X∗il+1 and X∗il+2 and put X∗il = 1 if

Xil = 0, X∗il+1 = 1 if Xil = 1 and X∗il+2 = 1 if Xil = 2. Furthermore, since, in general

the matrices Q and G are not easy to find, SNMF estimates them using an iterative

least-squares approach to minimise the equation

L(Q,G) = ||X∗−QG||2F , (2.14)

subject to
K

∑
k=1

qik = 1,
2

∑
j=0

gkl( j) = 1 (2.15)

where qik ≥ 0 and gkl ≥ 0. For an n×m matrix A = (ai j)1≤i≤n, 1≤ j≤m. ||A||F =√
∑k

i=1 ∑t
j=1 a2

i j is the Frobenius norm of A. Intuitively, Equation 2.14 measures the

difference between the enhanced genotype matrix X∗ and the predicted genotype ma-

trix given by QG, with a smaller value for the Frobenius norm indicating a better fit of

Q and G for the data.

Under the constrains in Equation 2.15, the matrices Q and G which minimise Equa-

tion 2.14 can be found by Non-negative Matrix Factorisation (NMF) [30]. While a

great number of algorithms exist for this problem, SNMF makes use of alternating

non-negative least squares with an active set (ANLS-AS) [62]. We outline this ap-
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proach in Algorithm 5, where e1×K is a row vector having all entries set to 1, and 0
¯

1×N

is a row vector of length N with all entries set to zero and a is a non-negative regulari-

sation parameter. Also,

(
A
b

)
denotes the matrix obtained by adding an extra row (i. e.

vector b) to a matrix A. This problem is solved as in [30], and the obtained Q-matrix

is then normalized so that rows sum up to one. Note that higher values of a encourage

sparser solution matrices.

Algorithm 5 ANLS-AS algorithm used by SNMF

Input: a genotype matrix X

Output: estimates of G and Q

Initialize Q randomly with non-negative values.

Repeat for t = 0,1,2, ...(until improvements in Equation 2.14 amount to less

than10−4):

1. Find a matrix G such that ||X−QG||2F is minimised. This can be easily done by

solving a system of linear equations. To satisfy the constraints on G, all negative

entries are set to 0 and then G is normalized.

2. Find Q such that

∣∣∣∣
∣∣∣∣
(

GT√
ae1×K

)
Q−

(
XT

0
¯

1×N

)∣∣∣∣
∣∣∣∣
2

F

is minimised.

2.5.5.1 SNMF’s approach to inferring K via Cross-Validation

Similar to ADMIXTURE, SNMF infers K by masking a portion of the genotype data

and then attempts to assess SNMF’s underpinning population stratification model’s

ability to infer the masked genotype values as a measure of fitness for K (see Equa-

tion 2.14). More precisely, a given input dataset is split into a training set and a test

set, with 5% of the genotype data comprising the test set (chosen by randomly masking

certain loci at certain randomly chosen individuals). SNMF is then run on the training

set in order to infer estimates of Q and G, denoted by Q̂ and Ĝ respectively. These esti-

mates are then used to form a distribution of the values of the three possible genotypes

o
pred
il ( j) at the masked locus l for individual i as follows

o
pred
il ( j) =

K

∑
k=1

qikgkl, j = 0,1,2

The goodness of fit for the value of K under consideration is then obtained by

averaging the values of − logo
pred
il (xil) for each of the masked genotypes in the test
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set. The values of K and a are chosen such that this goodness of fit is maximised.

2.5.6 PCA analysis for correcting for population structure

Contrary to the above model-based approaches, EIGENSTRAT is a non-model based

approach for population structure inference. It relies on PCA, (see Chapter 5 for details

of the approach). While its use of PCA ensures fast runtime, EIGENSTRAT does not

return a Q-matrix which is very useful for the purposes of interpretability. However,

it does return principal components (PC), which are also useful for correcting for pop-

ulation structure. We conclude our reviews of tools for population structure inference

with a review EIGENSTRAT. We follow [95].

The input to EIGENSTRAT is an M×N matrix XT = (x ji)1≤i≤N,1≤ j≤M , where

M is the number of SNPs and N is the number of individuals, and x ji is the genotype

for SNP j in individual i (either 0,1 or 2). Then the row mean X̂ j of row j is first

subtracted from each entry x ji of each row j. The resulting quantity is then scaled by

p j = (1+∑N
j=1 x ji)/(2+ 2N). The thus obtained matrix is denoted by X′. Then an

N ×N matrix Ψ of covariance between the individuals in X′ is computed. The k-th

axis of variation is the eigenvector of Ψ with k-th highest eigenvalue. The ancestry

aik of individual i along the k-th axis of variation then equals the i-th entry of the k-th

eigenvector.

Using the found ancestry values aik, the adjusted genotype x
ad justed
ji at a given SNP

j for individual i along a given axis of variation k is calculated as:

x
ad justed
ji = xi j− γia jk,

where γi = ∑N
j=1 a jkxi j/∑N

j=1 a2
jk. Phenotype information f j for individual j is ad-

justed similarly. The main purpose of these adjustments is to remove all correlation

between ancestry (population structure) and observed genotype and phenotype. The

ancestry adjusted phenotype and genotype for j are then used in the computation of a

χ2-statistic [95]. The ancestry adjusted phenotype is then used to test whether there is

a significant association between a SNP i and a phenotypic trait of interest (see [95]

for details).
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Chapter 3

Lassoing and corralling ultrametric

trees

This chapter is an adaptation of

K.T. Huber. and A-A. Popescu Lassoing and corralling rooted phylogenetic trees.

Bull Math Biol., 75:444–465, 2013.

A-A. Popescu’s contribution is writing first drafts for the proofs of the theorems and

proposing the characterisation of weak lassos.

3.1 Chapter Summary

In this chapter we provide theoretical insight into the problem of uniquely determining

phylogenetic trees from incomplete distance data. This problem is relevant for recon-

structing phylogenetic trees from NGS data, for which distance-based reconstruction

methods are popular.

3.2 Introduction

Years of selective breeding have resulted in large numbers of different varieties of, for

example, oilseed rape and rice and also numerous animal breeds including dogs and
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chicken. Genomewide association studies constitute a powerful tool to try and link the

observed phenotypic variability between the varieties (we will collectively refer to a

variety and a breed as a variety) with variations in the genomes of the varieties. A key

component of such a study is phylogenetic clustering whereby one aims to construct a

dendrogram for a set of individuals from within a variety of interest indicating levels

of similarity between them. Using some sort of distance measure this similarity can be

based on e. g. morphological traits such as grain type or Single Nucleotide Polymor-

phism (SNP) markers obtained through next generation sequencing technology (see

e. g. [51, 81, 123] for examples of such studies).

From a formal point of view, a dendrogram can be thought of as a pair (T,ω)

consisting of (i) a rooted tree T with leaf set a given non-empty finite set X (e. g.

individuals), no degree two vertices except a distinguished vertex ρT of T called the

root of T , and all other non-leaf vertices of T of degree at least three (we will refer to

such a tree simply as an X-tree), and (ii) an edge-weighting ω : E(T )→R≥0 for T that

is equidistant which means that the induced distance D(T,ω)(ρT ,x) from ρT to every

leaf x∈ X of T is the same (as with all relevant concepts, we refer the reader to the next

section for a precise definition). With and without the equidistance requirement such

pairs (T,ω) have generated a lot of interest in the literature and so it is not surprising

that numerous deep results for them are known provided the distance information from

which to construct T and ω is complete in the sense that for all elements x and y in X

the distance between x and y is given (see e. g. [25, 110]).

However even for data generated with modern sequencing technologies the re-

quired distance measures need not always be reliable (or may simply be missing)

resulting in only partial distance information for dendrogram reconstruction. From

the perspective of the aforementioned formalization of such a structure, the problem

thus becomes (a) how to construct an equidistant X-tree (i. e. an X -tree with equidistant

edge weighting) from distance information on only a subset of pairs of its leaves and,

(b) if such a tree can be constructed from such a subset of its leaves, when is it lassoed

(uniquely determined) by that set.

Although approaches for tackling the first problem exist in the form of, for exam-

ple, an approach introduced in [19] not much is known about the second. A notable

exception is a study in [26] carried out for the unrooted analogue of an equidistant X -

tree. Viewing partial distance information on a set X as a set of cords, that is, subsets
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of X of size two, the authors considered the following four natural interpretations of

the above uniqueness problem. Namely, given a set L ⊆
(

X
2

)
and an edge-weighted

unrooted phylogenetic tree T on X

(i) when is the edge-weighting of T uniquely determined by L?,

(ii) when is the shape i. e. the topology of T uniquely determined by L?,

(iii) when are both the edge-weighting and the topology of T uniquely determined

by L?, and

(iv) when is the topology of T uniquely determined by L up to T being obtained

from another X -tree by collapsing edges?.

Formalized as L being an edge-weight/topological/strong/weak lasso for a phylo-

genetic tree with leaf set X , the authors of [26] showed that all four concepts are dis-

tinct. Also, they presented results that allowed them to not only investigate the above

types of lasso from a recursive point of view but also characterize under what circum-

stances a specifically constructed set of cords is a topological lasso (see Section 3.9 for

more on this). However a characterization for the general case eluded them.

Replacing the concept of an edge-weight lasso by that of an equidistant lasso to

reflect the fact that for the edge-weighted X -trees of interest here the induced distance

from the root to any leaf of such a tree is the same, we show that for X -trees the

situation changes. More precisely, we present for an X -tree T characterizations for

when a set L ⊆
(

X
2

)
is a weak lasso for T (Theorem 6), an equidistant lasso for T

(Theorem 7), and for when it is a topological lasso for T (Theorem 9) in terms of the

child edge graph GT (L,v) that can be canonically associated to every non-leaf vertex

v of T via its child edges. Our characterizations can be thought of as a spectrum on

the connectedness of that graph with the extreme situations being an equidistant lasso

and a topological lasso. They imply that every topological lasso and every non-empty

weak lasso must be an edge-weight lasso (Corollaries 10 and 8) and that in case T

is binary the notions of an equidistant lasso and a topological lasso (and thus a weak

lasso) coincide. Consequently, every edge-weight/topological lasso is also a strong

lasso in that case (Corollary 10). We also investigate two special types of sets of cords

originally introduced in [26] in the light of our findings above. This investigation shows
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in particular that it is possible for the concepts of an equidistant and a topological lasso

to coincide without the X -tree they are referring to being binary.

The outline of the chapter is as follows. In the next section, we introduce relevant

terminology. In Section 3.4, we present first characterizations for when a set of cords

is a topological/equidistant/weak lasso for an X -tree (Theorem 2). In Section 3.5,

we introduce the child-edge graph associated to a non-leaf vertex of an X -tree and

present first properties of it concerning corraling sets of cords. In Section 3.6, we

establish Theorem 6. In Section 3.7, we show Theorem 7 and in Section 3.8, we prove

Theorem 9. In Section 3.9, we present two general ways for constructing for an X -

tree T two different sets of cords of
(

X
2

)
and discuss their properties in the context of

lassoing and corraling T . We conclude with Section 3.10 where we also present some

open problems.

3.3 Preliminaries

Denote by V o(T ) the set of interior vertices of an X -tree T and by V o(T )− the set

of interior vertices of T that are not the parents of a pseudo-cherry. Let ω denote an

edge-weighting for T . We call ω equidistant if

(E1) D(T,ω)(x,ρT ) = D(T,ω)(y,ρT ), for all x,y ∈ X , and

(E2) D(T,ω)(x,u) ≥ D(T,ω)(x,v), for all x ∈ X and any u,v ∈ V (T ) such that u is en-

countered before v on the path from ρT to x.

Note that Property (E2) implies that, for all interior vertices v of T and all leaves x,y ∈
X of T for which v lies on the path from x to y, we have D(T,ω)(x,v) = D(T,ω)(y,v).

Also note that our definition of an equidistant edge-weighting is slightly different from

the one given in [110] in so far that ω is a map into R≥0 and not into R, as in [110].

Suppose L ⊆
(

X
2

)
is a set of cords. Also suppose T ′ is a further X -tree and ω

and ω ′ are edge-weightings for T and T ′, respectively. Canonically extending the

corresponding concepts introduced in [26] for unrooted phylogenetic trees on X (and

further studied in [56]) to X -trees, we say that L is

(i) an equidistant lasso for T if, for all equidistant, proper edge-weightings ω and

ω ′ of T , we have that ω = ω ′ holds whenever (T,ω) and (T,ω ′) are L-isometric
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(ii) a topological lasso for T if, for every X -tree T ′ and any equidistant, proper

edge-weightings ω of T and ω ′ of T ′, respectively, we have that T and T ′ are

equivalent whenever (T,ω) and (T ′,ω ′) are L-isometric.

(iii) is a strong lasso for T if L is simultaneously an equidistant and a topological

lasso for T .

(iv) a weak lasso for T if, for every X -tree T ′ and any equidistant, proper edge-

weightings ω of T and ω ′ of T ′, respectively we have that T is refined by T ′

whenever (T,ω) and (T ′,ω ′) are L-isometric.

Also, we say that a set L⊆
(

X
2

)
of cords is an equidistant/topological/weak/strong lasso

on X if there exists an X -tree T such that L is an equidistant/topological/weak/strong

lasso for T . For the convenience of the reader, we illustrate the above types of lassos

in Figure 3.1 for X = {a,b,c,d,e}.

a b c d e

ρ

T :

Figure 3.1: For X = {a,b,c,d,e}, the set L = {ab,cd,de} is an equidistant lasso for

the depicted X -tree T , the set L = {ab,ac,bc,bd,de} is a topological lasso for T and

also a strong lasso for T , and the set L= {ab,bc,cd,de} is a weak lasso for T .

Note that we will also say that a set L of cords of X corrals an X -tree T if L is a

weak lasso for T . Also note that a topological lasso for an X -tree T is in particular a

weak lasso for T , and that the notions of a topological lasso for T and a weak lasso for

T coincide if T is binary. Finally note that for L to be a topological/equidistant lasso

we must have that L 6= /0. However L 6= /0 need not hold for L to corral an X -tree as

every subset of
(

X
2

)
including the empty-set corrals the star-tree on X , that is the tree

with a unique interior vertex and leaf set X .
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3.4 A first characterization of a topological/weak/equidistant

lasso

In this section we present a first characterization for when a set of cords of X is a

topological/weak/equidistant lasso for an X -tree. To establish this characterization, we

require further definitions and notations.

Suppose for the following that T is an X -tree and that v ∈ V o(T ). Then we call

an edge e of T incident with v that is not crossed by the path from the root ρT of T

to v a child edge of v. If e is incident with v but lies on the path from ρT to v then

we call it a parent edge of v. In the former case, we call the vertex incident with that

edge but distinct from v a child of v and in the latter a parent of v. We call a vertex

w of T distinct from v a descendant of v if there exists a path from v to w (possibly

of length one) that crosses a child of v and denote the set of leaves of T that are also

descendants of v by LT (v). If v is a leaf of T , then we put LT (v) := {v}. Also if there

is no ambiguity as to which X -tree T we are referring then we will write L(v) rather

than LT (v).

Suppose T is an X -tree. Then, for all x ∈ X , we denote the edge of T incident with

x by ex and the parent of x by vx. Moreover, we call a non-empty subset L ( X of

leaves of T that all have the same parent v ∈V o(T ) a pseudo-cherry of T if L = L(v).

In that case, we also call v the parent of that pseudo-cherry. If {x1, . . . ,xk}, k ≥ 2, is

a pseudo-cherry of some X -tree T then we will sometimes write x1, . . . ,xk rather than

{x1, . . . ,xk}. Note that every X -tree on three or more leaves that is non-degenerate,

that is, not the star-tree on X must contain at least one pseudo-cherry. Also note that in

case |L| = 2 the definition of an pseudo-cherry reduces to that of a cherry in the usual

sense (see e.g. [110]). In the special case that |X | = 3, say X = {a,b,c}, and that T

has a cherry, a,b say, we call T a triplet and denote T by ab|c (or, equivalently, c|ab).

We denote by R(T ) the set of triplets displayed by T . As is well-known, any X -

tree T can display at most
(|X |

3

)
triplets with equality holding if and only if T is binary.

Furthermore, any X -tree T is uniquely determined by the set R(T ) in the sense that if

T ′ is a further X -tree and R(T ) = R(T ′) holds then T and T ′ must be equivalent (see

e. g. [25, Chapter 9] and [110, Section 6.4]).

Observe that if T is an X -tree, ω is an equidistant, proper edge-weighting for

T , and a,a′,b ∈ X are pairwise distinct elements then either all three pairwise dis-
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tances induced on Z := {a,a′,b} must coincide or two of the distances induced by it

must coincide and the third one must be strictly less than that distance. Moreover,

D(T,ω)(a,a
′) < D(T,ω)(a,b) = D(T,ω)(a

′,b) holds if and only if aa′|b ∈ R(T ) and we

have D(T,ω)(a,a
′) = D(T,ω)(a,b) = D(T,ω)(a

′,b) if and only if the Z-tree T |Z is the

star-tree on Z.

The next result is fundamental for this chapter.

Lemma 1. Suppose that T and T ′ are two X-trees with equidistant, proper edge-

weightings ω and ω ′, respectively, and let a,a′,b∈ X denote three pairwise distinct el-

ements such that D(T,ω)(a,a
′) = D(T ′,ω ′)(a,a

′) and D(T,ω)(a,b) = D(T ′,ω ′)(a,b). Then

the following hold:

(i) If D(T,ω)(a,a
′)< D(T,ω)(a,b) = D(T,ω)(a

′,b) then

D(T ′,ω ′)(a,a
′)< D(T ′,ω ′)(a,b) = D(T ′,ω ′)(a

′,b), (3.1)

in particular, D(T ′,ω ′)(a
′,b) = D(T,ω)(a

′,b).

(ii) aa′|b ∈ R(T ) if and only if aa′|b ∈ R(T ′).

(iii) If D(T,ω)(a
′,b) = D(T ′,ω ′)(a

′,b) then T |Z is the star-tree on Z := {a,a′,b} if and

only if T ′|Z is the star-tree on Z.

Proof. (i): Note that D(T,ω)(a,a
′) = D(T ′,ω ′)(a,a

′) combined with D(T,ω)(a,b) =

D(T ′,ω ′)(a,b) implies that we cannot have D(T ′,ω ′)(a,a
′) = D(T ′,ω ′)(a,b) as this would

imply that D(T,ω)(a,a
′) = D(T,ω)(a,b), which is impossible. But then our assumptions

imply that D(T ′,ω ′)(a,a
′) = D(T ′,ω ′)(a

′,b) cannot hold either. Inequality (3.1) now fol-

lows from the observation preceding the statement of the lemma. In particular, this

implies D(T ′,ω ′)(a
′,b) = D(T ′,ω ′)(a,b) = D(T,ω)(a,b) = D(T,ω)(a

′,b).

