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Abstract 

Duocarmycin SA is an archetypal member of an ultrapotent family of antitumor antibiotics. 

The family is characterised by a common spirocyclopropylcyclohexadienone 

pharmacophore. This unusual structural motif is responsible for exceptionally efficient 

alkylation of adenine bases following activation through conformational changes induced 

by non-covalent recognition of DNA’s minor groove. 

This thesis describes the conception and multi-gram synthesis of a duocarmycin SA 

alkylation subunit suitably substituted to serve as a building block for Fmoc based solid 

phase synthesis and initial investigations into its application. 

Chapter two describes the pilot and subsequent large scale racemic synthesis of the 

desired duocarmycin building block, and its preparative chiral resolution by supercritical 

fluid chromatography. The synthesis includes a novel route to an early indole 

intermediate, and represents one of the shortest available strategies to access a 

previously reported di-Boc-protected duocarmycin structure. The large scale synthesis 

afforded over 8 g of the racemic Fmoc-protected building block, representing a 3 % overall 

yield over 13 steps.    

In chapter three, application of the building block to the conjugation of amino acids 

through solid phase synthesis is explored. This work highlights the importance of careful 

resin selection and the need to optimise cleavage conditions. A small library of 

duocarmycin analogues was generated, and subsequent assays revealed the effects of C-

terminal amino acid substituents on biological activity. This work has demonstrated the 

potential utility of this building block for the future development of novel peptide linked 

antibody drug conjugates of duocarmycin SA.   

Finally, chapter four explores incorporation of the building block into polypyrrole 

structures, highlighting the potential for the direct solid phase synthesis of sequence 

selective bifunctional hairpin polyamides which contain the alkylation subunit of 

duocarmycin SA.   
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Figure 4.14 HPLC analysis during the synthesis of 63 (a) Blue trace: HPLC analysis of 

crude cleavage product. Red trace: HPLC analysis after 1 hour of N,N-

dimethylaminopropylamine coupling. Green trace: HPLC analysis after 45 min of benzyl 

deprotection conditions. (b) HPLC analysis of 63 after preparative HPLC purification. 

Agilent Eclipse XDB-C18 column, 4.8 x 150 mm, 5 µm. Solvent A: [Water and 0.05 % 

TFA], Solvent B: [MeOH and 0.05 % TFA]. Gradient: 0% [B] to 95 % [B], from 0 min to 15 

mins, 95 % [B] to 0 % [B] from 15 to 20 mins. Monitored UV 254 nm. Flow rate 1 mL/min. 

Column temperature 40 oC. ........................................................................................... 191 

Figure 4.15 Structure of 64 and 65. ............................................................................... 192 

Figure 4.16 Schematic representation of possible binding model of the ring close form of 

64 which could account for lack of activity...................................................................... 194 
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Cancer is a condition arising from the aberrant proliferation of an individual’s own cells. 

The term encompasses hundreds of individual diseases characterised by their cell type of 

origin.1 It is now generally accepted that the transformation of a normal somatic cell to its 

malignant counterpart is a progressive process. This progression has been likened to 

Darwinian evolution in that successive genetic mutations, each conferring a specific 

growth advantage, eventually leads to the presentation of a malignant phenotype.2, 3  

The process is often segmented into three mechanistic phases.4 The first is tumour 

initiation. In this phase, exposure to chemical or physical carcinogens produce DNA 

damage. Mutations arising from this damage, resulting in the unrestrained activation of 

oncogenes, or the ablation of tumour-suppressor genes, set the affected cells on their 

path to malignancy. During the second phase, tumour promotion, these initiated cells 

undergo a clonal expansion. The expansion is a result of disruption to regulatory circuits 

which govern normal cell proliferation and tissue homoeostasis. This increase in 

proliferation, coupled with genomic instability, can lead to the acquisition of yet more 

mutations conferring further growth advantages. The final phase, tumour progression, is 

characterised by the invasion of surrounding tissue, growth in tumour sizes, and eventual 

metastasis. Again further tumour promoting mutations can drive this stage.  

The vast array of different malignancies could be a problem for the field of cancer 

research. It has led to a position of seemingly insurmountable complexity in the differing 

pathophysiological changes and genomic presentations governing the development of 

each individual disease. In 2000, Hanahan and Weinberg attempted to simplify the 

situation. In their seminal review, ‘The Hallmarks of Cancer’, they outlined six 

characteristic features of the malignant cell,5 which they believed likely to be common to 

the majority, if not all cancers; essentially suggesting that the differences between 

individual malignancies stem from the different mechanisms utilised to affect these 

abilities and the order in which they are acquired. Although an essentially accurate model, 

this view constrains consideration of the tumorigenic process to intrinsic properties of the 

transforming cells alone. An increasing body of evidence suggests that this may be an 

over simplification. It is suspected that normal cells play an important role in the promotion 

of malignancy, particularly the inflammatory component of many tumour 

microenvironments.6 Such interactions may serve to supplement the progression of 

malignancy prior to the aberrant cell line acquiring particular abilities. This is reflected in 

Hanahan and Weinberg follow up review published in 2011.7     

For example, healthy cells require external signals to move from a state of quiescent to 

that of proliferation. They are also subject to signals which inhibit growth. Malignant cells 
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must therefore acquire autonomy over proliferative control. This requires self-sufficiency in 

growth promotion and insensitivity to inhibitory signals. In many cases, the former is a 

result of oncogenic gene products providing autocrine growth signalling. However there is 

also evidence for inflammatory cells providing the necessary stimuli. The evasion of 

growth inhibition is often the result of mutations in tumour-suppressor genes which 

disrupted inhibitory signalling cascades.5  

Rate of proliferation is not the only factor governing tumour development. Many cancerous 

tissues show a decrease in cellular attrition. Furthermore DNA damage inherent in tumour 

initiation should in many cases result in the activation of regulatory machinery, and 

subsequent repair or apoptosis. Thus the malignant cell must acquire mechanisms 

allowing the evasion of apoptopic commands.5 Again this may be the result of mutations in 

tumour-suppressor genes whose products are pivotal in implementing programmed cell 

death, although anti-apoptopic NF-ΚB gene products activated through inflammatory 

stimulus have also been implicated.6   

Normal somatic cells possess an intrinsic tumour suppressing property; they are unable to 

divide indefinitely.5 This is a consequence of the end-replication problem which causes the 

gradual erosion of telomeres. Telomeres, which comprise non-coding regions at the end 

of chromosomes, have a protective function. Once telomere erosion reaches a critical 

point this protective effect is loss, and the cell enters senescence; a non-proliferatory 

state. Malignant cells must acquire telomere extension mechanisms conferring them 

limitless replicative capacity. In 85 % of cancers this is achieved by expression of the 

dormant enzyme telomerase.8 This reverse transcriptase uses an endogenous RNA 

template to extend the tandemly repeated telomere sequence, using the single stranded 

3’ overhang as its primer.9   

All cells, including cancer cells, require adequate perfusion from the vasculature to meet 

their demand for oxygen and nutrients.5 The expansion of tumours appears to be initially 

curtailed by an inability to stimulate the required level of angiogenesis. However this is 

eventually overcome, in what has been described as an angiogenic switch;10 wherein the 

aberrant malignant cells acquire the ability to alter the balance of pro and inhibitory factors 

in favour of stimulating the require vessel growth.  

The ability of primary tumours to spawn pioneer cells which can relocate and establish 

secondary tumours, is perhaps the most lethal acquired ability of the malignant cell; being 

responsible for 90 % of cancer deaths.11 The alteration of several protein classes, 

especially those involved in the tethering of cells to extra cellular matrixes, have been 

implicated in the mechanisms of metastasis.5 
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Despite the biological complexity of cancer, traditional therapy has remained relatively 

simplistic. Surgery to excise the diseased tissue is by far the most effective treatment for 

most solid tumours. However, radiotherapy and chemotherapy play important roles both 

prior to excision, to decrease tumour mass, and as adjuvants following surgery, to prevent 

reoccurrence from potential residual tumour cells.12    

Cytotoxic drugs have long dominated pharmaceutical intervention in cancer therapy.13 

Many such treatments target DNA directly, through both non-covalent and covalent 

interactions, disrupting the cell’s replicatory machinery, and leading to apoptotic 

responses. For example doxorubicin (figure 1.1) is widely prescribed in the treatment of 

many cancers, including various carcinomas, sarcomas, and haematology malignancies.14 

It is an intercalating agent, binding non-covalently with DNA through insertion of its planar 

chromophore between two adjacent base pairs, and projecting its glyosidic structure in to 

the minor groove.15  

Cyclophosphamide is an alkylating agent, and an example of a treatment which targets 

DNA through covalent interaction.16 It is arguably one of the most successful 

antineoplastic drugs in the history of cancer chemotherapy. It is effective against a broad 

spectrum of malignancies, and is still commonly included in many standard treatment 

regimes,14 despite being first introduced over 50 years ago.16  

Cyclophosphamide is an oxazaphosphorine prodrug of the original aliphatic nitrogen 

mustards. Hepatic cytochrome P-450 metabolism leads to oxidation of the 

oxazaphosphorine ring vincinal to the ring bound nitrogen. Tautomerization, and 

subsequent β-elimination reveal the active mustard, which is free to form the highly 

unstable aziridinium cation and ultimately alkylate DNA through nucleophilic attack by 

guanine bases. The presence of two chloroethyl groups means inter and intrastrand 

crosslinking is often observed (scheme 1.1).16, 17    

 

Figure 1.1 Structure of doxorubicin. 
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As our understanding of the biology of cancer has evolved the scope of potential 

treatment strategies has widened. It is therefore unsurprising that the draw of DNA as a 

target has diminished over recent years, with many researchers turning their attention to 

the disruption of aberrant signalling pathways specific to particular malignant cell lines. 

Such approaches aim to produce more selective and therefore tolerable treatments. This 

strategy has already yielded significant successes in the clinic. 

Imatinib (figure 1.2), was one of the first such treatments to gain regulatory approval, and 

has revolutionised the treatment of susceptible forms of chronic myeloid leukaemia (CML). 

It is an orally administered synthetic tyrosine kinase inhibitor, which targets the BCR-ABL 

oncogenic gene product;18 a fusion gene resulting from a chromosomal translocation 

event which is common to the pathogenesis of the majority of CML cases. The BCR-ABL 

protein is a permanently activated tyrosine kinase, whose activity results in the 

uncontrolled proliferation of affected cells.19   

 

 

Scheme 1.1 Structure and activation of cyclophosphamide. 
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The success of imatinib has been said to mark a paradigm shift in the treatment of 

malignant disease,20 and since its introduction in 2001 many similar molecular targeted 

therapies have gained regulatory approval.21 For example, trastuzumab, a monoclonal 

antibody which targets the HER2 growth receptor,22 has had a major impact on the 

treatment HER2 positive breast cancer.23, 24  

It is likely that this field will contiune to grow and yield many more ground breaking 

treatments in the future. Nevertheless, susceptibility to resistance, the implict narrow 

spectrum of such treatments, and controversy surrounding the cost-effectivness of some 

less successful additions to the clinic, mean a reliance on conventional cytotoxins may 

remain for some time.25-27 It is therefore still of value to explore the development of novel 

cytotoxic compounds, especially those with the necessary potency to be applied 

successfully to tumour directed delivery and/or prodrug strategies. Such approaches also 

hold the potential to yield more selective and tolerable treatments.   

Perhaps contrary to public perception, particularly of those influenced by the market of 

alternative therapy, modern medicine has long recognised the therapeutic potential of 

natural products. However, unlike the pedlars of snake oils and folklore, this reasoned 

world of scientific exploration, has always viewed nature’s rich pool of biologically active 

secondary metabolites as leads; understanding the need to optimise these compounds for 

uses to which they did not evolve.  The selection pressures imposed upon bacteria have 

resulted in a vast array of compounds with obvious applications in the treatment of 

infectious and malignant disease. It was reported in 2010, that since the 1940s 51.5 % of 

all anticancer agents introduced were either natural products or directly derived 

analogues, many originally isolated from microbes.28 Indeed, the aforementioned 

doxorubicin is a member of the anthracycline family of natural products; secondary 

metabolites isolated from various strains of Streptomyces. 29, 30 

 

Figure 1.2 Structure of imatinib. 
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Another pertinent example would be mitomycin C. Introduced in the 1960s,31 mitomycin C 

is still commonly included in a number of treatment regimens.14 It is a member of the 

aziridine family of antitumor antibiotics, isolated from Streptomyces caespitosus.32 The 

cytotoxicity of mitomycin C is derived from its ability to crosslink DNA through a 

bifunctional covalent interaction. This is thought to occur through a complex series of 

intramolecular transformations, initiated from the bioreduction of mitomycin C to its 

hydroquinone counterpart (scheme 1.2).33 Subsequent loss of the methoxy group, and 

tautomerization of the resulting imine leads to opening of the aziridine ring by the 

hydroquinone through the indole structure, and generation of the first alkylating species. 

This is attacked by guanine bases by a conjugate addition. The resulting reformation of 

 

Scheme 1.2 Structure and DNA crosslinking activity of mitomycin C. 
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the hydroquinone indole structure, allows formation of the second alkylating species, via 

loss of the carbamate.   

It is a pleasing coincidence for the medicinal chemist, that two of the most potent families 

of antitumor antibiotics discovered to date also derive their biological activity from 

interesting mechanistic chemistry. Perhaps the most potent is the family comprising the 

enediyne antibiotics, such as calicheamicin originally isolated from Micromonospora 

echinospora (scheme 1.3).34 Their cytotoxicity is developed from the diradical intermediate 

of a biologically triggered Bergman cyclisation.35  

The second family is that consisting of CC-1065, yatakemycin, and the duocarmycins, 

whose structures are depicted in figure 1.3.36 It has now been over 30 years since the first 

member of this family, CC-1065,37, 38 was reported, and despite substantial interest from 

distinguished medicinal chemistry programmes, research is yet to yield a successful 

clinical candidate. However this unrealised therapeutic potential only adds to the allure of 

these already chemically pleasing entities. 

 

Scheme 1.3 Structure and mechanism of cytotoxicity of calicheamicin γ1. 
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CC-1065, yatakemycin, and the duocarmycins all combine non-covalent recognition of AT 

rich regions of DNA’s minor grove with exceptionally efficient alkylation of adenine,39 the 

downstream effects of which result in their ultrapotent cytotoxic activity. The common 

pharmacophore responsible for this alkylation consists of a cyclopropane vicinal to the α, 

β unsaturated carbonyl of a cyclohexadienone. This spirocyclic system is flanked by the 

fusion of a further two 5 membered nitrogen heterocycles. Alkylation proceeds through 

nucleophilic attack of the cyclopropane by the N3 of adenine (Scheme 1.4). This occurs at 

the least substituted carbon, resulting in ring opening of the cyclopropane and subsequent 

development of an aromatic phenol from the conjugated and activating cyclohexadienone.  

It is the control of this seemingly facile reaction, imposed by the subtle interplay of 

molecular features contained within the compact structure of these compounds, that 

 
 

Figure 1.3 Structures of CC-1065, yatakemycin, and the duocarmycins. Red = alkylation subunit. 
Blue = alkylation subunit precursor – requiring spirocyclisation prior to the alkylation event. 
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defines their characteristic and arguably most interesting feature: in situ activation.40 As 

will be described this is a quite unique and elegant process; one which does not require 

induction of chemical change, but simply a change in conformation induced from binding 

to their target.   

In solution these compounds demonstrate remarkable stability towards nucleophilic 

attack. It is only when bound within the minor groove of DNA that the true reactivity of the 

cyclopropane is revealed.41 This stability results from the electronic influence of a 

vinylogous amide constructed from the carbonyl of the cyclohexadienone and the nitrogen 

of the neighbouring heterocycle. This feature serves to reduce the electrophilicity of the 

cyclohexadienone by conjugation of the nitrogen’s lone pair with the carbonyl and stabilise 

the cyclopropane.  

The magnitude of this effect has been implicitly demonstrated by comparison of the 

reactivity of a carbocyclic analogue of the CBI alkylation subunit with its nitrogen 

containing counterpart (figure 1.4).42 It was shown that 1 which lacks the vinylogous 

amide, was 3200 times more reactive than 2 towards solvolysis at pH 3; and at  pH 7 

where 2 is stable, 1 was revealed to be 104 times more reactive.  It is disruption of the 

conjugation of this vinylogous amide which triggers these natural products in situ 

activation. 

 

Scheme 1.4  Alkylation of adenine by duocarmycin SA. 

 

 

 

 

 

Figure 1.4 Structures of CBI analogues 1 and 2. 
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Disruption of this stabilising influence is made possible because the nitrogen of the 

vinylogous amide also forms part of a linking amide, through which the alkylation subunits 

of the natural products are connected to additional, non-alkylating, bi or polycyclic 

systems, known to contribute non-covalently to minor groove recognition. As such, the 

lone pair of this nitrogen is effectively cross conjugated with the carbonyls of both amides.  

When the natural products bind to DNA they undergo a conformational change. This 

change involves rotation around the linking amide so as to allow the adoption of a bent 

conformation which is more complementary to the helical rise of the minor groove.  

Structural studies of bound duocarmycin SA suggest that the bulk of this twist is carried by 

the χ1 dihedral angle (22.4 o), as opposed to that of the amide χ2 (11.0 o) (see figure 

1.5).43, 44 The result is a change in the balance of cross conjugation in favour of the linking 

amide, as the nitrogen’s lone pair is no longer planner with the cyclohexadienone’s π 

system.    

Comparison of the activity of CBI analogues 3 and 4 (figure 1.6) clearly shows the 

necessity of the linking amide in this process. While DNA alkylation is easily detectable 

with 3, which possesses the linking amide, 4, in which this amide is replaced by a 

methylene bridge is unable to alkylate DNA even under forcing conditions.45 

  

Figure 1.5 Visual representation of the in situ activation of duocarmycin SA (see main text for 
description). NMR Structure images generated using ‘Chimera 1.10.1’, coordinates from protein 

data bank (ID:1DSA).
42 
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Comparison of the x-ray structures of a series of CBI analogues (figure 1.7), where the 

ring size of the nitrogen heterocycle was increased from 5 through to 7 atoms, further 

demonstrates this effect, and captures its incremental nature. As ring size increases the 

χ1 angle widens. This is accompanied by a lengthening in the bond between the nitrogen 

and cyclohexadienone, reflecting reduction in the conjugation of the vinylogous amide.  

These structural features are mirrored by an expected progressive increase in reactivity 

as the degree of vinylogous amide conjugation decreases. 46, 47 

As disruption of conjugation of the vinylogous amide is not an absolute process, and the 

degree of rotation induced at the χ1 angle can have an incremental effect on the reactivity 

of the spirocyclopropylcyclohexadienone, the rigid length of compounds containing this 

pharmacophore can have a significant impact on their relative DNA alkylation efficiencies. 

Essentially, longer structures can amplify the twist imposed by the helical rise of the minor 

groove, and thus increase the reactivity of the cyclopropane. 

 

 

Figure 1.6 Structures of CBI analogues 3, and 4. 

 

 

 

 

Figure 1.7 Structure of CBI analogues with increasing heterocycle size. Showing discussed 
crystallography and stability data.  
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This relationship is manifested in the observed importance of both the C6 methyl ester, 

and C5’ methoxy substituent, on the DNA alkylation efficiency of duocarmycin SA (figure 

1.8).  Despite being shown to confer on the alkylation subunit greater stability towards 

solvolysis, the absence of the C6 methyl ester reduces the relative rate of DNA alkylation 

by 12 fold. Similarly, removal of the C5’ methoxy substituent produces a 20 fold decrease 

in DNA alkylation rate. When both substituents are removed, a 250 fold decrease in DNA 

alkylation rate is observed.48  

These findings have been mirrored through investigation of the effects of substitution at 

the C7, and C5 position of the CBI alkylation subunit (figure 1.9).49-51 It was observed that 

C7 substituents, which extend along the floor of the minor groove, conveyed a rate 

accelerating effect on DNA alkylation activity, and that this was independent of the 

substituent’s electronic character, and hence corresponding effect on solvolytic stability of 

the respective alkylation subunits. Conversely, addition of a methyl ester at the C5 

 

Figure 1.9 Structure of discussed CBI analogues, highlighting the C7, and C5 substituents, and 
their respective positions relative to the full of the minor groove.  

 

 

Figure 1.8 Structure of duocarmycin SA highlighting the C6 methyl ester, and C5' methoxy group. 
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position, which extends out of the minor groove, significantly enhanced the solvolytic 

stability of the alkylation subunit, while also reducing the rate of DNA alkylation, in line 

with its electronic influence.  In the C5 position, the substituent does not increase the rigid 

length of the structure relative to the minor groove, and hence its stabilising effect is not 

countered by an increase in binding induce activation.   

The relationship between the intrinsic stability of the alkylation subunit and its 

corresponding biological activity is now well established. Many analogues of the 

spirocyclopropylcyclohexadienone system have been generated ranging vastly in their 

resistance towards solvolysis. A collative meta-analysis has revealed a strong parabolic 

relationship between solvolytic stability and anti-proliferation activity (figure 1.10).52 This is 

intuitively unsurprising; intrinsic stability towards nucleophilic attack confers a greater 

chance that the alkylation subunit will reach its target intact, but this advantage is only 

maintained if upon binding in the minor groove, the stability can be sufficiently disrupted 

by in situ activation to produce an efficient alkylation event. Pleasingly, the two most 

potent natural products in this family, yatakemycin and duocarmycin SA, are positioned at 

the parabola of this trend. This beautifully highlights the power of natural selection to tailor 

the properties of secondary metabolites through the direction of biosynthetic pathways in 

microbes. Indeed, the S of duocarmycin SA literally stands for stable, and this ultrapotent 

antitumor antibiotic has been referred to as nature’s prodrug. 53  

 

Figure 1.10 Schematic representation of the observed parabolic trend between intrinsic stability 
and biological potency of the spirocyclopropylcyclohexadienone family. 
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However, duocarmycin SA is only a prodrug in the sense that it selectively alkylates DNA 

over other biological nucleophiles. Like all classical alkylating agents, the natural products 

of this family are incapable of discriminating malignant cells from those of healthy tissue. 

They therefore have the potential to cause dose limiting toxicities apparent with all non-

selective cyctotoxins. The ultra-potent nature of this family has to date prohibited their 

clinical use in the treatment of malignant disease. For example, the first member of this 

family to be discovered, CC-1065, quickly moved into pre-clinical evaluation, following 

identification of potent activity against a large range of malignant cell lines in vitro.54 

However, it could not progress in to clinical trials, due to exhibiting severe hepatotoxicity, 

which led to delayed death syndrome in mice at sub-therapeutic doses.55  

This delayed death syndrome is not however a universal feature of the 

spirocyclopropylcyclohexadienone pharmacophore, but appears to be specific to the 

structure of CC-1065. This may be a consequence of the apparent irreversibility of the 

alkylation event, or specific sequence selectivity of CC-1065. Indeed, analogues of CC-

1065 have been synthesised that do not exhibit the delayed death syndrome. Two such 

clinical candidates, adozelesin, and it’s bifunctional analogue bizelesin (figure 1.11), have 

progressed into early clinical trials, but have ultimately failed to reach the clinic due to 

unacceptable toxicity profiles and limited efficacy at tolerated doses.56-62           

 

Figure 1.11 Structures of adozelesin and bizelesin. 
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It would seem clear that some form of targeting mechanism is necessary in order to 

harness the impressive antitumour activity of this unique family of natural products. One 

advantage of pharmacophores which possess ultrapotent cytotoxicity mediated through 

mechanistic chemistry, is that they provide the opportunity for the rational design of 

prodrugs.  

A common strategy employed with the spirocyclopropylcyclohexadienone pharmacophore 

has been to inhibit the in vivo spirocyclisation of their seco precursors through biologically 

labile protection of the phenolic oxygen. Carzelesin (figure 1.12), one of the few 

compounds of this family to enter phase II clinical trials exploited this tactic.63-66  Protection 

was achieved through a phenylurethane moiety which required serum dependent 

hydrolysis for cleavage.67 More recent refinements of this approach have included 

attempts at introducing phenol protection which is cleavable under tumour selective 

conditions. The hypoxic nature of the tumour microenvironment has been key to this 

strategy. 

One example has been the development of N-acyl O-amino derivatives of the seco form 

of the CBI subunit. These were designed with the anticipation that the weak N-O bond 

could be cleaved by reducing nucleophiles of which a higher concentration can be found 

in hypoxic tissue.68, 69 It was shown that the stability of this bond could be predictably 

tuned by the electronic and steric nature of N-substitution. The most effective derivative 

was a tert-Butyl carbamate, 5 (figure 1.13). It was shown to be incapable of alkylating 

DNA in cell free systems, but demonstrated potency approaching that of the free drug in 

functional cellular assays, with improved efficacy revealed from in vivo antitumor models. 

This suggests preferential release of the free drug at tumour sites. Given the average life 

span of the control mice and the length of the study, the number of long term survivors 

detected suggests, that despite the absence of dose optimisation, cures were detected. 

 

Figure 1.12 Structure of carzelesin. 
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This concept was later refined with the report of cyclic variants of 5. The oxazinone 

prodrug 6 (figure 1.14),70 was designed to be cleaved by the same reductive mechanisms, 

but to release no extraneous masking group as a by-product; a strategy that could simplify 

downstream regulatory approval should this species progress as a clinical candidate.   

6, was shown to exhibit hypoxia selective cytotoxicity in cellular assays, returning a 10 fold 

increase in potency compared to its activity under aerobic conditions in a PC3/MM2 cell 

line. Furthermore it was shown to demonstrate good stability in human plasma with a half-

life of one week. In addition, 6 was considerably more efficacious than a seco-CBI 

equivalent in an in vivo murine model despite returning higher IC50 values in vitro. At a 

dose of 2500 μg/kg, 6 produced six long-term survivors out of ten animals over a period of 

one year. In comparison treatment with the seco-CBI equivalent control, resulted in 

premature death due to toxicity in all animals at doses of between 100 and 500 μg/kg, and 

only one long-term survivor at a lower 60 μg/kg dose. Again this suggests a benefit from 

either hypoxia targeted or prolonged intercellular release of the free drug, most likely a 

combination of both. It was also noted that 6 was better tolerated at the injection site, than 

the seco-CBI equivalent.    

 

Figure 1.13 Structure of N-acyl O-amino prodrug 5. 

 

 
 

Figure 1.14 Structure of oxazinone prodrug 6. 
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Other ongoing attempts at hypoxia activated prodrugs of the seco-CBI alkylation subunit 

include replacement of the phenolic hydroxyl with a nitro group.71-73 These compounds 

were envisioned to undergo reductive metabolism to their aniline counterparts, which in 

turn can undergo spirocyclisation to the active alkylating species through imine formation 

analogous to that of the phenol compounds. This approach has proved to be far from 

straight-forward. The initial simple nitro derivatives showed promising differential 

cyctotoxicity in vitro, but low potency in vivo. This was reasoned to result from suboptimal 

one electron reduction potential of the nitro group leading to insufficient bioreduction. 

Introduction of electron-withdrawing ring substituents placed para or meta to the carbon 

bearing the nitro group on the neighbouring ring were found to raise the reduction 

potential of the nitro group, however this did not have a consistent effect on hypoxia 

selective cytotoxicity. A clear correlation between increased reduction potential and 

hypoxic selectively was only apparent for a subset of electron-withdrawing groups. These 

were the sulfonamide and carboxamide substituents. The authors suggest this may result 

from specific interactions of these groups with the reductases responsible for reduction 

under hypoxic conditions, effectively suggesting that high reduction potential in 

compounds not containing these reductase specific interactions, could lead to increased 

oxic activation and reduced selectively.  Despite inconsistencies in the structure activity 

trends of these analogues, a promising hypoxia selective lead was identified.  This 

contained a meta SO2NH2 group. Further work has shown increased hypoxic selectivity by 

introduction of sulfonate spirocyclisation leaving groups in place of the usual halogens. 

Some of the best results were seen with analogues combining sterically demanding 

sulfonate leaving groups, neutral DNA binding subunits, and meta sulfonamide or 

carboxamide substituents (figure 1.15).   

 

Figure 1.15 Annotated example of a nitro CBI prodrug structure. 
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Evidence of the over expression of particular isoforms of cyctochrome P450 oxidases in 

tumour cells, has led to a novel take on the inhibition of spirocyclisation prodrug strategy. 

Instead of masking this process by protection, the phenolic hydroxyl group was removed 

completely.74, 75 The rationale being that the dehydroxylated CPI subunit (that of 

duocarmycin SA minus the C6 ester) would provide a substrate for cyctochrome P450 

metabolism. It was envisioned that site specific oxidation by this enzyme system would 

reintroduce the hydroxyl group to reveal the active pharmacophore; a process 

hypothesised to mimic the evolution of this family of antibiotics.  

The compound reported, named ICT2700 (figure 1.16), consists of the dehydroxylated 

seco-CPI alkylation subunit linked with the 5-methoxyindole DNA binding unit. It was 

shown to be 1000 fold less cytotoxic than its hydroxylated counterpart in vitro. The cellular 

distribution of the two compounds was shown to be comparable, thus confirming 

successful deactivation of the pharmacophore by removal of the hydroxyl group. 

Comparison of the cytotoxic effect of ICT2700 on CYP1A1 expressing and non-

expressing CHO cells, showed successful differential activation of this compound in 

CYP1A1 positive cells, with an IC50 of <0.5 nM compared to >25000 nM in CYP1A1 

negative cells.    

An alternative, but not mutually exclusive approach for improving the therapeutic window 

of the duocarmycins, is to add structural features which aid in the physical targeting of 

tumour cells. One such strategy involves the refinement of sequence selectivity, so as to 

preferentially bind in the minor groove at DNA sites which represent gene mutations 

specific to the malignant genome; a concept which will be discussed in chapter four. 

Another tactic is to separate the task of targeting and alkylation, and to consider the 

alkylation subunit of the duocarmycins as a ‘payload’ for a cell selective delivery vehicle.  

The impressive recognition properties of antibodies have seen these highly engineerable 

proteins positioned as excellent candidates to serve as the delivery mechanism for 

cytotoxins. The principle is simple; multiple units of a cytotoxic compound are tethered to 

 

Figure 1.16 Structure and activation of ICT2700 by CYP1A1 oxidation. 
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an antibody which is engineered to recognise a tumour specific, or overexpressed 

antigen. On binding to the antigen, which is presented on the surface of the malignant 

cells, the antibody, together with its ‘payload’, is internalised via a process of receptor-

mediated endocytosis. Upon internalisation, the cytotoxic compound is cleaved via a labile 

linker, or is released following lysosomal degradation of the antibody. 76   

Early generations of antibody drug conjugates (ADCs), proved disappointing in the clinic.76 

One reason for this was the common side effect of immunogenic responses to the mouse 

derived antibodies that were used.77 This problem has largely been resolved through the 

development of fully humanised monoclonal antibodies, which retain only the 

complementarity determining region of the original murine protein (figure 1.17).78  

A second problem was poor efficacy in vivo. ADCs can be very effective at selectively 

targeting cytotoxins to malignant cells, however the actual physical number of cytotoxic 

molecules which reach the interior of the targeted cell is thought to be small. The first 

generations of ADCs employed commonly prescribed antitumor agents, such as 

doxorubicin, as their payloads. These compounds simply did not possess the necessary 

potency to mount an effective antitumor response when delivered in the amount possible 

by antibodies.76 Therefore subsequent generations of ADCs have focused on the delivery 

of ultrapotent cytotoxins, such as the enediyne antibiotics, maytansinoid and auristatin 

derived antimitotic agents, and of course the duocarmycins.76 

 

Figure 1.17 Schematic representation of the basic structure of a monoclonal antibody.
77 
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One of the first ADCs reported which utilised the spirocyclopropylcyclohexadienone 

pharmacophore was anti-B4-DC1 (figure 1.18).79 The ‘payload’ of anti-B4-DC1 was based 

on the CC-1065 analogue adozelesin, but saw the replacement of the CPI alkylation 

subunit with the more stable and easily synthesised seco-CBI structure. To allow 

conjugation to the antibody via disulfide exchange, the benzofuran group of adozelesin 

was also replaced by an indole unit terminally substituted with a reactive disulfide group. 

Anti-B4-DC1 demonstrated low picomolar activity against CD19-positive cell lines in vitro, 

and was effectivity nontoxic to antigen negative cells in the same assay. The selectivity of 

cytotoxicity was also demonstrated by the abolishment of activity when competing with an 

excess of unconjugated anti-B4 antibodies. Furthermore, the unconjugated payload was 

equally cytotoxic towards antigen positive and negative cell lines. Anti-B4-DC1 proved to 

be highly efficacious in murine human tumour models, significantly outperforming 

doxorubicin, cyclophosphamide, vincristine, and etoposide when dosed at their respective 

maximum tolerated levels.  

Unfortunately, poor solubility of the anti-B4-DC1 ‘payload’ in aqueous conjugation reaction 

solvents, and instability in physiological buffers, ultimately precluded its clinical 

development. However, recent efforts by the same laboratory, has seen the development 

of more soluble and stable phenolic phosphate prodrugs of the anti-B4-DC1 ‘payload’.80 

Interestingly, antibody conjugation of these prodrugs, led to a 250 fold increase in in vitro 

potency when compared to the unconjugated equivalents. This is suggestive of improved 

cellular uptake of the conjugates, and that passive diffusion of the free prodrugs is 

inhibited by the charged phosphate group. Again selective low picomolar activity against 

CD19-positive cell lines was demonstrated. Furthermore in vitro potency was only 

increased slightly by the co-incubation of phosphatases, demonstrating that the prodrugs 

are effectively dephosphorylated by endogenous enzymes.  Conjugate huB4-SPP−DC4 

(figure 1.19), showed promising antitumor activity in in vivo models, where the 

unconjugated prodrug was ineffective.80  

 

Figure 1.18 Structure of the anti-B4-DCI ‘payload’ and linker. 
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MDX-1203 (figure 1.20), in development by Bristol-Myers Squibb, represents another 

example of combining water solubilising phenolic protection of the CBI alkylation subunit 

with antibody conjugation.81 Here, CBI is trapped in its seco form by a piperazino 

carbamate, and is tethered to a CD70 targeting antibody via a dipeptide linker which 

extends from substitution of a terminal aniline group. The N-terminus of the dipeptide 

possesses a maleimide group through which conjugation to thiol modified sidechains of 

antibody lysine residues form the attachment site.82 This prevents the need to disrupt 

disulfide bonds between antibody cysteine residues, minimising disruption to protein 

structure. Following antigen specific internalisation, the peptide is cleaved, releasing the 

prodrug, which is ultimately activated by endogenous esterases. MDX-1203 has 

completed phase I clinical trials for renal cell carcinoma or non-Hodgkin’s lymphoma.83  

SYD985 (figure 1.21) is a novel HER2-targeting ADC which has recently entered pre-

clinical evaluation, and represents an alternative approach to antibody conjugation of the 

spirocyclopropylcyclohexadienone pharmacophore.84, 85 In this strategy, the phenol group 

of the seco-alkylation subunit forms the attachment site of the linking group. In this way 

conjugation and seco-trapping phenol protection are combined functions of the same 

 

Figure 1.19 Structure of the huB4-SPP−DC4 'payload' and linker. 

 

 

Figure 1.20 Structure of the MDX-1203 ‘payload’ and linker. 
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structure. Linkage to the antibody is effected by conjugation of the linker’s terminal 

maleimide group with cysteine thiols derived from intrachain disulphide bridges. The 

remaining linker structure consists of a dipeptide, and two well characterised self-

eliminating spacers.86, 87 Upon internalisation, the dipeptide is cleaved revealing a p-

aminobenzyl alcohol from which the elimination cascade is initiated (scheme 1.5), 

ultimately releasing the free seco form of the alkylation subunit to undergo activating 

spontaneous spirocyclisation.   

To date it would appear that ADCs incorporating the spirocyclopropylcyclohexadienone 

pharmacophore, have been restricted to utilising derivatives of the CBI alkylation subunit, 

with linkage extending from either the phenol, or N-terminal substituents. However, the 

 

Figure 1.21 Colour coded structure of SYD985. Blue = dipeptide linker, Red = p-aminobenzyl 
alcohol spacer, Green = second spacer forming carbamate masking the phenol of the seco-

alklyation subunit. 

 

Scheme 1.5 Mechanism of self-elimination initiated by release of p-aminobenzyl alcohol.  
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amine side chains of antibody lysine residues provide the opportunity for conjugation 

through amide bonds. The terminal ester and amide functionality of the duocarmycin SA 

alkylation subunit would seem to afford excellent potential for incorporation into polyamide 

structures, including potentially short water solubilising peptides which could be applied as 

C-terminal linkers for the development of novel ADCs. Fmoc based solid phase synthesis 

is a convenient, and well established methodology for the construction of short peptides 

on a laboratory scale (see chapter 3). This thesis describes the conception and multigram 

synthesis of a duocarmycin SA alkylation subunit suitably substituted to serve as a 

‘building block’ for Fmoc solid phase synthesis, and initial investigations in to its 

application.      
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2  
Chapter Two 

Synthesis of the duocarmycin alkylation subunit suitably 
substituted to serve as a ‘building block’ for Fmoc based solid 

phase synthesis.   
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2.1 Aims. 
 

The work described in this chapter was carried out in order to address the following aims: 

- To design an analogue of the duocarmycin SA alkylation subunit which is suitably 

substituted to allow incorporation of this functionality in to polyamide structures via Fmoc 

solid phase synthesis.  

- To explore the synthesis of this target, and optimise a reliable route which could be 

practically conducted on  the scale necessary to access a sufficient quantity of the final 

product to allow investigation of its use as a ‘building block’ for solid phase synthesis.  

-  To conduct the synthesis on a sufficient scale to access a multigram quantity of the 

‘building block’. 
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Figure 2.1 Disconnection of duocarmycin SA to reveal amino acid functionality. 

 

Scheme 2.1 Potential undesired by-product of resin cleavage by TFA. 

 

2.2 Design of the ‘building block’. 
 

As discussed in the introduction, the alkylation subunit of duocarmycin SA is essentially 

an amino acid. The terminal ester and amide functionality conceal this, but clearly 

highlight its potential for incorporation into polyamide structures (Figure 2.1). 

Therefore it might be concluded that simply substituting the trimethoxyindole unit for 

Fmoc-protection of the indoline nitrogen, and hydrolysis of the ester to give the free 

carboxylic acid, would afford a suitable structure for application to solid phase synthesis. 

However, this would ignore several foreseeable issues.  

Firstly it has been shown that amide bond formation at the indoline nitrogen is inhibited 

when the cyclopropane is in place.88 Thus, such a building block would suffer from poor 

coupling efficiencies. The intact alkylation subunit introduces another problem.  Commonly 

used resins in Fmoc based solid phase synthesis are cleaved under acidic conditions, 

typically with TFA.89 Under such conditions it is likely that ring opening of the 

cyclopropane would be observed, and lead to the formation of undesired products such as 

7 (scheme 2.1). 
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Scheme 2.2 Relevant step in Boger et al’s asymmetric synthesis of (+)-duocarmycin SA. 

 

In addition to these synthetic concerns, use of the intact alkylation subunit represents a 

considerable safety hazard. It was envisioned that the ‘building block’ would eventually be 

synthesised on a multigram scale.  Considering the formidable cytotoxicity of the 

duocarmycins, handling and storing large quantities of active compound safely represents 

a significant concern. 

With these issues in mind, it was decided that a more suitable ‘building block’ would be 

one trapped in a seco form of the cyclopropane by protection of the phenol (a standard 

practice in duocarmycin synthesis). Different seco forms of the duocarmycin alkylation 

subunit are possible, and would be dictated by the chosen synthetic strategy (see scheme 

2.2, and scheme 2.3). 

An elegant asymmetric route to the duocarmycin alkylation subunit has been reported by 

Boger et al.90 The key step in this synthesis (Scheme 2.2) is the intramolecular epoxide 

opening of 8. Metal-halogen exchange with i-PrMgCl affords the Grignard. Subsequent 

transmetalation with CuI-PBu3 provides the cuprate, which in turn attacks the electrophilic 

epoxide at the least substituted position. The resulting seco duocarmycin alkylation 

subunit 9 is isolated with an impressive ee of 99 %. Although this strategy would remove 

the need for chiral resolution, the structure of 9 may not be ideal to form the core of the 

desired solid phase ‘building block’. This is because the free secondary alcohol would 

need protecting to avoid acting as a competing nucleophile during couplings. Furthermore, 

spirocyclisation by displacement of the alcohol requires Mitsunobu activation. The 

chemistry could also prove challenging when performing the synthesis on a large scale. 

An alternative to the epoxide opening is the radical 5-exo-trig cyclisation of a tethered 

vinyl chloride (Scheme 2.3), first reported by Patel et al.91 in the synthesis of related 

heterocycles, and employed by Boger et al.48, 49, 90, 92, 93 towards the racemic synthesis of 

various duocarmycins. The halide seco form of the duocarmycin alkylation subunit 10, 

was deemed more suitable than 9 to provide the core structure of the solid phase building 

block. Not only does the chemistry appear more scalable, and the structure not contain a 
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Scheme 2.3 Racemic radical cyclisation. 

 

 

Figure 2.2 Structure of the desired solid phase ‘building block’. 

 

competing nucleophile, but the halide represents a better leaving group, and therefore 

spirocyclisation can occur spontaneously in vivo after removal of phenol protection. 

Indeed this has been shown not to be rate limiting, and halide seco duocarmcyins have 

comparable activity to their spirocyclised counterparts.67, 94 Therefore this structure holds 

the advantage that compounds of biological interest would be obtained in fewer synthetic 

steps following cleavage from the solid phase. 

To complete the design of the solid phase building block 11 (Figure 2.2) benzyl protection 

of the phenol was chosen. This protection strategy is commonly used during synthesis of 

duocarmycins. It is a robust group, unlikely to be lost unintentionally, and one which is 

orthogonal to the conditions used during solid phase synthesis.95 This is an important 

consideration, as were the phenol protection to be lost under the basic conditions of 

Fmoc-deprotection, spirocyclisation could occur, and in turn this would reduce coupling 

efficiencies, and introduce the cleavage problems already discussed.   
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Scheme 2.4 Tietze et al.’s synthesis of 10. 

 

2.3 The pilot synthesis of 11. 
 

It was envisioned that 11 would be easily accessible from the previously reported Boc-

protected seco duocarmycin alkylation subunit 10 (scheme 2.4).90, 96 This would be 

achieved by hydrolysis of the methyl ester, exhaustive Boc-removal, and regioselective 

protection of the indoline nitrogen with Fmoc-Cl. 

One of the most concise routes to 10 is shown in scheme 2.4, and combines a Fischer 

indole synthesis to give key nitro indole intermediate 15, with the radical 5-exo-trig 

cyclisation to complete the indoline ring.96 However, the route contains an undesirable 

switching of protecting groups from methyl ether 14 to benzyl ether 15. The authors 

explain this as unintentional. Their initial plan was to retain methyl ether protection 

throughout the synthesis, but that this proved incompatible with later steps. Previous 

efforts in our lab to repeat the Fischer indole reaction with benzyl ether protection in place 

from the start were unsuccessful. Furthermore attempts to repeat the published procedure 
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Scheme 2.5 Unpublished route to indole 15. 

 

 

Scheme 2.6 Introduction of the benzyl ether. 

 

have produced unsatisfactory yields. Therefore an alternative strategy to access the nitro 

indole 15 was sought.  

Personal communication with Dr Helen Sheldrake from the University of Bradford 

suggested that the currently unpublished route shown in scheme 2.5 was worth exploring. 

Here indole ring formation is achieved by a TBAF promoted annulation of the suitably 

substituted aniline 26. The aniline is accessed by the Sonogashira coupling of propargyl 

alcohol to 2-iodoaniline 23 with two subsequent oxidation steps to give the desired ester. 

This route formed the basis of our initial strategy when beginning the pilot synthesis.   

2.3.1 Introduction of the benzyl ether. 

Cheap and readily available 2-amino-5-nitrophenol, was converted in to the benzyl ether 

22 by treatment with K2CO3 and BnBr in DMF at room temperature (scheme 2.6). The 

product was isolated in sufficient purity to be used without further purification, by 

precipitation in a mixture of crushed ice and water, with near quantitative yield (99 %). 
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The product was confirmed by 1H NMR (see scheme 2.6 for atom numbering). A 

distinctive aromatic splitting pattern characteristic of the substitution arrangement of the 

aniline ring was observed. The hydrogen at the C-6 position produced a doublet at 6.66 

ppm, with a coupling constant of 8.7 Hz, characteristic of ortho coupling to its 

neighbouring hydrogen. The C-5 hydrogen itself gave rise to a doublet of doublets at 7.83 

ppm with coupling constants of 8.7 Hz and 2.4 Hz, the smaller of these values 

representing additional meta coupling to the C-3 hydrogen. The reciprocal doublet of the 

C-3 hydrogen was observed at 7.77 ppm.  

There is a dramatic difference in the chemical shift of the resonance signal for the C-6 

hydrogen compared to that of the C-3 and C-5, with that of the C-6 being observed 

significantly upfield relative to the other two. This can be explained through the mesomeric 

effects of the ring substituents. The nitro group has an electron withdrawing effect which is 

most pronounced at para or ortho positions. Thus the C-5 and C-3 hydrogens experience 

greater deshielding relative to the C-6 hydrogen. This difference in shielding is amplified 

by the donating effect of the amine, which increases the electron density at the C-6 

position. 

The presence of the benzyl ether is confirmed by the appearance of a further 5 aromatic 

hydrogens signals overlapping to form a complex multiplet observed at 7.37-7.46 ppm, 

and a singlet at 5.15 ppm corresponding to the two aliphatic hydrogens at the C-8 

position. The downfield position of the C-8 hydrogens, represents the electron withdrawing 

effect of the neighbouring oxygen atom and benzene ring.  A broad singlet at 4.60 ppm, 

integrating for the two exchangeable hydrogens of the amine, confirms the regioselectivity 

of the reaction.  

This reaction is a nucleophilic substitution (scheme 2.7). Deprotonation of the phenol by 

addition of the basic K2CO3 generates the more nucleophilic phenoxide. This species then 

most likely attacks the electrophilic centre of the polarised carbon bromine bond of BnBr 

directly by a concerted SN2 pathway. Here the lone pair within the HOMO of the 

phenoxide approaches the antibonding orbital at the rear of the carbon bromine bond. As 

more electron density is donated to the antibonding orbital, the bromine carbon bond 

increasingly weakens.  This results in a hypervalent trigonal bipyramidal carbon transition 

state, in which the carbon is partial bonded to both the oxygen and the bromine atom. 

BnBr is particularly reactive via this mechanism as the transition state is stabilised by 

orbital overlap of the neighbouring pi system.  



53 
 

 

Scheme 2.7 Benzyl ether formation by nucleophilic substitution predominantly via the SN2 
mechanism. 

 It is possible for this reaction to also proceed via an SN1 mechanism. Bromine is a good 

leaving group, and the resulting carbocation intermediate would be stabilised by 

resonance with the pi system of the benzene ring. It is likely that both pathways occur to 

some extent, but that the SN2 route dominates. The fact that the reaction is performed in 

an aprotic polar solvent (DMF) also favours the SN2 pathway. This is due to preferential 

solvation of the phenoxide’s counter ion, increasing the electron density of oxygen, and 

hence reactivity. Polar protic solvents such as water would hydrogen bond with the 

oxygen and reduce its electron density. At the same time they would also be able to 

stabilise the carbocation of the SN1 route, favouring this mechanism. As the reaction is 

achiral, which pathway is taken is of no consequence, because the same product is 

reached. 

The amine group of 2-amino-5-nitrophenol has the potential to act as a competing 

nucleophile in this reaction. However its para position relative to the withdrawing nitro 

group, means it is heavily deactivated. A small more hydrophobic side product was 

observed by TLC, and this may represent the occurrence of some benzylation of the 

amine, most likely occurring after formation of the ether, by reaction of the product with 



54 
 

 

Scheme 2.8 Iodination of 22. 

 

the small excess of BnBr. It is possible that the potential for a SN1 reaction to occur, 

allows the benzylation of this deactivated nucleophile to proceed. This side product was 

present in very small quantities and did not precipitate with the product during the work 

up.     

2.3.2 Iodination of 22 

Regioselective iodination of 22 provides the handle for subsequent Pd cross couplings.  

The unpublished route achieves this using ICl in THF at reflux. ICl is a troublesome solid 

to handle. It begins to melt at room temperature, and is sensitive to decomposition under 

atmospheric conditions, producing toxic and corrosive fumes.97 With a view to the later 

large scale synthesis, it was decided to substitute ICl, for an alternative and more easily 

handled source of electrophilic iodine. Consequently iodination was achieved in this 

synthesis, by treatment of 22 with NIS, and catalytic H2SO4 in THF at room temperature 

overnight. Washing with sodium thiosulphate, and subsequent flash chromatography 

afforded the product in a yield of 88 %. 

The regioselectivity of iodination was confirmed by 1H NMR (see scheme 2.8 for 

numbering). Disappearance of the ortho coupled doublet at 6.66 ppm corresponding to 

the C-6 Hydrogen observed for 22 indicates that the desired position has been iodinated. 

Furthermore the C-5 hydrogen which was a doublet of doublets, is now observed as 

doublet with a coupling constant consistent with long range meta coupling to its C-3 ring 

partner. The chemical shifts of the C-3, and C-5 hydrogen signals have also changed in 

line with alteration in electronic character of the ring imposed by addition of the iodine 

substituent. The electronegative nature of the iodine atom has decreased the electron 

density of the ring. This is an inductive effect, and is most pronounced on the closest C-5 

hydrogen. It has moved downfield from 7.83 to 8.29 ppm, due to decreased shielding. The 

more distant C-3 hydrogen has not moved to a more downfield position. This can be 

explained by mesomeric effects. Although the electronegativity of the iodine atom is 
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Scheme 2.9 Iodination of 22 by electrophillic aromatic substitution with NIS including the directing 
effect of the amine. In square brackets resonance structure of nitro benzene showing deactivation 

of the ortho and para positions. 

 

overall deactivating, its electronic configuration means it is able to donate electrons 

through resonance, and therefore increases the relative electron density at ring positions 

ortho and para to itself. Therefore the C-3 hydrogen benefits equally from this mesomeric 

shielding effect as the C-5 hydrogen, but is least effected by the inductive deshielding 

effect.  

The reaction is an electrophilic aromatic substitution, with NIS serving as a source of 

electrophilic iodine. The likely mechanism is depicted in scheme 2.9. NIS is activated by 

the presence of the acid catalyst. Protonation of the carbonyl leads to heterolytic cleavage 

of the nitrogen iodine bond to resolve the oxocarbenium ion. This can be as a result of 

direct nucleophilic attack of the aniline ring as depicted in scheme 2.9, or through 

spontaneous release of the iodine cation which is subsequently attacked by the aniline 

ring. It is also possible that the released iodine cation is first captured by the bisulfate with 

the resulting species acting as the actual source of electrophilic iodine.98 Scheme 2.9 also 

shows the directing effect of the amine. Donation of the nitrogen’s lone pair increases 

electron density at the ortho ring position, and hence the nucleophillicity of this position. 

Attack of the electrophilic iodine results in the resonance stabilised iminium ion. 

Abstraction of the hydrogen by the bisulfate restores aromaticity, resolving the iminium ion 
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Scheme 2.10 Introduction of the alkyne. 

 

to give the desired product 23. This step also regenerates the acid catalyst. In addition to 

the directing effect of the amine, regioselectivity is also promoted by the electron-

withdrawing effect of the nitro group which deactivates the remaining unsubstituted 

positions of the aniline ring. Resonance structures of nitrobenzene which show the 

deactivation of the ortho and para positions are shown in brackets in scheme 2.9.  

2.3.3 Introduction of the alkyne. 

With the iodine in place it provided a handle to investigate Pd cross couplings for 

introduction of the alkyne.  Initially it was decided to continue to follow the unpublished 

route (scheme 2.5). In this route propargyl alcohol is introduced by Sonogashira 

coupling,99 and subsequently oxidised in multiple steps to give the desired ester. 

The Sonogashira coupling proceeded without issue. 23 was treated with Pd(PPh3)2Cl2 (5 

mol %), CuI (10 mol %), and propargyl alcohol (1.1 equiv.) stirring overnight, at room 

temperature, as a suspension in Et3N, under N2. Flash chromatography afforded the 

desired alkyne 24 with a yield of 93 %. However this route had to be abandoned as 

oxidation of the alcohol to the target ester could not be repeated. 
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Scheme 2.11 Mechanism of the Swern oxidation. 

The first of these oxidations did work but at a very low yield of only 31 %. This step was a 

Swern oxidation100 and proceeds via the mechanism shown in scheme 2.11.101  DMSO 

reacts with the electrophilic oxalyl chloride forming a short lived intermediate which 

decomposes to the reactive dimethylchlorosulfonium salt, with the release of carbon 

dioxide and carbon monoxide. Attack of the alcohol yields the alkoxysulfonium salt. 

Subsequent treatment with Et3N leads to deprotonation at one of the methyl groups 

forming the sulfur yilde. This species then decomposes via an intramolecular β-elimination 

to give the desired aldehyde and dimethylsulfide as a side product.  

At first, TLC analysis suggested that the low yield was a result of the incomplete reaction 

of the starting material. The Swern oxidation is a sensitive reaction and can be influenced 

by the timing of addition of each reagent, and also by control of temperature. The reaction 

is typically conducted at -78 oC. Cryogenic operating conditions are required for several 

reasons. Firstly the reaction between DMSO and oxalyl chloride is extremely exothermic, 

and dangerous at room temperature. The dimethylchlorosulfonium salt is also unstable at 

elevated temperatures. Furthermore an alternative attack of the sulfur ylide can lead to a 
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Scheme 2.12 Pummerer rearrangement type side reaction. 

 

 

Scheme 2.13 Possible but unlikely side product of Swern oxidation. 

Pummerer type rearrangement giving rise to mixed thioacetal side products if the 

temperature is not properly controlled (scheme 2.12).102  

It is possible that addition of DMSO to the oxalyl chloride in THF was not slow enough and 

thus temperatures rose leading to some decomposition of the dimethylchlorosulfonium 

salt before it could react with the alcohol. Alternatively the delay of 20 mins prior to 

addition of the alcohol may have been too long. The activation of DMSO with oxalyl 

chloride is extremely facile even at -78 oC, thus addition of the alcohol after only 5 mins or 

at the cessation of gas evolution, could have been more appropriate.  

However, closer inspection of the TLC, revealed that the suspected unreacted starting 

material may have been a side product, as although it co-eluted with the starting material 

it produced a different colour spot under visualisation by staining with vanillin. This could 

be as a result of the thioacetal formation as already discussed (scheme 2.12) if the 

temperature was not sufficiently controlled.  
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Scheme 2.14 Potential but unlikely displacement reactions. 

 

Swern oxidation conditions have the potential to oxidase amines into imines.103 However, 

the amine in this compound is an aniline. Not only is it deactivated by the para nitro group, 

but there is no hydrogen available for the necessary β-elimination. It is perhaps possible 

for the resulting sulfur ylide to abstract the hydrogen from the nitrogen itself as depicted in 

scheme 2.13, but this seems unlikely; although the resulting product could be stabilized by 

resonance with the nitro group. Indeed it is also conceivable for the Pummerer type 

rearrangement to occur here. 

Another timing consideration is the delay between addition of the alcohol and addition of 

the base. The alkoxysulfonium salt which exists prior to addition of the base is a potential 

leaving group, which could promote displacement of the alcohol (Scheme 2.14). Here the 

aniline could act as nucleophile. However this would have to be intermolecular, or involve 

participation of the alkyne and both seem unlikely. Participation of the alkyne would lead 

to a four membered heterocyclic ring and a cumulated diene so seems very unfavoured. 

Another possible displacement could come from the chloride counter ion of the 

alkoxysulfonium salt itself, leading to chlorination.  
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Scheme 2.15 Likely mechanism for direct oxidation of the alcohol to the ester by molecular iodine. 

 

As this route was abandoned, the reaction was not repeated to isolate the side product 

and determine at which stage the reaction was failing. In retrospect the complicated 

operating conditions, and the notoriously malodourous dimethyl sulfide side product, 

would have proved troublesome on scale up anyway. 

Nevertheless, the small amount of product isolated was reacted on through the planned 

route, but was unsuccessful. This reaction was a direct oxidation of the aldehyde to the 

desired ester using NIS in MeOH with K2CO3. Starting material was consumed but led to 

multiple products and the desired ester could not be isolated.   To circumvent the Swern 

oxidation a number of unsuccessful attempts were also made to oxidise the alcohol 

directly to the ester by treatment with molecular iodine at reflux in MeOH with K2CO3.
104 

The likely mechanism of such reactions is shown in scheme 2.15.  

As with the NIS oxidation of the aldehyde, this reaction was very unselective and led to 

multiple products preventing isolation of the desired ester. The mechanism involves the 

formation of unstable hypoiodite species. Alternative homolytic cleavage of these 

intermediates would result in alkyoxy radicals which could be responsible for the 

undesired side reactions. In retrospect conducting the reaction in the dark and under 

anaerobic conditions would help to reduce this. The mechanism highlights another issue. 

The aldehyde intermediate is stabilized by conjugation with the alkyne, and this must be 

broken by subsequent attack of the MeOH to form the hemiacetal hypoiodite species. This 

probably represents the rate limiting step in the reaction. Conjugation is restored by 

formation of the ester. There is also the potential for competitive oxidation of the solvent. 

This concern meant the reaction was conducted at high concentration. This proved 
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incompatible with refluxing, and the long reaction times required, leading to formation of a 

slurry overnight. An attempt was made to substitute MeOH for 2,2,2-trifluroethanol.104 It 

was expected that 2,2,2-trifluroethanol would be less susceptible to oxidation, and 

therefore allow the reaction to be conducted at lower a concentration. However this 

reaction also did not provide the desired product.    

With the failure to find a reliable method to oxidase the propargyl alcohol, attention turned 

to the possibility of introducing the ester directly by coupling of methyl propiolate. This was 

initially attempted via the same Sonogashira conditions used to couple the alcohol. 

However it soon became apparent that using Et3N as the solvent would not be successful. 

Dilution of the methyl propiolate in Et3N prior to addition to the reaction mixture, led to the 

instantaneous formation of a black precipitate. This was most likely the result of a Michael 

type addition of the nucleophilic Et3N at the terminal alkyne of the methyl propiolate. 

An alternative protocol was trialled using an inorganic base (K2CO3) and refluxing in 

THF.105 However no reaction was observed. This was reasoned to be a potential 

consequence of poor solubility of the base. Addition of a few drops of water as a co-

solvent had no effect.  As a result the reaction was repeated in DMF. The change was 

dramatic leading to full consumption of the starting material. Unfortunately the reaction 

produced multiple products by TLC with none appearing to dominate.  

It was decided to repeat the reaction again in DMF but substitute DIPEA for K2CO3. It was 

anticipated that DIPEA, being a more hindered and therefore less nucleophilic organic 

base, would not undergo the troublesome Michael addition suspected with Et3N, 

particularly when only used at 4 equiv. as opposed to the large excess available if used as 

the solvent. As a preliminary test methyl propiolate was added to a large excess of 

DIPEA. Indeed the instantaneous reaction seen with Et3N was not apparent, and slow 

discoloration was only observed after about an hour.  The substitution of DIPEA for K2CO3 

turned out to be the key to the success of this coupling, and the desired ester was 

afforded with a yield of 79 % after flash chromatography. The reaction required 4 equiv. of 

methyl propiolate; attempts to reduce this led to incomplete couplings. 

Appearance in the 1H NMR spectra of a characteristic singlet at 3.86 ppm resulting from 

the methyl group of the ester confirmed the successful coupling of methyl propiolate. The 

doublet for the aromatic meta coupled C-5 hydrogen also shifted upfield from 8.29 ppm to 

8.06 ppm (see scheme 2.10 for numbering). This is consistent with it no longer being so 

deshielded by the inductive withdrawing effect of the iodine atom. The 13C NMR also 

helped to confirm the correct product with the appearance of four additional carbon 
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Scheme 2.16 Mechanism of Sonogashira coupling. 

 

signals. A DEPT-edited HSQC experiment also showed that only one of these new carbon 

signals was correlated with protons, and that this was the CH3 of the methyl ester.  

The exact mechanism of the Sonogashira coupling is not fully understood (scheme 

2.16).106 It is believed to involve two independent catalytic cycles: that of the Pd and that 

of the Cu co-catalyst. Although the protocol employed in this synthesis uses Pd(PPh3)2Cl2, 

a Pd(II) species, it is actually a Pd(0) complex formed in situ that is believed to be the 

active catalyst. It is suggested that this can be formed from the addition and subsequent 

reductive elimination of two of the acetylene molecules, however there is also speculation 

surrounding involvement of the amine in this reduction. This might explain why DIPEA 

proved more effective than K2CO3. The first step of the Pd cycle is the oxidative addition 

of the aryl halide and this is believed to be rate limiting. Transmetalation of the methyl 

propiolate from the Cu cycle follows. The resulting Pd complex then undergoes cis/trans-
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Scheme 2.17 Hiroya et al.’s Negishi coupling and in situ indole ring closure. 

 

isomerization, followed by reductive elimination to give the final alkyne and regenerate the 

Pd(0) complex. The formation of the copper acetylene, required for this transmetalation, is 

promoted by deprotonation of methyl propiolate, which is catalysed by π-coordination of 

the Cu. Transmetalation regenerates the CuI.  

Unfortunately the yield of the Sonogashira coupling dropped considerable on modest 

attempts to scale up the reaction, and although this ultimately provided enough material to 

complete the pilot synthesis, it was decided to explore alternative Pd cross couplings with 

a view to later large scale synthesis. 

Electron deficient alkynes like methyl propiolate are known to be difficult substrates for 

Sonogashira couplings, and standard conditions can often result in low yielding 

reactions.107 A good alternative in such cases is the Negishi coupling.108  Both reactions 

essentially employ the same Pd chemistry, but whereas the Sonogashira methodology 

utilizes a copper co-catalyst, transmetalation in the Negishi coupling is effected directly 

from an organozinc compound; typically in a heteroleptic form, such as R-Zn-X, where X 

is Cl, or Br.  In the standard Negishi coupling this species is formed prior to the coupling 

reaction itself. However, in recent years Negishi et al. have reported successful Pd-

catalysed alkynylations via the in situ formation of the necessary alkynylzinc species, by 

treatment with ZnBr2, and Et3N.109 

This chemistry has since been utilised by Hiroya et al. towards the total synthesis of 

duocarmycin SA, (scheme 2.17).110 They found that when the mono-mesylated iodoaniline 

27 was subjected to Negishi coupling conditions, the indole was formed in situ. Previous 

group members have tried to repeat this transformation but have found the reported yields 

of upwards of 56 % difficult to replicate. In addition they report that the indole was difficult 

to separate from uncyclised product. As following this route would also introduce two 

additional synthetic steps (dimesylation and mono-demesylation), it was decided to 

explore subjecting the already synthesised unprotected iodoaniline 23 directly to similar 

Nesghi coupling conditions.                 
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Here 23 was treated with Pd(PPh3)2Cl2 (5 mol %), ZnBr2 (4 equiv), methyl propiolate (4 

equiv.), and DIPEA (4 equiv.), in THF at reflux under N2, overnight. The use of THF over 

DMF led to a more convenient work up, as the increased volatility of this solvent allowed 

the reaction mixture to be easily concentrated by rotary evaporation, and subjected 

directly to flash chromatography. The desired coupled product 26 was isolated in a good 

yield of 79 %. No evidence of cyclisation was observed. TLC analysis of the crude showed 

only one UV active product and a baseline spot.  

It is unclear why under our Negishi coupling conditions no indole formation is observed. 

There are several differences between our reaction and that of Hiroya et al. Perhaps most 

notable is the absence of the mesylate group. It is therefore possible that this protecting 

group is necessary for ring closure to be promoted, but it is not obvious as to why this 

should be the case. If the mechanism of ring closure requires some form of nucleophilic 

attack of the aniline nitrogen, then the presence of a withdrawing mesylate group might be 

seen to hinder rather than aid this process. However, Hiroya et al. claim this reaction is 

catalyzed by a Pd species. They were not able to identify the active catalyst, but by 

probing the ring closure in separate reactions to the coupling, they did ascertain that both 

the Pd(PPh3)4, and methyl propiolate were necessary, and that although not essential 

ZnBr2 did improve the efficiency of the reaction.111  

They therefore speculate that a catalytic species formed from Pd(PPh3)4, and methyl 

propiolate, the formation of which is accelerated by the presence of ZnBr2 is responsible 

for this annulation. If this is the case then the presence of the mesylate group may provide 

a handle for oxidative addition. However, this would seem inconsistent with the final 

product which retains this protecting group. 

Our conditions also differ from Hiroya et al. in the ratio of reagents used. For their 

sequential coupling-cyclisation reactions Hiroya et al. typically employ 2 equiv. of methyl 

propiolate, 3 equiv. of ZnBr2, and 6 equiv. of DIPEA. As a legacy from our previous 

Sonogashira conditions, which worked best with 4 equiv. of methyl propiolate, 4 equiv. of 

methyl propiolate, ZnBr2, and DIPEA were used in our Negishi coupling. This was in an 

attempt to provide 4 equiv. of the alkynylzinc species for transmetalation. It is difficult to 

reason why this would have a deleterious effect the formation of the cyclisation catalyst. 

For example it seems unlikely that an excess of ZnBr2 over methyl propiolate, or an 

excess of DIPEA over both is required.  

The final difference is the starting form of the Pd species. Hiroya et al. used Pd(PPh3)4 

while our conditions employ Pd(PPh3)2Cl2. Although Hiroya et al. state that the PPh3 

ligand is required for cyclisation, Pd(PPh3)2Cl2 is likely to form the same catalytic species, 
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Scheme 2.18 Annulation to give the indole. 

 

unless the additional two equiv. of this ligand are the important factor. However this 

speculation can be ruled out, as our Negishi conditions were later trialled with Pd(PPh3)4, 

and still no indole formation was observed. 

Whatever the reason, it would seem to be an advantage to our purpose that no cyclisation 

was seen. This is because Hiroya et al.’s conditions seem to lead to a mixture of the 

indole and the uncyclised product, and a separate annulation step is preferable to a 

difficult chromatography separation on scale. Nevertheless, a number of unsuccessful 

attempts were made to promote cyclisation during the Negishi coupling.  

Firstly, it was reasoned that increased temperature might drive ring closure. Therefore the 

reaction was repeated in toluene at reflux. However this only served to produce faster 

coupling at significantly reduced yield.  

As treatment of the coupled product 26, with TBAF would later be used to successfully 

form the indole, the use of TBAF over DIPEA as the base in the Negishi coupling was 

trialed. However, although the starting material was consumed this did not lead to 

formation of either the coupled product, or the indole. The product was not isolated in 

sufficient quantity or purity to make a confident assignment, but the presence of alkene 

signals in the 1H NMR lead to speculation that TBAF may have in fact promoted an aza 

Michael type addition of the aniline to methyl propiolate.  

2.3.4 Annulation to give the indole. 

With the success of the direct Pd cross coupling of methyl propiolate, a reliable and 

significantly shortened route to 26 had been secured. Therefore attention turned to the 

formation of the indole as a separate step. The successful cyclisation of 2-ethynylaniline 

derivatives using TBAF has been reported by Sakamoto et al.112 This chemistry is 

employed in the unpublished duocarmycin synthesis, and was repeated here to promote 
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the desired annulation. 26 was treated with a stoichiometric excess of TBAF at reflux in 

THF. The reaction was quick and selective, producing only one new UV active product 

and a baseline impurity. Sadly, this step appears to be intrinsically low yielding, with the 

best yield achieved being only 58 % after flash chromatography. 

Successful annulation was confirmed by the product retaining the same mass, but 

producing a different 1H NMR spectra. The changes were characteristic of the desired 

indole structure. Perhaps most notable is the disappearance of the aniline hydrogen signal 

at 5.32 ppm, which is now replaced by a broad singlet at 9.32 ppm integrating for the 

single hydrogen of the indole nitrogen. Its downfield position reflects the fact that the 

nitrogen atom’s lone pair is now formally contributing to the aromaticity of the indole.  

The aromatic hydrogens of the benzyl group still appear as a complex multiplet, but 3 

rather than 2 additional aromatic signals are now apparent, this resulting from the new 

aromatic hydrogen signal at the C-3 position (see scheme 2.18 for numbering).  The C-3, 

C-4, and C-6, aromatic hydrogen signals all appear as narrow doublets with coupling 

constants of around 2 Hz. This reflects long range coupling through the π system. The C-

4 hydrogen which is coupled to both the C-3, and C-6 hydrogen does not appear as a 

doublet of doublets, this probably simply reflects the similarity in the coupling constant of 

both long range couplings.  

The new C-3 hydrogen signal adopts the most upfield position at 7.35 ppm. This is 

consistent with this being the most nucleophilic position of the indole ring, receiving a 

formal negative charge in resonance with the indole nitrogen’s lone pair.   

Finally the C-18 methyl group hydrogen signal of the ester has shifted slightly downfield 

from 3.86 ppm, to 3.96 ppm. This most likely reflects a reduction in electron density of the 

ester carbonyl which is now conjugated with the larger aromatic indole system, as 

opposed to the previous alkyne.   
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Scheme 2.19 Unlikely basic mechanism of ring closure. 

 

How TBAF promotes the ring closure of 26 to the desired indole 15, is not clear. 

Commercially available solutions of TBAF are known to be basic,113 and the ring closure 

of 2-ethynylanilines via treatment with strong bases such as potassium tert-butoxide has 

been reported.114 Such reactions presumably progress through the mechanism outlined in 

scheme 2.19. Here the basic species deprotonates the aniline, and subsequent 

protonation of the alkyne by the conjugate acid activates the alkyne for nucleophile attack. 

However, it seems unlikely that the fluoride ion, as present in a TBAF solution, is 

sufficiently basic to deprotonate the aniline. Although it is true that the acidity of the aniline 

is increased by the withdrawing effect of the para nitro group.  

Sakamoto et al. have explored the mechanism of similar TBAF promoted annulations of 2-

alkynylbenzyl alcohol and 2-alkynylbenzylamine derivatives.115 Their work clearly shows 

that both the fluoride anion and the tetrabutylammonium cation are essential to promote 

cyclisation. They also noticed the appearance of 1H NMR signals corresponding to the 

formation of Bu3N during the reaction. With this evidence in mind the mechanism depicted 

in scheme 2.20 seems more plausible.    

In this proposal, Sakamoto et al. suggest that the alkyne is initially activated by 

association with the tetrabutylammonium cation and fluoride anion. This leads to 

polarization of the alkyne. The resulting isomerization brings the electrophilic end of this 

species in closer proximity to the aniline leading to nucleophilic attack of the nitrogen’s 

lone pair. The nucleophilic end of the isomerized alkyne abstracts a hydrogen from one of 

the tert-butyl chains of the tetrabutylammonium cation via a Hoffmann type elimination. 
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Scheme 2.20 Possible reaction mechanism for TBAF promoted ring closure. 

 

This results in a protonated intermediate of the desired indole, and the formation of Bu3N 

observed by Sakamoto et al. Subsequent deprotonation by the fluoride anion, gives the 

indole, and reaction of the Bu3N, butylene, and HF regenerates TBAF.  However, the 

resonance structure of the polarized alkyne proposed by Sakamoto et al. is very unusual. 

It seems perhaps more likely that this process is concerted and progresses through a 

transition state such as that also depicted in scheme 2.20.    

Such a mechanism would suggest that the reaction might be possible with a catalytic 

quantity of TBAF, and indeed Sakamoto et al. have shown that the annulation of 2-

alkynylbenzylamine derivatives is possible with as little as 10 mol % TBAF. 

As noted previously the TBAF promoted cyclisation as used in this synthesis appears to 

be intrinsically low yielding. It is not clear why, as the reaction is fast, and leads to only a 

base line impurity by TLC. Considering the water content of THF, it is possible that TBAF 

is sufficiently basic (via formation of hydroxide) under the reaction conditions to lead to 

partial hydrolysis of the methyl ester, which is then lost as the baseline impurity. In 
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retrospect it would be interesting to see if the yield could be improved by using a catalytic 

quantity of TBAF.    

The annulation of 2-alkynylaniline derivatives is a common route to the formation of 

indoles, and many methods exist. Considering that the low yield of the TBAF cyclisation 

represented an early bottleneck in the synthesis, a number of alternative ring closures 

were trialed. However none were successful.  

As Cu(I) salts are sometimes employed in such annulations,116 the Sonogashira coupling 

was briefly revisited, and trialled using a stoichiometric amount of CuI, to see if this would 

induce in situ ring closure after coupling. Unfortunately this led to failure of the coupling 

reaction. This is perhaps due to homo-coupling of the methyl propiolate.117 

Lewis acids such as ZnBr2 have also seen success in similar ring closures,118 and 

although no cyclisation was observed during the Negishi coupling, it was postulated that 

this may be because the ZnBr2 is consumed in the formation of the alkynylzinc species. 

Therefore, separate treatment of the coupled product, with a stoichiometric excess of 

ZnBr2 at reflux in toluene was trialled.  This resulted in no reaction.   

Finally it was decided to briefly explore transition metal catalysis. As no cyclisation was 

observed during the Negishi coupling, it was decided not to try separate treatment of the 

coupled product with Pd(PPh3)2Cl2. Instead an attempt was made to cyclize 26 using Au 

catalysis. Au(III) species are known to be excellent activators of alkynes for nucleophilic 

attack, particularly for intramolecular hydroaminations such as this.119  

Marinelli et al. report high yielding annulation of a wide range of 2-alkynylanilines, by 

treatment with the Au(III) species, NaAuCl4.2H2O in EtOH at room temperature.120 Their 

works showed promise, as one of their substrates contained a nitro group para to their 

aniline. The deactivating effect on the aniline of this group has been suspected to possibly 

contribute to the resistance of 26 to ring closure in this synthesis. They also use 

unprotected anilines. Furthermore they state that their method has successfully cyclized 

2-alkynylanilines which have proved unreactive towards Pd catalysis.       

Therefore 26 was treated with NaAuCl4.2H2O in EtOH at room temperature. No reaction 

was observed. However, it was noted that 26 appeared to be only partially soluble in 

ethanol. The reaction was therefore heated to reflux, and although the starting material 

was consumed the reaction produced multiple products none of which matched the Rf of 

the desired indole by TLC. The reaction was repeated in THF, but no reaction was 

observed at room temperature or reflux.  
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Scheme 2.21 Activation of alkyne by Au(III), disfavoured because of charge repulsion of the 
partially positively charged carbon of the neighbouring carbonyl. 

 

The lack of reactivity at room temperature in ethanol is possibly due to poor solubility, but 

this is not true for the lack of reactivity in THF. It is still possible that the deactivating effect 

of the para nitro group is to blame, but as discussed one of Marinelli et al.’s substrates did 

contain this ring configuration. Although, it is also true that this proved to be their lowest 

yielding substrate. 

It seems likely that the resistance of 26 to ring closure is in some way a consequence of 

the carbonyl of the ester being vicinal to alkyne. Au(III) activates the alkyne of 2-

alkynylaniline derivatives for intramolecular hydroamination, by coordination as depicted in 

scheme 2.21. For 26, this would lead to the formation of a positive charge on the carbon 

of the alkyne which is neighbouring the already partially positive carbon of the carbonyl, 

and this is likely unfavorable. It is true that this polarization of the alkyne is also required 

for cyclisation by TBAF. It may be that it is the contribution of the fluoride anion that 

makes that reaction possible, and why other annulation methods have failed.  

The presence of the ester may introduce other problems for the Au catalyzed reaction. It 

is possible to imagine that the Au could coordinate with both the alkyne and the carbonyl 

oxygen leading to 5 membered metallic ring systems, or indeed that both oxygen atoms of 

the ester could chelate the Au. However, such processes would surely lead to a change 

by TLC analysis which was not observed.   

As discussed, consumption of the starting material to form undesired products was 

observed at reflux in ethanol. As this was not seen at reflux in THF, this must be a 

consequence of the reactivity of ethanol, and may, or may not involve a contribution from 

the NaAuCl4.2H2O.    
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Scheme 2.22 Boc-protection of the indole. 

 

2.3.5 Boc protection of the indole. 

Successful formation of indole 15, represents the convergence of this synthesis with the 

previously published route (scheme 2.4).96 Here, Boc2O and a catalytic quantity of DMAP 

is employed to introduce Boc-protection of the indole nitrogen. In this synthesis it was 

decided, following from previous experience to instead use 1 equiv. of DMAP allowing 

greatly reduced reaction times. The reaction was carried out in DCM and the reaction 

mixture subjected directly to flash chromatography, affording 16 in a yield of 75 %.  

The most characteristic change in the 1H NMR (see scheme 2.22 for numbering), was the 

disappearance of the indole nitrogen hydrogen signal, and the emergence of an upfield 

singlet at 1.47 ppm integrating for the 9 equivalent hydrogens of the Boc group (C-26, C-

27, and C-28 hydrogen signals).  

Interestingly the appearance of the aromatic signals of the benzyl group also changed. 

Where they appeared as single complex multiplet, they are now split in to 2 distinct 

multiplets, the most upfield of which partially overlaps with the C-3 indole aromatic 

 

Figure 2.3 Aromatic region of the DEPT-edited HSQC of 16 at 298 K. 
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Scheme 2.23 Mechanism of Boc-protection of the indole nitrogen using DMAP as an acyl transfer 
agent. 

 

hydrogen signal at 7.33 ppm. Two dimensional DEPT-edited HSQC experiments 

confirmed this, as the C-3 proton signal was clearly correlated with a separate CH carbon 

distinct from those of the benzyl group, and one more similar in environment to the two 

carbon signals correlated with the C-4 and C-6 hydrogen signals (see figure 2.3). It is not 

obvious what causes this change. It may be a rotameric effect caused by steric clash 

between the benzyl ether and the newly introduced Boc group.   

The reaction is an acylation of the indole nitrogen by Boc2O to give the carbamate. 

Although primary amines can react directly with Boc2O, the acylation of indole nitrogens 

requires the use of a catalyst such as DMAP. The necessity for a catalyst is due to the 

reduced nucleophilicity of the indole nitrogen, a consequence of its lone pair formally 

contributing to the aromaticity of the indole ring system. The mechanism is outlined in 

scheme 2.23. Here DMAP is acting as both a base and an acyl transfer agent. 

The nucleophilic pyridine nitrogen of DMAP attacks the electrophilic centre of one of the 

Boc2O carbonyls. This leads to formation of the tert-butyl carbamate pyridinium cation, 

and a tert-butyl carbonate anion. DMAP also likely serves to deprotonate the indole. The 

pyridinium species is attacked by the deprotonated indole. Here DMAP serves as a 

leaving group, regenerating the catalyst to give the desired Boc-protected product.  
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2.3.6 Selective reduction of the nitro group and subsequent 

Boc-protection of the amine. 

The next step in the published route96 is the selective reduction of nitro indole 16 to the 

amine 17, followed by Boc-protection to give 18. Tietze et al. achieved the reduction via a 

heterogeneous Pd-catalysed hydrogenation. In order to prevent the competing benzyl 

ether cleavage they use a poisoned Pd species in the form of the Lindlar catalyst.  

It was decided not to use this procedure, as the need for H2 gas might prove troublesome 

when later scaling up the synthesis. Instead, a dissolving metal reduction using Zn and 

aqueous ammonium chloride, employed by Boger et al. for the same transformation,90 

was explored. The Boger group used 5 equiv. of Zn and 10 equiv. of ammonium chloride, 

stirring in a 5 to 1 mixture of acetone and water for 30 mins. This procedure was repeated 

but the results were disappointing. Although the starting material was consumed very 

quickly, many side products were observed by TLC, and the amine proved difficult to 

isolate. 

It was decided to repeat the reaction, and subject the crude product directly to Boc-

protection, with the expectation that the Boc-protected amine would be easier to isolate. 

Indeed, this proved to be the case, and the protected amine was easily isolated by flash 

chromatography. Sadly the yield was disappointing at 37 %. Boger et al. had reported 98 

% for the reduction, and 95 % for the subsequent Boc-protection.  

It was noted that during the chromatography, the silica column was left stained with a 

large green band spreading from the base line. The side product was not isolated, but the 

vivid colour led to speculation that it might be an azo type compound, formed from 

intermediates during the reduction. This suggested that, although the starting material was 

quickly consumed, formation of the amine might be slower than expected. It was noted on 

closer inspection of the Boger procedure, that their method used Zn nanopowder. The 

 

Scheme 2.24 Selective reduction of the nitro group and subsequent Boc-protection of the amine. 
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particle size of Zn nanopowder is 3 times smaller than the standard Zn powder employed 

here. It therefore seemed possible that the larger surface area of the Zn nanopowder may 

have led to the more efficient reduction reported by the Boger group. 

As a result the reaction was repeated, with the quantity of Zn powder being increased 

from 5 to 15 equiv. The product was again isolated as the Boc-protected amine by directly 

treating the crude reduction product with Boc2O, and catalytic DMAP in THF. Pleasingly, 

this led to a significant improvement in yield to 70 %. Through further refinement, it was 

found that the process could be simplified, by trapping the forming amine via in situ Boc-

protection, without a reduction in yield. This provided a convenient one pot procedure. For 

this process, THF was substituted for acetone. The change was made because THF was 

the solvent previously used for the Boc-protection reaction. However, it provided further 

unanticipated advantages. In acetone substantial aggregation of the zinc powder was 

observed, while in THF this was less pronounced, and thus the stirring properties of the 

suspension were improved. This was advantageous for scale up of the reaction, because 

significant aggregation of the zinc at larger scales, could lead to difficulties in stirring the 

reaction. 

Successful nitro group reduction, and Boc-protection of the resulting amine can be 

confirmed from the characteristic changes observed in the 1H NMR spectra of the product 

(see scheme 2.24 for numbering). Two upfield singlets both integrating for 9 hydrogens, 

observed at 1.51 ppm and 1.44 ppm, confirm the presence of the two Boc-protected 

nitrogens. The single hydrogen of the Boc-protected amine produces a broad singlet at 

6.83 ppm. Loss of the strongly withdrawing effect of the nitro group, has led to a large 

upfield shift for the C-4 and C-6 aromatic hydrogen signals. Where they had appeared as 

a pair of narrow meta coupled doublets at 8.26 ppm, and 7.67 ppm in the Boc-protected 

nitro indole 16, they are now observed as a broad singlet at 6.38 ppm, and a sharp singlet 

at 7.10 ppm respectively. The C-3 hydrogen signal remains relatively unchanged at 7.28 

ppm and is still overlapping partially with the aromatic signals of the benzyl group. What 

causes the broadening of the C-4 hydrogen is not obvious. 

As already mentioned, the reduction of the nitro group using Zn and aqueous ammonium 

chloride is termed a dissolving metal reduction. Here the bulk metal serves as a source of 

electrons, and the mildly acidic ammonium chloride provides a source of protons. The 

exact molecular mechanism of such reductions is not fully understood, however scheme 

2.25 shows a plausible mechanism which is consistent with the known intermediates of 

such reductions.121  
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Scheme 2.25 Plausible mechanism for nitro reduction. 
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Scheme 2.26 Possible condensation reaction to give azo side product. 

 

The reduction is thought to progress through a series of single electron transfers and 

protonations. For every two single electron transfers that occur, a Zn2+ cation can be lost 

from the bulk metal, ultimately forming the soluble ZnCl2 salt. This gives rise to the name 

‘dissolving metal reduction’.  

The reduction is known to progress via a number of intermediates. First, the nitro group 

receives 2 electrons and 3 protons. The resulting loss of water gives the protonated 

nitroso. This species can be deprotonated to give the nitroso intermediate. Alternatively, 

the protonated nitroso can receive a further two electrons and another proton to give the 

hydroxylamine intermediate. The receipt of an additional 2 electrons and 2 protons, with 

the resulting loss of water, gives the desired amine.  

Such reductions commonly employ a strong acid such as HCl.122 However, the risk of 

competing Boc-deprotection means this is not suitable for the reduction of 16. Fortunately, 

ammonium chloride proves to be an acceptable source of protons. This is interesting 

because the treatment of nitrobenzene with Zn and ammonium chloride is known to give 

only the hydroxylamine.123 For nitrobenzene, ammonium chloride is not sufficiently acidic 

to protonate the oxygen of the hydroxylamine over the nitrogen. The successful 

generation of the amine in this case, may be a consequence of the decreased availability 

of the nitrogen’s lone pair, as it is delocalised into the larger aromatic system of the indole. 

Given the complexity of the reduction mechanism, the suspected azo impurity observed 

when the reduction was carried out with only 5 equiv. of Zn powder, could have arisen in a 

number of ways. For example, it is possible to envision the condensation of the nitroso 

intermediate with the aniline (scheme 2.26). 
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Scheme 2.27 Iodination of the indole. 

 

Boc-protection of the resulting amine, is achieved via the same acyl transfer mechanism 

already described for the Boc-protection of the indole nitrogen in section 2.3.5. Trapping 

the amine by in situ Boc-protection in the one pot procedure, likely further reduces the risk 

of azo side products. 

2.3.7 Iodination of the indole.   

Successful nitro group reduction with in situ Boc-protection had provided a convenient one 

pot procedure for the generation of 18. The next step in the published route96 is the 

bromination of 18 to give 19 (scheme 2.4). Introduction of the halogen provides the handle 

for the later radical 5-exo-trig cyclisation. In this synthesis, it was decided to again deviate 

from this route, and instead to iodinate 18. The decision was made primarily due to 

reagent availability; however the weaker carbon iodine bond in theory should provide a 

more reactive site for initiation of the radical cyclisation. 

In this pilot synthesis iodination was achieved by following Boger et al.’s method,90 via 

treatment of 18 with NIS and catalytic acetic acid in toluene overnight. The reaction 

mixture was subjected directly to flash chromatography, and the desired iodinated indole 

29 isolated in a yield of 84 %.   

Success of the iodination is evident in the 1H NMR spectra, by the disappearance of the 

C-4 aromatic indole hydrogen signal (see scheme 2.26 for numbering). The withdrawing 

effect of the electronegative iodine atom has also caused a pronounced downfield shift in 

the C-3 hydrogen signal, which is now observed as broad singlet at 7.79 ppm. Again what 

is causing the broadening of this signal is not obvious. The C-6 hydrogen signal remains 

practically unchanged, and is still observed as a sharp singlet at 7.09 ppm. It is perhaps 

less affected by the withdrawing effect of the iodine atom, due to increased donation from 

the ether oxygen and Boc-protected amine.  
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The iodination occurs in an analogous fashion to that already described in section 2.3.2, 

with the NIS serving as a source of electrophilic iodine. The regioselectivity of iodination is 

likely a mixture of electronic and steric effects. The C-3 position (see scheme 2.26 for 

numbering), which would be the most nucleophile position of an unsubstituted indole, is 

deactivated by Boc-protection of the indole nitrogen and the vicinal ester. Furthermore, 

the C-4 and C-6 position are activated by mesomeric electron denotation by the ether 

oxygen, and also by the amine, although the amine’s directing effect is reduced by the 

withdrawing affect of Boc-protection. It is not obvious that the C-4 position is more 

nucleophilic than the C-6 position, but this does appear to be the case given its more 

upfield resonance in the 1H NMR of 18. The decreased nucleophilicity of the C-6 position 

might be a consequence of an inductive withdrawing effect due to its closer proximity to 

the ether group. However preference for iodination at the C-4 position is most likely 

augmented by steric blocking of the C-6 position by the benzyl ether, and Boc-protected 

amine.  

Confirmation of regioselectivity from the 1H NMR alone is difficult. The fact that the two 

remaining indole hydrogen signals appear as singlets suggests a lack of meta coupling, 

and implicates the C-4 position as the site of iodination. However, the broadening effect of 

the C-3 hydrogen makes this difficult to rely on. This is especially true when considering 

that doublets arising from meta coupling were not observed in the starting material, due to 

broadening of the C-4 hydrogen signal in that case, and overlap of the C-3 hydrogen 

signal with that of the benzyl hydrogen signals. However, coupling is also not evident in 

COSY NMR analysis of 29, which might still be expected despite broadening if iodination 

had occurred at the C-3 or C-6 position. The real confirmation of regioselectivity however, 

is the success of later reactions.     
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Scheme 2.28 Introduction of the tethered vinyl chloride. 

 

2.3.8 Introduction of the tethered vinyl chloride. 

Successful iodination had provided a handle for the formation of an aryl radical, and thus 

affords the starting point for the subsequent radical cyclisation to give the indoline ring. 

Introduction of the vinyl chloride completes the substrate for this cascade reaction.  

The vinyl chloride is introduced by the N-alkylation of 29 with 1,3-dichloropropene. In the 

pilot synthesis this was achieved using the standard conditions of NaH in DMF.90, 96 Like 

the formation of the benzyl ether discussed in section 2.2.1, this reaction is a nucleophilic 

substitution. The carbon of the polarised sp3 hybridised carbon chlorine bond provides the 

electrophilic centre, and the nitrogen of the carbamate acts as the nucleophile. 

Deprotonation of the carbamate nitrogen by the NaH improves its nucleophilicity by 

providing a formal negative charge.  

As with the reaction of the phenol with benzyl bromide this reaction most likely proceeds 

via a concerted SN2 mechanism, but again the sp2 hybridised nature of the vicinal carbon 

means the carbocation formed via an SN1 mechanism could be stabilised by resonance 

with the double bond. However the second chloride makes this less likely, as this 

resonance structure would place a positive charge at the already partially positive carbon 

(scheme 2.29).  

The deprotonation was conducted at 0 oC due the reactivity of the hydride. Success is 

evident by the evolution of H2 gas, prompting the addition of the 1,3-dichloropropene, at 

which point the reaction was allowed to warm to room temperature. An excess of 3 equiv. 

was used to ensure the reaction progressed to completion, as it proved difficult to monitor 

by TLC. These conditions provided an acceptable yield of 60 % after purification by flash 

chromatography.  
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Scheme 2.29 N-alkylation to introduce the vinyl chloride most likely proceeding via SN2 
mechanism. 

 

For economical reasons the 1,3-dichloropropene is used in the form of a mixture of E and 

Z isomers. This is of no consequence for the next step of the synthesis as the double 

bond is removed by the formation of the indoline ring. However, it does make assignment 

of the 1H NMR of 30 difficult, as the product is also isolated as mixture of E and Z isomers. 

Therefore the product was initially confirmed by accurate mass analysis, which showed a 

mass consistent with the desired structure and the correct isotope pattern for a molecule 

containing 1 Cl atom. Use of DEPT-edited HSQC NMR experiment allowed for some 

interpretation of the 1H NMR (see scheme 2.28 for numbering). 

The five aromatic hydrogen signals of the benzyl group produce a complex multiplet at 

7.28-7.44 ppm. A sharp singlet at 7.18 ppm, and an apparent multiplet at 6.65-6.47 ppm 

correspond to the two indole aromatic hydrogens at C-3 and C-6. DEPT-edited HSQC 

clearly shows the multiplet is correlated with one indole carbon. At 6.00-5.80 ppm another 

complex multiplet is seen. This integrates for two hydrogens. The HSQC shows that this is 

correlated with 4 similar carbons, and the DEPT editing shows these to be CH carbons. 

These must relate to the alkene hydrogen signals at C-36 and C-37, with the 4 carbon 

correlations being a result of the two isomers (see figure 2.4 a).  
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At 5.17-5.28 ppm another apparent multiplet is observed. In the DEPT-edited HSQC this 

is correlated with one CH2 carbon, and relates to the hydrogen signals at C-9 of the benzyl 

group.  The 2 hydrogens of the C-35 carbon are appearing as 4 distinct multiplets each 

integrating to 0.5, corresponding to the geminal hydrogens at this position in each isomer. 

At 3.93 ppm, the C-18 methyl hydrogens still appear as a narrow singlet (see figure 2.4 b). 

Finally one Boc group is appearing as a singlet integrating for 9 hydrogens at 1.53 ppm. 

The other is distorted and split into two peaks together integrating for 9, at 1.29 ppm & 

1.27 ppm.     

 

 

 

 

 

 

 

Figure 2.4 (a) Expansion of the 5.5  ppm to 8 ppm (F2) region of the DEPT-edited HSQC of 30 at 
298 K. (b) Expansion of the 3.5  ppm to 5.5 ppm (F2) region of the DEPT-edited HSQC of 30 at 

298 K. DEPT phasing: Blue = CH or CH3 carbon. Red = CH2. 
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2.3.9 Formation of the indoline ring. 

Successful access to 30 provided the substrate for the 5-exo-trig radical cyclization which 

would form the indoline ring, and afford the benzyl protected seco form of the di-Boc- 

protected duocarmycin alkylation subunit 10.   

The original chemistry pioneered by the Patel and Boger groups makes use of Bu3SnH to 

propagate the radical reaction.90, 91 Here it was decided to follow the Tietze adaption which 

employs TTMSS in place of the tin species, as it is reportedly easier to remove during 

purification.96 The Tietze group conducts the reaction in benzene. Here it was decided to 

substitute benzene for the less toxic toluene, as this was expected to be easier to handle 

during the scale up of the synthesis. 

This step proceeded without issue, using 25 mol % of AIBN, and 1.1 equiv. of TTMSS in 

toluene at 90 oC. The presence of reactive O2 is known to be potential deleterious to the 

success of radical reactions, therefore this step was performed under an atmosphere of 

N2 and the solution degassed prior to heating. The reaction was carried out at a low 

concentration of 0.03 M. This is to favour the intramolecular cyclisation, and lessen the 

likelihood of any intermolecular side reactions. The product was easily isolated by 

subjection of the reaction mixture directly to flash chromatography, in excellent yield (90 

%). 

 

Scheme 2.30 Formation of the indoline ring. 
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Scheme 2.31 Likely mechanism of the 5-exo-trig radical cyclisation. 

 
As discussed the reaction is 5-exo-trig radical cyclisation, and is most likely to proceed via 

the mechanism depicted in scheme 2.31. Here AIBN serves as a radical initiator. Upon 

heating, the AIBN decomposes via the concerted homolytic cleavage of the two carbon 

nitrogen bonds of the azo group. This is driven by the thermodynamically favourable 

release of diatomic nitrogen gas. The process also forms two isobutyronitrile radicals. 

These radicals initially existed as a cage pair. This is to say they are solvated as one 

species via a ‘cage’ of surrounding solvent molecules. Some of the caged radical pairs 

couple together to form tetramethylsuccinonitrile. Others escape the cage by rapid 

diffusion and become available to initiate the reaction.  

Although it is of course possible for the isobutyronitrile radicals to react directly with the 

substrate, the main pathway involves the propagation of the reaction via the stoichiometric 

excess of TTMSS. Here, the isobutyronitrile radical abstracts a hydrogen from the 

relatively weak hydrogen silicone bond of the TTMSS, producing the silane radical. 

Subsequently the silane radical attacks the weak iodine carbon bond of 30, abstracting 

the halogen and providing the aryl radical. Formation of the aryl radical provides the 

starting point of the intramolecular cyclisation, and the subsequent attack of this species 



84 
 

at the alkene forms the indoline ring. This process is likely augmented by the donating 

effect of the para ether group, which increases the electron density at the radical centre. 

The resulting alkyl radical is presumably reduced by either a molecule of unreacted 

TTMSS, or the isobutyronitrile formed by the generation of the silane radical. Both routes 

afford the desired product, and propagate the reaction by producing more radicals. 

Various termination steps are possible, via the coupling of two radicals.  

The reaction is selective for the 5-exo-trig cyclisation. No evidence of the completing 6-

endo-trig reaction was observed. This is consistent with Baldwin’s rules.124 Although, the 

more substituted radical product of the 6-endo-trig cyclisation is often more stable, and 

hence thermodynamically favoured; the dominance of the 5-exo-trig pathway is typically 

rationalised as being more kinetically favourable, due to better overlap of the molecular 

orbitals in the transition state.125  

In fact, in the case of this substrate, the 5-exo-trig pathway might be both kinetically, and 

thermodynamically favoured. This is because of the chlorine atom geminal to the radical 

centre of the cyclisation product. Although this group is electronegative, and thus might be 

seen to disfavour the electron deficient radical, it is important to remember that the alkyl 

radical is best described as being sp2 hybridised. It is therefore conceivable, that the 

singularly occupied p orbital of the radical could overlap with a lone pair containing p 

orbital of the chloro group, and thus allow donation of electron density to the radical. This 

may have a net stabilising effect which is greater than the inductive stabilisation of the 

radical formed by the 6-endo-trig pathway.  

As stated the substrate for this reaction is a mixture of E and Z isomers. This has no effect 

on the product as the carbon bonding to the chlorine becomes sp3 hybridised and achiral 

in the product. Chirality is however introduced at C-8 carbon (see scheme 2.30 for 

numbering). The reaction is racemic, as the aryl radical can attack either face of the 

alkene.  