(ii) & (iii): This is an immediate consequence of (i) and the observation preceding

the statement of the lemma.

To be able to state the next result we require a further definition. Suppose L⊆
(

X
2

)

and T is an X -tree. Let x,y ∈ X be two distinct leaves of T that are contained in the

same pseudo-cherry of T . Then we put

L1(x,y) := {ab ∈ L : x 6∈ {a,b}}∪{ay : ax ∈ L}.
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Note that L= /0 if and only if L1(x,y) = /0.

Theorem 2. Suppose that L ⊆
(

X
2

)
is a set of cords and that T is an X-tree. Let

x,y ∈ X denote two distinct leaves of T that are contained in the same pseudo-cherry

of T . Then the following hold:

(i) L is a topological lasso for T if and only if L1(x,y)∪{xy} is a topological lasso

for T and xy ∈ L.

(ii) L is an equidistant lasso for T if and only if L1(x,y)∪ {xy} is an equidistant

lasso for T and xy ∈ L.

(ii) If 6= /0 then L is a weak lasso for T if and only if L1(x,y)∪{xy} is a weak lasso

for T and xy ∈ L.

Proof. (i): Put L+
1 := L1(x,y)∪ {xy} and assume first that L is a topological lasso

for T . Then L 6= /0. Let T ′ denote an X -tree and ω and ω ′ equidistant, proper edge-

weightings for T and T ′, respectively, so that (T,ω) and (T ′,ω ′) are L+
1 -isometric. To

see that T and T ′ are equivalent it clearly suffices to show that (T,ω) and (T ′,ω ′) are

also L-isometric, that is,

D(T,ω)(a,b) = D(T ′,ω ′)(a,b) (3.2)

holds for all ab ∈ L.

Suppose ab ∈ L. If x 6∈ {a,b} then ab ∈ L
+
1 and so Equation (3.2) holds as (T,ω)

and (T ′,ω ′) are L+
1 -isometric. So assume that x ∈ {a,b}, say x = a. If y = b then ab =

xy ∈ L and so Equation (3.2) holds by the same argument. If y 6= b then xb = ab ∈ L

and so yb ∈ L
+
1 . Since xy ∈ L

+
1 also holds, we have D(T,ω)(x,b) = D(T ′,ω ′)(x,b) by

Lemma 1 and so Equation (3.2) follows in this case, too.

Conversely, suppose that L+
1 is a topological lasso for T and that xy ∈ L, then

L
+
1 6= /0. Assume that T ′ is an X -tree and that ω and ω ′ are equidistant, proper edge-

weightings for T and T ′, respectively, so that (T,ω) and (T ′,ω ′) are L-isometric. To

see that T and T ′ are equivalent it clearly suffices to show that (T,ω) and (T ′,ω ′) are

also L
+
1 -isometric, that is, that

D(T,ω)(a,b) = D(T ′,ω ′)(a,b) (3.3)
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holds for all ab ∈ L
+
1 .

Suppose ab ∈ L
+
1 . If x ∈ {a,b} then ab = xy ∈ L and so Equation (3.3) holds as

(T,ω) and (T ′,ω ′) are L-isometric. So assume that x 6∈ {a,b}, then ab ∈ L1(x,y). If

y 6∈ {a,b} holds too then ab ∈ L and so Equation (3.3) holds by the same argument.

So assume that y ∈ {a,b}, say, y = a. Then yb = ab ∈ L
+
1 and so one of yb ∈ L

and xb ∈ L must hold by the definition of L+
1 . If the former holds then ab = yb ∈ L

and so Equation (3.3) holds by assumption on (T,ω) and (T ′,ω ′). If xb ∈ L then

D(T,ω)(y,b) = D(T ′,ω ′)(y,b) follows by Lemma 1 since, by assumption, xy ∈ L. But

then Equation (3.3) holds in this case, too.

(ii) & (iii): These follow using similar arguments as in the proof of (i).

3.5 The child-edge graph

In this section we first introduce the child-edge graph GT (L,v) associated with an

interior vertex v of an X -tree T and a non-empty set L ⊆
(

X
2

)
of cords and then study

some of its properties with regards to corraling an X -tree. We start with a definition.

Suppose T is an X -tree, v ∈V o(T ), and L⊆
(

X
2

)
is a non-empty set of cords. Then

we call the graph GT (L,v) = (VT,v,ET,v), with vertex set VT,v the set of all child edges

of v and edge set ET,v the set of all {e,e′} ∈
(VT,v

2

)
for which there exist leaves a,b ∈ X

such that e and e′ are edges on the path from a to b in T and ab ∈ L, the child-edge

graph (of v with respect to T and L). Note that in case there is no danger of ambiguity

with regards to the X -tree T we are referring to, we will write G(L,v) rather than

GT (L,v) and Vv and Ev rather than VT,v and ET,v.

For T an X -tree, the next result provides a key insight into the structure of G(L,v),

v ∈ V o(T ), whenever L corrals T . To state it, we denote by V o(T )− the set of all

interior vertices of T that are not a parent of a pseudo-cherry of T .

Lemma 3. Suppose that T is a non-degenerate X-tree, that L ⊆
(

X
2

)
is a non-empty

set of cords that corrals T , and that v ∈V o(T ). Then the following hold:

(i) If v ∈V o(T )− and e ∈Vv is a child edge of v that is not incident with a leaf of T

then {e,e′} ∈ Ev, for all e′ ∈ Vv that are incident with a leaf of T . In particular,

G(L,v) is connected.
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(ii) If v ∈V o(T )−V o(T )− then G(L,v) is connected.

Proof. (i): Let e ∈Vv denote a child edge of v that is not incident with a leaf of T and

let u ∈ V (T ) denote the child of v that is incident with e. Let ω : E(T )→ R≥0 be an

equidistant, proper edge-weighting for T . Assume for contradiction that there exists a

child u′ ∈V (T ) of v that is a leaf such that with eu′ denoting the child edge of v incident

with u′, we have that {e,eu′} 6∈ Ev. Note that since ω is equidistant and u′ is a leaf of

T whereas u is not, we must have ω(eu′)> ω(e).

Assume first that |Vv| ≥ 3. Let T ′ denote the X -tree obtained from T by deleting

the edge eu′ and adding the edge e∗ = {u,u′}. Clearly, T ′ is not a refinement of T .

Consider the edge-weighting

ω ′ : E(T ′)→R≥0 : f 7→





ω( f ) if f 6= e∗,

ω(eu′)−ω(e) else.

Then it is easy to see that ω ′ is equidistant and proper. Since, by construction, (T,ω)

and (T ′,ω ′) must be L-isometric it follows that T ′ is a refinement of T as L corrals T ;

a contradiction.

Now assume that |Vv| = 2. If v 6= ρT then v must have a parent w ∈ V (T ). Let

T ′ denote the X -tree obtained from T as before except that we now suppress v as this

has rendered it a vertex with a single child. Let ω ′ be the edge-weighting for T ′ as

defined above except that we put ω ′({u,w}) = ω({u,v})+ω({v,w}). Then the same

arguments as in the previous case yield a contradiction

If v = ρT then let T ′ denote the X -tree obtained from T by collapsing the edge

{v,u}. Clearly, T ′ is not a refinement of T . Consider the edge-weighting ω ′ : E(T ′)→
R≥0 for T ′ defined by putting ω ′=ω|E(T ′). Then the same arguments as in the previous

two cases yield a contradiction.

(ii): Assume for contradiction that there exists some v∈V o(T )−V o(T )− such that

G(L,v) is not connected. Then every child of v is a leaf of T and there exist vertices

e1,e2 ∈Vv distinct, such that e1 and e2 are not joined by a path in G(L,v). Let G1 and

G2 denote the connected components of G(L,v) containing e1 and e2, respectively. For

all children u ∈ V (T ) of v, let eu denote the child edge of v incident with u. Note that

since T is non-degenerate there must exist a vertex w ∈ V (T ) that is the parent of v.

Let T ′ denote the X -tree obtained from T via the following process. Let i = 1,2. Then,
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for all ui ∈V (Gi), subdivide the edge eui
by a new vertex pui

not already contained in

V (T ). Next, identify all vertices pui
into the vertex pi and then delete all copies of the

edges {v, pi} from T . Finally, add the edge {w, pi} and suppress pi if |V (Gi)| = 1. If

Vv = V (G1)∪V (G2) then also suppress the vertex v. The resulting tree is T ′ and, in

either case, T ′ is clearly not a refinement of T .

Let ω denote an equidistant, proper edge-weighting for T . Note that ω(e1) = ω(e)

must hold for all e ∈ Vv, as v ∈ V o(T )−V o(T )−. For the following, assume first that

neither p1 nor p2 have been suppressed in the construction of T ′. Consider the edge-

weighting

ω ′ : E(T ′)→ R≥0 : e 7→





ω(e) if p1, p2 6∈ e,

ω({v,w}) if e ∈ {{w, p1},{w, p2}}
ω(e1) else.

Then, by construction, ω ′ is equidistant and proper and (T,ω) and (T ′,ω ′) are L-

isometric. Since, by assumption, L corrals T it follows that T ′ is a refinement of T ; a

contradiction.

In case one of p1 and p2 or both of them have been suppressed in the construction

of T ′ the definition of the edge-weighting ω ′ for T ′ is similar to the one above thus

leading to a contradiction in these cases too.

The next result is a strengthening of Lemma 3(i). To state it, we require further

terminology concerning child-edge graphs. Suppose T is an X -tree, v ∈ V o(T )−, and

L⊆
(

X
2

)
is a non-empty set of cords. Then we denote by El(v)⊆ E(T ) the set of child

edges of v that are incident with a leaf of T and by Es(v)⊆ E(T ) the set of child edges

of v that are not contained in El(v). Note that Es(v) is empty if and only if v is the

parent of a pseudo-cherry of T . Also note that El(v) = /0 might hold. Clearly, if neither

of them is the empty-set then {El(v),Es(v)} is a partition of Vv. For v∈V o(T )−, we say

that G(L,v) is rich if the subgraph GT (L,v)s of GT (L,v) induced by Es(v) is a clique,

and, in case El(v) 6= /0, we have for all e ∈ El(v) and all e′ ∈ Es(v) that {e,e′} ∈ Ev.

As before we will write G(L,v)s rather than GT (L,v)s if there is no ambiguity with

regards to which X -tee T we are referring to. Note that with T and v as above, if

El(v) = /0 then G(L,v) is rich if and only if G(L,v)s is a clique.
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To illustrate these concepts consider the set of cords

L= {ac,ae,ag,bd,be,bh,ce,cg,eh,cd,e f ,gh,ai}

on X = {a,b,c,d,e, f ,g,h, i} and the X -tree T depicted in Figure 2(i). For v as indi-

cated in Figure 2(i) we depict the child edge graph G(L,v) in Figure 2(ii) which is

clearly rich.

a b c d e

ρTT :

f

v

g h i

e1
e2

e3

e5

G(L, v)

e4e3

e2e1

e4
e5

(i) (ii)

Figure 3.2: (i) The X -tree T for X = {a,b,c,d,e, f ,g,h, i}. (ii) The child-edge graph

G(L,v) for L as indicated in the text and T and v as in (i). For ease of readability, the

vertices in El(v) are marked by a square and those in Es(v) by a dot. The edges of the

graph G(L,v)s are represented by thick lines.

Proposition 4. Suppose that T is a non-degenerate X-tree and that L⊆
(

X
2

)
is a non-

empty set of cords. If L corrals T then G(L,v) must be rich, for all vertices v ∈
V o(T )−.

Proof. Let ω denote an equidistant, proper edge-weighting for T and assume for con-

tradiction that there exists a vertex v ∈ V o(T )− such that G(L,v) is not rich. We first

show that G(L,v)s must be a clique. Suppose G(L,v)s is not a clique, that is, there

exist distinct child edges e and e′ of v contained in V (G(L,v)s) such that with ve and

ve′ denoting the children of v incident with e and e′, respectively, we have, for all

a ∈ L(ve) and all b ∈ L(ve′) that ab 6∈ L. Note that |Vv| ≥ 3 must hold. Indeed, if

|Vv|= 2 then Vv = {e,e′} and so {e,e′} ∈ Ev since, by Lemma 3, G(L,v) is connected.

But then G(L,v) is a clique and so G(L,v)s is a clique; a contradiction. Without loss

of generality assume that ω(e)≥ ω(e′).
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If ω(e) > ω(e′) then consider the X -tree T ′ obtained from T by deleting the edge

{v,ve} and attaching ve to ve′ via the edge e∗ = {ve,ve′}. Clearly, T ′ is not a refinement

of T . Consider the edge-weighting ω ′ for T ′ defined by putting

ω ′ : E(T ′)→ R≥0 : f 7→





ω( f ) if f 6= e∗,

ω(e)−ω(e′) otherwise.

Clearly, ω ′ is equidistant and proper and, by construction, (T,ω) and (T ′,ω ′) are L-

isometric. Since L corrals T it follows that T ′ must be a refinement; a contradiction.

If ω(e) = ω(e′) then consider the X -tree T ′ obtained from T by first identifying

the vertices ve and ve′ (keeping the label ve) and then deleting one of the edges from

v to ve. Again, T ′ is clearly not a refinement of T . Consider the edge-weighting

ω ′ : E(T ′)→ R≥0 defined as ω ′ = ω|E(T ′). Then the same arguments as before imply

that T ′ is a refinement of T ; a contradiction. Thus, G(L,v)s is a clique, as required.

Now if El(v) = /0 then G(L,v) must be rich. So assume that El(v) 6= /0. But then

Lemma 3(i), implies that G(L,v) must be rich.

We conclude this section with a result that will be useful for establishing the afore-

mentioned characterization of weak lassos in terms of child-edge graphs (Theorem 6).

Its proof relies on the well-known fact that an X -tree T ′ is a refinement of an X -tree T

if and only if R(T )⊆ R(T ′) (see e.g. [110, Theorem 6.4.1]).

Lemma 5. Suppose that T is an X-tree that has a unique cherry x,y and that ⊆
(

X
2

)

is a set of cords that contains the set {xy}∪{az : z ∈ X −{x,y} and a = x or a = y},
then L corrals T .

Proof. By Theorem 2, it suffices to show that L′ := L(x,y)∪{xy} corrals T . Suppose

there exists an X -tree T ′ and equidistant, proper edge-weightings ω and ω ′ of T and

T ′, respectively, such that (T,ω) and (T ′,ω ′) are L
′-isometric. To see that T ′ is a

refinement of T it suffices to show that xy|z ∈ R(T ′) holds for all z ∈ X −{x,y}. Let

z∈ X−{x,y}. Then zy∈L′. Combined with the facts that xy∈L′ and that xy|z∈R(T )
it follows, by Lemma 1, that xy|z ∈ R(T ′), as required.
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3.6 A characterization of a weak lasso

In this section, we characterize sets of cords of X that corral an X -tree T in terms of

two properties on the child edge-graphs associated with the interior vertex of T . In

addition, we present a simple example that illustrates that this characterization does

not hold if the equidistance requirement for the two edge-weightings mentioned in the

definition of such a lasso is dropped.

Theorem 6. Suppose that T is a non-degenerate X-tree and that L ⊆
(

X
2

)
is a non-

empty set of cords. Then L is a weak lasso for T if and only if the following two

properties hold

(C1) G(L,v) is rich, for all v ∈V o(T )−

(C2) G(L,v) is connected, for all v ∈V o(T )−V o(T )−.

Proof. Assume first that L corrals T . Then Properties (C1) and (C2) must hold by

Proposition 4 and Lemma 3(ii).

To see the converse, assume that Properties (C1) and (C2) hold. We prove that L

must be a weak lasso for T by induction on the size n of X . Note that the statement

clearly holds in case n = 3 as then T is binary and a refinement of a binary X -tree is

the tree itself.

Assume that the statement holds for all finite sets of size n≥ 3 and let X denote a

set of size n+1. Let T be a non-degenerate X -tree and let L⊆
(

X
2

)
denote a non-empty

set of cords such that properties (C1) and (C2) are satisfied for T and L. Note that T

must contain at least one pseudo-cherry. To see that L corrals T , let T ′ denote an X -tree

and ω and ω ′ equidistant, proper edge-weightings for T and T ′, respectively, such that

(T,ω) and (T ′,ω ′) are L-isometric. We distinguish between the cases that (i) every

pseudo-cherry of T is in fact a cherry of T and (ii) that T contains a pseudo-cherry that

has at least three leaves.

Case (i): Assume that every pseudo-cherry of T is a cherry and let x,y∈X such that

x,y is a cherry of T . Note that since n≥ 4 and T is non-degenerate, there must exist a

vertex w∈V (T ) that is the parent of vx (which is itself the parent of the cherry x,y). Put

X1 = X−{x} and L1 =L1(x,y). Note that since G(L,vx) is connected, it immediately

follows that xy ∈ L and that since G(L,w) is rich we must have L1 6= /0. Let T1 denote
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the X1-tree obtained from T by deleting x and its incident edge and suppressing vx as

this has rendered it a vertex with a single child. Let

ω1 : E(T1)→ R≥0 : e 7→





ω(e) if e 6= {w,y}
ω({w,vx})+ω({vx,y}) else.

Clearly, ω1 is equidistant and proper and T1 is either the star-tree on X1 or not. Assume

first that T1 is the star-tree on X1. Then x,y is the unique cherry of T and all elements

z ∈ X1−{y} are adjacent with the root ρT of T which is w. But then Properties (C1)

and (C2) combined with Lemma 5 imply that L corrals T .

So assume that T1 is non-degenerate. We claim that Properties (C1) and (C2) hold

for T1 and L1. We start with establishing Property (C1). Assume for contradiction

that there exists some u ∈V o(T1)
− such that GT1

(L1,u) is not rich. We first show that

GT1
(L1,u)s must be a clique. Assume for contradiction that GT1

(L1,u)s is not a clique,

then |Es(u)| ≥ 2 and so for all a ∈ LT1
(ue) and all b ∈ LT1

(ue′) we have that ab 6∈ L1

where ue and ue′ denote the children of u in T1 incident with e and e′, respectively. Note

that V o(T1)∪{vx}=V o(T ) and that u = w must hold. Indeed assume for contradiction

that u 6= w. Then vx is not a child of u in T and so ue and ue′ are also children of u

in T . Since GT (L,u)s is a clique by Property (C1), there must exist a ∈ LT (ue) and

b ∈ LT (ue′) such that ab ∈ L. If x 6∈ {a,b} then, by the definition of L1, we have

ab ∈ L1; a contradiction. Thus, x ∈ {a,b}. Without loss of generality assume that

x = a. Then y ∈ LT (ue) and, again by the definition of L1, we obtain yb ∈ L1; a

contradiction. Thus u = w, as required. But then y ∈ {ue,ue′} and so one of e and e′

is not a vertex in GT1
(L1,u)s; a contradiction. Thus, GT1

(L1,u)s must be a clique, as

required.