Introduction of the chiral centre produces diastereotopic effects in the 1H NMR. The 

geminal hydrogens of the C-1 and C-9 carbons, are non-equivalent. This leads to complex 

second order effects in the splitting patterns of the five hydrogens comprising the 

substituted indoline ring. These appear as triplet integrating for one hydrogen at 4.13 ppm, 

neighbouring a complex multiplet at 4.06-3.89 ppm integrating for the remaining 4 

hydrogens.  

A characterised correlation pattern is observed when 10 is analysed by DEPT-edited 

HSQC experiment. The triplet at 4.13 ppm is correlated to a CH2 carbon at 52.3 ppm. This 
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carbon is also correlated with part of the neighbouring multiplet, approximately the 3.91 

ppm region. These signals most likely correspond to the geminal diastereotopic pair of 

hydrogens on the C-9 carbon. This assumption is made based on the downfield position 

of the first hydrogen signal, as this pair is closest to the electronegative chlorine. Similarly 

the 4.07 ppm, and 3.92 ppm regions of the multiplet, are both correlated with the same 

CH2 carbon at 47.6 ppm. This represents the second geminal diasterotopic pair of the C-1 

carbon. Finally the 3.99 ppm region of the multiplet is correlated to a CH carbon at 40.7 

ppm, corresponding to the hydrogen of the C-8 carbon of the chiral centre (see figure 2.5). 

Partially overlapping with the upfield edge of the indoline multiple is a strong singlet 

integrating for the 3 hydrogens of the methyl ester, at 3.87 ppm. This correlated with a 

CH3 carbon at 52.2 ppm.  

The two Boc groups are now again seen as two singlets at 1.48 ppm, and 1.39 ppm. A 

singlet at 5.27 ppm corresponds to the two alkyl hydrogens of the benzyl group. The 

aromatic benzyl hydrogens signals are overlapping with one of the indole hydrogens to 

form a complex multiplet 7.47-7.29 ppm, integrating for 6 hydrogens. This is again 

confirmed by the HSQC experiment. The second indole hydrogen is observed as broad 

singlet at 7.69 ppm. Again this signal was confirmed to correlate with a CH carbon at 97.4 

ppm. 

 

Figure 2.5 Expansion of the indoline region of the DEPT-edited HSQC of 10 at 298 K. DEPT 
phasing: Blue = CH or CH3 carbon. Red = CH2. 
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Scheme 2.32 Ester hydrolysis. 

 

 

Scheme 2.33 Mechanism of methyl ester hydrolysis with LiOH. 

 

2.3.10 Ester hydrolysis.  

The successful 5-exo-trig radical cyclisation had provided the previously reported racemic 

benzyl protected seco form of the di-Boc-protected duocarmycin alkylation subunit 10.96 It 

was now envisioned that hydrolysis of the methyl ester, exhaustive Boc-removal, and 

regioselective protection of the indoline nitrogen with Fmoc-Cl, would yield the desired 

solid phase building block. 

Although there was potential for the free carboxylic acid to interfere with Fmoc-protection 

of the indoline nitrogen, it was decided that ester hydrolysis would be performed first. This 

was because the Fmoc group would almost certainly be liable to cleavage under the basic 

conditions planned to hydrolyse the methyl ester.  

Hydrolysis was affected at room temperature in a 3:2:1 mixture of THF, MeOH and a 

saturated aqueous solution of LiOH.  This step proceeded without issue in a near 

quantitative yield of 96 %.    
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The product was confirmed by the disappearance of the methyl hydrogen signal in the 1H 

NMR, and the corresponding carbon signal in 13C NMR spectra of the HSQC. A broad 

singlet integrating for the exchangeable hydrogen of the carboxylic acid, was also 

observed at 13.43 ppm.   

The mechanism of base promoted hydrolysis of the methyl ester is shown in scheme 2.33. 

Here, the hydroxide ion attacks the electrophilic carbon of the carbonyl. This forms a new 

α bond breaking the π bond, and forming an anionic tetrahedral intermediate. The anionic 

oxygen acts as the driving force for collapse of this intermediate, resulting in reformation 

of the carbonyl, and the loss of the alkoxide ion as a leaving group. This species 

deprotonates the newly formed carboxylic acid to give the Li salt. The negative charge is 

shared by both oxygen atoms of the carboxylate. Acidic work up gives the free carboxylic 

acid.      

2.3.11 Boc cleavage and introduction of Fmoc-protection. 

Boc-deprotection of both nitrogens was affected simultaneously by treatment with 4 M HCl 

in ethyl acetate overnight. This was followed by regioselective Fmoc-protection of the 

crude product at the indoline nitrogen, using 1 equiv. of Fmoc-Cl and 3 equiv. of sodium 

bicarbonate at 0 oC. The product was isolated in a yield of 78 % after column 

chromatography.  

Boc-deprotection of the indoline nitrogen under acidic conditions can be rationalised via 

the mechanism depicted in scheme 2.35. Here protonation of the carbamate results in 

decomposition of the Boc group to give the carbamic acid, and tert-butyl cation. 

Subsequent decarboxylation of the unstable carbamic acid affords the secondary amine 

driven by the release of carbon dioxide. Under the acidic conditions the amine is 

 

Scheme 2.34 Boc cleavage and introduction of Fmoc-protection. 
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Scheme 2.35 Mechanism of acidic Boc-deprotection of the indoline nitrogen, and two possible 
fates of the tert-butyl cation. 

 

protonated to give the chloride salt. Boc-deprotection of the indole nitrogen proceeds in an 

analogous fashion.   

The fate of the tert-butyl cation in anhydrous conditions is debatable. Deprotonation by the 

chloride ion, and the subsequent release of isobutylene gas is one possibility, as is the 

formation of tert-butyl chloride.  

There is also a risk of alkylation of the nucleophilic indole scaffold by the t-butyl cation at 

the electrophilic 3 position (standard indole numbering, C-7 in duocarmycin structure). 

This may have occurred to a small extent, and it is possible that the yield maybe improved 

by the addition of scavengers. However, it is also possible that the indole scaffold is 

somewhat protected from alkylation under the strongly acidic conditions, due to 

protonation of the indole.  The aromatic nature of indole means the nitrogen is an 

extremely weak base. However, protonation at the 3 position to give the indolyl ion is 

possible with strong acids such as HCl (see scheme 2.36).126 
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Scheme 2.36 (a) Possible alkylation of the indole by the tert-butyl cation. (b) Possible protection 
from alkylation by protonation of the indole under the strongly acidic conditions. 

 

 

 

Scheme 2.37 Mechanism of Fmoc-protection. 

 

Fmoc-Cl is an acyl chloride, and Fmoc protection of the indoline nitrogen proceeds via a 

nucleophilic addition-elimination mechanism (see scheme 2.37). The sodium bicarbonate 

is added first to neutralise the chloride salts resulting from Boc-deprotection. Subsequent 

addition of the Fmoc-Cl, leads to nucleophile attack of its carbonyl by the indoline 

nitrogen. The resulting anionic tetrahedral intermediate collapses reforming the carbonyl, 

with the chloride ion acting as the leaving group, and subsequently deprotonating the 

carbamate, releasing HCl. This is neutralised by the sodium bicarbonate. 
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Scheme 2.38 Potential side reaction via formation of a mixed anhydride. 

 

Fmoc-Cl is extremely reactive and the reaction is facile even at 0 oC. No excess of the 

reagent is used in order to limit side reactions. Regioselectivity is achieved due to the 

increased nucleophilicity of the indoline nitrogen, over both the indole and carboxylate. 

Reaction at the carboxylate has the potential to lead to an interesting side reaction, as this 

would form a mixed anhydride. Subsequent attack of the indoline nitrogen could then take 

place at either carbonyl. This could lead to a second route to the desired product, or the 

coupling of two indole units (see scheme 2.38). These side reactions did not prove to be a 

problem. If they had, then use of the less reactive Fmoc-OSu in place of Fmoc-Cl would 

likely resolve the issue.  
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A mass consistent with the structure of the desired product was observed by accurate 

mass spectrometry, including the expected chlorine isotope peaks. However, success of 

the reaction was not immediately evident from the 1H NMR spectrum, which contained 

unexpected second order effects making assignment difficult. However, analysis by 

DEPT-edited HSQC experiment confirmed the correct structure. The second order effects 

were suspected to have resulted from the presence of rotamers. This was confirmed by 

the observation of rotameric coalescence when 1H NMR analysis was performed at 333 K. 

The rotamers most likely result from steric clash between the Fmoc and benzyl groups. 

Figure 2.6a shows an overlay of the relevant region of the 1H NMR at 298 K and 333 K. 

Figure 2.6b and c, show expansions of the DEPT-edited HSQC at 298 K for the aromatic 

 

Figure 2.6 (a) Overlay of the 
1
H NMR of 11 at 298 K and 333 K. (b) Aromatic region of the DEPT-

edited HSQC of 11 at 298 K. (c) Aliphatic region of the DEPT-edited HSQC of 11 at 298 K. DEPT 
phasing: Blue = CH or CH3 carbon. Red = CH2. 
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and aliphatic regions respectively. Blue cross-peaks denote correlation with either CH or 

CH3 carbons. Red cross-peaks denote correlation with CH2 carbons.  

The peak labelled P7 integrates to 3, and corresponds to the overlapping signals of the C-

24 and C-25 aliphatic hydrogens of the Fmoc group (see scheme 2.34 for atom 

numbering). This can clearly be seen by correlation with a CH and CH2 carbon in the 

DEPT-edited HSQC. These signals separate 333 K, to give the expected triplet for the C-

25 Hydrogen, and an apparent broad quintet for the C-24 hydrogen where a doublet might 

be expected. What is causing the apparent broad quintet is not obvious.  

Peak 6 is a singlet and integrates for 2. It correlates with a CH2 carbon, and corresponds 

to the C-12 aliphatic hydrogens of the benzyl group. At 298 K, Peak 6 is significantly and 

unsymmetrically broadened, and this is also evident in the DEPT-edited HSQC. 

Significant but not complete narrowing of the singlet is observed at 333 K. It maybe that 

this is related to the apparent quintet observed at 333 K for the C-38 hydrogens of the 

Fmoc group. Perhaps some rotameric effect is still present.  

P8, P9, and P10 remain consistent at 298 K and 333 K. These peaks represent the 

substituted indoline hydrogens. The characteristic diastereotopic pairs for the C-1 and C-9 

hydrogens are again evident by the DEPT-edited-HSQC. P8 intergrates for 1 hydrogen. 

Its relative downfield position, suggests it is one of the C-9 hydrogens, as this pair is 

closest to the electronegative chlorine atom. P8 is correlated to a CH2 carbon which is 

also correlated to part of the P9 signal, representing the second hydrogen of this 

diastereotopic pair.  

In total P9 integrates for 3 hydrogens. One of the additional signals corresponds to one of 

the hydrogens of the second diastereotopic pair on the C-1 carbon. Again this is evident 

from the DEPT-edited-HSQC, by correlation to a CH2 carbon, which is also correlated to 

P10. P10 integrates for 1 hydrogen and is of course the second member of the C-1 

diastereotopic pair. The remaining hydrogen signal of the P9 multiplet, is clearly correlated 

with a CH carbon, and represents the single hydrogen of the C-8 carbon.   

The aromatic region again shows significant peak sharping at 333 K, further suggesting 

the rotameric effect is due to steric clash between the Fmoc and benzyl groups. P5 is a 

narrow singlet integrating to 1, and is clearly correlated with an indole type carbon in the 

DEPT-edited HSQC. It is most likely the C-3 Hydrogen. The C-7 indole hydrogen, is 

observed as part of the P3 signal. Again this is due to correlation with an indole type 

carbon. The remaining aromatic signals correspond to those of the Fmoc and benzyl 

protecting groups. 



93 
 

Finally the hydrogen of the indole nitrogen and the carboxylic acid, are observed as a 

narrow singlet at 11.90 ppm, and a broad singlet at 12.97 ppm respectively. Observation 

of these peaks confirms the regioselectivity of the reaction.  

As discussed, the unexpected second order effects at 298 K, are most likely rotameric in 

nature, and caused by steric interaction between the Fmoc and benzyl groups. This is 

apparent due to the signals from these groups being most effected. It is also possible that 

it is an aggregation effect caused by pi-pi stacking interactions between molecules. 

However, as the second order effects persist even when the sample is diluted, it is more 

likely the intramolecular rotameric interaction discussed.     

  



94 
 

 
Scheme 2.39 The scale up synthesis. 

 

2.4 The scale up synthesis. 

Success of the pilot synthesis had provided a reliable synthetic route to the desired solid 

phase building block 11. Although this work had afforded enough of the compound to 

begin preliminary solid phase experiments, it was clear that in order to access a sufficient 

quantity of 11, to allow significant solid phase work to be conducted, the synthesis would 

need to be repeated, either several times, or on a much larger scale. It was decided that 
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one large scale synthesis would be a more time efficient option. The decision was made 

to undertake this process during a 3 month placement at the laboratories of the author’s 

industrial sponsor. This location would provide a superior infrastructure for large scale 

synthetic work, including a purpose built scale up laboratory, and a team of experienced 

process chemists who would be available to advise.  

Scheme 2.39 depicts the scale up synthesis. It can be seen that some of the conditions 

are different from those described for the pilot work. As will be discussed, these changes 

were made for either process, or safety reasons.  

Introduction of the benzyl ether was conducted as per the conditions used in the pilot 

synthesis. Isolation by precipitation over crushed ice and water meant that 78.05 g of 22 

was easily accessed in two batches with a mean yield of 98.5 %.  

Iodination of 22 saw the first deviation from the pilot synthesis. This reaction was originally 

conducted in THF, and isolated after extractive work up by column chromatography. It had 

been observed that a thick and foaming emulsion initially formed on addition of the NIS 

when the reaction was conducted in this solvent. What caused this emulsion was not 

known, and it was deemed to be both, a practical, and safety concern for large scale work.  

The reaction was therefore trialled on a small scale in DMF. In this solvent the foaming 

emulsion was not observed. The reaction also proceeded significantly faster than in THF, 

and at increased yield. Furthermore, isolation of the product was possible by precipitation, 

thus avoiding large scale chromatography at this early stage. DMF was therefore chosen 

as the solvent for the large scale reaction.  

During the test reaction the internal temperature was monitored, and a small exotherm 

was observed. As a precaution the large scale reaction was performed in a room 

temperature water bath, and the internal temperature carefully monitored. The water bath 

could be used to cool the reaction by the addition of ice if a large rise in temperature was 

seen, although this proved to be unnecessary.  

The improved conditions allowed the synthesis of 105.64 g of 23 in two batches with a 

mean yield of 91.5 %. 

For introduction of the alkyne, the more reliable Negishi coupling would be used in place 

of the Sonogashira reaction. The Negishi coupling was seen to have the added advantage 

of proceeding in THF. The increased volatility of this solvent over DMF, was 

advantageous, because it allowed the reaction to be easily concentrated by rotary 

evaporation, and the product isolated directly by short column chromatography. This was 
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Figure 2.7 HPLC of Negishi coupling test reactions after 3 hours. (a) THF and Pd(PPh3)2Cl2. (b) 
THF and Pd(PPh3)4. (c) DMF and Pd(PPh3)2Cl2. (d) DMF and Pd(PPh3)4. HPLC conditions: 

Acquity CSH C18 50x2.1 mm column. Solvent A: Water + 0.1 % HCOOH. Solvent B: Acetonitrile 
+0.1 % HCOOH. Gradient, 0.0-0.2 min 5 % B, 0.2-1.8 min 5-98 % B, 1.8-2 min 98 % B. Flow rate 

1 mL per min. Column temperature 50 
o
C.   

important because extractive work up had proved impossible, as the interface was 

obscured by the opaque black appearance of both phases.  

Unfortunately, when the Negishi coupling was trialled on a modest 10 g scale in THF the 

reaction stalled. As the Sonagashira coupling had not worked at all in THF, and was only 

successful in DMF, it was questioned whether DMF could also serve as a better solvent 

for the Negishi coupling. It was also questioned whether Pd(PPh3)4 might be a better 

catalyst than Pd(PPh3)2Cl2, as this was the preference of Hiroya et al.  

As a result, an array of four 100 mg scale reactions was set up to compare the different 

reaction conditions. Monitoring by LC-MS showed the combination of DMF and 

Pd(PPh3)2Cl2 to be superior to the other reaction conditions, proceeding faster and with 

fewer side products, although all reactions went to completion overnight. Figure 2.7, 

shows the HPLC trace for each set of conditions after 3 hrs. Figure 2.7c is the 

combination of DMF and Pd(PPh3)2Cl2 and has clearly proceeded nearer to completion 

after 3 hours than all other conditions.   

The combination of DMF and Pd(PPh3)2Cl2, was clearly the most reliable choice. However 

there were still concerns surrounding the work up. Anecdotal advice that DMF can often 
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be substituted for the more volatile DME, led to this solvent also being trialled. However, 

the reaction in DME proved to be even slower than in THF.  

These results led to the replacement of THF with DMF for the Negishi coupling. The 

reaction was progressively repeated on increasing scales. First a 1 g scale reaction was 

trialled. This went to completion overnight without issue. However, a subsequent attempt 

to repeat the reaction on a 3.8 g scale led to the reaction failing to go to completion 

overnight. The only difference between the 1 g and 3.8 g scale had been the 

concentration. The 1 g scale reaction had been conducted at a concentration of 0.09 M. In 

an attempt to reduce the quantity of DMF, the 3.8 g scale reaction had been conducted at 

a concentration of 0.205 M. Repeating the 3.8 g scale reaction at the lower concentration 

of 0.09 M was successful. This concentration was then trialled on a 10 g scale, and was 

again successful. It therefore seemed clear that the reaction was concentration 

dependent.  

Before the new conditions could be used to convert the main batch of 23, the work up 

would require optimisation. Advice from the process chemists in the scale up laboratory, 

was that it would not be practical to concentrate the necessary volume of DMF by rotary 

evaporation. As discussed, direct extractive work up was not possible due to an inability to 

visually discrimination between the two phases. A number of alternative work ups were 

therefore trialled to recover the product from the DMF. 

First an attempt was made to subject a sample of the reaction mixture directly to short 

column chromatography. Sadly, the product simply eluted with the DMF, and even after 

this process, subsequent extractive work up was still not possible. 

Next a sample of the reaction mixture was treated with a 1:1 mixture of MgSO4 and 

activated charcoal. The resulting slurry was filtered through a column of diatomaceous 

earth, before attempting the extractive work up. Again it still proved impossible to observe 

the interface.  

Finally a sample of the reaction mixture was poured over crushed ice and water. The 

chocolate coloured precipitate was collected by filtration. LC-MS analysis showed the 

precipitate to be crude product, and that the black filtrate contained no product. The 

product could be isolated from the crude precipitate via short column chromatography.  

The Negishi coupling was now ready to convert the remaining large batch of 23. However, 

the scale of the reaction triggered an institutional safety protocol during the risk 

assessment. The presence of the nitro and halide substituents of the aniline raised 
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concerns about the thermal stability of the starting material. No exotherm had been 

detected during monitoring of the internal temperature of the small scale experiments. 

However, the planned increase in scale was large, and therefore assessment of a safe 

working temperature range was required to gain approval to conduct the reaction.   

The assessment was made using heat flux differential scanning calorimetry (DSC). DSC 

is an analytical technique which measures the energy required to maintain a constant 

temperature between a sample and inert reference at a given temperature. In a heat flux 

instrument, the sample and reference cell are contained within the same furnace. 

Temperature differences between the sample and reference are measured as a function 

of heat flow between the two cells.127 Figure 2.8 shows the DSC curve of 23, as observed 

over a dynamic temperature range. Here the sample and reference were heated at a rate 

of 4 oC per min, from 10 oC to 400 oC, under an atmosphere of nitrogen. 

Melting of the solid is observed as a small endothermic event at 100 oC. The compound 

then appears to be stable up to 182 oC, where the onset of a large exothermic event is 

observed. This decomposition was well above the planned temperature of the reaction (66 

oC). However, as an exothermic event was observed, a second precautionary experiment 

was performed. This involved measuring the DSC curve of 23 at a constant temperature 

of 130 oC for 12 hours, followed by a second dynamic run. No exothermic events were 

observed at 130 oC over the course of the experiment, and the onset of decomposition in 

 

Figure 2.8 Dynamic DSC curve of 23. Instrument: Mettler Toledo DSC 1. Pan type: 40µl gold high 

pressure pan. Reference: empty pan. Sample size: 8 mg. Temperature: 10 
o
C to 400 

o
C at 4 

o
C per 

min. Atmosphere: Nitrogen. 
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the following dynamic run was consistent with that of the initial experiment. These results 

led to approval of the reaction conditions. In retrospect, it seems likely that the thermal 

stability of the product of this reaction should also have been tested, as the alkyne is likely 

to increase the explosive potential of 26 over 23.   

In order to reduce the size of the necessary round bottom flask to 3 L, the large scale 

reaction was conducted in two batches and the crude precipitates combined. Short 

column chromatography afforded 62 g of 26 at a yield of 77 %. This was comparable to 

the best yield obtained for the reaction in DMF on a small scale which was 84 %. 

Due to the size of the glassware, in order to allow the heat source to be quickly removed 

and the reaction cooled if exothermic run away was observed, the heating block was 

placed on a jack. This would allow it to be lowered away from the clamped round bottom, 

and replaced with an ice bath if necessary.    

The reason for the reaction being concentration dependent is not known. The dark colour 

of the reaction suggests the formation of Pd black.128 It is possible that this process is 

accelerated at higher concentrations, reducing the efficiency of the reaction. Further 

optimisation may be possible to allow the reaction to proceed at higher concentrations; for 

example, lowering the catalyst loading. The reason why DMF is superior, is also not 

known. This may simply be the improved solubility of all the reagents. Although it is also 

possible that coordination of the polar aprotic solvent, is able to stabilise the Pd(0) species 

thought to be responsible for the coupling reaction. 129 

In the pilot synthesis, the next two products, the indole 15, and the Boc-protected indole 

16, were both isolated by column chromatography.  It was clear from the experience of 

purifying the product of the Negishi coupling, that chromatography on a large scale, even 

short column chromatography, is operationally demanding, and not a trivial step. It 

requires large volumes of solvent which can be difficult to handle, and the process 

requires significant planning.  

It was therefore decided that an attempt should be made to see if Boc-protection of 15 

could be effected without prior chromatographic isolation. Initially a one pot procedure was 

trialled. Here, 26 was treated with 2 equiv. of TBAF in THF at reflux. On completion of the 

reaction, as monitored by LC-MS, the mixture was cooled to room temperature, and 1 

equiv. of DMAP, and 3 equiv. of Boc2O added. However, no reaction of the indole was 

observed.  
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Inspection of the literature revealed that TBAF has been reported as an effective reagent 

for the N-Boc deprotection, particularly of aromatic heterocyclics.130 This most likely 

explains the failure of the one pot procedure. The authors postulate the mechanism 

depicted in scheme 2.40 to be the most likely pathway of this reaction. Here the fluoride 

anion acts as a nucleophile at the carbonyl of the carbamate, and the resulting tetrahedral 

intermediate collapses with the indolic amide acting as the leaving group. The alkyl 

fluorocarbonate generated is presumable hydrolysed, and the resulting HF protonates the 

indolic amide.   

It is therefore possible that the presence of TBAF interferes with the Boc-protection, either 

by promoting the instantaneous deprotection of any product that does form, or perhaps 

more likely by competing with the indole for reaction with the tert-butyl carbamate 

pyridinium cation (scheme 2.41).    

With this in mind, it was decided to see if Boc-protection would proceed, if the TBAF was 

first removed by washing with water. Once the indole had formed, the THF was removed 

by rotary evaporation. The residue was dissolved in ethyl acetate and washed 3 times 

with water. After concentration of the ethyl acetate, the residue was dissolved in DCM, 

 

Scheme 2.40 Mechanism of N-Boc-deprotection by TBAF. 

 

 

Scheme 2.41 Possible inhibition of Boc-protection reaction by the fluoride ion of TBAF. 
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and treated with 1 equiv. of DMAP, and 3 equiv. of Boc2O. This proved successful and 

Boc- protection proceeded without issue.  

This procedure was repeated on the remaining large batch of 26, and afforded 31 g of the 

Boc-protected indole 16 after column chromatography This represents a yield of 40 % 

over the two steps. The low yield was expected, and is a result of the intrinsically low 

yielding TBAF cyclisation step. It is not a consequence of the ‘telescoping procedure’ used 

to avoid chromatographic isolation of indole 15. The yield over the 2 steps is comparable 

to the mathematic product of the 2 best individual yields from small scale reactions (0.58 x 

0.75 x 100 = 43 %).   

The next steps were reduction of the nitro group and subsequent Boc-protection of the 

amine. As discussed, a convenient one pot procedure had already been developed during 

the pilot synthesis. It was decided that the reliability of the following iodination reaction 

might allow avoidance of the prior chromatographic isolation of the Boc-protected amine 

18. Therefore this was trialled on a small scale. A one pot procedure was not attempted 

as the acidic catalyst required to activate NIS, seemed incompatible with the use of 

DMAP. Instead crude 18 was subjected directly to iodination after aqueous work up. The 

conditions for iodination were also altered from the pilot synthesis. Here toluene and 

catalytic acetic acid, were replaced with DMF and catalytic H2SO4, as these conditions 

had provided faster reaction times for iodination of the aniline. It was also hoped that the 

product may be isolated by precipitation over crushed ice and water. Iodination proceeded 

quickly under the new conditions. Precipitation of the product was observed when the 

reaction mixture was poured over crushed ice and water, however it was very fine, thus in 

order to maximise yield it was decided to recover it by extracting with ether. 

The new conditions were repeated on the remaining large scale batch of 16. The 

reduction/Boc-protection step was conducted in two batches to avoid the need for 

mechanical stirring of the suspended zinc, and the crudes combined for iodination, 

affording 26 g of 29 after column chromatography. This represents a yield of 59 % over 

the 3 steps (nitro group reduction, Boc-protection, and iodination). In retrospect, it is likely 

the chromatography of 29, could also have been avoided by collecting the precipitate by 

filtration. This seemed possible when conducted on the large scale as the precipitate was 

more substantial, however it was decided not to risk deviating from the trialled procedure 

with the large batch. Also at this stage in the synthesis, the quantities of material were 

now at a scale, where chromatography had become more practical. Although, still larger 

than the typical scale of work being conducted in the research laboratories, it was now 
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possible to use the widely accessible standard equipment, and booking of the specialist 

large scale flash chromatography instrument in the scale up laboratory was not required. 

Alkylation of 29 by 1,3-dichloropropane, produced another hurdle. Although anticipated to 

be straightforward, the conditions used in the pilot synthesis, could not be approved for 

scaled up. The scale of the planned reaction, although considerably smaller than those at 

the beginning of the synthesis, still fell within the institution’s classification of large scale 

for the purpose of risk assessment. The problem was the combination of DMF and NaH. 

This combination had recently (the previous week) been banned by the institution for work 

classified as large scale, and was strongly discouraged on a small scale. 

This combination has been documented to sometimes give rise to a self-accelerating and 

uncontrollable exothermic reaction between the hydride and solvent.131 The reaction 

results in the decomposition of the DMF, and produces CO and H2 gas. There is a 

significant risk of explosion and fire if the runaway reaction occurs.  

The combination is common in the literature,132 and often proceeds without issue on a 

small scale. However, there have been several major incidents officially reported with this 

combination on a plant scale. The risk is greatest if the reaction is heated above 50 oC, 

however calorimetry data produced during an investigation after one industrial accident, 

suggested the onset of this process can be as low as room temperature.133, 134  

The probability of experiencing such an incident when using DMF and NaH, is difficult to 

quantify, and probably very low particularly when conducted at low temperature. However, 

there appears to be a consensus amongst process chemists that the risk associated with 

this combination is real, dangerous, and unpredictable. There is argument the risk should 

be better publicised, as the specific danger of this combination is not listed in the material 

data safety sheets of either substance, and there are many published procedures which 

use this combination, which can be repeated by other researchers without a full 

appreciation of the risk.  

To circumvent this problem an alternative method was sought. First, an attempt was made 

to change the solvent. The choice was limited due to the poor solubility of the base. NaH 

is often used as a suspension in THF.135 Therefore, the reaction was trialled on a small 

scale in 2-MeTHF. Unlike THF and DMF, 2-MeTHF is immiscible in water, and this was 

deemed to be advantageous for the work up. However no alkylation was observed by LC-

MS, although some hydrolysis of the ester was seen. Failure of the reaction is most likely 

due to poor solubility of the deprotonated carbamate intermediate. As such, an attempt 

was made to find an alternative base which could be used in DMF. It was found that 2 
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equiv. of potassium tert-butoxide could be used in place of 1 equiv. of NaH, and the 

reaction proceeded with comparable yields, at room temperature. As such these 

conditions were used to alkylate the remaining large batch 29, providing 18 g of 30, at a 

62 % yield, after column chromatography. 

Now attention turned to the radical cyclisation. Here the scale of the reaction again raised 

concerns. AIBN is known to be potentially explosive. The use of DSC to assess the 

danger is of course of no use, as the thermal decomposition of this reagent is the very 

reason it is being used. An institutional operational protocol existed for the use of AIBN, 

which limited the quantity of the reagent permitted within a single reaction. In order to 

comply with this protocol the reaction was conducted in two batches. As a precaution the 

reactions were performed behind a blast shield. The reaction is run under an atmosphere 

of nitrogen. In order to achieve this and allow for the escape of pressure, a constant 

steam of nitrogen was applied, and gas allowed to leave the system via a gas bubbler 

fitted to the top of the reflux condenser. This also produced a weak point in the apparatus 

which could disconnect in the event of a sudden increase in pressure, thus reducing the 

risk of explosion of the round bottom flask.  

This procedure afforded 10.28 g of 10 at a combined yield of 70 %, after column 

chromatography. This is considerably lower than the 90 % yield achieved in the pilot 

synthesis on a 2 g scale. It is not clear what caused the drop in yield. The concentration 

was not increased on scale up, in order to retain the selectivity for the intramolecular ring 

closure.  It is conceivable that on a larger scale, the greater volume of solvent takes 

longer to reach the desired temperature, and that this has a negative effect on yield. The 

5-exo-trig cyclisation is known to be more efficient at higher temperatures.93 It may be that 

the delay in heating from the temperature at which AIBN begins to decompose and yield 

the first primary radicals, to the optimum temperature for 5-exo-trig cyclisation, leads to 

more formation of side products, such as perhaps the reduction of the aryl radical before 

cyclisation can occur. However such a side product was not isolated. It is possible that the 

yield could have been improved by heating the reaction mixture to full temperature before 

addition of the AIBN. Although, this would seem operationally risky, as the sudden heat 

shock could promote explosion of this reagent. It may be that a higher concentration 

would be more optimal at larger scales. 

The remaining steps proceeded without issue. Some changes were made from the pilot 

synthesis, but these were simply to improve the operational convince of the process.  

Hydrolysis of the ester was achieved using the same reaction conditions as in the pilot 

synthesis. However, the work up was simplified. Instead of extracting the free acid after 
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acidification of the Li salt, the resulting precipitate, which was more substantial on scale, 

was collected by filtration. The organic solvents were also removed prior to acidification, to 

avoid the risk of esterification by the MeOH, and to aid precipitation. This allowed for the 

avoidance of chromatography, and afforded 10 g of 31 in quantitative yield.  

Boc-deprotection was affected using 4 M HCl in dioxane. This was chosen over 4 M HCl 

in ethyl acetate, used in the pilot synthesis, due to its commercial availability. This 

removed the inconvenience of having to make the required volume of acidic solvent. 

Subsequent Fmoc-protection was achieved as per the pilot synthesis, except for a minor 

adjustment to the work up, where ethyl acetate was replaced with 2-MeTHF for extraction. 

This was due to better solubility of the product in this solvent, making the extraction 

process more efficient. After column chromatography, 8.3 g of racemic 11 was isolated at 

a yield of 80 % over the 2 steps.  

The synthesis had been successfully scaled up to provide 8.3 g of the racemate in an 

overall yield of 3 % over the 13 steps. A better overall yield could be given for the route 

itself, based on the best results achieved for each reaction over the course of both the 

pilot and scale up synthesis. However, this figure feels artificial and less valid. The yield 

given is a true result for the scale up synthesis itself, and should therefore be reproducible 

at the same scale.  

The synthesis also represents one of the most concise routes to the common 

duocarmycin intermediate 10, at 9 steps, (or 10 if you consider the one pot reduction Boc- 

protection to be two steps). Tietze et al.’s Fischer indole route, employs 11 steps to the 

same intermediate (or 12 if you consider their one pot diazonium formation and reduction 

to give the hydrazine to be two steps). Using the published data,96 their route afforded 

0.855 g of 10 at an overall yield of 14 %. In comparison our route afforded 10.28 g of 10 at 

an overall yield of 7 %. The published yield is superior despite involving more steps. 

However, this route has not been proven to be practical on a large scale. Our route has 

afforded 12 times the quantity of 10 at only a 2 fold decrease in yield.   
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Scheme 2.42 Boger et al.'s Hemetsberger-Rees indole synthesis route. 

 

The same comparison cannot be made with Hiroya et al.’s similar Negishi coupling 

strategy,110 as they do not go on to synthesise the same intermediate. However, despite 

requiring a separate annulation step, our route is a step shorter to the first nitro indole 

intermediate. Furthermore their indole is protected by a mesylate group, so an additional 2 

steps to change the protecting group would be require to access 10. In addition the 

incomplete in situ cyclisation to the indole, would require a demanding large scale 

separation from the uncyclised product, which would seem to limit the scalability of this 

route.    

Another concise route to 10 which converges on the Tietze synthesis, is that of Boger et 

al. which employs a Hemetsberger-Rees indole synthesis to reach the first indole 

intermediate.90 This route is also longer than ours at 11 steps (or 12 if you count their one 

pot nitro group displacement and benzyl ether protection as two steps). Again despite 

more steps they appear to have accessed 10 with a superior overall yield of 30 %. 

However, again this route has not been proven to be practical on a large scale. Boger et 

al. report the synthesis of 0.025 g of 10. Therefore, based on this figure our synthesis has 

afforded 411 times the quantity at only a 4 fold drop in yield. Furthermore, a number of 

steps appear difficult to scale. Firstly, the temperature sensitive, and operationally 

demanding early Swern oxidation, might be troublesome on a large scale. Also, the safety 

of preforming the Hemetsberger-Rees step on a large scale might be questionable, as it 

involves heating a compound which contains both an azide and an aromatic nitro group to 

high temperatures (140 oC). This might present an unacceptable risk of explosion if this 

compound proved to be thermally unstable by DSC. Similarly, it is likely a large quantity of 

the explosive NaN3 would need to be handled, to provide the methyl azidoacetate used to 

introduce this group. 



106 
 

Of course it is not possible to know for sure, that either Tietze’s Fischer, or Boger’s 

Hemetsberger-Rees indole route, could not be scaled up, and maintain their superior 

yields. However, our Negishi coupling strategy does at least provide a shorter route to the 

first common indole intermediate, and has been proven to be scalable to provide a multi 

gram quantity of 10. Furthermore, subtle changes in the later steps of the Tietze/Boger 

route, have been made here which improved their scalability. Most significantly, the 

employment of a one pot procedure for nitro group reduction and Boc-protection.  

There are clearly significant areas where further improvement could be made in this 

synthesis. Firstly, the intrinsically low yielding TBAF cyclisation represents a significant 

early bottleneck. It seems this is a hindered annulation, most likely due to both, the 

deactivating effect on the aniline of the para nitro group, and the necessity to polarise the 

alkyne in such a way that places the electron deficient end vicinal to the carbonyl of the 

ester. TBAF appears to possess specific properties which allow this ring closure to take 

place, where for example, gold(III) catalysis has failed. It may be possible to improve the 

yield of the TBAF method itself, for example by using a catalytic quantity of the reagent. A 

wider such for alternative catalysts may also find a higher yielding reaction. It may be 

possible to reduce the nitro group prior to the Negishi coupling, and if this was to improve 

the favourability of ring closure, it might lead to in situ cyclisation. If this was the case the 

indole and amine might be protectable in one step, reducing the length of the synthesis 

dramatically. Of course di-Boc-protecting the amine may be a problem, and the aryl halide 

may not be stable to reducing conditions.    

Column chromatography has been avoided at several steps during the scale up synthesis. 

However, to scale the synthesis further, more of the chromatographic steps would need to 

be avoided. It seems likely that recrystallization could be used to replace the remaining 

chromatography, but this has not been proven. Furthermore, it may be that the limits of 

the 5-exo-trig radical cyclisation have been reached, as the yield dropped significantly 

during the scale up synthesis. In addition, the use of the explosive AIBN is not ideal.    

2.5 Chiral resolution of 11. 

 

Scheme 2.43 Chiral resolution of 11. 
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The 8.3 g of 11, accessed from the large scale synthesis, was combined with a second 

smaller batch (1.9 g), which was synthesised alongside the large batch to test scale up 

processes. 9.8 g of the combined racemate was taken forward for chiral resolution. This 

was achieved using preparative supercritical fluid chromatography. 

A supercritical fluid, is a fluid state of matter which is distinct from both the liquid or gas 

phases. Such a state exists when a substance is heated, and compressed, to a point 

where the densities of the liquid and gas phases are equal. Above these critical 

temperatures and pressures, the liquid and gas phases coalesce to form a single fluid with 

no observable interface. Such fluids possess physical properties that lie somewhere 

between those that would be expected for a particular substance in either its liquid or gas 

phase. This typically results in fluids with liquid like densities, but viscosities that are more 

comparable to a gas.136  

Such properties mean that supercritical fluids can often serve as excellent solvents for 

chromatographic separations. Their liquid like densities allow for the dissolution of solids, 

while their gas like viscosities lead to improved mass transfer kinetics, and permit the use 

of fast flow rates with high acuity columns. As such, highly efficient separations can be 

achieved. This makes supercritical fluid chromatography particularly attractive for 

preparative scale work, where the short analysis times, and low solvent consumption, are 

particularly advantageous.137  

In order to be useful as solvent for chromatography, a supercritical fluid must be 

accessible at operationally feasible temperatures and pressures. The critical temperature 

and pressure of CO2, is 304.12 K, and 73.74 bar respectively.138 A supercritical fluid of 

CO2 is therefore easily attainable, and it is a very common solvent for supercritical fluid 

chromatography. In addition it is relativity cheap, non-toxic, and non-flammable. 

Supercritical CO2 is very non-polar, and it is seldom used as the sole component of the 

mobile phase. Organic modifiers, such as polar co-solvents, are usually employed to 

increase elution and solvation. Acidic additives such as TFA are also common. They can 

be used to suppress ionisation of analytes and improve resolution. The critical 

temperature and pressure of such binary or tertiary mixtures is likely to be higher than the 

typical operating conditions of most separations. It has therefore been argued that the 

majority of supercritical fluid chromatography takes place under subcritical conditions. 

However, by convention, mobile phases which comprise a supercritical fluid as their major 

component are generally referred to as supercritical fluid chromatography.   
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The application of supercritical fluid chromatography for the chiral resolution of racemic 

mixtures is well established.138 Enantioselective retention is most commonly affected 

using a chiral stationary phase, although chiral mobile phase additives are also used. The 

low viscosity of the mobile phase, means that pack columns are typically favoured of open 

tubular designs. Many stationary phases have been developed. Amongst the most 

common are the polysaccharide stationary phases, comprising of various derivatives of 

cellulose or amylose. The Chiralpak AD-H column is a typical example. Most columns in 

use today have not been specifically designed for supercritical fluid chromatography, and 

are also used in HPLC. However, in addition to the advantageous properties of 

supercritical fluids already discussed, the small size of CO2 has been suggested to confer 

a specific advantage in chiral separations. This is because it is easily displaced from the 

hydrophobic pockets of chiral selectors, and leads to increased retention of the analyte.138 

Here, the chiral resolution of 11 was affected using a Chiralpak AD-H column (250 x 30 

mm, 5 micron), and an isocratic flow of 50 % CO2, and 50 % IPA containing 0.1 % TFA, at 

45 mL per min. The back pressure was regulated at 10 MPa, and column temperature 

controlled at 40 oC. The racemate of 11 (9.8 g) was dissolved in THF:MeOH 1:1 (100 mL), 

and 1.25 mL (125 mg) injected every 9 mins. Fractions were combined and dried to afford 

2.82 g of peak 1, and 3.1 g of peak 2, both as a cream solid.  Figure 2.9 shows the 

separation from one injection.  

Peak 1 was assigned as the natural (S) enantiomer based on the sign of specific rotation 

matching that of the well characterised seco Boc-protected derivative of the duocarmycin 

alkylation subunit. Peak 1 [α]D –20 (c 0.05, DMF). Peak 2 [α]D +20 (c 0.05, DMF). This is 

of course not proof of the absolute stereochemistry of 11, but it is a reasonable 

assumption based on all previously reported seco-duocarmycin analogues exhibiting 

small (-) rotation for the (S) enantiomer.      

 

Figure 2.9 Chromatogram of preparative super critical fluid separation of racemic 11 monitored 
by UV at 220 nm. Method details are described in the main text. 

 



109 
 

Analytical supercritical fluid chromatography of peak 1, showed a 7 % impurity with a 

similar retention time to peak 2. The mass of this peak suggested the loss of Cl as 

opposed to racemization. NMR analysis showed no evidence of this impurity, with the 1H 

NMR of both enantiomers being identical to that of the racemate, with the exception of a 

small amount of residue IPA. We propose that the observed impurity may be an artefact of 

supercritical fluid chromatography, and represent a transient alternative spirocyclisation 

through the indole nitrogen; perhaps promoted by the pressure (scheme 2.44). Such a 

spirocyclisation has been reported in limited cases, for seco forms of duocarmycin SA 

when spirocyclisation through the phenol is blocked by benzyl ether protection.139     

 

2.6 Conclusion 
 

In summary, the pilot and scale up synthesis has realised a shorter route than previously 

published to the common racemic duocarmycin intermediate 10, and one which has been 

successfully conducted on a multigram scale. Conversion of 10 to the novel ‘building 

block’ 11 was straightforward, and chiral resolution via supercritical fluid chromatography 

provided both enantiomers to explore their application to the solid phase synthesis of 

novel duocarmycin analogues.      

 

 

 

  

 

Scheme 2.44 Possible transient alternative spirocyclistion during supercritical fluid 
chromatography. 
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3  
Chapter Three 

The first application of 11 towards the solid phase synthesis of 
duocarmycin analogues: coupling to resin bound amino acids. 
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3.1 Aims. 
 

The work described in this chapter was carried out in order to address the following aims: 

- To explore the utility of the newly synthesised 11 as a ‘building block’ for Fmoc solid 

phase synthesis. 

- To explore the effect of C-terminal amino acid substitution on the cytotoxic activity of the 

seco-duocarmycin alkylation subunit. 

This work was carried out with a view towards the potential future application of using 

Fmoc solid phase synthesis to incorporate this functionality into water solubilising peptide 

based linkers for antibody drug conjugation (see chapter one).   
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3.2 Sold phase peptide synthesis.  
 

The introduction of solid phase synthesis in 1963140 significantly improved the synthetic 

accessibility of peptides. Since its inception the technique has evolved considerably, and 

has found far reaching applications beyond simply the construction of polyamide 

targets.141 However, it is still within the field of peptide and oligonucleotide synthesis that 

this method dominates. When first introduced, the method was received with unveiled 

hostility by many within the peptide synthesis community.142 It certainly represented a 

paradigm shift from the classical solution approach, and early work was not altogether 

convincing. However, many initial challenges were soon overcome, and the method was 

validated with results that only the most harden critic could deny as impressive.143 It is 

now arguably the most common method for the synthesis of peptides on a laboratory 

scale. The importance of this technique saw its inventor Bruce Merrifield later recognised 

with the 1984 Nobel prize in chemistry.144 

The basic concept is elegant in its simplicity.145 Synthetic transformations are performed 

on a substrate which is covalently anchored to an insoluble support. The solid supported 

product is isolated by filtration, allowing unbound side products and reagents to be simply 

washed away. This operational simplicity allows for the use of large excesses of reagents 

to drive reactions to completion. As multiple sequential reactions can be performed 

without the need for intervening purification, this technique can significantly reduce the 

time required to perform multistep syntheses. Furthermore, the use of reaction vessels 

designed to allow in situ filtration, under pressure, or by the application of a vacuum, 

mean multistep syntheses can effectivity be performed as one pot processes. This can be 

particularly advantageous when working on a small scale, where in solution phase 

chemistry the additive attrition of material during the work up and purification of individual 

reactions can limit the effective starting scale of a long synthesis. The final product is 

isolated by cleavage from the solid support. 

The need for orthogonal cleavage conditions, and a cleavage product that introduces a 

desired structural motif can limit the scope of solid phase synthesis. The repetitive nature 

of peptide synthesis and the relative simplicity of the synthetic strategy means it is an 

ideal area for application of solid phase methodology. It is therefore unsurprising that 

peptides were the first target of solid phase synthesis, and represent its most common 

application. The operational simplicity of solid phase peptide synthesis means automation 
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of the process was quickly introduced, and indeed peptide targets are now routinely 

synthesised by commercially available automated peptide synthesisers.146  

In solid phase peptide synthesis the target peptide is constructed in a stepwise fashion via 

the sequential coupling of amino acid residues by amide bond formation. The first amino 

acid is anchored to the solid support through its carboxylic acid. Each subsequent amino 

acid is coupled with its amine protected. This prevents unintended homocoupling in 

solution. Subsequent deprotection of the amine after coupling, allows the next amino acid 

to be coupled, and so on, until the desired peptide is complete. Orthogonal side chain 

protection is also required to prevent the formation of solid supported impurities. Side 

chain protection is typical chosen that will be cleaved under the same conditions used to 

release the completed peptide from the solid support. Linkage to the solid support is 

usually, but not exclusively, designed to provide a free carboxylic acid after cleavage. 

Solid supports typically take the form of cross-linked polymeric resins. Polystyrene based 

resins are perhaps the most commonly used.145 The term solid phase synthesis is 

arguably a misnomer, as reactions do not take place at the surface of a truly 

heterogeneous system. Solvation, in fact, leads to swelling of the resin, and the formation 

of a gel like matrix in which the reactions take place. Studies have shown that this 

environment provides similar access to reagents, as if the individual polymers were free in 

solution.147  

The classical Merrifield approach utilises a Boc and benzyl-protecting strategy.  The N-

terminal amino group of the growing peptide is protected by a Boc group. This is cleaved 

prior to coupling by treatment with TFA. The side chains of trifunctional amino acids are 

protected by benzyl derivatives, and the peptide anchored to the resin through a benzyl 

ester. Treatment with anhydrous hydrofluoric acid yields the cleaved unprotected peptide.  

In skilled hands this method has proved an extremely powerful technique. However, it 

does suffer from several drawbacks. Firstly, the protection strategy is not truly orthogonal, 

and relies on differing acid sensitivity between the Boc and benzyl-protecting groups. As 

such some undesired loss of benzyl protection is often observed, which can result in the 

accumulation of resin bound impurities. The strongly acidic conditions required for 

cleavage can also limit the success of syntheses incorporating sensitive residues. 

However, perhaps the biggest deterrent to the use of this method, is the hazardous nature 

of hydrofluoric acid. This reagent is notoriously toxic, and requires demanding safety 

protocols. It is also incompatible with common laboratory equipment.148 
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Although still in use, the Merrifield approach has been largely superseded by the 

development of Fmoc solid phase peptide synthesis,149 which allows the use of milder 

deprotection and cleavage conditions.150  This technique utilises the base sensitive Fmoc 

group for N-terminal protection. As such, side chain protection and linkage to the resin can 

be effected by protecting groups and linkers that are cleavable under mildly acidic 

conditions.  

Fmoc deprotection is typically achieved by treatment with piperidine (scheme 3.1). The 

Fmoc group is base sensitive due to the acidic nature of the proton at the bridgehead of 

the fluorenyl group. Acidity is a result of the aromatic stabilisation of the carbanion formed 

by deprotonation. In the Fmoc group, deprotonation results in the intramolecular attack of 

the anion at the neighbouring partially-positive carbon. Here the carbamic acid anion 

serves as a leaving group, and subsequently decomposes releasing CO2 and the desired 

amine. A large excess of piperidine is typically used to scavenge the reactive 

dibenzofulvene by-product.   

Many resins differing in both their linking strategy and polymeric construction have been 

developed for use in Fmoc solid phase synthesis. As will be seen, this would prove 

extremely useful in optimising the solid phase synthesis of duocarmycin analogues using 

the new Fmoc-protected alkylation subunit 11.   

 

Scheme 3.1 Mechanism of Fmoc-deprotection by treatment with piperidine. 
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3.3 The first solid phase experiment and resulting optimisation 
of cleavage conditions. 