Since, by assumption, GT1
(L1,u) is not rich, there must therefore exist a leaf z of

T1 with e′ = {u,z} ∈ E(T1) holding and some vertex e in GT1
(L1,u)s such that {e,e′}

is not an edge in GT1
(L1,u). Let ue denote the child of u in T1 incident with e. If

u 6= w then since the children of u in T are precisely the children of u in T1 and, by

Property (C1), GT (L,u) is rich we obtain a contradiction. Thus, u = w. But then

y = z must hold. Since GT (L,w) is rich there must exist some a ∈ {x,y} and some

b ∈ L(ue) such that ab ∈ L. But then yb ∈ L1 and so {e,e′} is an edge in GT1
(L1,u), a

contradiction.

70



We next establish that Property (C2) is satisfied by T1 and L1 which will conclude

the proof of the claim. Let u ∈ V o(T1)−V o(T1)
−, then u must be the parent of a

pseudo-cherry of T1. If u 6= w then since, by assumption, every pseudo-cherry of T

is a cherry of T it follows that u is the parent of a cherry of T1. But then GT1
(L1,u)

is connected as GT1
(L1,u) = GT (L,u) and Property (C2) is satisfied by T and L. So

assume that u = w. Then u is the parent of vx in T and all children of u in T but vx are

leaves of T . Since, by Property (C1), GT (L,u) is rich, there exists for all children z

of u that are leaves of T some bz ∈ {x,y} such that bzz ∈ L. But then yz ∈ L1 for all

such children z of u and thus GT1
(L1,u) is connected, as required. Thus Property (C2)

is also satisfied by T1 and L1 which completes the proof of the claim. By induction, it

follows that L1 is a weak lasso for T1.

Let T ′1 denote the X1-tree obtained from T ′ by deleting x and its incident edge and

suppressing the parent vertex of x in T ′1 if this has rendered it a vertex with a single

child. Let ω ′1 denote the edge-weighting of T ′1 that is canonically induced by ω1 on

the edges of T ′1. Then, by Lemma 1, combined with the assumption that (T,ω) and

(T ′,ω ′) are L-isometric, it follows that (T1,ω1) and (T ′1,ω
′
1) are L1-isometric. Since

L1 is a weak lasso for T1 this implies that T ′1 is a refinement for T1.

To establish that L corrals T it now suffices to show that xy|a ∈ R(T ′) holds for

all a ∈ L(w)− {x,y}. To this end, note that since Property (C1) is satisfied by T

and L, we have for all children a ∈ L(w) that are leaves of T that there exists some

b ∈ LT (vx) = {x,y} such that ab ∈L. Combined with Lemma 1 and xy ∈ L, it follows

that D(T,ω)(x,a) = D(T ′,ω ′)(x,a) = D(T,ω)(y,a) = D(T ′,ω ′)(y,a). Since xy|a ∈ R(T ) we

obtain xy|a ∈R(T ′), as required. This completes the proof of the induction step in this

case.

Case (ii): Assume that T contains a pseudo-cherry c of size three or more. Let

v ∈ V o(T ) denote the parent of c in T . Then, by Property (C2), G(L,v) is connected.

Since in any connected graph there exists a vertex whose removal (plus incident edges)

leaves the graph connected (see [23, Proposition 1.4.1] where a more general result is

established), it follows that we may choose some x ∈ X such that the graph G−(L,v)

obtained from G(L,v) by deleting ex and its incident edges is connected. Note that

since x is a leaf in c, we have v = vx.

Put X1 := X−{x}, choose some y ∈ L(vx) such that xy ∈ L, and put L1 := L(x,y).

Consider the X -tree T1 obtained from T by deleting x and its incident edge. We claim
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again that GT1
(L1,u) satisfies Properties (C1) and (C2) for all u ∈V o(T1) as specified

in those conditions. To see this, note first that since vx has at least two children in T1,

we have V o(T1) =V o(T ) and so also V o(T1)
− =V o(T )−.

We start with establishing Property (C1). Assume for contradiction that there exists

some vertex u ∈ V o(T1)
− such that GT1

(L1,u) is not rich. We again show first that

GT1
(L1,u)s is a clique. Assume for contradiction that this is not the case and let e, e′,

ue, and ue′ be as in the corresponding situation in the previous case. Note that since

u ∈ V o(T1)
− = V o(T )− and vx ∈ V o(T )−V o(T )− we have vx 6= u. But then similar

arguments as the ones used to show in Case (i) that w 6= u in the context of establishing

that GT1
(L1,u)s is a clique yield a contradiction. Thus, GT1

(L1,u)s must be a clique,

as required. As in the previous case, there must therefore exist some z ∈ X1 such that

e = {z,u} ∈ E(T1) and some vertex e′ in GT1
(L1,u)s such that {e,e′} is not an edge in

GT1
(L1,u). Note that the same arguments as above imply that u 6= vx. By the definition

of L1, it follows that x must be the unique leaf in LT (ue′) such that xz ∈L. Since y and

x are leaves in the same pseudo-cherry of T , we obtain yz ∈ L1. Consequently, {e,e′}
is an edge in GT1

(L1,u), a contradiction. Thus, Property (C1) is satisfied by T1 and L1.

To see that T1 and L1 satisfy Property (C2) assume, without loss of generality, that

there exists some u ∈ V o(T )−V o(T )− such that GT1
(L1,u) is not connected. Then

u 6= vx, by the choice of x. Since u is the parent of a pseudo-cherry in T it follows that

u must be the parent of the same pseudo-cherry in T1. But then GT1
(L1,u) = GT (L,u)

and so GT1
(L1,u) must be connected as, by Property (C2), GT (L,u) is connected; a

contradiction. This concludes the proof of the claim. By induction, it follows that L1

corrals T1.

Let T ′1 , w, and ω ′1 be as in the previous case. Then, as in that case, T ′1 must be a

refinement of T1. We claim that for all children u of w in T distinct from vx and all

a ∈ LT (u) we must have

xy|a ∈ R(T ′).

To see this, note first that Property (C1) implies for all such children u of w that

there must exist some au ∈ LT (u) and some zvx
∈ LT (vx) such that auzvx

∈ L. Let u

denote a child of w in T distinct from vx and put a = au and z = zvx
. We show first that

D(T,ω)(a,y) = D(T ′,ω ′)(a,y) and D(T,ω)(a,x) = D(T ′,ω ′)(a,x). (3.4)
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Clearly, if z ∈ {x,y} then one of the two equations in (3.4) must hold. Assume without

loss of generality that z 6= x. Since GT (L,vx) is connected by Property (C2), it follows

that there exists a path z = z1,z2, . . . ,zk = x, k ≥ 2, from z to x in GT (L,vx). But then

Lemma 1(i) implies D(T,ω)(a,x) = D(T ′,ω ′)(a,x) since, for all 1 ≤ i ≤ k− 1, we have

zizi+1 ∈ L. If z 6= y then similar arguments imply that D(T,ω)(a,y) = D(T ′,ω ′)(a,y). If

z = y then ya = za ∈ L and so D(T,ω)(a,y) = D(T ′,ω ′)(a,y). Thus both equations in

(3.4) must hold, as required. Combined with xy ∈ L (which holds by the choice of y)

and the fact that xy|a ∈ R(T ) we obtain

xy|a ∈ R(T ′)

in view of Lemma 1(ii). Thus the claim follows if |LT (u)| = 1. So assume that

|LT (u)| ≥ 2. Suppose a′ ∈ LT (u)−{a}. Then y|a′a ∈ R(T ′1) must hold as T ′1 is a

refinement of T1 and y|a′a ∈ R(T1). Since the only {x,y,a′,a}-tree that can simultane-

ously display the triplets y|a′a and xy|a is the tree with cherries x,y and a′,a and that

tree is equivalent with the tree T |{x,y,a′,a} it follows that xy|a′ ∈ R(T ′), as claimed.

Combined with the fact that T ′1 is a refinement of T1 it follows that T ′ is a refinement

of T . Hence, L corrals T which concludes the proof of the induction step in this case

too and, thus, the proof of the theorem.

Note that Theorem 6 immediately implies that for a non-empty set L of cords of

X to be a weak lasso for a non-degenerate X -tree T , it must be a covering of X , that

is, X =
⋃

A∈LA. Also note that Theorem 6 immediately implies that a minimum size

weak lasso for T must have

∑
v∈V o(T )−

((|V (G(L,v)s)|
2

)
+ |V (G(L,v)s)|× |V(G(L,v)l)|

)
+ ∑

v∈V o(T )−V o(T )−
|Vv|

cords. Thus, such a lasso has at most |V o(T )−|
(

m
2

)
+(m−1)|V o(T )−V o(T )−| cords

where m=maxv∈V o(T )− |Vv| and at least (l−1)|V o(T )| cords where l =minv∈V o(T )− |Vv|.
Note that these bounds are sharp in the case that all interior vertices of T have the same

number k of children. In the former case T is such that no interior vertex of T that is

not a parent of a pseudo-cherry is adjacent with a leaf of T . In the latter case T is the

bearded caterpillar tree on X , that is, T is a (rooted) path and every vertex of that path
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is adjacent with k−1 leaves except for the end vertex of T that is not ρT which has k

children.

Finally, note that as the example presented in Figure 3.3 illustrates, for Theorem 9

to hold the requirement that both proper edge-weightings are equidistant in the defini-

tion of a weak lasso cannot be dropped. More precisely for X = {a,b,c,d,e, f} and

L = {ab,bc,bd,a f ,ae} the X -tree T pictured on the left of that figure (with the in-

dicated edge-weighting ω ignored for the moment) satisfies Properties (C1) and (C2)

and the X -tree T ′ depicted on the right of that figure (again with the indicated edge-

weighting ω ′ ignored where 0 < ε < 1) is clearly not a refinement of T . Also ω and

ω ′ are obviously proper and, in the case of ω , equidistant and (T,ω) and (T ′,ω ′) are

L-isometric.

a b c d e f

ρTT :

a b c de f

ρT ′
T ′

:

100

50 50

50

100

1

101

1

102

50

50

50

100

1 101

1− ǫ

ǫ

98 + ǫ

102

Figure 3.3: An example illustrating that for Theorem 6 to hold the equidistance re-

quirement in the definition of a weak lasso cannot be dropped (see text for details).

3.7 A characterization of an equidistant lasso

In this section, we present a characterization of an equidistant lasso L ⊆
(

X
2

)
for an

X -tree T in terms of the child-edge graphs associated to the interior vertices of T . To

establish it, we require a further notation. Suppose T is an X -tree and v and w are two

vertices of T . Then we denote by ET (v,w) the set of all edges of T on the path from v

to w.

Theorem 7. Suppose T is an X-tree and L ⊆
(

X
2

)
is a non-empty set of cords. Then

the following are equivalent:

(i) L is an equidistant lasso for T .
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(ii) for every vertex v ∈V o(T ), the graph G(L,v) contains at least one edge.

Proof. (i)⇒ (ii): Suppose L is an equidistant lasso for T and assume for contradiction

that there exists an interior vertex v of T for which G(L,v) does not contain an edge.

Note first that v = ρT cannot hold. Indeed, suppose ω1 is a equidistant, proper edge-

weighting for T and let ε > 0 be a sufficiently small real number. Consider the edge-

weighting ω2 : E(T )→ R≥0 defined by putting, for all e ∈ E(T ), ω2(e) = ω1(e)− ε

if ρT ∈ e and ω2(e) = ω1(e) else. Clearly, ω2 is an equidistant, proper edge-weighting

for T distinct from ω1 and (T,ω1) and (T,ω2) are L-isometric. Since, by assumption,

L is an equidistant lasso for T it follows that ω1 = ω2; a contradiction. Thus, v 6= ρT

and so there must exist a parent w∈V (T ) of v in T . Let ω1 denote again an equidistant,

proper edge-weighting for T . Consider the map ω2 : E(T )→ R≥0 defined by putting

ω2(e) =





ω1(e) if v 6∈ e,

ω1(e)− ε if e = {v,w},
ω1(e)+ ε else,

where ε > 0 is small enough. Clearly, ω2 is an equidistant, proper edge-weighting for

T which is distinct from ω1. By construction, (T,ω1) and (T,ω2) are L-isometric and

so ω1 = ω2 must hold as L is an equidistant lasso for T ; a contradiction.

(ii)⇒ (i): Suppose that, for all v ∈V o(T ), the graph G(L,v) has at least one edge

and assume for contradiction that L is not an equidistant lasso for T . Then there exist

distinct equidistant, proper edge-weightings ω1 and ω2 for T such (T,ω1) and (T,ω2)

are L-isometric. Thus, there must exist some edge e ∈ E(T ) such that ω1(e) 6= ω2(e).

Assume, without loss of generality, that e = {v,v0} is such that with v being the

parent of v0 we have that ω1(e
′) = ω2(e

′) holds for all edges e′ of T that lie on a

path from v0 to a leaf of T contained in L(v0). Note that v0 could be a leaf of T

in which case such a path has length zero. Let v1,v2, . . . ,vl , l ≥ 1 denote the other

children of v. Then, by assumption, G(L,v) contains at least one edge and so there

exist i, j ∈ {0, l} distinct and leaves yi,y j ∈ L(v) that are descendants of vi and v j (or

coincide with them), respectively, such that yiy j ∈ L. Let z ∈ L(v0) denote a leaf of T .
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By Property (E1), we obtain

ω1(e)+ ∑
e′∈ET (v0,z)

ω1(e
′) = D(T,ω1)(v,z) =

1

2
D(T,ω1)(yi,y j) =

1

2
D(T,ω2)(yi,y j)

= D(T,ω2)(v,z) = ∑
e′∈ET (v0,z)

ω2(e
′)+ω2(e).

and so ω1(e) = ω2(e) follows by the choice of e; a contradiction. Thus, L must be an

equidistant lasso for T .

Theorem 7 immediately implies that an equidistant lasso on X need not be a cover-

ing of X . Also, it implies that the size of a minimum equidistant lasso for an X -tree T

is |V ◦(T )|. For the extreme cases that T is the star tree on X such a lasso has precisely

one element and if T is binary such a lasso has |X | − 1 elements as any such tree is

known to have |X |−1 interior vertices (see e. g. [110]).

Theorem 6 combined with Theorem 7 immediately implies the following link be-

tween equidistant and weak lassos.

Corollary 8. Suppose T is an X-tree and L⊆
(

X
2

)
is a non-empty set of cords. Then L

is an equidistant lasso for T whenever it is a weak lasso for T .

We remark in passing that dropping the requirement that the two edge-weightings

have to be equidistant in the definition of an equidistant lasso gives rise to the definition

of an edge-weight lasso for an X -tree. However it is easy to see that Theorem 7 does

not hold with equidistant lasso replaced by edge-weight lasso.

3.8 A characterization of a topological lasso

In this section, we prove the companion result for when a set of cords is a topological

lasso for an X -tree T in terms of the child-edge graphs associated with the interior

vertices of T . We start again with some more notation.

Suppose that T is an X -tree and that v ∈ V o(T ), but not the root of T . Then we

denote the L(v)-tree obtained from T by deleting the parent edge of v by TL(v). Now

suppose that Y ( X is such that there exists some v ∈V o(T ) such that Y = L(v). Then

we denote the root of TY by ρ(TY ).
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Theorem 9. Suppose T is an X-tree and L ⊆
(

X
2

)
is a non-empty set of cords. Then

the following are equivalent:

(i) L is a topological lasso for T .

(ii) For every vertex v ∈V o(T ), the graph G(L,v) is a clique.

Proof. (i)⇒ (ii): Suppose that L is a topological lasso for T and assume for contra-

diction that there exists some vertex v ∈V o(T ) such that G(L,v) is not a clique. Then

there exist child edges e,e′ ∈ E(T ) of v such that {e,e′} 6∈ Ev. Let ve and ve′ denote

the children of v incident with e and e′, respectively, and let ω denote an equidis-

tant, proper edge-weighting of T . We distinguish the cases that (i) v is the parent of a

pseudo-cherry of T and that (ii) v ∈V o(T )−.

Case (i): Assume that v is the parent of a pseudo-cherry of T . Then since every

topological lasso for T is in particular a weak lasso for T , Theorem 6 implies that

G(L,v) is connected and that, in addition to x := ve and y := ve′ , there must exist a

further child of v (that is a leaf of T ). Note that since ω is equidistant, we must have

ω(e) = ω(e′).

Let T ′ denote the X -tree obtained from T by subdividing the edge e′ by a vertex w

that is not already contained in V (T ), adding the edge {x,w} and deleting the edge e.

Clearly, T and T ′ are not equivalent. Let 0 < ε < ω(e) and consider edge-weighting

ω ′ : E(T ′)→ R≥0 : f 7→





ω( f ) if w 6∈ f ,

ω( f )− ε if f ∈ {{w,x},{w,y}},
ε else.

Clearly, ω ′ is equidistant and proper and it is straight forward to see that (T ′,ω ′) and

(T,ω) are L-isometric. Since L is a topological lasso for T it follows that T and T ′

must be equivalent, a contradiction.

Case (ii): Assume that v ∈V o(T )−. Then since every topological lasso for T is in

particular a weak lasso for T , Theorem 6 implies that G(L,v) is rich. But then ve and

ve′ must be leaves of T . With x = ve and y = ve′ we obtain a contradiction using the

same arguments as in Case (i).

(ii)⇒ (i): Suppose that, for every vertex v ∈ V o(T ), the graph G(L,v) is a clique

and assume that T ′ is an X -tree and ω and ω ′ are equidistant, proper edge-weightings
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for T and T ′, respectively, such that (T,ω) and (T,ω ′) are L-isometric. If T is the

star-tree on X then L must necessarily be a topological lasso for T . So assume that T

is non-degenerate. Then, by Theorem 6, L is a weak lasso for T and so T ′ must be a

refinement of T .

We next show that T and T ′ are in fact equivalent. Assume for contradiction that T

and T ′ are not equivalent, then there must exist a non-empty subset Y ( X of leaves of

T such that the subtree TY of T with leaf set Y is equivalent with the subtree T ′Y of T ′

with leaf set Y but the subtrees of T and T ′ with root the parents of ρ(TY ) and ρ(T ′Y ),

respectively, are not. Let w denote the parent of ρ(TY ) in T and w′ the parent of ρ(T ′Y )

in T ′. Then there must exist some z ∈ L(w′)−L(ρ(T ′Y )) and distinct x,y ∈ L(ρ(T ′Y )) =

Y such that xy|z ∈R(T ′) and xy|z 6∈R(T ). Hence, ρ(TY ) must lie on the path from x to

y in T . Combined with the fact that T ′ is a refinement of T , it follows that T |{x,y,z} is the

star-tree on Z := {x,y,z}whose unique interior vertex is ρ(TY ). Since ω is equidistant,

we obtain

D(T,ω)(x,y) = D(T,ω)(x,z) = D(T,ω)(z,y). (3.5)

Let ex,ey,ez ∈ E(T ) denote the child edges of ρ(TY ) that are crossed by a path from

ρ(TY ) to x, y, and z, respectively, and let ves
denote the child of ρ(TY ) incident with

es, for all s ∈ Z. Since, by assumption, G(L,ρ(TY )) is a clique there must exist leaves

a ∈ L(vex
), b ∈ L(vey

), and c ∈ L(vez
) such that ab,bc,ca ∈ L. By the same reason, it

follows in view of Lemma 1 that D(T,ω)(p,q) = D(T ′,ω ′)(p,q) must hold for any two

elements p,q ∈ Z distinct. Combined with Equality (3.5), we obtain D(T ′,ω ′)(p,q) =

D(T ′,ω ′)(p,q), for any two such elements p and q. But then T ′|Z must be the star-tree

on Z and so xy|z 6∈ R(T ′), a contradiction.

Note that Theorem 9 immediately implies that a topological lasso L ⊆
(

X
2

)
must

be a covering of X . Also note that Theorem 9 implies that if L is a topological lasso

for an X -tree T then L must contain at least ∑v∈V o(T )

(|Vv|
2

)
cords and that L =

(
X
2

)

must hold in case T is the star-tree on X . Finally, note that as the example presented in

Figure 3.4 shows, the requirement that the two proper edge-weightings in the definition

of a topological lasso must be equidistant cannot be dropped. More precisely for X =

{a,b,c,d} and L= {ab,cd,ad} the X -tree T pictured on the left of that figure (with the

indicated edge-weighting ω ignored for the moment) satisfies Properties (C1) and (C2)
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and is not equivalent with the X -tree T ′ depicted on the right of that figure (again with

the indicated edge-weighting ω ′ ignored where 0 < ε < 1). Also ω and ω ′ are clearly

proper and, in the case of ω , also equidistant and (T,ω) and (T ′,ω ′) are L-isometric.

a b c d

10 10 10 10

11

ρT

a b c d

10 10

11
8 + ǫ

ǫ

T : T ′
:

ρT ′

1− ǫ

Figure 3.4: An example showing that for Theorem 9 to hold the “equidistant” require-

ment in the definition of a topological lasso cannot be dropped (see text for details).

Combining Proposition 7 and Theorem 9, we obtain the following corollary.

Corollary 10. Suppose that T is an X-tree. Then every topological lasso for T must

also be an edge-weight lasso for T . Moreover, if T is binary and L ⊆
(

X
2

)
then L is

a topological lasso for T if and only if L is an equidistant lasso for T . In particular,

every topological/equidistant lasso for T is also a strong lasso for T in this case.

Note however that for L ⊆
(

X
2

)
a set of cords and T an X -tree it is possible that L

is simultaneously an edge-weight and a topological lasso for T but T is not binary. We

present such an example in Section 3.9.

3.9 Examples of lassos

In this section we apply our findings to two types of constructions of sets of cords

of X . Both of them were originally introduced in [26] for the case of edge-weighted,

unrooted, phylogenetic trees with leaf set X where an edge-weighting for such a tree

is defined as in the case of an X -tree.

Assume for the remainder of this section that T is an X -tree. Then the first example

relies on the notion of a circular ordering (of the leaf set) of T (see e.g. [110] for further

details on such orderings). Following [26] a circular ordering (of X) of T is a cyclic

permutation σ of X such that the following holds. There exists a planar embedding

of T such that, for every x ∈ X , the leaf that is encountered after x when traversing T
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in that embedding in say, a counter-clockwise fashion, is the leaf σ(x). For example,

(a,b,c,d) is a circular ordering of T the {a,b,c,d}-tree depicted in Figure 3.4(a).

Let (x1,x2, . . . ,xn) denote a circular ordering of the leaves of T where n := |X |
and put xn+1 = x1. Then since for every interior vertex v of T there exists some i ∈
{1, . . . ,n} such that v lies on the path from xi to xi+1, Theorem 7 implies that the set

Lc = {xixi+1 : 1≤ i≤ n}

is an equidistant lasso for T . However, Lc is clearly not an equidistant lasso of minimal

size. In view of Theorem 9, Lc is a topological lasso for T if and only if every interior

vertex v ∈V o(T ) has degree three (except possibly the root ρT which might also have

degree two) as in that case G(Lc,w) is a complete graph for all w ∈ V o(T ). Thus, Lc

is also a strong lasso for such X -trees. In view of Theorem 6, Lc is a weak lasso for

T if and only if every vertex v ∈V o(T )− has degree three (except possibly the root ρT

which might also have degree two) as in that case G(Lc,w) is rich for all w ∈V o(T )−

and connected for all w ∈V o(T )−V o(T )−.

Our final construction relies on the notion of a bipartition {A,B} of X and was

introduced in [26] where it was shown that the set

A∨B :=

{
ab ∈

(
X

2

)
: a ∈ A and b ∈ B

}

is a topological lasso1 for an unrooted phylogenetic tree T ′ with leaf set X of size 4 or

more if and only if, for every 2-subset c of X whose elements have that same parent

in T ′, we have that A∩ c 6= /0 6= B∩ c. Note that this implies in particular that for an

unrooted phylogenetic tree on X to be topologically lassoed by A∨B, every interior

vertex of T can be adjacent with at most two leaves. Thus every pseudo-cherry of T ′

(defined as in the case of an X -tree) must be a cherry of T .

Defining for an unrooted phylogenetic tree T ′ on X a set L ⊆
(

X
2

)
of cords to

be an edge-weight lasso as in the case of an X -tree but again with the requirement

“equidistant” on the proper edge-weightings removed, it is not difficult to see that A∨B

is not an edge-weight lasso for T ′. Also it is straight forward to see that any two proper

1The definition of a topological lasso for an unrooted phylogenetic tree on X is the same as that of

a topological lasso for an X-tree but with the requirement dropped that the two proper edge-weightings

mentioned in that definition are equidistant.
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edge-weightings ω and ω ′ for T ′ such that D(T ′,ω)(a,b) = D(T ′,ω ′)(a,b) holds for all

ab ∈ L must coincide on the interior edges of T ′ where for a proper edge-weighting α

of T ′ we denote the induced distance on V (T ′) also by D(T ′,α).

In the case of X -trees the situation changes in so far that if T is non-degenerate

and {A,B} is such that every pseudo-cherry of T contains elements from both A and B

then, in view of Theorem 6, A∨B must be a weak lasso for T and thus, by Corollary 8,

also an equidistant lasso for T . In view of Theorem 9, A∨B is not a topological lasso

for T unless every interior vertex v ∈V o(T ) of T is incident with at most two leaves of

T and, if v is incident with two leaves, then one is contained in A and the other in B as

otherwise G(A∨B,v) would not be a clique. Since for such X -trees T we have, for all

v ∈V o(T ), that G(L,v) contains at least one edge it follows that A∨B is a strong lasso

for T .

If T is the star-tree on X then A∨ B is a weak lasso for T . Also, A∨ B is an

equidistant lasso for T as G(L,ρT ) contains at least one edge but it is not a topological

lasso for T as A∨B 6=
(

X
2

)
.

3.10 Conclusion

In the form of investigating when a set of cords of a finite set X of size at least three

is an equidistant/topological/weak/strong lasso for an X -tree, we have addressed the

topical problem of when a set of partial distances for a set of individuals within a

sample uniquely determines a dendrogram on those individuals. Such structures are

commonly constructed as part of a phenetic clustering step within a genomewide asso-

ciation study to better understand the link between phenotypic and a genotypic varia-

tion within the sample. For T an X -tree and L⊆
(

X
2

)
a set of cords, we have presented

characterizations for when L is an equidistant/weak/tropological lasso for T in terms

of the structure of the child-edge graphs associated to the interior vertices of T . As

immediate consequences, our characterizations allow us to not only shed light into the

problem of when two of the above types of lassos coincide but also into the size of

minimum size equidistant/topological/weak lassos.

Despite these encouraging results a number of open questions remain. For exam-

ple, the characterizations above require knowledge of the structure of T in the form

of the child-edge graphs associated to the interior vertices of T . Thus, is it possible
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to characterize or at least understand lassos without this structural insight into T . A

potential candidate for this might be the graph Γ(L) associated to L whose vertex set

is X and whose edge set is L. The underlying rational for this is that for |X | ≥ 4, it

was shown in [26, Theorem 1] that for L to be a topological lasso for an unrooted

phylogenetic tree T on X the graph Γ(L) has to be connected and for L to be an edge-

weight lasso for T it has to be strongly non-bipartite (where a graph G is said to be

strongly non-bipartite if every connected component of G is not bipartite). Also for L

as constructed in the first example in Section 3.9 the graph Γ(L) is connected.

To overcome the potential loss of information in distance based phylogenetic tree

reconstruction, [84] proposed using k-dissimilarities, k≥ 3, on X rather than 2-similarities

as is the case when reconstructing edge-weighted phylogenetic trees from distances

(see also [35, p.176] and [52, 120, 22] and the references therein for recent work on

such objects which are sometimes also called k-way similarities, k-way distances, and

k-semimetrics). It would be interesting to know what can be said about lassoing and

corraling of X -trees within this more general framework.

Acknowledgement A. -A. Popescu thanks the Norwich Research Park (NRP) for sup-

port. The authors thank the referees for their helpful comments.
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Chapter 4

ape 3.0: new tools for distance based

phylogenetics and evolutionary

analysis in R

This chapter is based on

A-A. Popescu, K.T. Huber., E. Paradis ape 3.0: New tools for distance-based phy-

logenetics and evolutionary analysis in R. Bioinformatics, 28:1536–1537, 2012.

A-A. Popescu’s contribution is the implementation, testing, comparative bench-

marking and writing of the documentation of the newly implemented functions. Also

he helped write the first draft of the manuscript.

4.1 Chapter Summary

This chapter focuses on describing our additions to the popular ape package for phy-

logenetic analysis in R. Our additions comprise a variety of phylogenetic methods for

inferring evolutionary scenarios when incomplete data is present, mainly in the form

of incomplete distances. We also present tree popping, a splits-based phylogenetic re-

constructing algorithm.
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Availability ape is distributed through the Comprehensive R Archive Network:

http://cran.r-project.org/web/packages/ape/index.html

Further information may be found at

http://ape.mpl.ird.fr/pegas/

4.2 Introduction

Actively responding to requirements of evolutionary biologists to be able to analyse

new types of data as well as larger data sets, ape’s features have been improved upon

steadily over the years and new functions and object classes have been added by nu-

merous contributors. At the same time, ape has taken a central place in the development

of new packages in R so that, to date, about 50 of them depend on it. Consequently,

ape now provides, among other things, improved graphical tools for exploring phylo-

genetic trees as well as for manipulating, comparing and storing them (see [85] for

details); new object classes such as "evonet" to encode phylogenetic networks; and

new features for simulating character evolution, estimating ancestral states [18], and

computing sequence alignments by invoking existing programs such as Clustal [12],

Muscle [28], or T-Coffee [83]. In parallel, an effort has been made to develop a com-

prehensive function (dist.dna) to compute evolutionary distances from aligned DNA

sequences under most published models. At the same time, fast and reliable functions

have been incorporated into ape to construct a neighbour-joining tree from a distance

matrix [106], and carry out BIONJ [41], and FastME [21] phylogenetic tree estima-

tion from such a matrix; the latter can be done by optimizing either the ordinary least

squares or the balanced version of the minimum evolution criterion.

Despite these additions, one of ape’s limitations has been its inability to carry out a

distance-based phylogenetic analysis in case of incomplete distance information. Such

datasets arise, for example, in whole genome studies where there might be incomplete

taxonomic coverage or the reliability of distances between some of the taxa under con-

sideration is poor. To allow ape to handle such data, which, for convenience, we refer

to as incomplete distances (as opposed to complete distances), we have extended its

functionality in three separate but closely interlinked directions: (1) phylogenetic tree

building from complete and incomplete distances, (2) estimation of distance values

from incomplete distances without explicitly constructing a phylogenetic tree before-
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hand, and (3) computation of consensus distance matrices.

Although the methods we have added to ape are already implemented in some spe-

cialized computer programs, it is the first time that they can be found together in a

single package. In addition to generally running faster than the original versions due

to our implementations being based on C (see Section 4.4 for more on this), this makes

it possible to directly compare the results from different methods, and to interface them

with the many data analysis options provided by ape, thus reducing the possibility of

error due to data conversion or compatibility issues.

This chapter is structured as follows. We first describe the new implemented func-

tions and how they are called. Subsequent to this we go into details on how our

implementations fare against already existing alternatives, while also presenting the

methodology we used to test these methods.

4.3 New Features

In this section we briefly outline all the new methods which have been implemented.

Each such outline is followed by details on how the new functions can be called. Unless

stated otherwise, in what follows, dsm is an incomplete distance matrix and d is a

complete distance matrix. Also all phylogenetic trees are edge-weighted phylogenetic

trees.

An attractive feature of distance-based phylogenetic reconstruction is that a tree can

be constructed in a relatively short amount of time. Thus, there has been considerable

interest in developing these methods both from complete and incomplete distances. As

an alternative to the NJ, BIONJ, and FastME methods mentioned above, which all take

complete distances as input, we have added the triangles method [66] as triangMtd

to ape. Some versions of these methods for incomplete distances exist in the form of

BIO-NJ*, NJ* [17], and the triangles method for incomplete distances [49] which we

have also added to ape as bionjs, njs, and triangMtds, respectively.

• bionjs takes as input an incomplete distance matrix and constructs a phyloge-

netic tree using the Bio-NJ* algorithm. The method is invoked as:

ptr<-bionjs(dsm)

or
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ptr<-bionjs(dsm,i)

where i can be any positive integer, representing the agglomeration parameter

of the method. In case i < 1 then an error message is returned.

• njs takes as input an incomplete distance matrix and constructs a phylogenetic

tree using the NJ* method. It is invoked by putting:

ptr<-njs(dsm)

or

ptr<-njs(dsm,i)

where i can be any positive integer, representing the agglomeration parameter

of the method. In case i < 1 then an error message is returned.

• triangMtd takes as input a complete distance matrix and returns a phylogenetic

tree constructed from that distance matrix using the triangles method. It is called

by putting:

ptr<-triangMtd(d)

• triangMtds is the extension of the triangles method to incomplete distances

and takes as input an incomplete distance matrix and returns a phylogenetic tree

constructed from that distance matrix. It is called by putting:

ptr<-triangMtds(dsm)

One way to deal with incomplete distances is to first restrict attention to a subset

of the data for which complete distance information is available, and then to somehow

fit the remaining data into the phylogenetic tree constructed from that subset. This is

the philosophy underpinning, for example, the triangles method. An alternative to this

is to directly estimate the missing distances from the data without first constructing a

phylogenetic tree. Two methods that rely on this idea are the ultrametric and the addi-

tive procedure [74], respectively, which we have implemented in ape as ultrametric

and additive.

• additive takes as input an incomplete distance matrix and attempts to infer

missing matrix entries using the additive procedure. A call to additive is as

follows:

dsmAdd<-additive(dsm)
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• ultrametric takes as input an incomplete distance matrix and infers missing

matrix entries using the ultrametric procedure. It is called by putting:

dsmUltra<-ultrametric(dsm)

Supertree methods have been used to combine trees from different studies. Essen-

tially they work by combining a collection of trees (e.g. gene trees) into a parental tree

which, in a well-defined way, represents the given trees. By contrast to the consensus

tree method in ape, the taxa sets of the trees do not need to be the same, and may only

be overlapping.

As a partial response to the criticism that supertree reconstruction methods only

use tertiary data (i.e., phylogenetic trees obtained from sets of distance matrices), con-

sensus distance matrix approaches have been introduced in the literature. Starting

from several overlapping taxa sets, each with complete distance information, this boils

down to finding ways to compute the distance between any two taxa that are in the

union of all taxa sets but not in the same set. A tool that allows one to do this is

the superdistance matrix (SDM) [16] method which we have incorporated into ape as

SDM. It should be noted that, as proposed by [16], our implementation returns not only

the consensus distance matrix for an input data set, but also the matrix of associated

variances. Although any standard tree building method could potentially be used to

reconstruct a phylogenetic tree from a consensus distance matrix, some specialized

methods have been developed which also take its associated variance matrix into ac-

count when building the tree. An example of such a method is minimum variance

reduction (MVR) [43] which we have added to ape as mvr, as well as, in the form of

mvrs, its extension MVR* to incomplete distances [17].

• mvr is an implementation of the weighted least squares (WLS) minimum variance

reduction (MVR) method. It takes as parameters a complete distance matrix and

a matrix v of associated variances, and applies the MVR-WLS algorithm [43].

It is called by putting:

ptr<-mvr(d,v)

• mvrs takes as input an incomplete distance matrix and a matrix vsm of associated

variances and constructs a phylogenetic tree using the MVR* method. It is called

as:
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ptr<-mvrs(dsm,vsm)

or

ptr<-mvrs(dsm,vsm,i)

where i can be any positive integer, representing the agglomeration parameter

of the method. In case i < 1 then an error message is returned.

• SDM takes as input at least two distance matrices d j, j≥ 2, followed by j integers

w j representing the respective matrix weights, and applies the SDM method to

produce a two-element list. The first element in that list is the consensus distance

matrix and the second element is the matrix of associated variances. The method

is invoked by putting:

ret<-SDM(d1,d2,w1,w2) (in case j = 2)

and

ret<-SDM(d1,d2,d3,w1,w2,w3) (in case j = 3)

To take advantage of a combinatorial description of a phylogenetic tree in terms of

a collection of weighted splits, we have developed a new class, bitsplits, in order

to represent this type of object. The need for such a class arises in the context of, for

instance, supertree reconstruction. Due to, among other things, noise in the data, it is

in general too much to hope for that the given set of trees will fit together nicely into a

supertree. To help with this, we have developed the function is.compatible, which

allows one to quickly check if a collection of splits is compatible (see also below), and,

as treePop, a weighted version of Meacham’s tree popping method [78] which allows

one to construct a phylogenetic tree from a collection of weighted splits (see also below

and e.g. [110] for details). Another advantage of this new class is that it will ease

the development of further distance-based methods such as the refined Buneman trees

method [7] which relies on computing such collections. To interface the new class

with other functionalities in ape, we wrote the function as.bitsplits allowing one

to convert from the already existing prop.part class present in phangorn R package

[108].