 

In order to assess the suitability of 11 for incorporation into polyamide structures through 

the application of solid phase synthesis, a simple target compound was envisioned. This 

consisted of the alkylation subunit of duocarmycin sandwiched between two alanine 

residues (32, scheme 3.2). Standard conditions used routinely in our lab for peptide 

synthesis were planned to prepare it (scheme 3.2). This preliminary work was undertaking 

prior to completion of the scale up process with racemic 11 accessed from the pilot 

synthesis. 

The synthesis began from a commercially available preloaded alanine Wang resin. As 

such, the manufacturer’s specification provided a substitution level with respect to the 

 

Scheme 3.2 First solid phase experiment: synthesis of 32. Red structure = structure of the Wang 
linker. 
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quantity of alanine loaded. This allowed for fine control of the stoichiometric ratios of 

reagents used for the following couplings.  

The term Wang, refers to the structure of the linker, which anchors the alanine residue to 

the polystyrene based resin.151 This is a very common linker for Fmoc solid phase peptide 

synthesis. Its structure is depicted in red in scheme 3.2. The amino acid is attached via a 

benzyl ester. However, unlike that used in the Merrifield approach, which requires 

treatment with hydrofluoric acid to affect cleavage, the structure of the Wang linker, allows 

cleavage by treatment with TFA. The increased acid sensitivity of the benzyl ester of the 

Wang linker is the result of the para benzyl ether. This provides mesomeric electron 

donation which stabilises the carbocation resulting from cleavage.   

When conducting any solid phase synthesis. It is imperative that the resin is appropriately 

swelled to allow efficient access to the individual polymer chains. This was achieved by 

solvating the resin in DCM for 30 mins, followed by DMF for a further 30 mins.  

As discussed one of the advantages of solid phase synthesis is the removal of by- 

products and excess reagents by washing of the resin. This occurs between every step. In 

the proceeding discussions, this process will not be highlighted, and unless otherwise 

stated the resin was washed between treatments with an appropriate volume of DMF at 

least 6 times. 

The commercially available resin was supplied with Fmoc-protection of the loaded 

alanine. This was removed by treatment with 40 % piperidine in DMF for 10 min, followed 

by 20 % piperidine in DMF for 5 min twice. Separate treatments help to ensure full 

deprotection, but has not been proven to be necessary. The mechanism of Fmoc- 

deprotection by piperidine has already been discussed in section 3.1.   

Next would follow the first coupling of 11, and to the best of our knowledge the first solid 

phase amide coupling of a duocarmycin structure. Amide bond formation is typically 

promoted by formation of an activated ester of the carboxyl group. Many coupling 

reagents have been developed. Uronium salts are arguably amongst the most popular 

choice for solid phase couplings, of which HBTU is a typical example. It is one of the older 

uronium salts, and more efficient alternatives exist. However, it is relatively cheap when 

compared to the newer generations of uronium salts, and thus is still commonly used as 

cost effective option. Indeed, HBTU was the standard coupling reagent used in our lab for 

solid phase peptide synthesis, and as such was considered first for the application of 11 to 

the solid phase methodology.  
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The term uronium salt is misleading. This refers to the structure proposed when the 

reagent was first introduced (33, scheme 3.3).152 However, more recent evidence 

suggests it is more commonly found as the guanidinium isomer (34, scheme 3.3).153 The 

likely mechanism of amide bond formation using HBTU is depicted in scheme 3.3. A 

tertiary amine base, such as DIPEA is used to deprotonate the carboxylic acid. The 

resulting carboxylate anion attacks the electrophilic sp2 hybridised carbon of the 

guanidinium structure. Subsequent collapse of the tetrahedral intermediate, results in the 

formation of the isouronium cation, and the oxybenzotriazole anion. These two species 

then react to form oxybenzotriazole ester, with the release of tetramethylurea.  Attack of 

this activated ester by the amine gives the desired amide bond after deprotonation.  

Uronium salts are used in an equimolar quantity to the carboxylic acid, and are typically 

premixed before addition to the amine. This is to reduce the occurrence of competing 

guanylation of the amine, which can lead to capping of the resin (scheme 3.4).145 When 

using HBTU, it is also common to also use HOBt as an additive. This increases the 

 

Scheme 3.3 Mechanism of amide bond formation using HBTU. Also shown are the different 
isomers of HBTU 33 and 34. 
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efficiency of the oxybenzotriazole ester formation. When coupling amino acids, this is also 

said to act to supress potential racemization. As the isouronium ester, N-protected amino 

acids can be particularly prone to base-induced racemization through either enolization or 

oxazolone formation (Scheme 3.5).154 This is due to the increased acidity of the alpha 

proton.    

For coupling of 11, this is not a specific concern, but there is still the potential to benefit 

from faster formation of the oxybenzotriazole ester with the use of HOBt as an additive.  

Solid phase couplings are usually performed with a large access of the active ester, in 

order to drive reactions to completion. Near quantitative conversions are important to 

prevent the accumulation of resin bound deletion products. However, given the precious 

nature of 11, it was decided that couplings should be first attempted with the smallest 

excess possible.  

Therefore, 1.1 equiv. of 11 was treated with an equimolar quantity of HBTU, and a twofold 

excess of both HOBt and DIPEA, in DMF. After 30 seconds the mixture was added to the 

resin. The resin was shaken for 2 hours. At this point a sample of the resin was taken, and 

subjected to Kaiser testing. 

 

Scheme 3.4 Potential capping of resin by guanylation. 
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The Kaiser test is a qualitative test used to detect the presence of primary amines.155 A 

small sample of the washed resin is treated with a drop of three solutions. These are, 5% 

w/v ninhydrin in ethanol, 80 % w/v phenol in ethanol, and a 2:98 mixture of aqueous 0.001 

M KCN and neat pyridine. The sample is heated to 120 oC for 5 mins. Formation of a deep 

blue colour indicates the presence of primary amines.   

The Kaiser test is based on the reaction between ninhydrin and primary amines, which 

results in the formation of the chromophoric compound ‘Ruhemann's Purple’. The 

mechanism of this reaction has been the subject of some controversy. However it is now 

 

Scheme 3.5 Potential base catalysed racemization, of the isouronium ester form of Fmoc-
protected amino acids, by enolization or oxazolone formation during couplings. 
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generally accepted that the most likely mechanism (scheme 3.6),156 involves the 

dehydration of ninhydrin to give 1,2,3-indantrione. This condenses with the amine to give 

the Schiff base. Decomposition gives an intermediary amine derivative of ninhydrin, which 

condenses with another molecule of 1,2,3-indantrione to give ‘Ruhemann's Purple’. 

Unexpectedly, the Kaiser test performed after 2 hours, was negative, suggesting complete 

coupling of 11, despite the modest excess of the reagent used. This was a surprise, as it 

was anticipated that 1.1 equiv. of 11, would not be sufficient to affect a quantitative 

coupling.  The plan in the event of a positive Kaiser test would have been to perform 

additional 2 hour couplings with 0.5 equiv. of 11 until a negative Kaiser test was observed. 

This was deemed to be a good reagent conserving strategy for driving couplings to 

completion. Fortunately this did not appear to be necessary. 

 

Scheme 3.6 Mechanism of the Kaiser test. 
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Subsequently the indoline nitrogen was Fmoc-deprotected with piperidine as before, and 

coupled to a final alanine residue. This was achieved using Fmoc-Ala-OH (5 equiv.), 

HBTU (5 equiv.), and DIPEA (10 equiv.), in DMF. As before the reagents were premixed 

for 30 secs prior to addition to the resin. Since a large excess of amino acid was used a 

more standard 45 min reaction time was employed. Kasier testing was not employed here, 

as the formation of ‘Ruhemann's Purple’, does not occur between the reaction of ninhydrin 

and secondary amines. Other resin tests exist which are capable of detecting free 

secondary amines. These are typically used to monitor couplings of proline. A good 

example is the chloranil test.157 However this was not employed here due to the lack of 

reagent availability. Therefore, it was decided to assume that the single coupling with a 

large excess of amino acid was likely sufficient. 

After removal of the N-terminal Fmoc group of the alanine residue, the resin was prepared 

for cleavage by extensive washing with DMF, followed by DCM, and drying under a 

stream of nitrogen. Cleavage was affected by treatment of the resin with a solution of 95 

% TFA, 2.5 % TIPS, and 2.5 % water. After shaking for 2 hours, the cleavage mixture was 

filtered and concentrated by rotary evaporation, followed by precipitation with the addition 

of cold Et2O. 

The crude product was analysed by reverse phase analytical HPLC. Initial results were 

disappointing. Although an obvious product dominated the HPLC trace, with a strong peak 

at 9.0 min, several significant side products were also observed (figure 3.1a). It seemed 

unlikely that these could represent deletion products. Firstly there were more side 

products than could be predicted to have resulted from incomplete couplings. 

Furthermore, Kaiser testing had suggested that the first coupling was quantitative. 

Incomplete Fmoc-deprotection also has the potential to result in deletion products, 

however considering the reliability of this step, it too seemed unlikely to explain the 

observed impurities.  

HPLC analysis was monitored by UV absorbance at the 254 nm, and 214 nm 

wavelengths. The side products showed greater intensity at 254 nm, and this strongly 

suggested that they contained aromatic character derived from the duocarmycin residue. 

It was possible that the large excess of activated alanine was able to react, not only with 

the indoline nitrogen, but also lead to acylation of nucleophilic sites on the indole scaffold 

of the duocarmycin residue. However, this seemed unlikely with activation of the alanine 

by HBTU. Even if an acid chloride of alanine had been used, such a reaction would be 

likely to require Friedel-Craft like conditions.158 Furthermore, the indole side chain of 

tryptophan is not reported to be susceptible to acylation during peptide couplings.  
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As this synthesis had been conducted with racemic 11, it was briefly considered that 

perhaps the impurities were the result of separation of diastereomeric deletion products. 

The pattern of impurities certainly could be described as two pairs either side of the main 

product. However, the main product would also be a mixture of diastereoismers, and no 

separation of the peak at 9 min had been observed.  

These explanations seemed unlikely, and therefore attention turned to the cleavage 

conditions. The cleavage cocktail contained 95 % neat TFA, and it was possible that the 

duocarmycin residue was not stable under these conditions. Therefore, small sample of 

 

Figure 3.1 HPLC analysis of crude 32 after cleavage under varying conditions. a) 95 % TFA, 2.5 % 
TIPS, 2.5 % H2O. b) 50 % TFA, 50 % DCM. c) 95 % TFA, 5 % DCM. d) 47.5 % TFA, 47.5 % DCM, 
2.5 % TIPS, 2.5 % H2O. 10 mg of dried resin was cleaved under either conditions a, b ,c, or d,  with 

5 mL of the respective cleavage cocktail for 2 hours. The cleavage mixture was filtered and 
evaporated to dryness. The crude was dissolved in 1 mL of MeOH and analysed by HPLC at 254 
nm. Agilent Eclipse XDB-C18 column, 4.8 x 150 mm, 5 µm. Solvent A: [Water and 0.05 % TFA], 

Solvent B: [ACN and 0.05 % TFA]. Gradient: 0% [B] to 95 % [B], from 0 min to 15 mins, 95 % [B] to 
0 % [B] from 15 to 20 mins. Monitored UV 254 nm. Flow rate 1 mL/min. Column temperature 40 

o
C.  

 



123 
 

11 was treated with neat TFA. Monitoring by TLC showed decomposition of this reagent. 

This suggested, that the unexpected impurities were the result of side reactions during 

cleavage. As a result, the synthesis of 32 was repeated as before. On completion, the 

dried resin was portioned into 10 mg samples, and exposed to varying cleavage 

conditions. The crude products were again analysed by reverse phase analytical HPLC 

(figure 3.1).   

Reducing the TFA concentration to 50 % by dilution with DCM, and the omission of the 

scavengers (TIPS and H2O), saw a dramatic improvement (figure 3.1b). The side products 

that eluted before the main product at 9 min, which had been the most intense impurities 

under the original conditions, were no longer present. However the two impurities at 9.5 

and 9.7 min appeared to have grown in intensity when compared to the main product at 9 

min. It seemed that the inclusion of scavengers protected against the formation of these 

two impurities; but the question arose, was it the reduction in TFA concentration, or the 

omission of scavengers which had protected against formation of the other side products? 

It was at least conceivable, that the combination of TFA as proton donor, and the 

trialkylsilane, as potential hydride donor, could lead to reduction of the indole scaffold to 

an indoline.159 Indeed, the use of TES as a scavenger in the cleavage of tryptophan 

containing peptides is known to cause reduction of the indole side chain.160 However, 

TIPS is cited as a good alternative when this problem is encountered, as it is significantly 

less prone to producing this side reaction.    

In order to ascertain whether reducing the TFA concentration had derived a benefit. The 

next sample of resin was subjected to cleavage with 95 % TFA and 5 % DCM (figure 

3.1c). Here, it can clearly been seen that the high concentration of TFA has had a 

detrimental effect. The main product peak previously observed at 9 mins, is no longer the 

majority product, in fact it is arguably no longer observed at all. Furthermore, the two 

impurities at 9.5 and 9.7 min now dominate the HPLC trace.  

The logical extension of these findings was to combine a reduced concentration of TFA 

with the inclusion of the scavengers. Thus, the next sample of resin was cleaved using 

47.5 % TFA, 47.5 % DCM, 2.5 % TIPS, and 2.5 % H2O. This combination appeared to 

produce a synergistic benefit (figure 3.1d). Under these conditions the main product at 9 

min, was the only discernible peak. This was confirmed as the desired product by 

accurate mass analysis. 

Scavengers, are included in cleavage cocktails to protect potentially nucleophilic residues 

from alkylation by cationic species derived from cleavage. In the case of peptides 

containing trifunctional amino acids, this can include the tert-butyl cations derived from 
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simultaneous side chain deprotection. This is of course not applicable to the alanine 

residues present in 32. However, another source of carbocations is the linker itself.  

 

Scheme 3.7 Acidic cleavage of 32 from Wang resin. Production of p-quinone methide, and resin 
bound cations. Potential alkylation of indole scaffold leading to soluble and permanently resin 

bound impurities. 

 



125 
 

Scheme 3.7 depicts the acidic cleavage of 32 from Wang resin. The Wang linker is 

attached to the polystyrene resins via a benzyl ether, and is linked to the product by a 

benzyl ester. As discussed previously, it is the electron-donating effect of the para-benzyl 

ether, which increases the acid sensitively of the benzyl ester, and allows for complete 

cleavage by treatment with TFA. However, an undesired consequence is the potential for 

subsequent cleavage of the linker remnant itself. This liberates the highly reactive p-

quinone methide species, which is then available to alkylate sensitive residues;161 in this 

case, the indole scaffold of the duocarmycin structure, by electrophilic aromatic 

substitution. This would result in soluble side products, and is likely responsible for the 

impurities seen at 9.5 and 9.7 min, which are reduced by the addition of scavengers.  

It is likely that the side product at 9.5 min represents alkylation at the most nucleophilic 3 

position of the indole, depicted in scheme 3.7, and the side product at 9.7 mins, 

represents the additional alkylation of this product at the 6 position (standard indole 

numbering) or at the indole nitrogen itself. Attack of the aromatic ring of the benzyl ether 

protecting the phenol group seems less likely.  A second route to this impurity can also be 

envisioned, when p-quinone methide in not released. Here, the resin bound carbocation 

generated reacts first with the indole scaffold, and this product is then cleaved from the 

resin at the benzyl ether.   

It can be seen in figure 3.1, that addition of TIPS and H2O protects against the formation 

of these side products, as the intensity of their peaks grows with the omission of these 

scavengers (figure 3.1a vs figure 3.1b, and figure 3.1c). Here H2O acts as a completing 

nucleophile, and TIPS as a hydride donor. The synergy in protection observed between 

reduction in TFA concentration and the addition of scavengers (figure 3.1a vs figure 3.1d), 

most likely results from the reduced liberation of p-quinone methide. Thus, the smaller 

quantity of this soluble reactive species, is more effectively quenched by the concentration 

of scavengers. The resin bound-carbocation resulting from cleavage of the benzyl ester 

still exists in the same quantity. However, this species can also be quenched by the 

polystyrene resin itself, leading to increased crosslinking of the resin. This effect has been 

used to explain the reduced swelling capacity of Wang resins post TFA cleavage.161   

As can be seen in scheme 3.7, liberation of p-quinone methide also produces a second 

carbocation on the polystyrene resin itself. This too can be envisaged to react with the 

sensitive indole scaffold. The consequence here would be a so called ‘back alkylation’, 

which permanently sequesters the product to the resin, reducing yields. Closer inspection 

of figure 3.1 provides some tentative evidence for this effect. The test cleavages were 

identical except for the composition of the cleavage cocktail, and were analysed by HPLC 
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after dissolution of the crude in the same volume of MeOH. Thus the intensity of the HPLC 

peaks gives a qualitative indication of recovery. Under the most destructive cleavage 

conditions of no scavengers and high TFA concentration, where back alkylation would be 

greatest (figure 3.1c), the highest intensity peaks are those of the soluble alkylated side 

products, at around 25 mAU. At reduced TFA concentration and with the presence of 

scavengers (figure 3.1d) the only discernible peak is the desired product with much 

greater intensity of around 140 mAU. This suggests a reduction in recovery of the product, 

which is consistent with loss due to back alkylation. Furthermore, comparison of figure 

3.1a, and figure 3.1c, demonstrates that at high TFA concentration but with the presences 

of scavengers, which would protect against back alkylation, the desired product still 

dominates with an intensity of around 60 mAU.  

Further support for these suspected side reactions during cleavage, can be found in the 

literature, concerning the cleavage of tryptophan containing peptides from Wang resin. 

Side protects resulting from the alkylation of the indole side chain of tryptophan by 

liberated p-quinone methide, have been isolated and characterised.162, 163 Furthermore, 

Wang resin is reported to produce low yields of tryptophan containing peptides, even after 

soluble side products have been taken into account, and this has been attributed to losses 

incurred by back alkylation to the resin.162, 164 Considering that it is the more nucleophilic 

3- position of the pyrrole ring of the duocarmycin indole which is unsubstituted, compared 

to the 2-position in the tryptophan indole, syntheses incorporating 11, may be particularly 

susceptible to such side reactions. Furthermore, the 6-position of the duocarmycin indole 

is further activated over the same position in the tryptophan indole, by the ortho-benzyl 

ether. Although this position is sterically shielded by the benzyl group.  

It is reported that for tryptophan containing peptides such side reactions can be reduced 

by the use of Boc side chain protection.165, 166 This reduces the nucleophilicity of the 

indole. It is suggested that removal of this group during cleavage by TFA is retarded at the 

carbamic acid intermediate,166, 167 which is lost during work up, offering protection 

throughout cleavage. It may be that 11 would be an improved solid phase building block, if 

it retained Boc-protection of the indole nitrogen.  

It is also clear from the comparison of figure 3.1a, b, and c, reducing the TFA 

concentration alone is also beneficial. Considering the observed instability of 11 itself to 

neat TFA, this likely represents the decomposition of the duocarmycin residue at high 

concentrations of TFA. It is not obvious what causes decomposition and it is likely to occur 

via multiple routes. It is possible for example that some benzyl ether protection is lost. The 

occurrence of 3-trifluoroacetylindoles has also been reported by the reaction of TFA with 
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indole-2-carboxylic acids, although this was under refluxing conditions.168 Furthermore the 

authors state that acylation occurs after decarboxylation, and this should not be possible 

once 11 is incorporated into a polyamide structure.  However, they do report that the 

reaction produces many other by-products which were not isolated.  

This first set of experiments, had clearly demonstrated that 11, could be incorporated into 

polyamide structures using Fmoc solid phase synthesis. Pleasingly, large excesses of 11 

did not appear to be necessary to affect quantitative couplings to resin bound amino 

acids. It is clear however that cleavage is not a trivial step, and care must be taken to 

avoid degradation of the product. Reducing TFA concentration and the use of appropriate 

scavengers effectively suppresses these side reactions, at least for short sequences 

which do not contain side chain protected trifunctional amino acids.    

3.4 The first attempt at a small library of amino acid-duocarmycin 
conjugates.  

 

It was decided to attempt to use the solid phase synthesis and optimised cleavage 

conditions employed in the first experiments, to access a small library of amino acid-

duocarmycin conjugates, and assess the effects of different amino acids on the 

antiproliferative activity of the resulting analogues. This work predated the scale up 

synthesis, and thus was conducted using racemic 11 from the pilot synthesis. 

For this series of analogues the decision was made to acetylate the indoline nitrogen as 

opposed to coupling a final amino acid residue. This would allow comparison of biological 

activity with previously described, truncated duocarmycin analogues.169 Alanine, phenyl 

alanine, serine, glutamic acid, and lysine were chosen as the C-terminal amino acids 

(figure 3.2).  These were chosen to represent non-polar, polar, and charged side chains. It 

was considered particularly interesting to see if the positively charged side chain of lysine, 

could both increase water solubility, and benefit minor grove binding, by association with 

the polyanionic backbone of DNA.  

 

Figure 3.2 Targets of the first attempt at a library of amino acid-duocarmycin conjugates. 
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The lab already had a large supply of unsubstituted Wang resin, and bulk quantities of the 

required Fmoc-protected amino acids. Therefore, for economic reasons, it was decided 

not to purchase preloaded resins, and instead load the first amino acid residues manually. 

Loading of the first amino acid residue, requires esterification to the hydroxyl group of the 

Wang linker. This was achieved using the symmetrical anhydride method.145 For the 

preparation of each resin, the Fmoc-protected amino acid was converted to its anhydride 

by treatment with DIC in anhydrous DCM. Typically a few drops of anhydrous DMF were 

also required to aid dissolution of the amino acid. The mixture was stirred under N2 for 1 

hour at 0 oC. During this time the Wang resin was swelled with anhydrous DCM for 30 

min, followed by anhydrous DMF for a further 30 min. The anhydride was concentrated by 

rotary evaporation, and the residue dissolved in anhydrous DMF, before being added to 

the swelled resin. Addition of 10 mol % DMAP, was also added to the swelled resin to 

promote esterification. The resin was shaken under N2 for 1 hour. At this point the resin 

was washed thoroughly with anhydrous DMF, before being treated with a large excess of 

acetic anhydride, again in anhydrous DMF under N2 for 1 hour. The acetic anhydride 

treatment was use to acetylate unreacted hydroxyl groups. This was necessary because 

the substitution level of the resin with respect to the Wang linker was higher than desired. 

Therefore, sub-stoichiometric quantities of the amino acid anhydrides were used. The 

lower substitution allowed larger quantities of resin to be used which were more 

convenient to weigh. Following this treatment the resins were washed thoroughly with 

DMF followed by DCM. The washed resins were then dried under a steam of N2, followed 

by desiccation under vacuum overnight. 

 

Scheme 3.8 Mechanism of anhydride formation using DIC. 

 



129 
 

Scheme 3.8 depicts the mechanism of anhydride formation. In brief, DIC promotes the 

condensation of two molecules of the amino acid. First the carboxyl group of one amino 

acid reacts with DIC to form the O-acylisourea intermediate. This is attacked by the 

carboxylic acid  group of a second amino acid to liberate the symmetrical anhydride. The 

reaction of the symmetrical anhydride with the hydroxyl group of the Wang linker is 

analogous to the formation of the t-butyl carbamates, described in section 2.2.5, with 

DMAP acting as an acyl transfer agent. 

Before the loaded resins could be used, an accurate estimation of the resin loading with 

respect to the amino acids was required. This was especially important due to the small 

excesses of 11 being used for the following couplings. Fortunately, this can be determined 

by monitoring of the Fmoc-deprotection reaction of a sample of the resin. The relationship 

between UV absorption and concentration of the fulvene-piperidine adduct is well-

characterised, and thus can be used to calculate the resin loading. 145 

For each resin the following procedure was followed. Two accurately weighed 5 mg 

samples of the thoroughly dried resin were treated with 3 mL of 20 % piperidine in DMF. 

The samples were allowed to react for 3 hours with occasional agitation. The long reaction 

time was to ensure complete deprotection, as the dried resin was not swelled prior to 

addition of the piperidine solution. UV absorbance at 290 nm was then measured for each 

solution against a blank of 20 % piperidine in DMF, in 1 cm quartz cuvettes. It is important 

that the UV absorbance is within the linear range, and typically this required a series of 2 

fold serial dilutions, until an absorbance reading below 1 was observed. Resin loading 

was then calculated from the mean absorbance using the following equation,145 which is 

based on the Beer-Lambert law (A = ԑcl), where A is absorbance at 290 nm, ԑ is the molar 

extinction coefficient (M-1 cm-1), c is the concentration (M), and l is the path length (cm). 

The 1.75 constant is derived from the extinction coefficient of the fulvene-piperidine 

adduct (5253 M-1 cm-1) and a reaction volume of 3 mL, with a path length of 1 cm. The 

dilution factor corrects for the dilutions needed to give an absorbance reading below 1 

when using 5 mg samples.  

𝐿𝑜𝑎𝑑𝑖𝑛𝑔 (𝑚𝑚𝑜𝑙 𝑝𝑒𝑟 𝑔) =
[𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒][𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟]

[𝑚𝑔 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒] 1.75
 

To validate the method, it was first used to estimate the resin loading of the commercially 

available preloaded resin used in the first solid phase experiment. The results match the 

manufacturer’s stated value.     
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The loaded resins were then used to conduct the solid phase synthesis of the small library 

on a 0.038 mmol scale. Couplings of 11 were conducted as before, and after Fmoc-

removal, the indoline nitrogen was acetylated by treatment with acetyl chloride and DIPEA 

in DMF. The analogues were cleaved using the optimised conditions described in section 

3.2, and concentrated to dryness. HPLC analysis of the crude products confirmed the 

successful cleavage, with all exhibiting just one major product peak. Figure 3.3 shows an 

example HPLC trace of crude lysine analogue 39 after cleavage. 

Mass spec analysis confirmed the desired products. This showed that the reduced TFA 

concentration of the optimised cleavage conditions was still sufficiently acidic to affect 

removal of tert-butyl side chain protection of the serine, lysine, and glutamic acid 

analogues. It also confirmed that the tert-butyl carbocations released during cleavage of 

these analogues were not alkylating the duocarmycin scaffolds to any significant extent. 

This suggests that additional scavengers are not required for coupling of t-butyl protected 

trifunctional amino acids, at least not for analogues containing single amino acid residues. 

The crude products were subjected directly to benzyl-deprotection to provide the active 

seco forms of the duocarmycin analogues for biological evaluation.  

This was achieved via catalytic transfer hydrogenation, using Pd/C and aqueous 

ammonium formate,170 in either MeOH, or a mixture of MeOH and THF depending on the 

solubility of the analogue. This procedure is typical for the benzyl deprotection of 

duocarmycin analogues, and has been shown to allow the selective removal of the benzyl 

ether, without completing dehalogenation of the substituted indoline ring, or indole 

reduction.96 

 

Figure 3.3 Crude HPLC trace of 39 after cleavage. HPLC conditions: Agilent Eclipse XDB-C18 
column, 4.8 x 150 mm, 5 µm. Solvent A: [Water and 0.05 % TFA], Solvent B: [MeOH and 0.05 % 
TFA]. Gradient: 0% [B] to 95 % [B], from 0 min to 15 mins, 95 % [B] to 0 % [B] from 15 to 20 mins. 

Monitored UV 254 nm. Flow rate 1 mL/min. Column temperature 40 
o
C. 
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The reaction takes place on the surface of the heterogeneous Pd catalyst using 

ammonium formate as a hydrogen donor,171 and most likely proceeds via a mechanism 

consistent with that depicted in scheme 3.9. Here, the formate ion first dissociates from 

NH4 and is adsorbed on to the Pd surface. This results in its decomposition to CO2 and H-

Pd. When the substrate is also adsorbed on to the Pd surface, the hydride is transferred 

to the benzyl ether, producing toluene, and the phenoxide, which in turn can be 

protonated by the ammonium, H2O, or MeOH. In the absence of the substrate, the hydride 

can react with the ammonium, H2O, or MeOH to release hydrogen gas. 

The Pd/C was easily removed by filtration through a short column of diatomaceous earth. 

Analytical HPLC analysis revealed good conversion to one major product for all 

analogues. Figure 3.4 shows an example HPLC trace of crude Lysine analogue 39 after 

benzyl-deprotection. 

 

Scheme 3.9 Likely mechanism of benzyl ether cleavage, via heterogeneous Pd catalysed transfer 
hydrogenation. 

 

 

Figure 3.4 Crude HPLC trace of 39 after benzyl-deprotection. HPLC conditions: Agilent Eclipse 
XDB-C18 column, 4.8 x 150 mm, 5 µm. Solvent A: [Water and 0.05 % TFA], Solvent B: [MeOH 

and 0.05 % TFA]. Gradient: 0% [B] to 95 % [B], from 0 min to 15 mins, 95 % [B] to 0 % [B] from 15 
to 20 mins. Monitored UV 254 nm. Flow rate 1 mL/min. Column temperature 40 

o
C. 
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Mass spectrometry confirmed these were the desired phenols. However, the crude 

products were clearly over 100 % yield in mass, and had a glossy appearance. This 

seemed most likely the result of excess ammonium formate contamination. As a result 

some further purification would be required. The analogues, particularly those with polar 

side chains, did not run well on TLC plates, and required mobile phases with large 

concentrations of MeOH to move the products from the baseline. Therefore purification 

was attempted using reverse phase preparative HPLC. However only trace quantities of 

the products were recovered. It seemed likely that the particularly poor recoveries were 

the result of un-optimised preparative HPLC conditions. However, intrinsically low yields 

could not be ruled out. It was questioned whether, despite the optimised cleavage 

conditions, the use of Wang resin could still be having a determinately effect on yield via 

the suspected back alkylation. Therefore it was decided that before the library would be 

resynthesised, a brief exploration of different resins should be conducted.  

3.5 Resin screening.  
 

Although it is true that all linkers cleaved by acidic conditions will result in a resin bound 

cation, the propensity for this species to participate in the back alkylation of sensitive 

nucleophilic residues is not necessarily equal. The Wang linker is particularly prone to this 

side reaction, most likely due to the exposed nature of the cation. An alternative, often 

recommended for the synthesis of peptides containing tryptophan, is the 2-chlorotrityl 

linker.172, 173 The reduced occurrence of back alkylation to the indole side chain of 

tryptophan, has been attributed to a steric shielding effect provided by the triphenylmethyl 

structure that encapsulates the cleavage site.145 This shielding effect has also been shown 

to effectively supress diketopiperazine formation, another common side reaction which 

can lead to near quantitative losses in the synthesis of sensitive peptide sequences.174  

It was therefore decided to resynthesize the lysine analogue 39, on a number of different 

resins, and compare the recovery. In order to reduce the influence of handling errors, this 

would be achieved by conducting the synthesis for each resin, on the same scale, using 

identical reaction conditions, and analysing the crudes by analytical reverse phase HPLC, 

after cleavage. Although there would be no internal standard, and therefore estimation of 

yield would not be possible, by preparing the HPLC samples in an identical manner, the 

area of the product peak could serve as a qualitative comparison of recovery between 

each resin. 
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In addition to the original Wang resin, and the suspected superior candidate 2-chlorotrityl 

resin, the screen would also include Rink amide MBHA resin,175 and NovaSyn® TGA 

resin.176 The structures of the lysine substituted resins are shown in figure 3.5.  

 

Figure 3.5 Structures of the different lysine substituted resins. 
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NovaSyn® TGA resin also contains the Wang linker, however instead of being attached 

directly to the polystyrene polymer by a benzyl ether, it is spaced by a polyethylene glycol 

chain. Such polyethylene glycol functionalised resins, are said to provide a more 

favourable matrix environment, for solid phase synthesis.177 The polyethylene spacers 

help to improve the solvation of the growing peptide chains, and protect against 

aggregation which can reduce the coupling efficiencies of susceptible sequences. 

Association of the hydrophobic duocarmycin structure with polystyrene resins might be a 

foreseeable issue when considering the synthesis of more complex analogues in the 

future. It was also speculated that the improved mass transfer kinetics of the matrix 

environment of polyethylene glycol functionalised resins, may facilitate the escape of 

products from the matrix before they could react with the cleavage cation.     

Rink amide MHBA resin, contains the Rink amide linker, attached via a norleucine spacer 

to a polystyrene based 4-methylbenzhydrylamine resin. This spacer protects against 

alternative detachment of the Rink amide linker at the ether during cleavage. This can 

occur when the Rink amide linker is attached directly to polystyrene, in an analogous 

fashion to release of p-quinone methide observed with Wang resin. Unlike the other 

linkers, cleavage provides the product as a terminal amide, as opposed to a carboxylic 

acid. This was deemed to have potential useful applications in the future.  Furthermore, 

the two phenyl groups surrounding the cleavage site may provide some protection against 

back alkylation. In fact, it could be said to offer a level of steric protection which is 

intermediary between the well shielded cleavage site of the 2-chlorotrityl linker, and the 

very exposed cleavage site of the Wang linker.    

For the screening, the synthesis was conducted on a 0.038 mmol scale, using the reaction 

conditions already described in section 3.3. The unnatural enantiomer of 11 was used as 

this was deemed less valuable. After cleavage, the crudes were evaporated to dryness 

and dissolved in 1 mL of MeOH. 100 µL of the resulting solutions were diluted with 900 µL 

of MeOH and analysed by reverse phase HPLC.  A comparison of product peak area for 

each resin is shown as a bar chart in figure 3.6.  

It can be seen that recovery was greatest with 2-chlorotrityl resin. The two resins 

containing the Wang linker produced the lowest recovery, and were essentially identical. 

Rink amide MHBA fell somewhere in between. This is consistent with the degree of steric 

shielding for each resin. Furthermore, it would seem that the improved mass transfer 

kinetics of the NovaSyn® TGA resin provided no detectable protection against back 

alkylation with the Wang linker. In fact, the polyethylene glycol spacer may be detrimental 
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as it increases the distance of the carbocation from the polystyrene core, which itself can 

act to scavenge this reactive species.   

Although it is clear that 2-chlorotrityl resin provides the greatest recovery of product, we 

cannot be sure from these results, how large the difference is, as the relationship between 

concentration and absorbance at 254 nm may not be linear. Furthermore, the product 

from Rink amide cleavage is different to the other resins, being the amide rather than the 

carboxylic acid. It is not known what effect this minor change has on the absorbance 

character of the compound. However, as it is the shared aromatic structure that will be 

responsible for the majority of absorbance at 254 nm, this is unlikely to have a significant 

impact.   

These results at least confirmed the suspicion that 2-chlorotrityl resin is a more 

appropriate choice than Wang resin for syntheses incorporating 11. The increased 

recovery is most likely due to the reduced occurrence of back alkylation of the resin with 

the indole scaffold on cleavage. 2-Chlorotrityl resin holds further advantages. Firstly, it is 

cleaved in only one place. This means it does not produce a soluble linker derived 

carbocation, which can alkylate the indole scaffold to produce soluble side products. It is 

possible this also reduces the overall burden on the scavengers. In addition, the 

triphenylmethyl structure produces a highly stabilised carbocation, and as such 2-

chlorotrityl resin can be cleaved under far milder conditions. For example cleavage when 

 

Figure 3.6 Bar chart comparing the HPLC product peak area between different resins (see text). 
HPLC conditions: 10 µL injection. Agilent Eclipse XDB-C18 column, 4.8 x 150 mm, 5 µm. Solvent 

A: [Water and 0.05 % TFA], Solvent B: [MeOH and 0.05 % TFA]. Gradient: 0% [B] to 95 % [B], from 
0 min to 15 mins, 95 % [B] to 0 % [B] from 15 to 20 mins. Monitored UV 254 nm. Flow rate 1 

mL/min. Column temperature 40 
o
C. 
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simultaneous t-butyl side chain protection is not required, can be affected with a TFA 

concentration as low as 1%.  

Due to the above advantages, and the results of the screening, 2-chlorotrityl resin would 

be chosen for future work, when a carboxylic acid end group was desired.  

3.6 Coupling agent screening. 
 

Following the resin screening, it was decided to use a similar test to compare a range of 

coupling agents. These were chosen on the basis of availability. In this test the lysine 

analogue was synthesised on a 0.016 mmol scale using 2-chlorotrityl resin as the solid 

support. Again the unnatural enantiomer of 11 was used. Reaction conditions were 

identical, and as already described, except for the reagents used to couple 11 to the resin 

bound lysine residue. The different coupling conditions tested were as follows: 

-  11 (1.1 equiv.), HBTU (1.1 equiv.), HOBt (2 equiv.), DIPEA (2.2 equiv.), DMF, 2 

hours. 

-  11 (1.1 equiv.), HATU (1.1 equiv.), HOBt (2 equiv.), DIPEA (2.2 equiv.), DMF, 2 

hours. 

-  11 (1.1 equiv.), PyBop (1.1 equiv.), HOBt (2 equiv.), DIPEA (2.2 equiv.), DMF, 2 

hours. 

-  11 (1.1 equiv.), EDCI (1.1 equiv.), HOBt (2 equiv.), DIPEA (2.2 equiv.), DMF, 2 

hours. 

-  11 (1.1 equiv.), DIC (1.1 equiv.), HOBt (2 equiv.), DIPEA (2.2 equiv.), DMF, 2 

hours. 

After cleavage, the crudes were evaporated to dryness and dissolved in 1 mL of MeOH. 

100 µL of the resulting solutions were diluted with 900 µL of MeOH and analysed by 

reverse phase HPLC.  Again the area of the product peak was used as a qualitative 

comparator of performance. The results are displayed as a bar chart in figure 3.7. 

As can be seen HATU was clearly the best performing coupling reagent, HBTU and 

PyBOP appeared fairly similar, and EDCI and DIC were the worst. HATU is often reported 

to give better yields than the closely related HBTU. However, the results in this case were 

surprising. In the first solid phase experiment (section 3.2) a negative Kaiser test 

suggested that the coupling of 11 with HBTU, admittedly to a different amino acid, was 
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complete after 2 hours. Therefore, it was not expected that the performance of HBTU 

could be bettered. There are a number of possible explanations for the improved coupling 

observed with HATU. 

It may be that coupling of 11 to lysine is less efficient than to alanine, and therefore HATU 

was able to perform better. Another possibility is that Kaiser testing after coupling of 11 is 

unreliable, and gives a false negative result. This could have occurred for example, if 

hydrophobic or aromatic stacking interactions between different Fmoc-protected 

duocarmycin residues, precluded entry of the ninhydrin to the inner core of the matrix, 

where the amine of the unreacted resin bound amino acid would be situated. A third 

possibility is that despite premixing before addition to the resin, HBTU reacts slower than 

HATU to form the activated ester, and therefore was able to undergo some completing 

guanylation of the amine. This would also produce a negative Kasier test but leave room 

for HATU to perform better. However, the last two explanations seem unlikely, as if the 

Kaiser test in the first experiment was a false negative, we would have expected to see at 

least the deletion product arising from cleavage of the uncoupled or guanylated alanine, 

which was not observed.   

Nevertheless, the screen clearly suggests HATU to be superior for couplings of 11. HATU 

is a very closely related uronium salt to HBTU. In fact, it differs by only one atom; a 

pyridine ring in place of a benzene ring (figure 3.8). The increased coupling efficiency 

 

Figure 3.7 Bar chart comparing the HPLC product peak area between different coupling 
conditions (see text). HPLC conditions: 10 µL injection. Agilent Eclipse XDB-C18 column, 4.8 x 

150 mm, 5 µm. Solvent A: [Water and 0.05 % TFA], Solvent B: [MeOH and 0.05 % TFA]. 
Gradient: 0% [B] to 95 % [B], from 0 min to 15 mins, 95 % [B] to 0 % [B] from 15 to 20 mins. 

Monitored UV 254 nm. Flow rate 1 mL/min. Column temperature 40 
o
C. 
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often reported with HATU is attributed to a neighbouring group effect produced by this 

extra nitrogen atom, which stabilises the transition state of amide bond formation (figure 

3.8).154 Another, and not mutually exclusive explanation, is that the electron-withdrawing 

effect of the nitrogen atom improves the stability of the HOAt moiety as a leaving group, 

increasing reactivity over HOBt esters. 

The structures of PyBop, EDCI, and DIC are shown in figure 3.9.154 PyBOP is 

phosphonium salt, and serves as another means of introducing the HOBt ester, via the 

acyloxyphosphonium intermediate. EDCI, and DIC are both carbodiimides which react 

with carboxylic acids to form their respective O-acylisoureas. In the presence of HOBt as 

in this case, the O-acylisoureas serve as intermediates towards the HOBt ester.  

It is actually illogical to use HOBt as an additive with HATU. This is because it would be 

completing with the HOAt released from HATU, and therefore potentially hinder the 

formation of the desired more reactive HOAt ester. Thus, it is possible that HATU would 

perform even better than the screen has suggested if this additive was not used. Even so 

HATU clearly outperformed the other coupling reagents, and was therefore chosen for 

future work. However HOBt would not be used as an additive in the future.   

 

Figure 3.8 Structure of HBTU and HATU. Neighbouring group effect, during amide coupling of 
HOAt ester. 
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In retrospect, a better way to compare the coupling performance of these reagents, would 

have been to stop the synthesis after coupling of 11. Then the resins could have been 

dried, and the loading of 11, determined by monitoring Fmoc-deprotection, as described in 

section 3.3. However this would have been significantly more time consuming, and the 

simple HPLC test, provided the desired information.   

3.7 On resin benzyl deprotection tests. 
 

Before reattempting the synthesis of the small library using the improved resin and 

coupling agent choice, it was decided to briefly explore whether benzyl deprotection could 

be performed on the solid phase immediately prior to cleavage. This would provide 

compounds for assay without the need for post solid phase reactions.  

The conditions previously used to remove benzyl protection after cleavage would not be 

appropriate, as the heterogeneous catalyst would not be able to access the matrix of the 

swelled resin. Therefore attempts were made to affect benzyl ether cleavage, under 

homogenous conditions, using soluble Pd species, with organosilanes as the hydrogen 

source. Such conditions have been reported for the reductive cleavage of benzyl ethers in 

solution.178   

To test the conditions, the lysine analogue 39 was again resynthesized, using the 

previously described conditions, but on 2-chlorotrityl resin and with HATU as the coupling 

reagent. After acetylation of the indoline nitrogen, the resin was dried. Samples of the 

dried resin were then swelled in anhydrous DCM and degassed with a steam of N2, before 

 

Figure 3.9 Stuctures of PyBOP, EDCI, and DIC. 
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being subjected to different deprotection conditions. As the HPLC retention time of both 

the benzyl protected and the free phenol form of the lysine analogue were known, the 

success of on resin benzyl deprotection could be assessed by HPLC analysis of the 

crudes after release from the solid support.  

In the end only two conditions were tested, and neither was successful. In both cases only 

the benzyl protected product was detected by HPLC after cleavage. The conditions tested 

were as follows: 

- Pd(OAc)2 (30 mol %), Et2SiH (25 equiv.), Et3N (25 equiv), anhydrous DCM, N2, 

overnight. 

- Pd(PPh3)4 (25 mol %), Ph3SiH (25 equiv), anhydrous DCM, N2, overnight.  

This was a far from exhaustive search, and it is possible that a method to affect on resin 

benzyl deprotection could be found if more time was invested. It would be a useful 

addition to the process, but as it is not essential, it was decided to focus efforts on 

analogue generation.  

It is also possible that the structure of 11 could be improved by the replacement of the 

benzyl ether, with an alternative protecting group. For example, the use of the more acid 

liable para-methoxybenzyl ether, would most likely allowed simultaneous deprotection 

during TFA mediated cleavage of the products from the resin. This would of course 

preclude cleavage conditions that utilise ultralow concentrations of TFA. However, 

cleavage with up 47.5 % TFA has been shown to be tolerable, so it is a feasible option. It 

would certainly offer flexibility, allowing cleavage of the protected products in 1 % TFA, or 

the deprotected products at higher concentrations.   

However, the para-methoxybenzyl ether protecting group would not be compatible with 

the current synthesis of the 11. The activating effect of the methoxy group, would likely be 

susceptible to iodination, by NIS. Furthermore, it would probably be cleaved during the 

late stage Boc-deprotection step. Although, it could conceivable be reintroduced after 

Fmoc-protection. In fact, if the group was to be cleaved, and then reintroduced, then 

proceeding iodination of the original para-methoxybenzyl ether might be acceptable.   

It certainly seems that the replacement of the benzyl ether, with a para-methoxybenzyl 

group, would be worth exploring in the future. However, it was not within the scope of 

these studies, as large scale synthesis of 11, had provided a multigram quantity of the 

benzyl-protected building block, and it was deemed efforts were better focused on 

continuing to explore its incorporation in to solid phase synthesises. 
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3.8 Repeat of the solid phase synthesis of the small library of 
amino acid-duocarmycin conjugates. 

 

The library of amino acid-duocarmycin analogues was resynthesized, on 2-chlorotrityl 

resin, using the natural enantiomer of 11, and employing HATU as the coupling reagent. 

The solid phase synthesis of each analogue was conducted on a 0.038 mmol scale, 

starting from commercially available preloaded resins. In addition to the five original 

analogues a sixth β–alanine analogue was also synthesised. Commercially preloaded 2-

chlorotrityl resins are supplied as the free α-amine, thus do not require initial Fmoc-

deprotection. They are supplied in this manner, as 2-chlorotrityl resins loaded with an 

Fmoc-protected amino acid have reduced stability on storage.145 This may be attributable 

to mechanical stress imposed by the proximity of the large aromatic Fmoc group to the 

trityl structure.  

The increased acid sensitivity of the 2-chlorotrityl linker was exploited to further reduce the 

TFA concentration during cleavage. For analogues not requiring tert-butyl side chain 

deprotection, cleavage was affected using 1 % TFA, and 10 % TIPS in DCM, while the 

TFA concentration was increased to between 10 % and 20 % with extended reaction 

times for those that did. Considerable variability in side chain deprotection rates was 

observed. For example, removal of the tert-butyl carbamate of the lysine analogue was 

complete with 2 hours at a TFA concentration of 10 %. However, the more stable tert-butyl 

ether of the serine analogue, required treatment with a TFA concentration of 20 % 

overnight. It is not clear whether a benefit is derived by reducing the TFA concentration 

below 47.5 %, when extended reaction times are required at lower concentrations. It 

maybe that 47.5 % is the optimal compromise between TFA concentration and reaction 

time for such analogues. 

The scavenger composition of the cleavage cocktails was also changed from the original 

optimised conditions, which employed 2.5 % TIPS, and 2.5 % H2O. This change was 

made because it was found that H2O no longer served as an effective scavenger when 

TFA concentration was reduced below 47.5 %. When the lysine analogue was first 

cleaved using 10 % TFA in DCM with 2.5 % TIPS, and 2.5 % H2O, significant formation of 

a side product suspected to have resulted from alkylation of the indole with the tert-butyl 

cation, was observed. Increasing the concentration of TIPS to 10 % effectively 

suppressed the formation of this side product.  It is likely the reduction in the effectiveness 

of H2O as a scavenger results from its reduced miscibility with the larger volumes of DCM 

now being used. Interestingly, if 10 % H2O was also included in the cleavage cocktail, this 
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supressed side chain deprotection of the lysine. This might be because the immiscible 

water layer acted as a proton sink, reducing the acidity of the DCM layer. It is likely that 

the concentration of TIPS could be reduced by including other DCM miscible scavengers 

such as EDT. However, this was not explored, due to the noxious nature of this 

compound.  

Following cleavage the crude products were subjected to benzyl deprotection by catalytic 

transfer hydrogenation as previously described. Isolation from the excess ammonium 

formate, was affected by either reverse phase preparative HPLC, or silica gel flash 

chromatography, depending on the polarity of the amino acid side chain. Suitable mobile 

phase conditions could not be found to elute polar analogues on normal phase silica gel. 

In an attempt to mediate against losses during preparative HPLC the crudes were injected 

in a minimal volume of DMSO, and the injection method set to insert an air plug either 

side of the sample. This technique prevents mixing with the mobile phase, until the 

sample has reached the column head.   

All analogues were recovered in a usable quantity, ranging from 3.3 mg to 12 mg, 

representing isolated yields of between 19 % and 81 % (see figure 3.10). The best yields 

were for those analogues purified by flash chromatography (35, 36, 40). This may not 

represent intrinsically better yielding reactions for these analogues, but reflect that 

suboptimal recovery was being experienced with the preparative HPLC instrument.  The 

 

Figure 3.10 Structure, recovery, and yield of the analogues made in this library. 
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desired structures were confirmed by a combination of accurate mass spectrometry, 1H 

NMR and DEPT-edited-HSQC experiment. 