• is.compatible checks whether a given bitsplits object bs represents a com-

patible split system. It relies on the novel arecompatible function which takes
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as input two splits, encoded by bits, and checks whether they are compatible or

not. The former is invoked by putting:

is.compatible(bs)

• treePop is an implementation of Meacham’s tree popping. It takes as input a

set of weighted splits each encoded by a bitsplits object bs,and applies tree

popping to that set to produce a phylogenetic tree. The set of splits induced by

that tree is known to coincide with the input set of splits. It is called by putting:

ptr<-treePop(bs)

4.4 Testing and Benchmarking

In addition to verifying the correctness of our implementations by means of small

hand-worked examples, we employed the testing protocol outlined below. In each

case, we used randomly generated input data obtained as follows: Using ape’s rtree

function, we first generated a random edge-weighted phylogenetic tree T on n leaves.

In case the implementation in question required a distance matrix as input, we took

as randomly generated distance matrix the induced distance matrix DT of a randomly

generated edge-weighted phylogenetic tree T . For comparison purposes we generated

a PHYLIP format representation of such a matrix as all programs against which we

tested read in matrices in that format.

The comparison of the generated edge-weighted phylogenetic trees was performed

by comparing their induced distance matrices using R’s all.equal function. To aid

with this we always transformed the output generated by an alternative implementation

into a suitable ape object using ape’s read.tree function.

We next discuss the testing of the newly added methods in more detail. In each

case a phylogenetic tree is an edge-weighted phylogenetic tree.

4.4.1 NJ*, Bio-NJ*, MVR and MVR*

We chose n = 400 as the leaf set size of our randomly generated phylogenetic trees

T . The induced distance matrix DT of such a tree T we then used as input to NJ* and

Bio-NJ*. In all cases we found the trees output by the methods to be in agreement with

T .
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In the case of the MVR and MVR* methods we used the distance matrix DT ,

induced by a randomly generated phylogenetic tree T , as input for both the distance

and associated variance matrix. Again we found the respective trees returned by the

two methods to be in agreement with T .

We compared our implementations of NJ*, Bio-NJ*, MVR and MVR* against

those of PhyD* [17]. For this, we chose the leafset size of T to be 15 and removed

some of the entries from the induced distance matrix DT . The resulting (incomplete)

distance matrix D−T we then used as input for the respective implementations of the

above methods in PhyD* and ape. The phylogenetic trees generated by NJ*, Bio-

NJ*, MVR and MVR* we then compared in terms of their induced distance matrices.

These we found to be in agreement in all cases. We remark that in the case of the MVR

and MVR* methods the matrix D−T served as both input distance matrix and matrix of

associated variances, with D−T being replaced by DT in the case of MVR.

In order to test MVR in case the input distance matrix did not equal the matrix of

associated variances, we carried out four separate experiments using some of the trees

in the data set accompanying the original release of SDM (see also Section 4.3). More

precisely we choose the first 2,3,4 and 5 phylogenetic trees Ti, 1 ≤ i ≤ 5, in one of

those datasets and then called SDM on the induced distance matrices DTi
in each case.

For this we used i as the weight of DTi
1 ≤ i ≤ 5. The resulting distance matrix and

matrix of associated variances we then used as input for both implementations of MVR

(when the consensus matrix had no missing entries), and MVR*. Again, we found the

results to be in agreement.

We next compare the runtimes of our implementations of NJ*, BioNJ*, and MVR*

with that of their counterpart Java-based implementations in PhyD* which were pro-

duced by their original authors. Since PhyD* involves reading input matrices from

files and writing the output tree to a file whereas in our implementations the input is

readily available in R and the output is returned as an R object we only measured the

amount of time it took PhyD* to generate the output from an (in)complete distance

matrix so as not to give our implementations an unfair advantage.

For three randomly generated phylogenetic trees T on n = 96,192,400 leaves

(where the former two values are taken from a performance study carried out by the

original authors of the methods of interest), we generated the respective distance ma-

trices DT from which we then removed entries. We present our findings in Table 1.
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APE PhyD*

method NJ* Bio-NJ* MVR* NJ* Bio-NJ* MVR*

missing 25% 75% 25% 75% 25% 75% 25% 75% 25% 75% 25% 75%

400 taxa 6.7s 4s 6.7s 4s 6.7s 4s 2.3m 43s 2.3m 43s 2.3m 43s

192 taxa <1s <1s <1s <1s <1s <1s 16.5s 5.5s 16s 5.6s 16.5s 5.6s

96 taxa <1s <1s <1s <1s <1s <1s 1.9s <1s 1.9s <1s 1.9s <1s

Table 4.1: The runtimes of our implementations as compared to those in PhyD*. The

considered values for the leafset size of T are presented in the first column and the

percentages of missing values from DT are given in the row entitled “missing”.

As can be easily seen from Table 1, the runtime of our implementations is faster

than the runtime of the corresponding implementations in PhyD*.

4.4.2 SDM

Following the same strategy as for MVR and MVR*, we tested our implementation of

SDM against the Java implementation of that method in the program SDM produced

by the original authors of SDM. We remark that SDM was required to infer missing

matrix entries in all but the first experiment. Independent of the number of input dis-

tance matrices considered, we found the corresponding consensus distance matrices

and matrices of associated variances to be in agreement.

4.4.3 Triangles method for complete distances

We chose n = 1000 as the leaf set size of our randomly generated phylogenetic tree T

and used the induced distance matrix DT as input to the method. That distance matrix

we then compared against the distance matrix of the phylogenetic tree inferred by the

method. Both we found to be in agreement.

4.4.4 Triangles method for incomplete distances

We compared our implementation with the implementation of that method in the T-

Rex software package [73]. As leafset size of T we chose again n = 15, and, as above,

we removed entries from the distance matrix DT . The resulting incomplete distance
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matrix we then used as input for both implementations of the method. Again, we found

the induced distance matrix of the generated phylogenetic trees to be in agreement.

4.4.5 Additive and ultrametric

We compared our implementations against the respective implementations of both

methods in T-Rex. To this end, we again generated a distance matrix DT , T a ran-

domly generated phylogenetic tree on 15 leaves, from which we then removed entries.

The resulting incomplete distance matrix D−T we then used as input for the respective

implementations. Since T-Rex represents the generated respective distance matrices

in the form of a NJ-tree we also represented the distance matrices generated by our

respective implementations in the form of such a tree. Again, we found the respective

induced distance matrices of the NJ-trees to be in agreement.

4.4.6 Tree popping and is.compatible

We chose n = 1000 as leaf set size of the randomly generated edge-weighted phylo-

genetic tree T . From that tree we then inferred its induced set Σ(T ) of splits plus the

weight wS of each split S ∈ Σ(T ). The set Σ(T ) we then tested for compatibility using

the is.compatible function. As expected, the method found Σ(T ) to be compatible.

We then applied the tree popping algorithm to Σ(T ) (and associated split weights) and

found the generated phylogenetic tree to be in agreement with T .

To further test the tree popping algorithm and is.compatible, we also used a set

of splits that contained non-compatible split as input. As expected is.compatible

found that set not to be compatible and the tree popping algorithm returned an empty

tree.
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II: Population Structure and NGS data
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Chapter 5

A Novel and Fast Approach for

Population Structure Inference Using

Kernel-PCA and Optimization

(PSIKO)

This chapter is based on

A-A. Popescu , A.L Harper, M. Trick, I. Bancroft and K.T. Huber. A novel and

fast approach for population structure inference using kernel-PCA and optimization.

Genetics, 198(4):1421–31, 2014. doi: 10.1534/genetics.114.171314

A-A. Popescu’s contribution is writing first drafts for the paper, developing the

simulation framework and contributing to the development of the main algorithm de-

scribed in the paper.

5.1 Chapter Summary

In this chapter we introduce a novel algorithm that promises to efficiently handle in-

ferring population structure from NGS data. This is a long-standing and well-studied

problem, however current tools tend to struggle with the sheer volume of data pro-
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vided by NGS technology. Hence we developed PSIKO, a quick and scalable tool that

promises to aid the problem of inferring population structure from NGS data. We start

by presenting the algorithm, then proceed to testing it on a variety of simulated and

real biological datasets, showing its good performance in practice and its scalability.

5.2 Introduction

Population stratification has been commonly used to investigate the structure of natural

populations for some time and is also recognised as a confounding factor in genetic as-

sociation studies [65, 75]. As a result, programs for detecting population stratification

have become a standard tool for genetic analysis. Such approaches generally separate

into two classes. Model-based approaches such as STRUCTURE [98] and the closely

related ADMIXTURE approach [1] are desirable in that they return a Q-matrix which

for each accession of the (marker) dataset indicates the proportion of its genotype that

came from one of K ≥ 2 assumed founder populations. This biological interpretabil-

ity of Q-matrices conveniently lends itself to a subsequent use in association studies.

On the other hand, such approaches often suffer from long runtimes, particularly as

dataset size increases. This problem is becoming particularly exacerbated with the in-

creased use of Next Generation Sequencing (NGS) and large SNP chips to develop

marker datasets [63, 116]. Conversely, non-model based approaches such as EIGEN-

STRAT [95] which uses Principal Component Analysis (PCA), tend towards much

shorter runtimes making them more convenient when analysing large marker sets. Un-

fortunately, EIGENSTRAT only returns principal components (PCs) of a dataset and

not a Q-matrix. Some non-model based approaches such as the recently introduced

sparse-Non-negative-Matrix-Factorization (SNMF) method [39], have made advances

regarding these issues, and output a Q-matrix for use in association genetic analy-

sis whilst significantly shortening run-times. Like EIGENSTRAT, SNMF can be

thought of as a feature extraction approach aimed at reducing the dimensionality of a

high dimensional dataset. However the matrices used by both approaches to achieve

this reduction have different mathematical properties [61]. Even so, SNMF still suffers

from longer runtimes with increased number of markers.

In this chapter, we propose the novel PSIKO approach which is linear-kernel PCA

based. Like EIGENSTRAT, PSIKO returns significant principal components of a

95



dataset. Contrary to EIGENSTRAT though, it also generates Q-matrices and these

are of comparable quality to those produced by STRUCTURE, ADMIXTURE, and

SNMF, at the same time greatly reducing runtime. In addition PSIKO’s scaling prop-

erties are better than SNMF’s (and thus STRUCTURE’s and ADMIXTURE’s) when

the dataset size increases, making it particularly attractive for large datasets.

We rigorously tested the performance of PSIKO using simulated datasets, designed

to evaluate the effects of inbreeding, noise, missing data, and SNP pruning, whilst

enabling us to compare runtime and scaling properties in comparison to leading ap-

proaches such as STRUCTURE, ADMIXTURE and SNMF.

Although we simulated a range of biologically motivated scenarios, as a more re-

alistic test, we also assessed the performance of PSIKO for Q-matrix estimation from

two biological datasets. The first of these was a relatively small diversity panel com-

prising 84 Brassica napus lines which had been previously used to perform associative

transcriptomics of seed traits [51]. This dataset is of particular interest as it could be

considered to have a complex evolutionary history. B. napus is a relatively recently

formed species, having arisen from spontaneous hybridisation between B. rapa and B.

oleracea as little as 10,000 years ago. It exhibits considerable phenotypic variation,

includes spring, semi- and winter ecotypes and has been cultivated as both vegetable

and oilseed crops. The most intensive breeding occurred over the last 50-60 years to

produce the most commonly used ‘canola type’ oilseed rape cultivars with both low

erucic acid and low glucosinolate content in the seed. Many of the lines in this biolog-

ical dataset will have been included in these breeding programmes and certain groups

(such as the winter oilseed rape lines) may have a complex breeding history. Despite

this, the wide diversity of accessions in the panel enabled 101,644 SNP markers to

be discovered. Originally the population stratification of this set of accessions was

analysed using STRUCTURE before using the identified Q-matrix in a mixed linear

association model (MLM). We decided to compare the Q-matrices from PSIKO to

those of STRUCTURE as well as SNMF and ADMIXTURE, and determine how

these Q-matrices affect the results of the MLM for the original seed oil traits.

On its own and in combination with PLINK’s (a popular whole genome analysis

toolkit, see [99]) sliding window SNP pruning procedure, we also tested the Q-matrices

produced by PSIKO and the three other methods under investigation on a subset of the

HapMap Phase 3 project dataset [117]. This dataset should provide a more standard
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random mating model than the Brassica dataset, whilst providing an excellent real-life

example of the very large marker datasets that will become more common with the

advances in sequencing technology.

This chapter is structured as follows. We first present the novel PSIKO algo-

rithm, reviewing relevant concepts from biology and data mining in the process. Sub-

sequent to this, we describe the generation of simulated datasets, which we used to test

and benchmark PSIKO. We then proceed to describing in more details the biological

datasets we used for validating PSIKO under more realistic scenarios. We subse-

quently discuss the performance of PSIKO for the above simulated and real datasets.

We conclude with a discussion of our findings and how PSIKO may be used to gain

relevant insight into population structure.

5.3 Materials and Methods

In this section, we first provide an outline of PSIKO in terms of a two step approach

and then describe these two steps in detail. This also includes a brief description of

kernel-PCA [109] as its main underlying technique. We then present details on the

simulation experiments and the real biological datasets that we used to assess the per-

formance of PSIKO, where the former also includes behaviour under noise, missing

data, inbreeding, large datasets, and SNP pruning.

We start with remarking that we follow Chapter 2, Section 2.5.2, to obtain a SNP

matrix that is, a d×n matrix whose entries are 0,1 and 2 from a dataset given in terms

of a sequence of d ≥ 1 SNPs and n≥ 1 accessions.

5.3.1 Method outline

Given a dataset X in the form of a d×n SNP matrix, PSIKO aims to infer the number

K of founders of X as well as significant PCs and a Q-matrix. See Chapter 2, Sec-

tion 2.5.2 for a more detailed description of these quantities. It consists of two main

steps: dimensionality reduction (Step I) and population structure inference (Step II).

The purpose of Step I is to infer significant principal components of X and also obtain

an estimate for K. For this we use a combination of the Tracy-Widom test [88] with

a powerful PCA-based technique called linear-kernel PCA. This technique allows us
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to use the fact that SNP data can only attain a small number of numerical values to

efficiently compute a PCA projection of X via bitwise operations on the entries of X.

When describing Step I, we show the bit-wise operations that can be used for effi-

cient PCA, and present an outline of kernel-PCA. The purpose of Step II is to quickly

find good estimates for the ancestry coefficients, that is, the entries of the Q-matrix.

For this, we exploit the properties of a PCA-reduced dataset to cast the problem of

inferring population structure within a least squares optimization framework.

Step I: Dimensionality reduction PCA is a popular dimensionality reduction method

that allows one to reduce the number of variables of the input dataset X (given in terms

of d), at the same time keeping as much variability in the data as possible. It has proven

very useful in population genetics and found in [88] and [72] to exhibit desirable prop-

erties when applied to datasets containing admixed individuals. Also, one can make

use of the fact that SNP data can only attain values 0,1 and 2 to efficiently compute

the quantities required for PCA using bitwise operations. We first go into details about

these bitwise operations, and subsequently outline the kernel-PCA technique.

Suppose X = (Xi j)1≤i≤d
1≤ j≤n

is an input dataset given in terms of a genotype matrix

where n is the number of individuals and d is the number of SNPs. Then PSIKO

associates two d×n matrices, X1 = (X1
i j)1≤i≤d

1≤ j≤n

and X2 = (X2
i j)1≤i≤d

1≤ j≤n

of bits to X. To

obtain an entry Xi j of X it proceeds as follows. If Xi j is 0, then it sets X1
i j = 0 and

X2
i j = 0. If Xi j is 1, then it sets X1

i j = 1 and X2
i j = 0. If Xi j is 2, then it sets X1

i j = 1 and

X2
i j = 1. We summarise these assignments in Table 5.1. This method of storing X uses

much less space than storing its entries as actual numeric values.

Xi j 0 1 2

X1
i j 0 1 1

X2
i j 0 0 1

Table 5.1: Numerical values in X and their corresponding values in X1 and X2.

We next outline how the above storage strategy allows for very fast computation

of the n× n Gram matrix XT X between the individuals of X, which is the first step

in carrying out linear-kernel PCA. From XT X, a kernel-PCA dimension reduction is

obtained via an eigen-decomposition. It is easy to check that the dot product between
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two individuals i and j of X (stored as above) is given by

bits(X1
:i ∧X1

: j)+bits(X1
:i ∧X2

: j)+bits(X2
:i ∧X1

: j)+bits(X2
:i ∧X2

: j).

Here ∧ represents the logical bit-wise and operation, bits(b) represents the number

of set bits of a bit string b and X k
:i represents column i of the matrix X k, k = 1,2. By

using the available built-in C++ bitwise operations, the above quantity can be computed

extremely fast even for a very large number of SNPs, thus providing a very quick way

of obtaining PSIKO’s Gram matrix.

One of the challenges faced by PCA when applied to NGS data is the very large

number of variables (SNPs). This implies the need to compute a very large d × d

covariance matrix for X and also requires computing an eigen-decomposition of such a

matrix. Several approaches exist in the literature for addressing this problem. Singular

Value Decomposition (SVD) [46] is one such approach. SVD is advantageous because

of its good runtime complexity and because it does not require the computation of a

large covariance matrix. Another approach is exploiting the relationship between the

covariance matrix (XXT ) and the Gram matrix (XT X) of the dataset to avoid the need to

manipulate a large matrix ( this is also used by kernel-PCA, see below). As it turns out,

a particularity of NGS data (the fact that variables can attain only the values 0,1 and

2) implies that this latter approach is in fact more efficient than SVD (see Chapter 6,

Section 6.3.2 for a comparative benchmark). This is due to the fact that, as described

above, the Gram matrix can be computed very efficiently using highly optimised bit-

wise operations. However, this efficient computation requires that the entries in the

matrix X retain their initial 0,1,2 values. This is a problem, as then the matrix is no

longer centred. To overcome this problem, we make use of kernel-PCA, which does

not require the input matrix be centred, but rather performs a pseudo-centring of the

computed Gram matrix. We next go into more details about kernel-PCA.