3.9 Assessment of the antiproliferation activity of 35, 36, 37, 38, 
39, and 40. 

 

The antiproliferative activity of the analogues against an HL-60 cell line was assessed 

using a MTS assay.179 MTS is a tetrazolium compound that can be reduced by incubation 

with metabolising cells to give a fluorescent formazan product. This signal can be 

measured, and is proportional to the number of viable cells. The cell permeability of MTS 

is poor, and it is therefore used in conjunction with an intermediary electron acceptor, in 

this case PES. PES is reduced in the cytoplasm by NADH, and in turn reduces MTS in the 

media (scheme 3.10). In non-metabolizing cells, NADH is quickly depleted, and thus MTS 

reduction is inhibited.      

 

Scheme 3.10 Reduction of MTS by viable cells, mediated by PES. 
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In the antiproliferation assay, a fixed starting concentration of cells is incubated with 

different concentrations of the compound under investigation, for a fixed time; in this case 

72 hours. The MTS/PES reagent is then added. After incubation for a further 4 hours, the 

formazan signal is read. Plotting this against the log of compound concentration produces 

a dose response curve, from which an IC50 value can be calculated for the inhibition of 

proliferation, and this serves as an indirect measure of cytotoxcity.    

HL-60 cells are a naturally immortal cell line, originally derived from leukocytes isolated 

from blood donated by a female patient diagnosed with acute myeloid leukemia.180 Being 

derived from blood, HL-60 cells are naturally adapted to allow in vitro culture as single-cell 

suspensions. This allows HL-60 cell cultures to be conveniently passaged by dilution. 

Passaging is essential to maintain the cells in a consistent growth phase, and avoid 

variation between assays that might arise from senescence. When appropriately cultured, 

HL-60 cultures have a doubling time of around 24 hours.181 The HL-60 cell line was 

chosen here for reasons of availability and ease of culturing.  

The resulting IC50 for each analogue is shown in table 3.1, along with that of the 

commercially available cyctotoxic DNA intercalating agent doxorubicin, which was also 

tested as a positive control.    

It was expected, that all of the analogues would have similar activity to previously reported 

truncated duocarmycin analogues. For example the N-acetyl duocarmcyin analogue 41 

(fig 3.11), possessing the C-terminal ester of the natural product, has been reported to 

 

Table 3.1 Mean IC50 values with 95 % confidence intervals returned by the MTS assay. The assay 
was performed in triplicate HL-60 cell line. Detailed protocol can be found in the experimental 

chapter.  
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have low nM activity, with IC50 values of 1 nM and 45 nM, for the natural and unnatural 

enantiomers respectively.182 Admittedly these values are reported in a different cell line 

(murine L1210 cells). However, there is no reported evidence of HL-60 cells possessing 

an inherent resistance to duocamycin analogues.  

It is also true that the low nM IC50 values are reported for the intact spirocyclised alkylation 

subunit. However, it is generally accepted that halide seco forms of the alkylation subunit 

are equipotent to their spirocyclised counterparts, and that spriocyclisation in cells is not 

rate limiting.94  

Therefore, it would appear that addition of a C-terminal amino acid to the N-acetyl 

alkylation subunit results in at least a 1000 fold decrease in cytotoxicity. The results also 

tentatively suggest that the structure of the side chain may not be trivial, and apparent 

variation in activity was observed between the tested analogues, ranging from 30 µM to 

greater than 300 µM. However, with many of the confidence intervals overlapping these 

differences have not been shown to be significant in this study.   

The suspicion at this point was that the large reduction in activity most likely reflected a 

decrease in cell permeability. Common to all the analogues tested is the α-carboxyl group. 

These carboxylic acids will be largely ionized at physiological pH, thus inhibiting passive 

diffusion through the hydrophobic core of the cell membrane.  Differences in cell 

permeability might also explain some of the apparent side chain effects. For example, the 

most potent analogue 36 is that possessing the non-polar aromatic side chain of phenyl 

alanine. This could increase the lipophilicity of this analogue promoting passive diffusion. 

In contrast, two of the least potent analogues 38 and 39, contain additional ionisable 

groups in their side chains; the negativity charged carboxylate of glutamic acid, and the 

positively charged amine of lysine, this could further inhibit passive diffusion.  

However the correlation between hydrophilicity and reduced activity, is not completely 

consistent, as is highlighted by the increased activity of the more polar serine analogue 

 

Figure 3.11 Structure of 41. 
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(37) relative to the alanine analogue (35). Furthermore, the linear β-alanine analogue (40) 

appears to be considerably less active than its branched alanine counterpart. Clearly if the 

observed differences in activity are real, more than one factor would have to be 

contributing. It seems likely that the different sidechains, could have both positive or 

negative effects on DNA binding, as well as cell permeability, and it could be the relative 

combination of these factors which disrupts the trend between hydrophilicity and reduced 

activity.  

As discussed, despite the possible differences in activity observed between the 

analogues, they all exhibited a reduction in cytotoxicity of over a 1000 fold, when 

compared to 41, and this most likely represents decreased cell permeability due to 

ionisation of the common α-carboxyl group. Of course the pKa of this group will not be 

identical for each analogue. However, they are likely to be similar, and thus small 

differences in the precise molar fraction of unionised acid, are unlikely to contribute 

significantly to differences in cell permeability. The pKa of the α-carboxyl group is around 

2, for all natural amino acids.183 This is considerably lower than most carboxylic acids (for 

example acetic acid has a pKa of around 4.75).183 The low pKa values of the α-carboxyl 

group of amino acids is attributable to the presence of the α-amino group. In the case of 

these analogues this group is masked by the amide bond. Therefore, it is likely that the 

pKa of the α-carboxyl group of these analogues is higher than that of the corresponding 

free amino acids. The lysine analogue may be an exception, and is likely to have the 

lowest pKa, considering it is still able to form a zwitterion with the amino group of its side 

chain. This might be contributing to the apparent inactivity of this species in our assay. 

However, assuming a physiological pH of around 7.4, and that the pKa of all the α-

carboxyl groups, are likely to be below 6.15, it seems likely that all the analogues would 

be over 95 % ionized.   

It is conceivable that this negative charge could also have a disruptive effect on minor 

grove binding, considering the potential charge repulsion with the polyanionic backbone of 

DNA. However, as will be seen from later results this appears not to be the case.    
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3.10  Synthesis and antiproliferative activity of controls 42, and 
43. 

 

In order to assess the impact of a C-terminal carboxyl group in isolation from the effects of 

the amino acid residue, it was decided to synthesise control compounds 42, and 43; these 

being the seco N-acetyl alkylation subunit with the natural C-terminal ester, and its 

carboxyl counterpart respectively (scheme 3.11).  

Compounds 42, and 43, were accessed via the same synthetic route used to synthesize 

11, up until the common di-Boc protected intermediate 10. Exhaustive Boc-deprotection 

and acetylation with acetyl chloride gave the benzyl protected precursor to 42. Benzyl 

ether cleavage by catalytic transfer hydrogenation as before, either immediately, or 

following methyl ester hydrolysis afforded 42 and 43 respectively (scheme 3.11). The 

desired structures were confirmed by a combination of accurate mass spectrometry, 1H 

NMR and DEPT-edited-HSQC experiment, and further characterised by 13C NMR. 

Antiproliferative activity of the racemates was assessed by MTS assay as before in the 

HL-60 cell line. While the intact ester 42 returned a mean IC50 of 25 nM (95 % CI: 11-37 

nM, triplicate), in line with its spirocyclized counterpart 41, and over 1000 fold more potent 

 
Scheme 3.11 Synthesis and structure of 42 and 43. 
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than the amino acid analogues, the carboxylic acid  43, showed no activity at all even at 

the highest concentration tested (500 µM). This clearly demonstrated that the presence of 

the ionisable C-terminal carboxyl group was having a detrimental effect on cytotoxicity, 

most likely by inhibiting passive diffusion through the cell membrane.  

Given the complete lack of activity shown by 43, it now seemed surprising that the amino 

acid-duocarmycin conjugates had shown any activity at all. Thus it would appear, in 

comparison to 43, the amino acid structures seemed to be offering some mitigation 

against the negative impact on cellular activity imposed by the free carboxylic acid. As 

discussed previously in relation to the variation in activity observed between the different 

amino acid analogues, it seems unlikely that potential differences in the pKa could account 

for the difference in activity between 43 and the amino acid-duocarmycin conjugates.  

It is possible that passive diffusion of the unionised fraction of the amino acid analogues is 

faster than that of 43 due to the increased hydrocarbon scaffold provided by the amino 

acid. However, it is also intriguing to speculate that perhaps the amino acid analogues are 

able to benefit, at least partially, from active transport processes used by cells to control 

intracellular amino acid homeostasis. It is possible that recognition by such transport 

proteins, may be providing greater cell permeability when compared to 43. This might also 

offer insight into why the β-alanine analogue appeared considerably less active than the 

alanine analogue.  For example, perhaps HL-60 cells do not possess the same capacity 

for the active transport of β-alanine, as they might for alanine. However this is entirely 

speculative, although some amino acid related drugs have been shown to utilise 

transporters whose endogenous function is to mediate the uptake of amino acids. For 

example the phenylalanine derived nitrogen mustard melphalan, has been shown to cross 

cell membranes via recognition of the LAT-1 amino acid transporter.184    

3.11  Synthesis and antiproliferative activity of the first extended 
amino acid-duocarmycin conjugate.  

 

The complete inactivity of 43 in the MTS assay, clearly demonstrated that a C-terminal 

carboxyl group had the potential to abate entirely the cytotoxicity of the duocarmycin 

alkylation subunit. However, the surprising activity of the amino acid-duocarmycin 

conjugates, although still over 1000 fold lower than that of the ester 42, was encouraging. 

Clearly the additional structure of the amino acid scaffold, was providing some mitigation 

against the detrimental effect of the carboxyl group.  As discussed, this may in part be due 

to recognition by amino acid transporters, but could also represent faster passive diffusion 

due to the increased hydrocarbon structure. This appeared evident in the observation that 
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the phenylalanine analogue containing the most hydrophobic sidechain appeared to be 

the most active of the amino acid conjugates. It was therefore intriguing to question how 

much activity would be recovered by replacing N-terminal acetylation, with the coupling of 

an additional hydrophobic group.  

The group chosen was 5-methoxyindole. Coupling of this group via the commercially 

available 5-methoxyindole-2-carboxylic acid, would provide an amino acid-duocarmycin 

conjugate which was more similar in structure to the full natural product, which possesses 

an N-terminal trimethoxyindole unit. Such an analogue would be expected to benefit from 

faster passive diffusion, and increased affinity for the minor groove.  

It was decided to synthesis the 5-methoxyindole equivalent of the zwitterionic lysine 

analogue 39. This had been one of the least potent of the original analogues, and it was 

therefore particularly interesting to see how much activity could be recovered by N-

terminal extension. Furthermore, it was still anticipated that if cell permeability was 

improved by the additional indole subunit, that the cationic side chain of lysine might 

provide further favourable electrostatic interactions with the polyanionic backbone of DNA.  

As such, the solid phase methodology was employed to synthesize the extended amino 

acid-duocarmycin conjugate 44 (Scheme 3.12). As before, the synthesis was conducted 

on a 0.038 mmol scale, beginning from a commercially preloaded lysine 2-chlorotrityl 

resin. Synthesis proceeded as already described, with the replacement of acetylation of 

the indoline nitrogen with the coupling of 5-methoxyindole-2-carboxylic acid, using HATU. 

Cleavage was affected using 10 % TFA, 10 % TIPS, in DCM for 2 hours, to give one 

product.   

Benzyl deprotection was affected as previously described by catalytic transfer 

hydrogenation. However, it is noteworthy to highlight that this was not as straightforward 

as with previous analogues. During initial attempts it was found that the extended lysine 

analogue was unexpectedly susceptible to completing dehalogenation. The particular 

susceptibility of the lysine extended analogue to this side reaction is not known. It was 

observed that benzyl deprotection was much slower than with previous analogues, and 

the later treatment with additional equivalents of Pd/C and ammonium formate to drive the 

reaction to completion, promoted the initiation of the side reaction. Furthermore, 

performing the reaction with lower quantities of both the catalyst and hydrogen donor 

resulted in no reaction. It was questioned whether the amine side chain could be 

poisoning the catalyst, or promoting dehalogenation. However, attempts to perform benzyl 

deprotection prior to removal of Boc-protection of the sidechain made no improvement. 

This was achieved by cleavage of the Boc-protected product, using 1 % TFA. In the end 
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limiting the reaction time, and separating the desired product from unreacted starting 

material by reverse phase HPLC, gave the best recovery (4.4 mg, 20 % yield). The 

desired structure was confirmed by a combination of accurate mass spectrometry, 1H 

NMR and DEPT-edited-HSQC experiment. 

Antiproliferative activity was assessed by MTS assay as before in the HL-60 cell line, 

returning a mean IC50 value of 374 nM (95 % CI: 200-701 nM, triplicate). Therefore, 

addition of the methoxyindole subunit had increased the potency of the extended lysine 

analogue 44 by over 1000 fold, compared to the truncated counterpart 39, the IC50 of 

which was estimated to fall between 300 μM and 500 µM, but could not be calculated due 

to lack of activity at the available concentrations returning an incomplete dose response 

curve. 

Clearly the methoxyindole unit was very effective at limiting the detrimental impact of the 

zwitterionic C-terminal lysine residue. This is consistent with expected faster passive 

diffusion of unionised fractions promoted by the increased hydrophobic structure. 

However, improved activity is also likely to have resulted from more efficient DNA 

alkylation. This being a result of both improved non-covalent affinity for the minor groove, 

 

Scheme 3.12 Synthesis of the extended lysine analogue 44. 
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and more effective activation of the cyclopropane caused by the increased ridged length 

of the compound (see chapter one).  

Despite the dramatic improvement, 44, was still over 14 times less active than the 

truncated alkylation subunit possessing the C-terminal ester, 42. Furthermore, it was over 

1000 fold least active then the full natural product, to which it bears closer structural 

homology, with duocarmycin SA reportedly returning IC50 values of as low as 0.006 nM 

(murine L1210).185 

It was therefore clear that the C-terminal amino acid was still having a detrimental effect 

on cytotoxicity. This may still be through limited cell permeability, but might also be the 

result of disruption to minor groove binding, or perhaps more likely a combination of both 

factors.  

3.12  Cell free DNA alkylation Assay. 
 

The comparably low activity of these analogues in the MTS assay seemed most likely to 

be the result of poor cell permeability. However, it was also possible that the C-terminal 

carboxyl group or the amino acid structure itself could have a detrimental impact on DNA 

alkylation by disrupting minor grove recognition.  It was therefore apparent that it would be 

desirable to ascertain if these compounds could indeed alkylate DNA as expected.  

DNA footprinting techniques were deemed most useful to this end, as they would give 

information not just on the ability of these compounds to alkylate DNA, but also highlight 

any sequence selectivity they may exhibit.186 This work was carried out by Prof. Keith R 

Fox from the University of Southampton, an expert in the sequence specific recognition of 

DNA by small molecules.  

This assay takes advantage of the destabilising effect of DNA alkylation,187 which results 

in a strand break upon thermal treatment at the site of covalent attachment of the 

alkylating agent. The mechanism of strand cleavage is outlined in scheme 3.13. Briefly, 

alkylation of the nucleobase results in a positively charged adduct. This species 

destabilises the glycosidic bond between the deoxyribose sugar and the alkylated base. 

Thermal treatment accelerates spontaneous cleavage of this bond producing an abasic 

site in the DNA backbone. The resulting oxocarbenium ion reacts with water to give the 

cyclic acetal. This species exist in equilibrium with the ring opened aldehyde. The acidic 

hydrogen vicinal to the carbonyl can be abstracted initiating strand cleavage through the 

β-elimination of the phosphate group at the 3’ end of the abasic site.   
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In the thermal cleavage assay, the compounds under investigation are incubated with 

singly end-labelled DNA. In this case the 3’ end is radiolabeled with 32P. Following 

incubation the DNA is isolated and thermally treated to induce strand breaks at the site of 

alkylation. Separation of the DNA fragments based on their relative sized is achieved by 

denaturing polyacrylamide gel electrophoresis. The gel is then dried and the bands 

visualised using a phosphorimaging screen, which detects the radioactive signal. As the 

sequence of DNA is known, the relative position of the bands against a Maxam and 

Gilbert control ladder, allows identification of the sites of alkylation.      

The analogues were tested in the thermal cleavage assay using the MS1 DNA 

fragment.188 This is a sequence designed by the Fox group as a general tool for studying 

the sequence selectivity of minor groove binders, and contains all 136 possible 

tetranucleotide sequences. The exact sequence of the MS1 fragment can be seen later in 

figure 3.17.  

Figure 3.12 shows the DNA cleavage by the N-acetyl analogues. The compounds were 

incubated with 1.5 μL (10 nM) of the radiolabelled MS1 fragment at concentrations of 50 

μM and 5 µM, overnight at 37 OC, in 10 mM Tris-HCl (pH 7.5), containing 10 mM NaCl.  

 

Scheme 3.13 Thermal cleavage at the site of DNA alkylation. 
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Figure 3.12 DNA cleavage by the N-acetyl analogues at incubation concentrations of 50 μM and 
5 μM. Lane GA = G+A Maxam and Gilbert ladder. Lane Control = negative control (non-cleaved 

DNA). 
 

Sample Key: 
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The gel clearly shows that all of the analogues alkylate DNA under these conditions.  

There is no apparent difference in sequence selectivity exhibited between the truncated 

analogues. All appear to alkylate only A as expected, and show a preference only for 

either a 5’ T or A neighbouring the alkylation site. This is consistent with previously 

reported truncated duocarmycin analogues.189  

The apparent requirement for a neighbouring 5’ A or T base has been attributed to 

offering greater access to the alkylation site due to allowing deeper penetration of the 

minor groove. The additional amine of a flanking G base projects into the minor groove 

and thus sterically precludes sufficient minor groove penetration, reducing access to the 

alkylation site. In addition the narrower minor groove width of AT rich sequences has also 

been suggested to lead to improved non-covalent binding through stronger van der Waals 

interactions. Stronger non-covalent binding is advantageous due to the reversible nature 

of the alkylation event.  

As all of the N-acetyl analogues including the ester and acid control compounds, 42 and 

43, exhibit essentially identical preference for alkylation sites, it would appear that C-

terminal amino acid functionality has no effect on the sequence selectivity of the alkylation 

event. However it would seem that with the exception of the serine analogue, the C-

terminal amino acid group, does appear to have a negative impact on the efficiency of 

DNA alkylation. This is evident in the differences in the amount of uncleaved DNA 

remaining at the top of each lane after electrophoresis. It is clear from visual inspection of 

the gel, that with the exception of the serine analogue, all analogues containing C-terminal 

amino acid functionality have considerable more uncleaved DNA remaining relative to the 

ester control 42.  

It would be possible to accurately quantify the differences in the remaining uncleaved 

DNA by measuring the intensity of the radioactive signal. Unfortunately, this was not 

possible as the observation was made after the results were returned by the Fox group, 

and this processing could not be performed in house. However, for illustrative purposes, a 

crude quantitation has been attempted. For this, the image of the gel was expanded, and 

boxes drawn around the bands of uncleaved DNA remaining in each 50 μM lane. The 

height of each box was then compared to that of the uncleaved control lane giving an 

estimation of the percentage of DNA cleaved by each analogue. The results are 

presented as a bar chart in figure 3.13. 
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The results of this analysis suggest some interesting differences in alkylation efficiency. 

However, to confirm these differences as real, it would be necessary to conduct several 

replicates, and ideally to perform more rigorous kinetic based alkylation assays. 

Nevertheless, the observed differences will be discussed.   

As the cleavage induced by the carboxylic acid control 43, appears to match that of the 

ester 42, the detrimental impact of the amino acids is unlikely to be a consequence of the 

negatively charged carboxylic acid group. Thus the feared potential electrostatic repulsion 

with the polyanionic backbone of DNA appears not to be the dominant problem. 

Therefore, the amino acid structures themselves might be inhibiting the alkylation event.  

As discussed, the nature of the side chain may have the potential to mitigate the negative 

effect of the C-terminal amino acid on DNA alkylation. This is most apparent in the serine 

analogue 37, which appears to be the only amino acid analogue to have cleaved the 

same percentage of DNA as the ester control 42. The serine analogue was also one of the 

best performing of the amino acid analogues in the MTS assay, breaking the observed 

trend between hydrophobicity and cellular activity, returning a lower IC50 than the alanine 

 

Figure 3.13 Bar chart of the percentage of DNA cleaved relative to the control lane at 50 μM 
compound incubation concentration. Estimation of uncleaved DNA band height achieved using the 

box method (see below image). Boxes were drawn using Microsoft PowerPoint, and heights 
measured using the ‘autoshape’ size function. 
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analogue. It is possible that the hydroxyl group is offering an advantage towards DNA 

alkylation. This will be discussed in more detail later.  

The results indicate that the remaining N-acetyl amino acid-duocarmycin conjugates all 

alkylate DNA with reduced efficiency compared to the ester and acid controls, 42, and 43. 

This might be the result of effects on non-covalent minor groove binding. The detrimental 

impact could result from a number of potential effects, and would likely be the result of a 

combination of contributing factors.  

The most simple explanation may be that the amino acid structure disrupts the planar 

nature of the compounds and this reduces minor groove binding affinity. In such cases the 

potential reversal of the alkylation event may be more noticeable, thus reducing 

statistically the quantity of available compound alkylated to the DNA at any one point in 

time. It is also possible that dissociation from the hydrophobic environment of the minor 

groove to the more polar solvent environment may be further favoured by the increased 

hydrophilic nature of the compounds, particularly for the lysine and glutamic acid 

analogues which contain a second charge on their side chains. This would seem 

consistent with a recent report by Boger et al. that describes a series of increasingly water 

soluble duocarmycin SA derivatives. These analogues contained varying degrees of PEG 

substitution at the methoxy groups of the trimethoxyindole subunit. A convincing linear 

relationship between hydrophilicity and reduced DNA alkylation efficiency was 

demonstrated.190        

The C-terminal amino acid structures may also impose steric demands which might 

decrease alkylation efficiency. It has been reported that a simple truncated Boc derivative 

of the alkylation subunit of CC-1065 (N-Boc-CPI) shows reduced DNA alkylation efficiency 

when compared to that of duocarmycin (N-Boc-DSA). This has been attributed to a steric 

effect of the extra indole methyl group of the CPI subunit (see figure 3.14).189 It is possible 

that the amino acid structures sterically inhibit the depth of minor grove penetration, or 

perhaps in some cases, can shield the alkylation event itself.  

 

Figure 3.14 Structure of N-Boc-DSA, and N-Boc-CPI. 
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There would certainly appear to be a tentative relationship between increased side chain 

size and reduced alkylation activity. This is apparent in the observation that the alanine 

analogue appears to alkylate DNA more efficiently then the phenylalanine analogue, 

which in turn is better than the lysine and glutamic acid analogues. However the serine 

and β-alanine analogues both break this trend. The serine analogue has a larger side 

chain than alanine, but is as good as the ester control 42 at alkylating DNA. Again this 

could be the result of a positive effect specific to the presence of the hydroxyl group, and 

as mentioned previously, this will be discussed later. The β-alanine analogue has no side 

chain and yet performs as badly as the lysine and glutamic acid analogues. This is 

consistent with its apparent reduced activity in the MTS assay when compared to the 

alanine analogue. Clearly the size of the side chain could not be the only factor.  

The apparent reduced alkylation efficiency of the β-alanine analogue compared to the 

alanine analogue may be a consequence of the greater flexibility of the linear structure of 

β-alanine, compared to the branched structure of alanine. For example this increased 

flexibility may incur a greater entropic cost to binding to the minor groove. This would also 

be true for the flexible side chains of the lysine and glutamic acid analogues. The greater 

entropic cost might be in part countered by the entropically favourable displacement of 

ordered water molecules known to be associated with the minor groove.191, 192 However, 

given the comparable size of the β-alanine and alanine analogues, the increased entropic 

penalty could be significant.  

 

Figure 3.15 Schematic representation of a potential reason for the observed reduced alkylation 
efficiency between the alanine and β-alanine analogues. 
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Another potential negative consequence of the greater flexibility of the β-alanine structure 

can also be envisioned. In order to produce the greatest distance between the negatively 

charged C-terminal carboxyl group and the polyanionic phosphodiester backbone of DNA, 

the linear aliphatic chain of β-alanine, may bend to position the carboxyl group towards 

the inside floor of the minor groove. As a result this may produce a greater steric 

constraint on minor groove penetration of the alkylation subunit, than is produced by the 

branched less flexible structure of alanine (see figure 3.15). In such a configuration the β-

alanine analogue appears to share more spatial homology with the glutamic acid 

analogue than the alanine analogue, and this is consistent with the observed alkylation 

activities.    

As discussed, it is clear that the presence of the C-terminal amino acid structures are not 

altering the sequence selectivity of the alkylation event. However, it is possible that other 

non-covalent binding positions might be favoured thus reducing alkylation efficiency. For 

example, it was originally expected that the lysine analogue would be one of the best 

performing analogues, as it was hoped that the positively charged side chain might 

increase non-covalent binding affinity, by forming a favourable electrostatic interaction 

with the polyanionic phosphodiester backbone. This does not appear to be the case, and 

suggests that when the alkylation event occurs, the side chain of lysine may not be 

projecting out of the minor groove to associate with the phosphodiester backbone, but 

may lay across the floor of the minor groove, or be positioned towards the interior of the 

minor groove. Therefore it is possible that the lysine analogue prefers to bind with its side 

chain projecting out of the minor groove, but that in this binding orientation, the 

cyclopropane is no longer in a favourable position to alkylate the N3 of adenine. Similar 

such alternative binding orientations may exist for the other analogues. 

It is most likely that the true reason for the reduced alkylation efficiency of the truncated 

amino acid-ducarmycin analogues (if real) is a complicated combination of different 

interplaying factors, which might include some of the ideas discussed above. The reduced 

activity also seen in the MTS assay, is likely a further more complicated interplay between 

the factors contributing to reduced DNA alkylation efficiency, coupled with factors 

contributing to reduced cell permeability.  

The lysine extended analogue 44 containing the N-terminal methoxyindole subunit was 

also tested in the thermal cleavage assay. Consistent with the results of the MTS assay, 

the extended structure performed considerable better than the truncated N-acetyl 

analogues. Figure 3.16a, shows the DNA cleavage gel of 44, over a 100 fold 

concentration range (1 µM to 0.01 μM). Run in comparison on the same gel were the N-
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acetyl C-terminal ester and acid compounds 42, and 43, at the previous 5 μM and 50 µM 

concentrations.  

The first observation is the far superior DNA alkylation efficiency. Alkylation was 

observable down to at least the 0.01 μM concentration. The increased alkylation activity 

was further highlighted by altering the incubation temperature. The gel in figure 3.16a, 

shows cleavage after incubation at 37 oC as before. However, figure 3.16b, shows the 

cleavage gel of all the compounds when incubated at a concentration of 10 µM at only 25 

oC. Under these conditions, only the extended analogue 44, shows any observable 

alkylation bands.  

These results are entirely consistent with the reduced reactivity in thermal cleavage 

assays of truncated duocarmycin analogues such as N-Boc-DSA compared to the full 

natural product, which has be shown to alkylate DNA at lower incubation temperatures.189 

The trimethoxyindole subunit of the natural product, and the methoxyindole subunit of 44 

likely improve DNA alkylation in the same manner. This is generally accepted to occur via 

two processes. Firstly, the methoxyindole subunit improves hydrophobic non-covalent 

minor groove binding affinity. Secondly, the increased linear length induces greater in situ 

activation of the cyclopropane, as described in chapter one.  

It is likely that the improved activity of 44 compared with its truncated counterpart 39 in the 

MTS assay, is the result of both improved DNA alkylation efficiency, and superior cell 

permeability; both as a consequence of the methoxyindole subunit. However, as 44 

clearly out performs the truncated C-terminal ester compound 42 in the thermal cleavage 

assay, but returned a higher IC50 in the MTS assay, this compound is likely to still suffer 

from some reduction in cellular uptake, when compared to the C-terminal ester.     

In addition to the improved alkylation activity, 44 also displays greater discrimination in 

alkylation sites when compared to the truncated compounds. This change in sequence 

selectivity is again consistent with what would be expected from the extended structure 

which is more similar to the full natural product.189 The sequence selectivity of alkylation 

was quantified by measuring the intensity of the radioactive signal of each band. The 

results have been plotted as a proportion of the total cleaved DNA, against the sequence 

of the MS1 fragment in figure 3.17. Filled bars corresponded to cleavage by 44, and open 

bars to that of 42. 
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Figure 3.16 (a) DNA thermal cleavage gel of 44, 42, and 43 at various concentrations (μM). 
Incubation at 37 

o
C. (b) DNA thermal cleavage gel of all the analogues at 10 µM. Incubation 

temperature 25 
o
C. 
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As discussed, while 42 demonstrates little selection other than the requirement for a 5’ A 

or T base neighbouring the alkylated A, 44 exhibits a clear preference for two sites within 

the MS1 sequence; one corresponding to 40 % of the total alkylation and the other to 26 

%. The remaining 36 % of the total alkylation observed is spread relatively equally over six 

additional minor sites, but does range from 1 % to 13 %.  

With the exception of the anomalous 1 % binding site, there would appear to be an 

absolute requirement for at least two 5’ A or T bases neighbouring the alkylated A. There 

is also a clear preference for longer AT rich sequences. The most favoured alkylation site 

(40 %) represents the longest AT rich run, comprising of four flanking 5’ A or T bases (5’-

AATTA). In addition the second most favoured alkylation site (26 %) contains three 5’ A or 

T bases (5’-AATA). It would also appear that a flanking 5’ T base is favoured over A. This 

is apparent in the observation that in only two out of the eight sites alkylated by 44, did the 

first neighbouring 5’ base constitute an A. Furthermore, in the 13 % alkylation site, 44 has 

alkylated the A neighbouring the T base, when a longer 5’ AT rich sequence could have 

been achieved by alkylating the furthest 3’ A of the tetranucleotide AT rich sequence   (5’-

TTAA). Additionally, the only alkylation site not to contain more than one 5’ flanking A or T 

bases (the 1% site), happens to consist of a TA step (5’-TA).  

These results are broadly in agreement with the sequence selectivity of duocarmycin SA, 

where in a different DNA fragment the major alkylation site was also found to constitute 5’-

AATTA.189 In line with duocarmycin SA the preference for longer AT rich sequences is 

most likely a consequence of the increased length of 44, compared to the truncated N-

acetyl analogues. Here longer sequences are required to benefit from the increased 

 

Figure 3.17 Intensity of each cleavage band, plotted as a proportion of total cleavage against the 
sequence of the MS1 DNA fragment. Open bars = 42. Filled bars = 44. 
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hydrophobic binding affinity provided by the narrower groove topology of AT rich regions. 

In addition longer G free sequences are required to prevent the steric inhibition of groove 

penetration, by this base’s minor groove occupying amine.  

3.13  Potential explanation for the possible superior activity of the 
serine analogue 37.  

 

The apparent increased activity of the serine analogue 37 (if real) is interesting. It is the 

only truncated amino acid analogue to have exhibited alkylation activity comparable to the 

truncated ester control 42. In addition, it was one of the better performing analogues in the 

MTS assay, returning a lower IC50 than the alanine analogue, despite possessing a more 

polar side chain, thus appearing to break the tentative trend between hydrophilicity and 

reduced activity. These results (if real) would suggest that the presence of the hydroxyl 

group of the serine side-chain may be providing a favourable effect on the efficiency of 

DNA alkylation.  

This observation led to the consideration that the hydroxyl group may be increasing the 

electrophilicity of the cyclopropane by participating in an intramolecular hydrogen bond 

chain between the carbonyl of the cyclohexadienone system, and the C-terminal 

carboxylic acid, as outlined in scheme 3.14. 

If this theory is correct, it would be predicted that the spirocylised form of 37 (45), would 

be more reactive towards solvolysis at neutral pH than the spirocylised form of the alanine 

analogue, 35. The reactivity of these two species could be compared by monitoring the 

solvolysis reaction by UV spectroscopy. In order to conduct this experiment the seco-

compounds would need to be converted into their spirocylised counterparts. 

Unfortunately, preliminary attempts to spirocyclise 37 were unsuccessful. The reaction 

 

Scheme 3.14 Potential hydrogen bonding promoting  the alkylation by spirocylised form of 37, (45). 
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proved difficult to monitor, and the product could not be isolated in sufficient purity to 

confirm its structure.  

To investigate the plausibility of the idea, Density Functional Theory (DFT) calculations 

were employed. In chemistry, DFT is a powerful computational method of studying the 

energies of molecules. In the most basic terms, DFT can be considered as a method for 

producing approximate solutions to the Schrodinger equation for multielectron systems. In 

practical terms, DFT calculations can be run quite simply by chemists using commercially 

available software, and so provides a method to determine possible conformations of 

molecules, and to model reaction pathways.193  

The feasibility for 45 to adopt a conformation consistent with the proposed hydrogen 

bonded structure, was examined by gas-phase DFT calculations employing the B3LYP 

functional194-196 and 6-31G(d) basis set197 implemented by Gaussian09.193 Structure 

optimisation calculations identified five significant conformations of 45 (figure 3.18a-e). All 

were confirmed by frequency calculations to represent true energy minima. Frequency 

calculations can be used to distinguish a true minimum from a transition state. Of the five 

optimised structures, ‘conformation a’ would appear to be consistent with the proposed 

hydrogen bonding. This is apparent from the short interatomic separations between the 

oxygen atom of the carboxylic acid and the serine side-chain oxygen (2.75 Å), and from 

there to the oxygen atom in the cyclohexadienone ring (3.75 Å). In addition, a slight 

lengthening of the C=O bond of the cyclohexadienone was observed when compared to 

an alternative minimum ‘conformation b’, in which hydrogen bonding was not present 

(1.24 Å vs 1.23 Å).  

It is clear that in the gas-phase, ‘conformation a’ is not the global minimum. However the 

energy differences between the identified conformations are small [most stable conformer 

‘conformation b’ is only 6.1 kcal mol-1 (25.5 kJ mol-1) more stable], and this would suggest 

that ‘conformation a’ is realistically accessible. Furthermore, it is possible that in the 

environment of the minor groove, the order of the relative energies might change, and this 

could be in favour of ‘conformation a’.  

Having identified ‘conformation a’, it was decided to study the solvolytic opening of the 

cyclopropane using methanol as a model nucleophile. A transition state (see figure 3.19) 

consistent with ring opening was identified, and confirmed by a frequency calculation that 

indicated one imaginary (i.e. negative) vibrational frequency. Once a transition state has 

been identified, calculations termed the IRC (intrinsic reaction coordinate), and reverse 

IRC can be used to determine the reaction pathway. The reaction pathway shown in figure 

3.19 has a calculated activation energy of 53.9 kcal mol-1 (225.6 kJ mol-1), determined 
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from the energy difference between the transition state and the sum of the energies of the 

individually optimised reactants (45 in ‘conformation a’, and methanol). The methanol 

adduct at the end of the calculated reaction path initially seemed only slightly lower in 

energy (1.4 kcal mol-1, 5.8 kJ mol-1) than the transition state itself, but a further 

optimisation of the structure gave a new conformer (see figure 3.19) that was 7.3 kcal 

mole-1 (30.7 kJ mol-1)  more stable than the transition state. Finally, loss of the proton from 

the MeO(H)+CH2- section of the structure ultimately forms a carboxylate which was also 

confirmed by a DFT calculation and is also illustrated in figure 3.19. Interestingly, the 

hydrogen bonding involving the serine OH is retained in this final structure, together with 

additional hydrogen bonding to the indole NH. 

These results suggest that it is possible for 45 to adopt a conformation that allows 

hydrogen bonding between the hydroxyl and the cyclohexadienone. A reaction pathway 

for ring opening of the cyclopropane consistent with activation by the hydroxyl group has 

been identified, and offers support to the plausibility of this theory. It would be interesting 

to compare the activation energy of an alternative pathway calculated from a transition 

sate which does not involve the hydrogen bonding conformation of 45. However, so far 

IRC calculations have not been successful for transition states of different conformations 

preventing this comparison. This does not mean they do not exist but that the correct 

transition state for an alternative pathway has not yet been identified.   
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Figure 3.18 Conformers of 45 from structure optimisation calculations. (a) Conformation 
consistent with proposed hydrogen bonding. (b) Confirmation 6.1 kcal mol

-1
  (25.5 kJ mol

-1
) more 

stable than conformation a. (c) Confirmation 2.8 kcal mol
-1

  (11.7 kJ mol
-1

) more stable than 
conformation a. (d) Confirmation 1.9 kcal mol

-1
  (8.0 kJ mol

-1
) more stable than conformation a. 

(e) Confirmation 0.8 kcal mol
-1

  (3.2 kJ mol
-1

) more stable than conformation a.   
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Figure 3.19 Calculated reaction pathway for methanolysis and key structures. 
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3.14 Synthesis and antiproliferative activity of the serine and 
alanine extended amino acid-duocarmycin conjugates.   

 

Given the interesting suspected increased activity of the truncated serine analogue when 

compared to the truncated alanine analogue, the decision was made to use the solid 

phase methodology to synthesise the extended methoxyindole counterparts of these two 

compounds, 46 and 47 (figure 3.20). The synthesis of each analogue proceeded as 

previously described on a 0.038 mM scale. No issues were experienced during benzyl 

deprotection, which had been troublesome during the synthesis of the extended lysine 

analogue. The desired structures, 46 and 47 were confirmed by a combination of accurate 

mass spectrometry, 1H NMR and DEPT-edited-HSQC experiment. 

Antiproliferative activity was assessed by MTS assay as before in the HL-60 cell line, 

returning a mean IC50 value of 38 nM (95 % CI: 23-62 nM, triplicate), and 153 nM (95 % 

CI: 75-312 nM, triplicate), for 46 and 47 respectively. Consistent with the results from the 

lysine extended analogue 44, inclusion of the methoxyindole unit increased the 

antiproliferative activity of both 46, and 47 by over 1000 fold when compared to their 

respective truncated counterparts. Interestingly, in their extended forms the serine 

analogue no longer exhibits superior activity to the alanine analogue, and in this instance 

the confidence intervals suggest the result may be significant.  However, this is not 

inconsistent with the theory put forward in section 3.12 to explain the apparent increased 

activity of the truncated serine analogue (although the confidence intervals overlapped in 

this case). Inclusion of the methoxyindole unit means activation of the cyclopropane can 

now be expected to be controlled by more efficient disruption of the stabilising vinylogous 

amide upon binding to the minor groove (see chapter one). Thus, any activating potential 

 

Figure 3.20 Structure of the extended alanine and serine analogues, 46, and 47. 
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of the hydroxyl group of the serine side-chain may be inconsequential. In fact, it could 

even be detrimental, by increasing the reactivity of the cyclopropane to solvolytic opening, 

or reaction with other biological nucleophiles before reaching its DNA target.  

With the theorised advantage of the serine side-chain abated by the presence of the 

methoxyindole unit, a more consistent trend between both increased hydrophilicity and 

side-chain length and reduced activity is now observed for the extended analogues (lysine 

extended analogue 44 374 nM [95 % CI: 200-701 nM, triplicate], serine extended 

analogue 47 153 nM [95 % CI: 75-312 nM, triplicate], alanine extended analogue 46 38 

nM [95 % CI: 23-62 nM, triplicate]).  Although, the difference between the lysine and 

serine extended analogues may not be significant.  

Although the possible increased activity of the truncated serine analogue is interesting, it 

may be of limited practical value, as it does not appear to produce a synergistic effect with 

the methoxyindole unit, on activation. 

3.15  Masking of the C-terminal carboxylic acid.   
 

As discussed, although inclusion of the methoxyindole unit dramatically improved 

antiproliferative activity, and showed that low nM activity was achievable with a C-terminal 

amino acid, this is still over 1000 fold less active than duocarmycin SA. Given the 

complete lack of activity of 43, this was still suspected to be a consequence of a negative 

effect on cell permeability, imposed by the carboxylic acid. In an attempt to confirm this, 

two additional versions of the alanine extended analogue were synthesised varying the 

nature of the C-terminal end (figure 3.21). 

48 contained a neutral end. This was achieved by conducting the synthesis on Rink amide 

MHBA resin, which affords a terminal amide after cleavage. In 49, the carboxylic acid was 

masked by a group which would be positively charged at physiological pH. This was 

achieved by activating the cleaved carboxylate with HATU and DIPEA, followed by 

treatment with an excess of 3-(dimethylamino)-1-propylamine. The desired structures 

were confirmed by a combination of accurate mass spectrometry, 1H NMR and DEPT-

edited-HSQC experiment. 
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Antiproliferative activity was assessed by MTS assay as before in the HL-60 cell line. 

Inclusion of the dimethylamine tail appeared to be detrimental, producing roughly a 

twofold drop in activity over the free carboxylic acid (49 mean IC50 64 nM [95 % CI: 36-117 

nM, triplicate] ), although confidence intervals overlap so this may not be a significant 

difference. This compound is of course still charged, which is likely to inhibit cellular 

uptake. However, it was expected that the positive charge of the amine would be more 

beneficial than the negative charge of the carboxylic acid. It is possible, as suggested for 

the lysine analogue, that electrostatic attraction to the polyanionic backbone of DNA, may 

promote non-covalent minor groove binding in an orientation which does not place the 

cyclopropane in the most favourable position for alkylation.  

The neutral amide analogue 48 showed only a marginal improvement in IC50 (mean 28 nM 

[95 % CI: 12-68 nM, triplicate]) compared to the free carboxylic acid 46. However again 

the confidence intervals overlap suggesting the difference may not be significant. Indeed, 

this compound was expected to have low pM activity comparable to the natural product; 

yet the observed activity is only comparable to that of the truncated ester control 42. It 

would therefore appear that for the extended analogues at least, it is not the C-terminal 

carboxylic acid which is producing the largest detrimental effect on antiproliferative 

activity. The thermal cleavage assays of the truncated analogues, provided tentative 

evidence suggesting that the amino acid structures might have the potential to reduce the 

efficiency of DNA alkylation. However, given that the extended lysine analogue 44 was 

more efficient than the truncated ester control 42 at alkylating DNA, it seems that the 

 

Figure 3.21 Structure of 48 and 49. 
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reduced antiproliferative activity of the neutral amide extended analogue 48, is likely to still 

be a product of reduced cellular uptake. Although, it is not obvious what properties of the 

neutral non-polar C-terminal structure of 48 could be affecting cell permeability. It might be 

simply the increased size when compared to the truncated ester analogue 42. Thus the 

improved uptake of 42 promoted by its reduced size, might allow comparable 

antiproliferative activity with 48, despite it expected reduced alkylation efficiency.  

However, this reasoning is unlikely to explain the reduced antiproliferative activity of 48, 

when compared to the natural products. Duocarmycin SA is only marginally smaller than 

48, and yatakemycin and CC-1065 are considerably larger. It is possible that cell 

permeability of the extended amino acid analogues is actually comparable to the natural 

products, and that the differences in activity here, represent negative impacts on alkylation 

efficiency produced by the amino acid structures. The extended lysine analogue was more 

efficient at alkylating DNA than the truncated ester control 42, but it could still be less 

efficient than the full natural products.  

The above would seem the most likely explanation for the observed results, although it is 

possible to envision other contributing factors. It may be that the presence of the C-

terminal amino acids can affect the distribution of the compounds once inside the cell. For 

example, recognition of the amino acid structures could lead to partial participation in 

amino acid homeostasis pathways, potentially resulting in efflux from the cell, or 

compartmentalisation to organelles other than the nucleus. If such processes took place it 

would reduce amount of the compounds available to alkylate DNA, reducing 

antiproliferative activity. 

Whatever the true reason, it is clear that inclusion of C-terminal amino acids has an 

impact on the antiproliferative activity of the duocarmycin alkylation subunit both in 

truncated and extended forms. However, low nM activity is still possible. The ionisable C-

terminal carboxylic acid, may be a significant negative contributor for truncated analogues, 

but appears not to be significant when considering the reduced activity of extended 

analogues possessing the methoxyindole subunit.  

3.16  Conclusions from chapter three. 
 

It has been demonstrated that 11, serves as a suitable agent, for incorporation of the 

duocarmycin SA alkylation subunit into polyamide structures via Fmoc based solid phase 

synthesis. Large excesses of this reagent are not necessary for short sequences when 

coupling to amino acids, but could be employed if difficulties were experienced for more 
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complicated targets. The results indicate that 11 should be considered as a sensitive 

residue, and complications analogous to those reported for synthesises incorporating 

tryptophan can be experienced. As such, the choice of solid support, and cleavage 

conditions are not trivial. 2-Chlorotrityl resin appears to be superior to Wang resin, and 

also allows greater flexibility in cleavage conditions. Minimising the concentration of TFA 

used to affect cleavage is advantageous, and appropriate scavengers should be included. 

It is possible that 11 could be improved by replacement of the benzyl ether with a para-

methoxybenzyl ether, allowing simultaneous phenol deprotection during cleavage from the 

resin. Boc-protection of the indole nitrogen might also be beneficial, reducing the 

sensitivity of the residue during cleavage.  

It is clear that the presence of a C-terminal amino acid is detrimental to the 

antiproliferative activity of the duocarmycin alkylation subunit, when compared to the 

natural products. This appears to be due to a combination of poor cellular uptake, and 

disruption of minor groove binding affinity. However, low nM activity is possible by 

inclusion of the methoxyindole subunit. The activity of such extended analogues cannot 

be further improved by masking of the carboxylic acid by a terminal amide, or a 

 
 

Table 3.2 Summary table of IC50 valves for all analogues discussed during chapter three.  
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dimethylamine group. The nature of the side-chain may have an effect of activity, with 

short non polar groups appearing to be broadly favoured. Allthough this may not be 

significant in some cases (see confindence intervals table 3.2). In the truncated analogue 

37 the hydroxyl group of the serine side-chain might be beneficial, and this may be due to 

specific activation of the cyclopropane through intramolecular hydrogen bonding. 

However, this has not been proven beyond doubt. Furthermore, although interesting, this 

effect has little practical value, as it does not appear to provide a synergistic benefit with 

addition of the methoxyindole unit. Thus more rigous exploration of this potential effect 

may not be of valve.   

These results would indicate that 11 could be a useful building block for the solid phase 

synthesis of peptide based linkers towards the development of novel antibody drug 

conjugates. Low nM activity could be sufficient; however it may also be possible to 

recover the low pM activity exhibited by the natural products through incorporation of 

multiple alkylation subunits. Furthermore, it could also be argued that if the reduced 

activity of the amino acid duocarmycin conjugates is the result of reduced cell uptake, 

then this could in fact be seen as advantageous for antibody drug conjugates; serving as 

a protective mechanism against off-target cytotoxicity should premature cleavage from the 

antibody prior to internalisation occur. There is clearly some potential for the C-terminal 

amino acid to affect activity. For example, although most of the minor side chain effects 

have not been proven to be significant in this study, there are some tentative trends. 

Furthermore, some of the differences are more striking, (for example the complete 

inactivity of the β-alanine analogue 40 at the tested concentrations). This at least suggests 

that when designing peptide based linkers for novel antibody drug conjugates of 

duocarmycin, the nature of the C-terminal amino acid my not be trivial, and this warrants 

further investigation.     
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4  
Chapter Four 

Initial investigations towards a second application of 11: The 
solid phase synthesis of duocarmycin- distamycin hybrid 

compounds, highlighting the potential for direct incorporation of 
the duocarmycin alkylation subunit into sequence selective 

hairpin polyamides.    
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4.1 Aims. 
 

The work described in this chapter was carried out in order to address the following aims: 

- To begin preliminary investigations to explore the utility of 11 to serve as a ‘building 

block’ for the solid phase incorporation of the duocarmycin alkylation subunit in to 

sequence selective minor grove binding polyamide structures.   

Such compounds could have the potential to target the cytotoxicity of the duocarmycins to 

gene mutations specific to malignant cells.   
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4.2 Introduction to distamycin A and the hairpin polyamides. 
 

The work reported in chapter three, clearly demonstrates that 11 can serve as a building 

block for the direct solid phase synthesis of polyamide structures incorporating the 

alkylation subunit of the duocarmycin SA. This work focused on coupling 11 to natural 

amino acids, with the view to the future development of novel antibody drug conjugates 

through peptide based linkages. Such an approach could improve the therapeutic index of 

the duocarmycins by harnessing the exquisite cellular targeting power of antibodies, 

perhaps removing the necessity for prodrug strategies. Another approach to targeting of 

the duocarmycin alkylation subunit could be to extend its structure in such a way as to 

refine the sequence selectivity of minor groove recognition. For example, if it were 

possible to bind selectively to a gene mutation specific to a malignant cell line, this could 

facilitate the targeting of cytotoxicity.  