Rather than carrying out a PCA-analysis directly on a given dataset, in kernel-PCA

that dataset is first projected to some new higher dimensional (unknown) feature space,

and then classic PCA is applied to the resulting projection of the dataset. Due to its

centrality to PSIKO, we next describe it within a kernel-PCA setting [82].

For X as above, we start with remarking that if it is centred as described in [95]

then performing PCA on it reduces to finding an eigen-decomposition of the d× d-
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dimensional sample covariance matrix XXT . Suppose W is the matrix of eigenvectors

and Λ is the diagonal matrix of eigenvalues of such a decomposition. With this in

mind, kernel-PCA can be summarised as follows.

On a high level, the data first gets projected via a map φ(xi) = φi from the original

feature space to some new higher dimension feature space φ , and classic PCA is carried

out in this feature space. In practice, this feature space is hard to compute, so instead

we apply what is known as the kernel trick (see below). To do this, we first note that a

PCA projection can also be computed by using the matrix K = XT X of inner products

between observations. We can do this as follows. Letting U denote the matrix con-

taining the eigenvectors of K and Λ an l× l diagonal matrix whose diagonal elements

correspond to the l eigenvalues, we have that (XXT )W = WΛ. Pre-multiplying by XT

gives us (XT X)(XT W)= (XT W)Λ. But then the eigenvectors U of XT X are just XT W

with eigenvalues the same as XXT . These eigenvectors are however not normalised,

since their norm is given by ||u j||2 = wT
j XXT w j = λ jw

T
j w j = λ j. Hence, to normalise

u j, we need to divide that vector by
√

λ j. Finally, the normalised eigenvectors of XXT

are given by W = XUΛ−
1
2 .

Based on this, in order to apply the kernel PCA we need to take the following steps.

We replace all elements Ki j = 〈xi,x j〉 of K with κ(xi,x j). Denote this new matrix by

Kφ . We call κ a kernel function, which can be thought of as a proxy for the dot prod-

uct between observations xi and x j in the feature space φ . Then in order to find the

projection of x in φ we need to compute φ T
∗ Wφ = φ T

∗ ΦUφ Λ−
1
2 , where φ∗ = φ(x) and

Φ is the matrix X with all columns xi replaced by φ(xi), 1≤ i≤ n, and Uφ is obtained

from the eigen decomposition of Kφ . Since in practice computing φ is difficult, we can

instead proceed as follows. The projection of x can be re-written as kUφ Λ−
1
2 , where

k = (〈φ(x),φ(x1)〉,〈φ(x),φ(x2)〉, . . . ,〈φ(x),φ(xn)〉). Now we replace all entries of k

by their kernel evaluations, obtaining k′ = (κ(x,x1),κ(x,x2), . . . ,κ(x,xn)). Then the

projection of x in φ is obtained by computing k′Uφ Λ−
1
2 . This replacement of all inner

products between observations by an appropriately chosen kernel function is called the

kernel trick, and allows us to project our data in φ without having to compute φ ex-

plicitly. The gain in speed of kernel-PCA over PCA (and thus the ability to cope with

large NGS datasets) is an immediate consequence of the fact that computing KΦ re-

quires O(n2d) operations and a further O(n3) are required for its eigen-decomposition,

(as opposed to O(d2n) and O(d3) for PCA for the corresponding tasks) which amounts
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to considerably fewer operations for kernel-PCA when d is much larger than n. Ad-

ditionally, kernel-PCA allows us to start of with a non-centred input matrix X. This

is because we can centre the matrix KΦ after it has been computed without having to

worry about whether X was centred or not. This is done by setting

Kcentred = K−1nK−K1n +1nK1n

where 1n represents an n×n matrix where each element has value 1
n
.

With the above in mind, for Step I we proceed as follows. We first perform a

linear kernel-PCA for X, that is, we take the kernel function to be the inner product

between accessions of X. Subsequent to this we subject the resulting eigenvalues to

the Tracy-Widom test to identify significant principal components (see e. g. [90] for

a survey of attractive alternative approaches). This test has proven very popular in

population genetics and relies on the fact that non-zero eigenvalues of a matrix follow

a Tracy-Widom distribution. Checking whether an eigenvector is a significant princi-

pal component of that matrix or not then reduces to checking whether its associated

eigenvalue passes a certain statistical significance test [88].

Step II: Population Structure Inference Simulation studies indicate that a PCA-

reduced dataset X obtained in Step I can be represented in terms of a (K−1)-dimensional

simplex SK−1 where K ≥ 2 (see e. g. Figure 5.2 for examples for the case K = 3, and

[88] and [72] where this phenomenon has also been observed for general K). The ver-

tices of such a simplex correspond to the putative founders of the dataset, that is, its

non-admixed accessions. The position of an accession relative to these vertices en-

codes the admixture proportion of that accession in the sense that it can be uniquely

expressed as a convex combination of the vertices of that simplex. Put differently, with

a1,a2, . . . ,aK denoting the vertices of the simplex SK−1 representing a dataset X found

in Step I, any of its accessions x can be expressed as

x =
K

∑
i=1

λiai,

where, for all 1 ≤ i ≤ K, the quantity λi ≥ 0 is the genetic contribution of founder ai

to x and ∑K
i=1 λi = 1. Thus, the components of the ancestry vector λx = (λl)1≤l≤K of

x can be thought of as the admixture coefficients of x and computing them is straight
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forward using standard arguments from linear algebra if the matrix A= (a1,a2, . . . ,aK)

of founders is known (see below). If this is not the case then, by viewing the matrix AQ

as an approximation of X, the matrix A (and thus, by virtue of the above, the Q-matrix

of X) can be inferred using least squares optimisation. This boils down to minimizing,

for a PCA-reduced SNP matrix X found in Step I, the quantity

||X−AQ||2F , (5.1)

with respect to A and Q = (λx)x∈X, and ||B||F is the Frobenius norm of a matrix (see

Chapter 2, Section 2.5.5). We can solve Equation 5.1 by employing an iterative opti-

misation technique similar to that in [115].

We start by making some observations that are specific to optimising Equation (5.1),

and then present in Algorithm 6 an efficient algorithm for minimising it.

Suppose we are given a matrix Q. Finding a matrix A which minimises Equa-

tion (5.1) can easily be achieved via linear least-squares optimisation. More precisely,

we have that

x =
K

∑
i=1

qxiai, (5.2)

holds for any accession x in our data set. In the context of optimising Equation (5.1)

we are interested in finding values for ai, 1≤ i≤ K such that a given accession x in

X is approximated as closely as possible by Equation (5.2). This can be achieved by

using:

Observation 1.

A = (QT Q+ΓΓT )−1QT XT , (5.3)

where Q and X are as before and Γ = αI is a Tikhonov regularisation matrix.

Usually, the parameter α from Equation 5.3 would be inferred using some form

of cross-validation. Indeed, a popular approach in the literature called Leave One

Out Cross Validation (LOOCV) can help infer α without the computational overhead

required for regular cross-validation [104]. However, a brief study using simulated

data show that in practice a value of α = 1 produces results that are generally very

similar to a LOOCV-inferred value of α . This, in combination with the computational

overhead of performing additional operations at each iteration of the algorithm has
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lead us to choose implementing PSIKO with α = 1 rather than following a LOOCV

approach.

Now consider the converse problem, i. e. that the matrix A is known, and that we

are interested in finding the matrix Q. For this we once again use Equation (5.2) above.

More precisely, utilising the fact that ∑K
i=1 qxi = 1 holds for all x ∈ X, we obtain:

Observation 2. Let B :=

(
1 1 . . . 1

a1 a2 . . . ak

)
, qx :=




qx1

qx2

. . .

qxK




and x′ :=

(
1

x

)
.

Then Bqx = x′ or, equivalently,

qx = B−1x′ (5.4)

We note that the above solution for qx can produce entries which are outside the

interval [0,1]. To address this we followed the strategy employed in sNMF [39], and

first set for all x ∈ X all entries of qx that are negative to zero. We then divide each

entry of qx by the sum of entries of qx. This ensures that the values of qx lie in the

interval [0,1] and that they also sum to one.

Using Observations 1 and 2, we can optimise Equation (5.1) iteratively (see Algo-

rithm 6, with ε set to 10−5). We found that that algorithm returns accurate estimates of

the Q matrix across all simulation scenarios as well as for the two biological datasets

under investigation in Section 5.3.3. Additionally, since it is working directly on a

reduced-dimension dataset, the matrix operations involved in the algorithm are com-

puted very quickly as opposed to [115], where the whole dataset is considered at each

operation.
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Algorithm 6 Algorithm used to optimise Equation (5.1)

Input: A data matrix X as returned by Step I of PSIKO

Output: A matrix A of founders for X as well as Q-matrix Q for X, minimising Equa-

tion (5.1).

Initialise A and Q randomly.

prev = 0

cur = L(A,Q)

set ε to a small number, say 10−5

while |prev− cur|< ε do

estimate Q given A using Equation 5.4

estimate A given Q using Equation 5.3

prev = cur

cur = L(A,Q)

end while

return A,Q

With the above in mind, a pseudo-code representation of PSIKO is given in Algo-

rithm 7.

Algorithm 7 PSIKO

Input: A dataset in the form of a SNP matrix X with accession loci encoded as 2’s,

1’s and 0’s.

Output: The number K of founders, the significant principal components (PCs) and a

Q-matrix Q = (qcx) for X, where c is a founder of X and x is a an accession of X.

STEP I (Dimensionality Reduction):

1 : first apply linear kernel-PCA to X to reduce dimensionality of the dataset and

then the Tracy-Widom test for non-zero eigenvalues to infer the number nComp

of significant principal components. Finally use those components to compute a

nComp dimensional dataset X ′

2 : normalize X′ to have zero mean and unit variance

STEP II (Population Structure Inference):

3 : find the vertices (and thus the number K of founders) of the (nComp−1)-simplex

representing X′ by minimising Equation (5.1)

4 : return K and the matrix Q found in Step 3 and the significant PCs found in line 1
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5.3.2 Simulated Datasets and performance measure

In this section, we present an outline of how we generated the various types of datasets

underpinning our simulation study for assessing PSIKO’s performance. In addition,

we also briefly review the Root Mean Squared Error measure which we use as assess-

ment criterion. We start with providing details concerning our simulation study.

Simulated datasets generation We used the command line-based coalescent simu-

lator msms [32] to first simulate founder allele frequencies and then used them to simu-

late admixture proportions and genotypes of admixed individuals. More precisely, we

simulated K = 3,4, . . . ,10 independent, randomly mating populations each of which

comprised 100 individuals, where by an individual we mean a sequence comprising

of L loci evolved over a period of 10,000 generations. More precisely, we simulate

K independent demes (populations) with no migration between them over a period of

10,000 generations. Each deme is represented by 100 simulated individuals. After

10,000 generations, all K demes are merged and the coalescent process is allowed to

terminate. We simulate a fixed number of segregating sites (SNPs in our case) in each

case. Specifically, for K = 3 and 13,626 segregating sites, we used the following msms

command:

msms.jar 300 1 -s 13626 -N 1000 -I 3 100 100 100 -ej 2.5 1 2 -ej

2.5 2 3

By modifying the -I flag and adding more -ej flags, this command can be used to

simulate an arbitrary number of independent populations. The user is referred to the

msms manual for more details.

Here, the number of generations is biologically inspired and the number of indi-

viduals and the value K = 3 is based on [1]. The values we chose for L were 13,262

(which is as in [1]) and, to shed light on to the scalability of PSIKO, also 100,000;

250,000 and 2.5 million. We then used these individuals to calculate founder allele

frequencies fk1, fk2, . . . , fkL for all 1≤ k ≤ K.

Once obtained, we simulated the genotype of an individual on a locus by locus basis

using the following two-step process. For a locus l of an individual i, we first simulated

the founder zl of l by sampling from a multinomial distribution with parameter the

admixture proportions for individual i. The admixture proportions were sampled from

a Dirichlet distribution and represent the contribution of each founder to the dataset.
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Subsequent to this, we simulated the genotype of individual i at locus l by sampling

from a multinomial distribution with parameter fzl l the allele frequency of population

zl at locus l (see Figure 5.1 for a summary of this two-step process).

We repeated this process 1,000 times to obtain an admixed dataset containing 1,000

individuals.

1

2

3

K FK

F3

F2

F1

Simulate K independent
randomly mating popula-
tions for 10,000 genera-
tions.

Compute empirical al-
lele frequencies to form
vector Fk for each pop-
ulation.

xi

qKi

q3i

q2i

q1i

Sample admixture propor-
tions qki (1 ≤ k ≤ K) for xi

from a Dirichlet distribution.

X

Sample genotype from Fk

for each simulated indi-
vidual xi based on qki.

k Fk
qki

Figure 5.1: A summary of how the datasets underpinning our simulation experiments

were generated. Each of the 1,2, . . . ,K encircled values indicates a founder popula-

tion generated with the msms software. For all 1 ≤ k ≤ K, the vector Fk represents

empirical allele frequencies computed for each of the K founder populations (i. e.

Fk = ( fk1, fk2, . . . , fkL)) and the values qki represent the proportion population k con-

tributes to accession xi of the dataset X.

Performance measure To assess the performance of the four approaches under con-

sideration with regards to their ability to recover the known Q-matrix underlying a

dataset, we used the Root Mean Squared Error RMSE between two Q-matrix Q̂ and

Q′, given by:

RMSE =

√
1

nK
∑

i
∑
k

(q̂ik−q′ik)
2 (5.5)
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where n represents the number of individuals (1,000 in our case) and K represents the

number of founders (K = 3,4, . . . ,10 in our case) and q̂ik and q′ik are the elements of Q̂

and Q′ respectively, where 1≤ i≤ n and 1≤ k ≤ K.

Parameter settings For all our simulation experiments we used ADMIXTURE

and SNMF with their respective default settings, as suggested by their authors. For

STRUCTURE, we used the following settings. We assumed admixed populations

with independent allele frequencies. We set the length of the burn-in period to 2,000

iterations and ran the program for an additional 2,000 iterations after the burn-in pe-

riod. All remaining parameters were used with default values. To ensure fairness in

runtime comparison between the above three methods and PSIKO, we only compared

their runtimes for the ground truth value of K, thus ensuring that a single run of PSIKO

was timed against a single run of all the other methods.

5.3.3 Biological Datasets

To assess the performance of PSIKO with challenging biological datasets, we first

performed a comparison of the Q-matrix provided by PSIKO to those estimated using

STRUCTURE, ADMIXTURE and SNMF for a set of 84 diverse Brassica napus

accessions as described in [51]. Over half of these accessions are winter oilseed rape

types (OSR; 49), but the rest comprise diverse winter fodder types (5), spring OSR

(14), Chinese semi-winter OSR (5), Japanese kale (2), Siberian kale (2) and swede

(7). Q-matrix estimations were compared directly and subsequently used to perform

linear model association mapping following the method outlined in [51]. Briefly, the

Q-matrices were used as covariates in general linear models (GLM), and a mixed linear

models (MLM), where a relatedness measure was included as a random effect for two

seed oil traits, i. e. erucic acid and glucosinolate content using the program TASSEL

[4]. The results of these models were then compared to their P-value expectations.

Results were presented as QQ-plots showing observed against expected log10P values

for each of the four stratification methods, and each of the seed oil traits and association

model types.

To also investigate PSIKO in a human population context, we applied it to a subset

of the HapMap Phase 3 dataset [117]. That subset comprised 541 individuals spanning

the groupings with the following sampling scenarios. African ancestry in Southwest
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USA (ASW), Yoruban in Ibadan, Nigeria, West Africa (YRI), Utah residents with

Northern and Western European ancestry from the CEPH collection (CEU) and Mex-

ican ancestry in Los Angeles, California (MEX). Each individual was genotyped over

1,457,897 SNP loci. We remark in passing that the choice of dataset is as in [1] noting

though that that paper used an older version of the dataset and that those sequences

had been pruned so that each comprised 13,298 genotyped SNP loci [1]. The general

understanding of the dataset is that the ASW sample is admixed with ancestries from

YRI and CEU and that MEX is admixed with ancestries from CEU and an unsampled

founder population [59, 68, 1]. Therefore the number of founders for this dataset is

expected to be three.

5.4 Results

Bearing in mind that ADMIXTURE has been shown in [1] to be faster than STRUC-

TURE, FRAPPE [115] and INSTRUCT [40], and that the recently introduced FAST-

STRUCTURE approach [102] has runtime comparable to ADMIXTURE [102], to

asses PSIKO’s performance we only compared it against ADMIXTURE and SNMF

and, due to its popularity, STRUCTURE. For this, we used a computing cluster with

Intel Sandybridge Dual processor, 8 core E5-2670 2.6GHz CPU’s and 2Gb of DDR3

memory at 1066Mhz, with Intel Hyper-threading disabled. We simulated different sce-

narios for how populations might have arisen. These simulation studies are similar in

spirit to those performed in [1]. Additionally we tested the methods on real biologi-

cal examples. We start with describing the results of the simulation study which also

includes details on the parameters we varied and their ranges. We then present our

findings for the biological datasets.

5.4.1 Simulated datasets

We simulated datasets each containing 1,000 individuals, where each individual is as-

sumed to be an admixture of K ≥ 2 founder populations (see Section 5.3). The param-

eters we varied were the number K of founders and the respective Dirichlet distribution

parameters for them. The values we considered for K ranged from three to ten and our

choices for the values for the Dirichlet distribution parameters were inspired by the
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values used in [1]. We will explain these choices in more detail below as they depend

on the values of K employed and thus necessitate a separate treatment of the cases

K = 3 and K ≥ 4. Before detailing these cases though, we remark that low values for

the Dirichlet distribution parameters correspond to almost admixture-free populations

whereas values close to one correspond to heavily admixed populations. Thus, our

simulation study allows us to assess the performances of the methods in question on

highly admixed and highly non-admixed populations. We start our discussion with re-

marking that the value for K was correctly recovered by all tested methods for each of

the constructed simulated datasets.

For K = 3, and datasets with sequence length 13,626 we chose the same values for

the three Dirichlet distribution parameters as in [1], resulting in six different simulation

scenarios. Three of these scenarios were asymmetric meaning that in each case at least

one Dirichlet distribution parameter was different from the other two and the other

three were symmetric meaning that in each case all Dirichlet distribution parameters

were the same. For each of the six scenarios we generated 100 datasets, resulting

in a total of 600 datasets. These we then analysed with regards to their behaviour

under PSIKO (see below), and the average Root Mean Square Error for the Q-matrices

found by each of the methods considered, where the average is taken over all 100

datasets of a scenario (see Section 5.3). Furthermore, for each of the three sequence

lengths, 100,000; 250,000 and 2.5 million we generated 10 datasets as before using

the symmetric Dir(1,1,1) parameter distribution. To assess the effect of SNP-pruning

we also generated a further 100 datasets following a similar protocol (see below for

details). Additionally, to test PSIKO’s robustness to deviations from our simulation

model, we also simulate scenarios with noise, missing data and inbreeding present.