One of the most successful synthetic approaches towards sequence selective minor 

groove recognition has been the development of the hairpin polyamides. This advance 

can be traced back to biological evaluation and synthetic exploration of the natural 

products distamycin A198 and netropsin199 (figure 4.1). These natural lexitropsins are 

heterocyclic polyamides, comprising of multiple N-methylpyrrole residues (Py), and bind in 

the minor groove of DNA, favouring AT rich sequences.200 Like the non-covalent binding 

of duocarmycin SA, the narrower groove topology of AT rich sequences is favoured due to 

stronger hydrophobic binding interactions between the planar aromatic structures of the 

lexitropsins and the walls of the minor groove. The crescent shape of these molecules 

also complements the curvature of the helical groove. Furthermore it was shown that the 

NH groups of the polyamide chains form favourable hydrogen bonding interactions with 

the N3 of A and O2 of T, while the amino group of G imposes steric inhibition of this close 

association.201 The complexes are further stabilised by electrostatic interactions between 

 

Figure 4.1 Structure of distamycin A and netropsin. 
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the cationic amidinium and guanidinium tails and the polyanionic phosphate backbone of 

DNA.202 

The observed hydrogen bonding led to the independent proposals by both the Dickerson 

and Lown groups that incorporation of 1-methylimidazole (Im), in place of Py residues 

may permit binding to GC sequences.203, 204 This was based on the rationale that the 

additional imidazole nitrogen would both alleviate the steric clash between the Py and the 

amino group of G, and potentially form a favourable hydrogen bond with it. Indeed this 

was shown to be the case for Im containing analogues of both distamycin A and 

netropsin. Selectivity for GC sequences was greatest for distamycin A analogues, and this 

was attributed to less nonspecific electrostatic affinity, resulting from possessing only a 

single amidinium tail, as opposed to the two cationic tails present in netropsin 

derivatives.204-206 This discovery essential produced a preliminary binary code for 

sequence recognition, with Py selecting for A·T or T·A base pairs, and Im selecting for 

G·C or C·G base pairs.  

Up until this point binding of the lexitropsins had only been observed as a 1:1 complex 

with DNA. However, the report by Wemmer et al. that distamycin A could also bind in the 

minor groove as an antiparallel dimer,207 would prove to mark a turning point in the 

development of sequence recognition via polyamide structures. At the time of this 

discovery, the Dervan group had also been working on Im variants of distamycin related 

analogues. Their novel polyamide 50 containing an ImPyPy chain (figure 4.2) had been 

designed based on a 1:1 binding model to select for the sequence 5’-XZZ-3’ (where X = G 

or C, and Z = A or T). However, this proved not to be the case, and instead 50 was 

observed to bind to the 5 base sequence 5’-ZGZCZ-3’ (Z = A or T).208 Dervan et al. 

suggested that 50 may also be binding as an antiparallel 2:1 dimer analogous to the 

alternative binding model described for distamycin A. As such, the heterocycles of each 

chain could be envisioned to form cofacial pairs, with the polyamide edge of each facing 

towards the floor of the minor groove.  

 

Figure 4.2 Structure of 50. 
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Figure 4.3 (a) Left: Colour coded structure of 51. Py = Green, Hp = Blue, Im = Red. Right: 
schematic representation of minor binding of 51 depicting pairing rules. (b) Crystal structures of 2:1 
complex of 51 and DNA. Left: with ligand surface (red surface upper polyamide, blue surface lower 
polyamide). Right:  Crystal structures of 2:1 complex of 51 and DNA without ligand surface. Image 

generated using ‘Chimera 1.10.1’, coordinates from protein data bank (ID:407d).
211

 

 



178 
 

  

 

Figure 4.4 Expansion of the crystal of 2:1 complex of 51 and DNA, highlighting the physical basis 
of Dervan’s pairing rules. Top: Hp·Py selecting for a T·A base pair. Hydroxyl group sits in cleft and 

hydrogen bonds to O2 of T. Bottom: Im·Py selecting for G·C base pair. Im permitted by G, and 
hydrogen bonds to amine of G. Image generated using ‘Chimera 1.10.1’, coordinates from protein 

data bank (ID:407d)
211

 Hydrogens added by ‘Chimera 1.10.1.  
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In this way, a chain partnership of Im•Py selected for a G•C base pair base, and the 

opposite pairing of Py•Im selected for a C•G base pair, while Py•Py was degenerate 

selecting for both an A•T and T•A base pair. Collaboration with Wemmer et al. would 

confirm this suggestion by solving the NMR structure for a 2:1 dimer of 50 with DNA.209, 210  

The recognition code would later be completed by the design of a third heterocyclic 

residue, N-methyl-3-hydroxypyrrole (Hp).211 Here, Hp•Py partners select for T•A base 

pairs, and Py•Hp partners select for A•T base pairs. The rationale for this specificity was 

both steric and electronic. Here the hydroxyl group of Hp produces a steric constraint to 

binding towards the A side of the T•A base pair, while the cleft on the T side can 

accommodate this group. This selective association is further promoted by a favourable 

hydrogen bond between the hydroxyl group and the O2 of T. The physical basis for 

selectivity would later be confirmed from the crystal structure of an antiparallel 2:1 dimer 

of the novel polyamide 51, which contain the polyamide sequence PyPyHpIm, with the 

oligonucleotide sequence 5’-CCAGTACTGG-3’ (figure 4.3, and figure 4.4).212  

The Dervan group was quick to explore the covalent linkage of antiparallel dimers. 

Several strategies have been employed including bridging the nitrogen atoms of central 

Py resides with aliphatic linkers, the so called H-pin approach,213 and the linking of both 

terminals to produce cyclic compounds.214 However, owning to the ease of synthesis, by 

far the most popular linkage has been the U-pin strategy.215 Here a γ-aminobutyric acid 

 
 

Figure 4.5 Left: Colour coded structure of a Hairpin polyamide version of 51. Right: Schematic 
representation of minor groove binding. 
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residue links the N-terminus of one chain with the C-terminus of the other. This linking 

motif was found to be optimal for promoting the desired turn, and antiparallel binding. 

Such compounds are usually referred to as ‘hairpin polyamides’ (figure 4.5).215   

These hairpin structures typically exhibit improved binding specificity and affinity when 

compared to the equivalent unpaired dimers. Covalent linkage prevents competing off 

target 1:1 binding of unlinked polyamide chains, enforcing the pairing rules. Binding 

affinity is improved despite the loss of one of the cationic tails, and this most likely 

represents the decreased entropic cost of binding.215   

One of the major limitations of the simple hairpins has been the length of sequence it is 

possible to target. The natural arc of the polyamide chains is too curved and thus is not 

completely complementary to the helical turn of the minor groove.  As a result, binding 

affinity and specificity begins to decreases when the polyamide exceeds five heterocyclic 

pairs.216, 217  

Several strategies have been employed to compensate for this. For example the inclusion 

of internal aliphatic β-alanine residues have been used to relax the curvature of the 

polyamide chains, allowing the successful targeting of longer sequences as antiparallel 

dimers.218 Another approach has evolved from the exploration of substitution at the α-

position of the γ-aminobutyric acid turn residue. This led to the development of tandem 

hairpin polyamides linked both turn to tail, and turn to turn.219, 220 Such compounds have 

been designed and shown to recognise up to 10 base pair sequences, with high affinity 

(figure 4.6).220, 221 

 

Figure 4.6 Schematic representation of the tandem hairpin approaches. 
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The steric influence of chiral amino substituents at the α-position of the γ-aminobutyric 

acid turn residue, has also been shown to further promote the desired 5’-3’ binding 

orientation, as well as inhibit competing unfolded minor groove binding.222, 223 

Furthermore, β-alanine/heterocycle pairings have seen success in targeting difficult 

sequences, allowing more flexibility in the orientation of the selecting ring structure.224   

A truly generalisable set of rules for sequence selective minor groove recognition by 

hairpin polyamides is still an active area of research. For example, an alternative T 

selective residue to replace the Hp heterocycle is desirable. Hp has proven to be more 

context dependent than the Im residue, and also less stable. Furthermore, Hp containing 

polyamides often exhibit reduced binding affinity.225 The optimisation of long sequence 

recognition, cell permeability and nuclear uptake are also important challenges. 

However, despite the remaining issues, simple hairpin polyamides have already seen 

success in the sequence selective inhibition of DNA-Protein interactions. Both 

suppression and activation of gene transcription through the rational design of hairpin 

polyamides has been demonstrated. One of the first examples was the competitive 

displacement of the TFIIIA transcription factor, which was shown to suppress related gene 

transcription both in vitro and in cellular assays.226 More recently, a hairpin polyamide 

designed to target the difficult 5’-CGCG-3’ sequence, demonstrated low nM allosteric 

inhibition of a major groove binding methyltransferase in vitro.227    

Combining the sequence selective minor groove recognition of the hairpin polyamides, 

with the alkylation activity of the duocarmycins, is not a novel concept. The core structures 

of both families exhibit planar aromatic ring systems, affording tight hydrophobic 

 

Figure 4.7 Structures of 52 and 53 with schematic representations of the cooperative minor groove 
binding of each with distamycin A. 

 



182 
 

interactions with the walls of the minor groove, and thus position one edge of the 

respective ligands towards the protruding face of the internal base pairs. This homology in 

binding mode was quickly recognised to have the potential to produce interesting hybrid 

compounds.  

In 1996, Sugiyama et al. discovered that duocarmycin A could be induced to alkylate the 

G of GC rich sequences, via the co-incubation of distamycin A. They demonstrated that 

this was the result of cooperative minor groove binding through the formation of a cofacial 

heterodimer.228 In response to this finding, Sugiyama et al. began to explore replacement 

of the indole subunit of duocarmycin A with short polyamide sequences. Conjugates 52, 

and 53, were shown to selectively alkylate DNA in the presence of distamycin A, in a way 

which was consistent with the Im/Py pairing rules. Here, 52 which contained the PyPy 

sequence, preferentially alkylated the 3’ G of a 5’-AGATG-3’ site, while 53, containing the 

ImPy sequence, alkylated the 3’ G of a 5’-AGGTG-3’ site (see figure 4.7).229 

Ultimately, these results would prompt the Sugiyama group to explore the conjugation of 

various duocarmycin related alkylation subunits to the C-terminal tail of hairpin polyamide 

structures through the indoline nitrogen. This has included the selective alkylation of a 

nine base sequence (5’-ACAAATCCA-3’), via the use of an internal β-alanine/β-alanine 

pairing to relax the curvature of the polyamide chains.230 Interestingly, they report 

increased alkylation efficiencies when duocarmycin subunits are spaced from the 

polyamide C-terminals by vinyl, or indole linkers.230, 231 Molecular dynamic simulations 

 

Figure 4.8 Structure of 54 and a schematic representation of binding to the human telomere repeat 
sequence sequence. 
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suggested that in the absence of such a linker, the cyclopropane of these compounds is 

oriented in a suboptimal position between two base pairs. This could reflect the fact, that 

in this approach the duocarmycin subunit is orientated in an unnatural 5’ to 3’ direction. 

More recently, Sugiyama et al. have demonstrated the impressive, and apparent specific 

alkylation of the human telomere repeat sequence through the synthesis of the tandem 

hairpin seco-CBI conjugate 54 (figure 4.8).232  

An alternative approach has been explored by Dervan et al. (figure 4.9). Here, the seco-

CBI alkylation subunit is linked through the turn residue of the hairpin structure by an 

aliphatic linker. Such compounds have been shown to selectivity alkylate A bases 

neighbouring the preferred binding site of the hairpin structure. It was also observed that 

the chirality of the CBI subunit could affect binding preference. For example, conjugate 55, 

containing the R enantiomer of seco-CBI, was shown to bind a matched site containing a 

flanking 5’-TTT-3’ sequence, alkylating the third A of the complementary strand (figure 

4.9). The same compound exhibited no alkylation of a second matched binding site which 

contained a flanking 5’-ATA-3’ sequence. Alkylation of the sense stand of this second 

matched site could be induced by incorporation of the S enantiomer of seco-CBI.233  

Being oligomeric in nature, the hairpin polyamides are ideally suited to construction 

through solid phase synthesis. Indeed exploration of this class of molecule has been 

greatly accelerated by its implementation.  The Dervan group were first to employ solid 

 

Figure 4.9 Structure of 55 and schematic representation of binding. 
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phase synthesis to this effect.234 They have exploited both Boc- and Fmoc-protection 

strategies. In the most common approach, the core polyamide structure is synthesised 

from a solid supported β-alanine residue.235 Cleavage from both Wang and PAM resins is 

affected by aminolysis, allowing simultaneous introduction of the dimethylamine tail. The 

C-terminal β-alanine residue, has been shown to be AT selective. However, the use of 

Kaiser oxime resin to introduce shorter GC selective tails has also been explored.236  

Despite the extensive application of solid phase synthesis to access the core structures of 

hairpin polyamide targets, conjugation of duocarmycin related subunits has to date been 

restricted to post cleavage modifications. In the case of the Sugiyama approach this 

strategy is obligatory due to the requirement to reveal the C-terminal acid before amide 

coupling to the indoline nitrogen of the duocarmycin species can be undertaken. The 

Dervan group also couple CBI via the indoline nitrogen, and achieve this following release 

and isolation of the precursory polyamide structure from the solid support. In this case CBI 

is linked at the turn residue. It is therefore possible to envision an orthogonal protecting 

strategy that would allow this coupling to be implemented prior to cleavage, perhaps via a 

diacid linker. However, this would complicate the methodology, disrupting the operational 

simplicity of sequential N-terminal amide couplings, and thus require reconfiguration of the 

automated synthesis routinely used by this group.  

Given the continued interest and exciting potential of bifunctional hairpin polyamides, our 

new solid phase ‘building block’ 11, would seem ideally placed to provide a substrate for 

the direct and inline solid phase incorporation of the duocarmycin alkylation subunit, 

potentially at any position in the chain sequence. As the alkylation subunit of duocarmycin 

SA is known to be AT selective, it may be possible to replace a PyPy position without 

effecting sequence selectivity of the parent polyamide. However the rigid length of a 

duocarmycin alkylation subunit, is marginally shorter than that of a PyPy sequence. It 

remains to be seen whether this will prove beneficial for mid sequence incorporation by 

relaxing the overall curvature of the chain structures, or deleteriously by negatively 

affecting minor groove recognition.   
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4.3 Synthesis of the Fmoc-protected pyrrole amino acid 
monomer 56 and unsubstituted pyrrole acid 57. 

 

In order to conduct preliminary investigations towards the direct solid phase incorporation 

of 11 into hairpin polyamide sequences, access to the desired Fmoc-protected pyrrole 

amino acid 56 and unsubstituted pyrrole acid 57 was required (figure 4.10). 

Both building blocks were obtained through synthesis from commercially available N-

methylpyrrole as previously described by Dervan et al. (scheme 4.1).235 Minor changes 

from the published procedures were implemented when necessary, which will be 

highlighted in the following discussion.  

Synthesis of 56 began by the direct acylation of N-methylpyrrole with trichloroacetyl 

chloride affording the acyl substituted pyrrole 59. Subsequent nitration with fuming HNO3 

and catalytic H2SO4 in Ac2O provided the nitro pyrrole 60. Conversion of the trichloroacetyl 

substituent to a t-butyl ester was achieved by treatment with NaOtBu in refluxing t-BuOH. 

Interestingly, initial attempts to substitute KOtBu for NaOtBu, due to reagent availability, 

resulted in no reaction. The apparent necessity for the Na+ counterion over K+ is 

surprising. This presumably represents a steric effect resulting from the increased atomic 

radius of K+.  

In the published procedure, subsequent nitro group reduction is achieved by treatment 

with Pd/C in DMF under a 500 psi positive pressure of hydrogen. This is followed by 

removal of the catalyst by filtration and immediate protection of the amine by addition of 

Fmoc-Cl and DIPEA. Attempts to repeat this step using a balloon of hydrogen proved 

unsuccessful. The reduction was slow and could not be driven to completion. Treatment of 

the partially reduced 61 did not yield the desired product. It was suspected that the 

prolonged reaction times (days) resulted in degradation of the amine. 

 

Figure 4.10 Structure of 56 and 57. 
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As a result ammonium formate was utilised as an alternative hydrogen source. The 

reduction was conducted in THF, and driven to completion within 4 hours by repeated 

addition of Pd/C as a slurry in aqueous ammonium formate every 30 mins. On 

consumption of the starting material as monitored by TLC, the reaction mixture was 

filtered through a pad of diatomaceous earth, directly into a stirring solution of Fmoc-Cl in 

DCM. Subsequent aqueous work up and column chromatography afforded the desired 

carbamate 62 in an acceptable yield of 84 %. 

Selective hydrolysis of the t-butyl ester to afford the desired carboxylic acid was affected 

as per the published procedure by treatment with TiCl4. The previous authors report 

completing decarboxylation if this step is attempted by treatment with TFA. 

The unsubstituted pyrrole acid 57 was accessed via direct hydrolysis of the common 

trichloroacetyl pyrrole intermediate 59, through treatment with aqueous NaOH in THF.   

 

 

 

 
Scheme 4.1 Synthesis of 56 and 57. (i) trichloroacetyl chloride, DCM, 0 

o
C. (ii) HNO3, H2SO4, 

AcO2, - 40 
o
C. (iii) NaOtBu, HOtBu, reflux. (iv) 10 % Pd/C, Ammonium formate 25 % w/v aq, THF. 

(v) Fmoc-Cl, DCM 0 
o
C. (vi) TiCl4, DCM, 0 

o
C. (vii) NaOH, THF:Water. 
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4.4 Initial investigations towards the solid phase synthesis of 
distamycin-duocarmycin hybrid compounds. 

 
To explore the use of 11 as a building block for the solid phase synthesis of distamycin-

duocarmycin hybrid structures, a simple target compound was envisioned (63, figure 

4.11). This consisted of the duocarmycin alkylation subunit sandwiched between two 

pyrrole residues. The C-terminal of the target compound would possess the β-alanine-

dimethylaminopropylamine tail commonly employed by the Dervan group in the synthesis 

of hairpin polyamides. The N-terminal pyrrole residue would be unsubstituted removing 

the need for final Fmoc deprotection and acetylation steps.  In order to conserve supplies 

of the more valuable natural enantiomer of 11 these studies would be conducted using its 

unnatural enantiomer.  

4.4.1 First attempt at the solid phase synthesis of 63 using 2-

ClTrt resin and aminolytic cleavage. 
 

In the initial synthetic strategy, cleavage from the resin by aminolysis, as employed by the 

Dervan group, was planned to allow simultaneous introduction of the dimethylamino tail. 

The synthesis was conducted on a 0.078 mmol scale from commercially available 

preloaded 2-ClTrt β-alanine resin. General solid phase methodology and Fmoc 

deprotection steps were performed as previously described in chapter 3. HATU and 

DIPEA were employed for carboxylic acid activation during all amide bond formations 

again as previously described in chapter 3. In the case of pyrrole couplings, 5 equiv. of 

either 56, or 57 were utilised with reaction times of 5 hours. The final terminal pyrrole 

 

Figure 4.11 Structure of 63. 
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coupling was repeated, as this was anticipated to be the most inefficient reaction. To 

conserve reagent, couplings of the duocarmycin alkylation subunit were conducted using 

only 1.5 equiv. of 11, with overnight reaction times.   

Aminolysis was conducted as described by Dervan et al.235 The washed resin was treated 

with neat N,N-dimethylaminopropylamine and incubated at 60 oC overnight. However, 

analytical HPLC analysis, did not detect any cleavage products. It was suspected that the 

2-ClTrt structure provided a steric shield of the cleavage site, inhibiting aminolysis.  

4.4.2 Second attempt at the solid phase synthesis of 63 using 

PAM resin and aminolytic cleavage. 

 
Due to the suspected effect of 2-ClTrt resin towards aminolytic cleavage, the synthesis 

was repeated but beginning from a commercially preloaded Boc-β-alanine-PAM resin. 

This was one of the resins originally employed by the Dervan group for synthesises of 

polyamides cleaved by aminolysis.234  The structure of Boc-β-alanine-PAM resin is shown 

in figure 4.12 alongside β-alanine-2-ClTrt resin. It can be seen that the cleavage site is 

considerably less sterically hindered for nucleophilic attack.  

 

Figure 4.12 Structure of Boc-β-Alanine PAM resin, and β-Alanine 2-ClTrt resin. Steric hindrance of 
aminolytic cleavage with 2-ClTrt resin.   
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The synthesis was again conducted on a 0.078 mmol scale, and was identical to that 

described in section 4.3.1, with the exception of an additional initial Boc deprotection step 

of the immobilised β-alanine. This was achieved using 95 % TFA in DCM. PAM resins are 

typically used for Boc solid phase synthesis and so the linkage is stable towards TFA 

treatment.  

Aminolysis was repeated as described in section 4.3.1.  Analytical HPLC analysis of the 

cleavage mixture detected several products, with two dominating the HPLC trace (See 

figure 4.13).  

Although it was of course possible that the observed multiple peaks represented true side 

products of the synthesis, degradation during cleavage was again suspected. For 

example it is possible to envision displacement of the Cl atom under the aminolytic 

cleavage conditions, especially when considering the large excess of amine and heat 

energy available (see scheme 4.2).  

The products were not isolated to confirm this, as it was considered more time efficient to 

repeat the synthesis again on 2-ClTrt resin which would allow milder cleavage using 1% 

TFA, followed by introduction of the dimethylaminopropylamine tail as a post cleavage 

modification. This strategy had seen success in the synthesis of analogue 49, when 

exploring the effect on MTS activity of masking the free carboxylic acid group in chapter 3 

(see section 3.14).   

 

 

Figure 4.13 HPLC trace of cleavage mixture after aminolysis. Agilent Eclipse XDB-C18 column, 4.8 
x 150 mm, 5 µm. Solvent A: [Water and 0.05 % TFA], Solvent B: [MeOH and 0.05 % TFA]. Gradient: 
0% [B] to 95 % [B], from 0 min to 15 mins, 95 % [B] to 0 % [B] from 15 to 20 mins. Monitored UV 254 

nm. Flow rate 1 mL/min. Column temperature 40 
o
C.  
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4.4.3 Third attempt at the solid phase synthesis of 63, 2-ClTrt 

resin with introduction of the dimethylaminopropylamine 

tail as a post cleavage modification.  
 

The synthesis was again conducted on 0.078 mmol scale, and was identical to that 

described in section 4.3.1. Cleavage was affected by treatment with 1 % TFA, 10% TIPS 

in DCM, to give the free acid. HPLC analysis showed one major product (see figure 4.14a 

blue trace). The crude acid was dissolved in DMF and treated with equimolar quantity of 

HATU and a 2-fold excess of DIPEA. After 30 secs 5 equivalence of N,N-

dimethylaminopropylamine was added. HPLC analysis after one hour showed 

consumption of the starting material and formation of a new product (figure 4.14a red 

trace). As the product would not precipitate from the reaction mixture on the addition of 

water, it was subjected directly to preparative HPLC. The isolated product was 

immediately benzyl deprotected by catalytic transfer hydrogenation as previously 

 

Scheme 4.2 Possible degradation route under aminolytic cleavage conditions. 
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described in chapter 3. HPLC analysis confirmed complete deprotection after 45 min, 

figure 4.14a green trace. The deprotected product was isolated from excess ammonium 

formate, by preparative HPLC (figure 4.14b), to afford 4.7 mg of 63, representing an 

overall yield of 9 %. Accurate mass spectrometry returned a mass spectrum consistent 

with the desired product.  

 

Figure 4.14 HPLC analysis during the synthesis of 63 (a) Blue trace: HPLC analysis of crude 
cleavage product. Red trace: HPLC analysis after 1 hour of N,N-dimethylaminopropylamine 

coupling. Green trace: HPLC analysis after 45 min of benzyl deprotection conditions. (b) HPLC 
analysis of 63 after preparative HPLC purification. Agilent Eclipse XDB-C18 column, 4.8 x 150 

mm, 5 µm. Solvent A: [Water and 0.05 % TFA], Solvent B: [MeOH and 0.05 % TFA]. Gradient: 0% 
[B] to 95 % [B], from 0 min to 15 mins, 95 % [B] to 0 % [B] from 15 to 20 mins. Monitored UV 254 

nm. Flow rate 1 mL/min. Column temperature 40 
o
C. 
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4.4.4 Introduction of the duocarmycin alkylation subunit at 

different chain positions.  
 

The optimised methodology was successfully applied to the synthesis of hybrids 64, and 

65 (figure 4.15). These analogues represented introduction of the duocarmycin alkylation 

subunit at the remaining possible chain positions, of this novel bispyrrole family.  

Synthesis of 64 and 65 was conducted on a smaller 0.043 mmol scale. In the case of 65, 

an additional final Fmoc deprotection and acetyl capping step was required, and this was 

achieved using AcCl as previous described in chapter 3. 

2.2 mg of 65 and 2 mg of 64 were isolated representing overall yields of 8 % and 7 % 

respectively. Accurate mass spectrometry returned mass spectra consistent with the 

desired products. 

 

Figure 4.15 Structure of 64 and 65. 
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4.5 Antiproliferative activity of 63, and 64 and 65. 

 
The antiproliferative activity of the three distamycin-duocarmycin hybrids against an HL-60 

cell line was assessed using a MTS assay as previously described in chapter 3. The 

results are shown in table 4.1. 

These preliminary results indicate that the sequence position of the duocarmycin 

alkylation subunit is not trivial with respect to antiproliferative activity. Low µM IC50 values 

were returned for analogues 63 and 65, representing mid sequence and N-terminal 

incorporation. In contrast no activity was observed, at the top concentration tested (100 

µM), for analogue 64 in which the duocarmycin alkylation subunit was incorporated at the 

C-terminal position.   

This was an intriguing result as 64 was anticipated to possess the greatest activity. The 

prediction was based on this analogue containing the greatest rigid length extending from 

the nitrogen of the vinylogous amide. Thus, it might be predicted that this structure would 

produce the greatest binding induced activation of the cyclopropane (see chapter one). 

The lack of activity of 64 suggests that incorporation at this chain position has a 

detrimental effect on DNA binding, at least with respect to positioning of the cyclopropane. 

For example it is possible to imagine a binding model, in which the pyrrole pair bind the 

minor groove, but in doing so, position the duocarmycin subunit projecting out of the minor 

groove. This could perhaps be promoted by closer association of the cationic tail, with the 

polyanionic backbone of DNA, and hydrogen bonding of the carbonyl of the linking amide 

(see figure 4.16). Such binding would be likely to prevent nucleophilic attack of the 

cyclopropane by the nucleic bases.   

The results also indicate there may be a small benefit to mid sequence incorporation, with 

compound 63 possessing a 3 fold increase in activity over 65. However, overlapping 

confidence intervals suggest this may not be significant. Nevertheless, if a real effect, this 

may reflect subtle differences in the positioning of the cyclopropane on binding, or could 

 

Table 4.1 IC50 values returned by the MTS assay. HL-60 cell line. Detailed protocol can be found in 
the experimental chapter. Chain Sequence key: Py = N-methylpyrrole residue, DSA = seco-

duocarmycin alkylation subunit (unnatural enantiomer). 64 = no activity at the top concentration 
tested (100 µM) 
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result from greater activation of the cyclopropane due to the increase rigid length 

extending from the N-terminal of the alkylation subunit inherent in the structure of 63. It is 

not known whether these compounds are binding the minor groove as 1:1 complexes or 

as 2:1 antiparallel homodimers. Therefore it is also possible that the differences in activity 

could represent different preferences to bind in one mode over the other.  

4.6 Conclusions from chapter four and suggestions for future 
work continuing from these preliminary results. 

 

Due to time constraints the above results represent the extent of progress in the 

exploration of this second solid phase application of our novel building block 11. These 

preliminary findings suggest that 11 is a convenient substrate for the direct and in line 

incorporation of the duocarmycin alkylation subunit in to heterocyclic polyamide 

sequences, and should be applicable to the solid phase construction of longer bifunctional 

hairpin polyamide structures. The use of 11 in this way offers the additional advantage of 

allowing versatility in the sequence position in which the alkylation subunit is incorporated. 

It should be noted that commonly employed aminolytic cleavage strategies appear not to 

be suitable for release of such structures from the solid support, due to sensitivity of the 

duocarmycin residue. However, where a dimethylamino tail is desired, this can be 

introduced through post cleavage modification. The MTS assay results indicate that the 

chosen sequence position of the alkylation subunit, at least with respect to the unnatural 

enantiomer, can have a pronounce effect on antiproliferative activity. There appears to be 

 
Figure 4.16 Schematic representation of possible binding model of the ring close form of 64 which 

could account for lack of activity. 
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a mild preference for mid sequence incorporation over N-terminal placement (but this may 

not be significant), while C-terminal positioning may be detrimental towards activity.  

The obvious next step in any future work in this area, would be to resynthesise 

compounds 63, 64, and 65, using the natural enantiomer of 11. It would be prudent to 

conduct these synthesises on a slightly larger scale, so as to allow rigorous confirmation 

of the structure of these novel compounds through the use of a 2-dimensional carbon-

proton correlation NMR experiments such as DEPT-edited HSQC. It would be interesting 

to ascertain if the relationship between antiproliferative activity and sequence position of 

the alkylation subunit, observed with the original analogues, is consistent after the change 

in stereochemistry, as well confirming the expected increase in activity which might be 

predicted from use of the natural enantiomer based on previous literature on the 

duocarmycin family.  

Following on from these experiments, the logical extension of this work would be to begin 

to explore the incorporation of the duocarmycin alkylation subunit in to full hairpin 

polyamide structures. It would be particularly interesting to investigate the effect on 

sequence selectivity of incorporation of the alkylation subunit at different chain positions of 

a well characterised existing hairpin polyamide sequence. This work might highlight 

potential sequence positions where the alkylation subunit can be substituted for native 

heterocycles without compromising minor groove sequence recognition. Such results 

could make a significant contribution towards the development of selective targeting of 

cytotoxicity through bifunctional hairpin structures which target specific mutations in the 

genome of tumour cells; thus potentially significantly improving the therapeutic window of 

the duocarmycin family while ablating the necessity for prodrug strategies or additional 

targeted delivery vehicles. Such an approach might benefit from allowing the construction 

of bespoke bifunctional hairpin polyamides, for the targeting of different malignancies 

based on their specific genetics.  

These approaches are likely to require recognition of long sequences in order to produce 

the necessary genome wide selectivity. As discussed in section 4.1, progress in this area 

has already been made, with the advent of tandem hairpin structures, or the use of mid 

sequence aliphatic residues to relax the curvature of long hairpin structures. It maybe that 

the increased length of the duocarmycin residue when compared to a PyPy sequence, 

may also prove to serve as a mechanism to relax the over-curvature of longer hairpin 

structures, when incorporated in mid sequence chain positions.  

In addition to allowing versatility in the chain position of the alkylation subunit, the use of 

11 as a solid phase building block, also offers the potential for the convenient introduction 
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of multiple alkylation subunits. Continuing from the above suggested work, it would be 

interesting to investigate the effect of incorporating a duocarmycin residue in both the 

parallel and antiparallel chains of a single hairpin structure. Perhaps such compounds 

would yield sequence selective DNA crosslinking agents. If so these compounds would 

likely possess increased potency with respect to antiproliferative activity.    

These ideas represent a significant extension in the use of 11 to date. However, it is the 

author’s hope that the work contained within this thesis, including the development of the 

building block itself, and the initial investigations towards its use in different solid phase 

applications, have provided a suitable grounding from which more ambitious projects, 

such as those suggested, could be launched in the future. 
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5  
Chapter Five 

Experimental 
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5.1 General considerations. 
 

5.1.1 Reagent, and Solvent Preparation. 
 

All chemicals were reagent grade and purchased from Sigma Aldrich, Novabiochem, 

VWR, AGTC, Fluorochem, or Fisher Scientific. HPLC mobile phases were prepared using 

HPLC grade solvents. Solvents where specified as anhydrous were bought as such and 

assumed to conform to the manufacturers standards. All water used was distilled. All DMF 

for solid phase synthesis was purchased as peptide grade from AGTC. 

5.1.2 Physical Characterisation and Spectroscopic Techniques. 
 

1H and 13C-NMR spectra were recorded in Fourier Transform mode on a Bruker B-ACS 60 

Ultrashield 400 plus spectrometer, operating at a nominal 1H NMR frequency of 400 MHz, 

using the specified deuterated solvent. All spectra were processed using Topspin 3.0 

software. The chemical shifts for both 1H and 13C-spectra were recorded in ppm and were 

referenced to the residual solvent peak. Multiplicities in the NMR spectra are described 

as: s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet, 

br = broad, appt = apparent; coupling constants are reported in Hz. Accurate mass 

spectra were recorded at the EPSRC National Mass Spectrometry Service Centre, 

Swansea. Infrared spectra were recorded as neat samples using a Perkin-Elmer 

Spectrum BX FT-IR and manipulated using Spectrum v5.3 Software. 

5.1.3 General Chromatographic Techniques. 
 

Thin layer chromatography: was performed on Merck aluminium plates coated with 0.2 

mm silica gel-60 F254. After elution, the TLC plates were visualised under UV light.  

Flash chromatography: Unless otherwise stated normal phase flash chromatography was 

performed in glass columns on silica gel for column chromatography (particle size 60 µm), 

using hand bellows to apply positive pressure. 

General RP-Flash chromatography: Unless otherwise stated RP-Flash chromatography 

was performed on a Biotage Isolera 4, using a pre-packed Biotage SNAP 12 g C18 

column, and a flow rate of 20 mL/min. Solvent A = 95 % H2O 5 % MeOH + 0.05% TFA 

and Solvent B = 95 % MeOH 5 % H2O + 0.05% TFA. Gradient 0 % B  100 % B over 15 

minutes 100 % B  0 % B over 5 mins. Detection wavelength 254 nm. Samples were dry 

loaded by adsorption on celite.  
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General analytical RP-HPLC: Unless otherwise stated analytical RP-HPLC was performed 

on an Agilent 1200 using an Agilent eclipse XDB-C18 column, 4.6 x 150mm, 5 µm and a 

flow rate of 1 mL/min. Solvent A = H2O + 0.05% TFA and Solvent B = MeOH + 0.05% 

TFA. Gradient 5% B  95% B over 15 minutes 95% B  5 % B over 5 mins. Detection 

wavelength 254 nm.  

General preparative RP-HPLC: Unless otherwise stated preparative RP-HPLC was 

performed on an Agilent 1260 infinity using an Agilent eclipse XDB-C18 column, 21.2 x 

150 mm, 5 µm and a flow rate of 20 mL/min and a flow rate of 20 mL/min. Solvent A = 95 

% H2O 5 % MeOH + 0.05% TFA and Solvent B = 95 % MeOH 5 % H2O + 0.05% TFA. 

Gradient 0 % B  100 % B over 15 minutes 100 % B  0 % B over 5 mins. Detection 

wavelength 254 nm. 

5.2 Organic Synthesis. 

5.2.1 Synthesis of 11. 
 

 

(22): BnBr (21.00 mL, 178 mmol) was added dropwise to a stirring suspension of 2-

amino-5-nitrophenol 21 (25.00 g, 162 mmol) and K2CO3 (49.30 g, 357 mmol) in DMF (250 

mL) at room temperature. After 20 hours, the reaction mixture was poured over crushed 

ice. The precipitate was collected by filtration and triturated with cold water prior to drying 

at 40 OC under vacuum overnight. The reaction was repeated on the same scale and the 

two batches combined to afford 78.05 g of 22 as a yellow/brown amorphous solid (98.5 % 

average yield over the 2 batches). Rf 0.17 (20 % EtOAc in hexane); mp 147-149 oC, lit mp 

144-145 oC.110  1H NMR (CDCl3, 400 MHz) δ  7.83 ( 1H, dd,  J=2.4, 8.7),  7.77 (1H, d, 

J=2.4), 7.37-7.46 (5H, m), 6.66 (1H, d, J=8.7), 5.15 (2H, s), 4.60 (2H, brs). 13C NMR 

(CDCl3, 100 MHz) δ 144.6, 143.6, 138.7, 135.9, 128.9, 128.7, 128.0,  119.5, 112.1, 107.4, 

71.0. IR (neat) νmax 3483, 3359, 3225, 3188, 3075, 2939, 2876, 1622, 1579, 1519, 1480, 

1455, 1386, 1282, 1222, 1176, 1091, 1007, 950, 914, 870, 853, 818, 797, 755, 744, 727, 

697, 643, 623 cm-1. HRMS (ES+) calculated for C13H13N2O3 (M+H)+ 245.0921 found 

245.0923. NMR consistent with the literature.110 
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(23): Conc.H2SO4 (800 µL, 15.15 mmol) was added to a stirring solution of 22 (37.00 g, 

151 mmol) in DMF (555 mL), followed by portionwise addition of NIS (51.10 g, 227 mmol) 

at room temperature. After 4 hours, the reaction mixture was poured over crushed ice. 

The precipitate was collected by filtration and triturated with cold water, followed by cold 

hexane, prior to drying at 40 OC under vacuum overnight. The reaction was repeated with 

39.10 g of 23 and the two batches combined to afford 105.65 g as a bright yellow 

amorphous soild (91.5 % average yield over the 2 bathes). Rf 0.31 (20 % EtOAc in 

hexene); mp 103-106 oC, lit mp 105-106 oC.110  1H NMR (CDCl3, 400 MHz) δ 8.29 (1H, d, 

J=2.3), 7.74 (1H, d, J=2.3), 7.38-7.44 (5H, m) 5.16 (2H, s), 5.02 (2H brs). 13C NMR 

(CDCl3, 100 MHz) δ 144.1, 143.3, 138.9, 135.4, 129.0, 128.9, 128.3, 128.1, 106.7, 178.5, 

71.5. IR (neat) νmax 3476, 3379, 3359, 3091, 3056, 3030, 2357, 2333, 1602, 1568, 1497, 

1451, 1425, 1386, 1282, 1237, 1099, 1037, 1025, 869, 849, 819, 740, 726, 692 cm-1.  

HRMS (ES+) calculated for C13H12IN2O3 (M+H)+ 370.9887 found 370.9890. NMR 

consistent with the literature.110 

 

(26): 23 (40.80 g, 110 mmol) was dissolved in anhydrous DMF (1225 mL). The resulting 

solution was degassed with a stream of N2 for 30 mins prior to addition of methyl 

propiolate (37.10 mL, 441 mmol), Pd(PPh3)2CL2 (3.87 g, 5.51 mmol),  ZnBr2 (99.00 g, 441 

mmol), and DIPEA (77.00 ml, 441 mmol) at room temperature . The reaction mixture was 



201 
 

then heated to 66 oC and stirred overnight under N2. After cooling to room temperature the 

reaction mixture was poured over crushed ice, and the resulting chocolate colour 

precipitate collected by filtration. The reaction was repeated with 51.00 g of 23, and the 

precipitates were combined prior to adsorption onto 250 g of silica. Elution through a 1 kg 

silica plug with 50% ethyl acetate and hexane afforded 62.00 g of 26 as an orange 

amorphous solid (77 % yield). Rf  0.16 (20 % EtOAc in hexane); mp 136-139 oC.  1H NMR 

(CDCl3, 400 MHz) δ 8.06 (1H, d, J=2.4), 7.76 (1H, d, J=2.4), 7.38-7.45 (5H, m), 5.32 (2H, 

brs), 5.17 (2H, s), 3.86 (3H, s). 13C NMR (CDCl3, 100 MHz) δ 154.1, 146.7, 144.5, 137.8, 

135.2, 129.1, 129.0, 128.1, 123.0, 108.3, 101.0, 87.1, 81.1, 71.5, 53.1. IR (neat) νmax 

3499, 3391, 3351, 3087, 3063, 3030, 2951, 2204, 1698, 1611, 1455, 1430, 1393, 1325, 

1299, 1237, 1215, 1148, 1093, 1040, 1028, 1001, 886, 859, 755, 740, 731, 694, 657, 612 

cm-1. HRMS (ES+) calculated for C17H15N2O5 (M+H)+ 327.0975 found 327.0979. 

 

(16): 26 (60.00 g, 184 mmol) in anhydrous THF (858 mL) was treated with 1M TBAF in 

THF solution (368.00 mL, 368 mmol) and refluxed at 66 oC for 1 hour. After cooling to 

room temperature the THF was removed by rotary evaporation under reduced pressure. 

The residue was dissolved in ethyl acetate (1000 mL) and washed 3 times with water 

(1000 mL). Concentration of the ethyl acetate followed by co-evaporation of the residue 

with DCM afforded crude 15 as a dark purple foam. The foam was dissolved in DCM 

(1000 mL) and treated with Boc2O (80.00 g, 368 mmol), and DMAP (22.46 g, 184 mmol) 

at room temperature for 1.5 hours.  Removal of the DCM gave a dark foam which was 

purified by silica gel chromatography using an Isco automated flash chromatography 

system. The crude was dry loaded on to a 1.5 kg pre-packed silica column adsorbed on to 

200 g of silica. A linear gradient of 0 to 30 % ethyl acetate in hexane was run over 23 

column volumes and then held at 30 % ethyl acetate until complete elution of the product. 

Removal of the solvent afford 31.00 g of 16 as an orange amorphous solid (39 % yield of 

2 steps). Rf 0.33 (20 % EtOAc in hexane); mp 168-171 oC, reported as an oil in the 

literature.90, 96 1H NMR (CDCl3, 400 MHz) δ 8.26 (1H, d, J=1.9), 7.67 (1H, d, J=1.9), 7.49-
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7.45 (2H, m), 7.41-7.34 (3H, m), 7.33 (1H, s) 5.33 (2H, s), 3.94 (3H, s), 1.47 (9H, s). 13C 

NMR (CDCl3, 100 MHz) δ 160.5, 149.3, 145.6, 143.6, 135.2, 130.2, 128.9, 128.7, 128.2, 

126.4, 112.7, 112.5, 102.2, 86.5, 71.3, 52.5, 27.9, 27.3. IR (neat) νmax 3127, 3099, 3050, 

2981, 2949, 1765, 1722, 1586, 1512, 1437, 1388, 1372, 1325, 1252, 1223, 1151, 1115, 

1073, 982, 875, 840, 822, 801, 778, 766, 742, 729, 697, 606 cm-1. HRMS (ES+) 

calculated for C22H23N2O7 (M+H)+ 427.1500 found 427.1499. NMR consistent with the 

literature.90, 96 

 

(29): 16 (15.00 g, 35.2 mmol) was dissolved in THF (293 ml) and treated with zinc powder 

(34.50 g, 528 mmol), NH4CL (18.82 g, 352 mmol), Boc2O (23.03 g, 106 mmol), DMAP 

(430 mg, 3.52 mmol), and water (58.60 mL). The resulting suspension was stirred 

vigorously at room temperature overnight.  After removal of the zinc by filtration, the THF 

was evaporated and the residue taken up in ether (500 mL). The ether was washed 3 

times with water (250 mL) and died over MgSO4. Co-evaporation with DCM gave crude 18 

as a light brown foam. The reaction was repeated on the same scale and the crudes 

combined and dissolved in DMF (352 mL). Conc. H2SO4 (0.375 mL, 7.04 mmol) was 

added followed by portionwise addition of NIS (23.75 g, 106 mmol) at room temperature. 

After 3 hours the reaction mixture was diluted with Et2O (1000 mL), and washed once with 

50 % saturated brine in water (1000 mL), twice with water (1000 mL), and once with 

saturated brine (1000 mL). The first wash was back extracted 3 times with Et2O (500 mL), 

which was subsequently combined and washed twice with saturated brine (1000 mL). All 

the Et2O was combined and concentrated to give a dark red foam which was purified by 

silica gel chromatography using an Isco automated flash chromatography system. The 

crude was dry loaded on to a 750 g pre-packed silica column adsorbed on to 170 g of 

celite. A linear gradient of 0 to 20 % ethyl acetate in hexane was run over 16 column 

volumes. Removal of the solvent afford 26.00 g of 29 as an off white foam which dried to 

an amorphous solid (59 % yield over 3 steps). Rf 0.37 (20 % EtOAc in hexane); mp 158-

161 oC, the literature does not report a mp.90   1H NMR (CDCl3, 400 MHz) δ 7.79 (1H, brs), 

7.49-7.46 (2H, m), 7.30-7.38 (3H, m), 7.09 (1H, s), 6.77 (1H, brs), 5.24 (2H, s), 3.91 (3H, 
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s), 1.54 (9H, s), 1.41 (9H, s). 13C NMR (CDCl3, 100 MHz) δ  160.9, 153.1, 149.9, 146.6, 

136.0, 134.7, 131.5, 128.7, 128.6, 128.4, 127.8, 123.7, 114.6, 102.6, 85.6, 81.0, 71.1, 

52.3, 28.5, 27.3. IR (neat) νmax 3355, 2984, 2933, 1763, 1725, 1716, 1615, 1575, 1541, 

1505, 1449, 1393, 1361, 1338, 1310, 1256, 1221, 1152, 1080, 980, 908, 878, 843, 817, 

758, 723, 693 cm-1. HRMS (ES+) calculated for C27H32O7N2I (M+H)+ 623.1249 found 

623.1246. NMR consistent with the literature.90 

 

 

(30): 29 (26.00 g, 41.8 mmol) was dissolved in DMF (418 mL) and treated with t-BuOK 

(9.37 g, 84 mmol) and technical grade (90 %) 1,3-dichloropropene as a mixture of cis and 

trans isomers (12.90 mL, 125 mmol). After stirring for 1.5 hours with the vessel 

submerged in a room temperature water bath, the reaction mixture was cooled to 0 oC and 

quenched with saturated aqueous NH4CL (20 mL). The mixture was diluted with Et2O 

(1000 mL), and washed twice with of 50 % saturated brine in water (1000 mL), and once 

with saturated brine (1000 mL). The Et2O was dried over MgSO4, concentrated, and co-

evaporated with DCM 6 times to afford a brown foam which was purified by silica gel 

chromatography using an Isco automated flash chromatography system. The crude was 

dry loaded on to a 220 g pre-packed silica column adsorbed on silica. A linear gradient of 

0 to 10 % ethyl acetate in hexane was run over 16 column volumes. Removal of the 

solvent afforded 18.00 g of 30 as a light brown foam which dried to an amorphous solid 

(62 % yield - mixture of E/Z isomers). Rf 0.31 (20 % EtOAc in hexane); mp 104-106 oC, 

reported as an oil in the literature.90  1H NMR (CDCl3, 400 MHz, mixture of E/Z isomers) δ 

7.28-7.44 (5H, m) 7.18 (1H, s), 6.65-6.47 (1H, m), 5.80-6.00 (2H, m]), 5.17-5.28 (2H, m), 

4.46 & 4.18 (1H, m), 4.33 & 3.73 (1H, m), 3.93 (3H, s), 1.53 (9H, s), 1.29 & 1.27 (9H, s). 

13C NMR (CDCl3, 100 MHz) δ 160.9, 154.2, 150.0, 145.7, 138.7, 135.9, 132.2, 128.9, 

128.4, 128.0, 127.5, 125.4, 121.8, 120.7, 115.3, 109.7 86.0, 83.9, 80.6, 70.7, 52.4, 49.5, 

46.2, 28.4, 27.3. IR (neat) νmax 2976, 2921, 1775, 1731, 1702, 1694, 1571, 1535, 1467, 
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1454, 1435, 1391, 1372, 1299, 1251, 1227, 1150, 1118, 1077, 978, 932, 885, 842, 829, 

782, 764, 739, 731, 699 cm-1. HRMS (ES+) calculated for C30H35O7 N2ClI (M+H)+ 

697.1172 found 697.1174. NMR consistent with the literature.90 

 

 

 

(10): 30 (9.00 g, 12.9 mmol) was dissolved in anhydrous toluene and degassed with a 

stream of N2 for 45 mins prior to addition of AIBN (0.53 g, 3.23 mmol) and TTMSS (4.38 

mL, 14.20 mmol). The resulting solution was refluxed at 90 oC under N2. After 1 hour the 

reaction mixture was allowed to cool to room temperature before being concentrated and 

subjected directly to silica gel column chromatography using an Isco automated flash 

chromatography system. A 120 g pre-packed silica column was used, and 0 % ethyl 

acetate in hexane run for  5 column volumes rising to 10 % linearly over the subsequent 5 

column volumes, holding at 10 % until complete elution of the product. The reaction was 

repeated on the same scale and the products combined, affording 10.28 g of 10 as white 

foam which dried to an amorphous solid (70 % yield). Rf 0.30 (20 % EtOAc in hexane); mp 

115-118 oC, reported as an oil in the literature.96  1H NMR (DMSO-d6, 400 MHz) δ 7.69 (1H 

brs), 7.47-7.29 (6H, m), 5.27 (2H, s), 4.13 (1H, t, J=9.7), 4.06-3.89 (4H, m), 3.87 (3H, s), 

1.48 (9H, s), 1.39 (9H, s). 13C NMR (DMSO-d6, 100 MHz) δ 160.4, 151.4, 149.5, 145.1, 

136.2, 128.4, 128.0, 127.9, 123.5, 113.2, 108.5, 97.4, 85.0, 80.3, 69.7, 52.3, 52.2, 47.6, 

40.7 (obscured by DMSO peak observed by HSQC), 28.0, 26.8, 22.0. IR (neat) νmax 3002, 

2977, 2921, 2357, 1782, 1720, 1698, 1593, 1538, 1494, 1494, 1439, 1417, 1379, 1343, 

1241, 1214, 1141, 1089, 1022, 988, 918, 899, 836, 765, 745, 712, 699, 691, 664 cm-1.  

HRMS (ES+) calculated for C30H36O7N2Cl (M+H)+ 571.2206 found 571.2201. NMR 

consistent with the literature (literature NMR recorded in a different solvent [CDCl3]).
96 
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(31): 10 (10.28 g, 18.00 mmol) was dissolved in a mixture of THF (167 ml) and MeOH 

(111 ml) and treated with a saturated aqueous solution of LiOH (56.00 mL) dropwise. After 

3 hours the THF and MeOH was removed under reduced pressure, and the residue 

diluted with water (100 mL). Acidification with 5 M HCl promoted the precipitation 31 as a 

white solid which was collected by filtration. The solid was recovered by dissolution in 

ethyl acetate and co-evaporation with DCM afforded 10.00 g of 31 as a light green foam 

which dried to an amorphous solid (100 % yield). Rf  0.48 (10 % MeOH in CH2Cl2); mp 

174-178 oC. 1H NMR (DMSO-d6, 400 MHz) δ 13.43 (1H, brs), 7.69 (1H, brs), 7.49-7.29 

(6H, m), 5.26 (2H, s), 4.13 (1H, t, J=9.7), 4.05-3.87 (4H, m), 1.49 (9H, s), 1.37 (9H, s). 13C 

NMR (DMSO-d6, 100 MHz) δ 161.5, 151.5, 149.1, 136.2, 129.5, 128.4, 128.0, 127.6, 

123.6, 123.4, 122.4, 107.7 97.1, 84.6, 80.0, 69.7, 52.2, 47.6, 40.8 (obscured by DMSO 

peak observed by HSQC), 28.1, 26.8, 22.0.  IR (neat) νmax 2976, 2929, 2361, 2328, 1770, 

1694, 1683, 1593, 1538, 1495, 1418, 1393, 1368, 1251, 1142, 1085, 1013, 978, 908, 942, 

792, 745, 695, 668 cm-1. HRMS (ES+) calculated for C29H34O7N2Cl (M+H)+ 557.2049 

found 557.2044. 

 

(11): 10 (10.00 g, 17.95 mmol) was dissolved in 4 M HCl in dioxane (180.00 mL) and 

stirred at room temperature overnight. Following removal of the dioxane under reduced 

pressure, the residue was dissolved in THF (269 mL). The resulting solution was cooled to 
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0 oC, before being treated with NaHCO3 (4.52 g, 53.9 mmol) in water (90 mL), followed by 

Fmoc-Cl (4.64 g, 17.95 mmol) dropwise in THF (100 mL). After 5 min the reaction mixture 

was quenched with MeOH (2 mL), and the THF and MeOH removed under reduced 

pressure. The remaining mixture was acidified with 2 M HCl, and extracted 3 times with 2-

MeTHF, and dried over MgSO4. Crude 11 was purified by silica gel chromatography using 

an Isco automated flash chromatography system. The crude was dry loaded on to a 220 g 

pre-packed silica column adsorbed on to 18 g of silica. A linear gradient of 0 to 5 % MeOH 

in DCM was run. Removal of the solvent afforded 8.30 g of racemic 11 as a light 

green/brown foam which dried to an amorphous solid (80 % yield over 2 steps). Rf 0.42 

(10 % MeOH in CH2Cl2); 125-128 oC.  1H NMR (DMSO-d6, 400 MHz) δ 12.97 (1H, brs), 

11.90 (1H, s), 7.90 (2H, d, J=6.7), 7.74-7.68 (2H, m), 7.67-7.57 (2H, m), 7.53-7.23 (8H, 

m), 7.20 (1H, d, J=1.8), 5.35-5.84 (2H, brs, [rotameric coalescence observed at 333K, δ 

5.17, 2H, s]), 4.74-4.31 (3H, m, [rotameric coalescence observed at 333K, δ 4.55, 2H, app 

quin, δ 4.39, 1H, t, J=6.6]), 4.23-4.14 (1H, m), 4.10-3.94 (3H, m), 3.93-3.84 (1H, m). 13C 

NMR (DMSO- d6, 100 MHz) δ 162.5, 152.0, 145.6, 143.8, 140.8, 136.8, 129.9, 128.2, 

127.8, 127.6, 127.4, 127.2, 125.6, 125.1, 124.1, 120.2, 112.7, 105.8, 95.4, 69.5, 66.6, 

51.9, 47.6, 46.7, 41.0, 34.4. IR (neat) νmax 2950, 2367, 2320, 1694, 1682, 1593, 1538, 

1441, 1404, 1318, 1247, 1218, 1171, 1131, 1085, 1028, 966, 903, 827, 737, 696, 667, 

621 cm-1. HRMS (ES-) calculated for C34H26O5N2Cl (M-H)- 577.1536 found  577.1527.  

Preparative chiral resolution of 11 was achieved using super critical fluid chromatography. 

Separation was affected using a Chiralpak AD-H column (250 x 30 mm, 5 micron), and an 

isocratic flow of 50 % CO2, and 50 % IPA containing 0.1 % TFA, at 45 mL per min. The 

back pressure was regulated at 10 MPa, and column temperature controlled at 40 oC. A 

racemate of 11 (9.8 g) was dissolved in THF:MeOH 1:1 (100 mL), and 1.25 mL (125 mg) 

injected every 9 mins. Fractions were monitored by UV (220 nm), collected, combined and 

dried to afford 2.82 g of peak 1 (5.5 min), and 3.1 g of peak 2 (7 min), both as cream 

amorphous solids ( = 1.27). Peak 1 [α]D –20 (c 0.05, DMF); mp 204-207 oC. Peak 2 [α]D 

+20 (c 0.05, DMF); mp 204-207 oC. 

 

 

 

 

 



207 
 

5.2.2 Synthesis of control compounds 42 and 43 
 

 

(42): 10 (50.0 mg, 0.087 mmol) was dissolved in 4 M HCL in EtOAc (5 mL) containing 

TIPS (500 µL) and the solution was stirred overnight at room temperature. After removal 

of the solvent under reduced pressure, the residue was taken up in DMF (7 mL), and 

cooled to 0 oC. The solution was treated with DIPEA (30 µL, 0.17 mmol), and AcCl (6 µL, 

0.087 mmol) and stirred under N2. After 2 hours the reaction mixture was poured over 

crashed ice and the product was collected as a beige precipitate. This was dissolved in a 

1:1 mixture of THF and MeOH (2 mL) and added to a suspension of 10 % Pd/C (20 mg) in 

25 % aqueous ammonium formate (300 µL) under N2.  After 1 hour, the reaction mixture 

was filtered through celite. Flash chromatography (silica gel, 7 x 1 cm, 5 % MeOH in 

DCM) afforded 17.0 mg 42 as a white amorphous solid (60 % yield over 3 steps). 1H NMR 

(DMSO-d6, 400 MHz) δ 11.55 (1H, brs), 9.72 (1H, s), 7.75 (1H, s), 7.22 (1H, app d, 

J=2.10), 4.31 (1H, t, J=11.6), 4.10-3.96 (3H, m), 3.91-3.87 (1H, m), 3.85 (3H, s), 2.15 (3H, 

s). 13C NMR (DMSO-d6, 100 MHz) δ 167.4, 161.4, 143.6, 138.0, 127.7, 125.4, 124.0, 

111.7, 106.0, 99.7, 53.2, 51.8, 47.7, 41.5, 24.1. HRMS (ES+) calculated for C15H16ClN2O4 

(M+H)+ 323.0793 found 323.0797. 

 

(43): 66 (57.0 mg, 0.14 mmol) was dissolved in a 3:2:1 mixture of THF:MeOH:H2O (6 mL), 

and treated with LiOH.H2O (110.0 mg, 2.62 mmol) overnight at room temperature. The 
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organic solvents were removed under reduced pressure, and the residue diluted with 1 M 

HCl (10 mL). The mixture was cooled to 4 oC for 72 hrs, and the product was collected as 

a beige precipitate by centrifugation. This was dissolved in a 1:1 mixture of THF and 

MeOH (2 mL) and added to a suspension of 10 % Pd/C (20 mg) in 25 % aqueous 

ammonium formate (300 µL) under N2. After 1 hour the reaction mixture was filtered 

through celite and the crude purified by preparative HPLC. Lyophilization afforded 6.5 mg 

of 43 as a tan amorphous solid (15 % yield over 2 steps). 1H NMR (DMSO-d6, 400 MHz) δ 

12.92 (1H, brs), 11.33 (1H, s), 9.62 (1H, s), 7.72 (1H, s), 7.13 (1H, s), 4.37-4.25 (1H, m), 

4.12-3.95 (3H, m),  3.92-3.81 (1H, m), 2.15 (3H, s). 13C NMR (DMSO-d6, 100 MHz) δ 

167.4, 162.5, 143.5, 137.9, 129.1, 125.1, 124.1, 111.6, 105.6, 99.5, 53.2, 47.7, 41.5, 24.1. 

HRMS (ES+) calculated for C14H14ClN2O4 (M+H)+ 309.0637 found 309.0637. 

 

5.2.3 Synthesis of 56 and 57. 
 

Synthesis of the pyrrole building blocks 56 and 57 (scheme 4.1, chapter four) was 

conducted as prevoiusly described by Dervan et al., with the exception of the convertion 

of intermediate 61 to intermediate 62. Which was conducted as descriped below along 

with the final steps in each synthesis. 

 

(62): 61 (1.00 g, 4.4 mmol) was dissolved in THF (60 mL). The resulting solution was 

treated with 10 % Pd/C (176 mg), as a slurry in 25 % w/v aq. ammonium formate (12 mL), 

and the suspension stirred vigorously at room temperature. Further additions of 10 % 

Pd/C (50 mg) as a slurry in 25 % w/v aq. ammonium formate (1 mL), were made every 30 

mins until complete consumption of the starting material was observed, as monitored by 

TLC.  After 4 hours the reaction mixture was filtered through a short column of 

diatomaceous earth directly in to a stirring solution of Fmoc-Cl (1.143 g, 4.4 mmol) in 

anhydrous DCM (180 mL), at 0 oC. The mixture was left to stir at 0 oC for 30 mins, before 

being wash 3 times with water. The organic layer was concentrated by rotary evaporation 

and subjected directly to flash chromatography (silica gel 20 x 3 cm, EtOAc in DCM, 0 % 

to 1 %) affording 1.57 g of 62 as a crunchy white foam which dried to an amorphous solid 

(84 % yield). 1H NMR (DMSO-d6, 400 MHz) δ 9.42 (1H, s), 7.92-7.88 (2H, m), 7.73-7.67 



209 
 

(2H, m), 7.45-7.39 (2H, m), 7.36-7.31 (2H, m), 7.01 (1H, appt brs), 6.61 (1H, appt brs), 

4.43 (2H, d, J= 6.3), 4.27 (1H, t, J=6.3), 3.76 (3H, s), 1.48 (9H, s). Consistent with the 

literature.235 

 

(57): 59 (3.00 g, 13.25 mmol) was dissolved in THF (4 mL). The resulting solution was 

treated with a 4.5 M aqueous solution of NaOH (1.60 mL) and left to stir at room 

temperature overnight. After removal of the THF under reduced pressure, the residue was 

diluted with 8 mL of H2O. The solution was cooled to 0oC. Acidification by the dropwise 

addition of concentrated HCl promoted the precipitation 57 which was collected by 

filtration. The precipitate was dried under vacuum, affording 0.81 g of 62 as a light yellow 

amorphous solid (49 % yield).   1H NMR (DMSO-d6, 400 MHz) δ 12.12 (1H, brs), 7.03 (1H, 

t, J=2.1) 6.78 (1H, dd, J= 3.9, 1.8), 6.05 (1H, dd, J=3.9, 2.5), 3.83 (3H, s). Consistent with 

the literature.237 

 

(56): 62 (1.54 g, 3.68 mmol) was dissolved in anhydrous DCM (30 mL). The resulting 

solution was cooled to 0oC before being treated with the dropwise addition of a 1 M 

solution of TiCl4 in anhydrous DCM (8.00 mL) under N2. After 45 mins of stirring at 0oC the 

reaction mixture was quenched by the addition of a cold 1 M aqueous solution of HCl (100 

mL). The resulting precipitate was collected by filtration, triturated in cold water, and dried 

under vacuum, affording 1.19 g of 56 as a white amorphous solid (89 % yield).  1H NMR 

(DMSO-d6, 400 MHz) δ 12.15 (1H, brs), 9.43 (1H, s), 7.90 (2H, appt d, J=7.4), 7.72 (2H, 

appt d, J=7.4), 7.42 (2H, appt t, J= 7.4), 7.34 (2H, appt t, J=7.4), 7.04 (1H, appt brs), 6.62 

(1H, appt brs), 4.45 (2H, d, J= 6.3), 4.27 (1H, t, J=6.3), 3.78 (3H, s). Consistent with the 

literature.235 

 



210 
 

 

5.3 Solid phase synthesis.    
 

 

(35): H-Ala-2ClTrt resin (53.0 mg, 0.039 mmol Ala, [manufacturer’s resin loading 0.73 

mmol/g]) was prepared for coupling by swelling in DCM for 30 mins followed by DMF for a 

further 30 mins. 11 (25.0 mg, 0.043 mmol) was disolved in 2 mL of DMF and treated with 

HATU (13.0 mg, 0.043 mmol) and DIPEA (16 µL, 0.086 mmol). After 10 secs the resulting 

solution was added to the resin and the mixture shaken overnight. The resin was washed 

6 times with DMF (10 mL) and removal of the Fmoc protection of the indoline nitrogen 

affected with piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 mins twice). Following 

Fmoc deprotection the resin was washed 6 times with DMF (10 mL) and 3 times with 

anhydrous DMF (10 mL). The resin was placed under an atmosphere of N2 and treated 

with anhydrous DMF (2 mL), DIPEA (75 µL, 0.43 mmol), and AcCL (16 µL, 0.225 mmol). 

After 1 hour of shaking the resin was washed 6 times with DMF (10 mL) and 6 times with 

DCM. Cleavage was affected by addition of a solution of 1% TFA, 10% TIPS in DCM (10 

mL). After 2 hours of shaking the cleavage mixture was flitered. The resin was rinsed 3 

times with DCM (3 mL) and the combined filtrates were concentrated to dryness by rotary 

evaporation under vacuum. To ensure full recovery of the product the resin was soaked in 

THF:MeOH (10 mL), and after filtering this was combined with the rest of the cleavage 

product and again evaporated to dryness.  The crude cleavage product was disolved in 

THF:MeOH (2 mL) and treated with a slurry of 10 % Pd/C (20 mg) in a 25 % aqueous 

solution  ammonium formate (300 µL) under N2. After 1 hour the Pd/C was removed by 

filtering through a plug of celite.  Flash chromatography (silica gel, 7 x 1 cm, 0 % to 30 % 

MeOH in EtOAc) and trituration with hexane, afforded 10.0 mg of 35 as a beige 

amorphous solid (69 % yield). 1H NMR (DMSO-d6, 400 MHz) δ 11.23 (1H, s), 9.70, (1H, 

s), 8.57 (1H, d, J=7.4), 7.70 (1H, s), 7.21 (1H, appt d, J=2.1), 4.44 (1H, appt quin, J=7.4), 

4.33 (1H, appt t, J=11.7], 4.11-4.06 (1H, m), 4.04-3.96 (2H, m), 3.89-3.82 (1H, m), 2.15 

(3H, s), 1.41 (3H, d, J=7.4). 13C NMR (observed by DEPT-ed-HSQC) (DMSO-d6, 100 
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MHz) δ 104.0 (CH), 100.2 (CH), 53.3 (CH2), 50.4 (CH), 47.7 (CH2), 41.6 (CH), 24.2 (CH3), 

20.0 (CH3). HRMS (ES+) calculated for C17H19ClN3O5 (M+H)+ 380.1008 found 380.1004.   

 

(40): H-β-Ala-2ClTrt resin (53.0 mg, 0.039 mmol β-Ala, [manufacturer’s resin loading 0.73 

mmol/g]) was prepared for coupling by swelling in DCM for 30 mins followed by DMF for a 

further 30 mins. 11 (25.0 mg, 0.043 mmol) was disolved in 2 mL of DMF and treated with 

HATU (13.0 mg, 0.043 mmol) and DIPEA (16 µL, 0.086 mmol). After 10 secs the resulting 

solution was added to the resin and the mixture shaken overnight. The resin was washed 

6 times with DMF (10 mL) and removal of the Fmoc protection of the indoline nitrogen 

affected with piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 mins twice). Following 

Fmoc deprotection the resin was washed 6 times with DMF (10 mL) and 3 times with 

anhydrous DMF (10 mL). The resin was placed under an atmosphere of N2 and treated 

with anhydrous DMF (2 mL), DIPEA (75 µL, 0.43 mmol), and AcCL (16 µL, 0.225 mmol). 

After 1 hour of shaking the resin was washed 6 times with DMF (10 mL) and 6 times with 

DCM. Cleavage was affected by addition of a solution of 1% TFA, 10% TIPS in DCM (10 

mL). After 2 hours of shaking the cleavage mixture was flitered. The resin was rinsed 3 

times with DCM (3 mL) and the combined filtrates were concentrated to dryness by rotary 

evaporation under vacuum. To ensure full recovery of the product the resin was soaked in 

MeOH (10 mL), and after filtering this was combined with the rest of the cleavage product 

and again evaporated to dryness.  The crude cleavage product was disolved in 

THF:MeOH (2 mL) and treated with a slurry of 10 % Pd/C (20 mg) in a 25 % aqueous 

solution  ammonium formate (300 µL) under N2. After 1 hour the Pd/C was removed by 

filtering through a plug of celite.  Flash chromatography (silica gel, 7 x 1 cm, 0 % to 30 % 

MeOH in EtOAc) and trituration with hexane afforded 12.0 mg of 40 as a beige 

amorphous solid (81 % yield). 1H NMR (DMSO-d6, 400 MHz) δ 12.29 (1H, brs), 11.18 (1H, 

s), 9.69 (1H, s), 8.45 (1H, brs), 7.69 (1H, s), 7.11 (1H, s), 4.35-4.28 (1H, m), 4.07-3.95 

(3H, m), 3.87-3.81 (1H, m), 3.48 (2H, obscured by H2O peak observed by HSQC and 

COSY), 2.53 (2H, obscured by DMSO peak observed by HSQC and COSY), 2.15 (3H, s). 

13C NMR (observed by DEPT-ed-HSQC) (DMSO-d6, 100 MHz) δ 101.4 (CH), 98.8 (CH), 

53.3 (CH2), 47.4 (CH2), 41.8 (CH), 35.2 (CH2), 33.9 (CH2), 24.2 (CH3). HRMS (ES+) 

calculated for C17H19ClN3O5 (M+H)+ 380.1008 found 380.1009. 
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(36): H-Phe-2ClTrt resin (53.0 mg, 0.039 mmol Phe, [manufacturer’s resin loading 0.73 

mmol/g]) was prepared for coupling by swelling in DCM for 30 mins followed by DMF for a 

further 30 mins. 11 (25.0 mg, 0.043 mmol) was disolved in 2 mL of DMF and treated with 

HATU (13.0 mg, 0.043 mmol) and DIPEA (16 µL, 0.086 mmol). After 10 secs the resulting 

solution was added to the resin and the mixture shaken overnight. The resin was washed 

6 times with DMF (10 mL) and removal of the Fmoc protection of the indoline nitrogen 

affected with piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 mins twice). Following 

Fmoc deprotection the resin was washed 6 times with DMF (10 mL) and 3 times with 

anhydrous DMF (10 mL). The resin was placed under an atmosphere of N2 and treated 

with anhydrous DMF (2 mL), DIPEA (75 µL, 0.43 mmol), and AcCL (16 µL, 0.225 mmol). 

After 1 hour of shaking the resin was washed 6 times with DMF (10 mL) and 6 times with 

DCM. Cleavage was affected by addition of a solution of 1% TFA, 10% TIPS in DCM (10 

mL). After 2 hours of shaking the cleavage mixture was flitered. The resin was rinsed 3 

times with DCM (3 mL) and the combined filtrates were concentrated to dryness by rotary 

evaporation under vacuum. To ensure full recovery of the product the resin was soaked in 

THF:MeOH (10 mL), and after filtering this was combined with the rest of the cleavage 

product and again evaporated to dryness.  The crude cleavage product was disolved in 

THF:MeOH (2 mL) and treated with a slurry of 10 % Pd/C (20 mg) in a 25 % aqueous 

solution  ammonium formate (300 µL) under N2. After 1 hour the Pd/C was removed by 

filtering through a plug of celite.  Flash chromatography (silica gel, 7 x 1 cm, 0 % to 10 % 

MeOH in EtOAc) and trituration with hexane, afforded 11.0 mg of 36 as a beige 

amorphous solid (56 % yield). 1H NMR (DMSO-d6, 400 MHz) δ 12.87 (1H, brs), 11.20 (1H, 

s), 9.70 (1H, s), 8.65 (1H, d, J=8.1), 7.70 (1H, s) 7.32-7.25 (4H, m), 7.21-7.16 (2H, m), 

4.72-4.65 (1H, m), 4.36-4.27 (1H, m), 4.10-3.97 (3H, m), 3.89-3.82 (1H, m), 3.24-3.16 

(1H, m), 3.06-2.98 (1H, m), 2.15 (3H, s) . 13C NMR (observed by DEPT-ed-HSQC) 

(DMSO-d6, 100 MHz) δ 128.7 (CH), 128 (CH), 126.2 (CH), 102.0 (CH), 98.6 (CH), 53.5 

(CH), 52.9 (CH2), 47.1 (CH2), 41.5 (CH),  36.5 (CH2), 23.8 (CH3). HRMS (ES+) calculated 

for C23H23O5N3Cl (M+H)+ 456.1321 found 456.1317.   
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(37): H-Ser(tBu)-2ClTrt resin (51.0 mg, 0.039 mmol Ser, [manufacturer’s resin loading 

0.76 mmol/g]) was prepared for coupling by swelling in DCM for 30 mins followed by DMF 

for a further 30 mins. 11 (25.0 mg, 0.043 mmol) was disolved in 2 mL of DMF and treated 

with HATU (13.0 mg, 0.043 mmol) and DIPEA (16 µL, 0.086 mmol). After 10 secs the 

resulting solution was added to the resin and the mixture shaken overnight. The resin was 

washed 6 times with DMF (10 mL) and removal of the Fmoc protection of the indoline 

nitrogen affected with piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 mins twice). 

Following Fmoc deprotection the resin was washed 6 times with DMF (10 mL) and 3 times 

with anhydrous DMF (10 mL). The resin was placed under an atmosphere of N2 and 

treated with anhydrous DMF (2 mL), DIPEA (75 µL, 0.43 mmol), and AcCl (16 µL, 0.225 

mmol). After 1 hour of shaking the resin was washed 6 times with DMF (10 mL) and 6 

times with DCM. Cleavage was affected by addition of a solution of 20% TFA, 10% TIPS 

in DCM (10 mL). After shaking overnight the cleavage mixture was flitered. The resin was 

rinsed 3 times with DCM (3 mL) and the combined filtrates were concentrated to dryness 

by rotary evaporation under vacuum. To ensure full recovery of the product the resin was 

soaked in THF:MeOH (10 mL), and after filtering this was combined with the rest of the 

cleavage product and again evaporated to dryness.  The crude cleavage product was 

disolved in THF:MeOH (2 mL) and treated with a slurry of 10 % Pd/C (20 mg) in a 25 % 

aqueous solution  ammonium formate (300 µL) under N2. After 1 hour the Pd/C was 

removed by filtering through a plug of celite. Preparative HPLC (see general Prep HPLC 

method) and lyophilization, afforded 7.5 mg of 37 as a beige amorphous solid (48 % 

yield). 1H NMR (DMSO-d6, 400 MHz) δ 12.76 (1H, brs), 11.35 (1H, s), 9.72 (1H, s), 8.49 

(1H, d, J= 8.3), 7.71 (1H, s), 7.24 (1H, s), 5.01 (1H, brs), 4.58-4.48 (1H, m), 4.37-4.28 (1H, 

m), 4.14-3.97 (3H, m), 3.90-3.76 (3H, m), 2.15 (3H, s). 13C NMR (observed by DEPT-ed-

HSQC) (DMSO-d6, 100 MHz) δ 102.0 (CH), 98.3 (CH), 61.0 (CH2), 55.0 (CH), 53.0 (CH2), 

47.2 (CH2), 41.6 (CH), 23.8 (CH3). HRMS (ES+) calculated for C17H19ClN3O6 (M+H)+ 

396.0957 found 396.0956. 
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(38): H-Glu(OtBu)-2ClTrt resin (59.0 mg, 0.039 mmol Glu, [manufacturer’s resin loading 

0.65 mmol/g]) was prepared for coupling by swelling in DCM for 30 mins followed by DMF 

for a further 30 mins. 11 (25.0 mg, 0.043 mmol) was disolved in 2 mL of DMF and treated 

with HATU (13.0 mg, 0.043 mmol) and DIPEA (16 µL, 0.086 mmol). After 10 secs the 

resulting solution was added to the resin and the mixture shaken overnight. The resin was 

washed 6 times with DMF (10 mL) and removal of the Fmoc protection of the indoline 

nitrogen affected with piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 mins twice). 

Following Fmoc deprotection the resin was washed 6 times with DMF (10 mL) and 3 times 

with anhydrous DMF (10 mL). The resin was placed under an atmosphere of N2 and 

treated with anhydrous DMF (2 mL), DIPEA (75 µL, 0.43 mmol), and AcCL (16 µL, 0.225 

mmol). After 1 hour of shaking the resin was washed 6 times with DMF (10 mL) and 6 

times with DCM. Cleavage was affected by addition of a solution of 10% TFA, 10% TIPS 

in DCM (10 mL). After shaking for 6 hours the cleavage mixture was flitered. The resin 

was rinsed 3 times with DCM (3 mL) and the combined filtrates were concentrated to 

dryness by rotary evaporation under vacuum. To ensure full recovery of the product the 

resin was soaked in THF:MeOH (10 mL), and after filtering this was combined with the 

rest of the cleavage product and again evaporated to dryness.  The crude cleavage 

product was disolved in THF:MeOH (2 mL) and treated with a slurry of 10 % Pd/C (20 mg) 

in a 25 % aqueous solution  ammonium formate (300 µL) under N2. After 1 hour the Pd/C 

was removed by filtering through a plug of celite. Preparative HPLC (see general Prep 

HPLC method) and lyophilization, afforded 6.5 mg of 38 as a beige amorphous solid (38 

% yield). 1H NMR (DMSO-d6, 400 MHz) δ 12.51 (2H, brs), 11.25 (1H, s), 9.73 (1H, s), 8.52 

(1H, brs), 7.70 (1H, s), 7.21 (1H, s), 4.49-4.30 (2H, m), 4.18-3.93 (3H, m), 3.91-3.80 (1H, 

m), 2.43-2.35 (2H, m), 2.21-2.04 (4H, m), 1.97-1.86 (1H, m). 13C NMR (observed by 

DEPT-ed-HSQC) (DMSO-d6, 100 MHz) δ 102.2 (CH), 98.8 (CH), 53.1 (CH2), 51.3 (CH), 

47.2 (CH2), 41.7 (CH), 30.1 (CH2), 26.1 (CH2), 23.9 (CH3). HRMS (ES+) calculated for 

C19H21ClN3O7 438.1063 (M+H)+ found 438.1053. 
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(39): H-Lys(Boc)-2ClTrt resin (53.0 mg, 0.039 mmol Lys, [manufacturer’s resin loading 

0.73 mmol/g]) was prepared for coupling by swelling in DCM for 30 mins followed by DMF 

for a further 30 mins. 11 (25.0 mg, 0.043 mmol) was disolved in 2 mL of DMF and treated 

with HATU (13.0 mg, 0.043 mmol) and DIPEA (16 µL, 0.086 mmol). After 10 secs the 

resulting solution was added to the resin and the mixture shaken overnight. The resin was 

washed 6 times with DMF (10 mL) and removal of the Fmoc protection of the indoline 

nitrogen affected with piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 mins twice). 

Following Fmoc deprotection the resin was washed 6 times with DMF (10 mL) and 3 times 

with anhydrous DMF (10 mL). The resin was placed under an atmosphere of N2 and 

treated with anhydrous DMF (2 mL), DIPEA (75 µL, 0.43 mmol), and AcCL (16 µL, 0.225 

mmol). After 1 hour of shaking the resin was washed 6 times with DMF (10 mL) and 6 

times with DCM. Cleavage was affected by addition of a solution of 10% TFA, 10% TIPS 

in DCM (10 mL). After shaking for 2 hours the cleavage mixture was flitered. The resin 

was rinsed 3 times with DCM (3 mL) and the combined filtrates were concentrated to 

dryness by rotary evaporation under vacuum. To ensure full recovery of the product the 

resin was soaked in THF:MeOH (10 mL), and after filtering this was combined with the 

rest of the cleavage product and again evaporated to dryness.  The crude cleavage 

product was disolved in THF:MeOH (2 mL) and treated with a slurry of 10 % Pd/C (20 mg) 

in a 25 % aqueous solution  ammonium formate (300 µL) under N2. After 1 hour the Pd/C 

was removed by filtering through a plug of celite. Preparative HPLC (see general Prep 

HPLC method) and lyophilization, afforded 3.3 mg of 39 as a beige amorphous solid (19 

% yield). 1H NMR (DMSO-d6, 400 MHz) δ 12.79 (1H brs), 11.28 (1H, s), 9.79 (1H, s), 8.54 

(1H, d, J=8.3), 7.73-7.69 (2H, brs), 7.71 (1H, s), 7.22 (1H, s), 4.46-4.38 (1H, m), 4.37-4.28 

(1H, m), 4.14-3.95 (3H, m), 3.91-3.83 (1H, m), 2.82-2.76 (2H, m), 2.16 (3H, s), 1.86-1.74 

(2H m), 1.60-1.54 (2H, m), 1.47-1.41 (2H m). 13C NMR (observed by DEPT-ed-HSQC) 

(DMSO-d6, 100 MHz) δ 102.2 (CH), 98.8 (CH), 53.0 (CH2), 51.6 (CH), 47.2 (CH2), 41.5 
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(CH), 38.4 (CH2), 30.3 (CH2), 26.3 (CH2), 24.0 (CH3), 22.5 (CH2). HRMS (ES+) calculated 

for C20H26ClN4O5 437.1586 (M+H)+ found 437.1593. 

 

 

(44): H-Lys(Boc)-2ClTrt resin (53.0 mg, 0.039 mmol Lys, [manufacturer’s resin loading 

0.73 mmol/g]) was prepared for coupling by swelling in DCM for 30 mins followed by DMF 

for a further 30 mins. 11 (25.0 mg, 0.043 mmol) was disolved in 2 mL of DMF and treated 

with HATU (13.0 mg, 0.043 mmol) and DIPEA (16 µL, 0.086 mmol). After 10 secs the 

resulting solution was added to the resin and the mixture shaken overnight. The resin was 

washed 6 times with DMF (10 mL) and removal of the Fmoc protection of the indoline 

nitrogen affected with piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 mins twice). 

Following Fmoc deprotection the resin was washed 6 times with DMF (10 mL). 5-

methoxyindole-2-carboxylic acid (38.0 mg, 0.199 mmol) was disolved in 2 mL of DMF and 

treated with HATU (73.0 mg, 0.191 mmol) and DIPEA (70 µL, 0.401 mmol). After 10 secs 

the resulting solution was added to the resin and the mixture shaken overnight. The resin 

was washed 6 times with DMF (10 mL) and 6 times with DCM. Cleavage was affected by 

addition of a solution of 10% TFA, 10% TIPS in DCM (10 mL). After shaking for 2 hours 

the cleavage mixture was flitered. The resin was rinsed 3 times with DCM (3 mL) and the 

combined filtrates were concentrated to dryness by rotary evaporation under vacuum. To 

ensure full recovery of the product the resin was soaked in THF:MeOH (10 mL), and after 

filtering this was combined with the rest of the cleavage product and again evaporated to 

dryness.  The crude cleavage product was disolved in THF:MeOH (2 mL) and treated with 

a slurry of  10 % Pd/C (30 mg) in a 25 % aqueous solution  ammonium formate (500 µL) 

under N2. After 1 hour the Pd/C was removed by filtering through a plug of celite. 

Preparative HPLC (see general Prep HPLC method) and lyophilization, afforded 4.4 mg of 

44 as a beige  amorphous solid (20 % yield). 1H NMR (DMSO-d6, 400 MHz) δ 11.56, (1H, 

s), 11.38 (1H, brs), 9.89 (1H, brs), 8.59 (1H brs), 7.76 (1H, brs), 7.59 (2H brs), 7.38 (1H, 

d, J=8.9), 7.26 (1H, s), 7.15 (1H, d, J= 2.2), 7.02 (1H, d, J=1.4), 6.89 (1H, dd, J=8.9, 2.2), 
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4.82-4.67 (1H, m), 4.51-4.39 (2H, m), 4.18-4.03 (2H, m), 3.99-3.91 (1H, m), 3.78 (3H, s), 

2.84-2.75 (2H, m), 1.92-1.74 (2H, m), 1.64-1.55 (2H, m), 1.49-1.42 (2H, m). 13C NMR 

(observed by DEPT-ed-HSQC) (DMSO-d6, 100 MHz) δ 114.8 (CH), 112.8 (CH), 104.5 

(CH), 102.4 (CH), 101.8 (CH), 99.5 (CH), 54.9 (CH3), 54.4 (CH2), 51.8 (CH), 47.1 (CH2), 

42.0 (CH), 38.4 (CH2), 3.3 (CH2), 26.4 (CH2), 22.4 (CH2). HRMS (ES+) calculated for 

C28H31ClN5O6 568.1957 (M+H)+ found 568.1949. 

 

(47): H-Ser(tBu)-2ClTrt resin (56.0 mg, 0.039 mmol Lys, [manufacturer’s resin loading 

0.76 mmol/g]) was prepared for coupling by swelling in DCM for 30 mins followed by DMF 

for a further 30 mins. 11 (25.0 mg, 0.043 mmol) was disolved in 2 mL of DMF and treated 

with HATU (13.0 mg, 0.043 mmol) and DIPEA (16 µL, 0.086 mmol). After 10 secs the 

resulting solution was added to the resin and the mixture shaken overnight. The resin was 

washed 6 times with DMF (10 mL) and removal of the Fmoc protection of the indoline 

nitrogen affected with piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 mins twice). 

Following Fmoc deprotection the resin was washed 6 times with DMF (10 mL). 5-

methoxyindole-2-carboxylic acid (38.0 mg, 0.199 mmol) was disolved in 2 mL of DMF and 

treated with HATU (73.0 mg, 0.191 mmol) and DIPEA (70 µL, 0.401 mmol). After 10 secs 

the resulting solution was added to the resin and the mixture shaken overnight. The resin 

was washed 6 times with DMF (10 mL) and 6 times with DCM. Cleavage was affected by 

addition of a solution of 20% TFA, 10% TIPS in DCM (10 mL). After shaking overnight the 

cleavage mixture was flitered. The resin was rinsed 3 times with DCM (3 mL) and the 

combined filtrates were concentrated to dryness by rotary evaporation under vacuum. To 

ensure full recovery of the product the resin was soaked in THF:MeOH (10 mL), and after 

filtering this was combined with the rest of the cleavage product and again evaporated to 

dryness.  The crude cleavage product was disolved in THF:MeOH (2 mL) and treated with 

a slurry of  10 % Pd/C (20 mg) in a 25 % aqueous solution  ammonium formate (300 µL) 

under N2. After 1 hour the Pd/C was removed by filtering through a plug of celite. 

Preparative HPLC (see general Prep HPLC method) and lyophilization, afforded 3.3 mg of 
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47 as a beige amorphous solid (16 % yield). 1H NMR (DMSO- d6, 400 MHz) δ 11.54 (1H, 

s), 11.43 (1H, s), 9.80 (1H, s), 8.52 (1H, d, J=7.4), 7.77 (1H, brs), 7.38 (1H, d, J= 8.6), 

7.29 (1H, d, J=1.4), 7.15 (1H, d, J=2.3), 7.02 (1H, d, J=1.3), 7.89 (1H, dd, J= 8.6, 2.3), 

4.79-4.71 (1H, m), 4.57-4.50 (1H, m), 4.47-4.37 (1H, m), 4.17-4.04 (2H, m), 3.99-3.89 

(1H, m), 3.82-3.76 (2H, m), 3.78 (3H, s). 13C NMR (observed by DEPT-ed-HSQC) (DMSO-

d6, 100 MHz) δ 114.6 (CH), 112.8 (CH), 104.2 (CH), 102.4 (CH), 101.7 (CH), 99.5 (CH), 

61.1 (CH2), 55.0 (CH3), 54.8 (CH), 54.4 (CH2), 47.0 (CH2), 42.0 (CH). HRMS (ES-) 

calculated for C25H22ClN4O7 525.1182  (M-H)- found 525.1187. 

 

(46): H-Ala-2ClTrt resin (58.0 mg, 0.039 mmol Ala, [manufacturer’s resin loading 0.72 

mmol/g]) was prepared for coupling by swelling in DCM for 30 mins followed by DMF for a 

further 30 mins. 11 (25.0 mg, 0.043 mmol) was disolved in 2 mL of DMF and treated with 

HATU (13.0 mg, 0.043 mmol) and DIPEA (16 µL, 0.086 mmol). After 10 secs the resulting 

solution was added to the resin and the mixture shaken overnight. The resin was washed 

6 times with DMF (10 mL) and removal of the Fmoc protection of the indoline nitrogen 

affected with piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 mins twice). Following 

Fmoc deprotection the resin was washed 6 times with DMF (10 mL). 5-methoxyindole-2-

carboxylic acid (38.0 mg, 0.199 mmol) was disolved in 2 mL of DMF and treated with 

HATU (73.0 mg, 0.191 mmol) and DIPEA (70 µL, 0.401 mmol). After 10 secs the resulting 

solution was added to the resin and the mixture shaken overnight. The resin was washed 

6 times with DMF (10 mL) and 6 times with DCM. Cleavage was affected by addition of a 

solution of 1% TFA, 10% TIPS in DCM (10 mL). After shaking for 2 hours the cleavage 

mixture was flitered. The resin was rinsed 3 times with DCM (3 mL) and the combined 

filtrates were concentrated to dryness by rotary evaporation under vacuum. To ensure full 

recovery of the product the resin was soaked in THF:MeOH (10 mL), and after filtering this 

was combined with the rest of the cleavage product and again evaporated to dryness.  

The crude cleavage product was disolved in THF:MeOH (2 mL) and treated with a slurry 

of  10 % Pd/C (20 mg) in a 25 % aqueous solution  ammonium formate (300 µL) under N2. 
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After 1 hour the Pd/C was removed by filtering through a plug of celite. Reverse phase 

flash chromtography (see general reverse phase flash chromotography method) and 

lyophilization, afforded 7.0 mg of 46 as a beige amorphous solid (35 % yield). 1H NMR 

(DMSO-d6, 400 MHz) δ 12.67 (1H, Brs), 11.5 (1H, s), 11.32 (1H, s), 9.82 (1H, s), 8.62, 

(1H, d, J=7.0), 7.76 (1H, brs), 7.38 (1H, d, J=8.9), 7.27 (1H, s), 7.15 (1H, s), 7.02 (1H, s), 

6.89 (1H, d, J=8.9), 4.81-4.71 (1H, m), 4.50-4.39 (2H, m), 4.16-4.06 (2H, m), 3.98-3.91 

(1H, m), 3.78 (3H, s), 1.42 (3H, d, J=7.3). 13C NMR (observed by DEPT-ed-HSQC) 

(DMSO-d6, 100 MHz) δ 114.7 (CH), 112.7 (CH), 104.4 (CH), 102.2 (CH), 101.8 (CH), 99.5 

(CH), 54.9 (CH3), 54.4 (CH2), 47.5 (CH), 46.9 (CH2), 42.0 (CH), 16.9 (CH3). HRMS (ES-) 

calculated for C25H22ClN4O6 509.1233 (M-H)- found 509.1234. 

 

(48): Rink amide MBHA resin (107.0 mg, 0.039 mmol, [manufacturer’s resin loading 0.36 

mmol/g]) was prepared for coupling by swelling in DCM for 30 mins followed by DMF for a 

further 30 mins, and treatment with piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 

mins twice). The resin was washed 6 times with DMF (10 mL). Fmoc-Ala-OH (121.0 mg, 

0.39 mmol), was disolved in 2 mL of DMF and treated with HBTU (133.0 mg, 0.39 mmol), 

HOBt.H2O (54.0 mg, 0.39 mmol) and DIPEA (135 µL, 0.78 mmol). After 30 secs the 

solution was added to the resin and shaken for 45 mins. The coupling was repeated and 

the resin washed 6 times with DMF (10 mL) prior to Fmoc deprotection with piperidine in 

DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 mins twice). Following Fmoc deprotection the 

resin was wash a further 6 times with DMF (10 mL).  11 (25.0 mg, 0.043 mmol) was 

disolved in 2 mL of DMF and treated with HATU (13.0 mg, 0.043 mmol) and DIPEA (16 

µL, 0.086 mmol). After 10 secs the resulting solution was added to the resin and the 

mixture shaken overnight. The resin was washed 6 times with DMF (10 mL) and removal 

of the Fmoc protection of the indoline nitrogen affected with piperidine in DMF (3 mL 40 % 

10 mins, 3 mL 20 % 5 mins twice). Following Fmoc deprotection the resin was washed 6 

times with DMF (10 mL). 5-methoxyindole-2-carboxylic acid (38.0 mg, 0.199 mmol) was 

disolved in 2 mL of DMF and treated with HATU (73.0 mg, 0.191 mmol) and DIPEA (70 

µL, 0.401 mmol). After 10 secs the resulting solution was added to the resin and the 
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mixture shaken overnight. The resin was washed 6 times with DMF (10 mL) and 6 times 

with DCM. Cleavage was affected by addition of a solution of 47 % TFA, 47 % DCM, 3 % 

TIPS and 3 % H2O (10 mL). After shaking for 2 hours the cleavage mixture was flitered. 

The resin was rinsed 3 times with DCM (3 mL) and the combined filtrates were 

concentrated to dryness by rotary evaporation under vacuum. The crude cleavage product 

was disolved in THF:MeOH (2 mL) and treated with a slurry of 10 % Pd/C (20 mg) in a 25 

% aqueous solution  ammonium formate (300 µL) under N2. After 1 hour the Pd/C was 

removed by filtering through a plug of celite. Flash chromatography (silica gel, 7 x 1 cm, 

10 % MeOH in DCM) and trituration with hexane, afforded 6.8 mg of 48 as a beige 

amorphous solid (34 % yield). 1H NMR (DMSO-d6, 400 MHz) δ 11.54 (1H, s), 11.35 (1H, 

s), 9.82 (1H, s), 8.46 (1H, d, J=7.6), 7.76 (1H, brs), 7.47 (1H, brs), 7.38 (1H, d, J= 8.9), 

7.27 (1H, d, J= 2.0), 7.15 (1H, d, J=2.3), 7.04 (1H, brs), 7.02 (1H, s), 6.89 (1H, dd, J= 8.9, 

2.3), 4.80-4.72 (1H, m), 4.51-4.40 (2H, m), 4.16-4.06 (2H, m), 3.98-3.89 (1H, m), 3.78 

(3H, s), 1.35 (3H, d, J=7.1). 13C NMR (observed by DEPT-ed-HSQC) (DMSO-d6, 100 

MHz) δ 114.7 (CH), 112.8 (CH), 104.4 (CH), 102.3 (CH), 101.8 (CH), 99.3 (CH), 54.9 

(CH3), 54.4 (CH2), 48.0 (CH), 47.1 (CH2), 41.9 (CH) 18.0 (CH3). HRMS (ES+) calculated 

for C25H25ClN5O5  510.1539 (M+H)+ found 510.1533. 

 

(49): H-Ala-2ClTrt resin (58.0 mg, 0.039 mmol Ala, [manufacturer’s resin loading 0.72 

mmol/g]) was prepared for coupling by swelling in DCM for 30 mins followed by DMF for a 

further 30 mins. 11 (25.0 mg, 0.043 mmol) was disolved in 2 mL of DMF and treated with 

HATU (13.0 mg, 0.043 mmol) and DIPEA (16 µL, 0.086 mmol). After 10 secs the resulting 

solution was added to the resin and the mixture shaken overnight. The resin was washed 

6 times with DMF (10 mL) and removal of the Fmoc protection of the indoline nitrogen 

affected with piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 mins twice). Following 

Fmoc deprotection the resin was washed 6 times with DMF (10 mL). 5-methoxyindole-2-
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carboxylic acid (38.0 mg, 0.199 mmol) was disolved in 2 mL of DMF and treated with 

HATU (73.0 mg, 0.191 mmol) and DIPEA (70 µL, 0.401 mmol). After 10 secs the resulting 

solution was added to the resin and the mixture shaken overnight. The resin was washed 

6 times with DMF (10 mL) and 6 times with DCM (10 mL). Cleavage was affected by 

addition of a solution of 1% TFA, 10% TIPS in DCM (10 mL). After shaking for 2 hours the 

cleavage mixture was flitered. The resin was rinsed 3 times with DCM (3 mL) and the 

combined filtrates were concentrated to dryness by rotary evaporation under vacuum. To 

ensure full recovery of the product the resin was soaked in THF:MeOH (10 mL), and after 

filtering this was combined with the rest of the cleavage product and again evaporated to 

dryness. The crude was disolved in DMF (1 mL), and treated with HATU (16.0 mg, 0.042 

mmol), and DIPEA (20 µL, 0.12 mmol). After 10 secs the resulting solution was treated 

with 3-(Dimethylamino)-1-propylamine (30 µL, 0.24 mmol) and stirred at room temperture 

for 2 hours, prior to preciptation with cold H2O (15 mL), and collection by centrifugation. 

The precipate was was disolved in THF:MeOH (2 mL) and treated with a slurry of  10 % 

Pd/C (20 mg) in a 25 % aqueous solution  ammonium formate (300 µL) under N2. After 1 

hour the Pd/C was removed by filtering through a plug of celite. Reverse phase flash 

chromtography (see general reverse phase flash chromotography method) and 

lyophilization, afforded 4.0 mg of 49 as a beige amorphous solid (17 % yield). 1H NMR 

(DMSO-d6, 400 MHz) δ 11.54 (1H, s), 11.37 (1H, s), 9.91 (1H, s), 9.33 (1H, brs), 8.56 (1H, 

appt t, J=7.3), 8.21 (1H, appt q, J=5.6), 7.79 (1H, brs), 7.39 (1H, d, J=8.7), 7.28 (1H, s), 

7.16 (1H, d, J=2.3), 7.03 (1H, s), 6.90 (1H, dd, J= 8.7, 2.3), 4.81-4.72 (1H, m), 4.47-4.39 

(2H, m), 4.16-4.08 (2H, m), 3.99-3.91 (1H, m), 3.78 (3H, s), 3.21-3.12 (2H, m), 3.08-2.99 

(2H, m), 2.76 (6H, s), 1.84-1.75 (2H, m), 1.38 (3H, d, J=7.1). 13C NMR (observed by 

DEPT-ed-HSQC) (DMSO-d6, 100 MHz) δ 114.8 (CH), 112.8 (CH), 104.4 (CH), 102.6 

(CH), 101.8 (CH), 99.4 (CH), 54.9 (CH3), 54.5 (CH2), 54.3 (CH2), 48.7 (CH), 47.1 (CH2), 

42.2 (CH3), 42.0 (CH), 35.2 (CH2), 24.1 (CH2), 17.6 (CH3). HRMS (ES+) calculated for 

C30H36ClN6O5 595.2430 (M+H)+ found 595.2418. 
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(63): H-β-Ala-2ClTrt resin (106.0 mg, 0.078 mmol β-Ala, [manufacturer’s resin loading 

0.73 mmol/g]) was prepared for coupling by swelling in DCM for 30 mins followed by DMF 

for a further 30 mins. 56 (141.0 mg, 0.39 mmol) was disolved in 2 mL of DMF and treated 

with HATU (148.0 mg, 0.39 mmol) and DIPEA (135 µL, 0.78 mmol). After 10 secs the 

resulting solution was added to the resin and the mixture shaken for 6 hours. The resin 

was washed 6 times with DMF (10 mL) and removal of the Fmoc protection affected with 

piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 mins twice). Following Fmoc 

deprotection the resin was washed 6 times with DMF (10 mL). 11 (68.0 mg, 0.117 mmol) 

was disolved in 2 mL of DMF and treated with HATU (44.0 mg, 0.117 mmol) and DIPEA 

(40 µL, 0.229 mmol). After 10 secs the resulting solution was added to the resin and the 

mixture shaken overnight. The resin was washed 6 times with DMF (10 mL) and removal 

of the Fmoc protection of the indoline nitrogen affected with piperidine in DMF (3 mL 40 % 

10 mins, 3 mL 20 % 5 mins twice). Following Fmoc deprotection the resin was washed 6 

times with DMF (10 mL). 57 (48.0 mg, 0.39 mmol) was disolved in 2 mL of DMF and 

treated with HATU (148.0 mg, 0.39 mmol) and DIPEA (135 µL, 0.78 mmol). After 10 secs 

the resulting solution was added to the resin and the mixture shaken for 5 hours. This 

coupling was then repeated on the same scale with freash reagents for a further 5 hours. 