Behaviour of a dataset To investigate the behaviour of PSIKO when applied to a

dataset generated under each of the six scenarios, we randomly chose one dataset from

each. Exploiting the observation that the number of founders of a dataset equals the

number of significant principal components found for that dataset in Step I of PSIKO

plus one (see e. g. [88]), we depict each chosen dataset in terms of a panel containing

a two dimensional coordinate system whose axes are labelled by the two significant

principal components found by PSIKO for that dataset (Figure 5.2). For each coor-

dinate system that make up that figure, its footer Dir(x,y,z) encodes the simulation

scenario used to generate it in terms of the values x, y, and z for the three Dirichlet
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distribution parameters. For example, the footer Dir(0.2,0.2,0.5) of the leftmost coor-

dinate system in the bottom row indicates that two out of the three Dirichlet distribution

parameters had value 0.2 and that the third one had value 0.5.

Figure 5.2: PCA reduced dataset under different simulation scenarios, each of which

is represented by a separate panel. In each panel, the coordinate axis are the first two

significant principal components - see text for details.

As expected (see also [88]), each of the chosen datasets depicted in Figure 5.2

(after having applied PSIKO to them) corresponds to a 2-simplex with the dots inside

the simplex representing the dataset’s accessions. PSIKO infers three founders for

each dataset. We indicated them for each dataset in terms of three ellipses. These

are clearly very close to the vertices of the simplex representing that dataset and thus

the founders of that dataset. Also the figure suggests that the smaller the values for

the Dirichlet distribution parameter are the more the data points get pushed to the

simplex’s vertices, which is again as expected. This holds not only for the asymmetric

scenarios but also for the symmetric ones where the data points get pushed away from

the founder with the lowest value. An extreme case in this context is the asymmetric

scenario corresponding to Dir(0.05,0.05,0.01) as it suggests that one of the founders

(i.e. the one corresponding to Dirichlet distribution parameter value 0.01) had very

little contribution to the represented dataset.
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Average Root Mean Square Error We next turn our attention to assessing the es-

timated accuracy of PSIKO by measuring the average RMSE between the true and

estimated Q-matrices under each one of the six simulation scenarios. For this we used

the 600 datasets generated as described above as input to all four methods in question

to obtain Q-matrix estimates from each of them. For each method and over all 100

datasets of a scenario we then computed the average RMSE between the true and es-

timated Q-matrices. A summary of our results in terms of these averages is given in

Table 5.2 which consists of six panels each of which corresponds to one of our six

simulation scenarios. As can be readily observed, all methods seem to be performing

similarly well under all simulation scenarios, with negligible differences between their

estimates for the Q-matrices.

Dir(0.2,0.2,0.5) Dir(0.2,0.2,0.05) Dir(0.05,0.05,0.01)
PSIKO 0.008 0.007 0.005

ADMIXTURE 0.008 0.005 0.002

SNMF 0.008 0.005 0.002

STRUCTURE 0.053 0.022 0.021

Dir(1,1,1) Dir(0.5,0.5,0.5) Dir(0.1,0.1,0.1)
PSIKO 0.011 0.009 0.004

ADMIXTURE 0.018 0.01 0.004

SNMF 0.02 0.013 0.005

STRUCTURE 0.015 0.016 0.03

Table 5.2: For K = 3, we present the average RMSEs between the true and the esti-

mated Q-matrices for our simulated datasets. -see text for details

Longer Sequences As can be readily observed from Table 5.3 and Figure 5.3,

PSIKO is faster than SNMF1 for each of the three sequence lengths used i. e. 100,000;

250,000 and 2.5 million (see Section 5.3). In fact, as the length of the sequences

grows, so too does the difference in run time between PSIKO and SNMF with that

difference being significantly in favour of PSIKO. A possible reason for this might

be that PSIKO is based on kernel-PCA, which is known to scale very well with the

number of variables of a dataset which, in our case, is the number of SNPs i. e. the

sequence length (see also Section 5.3). This behaviour seems to suggest that PSIKO

1Since it has been shown in [39] that ADMIXTURE is slower than SNMF, we only compared

PSIKO against SNMF.
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scales better than SNMF with increasing sequence length making it highly attractive

for population structure estimation from the very large datasets that are becoming in-

creasingly more common in modern, whole-genome studies.

Sequence Length 100,000 250,000 2,500,000

PSIKO 8s 11s 1m25s

SNMF 55.5s 1m40s 22m28s

Table 5.3: We summarise the relative runtimes of SNMF and PSIKO as averages over

all 30 datasets (i. e. 10 datasets for each symmetric Dirichlet distribution parameter

setting given in Table 5.2).

22 23 24 25
24

25

26

27

28

Figure 5.3: Log-log (base e) plot of PSIKO runtimes (x-axis) vs. SNMF runtimes

(y-axis), which shows the speed-up provided by PSIKO over SNMF.

SNP-pruning: A popular way to turn a large SNP dataset into a dataset of more

manageable size is to employ Linkage Disequilibrium (LD) [99], which is essentially

a measure of how frequently SNPs get transmitted together. This technique however

has the potential to remove relevant information thus introducing bias to a dataset. To

test the robustness of all four methods with regards to this we proceeded as follows. For

K = 3 we used msms to simulate 100 datasets each comprising 1,000 individuals and 1

million SNPs per individual. From the resulting sequences we then randomly removed
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90% of SNPs and then ran PSIKO, ADMIXTURE, and sNMF on the resulting 100

datasets. We found that the average RMSE was below 0.025 for all of PSIKO, sNMF

and ADMIXTURE, corresponding to at most a 2.5% error in ancestry estimates. Once

again, all of the tested methods correctly inferred K=3. The average runtimes were 3s

for PSIKO, 7s for sNMF and 30s for ADMIXTURE.

Larger values of K: Due to the combinatorial explosion caused by asymmetric

Dirichlet parameter distributions for increasing values of K, we only considered sym-

metric Dirichlet distribution parameters for higher values of K, that is, for K ranging

between four and ten. For each of these values for K, we chose the same values for the

Dirichlet distribution parameters as for the symmetric Dirichlet distribution parameters

for K = 3 i.e. all 1, all 0.5 and all 0.1.

We found that the performance of each of the methods is comparable for all of the

resulting 2,100 datasets (see Table 5.4). It is worth noting though that the runtime of

PSIKO is much faster than that of ADMIXTURE (and hence also STRUCTURE),

and slightly faster than that of SNMF, with SNMF taking on average 7 seconds to

complete processing each dataset, PSIKO taking on average 4s to complete, and AD-

MIXTURE taking on average 55s to complete.

Dirichlet parameters 1 0.5 0.1

K = 4 0.013 0.009 0.007

K = 5 0.013 0.01 0.01

K = 6 0.015 0.01 0.01

K = 7 0.015 0.011 0.011

K = 8 0.015 0.012 0.012

K = 9 0.016 0.013 0.013

K = 10 0.016 0.013 0.01

Table 5.4: Denoting the Dirichlet distribution parameter settings of all 1s, all 0.5s and

all 0.1s, by 1, 0.5 and 0.1 respectively and using the latter as column labels, we present

the average RMSE between the true and the estimated Q-matrix for PSIKO for the

values K = 4, . . . ,10.

Noise Due to the possibility of complex evolutionary processes such as hybridiza-

tion having confounded the coalescent signal in a dataset, we also tested the robust-
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ness of PSIKO for noisy datasets. These we obtained by employing a parameter p

that governs the amount of noise that we allowed a dataset’s sequences to contain.

More precisely, we started with a dataset obtained for K = 3 and Dirichlet distribution

parameters Dir(1,1,1) (see Section 5.3 for details), and then, for every one of its se-

quences, flipped on a locus by locus basis the allele of that locus with probability p.

Using this modification process we generated 100 noisy datasets for 1,000 accessions

at 13,262 loci with noise level p set to 0.01, 0.05, 0.1 and 0.15, corresponding to 1%,

5%, 10% and 15% noise respectively.

As can be readily seen, the difference in the average RMSE between the estimated

and true Q-matrix for each approach in question under each of the aforementioned

noise level is marginal (Table 5.5) suggesting that all methods are equally robust under

the considered simulation scenarios with the observed differences being marginal.

p 0.01 0.05 0.1 0.15

PSIKO 0.011 0.012 0.013 0.015

SNMF 0.016 0.012 0.012 0.02

ADMIXTURE 0.018 0.013 0.013 0.019

Table 5.5: Average RMSE between the true and estimated Q-matrix for Dir(1,1,1) for

each approach under each noise level p.

Missing data Reflecting the fact that even with current NGS technology, missing

data is still a problem [51], we also assessed the robustness of PSIKO for this type of

data. To obtain such datasets, we proceeded as in the previous data experiment only

now instead of flipping a locus allele state with probability p, we set it to a missing

value character with probability p. More precisely, for K = 3 and Dirichlet distribution

parameters Dir(1,1,1), we generated 100 datasets for 1,000 accessions each of which

13,262 loci long (see Section 5.3). We set the missing value character probability p to

0.1 and 0.2, corresponding to 10% and 20% missing data, respectively. Using again

the average RMSE as assessment criterion, we present our findings in Table 5.6.

As can be readily seen, even with large proportions of data missing all three meth-

ods perform equally well with only marginal differences, a fact that was observed for

SNMF and ADMIXTURE also in [39].
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p 0.1 0.2

PSIKO 0.012 0.012

SNMF 0.013 0.012

ADMIXTURE 0.019 0.021

Table 5.6: Average RMSE between the true and estimated Q-matrix for Dir(1,1,1) for

each approach under each missing value probability character p.

Inbreeding The assumption of random mating is frequently violated in natural pop-

ulations. To test the robustness of PSIKO under these circumstances, we also sim-

ulated datasets where inbreeding is present. To do this, we first simulated K = 3

independently mating populations as in the noise experiment. For each population

1≤ k≤ 3 and each locus l in such a population, we then computed the empirical allele

frequencies fkl (see Section 5.3). Subsequent to this and following [39], we used a

pre-set value for the inbreeding coefficient FIS (i.e. FIS = 0.25 and FIS = 1) to compute

genotype frequencies gkl at locus l in population k. Using the Dirichlet distribution

parameters Dir(1,1,1), we then applied the same simulation protocol as above (see

Section 5.3.2 for details), with gkl taking the place of fkl . For each value of FIS, we

simulated 100 datasets comprising 1,000 individuals each with 13,262 genotyped SNP

positions.

As can be seen (Table 5.7), all methods seem to perform well when inbreeding is

present in the dataset, although PSIKO seems to be slightly more accurate than SNMF

and ADMIXTURE (see also [39] where a similar trend was observed for SNMF and

ADMIXTURE).

FIS 0.25 1

PSIKO 0.016 0.017

SNMF 0.026 0.027

ADMIXTURE 0.022 0.026

Table 5.7: Average RMSE between the true and estimated Q-matrix for Dir(1,1,1) for

each approach under each value for the inbreeding coefficient FIS.
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5.4.2 Biological datasets

In order to further assess PSIKO, we also subjected it to the test of two biological

datasets, one of which is an oilseed rape dataset that was originally studied in [51],

and the other is from the HapMap 3 project (see Section 5.3 for a brief description of

each). We compared our findings with that of ADMIXTURE and SNMF, again using

the average RMSE as an assessment measure.

Oilseed rape dataset Two of the four methods tested predicted two population clus-

ters (i. e. K = 2). ADMIXTURE predicted three population clusters, while SNMF

predicted five clusters. For the purposes of comparing the four models equally, we

elected to use the Q-matrices generated for K = 2 from each of the programs. Simi-

larly and as recommended by their respective authors, we ran all programs with their

default parameter values. Additionally, we ran STRUCTURE with a burn-in period

of twenty thousand iterations, followed by another twenty thousand iterations. Di-

rect comparison of the four obtained Q-matrices (Figure 5.4) indicate great similarity,

particularly between ADMIXTURE, SNMF and PSIKO.

Figure 5.4: Q-matrix plots for the 84 line Brassica napus dataset comparing the per-

formance of PSIKO to other leading methods. The proportion of alleles belonging to

each of the clusters is shown by respective white bars (cluster 1) or black bars (cluster

2).
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The results of the association mapping using each of the four matrices were very

similar (Figure 5.5). As expected, incorporating the relatedness matrix as a random

effect in a mixed linear model (MLM) reduced the supposed Type I error rate. For

the erucic acid trait, the residual error was minimised by the MLM/STRUCTURE

model, and for the seed glucosinolates trait the residual error was minimised by the

MLM/PSIKO model. It is worth noting, however, that the difference between the Q-

matrices was not enough to alter identification of markers in close proximity to the

major causative loci (see [51] for details).

Figure 5.5: QQ-plots illustrating population structure corrections using the four meth-

ods in GWAS analysis of two traits in the 84 lines Brassica napus panel, erucic acid (A)

and seed glucosinolate content (B). The expected -log10P (x-axis) are plotted against

those observed (y-axis) from either a general linear model (solid lines) using popula-

tion structure correction only, and a mixed linear model (dashed lines) with population

structure and relatedness corrections. The diagonal line is a guide for the perfect fit to

the expected -log10P values.

HapMap3 dataset Given the size of the dataset and thus the prohibitively long

runtime of STRUCTURE, we only investigated it with ADMIXTURE, SNMF, and

PSIKO (again with all parameter values set to default). Since there is no trait data

available, we measured the difference between any two of the three returned Q-matrices
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in terms of their RMSE and their R2 correlation coefficient.

Given the widely accepted fact that the number of founders for this particular

dataset is three, all three methods were run with K = 3. They all found strikingly

similar Q-matrices. More precisely the RMSE between any two matrices was never

larger than 0.02 (corresponding to about 2% difference) and the R2 correlation coeffi-

cient was always larger than 0.99 (suggesting that they are almost perfectly correlated).

However there was a discrepancy between the methods with regards to estimating the

number of founders for the dataset with PSIKO and ADMIXTURE returning K = 3

whereas and SNMF returned K = 4. The very fast runtime of 48s for PSIKO (as

compared to ADMIXTURE whose runtime was 5212s equating to around 1h and

27min and SNMF whose runtime was 17min and 18s) is strikingly apparent with this

large-scale dataset.

Since mapping information is available for this dataset which can be used for LD

based SNP-pruning purposes, we also investigated the performance of PSIKO, sNMF,

and ADMIXTURE when the sequences are pruned. More precisely we used the slid-

ing window based SNP-pruning approach implemented in PLINK [99] (with default

settings) to obtain a pruning of the HapMap3 dataset. We found that PSIKO, sNMF,

and Admixture all correctly infer the widely accepted number of three founders for

that dataset, and that the RMSE between any pair of estimated Q-matrices is never

greater than 0.02 (i.e. a 2% disagreement), suggesting that all tested methods yield

very similar results (data not shown). However, PSIKO took 21 seconds to complete.

Using K = 3 as input, sNMF took 6 minutes and ADMIXTURE took 36 minutes. Ad-

ditionally, we found that the SNP pruning took 52 minutes to terminate resulting in a

52 min overhead in the total running time of each method for this experiment. This is

in stark contrast to the 48 seconds it took PSIKO to analyse the complete, unpruned

dataset.

5.5 Discussion

Population structure is a confounding factor in population association studies, hamper-

ing our understanding of how, for example, agronomically important traits have been

selected for in crop plants or how diseases might have spread throughout a population

[95]. It is therefore important to be able to correct for it and this entails gaining in-
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sight into a dataset’s Q-matrix as well as the number of its founders. Popular software

packages such as STRUCTURE, FRAPPE, INSTRUCT and ADMIXTURE infer

both. Many of them are based on sophisticated models and rely on assumptions such

as satisfying Hardy Weinberg Equilibrium. However if the dataset in question violates

such assumptions or is very large, as would be the case for NGS datasets, these ap-

proaches tend to suffer from long runtimes. To address, among others, the issue of

scalability the SNMF approach has been proposed [39]. Unlike STRUCTURE and

ADMIXTURE, it is not model-based and uses sophisticated algorithmic techniques

to ensure fast run-times on large datasets.

Here, we propose the novel and fast PSIKO approach for population structure in-

ference. By combining linear kernel-PCA with a quick-to-solve optimisation problem,

it couples the fast runtime and robustness of PCA with the biological interpretabil-

ity of Q-matrices obtained from model-based approaches such as STRUCTURE and

ADMIXTURE. This allows quick estimation of the Q-matrix underpinning a marker

dataset as well as the number of founders of that dataset. Due to PCA’s few underlying

assumptions, PSIKO is widely applicable and generally has a very low run time, at

the same time producing results that are comparable in quality with those obtained by

ADMIXTURE, STRUCTURE and SNMF.

In order to assess the performance of PSIKO with regards to Q-matrix estimation

and inference of founder number, we rigorously tested it on both simulated and real

biological datasets. In our simulation studies, we varied the number of founders for

a dataset as well as the admixture scenarios for generating a dataset. To help ensure

biological relevance, we based our choices for the range of these parameters on those

made in [1]. Across a wide range of cases of admixture, we found that PSIKO provides

Q-matrix estimates that are very close to the estimates for the respective datasets pro-

duced by STRUCTURE, ADMIXTURE and SNMF where closeness is measured in

terms of the Root Mean Squared Error between two matrices [1]. Our missing data,

noise, and inbreeding experiments suggest that PSIKO as well as ADMIXTURE and

SNMF handle these types of data extremely well. However for large datasets PSIKO

seems to be superior, even if such a dataset is pruned based on e. g. linkage disequi-

librium.

The first of our biological datasets comprises 84 oilseed rape accessions, represent-

ing some seven crop types, genotyped over 101,644 SNP loci. The second comprises
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541 human samples from differing geographic regions, genotyped at 1,457,897 SNP

loci. For each dataset, we found that the Q-matrix estimates generated by PSIKO were

very close to those produced by ADMIXTURE and SNMF for that dataset, using the

same measure of closeness as in our simulation study. However, it is worth pointing

out that independent of whether the dataset had been pruned or not, PSIKO’s runtime

was only a fraction of that of ADMIXTURE, especially on the human dataset, and

was also considerably faster than SNMF.

Although great effort has been put into the development of powerful tools for de-

riving the number K of founders of a population dataset, inferring that number is still

a formidable statistical and computational problem. For example, finding that number

using STRUCTURE can be a very computationally intensive task due to the fact that

it has to be run on a range of different values for K each of which might require a lot of

computational resources. Even for newer methods such as ADMIXTURE or SNMF,

finding the optimal value of K relies on running the methods for a range of values of

K. In PSIKO, we exploit the behaviour of the eigenvalues returned by linear-kernel

PCA for a dataset to infer K. Due to the algorithmic internals of PCA this can be

done quickly. We are also motivated by a study in [88] as well as numerous simulation

studies which indicate that the number of founders of a dataset equals the number of

significant principal components for that dataset plus one. Our simulation studies as

well as our two real biological examples suggest that PSIKO holds great promise for

this.

The speed of PSIKO is similar to that of SNMF for smaller datasets, and is faster

than that of ADMIXTURE. While for small datasets the differences in speed between

PSIKO and SNMF are negligible, with increasing sequence length PSIKO proves to

be significantly faster than SNMF and implicitly also ADMIXTURE. We therefore

argue that PSIKO could be a very attractive tool for analysing the larger datasets that

arise from NGS technologies. For smaller datasets (< 50K SNPs), the differences

between the three methods are not as clear-cut, and the user should choose whichever

method would suit their particular dataset best.

In summary we propose a novel, non-model-based method for inferring population

structure. It exploits the advantages of linear kernel-PCA to quickly and accurately

describe a SNP dataset’s population stratification. It is much (up to 300 times) faster

than classical, model-based approaches whilst its outputs match those of state-of-the-
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art methods such as SNMF. Its superior speed for large data sets makes it particularly

attractive for datasets generated by NGS approaches.
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Chapter 6

PSIKO2: a fast and versatile tool to

infer population stratification on

various levels in GWAS

This chapter is based on

A-A. Popescu, K.T. Huber. PSIKO2: a fast and versatile tool to infer population

stratification on various levels in GWAS Bioinformatics, 31: Epub, 2015.

A-A. Popescu’s contribution is the development, implementation, testing and com-

parative benchmarking of the new PSIKO2 LAI algorithm. He also contributed to the

writing of the first draft of the paper.

6.1 Chapter Summary

In this chapter we present an extension of PSIKO. This extension involves enhancing

PSIKO to not only infer global-level ancestry (in the form of a Q-matrix), but also

localised ancestry, in the form of genomic origins of smaller genomic regions. This is

especially important when dealing with recently admixed individuals, for which global

ancestry might provide too rough a picture to provide significant insight.
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Availability: Source code, binaries, and user manual are freely available at

https://www.uea.ac.uk/computing/psiko.

6.2 Introduction

Genome-Wide Association Studies (GWAS) are an invaluable tool for identifying geno-

typic loci linked with agriculturally important traits or certain diseases. The signal on

which such studies rely upon can however be obscured by population stratification,

that is reproductive isolation of a sampled population, making it necessary to account

for it in some way. A powerful way to do this is to assume that the genotype of each

individual (generally called an accession and represented in terms of a SNP sequence)

in a study is an admixture of genotypes of K ≥ 2 (generally unknown) founder (pop-

ulations). This admixture can then be expressed in terms of a dataset’s principal com-

ponents (PCs) or its population stratification matrix (i. e. its Q-matrix) which indicates

for each accession of a study the proportion of its genotype that came from each of the

K founders. Contrary to leading tools such as EIGENSTRAT [95] which only infers

a dataset’s PCs and STRUCTURE [98] (and its extension to FASTSTRUCTURE

[102]), ADMIXTURE [1], and SNMF [39] which only infer a dataset’s Q-matrix,

PSIKO [92] is able to infer both. Furthermore, comparison of PSIKO against com-

peting methods suggest that whilst the quality of its Q-matrices is on par with those

generated by them, PSIKO has better scaling properties. However, until now PSIKO

could not be used for local ancestry inference (LAI), which is the inference of the an-

cestry of small regions of the genome. LAI is important for applications ranging from

human population studies to identification of disease causative loci [5]. Such infor-

mation is preferable in cases of recent admixture, since genome-level ancestry can be

too coarse to properly account for processes acting on small segments of a genome.

Furthermore PSIKO could only be used on a LINUX platform and the efficiency of its

PCA-step was not benchmarked. PSIKO2 addresses these shortcomings.

This chapter is structured as follows. We benchmark our implementation against

leading alternative approaches to show its speed and correctness. Subsequently we

provide details on our LAI algorithm. This includes details about the simulation ex-

periments which we used to assess it and also our findings. To conclude, we briefly

talk about implementation and usage of PSIKO2.
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6.3 Linear Kernel-PCA Testing and Performance Mea-

sure

To ensure the correctness of PSIKO2’s predecessor regarding K and Q-matrix es-

timation, we rigorously tested it in [92] on both real biological and simulated data.

This testing did not include scrutinizing the efficiency of our implementation of linear-

kernel PCA. We rectify this here by comparing PSIKO2 against an implementation of

that strategy in the freely available SKLEARN software [89].

Using datasets generated as in Chapter 5, Section 5.3.2, we next present in Ta-

ble 6.1 the relative runtimes and memory usage of PSIKO’s implementation of linear

kernel-PCA as opposed to SKLEARN. Note that SKLEARN uses an SVD-based imple-

mentation of PCA.

100K 250K 1M 2.5M

PSIKO 4.0/36 10.5/36 35/833 75/1192

SKLEARN 71.4/2436 337.9/10284 1415/39891 NA / >63000

Table 6.1: Runtime comparison (in seconds)/memory consumption (in megabytes) of

PSIKO and SKLEARN’s SVD based PCA implementation. These differences show that

PSIKO’s bit representation strategy provides improved performance over the classical

PCA where the input data is represented as numbers.

Using the R2 correlation coefficient between the PCA-reduced datasets generated

by the two kernel-PCA methods as assessment measure, we found R2 to be larger that

0.999 for all simulated datasets indicating that both methods produce, to all extends

and purposes, identical output with differences attributable to floating point arithmetic

precision errors. However PSIKO’s runtime was a fraction of that of SKLEARN (see

Table 6.1), with SKLEARN running out of memory for sequences of length 2.5M.

To further test PSIKO2 we also compared it against SKLEARN on a real biologi-

cal dataset. For this we used the subset of the HapMap3 dataset already mentioned in

Section 6.4.2, and required both approaches to reduce the dataset to two principal com-

ponents. We found that apart from a rotational difference (attributable to a difference

in sign), both methods produce the same output. Indeed the R2 correlation coefficient

for the two resulting reduced datasets is greater than 0.9999, indicating identical out-

put. All runs were realised on a computer having Intel Westmere Dual processor, six
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core X5650 2.66GHz CPU, with 48GB of memory and up to 63GB of swap space.

sklearn PSIKO

Table 6.2: Linear-kernel PCA reduced datasets for the considered HapMap3 dataset as

produced by sklearn (left) and PSIKO (right).

6.4 Local Ancestry Inference

In this section, we focus on describing and assessing the performance of LAI as im-

plemented in PSIKO2. We start with describing the LAI algorithm which is based on

a sliding window approach and closely related to [5]. We conclude the section by de-

scribing the simulation scenario we employed in order to test how PSIKO2 performs.

6.4.1 Sliding window approach

We now describe the sliding window approach that we used for LAI. To explain its

underpinning, suppose we are given the number K of founders of a dataset X com-

prising a set P of pure (non-admixed) individuals and a set A of admixed individuals.

Let Pk denote the pure individuals with founder k, 1 ≤ k ≤ K. Then application of

linear-kernel PCA to X yields the PCs of X , which we store in a matrix W. Consider

a window w of length l, spanning a contiguous region of a genotype. We wish to infer

the founder of all individuals of X in that window. For this, we denote by Pw and Aw

the genotypes of pure and admixed individuals, respectively, at window w. Similarly

we denote by Ww the values of the principal components at window w.

Then the above LAI task boils down to choosing for each window w an integer

1≤ k≤ K as follows. Denote by Pk
w the projection of the pure accessions with founder

k onto Ww. Also denote by A
′
w the projection of Aw onto Ww. Let A

′
w(i) denote the

projection of individual i onto Ww. Next, we find the mean µk
w and variance Σk

w of
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Pk
w. We then compute the probability of A

′
w(i) under each of the normal distributions,

N(µk
w,Σ

k
w), and choose the founder of individual i at window w to be the founder that

maximises this probability. More precisely, denoting ow(i) the founder of window w

of individual i, we have:

ow(i) = argmax
k

P(A
′
w(i)|µk

w,Σ
k
w) (6.1)

Combining this sliding window approach with information about founder geno-

types allows us to map, for each individual of a dataset, each such window to one of

the K founders. We remark in passing that the window size can be chosen by the user

and that the mapping is closely related to that employed by PCADMIX [5]. Contrary

to PCADMIX which requires information about founder genotypes as input and thus

cannot be used in its absence, this input is optional for PSIKO2. For datasets where

this information is not available we infer it from the estimate its Q-matrix.

6.4.2 Assessment of PSIKO2’s LAI

In order to assess PSIKO2’s ability to infer local ancestry, we generated simulated

datasets in a manner similar to [5]. Namely, using some form of K ancestral founders,

we simulated a set of individuals whose genotypes, spanning L ≥ 1 loci, are an ad-

mixture of these K pools. These founders were chosen based on [5], comprising three

populations from the HapMap3 [117] dataset, namely Utah individuals of European de-

scent (CEU) , Yoruba individuals from Nigeria (YRI) and Han Chinese and Japanese

(CHB-JPT). We next describe how we simulated an individual’s genotype and then

outline our findings.

Genotype Simulation: To simulate an individual’s genotype, we first simulate re-

combination breakpoints by sampling from a Poisson process, in a manner similar to

[5]. These breakpoints were then used to split the L loci of an individual into contigu-

ous regions. To each of these regions we first assigned uniformly at random a founder,

and then sampled a region’s loci from the chosen founder. See Figure 6.1 for a graph-

ical representation. This setup not only provides realistic simulated genotypes, but

also readily provides the true ancestry values for each locus for reporting accuracy and

true founder genotypes and, thus, to assess PSIKO2’s performance when such data is

available.
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Using the above outline, we generated 100 datasets spanning 20000 loci. Each of

the three founders (i. e. CEU, YRI and CHB-JPT) contributed 100 individuals to the

dataset, and an additional 300 admixed individuals were simulated per dataset. Ideally

we would have liked to compare our results against those of PCADMIX. However for

reasons unknown to the authors, PCADMIX would not run on the generated datasets,

despite all other methods being considered (SNMF, ADMIXTURE, PSIKO) having

no problems with it. 1 Owing to the lack of availability of source code for PCADMIX,

we did not investigate this issue further. Instead we rely on the results reported in [5,

Figure 5] to compare relative performance.

Figure 6.1: For 3 founders indicated by different coloured rectangles and a set R =
{R1,R2,R3,R4} of 4 recombination breakpoints we depict the splitting of an individual

i’s genome into several regions, each with its own founder as depicted by the colours.

The numbers R1,R2,R3,R4 are drawn from a Poisson process representing the location

of the SNPs where breakpoints occur.

Assessment To assess PSIKO2’s suitability for LAI, we considered two main sce-

narios. In the first we provided PSIKO2 with founder and thus our results are di-

rectly comparable with those reported for PCADMIX in [5]. In the second, we withheld

that information rendering PCADMIX inapplicable as it requires that information as in-

put. Using the Q-matrix estimated by PSIKO2 and taking as proxy for the dataset’s

founders all accessions which had more than 91% of their genome originating from

the same population, this dataset did not pose a problem for PSIKO2.

In both cases, we found the performance of PSIKO2 to be notable with it correctly

reporting, within less than a second, the ancestry of 91.2% (first scenario) and 91.1%

(second scenario) of the loci under consideration for the input dataset. This is of the

same quality as the results that PCADMIX obtained for a dataset with similarly diverged

1This was due to it pruning all of the markers under consideration, despite being run with the option

of not performing any marker pruning.

127



founders.

Although conceptually simpler than the approach used by [5], we found PSIKO2

to produce accurate estimates for local ancestry of admixed individuals. Combined

with the fact that it does not require the identification of pure individuals whereas

e. g. PCAadmix does, this suggests that PSIKO2 holds promise for inferring local an-

cestry in NGS datasets.

We conclude this chapter with some remarks concerning PSIKO2’s implementa-

tion and usage.

6.5 Implementation and Usage

Released under a GPL license, PSIKO2 is command-line based and takes as input a

genotype matrix in the form of the widely used .geno file format [95]. It is written

in C++ and comes with directly linked binary executable files that should work on all

modern Linux platforms/Mac environments. Alternatively, users may compile the pro-

gram themselves if all required libraries are present on their system (see user manual

for details). Its output can be used to either inform a study in terms of a dataset’s local

ancestry (LAI), PCs, K, and Q-matrix (which can then be graphically represented in

terms of a barplot using R [100] ) or as input to approaches such as STRUCTURE

(in the form of e. g. a starting point for estimation of that number), or packages for

association mapping such as TASSEL [4], BOLT-LMM [71], and FASTLMM [70].
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Chapter 7

Conclusion and Future Work

NGS data promises to revolutionise the field of biology and related areas such as

medicine, offering unprecedented amounts of data on which scientists can build our

understanding of life. Hand in hand with such data however, come computational

challenges that can hinder our ability to make full use of this data. Owing to this, this

thesis centres on developing novel methodology that attempts to address some of the

many challenges posed by NGS data. The focus lies on phylogenetics and genome-

wide association studies, and we first briefly put into context the work that has been

carried out in both areas, and then outline our results. As part of this, we also suggest

potential avenues of future research that can build on the current work.

Reflecting the two areas of focus, the thesis is in two parts. In the first part we de-

velop novel theory to enable phylogenetic reconstruction methods to better cope with

NGS data. Owing to the sheer volume of data that NGS provides, carrying out phy-

logenetic inference from distance data is attractive due to the speed of such methods.

Their input consists of pairwise dissimilarity between these species. While NGS has

the advantage of providing large amounts of raw data from which such pairwise dis-

tances can be constructed, noise or unreliability of certain reads may render distances

values too noisy to consider. Ignoring these distances has been shown to introduce

bias [55]. It is therefore important to develop novel approaches that do not suffer from

this problem. Motivated by this, in Chapter 3 (which is based on [57]), we develop

theoretical foundations for when a set of incomplete distances uniquely determines a

phylogenetic tree (see also [60]).

In Chapter 4 (which is based on [91]), we discuss the implementation of several
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well known algorithms for phylogenetic inference from incomplete data [17] in ape, a

popular R open source phylogenetics package [86].

The second part of the thesis is concerned with novel methodology for inferring

population history from NGS data. This is an important problem not only because

it can shed light into the evolutionary past of a dataset under consideration, but also

because knowledge of such a history can help strengthen methods for finding links

between genotype (raw DNA data) and phenotype (observed traits). While algorithms

for tackling this problem have been around for quite some time [98], their development

pre-dates the advent of NGS data. This in turn causes such methods to struggle when

presented with such data, due to e. g. violation of model assumptions or increase in

runtime due to the volume of data they are presented with. Therefore, the problem of

developing algorithms that can cope with NGS data when correcting for population

structure is topical.

In Chapter 5 (which is based on [92]), we introduce PSIKO a novel algorithm

which seems to be highly efficient for untangling population structure from NGS

datasets. Simulations as well as applications to real biological data suggest it is one

of the most scalable and accurate methods for this problem to date, making it very

attractive for population genetic studies on NGS data (see also [92]).

In Chapter 6 (which is based on [93]), we present PSIKO2, an extension of PSIKO

that has the ability to infer, in addition to global ancestry (population structure), local

ancestry from NGS data, which is especially useful when dealing with recently ad-

mixed populations.

7.1 Results and Potential Future Directions

In this section, we outline avenues of potential future work. We begin with phyloge-

netic tree reconstruction from incomplete distances. Subsequent to this, we suggest

potential future work pertaining to population genetics.

7.1.1 Incomplete distance construction

In Chapter 3, we presented novel theoretical work for tackling the problem of uniquely

determining phylogenetic trees from incomplete distances. While in general this prob-
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lem seems to be computationally hard, for a special type of phylogenetic trees, called

equidistant trees, we found it to have a polynomial-time solution described in terms

of a so-called child-edge graph. We show that the extent to which an equidistant tree

is captured by a set of incomplete distances forms a spectrum on the connectedness

of the child-edge graph, with well determined trees corresponding to well connected

child-edge graphs.

An obvious avenue of future research is the application of our insights in the de-

velopment of algorithms which can be used to solve practical problems. Indeed, such

an avenue is practical, as evidenced in [60]. There, Lasso, an algorithm that makes

use of the theory developed in Chapter 3 is introduced. That algorithm has been shown

to work well on real biological NGS data from a wheat dataset. Despite this dataset’s

complicated, noisy and cryptic nature, Lasso is able to produce strikingly useful re-

sults from it, shedding some light into the evolutionary past of this dataset. Similar to

Lasso, other algorithms that make use of our insights could be put forward, allowing

for the development of powerful tools that can deal with NGS data when reconstructing

phylogenetic trees. Another avenue would be a more theoretical one, that of address-

ing the questions in the chapter for rooted trees more general than equidistant ones,

namely ones for which the equidistance condition does not hold. Also, another direc-

tion of future research is considering phylogenetic trees that also allow for degree two

labelled interior vertices. It would be of interest to see how our results would carry

over to this class of combinatorial objects.

7.1.2 Population structure inference

PSIKO has been shown to produce promising results on a variety of both real and

simulated datasets. Making use of a popular data-mining technique known as lin-

ear kernel-PCA and combining a novel iterative least squares optimisation algorithm,

PSIKO shows great promise when applied to both real and simulated data, with it

being (to the best of our knowledge), one of the fastest tools for carrying out popula-

tion structure inference to date. We also extend PSIKO to PSIKO2, which is able to

return estimates for local ancestry, making use of kernel-PCA and a sliding windows

approach. Together with this extension to local ancestry inference, PSIKO2 promises

to be a cutting edge tool for population structure inference.
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While PSIKO2 returns information regarding both global and local ancestry, it

currently does not return information about the actual founders of a dataset. This can

be in the form of estimated allele frequencies for each founder or estimated divergence

between founders. In population-genetic studies, such information can be very useful.

Owing to its remarkable ability to quickly and efficiently deal with large volumes of

NGS data, a natural extension of PSIKO would be to adapt it to also return relevant

information about the assumed founders of a dataset exhibiting population structure.

Another avenue of future research could be extending the PSIKO algorithm to

function on distributed computing clusters. This extension could become very relevant

in the future, when NGS data will be such that it becomes infeasible to store on indi-

vidual commodity computing machines. PSIKO could then be readily applied to such

distributed datasets allowing for their efficient analysis.
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