The resin was washed 6 times with DMF (10 mL) and 6 times with DCM (10 mL). 

Cleavage was affected by addition of a solution of 1% TFA, 10% TIPS in DCM (10 mL). 

After shaking for 2 hours the cleavage mixture was flitered. The resin was rinsed 3 times 

with DCM (3 mL) and the combined filtrates were concentrated to dryness by rotary 

evaporation under vacuum. To ensure full recovery of the product the resin was soaked in 

MeOH (10 mL), and after filtering this was combined with the rest of the cleavage product 

and again evaporated to dryness. The crude was disolved in DMF (1 mL), and treated 

with HATU (30.0 mg, 0.078 mmol), and DIPEA (30 µL, 0.156 mmol). After 10 secs the 

resulting solution was treated with 3-(Dimethylamino)-1-propylamine (49 µL, 0.39 mmol) 

and stirred at room temperture. After 2 hours the reaction mixture was subjected directly 

to reverse phase preparative HPLC (see general Prep HPLC method). Fractions 

containing the the desired product, were concentrated, and redisolved in MeOH (1.5 mL). 

The solution was treated with a slurry of  10 % Pd/C (20 mg) in a 25 % aqueous solution 

ammonium formate (500 µL) under N2. After 1 hour the Pd/C was removed by filtering 

through a plug of celite. Reverse phase preparative HPLC (see general Prep HPLC 

method)and lyophilization, afforded 4.7 mg of 63 as a tan amorphous solid (9 % yield). 

HRMS (ES+) calculated for C32H40O5N8Cl 651.2805 (M+H)+ found 651.2795. 
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64: H-β-Ala-2ClTrt resin (59.0 mg, 0.043 mmol β-Ala, [manufacture’s resin loading 0.73 

mmol/g]) was prepared for coupling by swelling in DCM for 30 mins followed by DMF for a 

further 30 mins. 11 (38.0 mg, 0.066 mmol) was disolved in 2 mL of DMF and treated with 

HATU (24.0 mg, 0.066 mmol) and DIPEA (23 µL, 0.13 mmol). After 10 secs the resulting 

solution was added to the resin and the mixture shaken overnight. The resin was washed 

6 times with DMF (10 mL) and removal of the Fmoc protection of the indoline nitrogen 

affected with piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 mins twice). Following 

Fmoc deprotection the resin was washed 6 times with DMF (10 mL). 56 (79.0 mg, 0.21 

mmol) was disolved in 2 mL of DMF and treated with HATU (82.0 mg, 0.21 mmol) and 

DIPEA (75 µL, 0.44 mmol). After 10 secs the resulting solution was added to the resin and 

the mixture shaken for 5 hours. This coupling was then repeated on the same scale with 

freash reagents for a further 5 hours. The resin was washed 6 times with DMF (10 mL) 

and removal of the Fmoc protection affected with piperidine in DMF (3 mL 40 % 10 mins, 

3 mL 20 % 5 mins twice). Following Fmoc deprotection the resin was washed 6 times with 

DMF (10 mL). 57 (28.0 mg, 0.21 mmol) was disolved in 2 mL of DMF and treated with 

HATU (82.0 mg, 0.21 mmol) and DIPEA (75 µL, 0.44 mmol). After 10 secs the resulting 

solution was added to the resin and the mixture shaken for 5 hours. The resin was 

washed 6 times with DMF (10 mL) and 6 times with DCM (10 mL). Cleavage was affected 

by addition of a solution of 1% TFA, 10% TIPS in DCM (10 mL). After shaking for 2 hours 

the cleavage mixture was flitered. The resin was rinsed 3 times with DCM (3 mL) and the 

combined filtrates were concentrated to dryness by rotary evaporation under vacuum. To 

ensure full recovery of the product the resin was soaked in MeOH (10 mL), and after 

filtering this was combined with the rest of the cleavage product and again evaporated to 

dryness. The crude was disolved in DMF (1 mL), and treated with HATU (17.0 mg, 0.043 
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mmol), and DIPEA (16.5 µL, 0.086 mmol). After 10 secs the resulting solution was treated 

with 3-(Dimethylamino)-1-propylamine (27 µL, 0.22 mmol) and stirred at room temperture. 

After 2 hours the reaction mixture was subjected directly to reverse phase preparative 

HPLC (see general Prep HPLC method). Fractions containing the the desired product, 

were concentrated, and redisolved in MeOH (1.5 mL). The solution was treated with a 

slurry of  10 % Pd/C (20 mg) in a 25 % aqueous solution ammonium formate (500 µL) 

under N2. After 1 hour the Pd/C was removed by filtering through a plug of celite. Reverse 

phase flash preparative HPLC (see general Prep HPLC method)and lyophilization, 

afforded 2.2 mg of 64 as a tan amorphous solid (8 % yield). HRMS (ES+) calculated for 

C32H40O5N8Cl 651.2805 (M+H)+ found 651.2796. 

 

65: H-β-Ala-2ClTrt resin (59.0 mg, 0.043 mmol β-Ala, [manufacture’s resin loading 0.73 

mmol/g]) was prepared for coupling by swelling in DCM for 30 mins followed by DMF for a 

further 30 mins. 56 (79.0 mg, 0.21 mmol) was disolved in 2 mL of DMF and treated with 

HATU (82.0 mg, 0.21 mmol) and DIPEA (75 µL, 0.44 mmol). After 10 secs the resulting 

solution was added to the resin and the mixture shaken for 5 hours. The resin was 

washed 6 times with DMF (10 mL) and removal of the Fmoc protection affected with 

piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 mins twice). Following Fmoc 

deprotection the resin was washed 6 times with DMF (10 mL). 56 (79.0 mg, 0.21 mmol) 

was disolved in 2 mL of DMF and treated with HATU (82 mg, 0.21 mmol) and DIPEA (75 

µL, 0.44 mmol). After 10 secs the resulting solution was added to the resin and the 

mixture shaken for 5 hours. The resin was washed 6 times with DMF (10 mL) and removal 

of the Fmoc protection affected with piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 

mins twice). Following Fmoc deprotection the resin was washed 6 times with DMF (10 

mL).   11 (38.0 mg, 0.066 mmol) was disolved in 2 mL of DMF and treated with HATU (24 

mg, 0.066 mmol) and DIPEA (23 µL, 0.13 mmol). After 10 secs the resulting solution was 

added to the resin and the mixture shaken overnight. The resin was washed 6 times with 

DMF (10 mL) and removal of the Fmoc protection of the indoline nitrogen affected with 
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piperidine in DMF (3 mL 40 % 10 mins, 3 mL 20 % 5 mins twice). Following Fmoc 

deprotection the resin was washed 6 times with DMF (10 mL) and 3 times with anhydrous 

DMF (10 mL). The resin was placed under an atomsphere of N2 and treated with 

anhydrous DMF (2 mL), DIPEA (75 µL, 0.43 mmol), and AcCL (16 µL, 0.225 mmol). After 

1 hour of shaking the resin was washed 6 times with DMF (10 mL) and 6 times with DCM. 

Cleavage was affected by addition of a solution of 1% TFA, 10% TIPS in DCM (10 mL). 

After shaking for 2 hours the cleavage mixture was flitered. The resin was rinsed 3 times 

with DCM (3 mL) and the combined filtrates were concentrated to dryness by rotary 

evaporation under vacuum. To ensure full recovery of the product the resin was soaked in 

MeOH (10 mL), and after filtering this was combined with the rest of the cleavage product 

and again evaporated to dryness. The crude was disolved in DMF (1 mL), and treated 

with HATU (17.0 mg, 0.043 mmol), and DIPEA (16.5 µL, 0.086 mmol). After 10 secs the 

resulting solution was treated with 3-(Dimethylamino)-1-propylamine (27 µL, 0.22 mmol) 

and stirred at room temperture. After 2 hours the reaction mixture was subjected directly 

to reverse phase preparative HPLC (see general Prep HPLC method). Fractions 

containing the the desired product, were concentrated, and redisolved in MeOH (1.5 mL). 

The solution was treated with a slurry of  10 % Pd/C (20 mg) in a 25 % aqueous solution 

ammonium formate (500 µL) under N2. After 1 hour the Pd/C was removed by filtering 

through a plug of celite. Reverse phase flash preparative HPLC (see general Prep HPLC 

method) and lyophilization, afforded 2.0 mg of 65 as a tan amorphous solid (7 % yield). 

HRMS (ES+) calculated for C34H43O6N9Cl 708.3019 (M+H)+ found 708.3014. 

5.4 Biological assays. 
 

5.4.1 MTS assay. 
 

Cell culture: The HL60 cell line was purchased from ECACC (Porton Down, UK). Cells 

were cultured in RPMI 1640 medium supplemented with 10 % foetal calf serum and 2 mM 

L-glutamine. HL-60 cells were passaged twice weekly and maintained between 1-9 x 105 

cells/ml at 37 oC and 5 % CO2. 

Antiproliferative assay: Antiproliferative activity was determined by MTS assay using the 

CellTiter 96 Aqueous One Solution Cell Proliferation Assay (Promega) and following the 

manufacturer’s instructions. Briefly, HL-60 cells (3 x 104/100 µl) were seeded in 96-well 

plates and left untreated or treated with DMSO (vehicle control), duocarmycins, or 

doxorubicin hydrochloride at 8 concentrations (see below) in triplicate for 72 hr at 37 °C 

with 5 % CO2. Following this, MTS assay reagent was added for 4 hrs and the absorbance 
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measured at 490 nm using the Polarstar Optima microplate reader (BMG Labtech). IC50 

values were calculated using GraphPad Prism Version 5.0 software. 

Concentrations tested: Compounds 35, 36, 37, 38, 39, 40, 42, 43, 44, and 47, (500 µM, 

250 µM, 100 µM, 10 µM, 1 µM, 0.1 µM, 0.01 µM, 0.001 µM). Compounds 46, 48, 49, 63, 

64, 65, and doxorubicin (100 µM, 10 µM, 1 µM, 0.1 µM, 0.01 µM, 0.001 µM, 0.0001 µM, 

0.00001 µM) 

5.4.2 DNA alkylation (thermal cleavage assay). 
 

DNA cleavage:  The MS1 DNA fragment was prepared as previously described,188 by 

cleaving the parent plasmid with HindIII and SacI and labelling the 3’-end of the HindIII 

site with α-32P[dATP] using Klenow fragment (exo-). 1.5 µL of each compound (diluted in 

10 mM Tris-HCl pH 7.5, containing 10 mM NaCl) was incubated with 1.5 µL of the 

radiolabelled DNA and incubated overnight at 37 °C. The samples were then mixed with 

an equal volume of formamide containing 10 mM EDTA and ligand specific cleavage was 

induced by heating at 100 °C for 3 minutes. Samples were loaded onto 8% denaturing 

polyacrylamide gels containing 8M urea. The dried gel was exposed to a phosphorimager 

screen and analysed using a Typhoon phosphorimager. 

5.5 DFT calculations.  
 

5.5.1 General information for DFT calculations. 
 

DFT geometry optimisations (in the gas phase) were performed on the UEA Grace high 

performance computational cluster using 12 dedicated nodes to run Gaussian09 

employing the B3YLP density functional and the 6-31G(d) basis set. Optimised structures 

were confirmed as true minima by the absence of virtual (i.e. negative) vibrational modes 

in frequency calculations and transition states were confirmed by the presence of one 

negative vibrational frequency which was inspected (Gaussview05) to confirm that it 

corresponded to the approach of a methanol molecule to the spirocyclic cyclopropane. 

Activation energies were calculated by subtracting the sum of the individual energies of 

the optimised conformations of the reactants (compound 45 and methanol) from the 

energy of the transition state. 

The transition state calculations were performed using the command line: 

# b3lyp/6-31G* opt=(TS,NOEIGENTEST,CALCALL,TIGHT) 
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For geometry optimisations, the corresponding command line was: 

# b3lyp/6-31G* opt scf=tight test gfinput iop(6/7=3) 

For frequency calculations, the corresponding command line was: 

# b3lyp/6-31G* freq scf=tight test gfinput iop(6/7=3) 

For single point calculations, the corresponding command line was: 

# b3lyp/6-31G* sp scf=tight test gfinput iop(6/7=3) 

The reaction pathway presented in Figure 3.19 was calculated from the checkpoint file 

generated by a frequency calculation, using the commands: 

# b3lyp/6-31G* IRC=(RCFC,FORWARD,MAXPOINTS=800,MAXCYCLE=800,STEPSIZE=30) 

GUESS=READ GEOM=CHECK 

and 

# b3lyp/6-31G* IRC=(RCFC,REVERSE,MAXPOINTS=800,MAXCYCLE=800, 

STEPSIZE=30) GUESS=READ GEOM=CHECK sometimes in combination with an 

allocation of additional memory (%mem=1gb). 

5.5.2 Selected bond lengths, angles and atomic coordinates for 

single point and optimised structures. 
 

Figure 3.18,  CONFORMATION a):  –1273.6307249 Ha. 

Atom NA NB NC Bond Angle Dihedral X Y Z 

C       3.0931269 2.1013942 -1.0235569 

C 1   1.54   2.3224542 1.0516837 -0.1999654 

C 2 1  1.50 114.2  2.9551139 -0.3028422 -0.1865095 

N 3 2 1 1.41 107.6 51.5 4.3026674 -0.1392725 0.1854903 

C 4 3 2 1.48 111.2 18.8 4.5203933 1.1667622 0.8529961 

C 1 2 3 1.49 60.4 -95.0 3.3234712 2.0053439 0.4447055 

C 2 1 6 1.47 120.0 121.2 0.8525363 1.0661213 -0.1821251 
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C 7 2 1 1.39 116.3 129.1 0.2227701 -0.1387116 -0.4600261 

C 8 7 2 1.45 127.8 9.4 0.8308079 -1.4548304 -0.5823534 

C 3 2 1 1.36 124.3 -131.7 2.2866199 -1.4653514 -0.426185 

C 7 2 1 1.42 136.7 -47.0 -0.166843 2.0337794 -0.0120132 

C 11 7 2 1.40 107.4 177.0 -1.3924872 1.3831677 -0.1772668 

N 8 7 2 1.36 108.6 -177.5 -1.1201231 0.0627699 -0.4573155 

C 4 3 2 1.40 125.0 -169.7 5.2793265 -1.1355719 0.1161763 

C 14 4 3 1.52 116.0 -176.4 6.6523314 -0.7617757 0.6491832 

O 9 8 7 1.24 120.5 173.2 0.1216918 -2.4662591 -0.7119776 

C 12 11 7 1.48 125.8 174.6 -2.7318011 1.9892895 0.0266472 

N 17 12 11 1.38 120.2 -163.8 -3.8463747 1.1832475 0.1607245 

C 18 17 12 1.44 131.1 -6.6 -4.0088936 -0.2443136 0.019111 

C 19 18 17 1.56 114.4 73.9 -3.4219661 -1.0791236 1.1967967 

O 20 19 18 1.43 110.0 -164.7 -3.3077089 -2.4533839 0.8138669 

O 17 12 11 1.23 119.5 13.7 -2.8343162 3.2082341 0.1203148 

O 14 4 3 1.22 122.0 4.0 5.0472807 -2.2366301 -0.3520174 

C 19 18 17 1.54 108.7 -163.8 -5.5114585 -0.5580264 -0.1241718 

O 24 19 18 1.21 123.1 3.9 -6.3607316 0.298217 -0.1813477 

O 24 19 18 1.34 114.2 -176.2 -5.7968849 -1.8664368 -0.18351 

H 10 3 2 1.08 121.5 179.7 2.7907699 -2.4203473 -0.4101745 

H 6 1 2 1.09 120.7 -111.0 2.9927355 2.7957195 1.1107969 

H 5 4 3 1.10 110.2 100.2 4.5568589 1.0349094 1.9424099 

H 5 4 3 1.09 110.6 -140.0 5.4651304 1.6116424 0.5278457 
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H 15 14 4 1.10 112.0 57.0 6.6115483 -0.4292473 1.6926182 

H 15 14 4 1.09 107.5 176.9 7.2829862 -1.6484689 0.5796757 

H 15 14 4 1.10 111.5 -63.8 7.1061023 0.0442326 0.0606636 

H 1 6 5 1.09 118.0 -160.2 2.4834925 2.9204183 -1.392079 

H 1 6 5 1.09 119.4 -11.7 3.8631028 1.7541299 -1.7083506 

H 13 8 7 1.01 120.9 173.0 -1.7530815 -0.6660511 -0.7403314 

H 11 7 2 1.08 129.0 -5.2 -0.0751378 3.0816815 0.2365104 

H 18 17 12 1.02 113.7 -174.4 -4.7210581 1.7002526 0.2049921 

H 19 18 17 1.10 111.7 -49.6 -3.5668398 -0.6129885 -0.9209048 

H 26 24 19 0.99 110.0 6.2 -4.9817957 -2.397455 -0.0232775 

H 20 19 18 1.09 110.7 -41.0 -2.4609211 -0.6717835 1.5167763 

H 20 19 18 1.09 109.8 77.9 -4.1032228 -1.0419732 2.0517773 

H 21 20 19 0.97 109.8 90.2 -2.431516 -2.6137855 0.4174663 

Figure 3.18,  CONFORMATION b):  –1273.6404232 Ha. 

Atom NA NB NC Bond Angle Dihedral X Y Z 

C       -0.3026237 1.913281 0.2823304 

C 1   1.42   0.7471881 0.9694529 0.1849251 

C 2 1  1.39 107.1  0.2054633 -0.2786238 0.4888543 

N 3 2 1 1.36 108.5 -0.4 -1.11292 -0.1190626 0.7706576 

C 4 3 2 1.37 109.4 0.5 -1.448193 1.2008596 0.6472823 

C 2 1 5 1.47 135.6 173.5 2.1489534 0.9993502 -0.257482 

C 6 2 1 1.49 115.6 175.8 2.9085551 -0.2745668 -0.0785996 

C 7 6 2 1.36 124.0 15.5 2.3259804 -1.479008 0.1621888 
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C 3 2 1 1.46 126.8 173.7 0.8779628 -1.5680568 0.3934124 

C 6 2 1 1.53 129.7 32.0 3.1725557 2.1284904 -0.1804178 

C 10 6 2 1.52 106.7 145.1 4.519583 1.4785837 0.0744852 

N 7 6 2 1.41 107.7 -162.1 4.2826615 0.0326273 -0.1507733 

C 10 6 2 1.49 61.3 -105.1 2.5575889 1.8096894 -1.5000998 

O 9 3 2 1.24 121.6 -171.1 0.2597815 -2.6346729 0.5307587 

C 12 7 6 1.39 125.1 -170.2 5.3106915 -0.9065032 -0.2249641 

C 15 12 7 1.52 116.0 -175.8 6.7252408 -0.3500853 -0.195588 

C 5 4 3 1.47 121.4 178.1 -2.8328335 1.6645914 0.8536967 

N 17 5 4 1.40 116.6 -20.2 -3.8389665 0.6981408 0.7467916 

C 18 17 5 1.46 126.5 -39.1 -3.8961874 -0.3954414 -0.2213846 

C 19 18 17 1.56 113.7 124.2 -4.0264405 -1.8063166 0.4328856 

O 20 19 18 1.42 113.9 -65.6 -2.8904339 -2.1939613 1.1975499 

O 15 12 7 1.22 122.2 4.6 5.0919905 -2.1027243 -0.3169708 

O 17 5 4 1.22 122.3 157.0 -3.0966457 2.8209689 1.1556924 

C 19 18 17 1.53 108.7 -115.8 -5.1121463 -0.1853865 -1.1252857 

O 24 19 18 1.21 124.9 -17.3 -6.0439668 0.5441407 -0.8740357 

O 24 19 18 1.35 111.6 164.8 -5.0467374 -0.9564481 -2.2327298 

H 8 7 6 1.08 121.6 177.0 2.9087976 -2.38516 0.238906 

H 10 6 2 1.09 120.9 5.5 2.9404594 3.0577502 0.3298531 

H 11 10 6 1.10 111.0 -107.3 4.8522491 1.653304 1.1062819 

H 11 10 6 1.09 112.1 131.4 5.2921603 1.852135 -0.6040742 

H 16 15 12 1.10 112.0 56.7 6.9087851 0.2578317 0.6975365 
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H 16 15 12 1.09 107.5 176.7 7.4109469 -1.1977891 -0.200231 

H 16 15 12 1.10 111.5 -64.0 6.9287219 0.2769315 -1.0716387 

H 13 10 6 1.09 118.0 103.8 1.7873383 2.4755055 -1.876821 

H 13 10 6 1.09 119.4 -108.0 3.157401 1.3190172 -2.2631394 

H 4 3 2 1.02 124.9 -171.9 -1.7266545 -0.851698 1.1402582 

H 1 5 4 1.08 124.6 179.3 -0.2733303 2.9792793 0.1031473 

H 18 17 5 1.02 110.0 -179.2 -4.7501814 1.1276708 0.8928868 

H 19 18 17 1.09 110.3 1.9 -3.0062546 -0.3858416 -0.8563509 

H 26 24 19 0.98 106.7 177.7 -5.8683278 -0.7955009 -2.7355258 

H 20 19 18 1.09 108.0 52.2 -4.8706575 -1.7806756 1.1290542 

H 20 19 18 1.10 109.0 170.0 -4.2421813 -2.5437746 -0.3485907 

H 21 20 19 0.98 111.3 -91.0 -2.2446349 -2.6812106 0.6521617 

Figure 3.18,  CONFORMATION c):  –1273.6351730 Ha. 

Atom NA NB NC Bond Angle Dihedral X Y Z 

C       -0.8194998 0.021947 0.317245 

C 1   1.41   0.5659305 0.2789649 0.2367248 

C 2 1  1.39 107.3  0.7256464 1.6557413 0.104075 

N 3 2 1 1.36 108.3 -0.1 -0.5034954 2.228542 0.0992532 

C 4 3 2 1.37 110.0 -0.4 -1.4725035 1.2618926 0.2172448 

C 2 1 5 1.47 134.5 175.2 1.7760468 -0.5461246 0.3616886 

C 6 2 1 1.49 115.4 172.3 3.0557457 0.1403527 0.0195973 

C 7 6 2 1.36 123.8 14.9 3.1822358 1.4873487 -0.099022 

C 3 2 1 1.47 125.9 -179.8 2.0059378 2.3657122 -0.018714 
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C 6 2 1 1.53 129.9 28.4 1.9838704 -2.0279258 0.0659464 

C 10 6 2 1.52 106.6 145.1 3.3944989 -2.1682484 -0.4762191 

N 7 6 2 1.41 107.6 -162.3 4.0270185 -0.855142 -0.2069908 

C 10 6 2 1.49 61.3 -104.9 1.8943443 -1.5881031 1.4876148 

O 9 3 2 1.23 121.5 -178.8 2.0546132 3.5931224 -0.1102268 

C 12 7 6 1.40 125.0 -170.2 5.3937914 -0.6191609 -0.3612073 

C 15 12 7 1.52 116.0 -175.9 6.2464742 -1.8331753 -0.692165 

C 5 4 3 1.48 115.2 177.4 -2.8577024 1.766807 0.2856425 

N 17 5 4 1.39 121.0 164.8 -3.9435121 0.9145546 0.0905345 

C 18 17 5 1.46 128.0 7.7 -3.9318964 -0.5350756 -0.0411512 

C 19 18 17 1.54 115.0 86.2 -3.9827027 -1.3115613 1.2924633 

O 20 19 18 1.41 111.1 -166.2 -3.6552326 -2.6701581 1.1028183 

O 15 12 7 1.22 122.1 4.5 5.8778375 0.4918682 -0.2299465 

O 17 5 4 1.23 119.9 -13.2 -3.0657816 2.9615546 0.4798867 

C 19 18 17 1.54 110.5 -147.8 -5.0570105 -0.9997342 -0.9811238 

O 24 19 18 1.21 122.4 -154.7 -5.5424637 -2.1087395 -0.9147223 

O 24 19 18 1.34 115.9 27.0 -5.4492353 -0.112868 -1.9076881 

H 8 7 6 1.08 121.6 178.3 4.1328443 1.9496051 -0.3215642 

H 10 6 2 1.09 121.2 5.4 1.1960392 -2.6283563 -0.3778284 

H 11 10 6 1.10 111.0 -107.3 3.3832475 -2.371644 -1.5552362 

H 11 10 6 1.09 112.1 131.4 3.9476219 -2.9712871 0.0196215 

H 16 15 12 1.10 112.0 56.8 5.9042889 -2.3392077 -1.6019599 

H 16 15 12 1.09 107.5 176.8 7.2693661 -1.4850535 -0.8381465 
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H 16 15 12 1.10 111.5 -63.9 6.2334312 -2.5674735 0.1218433 

H 13 10 6 1.09 117.9 104.1 0.9708757 -1.7851856 2.0233225 

H 13 10 6 1.09 119.4 -107.8 2.7916821 -1.5832661 2.1018482 

H 4 3 2 1.01 125.9 177.3 -0.6959561 3.221744 0.0537429 

H 1 5 4 1.08 127.0 176.8 -1.2786121 -0.9442204 0.470359 

H 18 17 5 1.02 110.4 162.9 -4.7969961 1.3411621 0.4406571 

H 19 18 17 1.09 107.4 -33.8 -3.0047916 -0.8087567 -0.5537026 

H 26 24 19 0.98 107.8 -2.4 -4.9376279 0.7105325 -1.7688255 

H 20 19 18 1.09 108.7 -48.4 -3.2372688 -0.88963 1.9729222 

H 20 19 18 1.10 109.5 69.2 -4.9734155 -1.1817395 1.7565204 

H 21 20 19 0.98 105.3 -62.0 -4.3419472 -3.019086 0.5040375 

Figure 3.18, CONFORMATION d):  –1273.6337649 Ha. 

Atom NA NB NC Bond Angle Dihedral X Y Z 

C       -0.7936302 0.0132285 0.0944784 

C 1   1.41   0.5974079 0.2609305 0.1294885 

C 2 1  1.39 107.1  0.767325 1.6422569 0.1360358 

N 3 2 1 1.36 108.2 -0.3 -0.459799 2.2202489 0.0986528 

C 4 3 2 1.37 110.3 0.0 -1.4367871 1.2603087 0.0669098 

C 2 1 5 1.47 134.8 175.7 1.7976027 -0.5813092 0.24617 

C 6 2 1 1.49 115.4 171.7 3.0975505 0.1246474 0.0436087 

C 7 6 2 1.36 123.7 15.1 3.2328009 1.4742136 0.0632152 

C 3 2 1 1.47 125.8 -179.6 2.0534382 2.3503349 0.1600423 

C 6 2 1 1.52 129.8 28.0 2.0192828 -2.0282034 -0.179227 
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C 10 6 2 1.52 106.7 144.8 3.4571517 -2.1272773 -0.6554469 

N 7 6 2 1.41 107.6 -162.2 4.077838 -0.8541657 -0.2213352 

C 10 6 2 1.49 61.3 -105.3 1.8534127 -1.7250751 1.2722758 

O 9 3 2 1.23 121.7 -178.6 2.1151532 3.5795371 0.1902114 

C 12 7 6 1.40 125.0 -170.0 5.4519511 -0.6167155 -0.2703518 

C 15 12 7 1.52 116.0 -175.9 6.3193541 -1.7997579 -0.6689525 

C 5 4 3 1.49 114.4 -178.1 -2.8203577 1.7941006 -0.0200029 

N 17 5 4 1.37 121.5 -178.6 -3.9107502 0.9604562 -0.0323995 

C 18 17 5 1.44 130.2 -7.8 -3.9835218 -0.4772208 -0.120168 

C 19 18 17 1.55 111.9 84.9 -3.8327473 -1.1493756 1.2673527 

O 20 19 18 1.44 111.3 -174.3 -3.774553 -2.581051 1.1501489 

O 15 12 7 1.22 122.1 4.6 5.9304103 0.471462 -0.0009492 

O 17 5 4 1.23 118.5 0.8 -2.9764483 3.0142856 -0.0708945 

C 19 18 17 1.55 107.9 -153.0 -5.3411431 -0.8466843 -0.7623955 

O 24 19 18 1.21 122.5 8.4 -6.0804741 -0.0183958 -1.2374561 

O 24 19 18 1.34 115.1 -171.9 -5.6341287 -2.1539145 -0.7586404 

H 8 7 6 1.08 121.7 178.3 4.1948246 1.9497609 -0.0606224 

H 10 6 2 1.09 121.2 5.3 1.2577887 -2.5778736 -0.7238044 

H 11 10 6 1.10 110.9 -107.1 3.5024645 -2.2216057 -1.7486482 

H 11 10 6 1.09 112.1 131.7 3.979498 -2.9813853 -0.2144508 

H 16 15 12 1.10 112.0 56.9 6.0316827 -2.2100229 -1.6435908 

H 16 15 12 1.09 107.5 176.8 7.3502352 -1.4480733 -0.7179798 

H 16 15 12 1.10 111.5 -63.9 6.2551364 -2.6109502 0.0658066 
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H 13 10 6 1.09 118.1 104.0 0.9026766 -1.9632908 1.7394507 

H 13 10 6 1.09 119.3 -108.0 2.7159121 -1.7878365 1.9315525 

H 4 3 2 1.01 126.8 -178.5 -0.6626239 3.2129409 0.0725004 

H 1 5 4 1.08 126.7 -179.5 -1.2656994 -0.9577935 0.0735179 

H 18 17 5 1.02 113.1 -169.2 -4.7764406 1.4382992 -0.2694653 

H 19 18 17 1.10 111.0 -36.7 -3.2040536 -0.8711158 -0.7891215 

H 26 24 19 0.99 109.5 9.9 -4.9841491 -2.6359519 -0.194528 

H 20 19 18 1.09 109.9 -50.8 -2.945626 -0.7604395 1.7758619 

H 20 19 18 1.09 110.1 68.2 -4.7050584 -0.9287089 1.8877271 

H 21 20 19 0.97 108.8 80.9 -2.8718078 -2.8375268 0.9038103 

Figure 3.18, CONFORMATION e):  –1273.6319410 Ha. 

Atom NA NB NC Bond Angle Dihedral X Y Z 

C       2.5343897 1.7167848 -1.4892072 

C 1   1.54   2.1986686 0.878682 -0.2435649 

C 2 1  1.49 114.5  3.0376048 -0.3441971 -0.077355 

N 3 2 1 1.41 107.6 51.4 4.3885029 0.048364 -0.1739012 

C 4 3 2 1.48 111.1 19.1 4.5378666 1.5051265 0.0549315 

C 1 2 3 1.49 60.4 -95.0 3.1484316 2.0698715 -0.1771438 

C 3 2 1 1.36 123.8 -131.6 2.5327613 -1.5766134 0.1864579 

C 7 3 2 1.47 120.7 -6.0 1.0982568 -1.7587539 0.4566472 

C 8 7 3 1.46 114.4 -3.0 0.3237465 -0.5163112 0.4806781 

C 9 8 7 1.39 126.3 3.0 0.8086701 0.7599238 0.2193939 

N 9 8 7 1.36 125.2 -175.1 -0.9991422 -0.4197035 0.802804 
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C 11 9 8 1.38 109.1 177.1 -1.3738419 0.9078177 0.7812797 

C 12 11 9 1.39 107.9 1.1 -0.2618764 1.6613971 0.4111179 

C 12 11 9 1.48 125.8 -175.8 -2.699574 1.437157 1.1573527 

O 14 12 11 1.22 120.9 151.4 -2.8207472 2.5697623 1.6055403 

O 8 7 3 1.23 124.0 -179.3 0.5773798 -2.8467218 0.714751 

C 4 3 2 1.39 125.0 -169.9 5.4703677 -0.8261708 -0.2704056 

O 17 4 3 1.22 122.1 4.6 5.3222621 -2.033013 -0.3610911 

C 17 4 3 1.52 116.0 -175.9 6.848788 -0.1848577 -0.2680981 

N 14 12 11 1.40 118.4 -25.0 -3.8041448 0.5901148 1.0620882 

C 20 14 12 1.46 126.3 -40.0 -4.064924 -0.3717316 -0.0033914 

C 21 20 14 1.53 112.7 -91.3 -4.8968049 0.2232507 -1.1467348 

O 22 21 20 1.34 112.8 35.7 -4.605195 1.5133579 -1.3875476 

C 21 20 14 1.55 111.4 144.2 -4.743201 -1.648054 0.543901 

O 24 21 20 1.41 112.5 -172.0 -4.8420758 -2.6623883 -0.4262368 

O 22 21 20 1.22 124.5 -144.9 -5.7282476 -0.3921748 -1.7872441 

H 7 3 2 1.08 121.7 178.6 3.1708406 -2.4433452 0.2787286 

H 6 1 2 1.09 120.7 -111.0 2.8669597 2.9822065 0.338906 

H 5 4 3 1.10 110.3 100.1 4.8737113 1.696762 1.0827437 

H 5 4 3 1.09 110.6 -140.1 5.2752522 1.9293306 -0.6329637 

H 19 17 4 1.10 112.0 56.5 7.0125218 0.4352193 0.6205026 

H 19 17 4 1.09 107.5 176.5 7.5843091 -0.9895825 -0.2848434 

H 19 17 4 1.10 111.5 -64.2 6.997513 0.4506642 -1.149037 

H 1 6 5 1.09 117.9 -160.0 1.7188402 2.3347636 -1.8517942 
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H 1 6 5 1.09 119.4 -11.9 3.1519433 1.2663947 -2.2628089 

H 11 9 8 1.01 122.4 6.4 -1.5319966 -1.2075763 1.1469423 

H 13 12 11 1.08 124.0 179.7 -0.268434 2.7377286 0.3088128 

H 20 14 12 1.02 108.9 177.4 -4.6274541 1.0841326 1.3942459 

H 21 20 14 1.09 108.9 25.6 -3.112247 -0.6682162 -0.4540629 

H 23 22 21 0.98 106.8 178.5 -5.1627788 1.7926617 -2.1392713 

H 24 21 20 1.09 108.1 -53.7 -4.1267713 -2.03608 1.3603798 

H 24 21 20 1.10 109.1 62.7 -5.7237942 -1.3806481 0.9721568 

H 25 24 21 0.97 105.9 -63.2 -5.4179134 -2.3063486 -1.1260996 

Transition state (Figure 3.19), –1389.2591938 Ha. 

Atom NA NB NC Bond Angle Dihedral X Y Z 

N       3.8695984 -1.0567495 0.2915422 

C 1   1.44   2.4598999 -0.9973829 0.0265181 

C 2 1  1.41 107.9  2.0140535 0.2996038 0.3417571 

C 3 2 1 1.49 111.2 7.8 3.1610815 1.2044939 0.6543608 

C 1 2 3 1.47 108.9 8.7 4.2767348 0.175661 0.9839147 

C 2 1 5 1.40 127.2 -170.2 1.6404865 -2.036111 -0.4397349 

C 6 2 1 1.43 119.2 -178.7 0.2523874 -1.7796217 -0.6737218 

C 7 6 2 1.44 113.3 4.3 -0.1123409 -0.3986189 -0.4772434 

C 8 7 6 1.41 127.9 -11.3 0.6566607 0.6222336 0.1072388 

N 8 7 6 1.36 122.7 -178.2 -1.3868295 0.049195 -0.6134383 

C 10 8 7 1.37 110.6 165.8 -1.5187963 1.3047203 -0.0740637 

C 11 10 8 1.40 107.3 3.3 -0.2530309 1.7056122 0.3622074 
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C 11 10 8 1.48 124.7 -164.6 -2.8124905 1.954769 0.2425999 

O 13 11 10 1.23 120.5 -167.7 -2.8602355 3.1545203 0.510923 

O 7 6 2 1.28 127.8 -173.2 -0.6569831 -2.620834 -0.9789387 

C 4 3 2 1.54 108.9 99.1 3.4860397 2.048573 -0.5927005 

O 16 4 3 1.61 110.6 116.0 3.2268306 3.6081947 -0.3022629 

C 17 16 4 1.49 116.9 -104.7 2.0032878 4.208498 -0.894832 

C 1 2 6 1.38 127.0 1.9 4.7062401 -2.1396975 0.1053145 

O 19 1 2 1.22 123.1 5.4 4.3415521 -3.1846471 -0.4136931 

C 19 1 2 1.53 116.0 -175.3 6.1483805 -1.9597682 0.5747345 

N 13 11 10 1.38 118.5 16.6 -3.9460576 1.167039 0.318569 

C 22 13 11 1.45 130.4 -7.5 -4.1413342 -0.2308473 -0.0034838 

C 23 22 13 1.53 109.6 -168.1 -5.6412418 -0.5486788 -0.0280699 

O 24 23 22 1.34 113.3 -178.7 -5.9064056 -1.8372975 -0.2925381 

C 23 22 13 1.57 116.5 68.5 -3.4317134 -1.2698231 0.9339065 

O 26 23 22 1.42 109.2 -157.6 -3.2736782 -2.4960728 0.2351305 

O 24 23 22 1.21 123.9 1.8 -6.5078124 0.2728643 0.1624302 

H 6 2 1 1.08 120.8 4.1 2.0345575 -3.031596 -0.5801364 

H 4 3 2 1.10 116.4 -138.6 3.0257071 1.8916739 1.5038107 

H 5 1 19 1.10 110.8 -76.2 4.301522 0.0220828 2.0706455 

H 5 1 19 1.09 111.4 43.9 5.2734092 0.5006575 0.6684318 

H 21 19 1 1.10 112.4 55.4 6.2109087 -1.666483 1.629149 

H 21 19 1 1.09 107.2 175.3 6.653723 -2.916673 0.4402166 

H 21 19 1 1.10 111.8 -65.9 6.6767194 -1.2001074 -0.0150948 
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H 16 4 3 1.09 113.5 2.0 2.8177127 1.8591864 -1.430338 

H 16 4 3 1.09 115.6 -128.6 4.5328006 2.0434661 -0.907656 

H 10 8 7 1.01 120.0 -14.7 -2.0750469 -0.5254534 -1.0689184 

H 12 11 10 1.08 123.1 -172.1 -0.0853875 2.6050995 0.9413504 

H 22 13 11 1.02 114.4 -178.1 -4.8021606 1.680806 0.5086505 

H 23 22 13 1.10 111.1 -54.8 -3.8231934 -0.4483857 -1.0344167 

H 25 24 23 0.99 109.8 5.2 -5.0613627 -2.3502255 -0.3378278 

H 26 23 22 1.09 110.6 -33.7 -2.4810483 -0.8756207 1.2945475 

H 26 23 22 1.10 109.3 84.6 -4.0648906 -1.4599564 1.8080126 

H 27 26 23 1.00 110.9 95.3 -2.3678855 -2.5538546 -0.1823553 

H 18 17 16 1.09 105.8 47.3 1.1917654 3.5148689 -0.6663574 

H 18 17 16 1.09 106.2 165.7 1.8595333 5.1648121 -0.3933813 

H 18 17 16 1.09 109.2 -72.9 2.1441741 4.3214503 -1.9710696 

H 17 16 4 0.98 111.8 126.7 4.0094945 4.1523419 -0.5145944 

Calculated conformation at the first reaction coordinate (Figure 3.19), –1389.3489081 Ha. 

Atom NA NB NC Bond Angle Dihedral X Y Z 

N       3.8963894 -1.1533909 0.3278373 

C 1   1.41   2.5609765 -1.0657853 -0.1023492 

C 2 1  1.50 107.6  2.1491689 0.3684039 -0.0093271 

C 3 2 1 1.53 106.4 -9.1 3.2717284 1.0930691 0.726606 

C 1 2 3 1.48 111.2 19.0 4.2817352 0.0357261 1.1255915 

C 2 1 5 1.36 127.8 -158.9 1.7410943 -2.0819666 -0.495904 

C 6 2 1 1.46 119.6 171.6 0.3267126 -1.8158137 -0.7343511 
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C 7 6 2 1.45 114.7 1.7 -0.0678927 -0.4297116 -0.5555832 

C 8 7 6 1.39 127.7 -7.5 0.6995437 0.614892 -0.0544079 

N 8 7 6 1.36 122.2 -171.8 -1.3659995 -0.0401169 -0.576726 

C 10 8 7 1.37 110.1 164.8 -1.4883271 1.2237126 -0.0566334 

C 11 10 8 1.40 107.2 2.4 -0.1975849 1.6681784 0.2574128 

C 11 10 8 1.49 124.8 -169.0 -2.7774593 1.8771849 0.2901649 

O 13 11 10 1.23 120.1 -170.0 -2.8059004 3.0696641 0.5754388 

O 7 6 2 1.25 124.8 -172.0 -0.53455 -2.6909992 -0.9563828 

C 4 3 2 1.49 61.7 106.4 3.1333393 1.3099752 -0.7367783 

O 16 4 3 3.20 87.8 126.9 3.0911227 4.4563104 -0.1443159 

C 17 16 4 1.42 112.2 -131.2 2.0143486 5.1139999 -0.8057903 

C 1 2 6 1.40 125.0 17.1 4.7366724 -2.2481148 0.1157538 

O 19 1 2 1.22 122.0 0.1 4.3632988 -3.2434128 -0.4804568 

C 19 1 2 1.52 116.1 179.3 6.1516424 -2.1178733 0.6546266 

N 13 11 10 1.38 119.1 13.6 -3.9258383 1.1072265 0.3589729 

C 22 13 11 1.45 131.0 -7.0 -4.1600743 -0.2781741 0.0176831 

C 23 22 13 1.54 109.5 -166.7 -5.6733772 -0.5443523 -0.0325087 

O 24 23 22 1.34 113.6 -178.4 -5.9858487 -1.8196971 -0.310898 

C 23 22 13 1.56 115.6 70.5 -3.5042658 -1.3302739 0.9726239 

O 26 23 22 1.43 109.4 -159.3 -3.3929371 -2.5808759 0.2962274 

O 24 23 22 1.21 123.6 1.8 -6.5083935 0.3071884 0.1554688 

H 6 2 1 1.08 121.7 -2.2 2.0873926 -3.1038393 -0.5426724 

H 4 3 2 1.08 121.3 -144.5 3.0622582 1.9090213 1.4095456 
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H 5 1 19 1.10 110.1 -77.1 4.2233025 -0.1934825 2.1980046 

H 5 1 19 1.09 110.6 42.7 5.3054691 0.3400586 0.8920694 

H 21 19 1 1.10 112.2 55.4 6.1670627 -1.8850088 1.7251182 

H 21 19 1 1.09 107.5 175.5 6.6550218 -3.0702536 0.4858737 

H 21 19 1 1.10 111.3 -65.4 6.7048214 -1.3274402 0.1335706 

H 16 4 3 1.08 116.6 106.0 2.7286899 2.2640105 -1.0496608 

H 16 4 3 1.09 119.5 -106.7 3.8517757 0.8566137 -1.4164208 

H 10 8 7 1.01 121.2 -17.3 -2.0805848 -0.630403 -0.9654031 

H 12 11 10 1.08 124.0 -178.1 0.0186461 2.6237727 0.7140283 

H 22 13 11 1.02 113.9 -176.9 -4.7693909 1.6407321 0.5534573 

H 23 22 13 1.10 111.4 -53.1 -3.8295764 -0.5004541 -1.0096826 

H 25 24 23 0.99 110.1 5.4 -5.1674826 -2.3689785 -0.3471274 

H 26 23 22 1.09 110.8 -35.4 -2.5383008 -0.9755314 1.3348872 

H 26 23 22 1.09 109.6 83.2 -4.1481449 -1.4858855 1.8440387 

H 27 26 23 0.98 110.5 94.3 -2.5061152 -2.6704057 -0.117335 

H 18 17 16 1.09 106.8 39.5 1.1488085 4.4500142 -0.7381081 

H 18 17 16 1.10 112.3 157.9 1.7529209 6.068865 -0.3281285 

H 18 17 16 1.10 112.4 -79.1 2.2253789 5.296594 -1.8696961 

H 17 16 4 0.97 123.3 97.3 3.8739658 5.022088 -0.218577 

Calculated conformation at the final reaction coordinate (Figure 3.19), –1389.2614077 Ha. 

Atom NA NB NC Bond Angle Dihedral X Y Z 

N       3.8794531 -1.0293802 0.2735111 

C 1   1.44   2.4714605 -0.9483332 0.0010539 
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C 2 1  1.41 108.3  2.0367016 0.3574962 0.303858 

C 3 2 1 1.50 110.8 5.5 3.1963646 1.2335227 0.6705503 

C 1 2 3 1.47 108.8 10.4 4.2926983 0.1804039 0.9927264 

C 2 1 5 1.40 126.2 -168.0 1.65364 -1.9941666 -0.453287 

C 6 2 1 1.43 119.3 180.0 0.264739 -1.7477687 -0.6769281 

C 7 6 2 1.44 112.9 4.0 -0.0998117 -0.369537 -0.4778359 

C 8 7 6 1.41 128.3 -11.2 0.6663925 0.6619758 0.0978638 

N 8 7 6 1.36 122.0 -177.9 -1.3825371 0.0606525 -0.600152 

C 10 8 7 1.37 110.6 165.5 -1.5262846 1.311397 -0.05928 

C 11 10 8 1.40 107.3 3.1 -0.2616241 1.7288241 0.3670495 

C 11 10 8 1.48 124.6 -165.5 -2.826416 1.9483308 0.2539843 

O 13 11 10 1.23 120.6 -167.5 -2.8871525 3.1483704 0.5198774 

O 7 6 2 1.28 127.9 -173.2 -0.6446781 -2.5951126 -0.9712262 

C 4 3 2 1.54 113.9 100.7 3.6665589 2.1581471 -0.4696555 

O 16 4 3 1.56 109.8 98.2 3.0576569 3.5772962 -0.2835737 

C 17 16 4 1.49 120.0 -98.6 1.8423586 3.9730542 -1.05113 

C 1 2 6 1.38 127.4 2.9 4.7078796 -2.1197591 0.0931721 

O 19 1 2 1.22 123.3 5.8 4.3434369 -3.1598588 -0.4355096 

C 19 1 2 1.53 116.0 -175.1 6.1469345 -1.9539272 0.5794771 

N 13 11 10 1.38 118.6 16.6 -3.9531597 1.1504306 0.3246073 

C 22 13 11 1.45 130.5 -7.4 -4.1355359 -0.249433 0.0024707 

C 23 22 13 1.53 109.6 -168.2 -5.6325597 -0.5798669 -0.0252427 

O 24 23 22 1.34 113.3 -178.6 -5.8858435 -1.870901 -0.2895648 
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C 23 22 13 1.57 116.5 68.3 -3.4191013 -1.2829039 0.9409944 

O 26 23 22 1.42 109.2 -157.6 -3.2491199 -2.5072778 0.2426717 

O 24 23 22 1.21 123.9 1.8 -6.5069578 0.2340705 0.1629006 

H 6 2 1 1.08 120.6 3.2 2.0537772 -2.9885935 -0.583715 

H 4 3 2 1.10 115.8 -135.7 3.0492867 1.8801456 1.5490564 

H 5 1 19 1.10 110.9 -75.6 4.3003736 0.0071356 2.0771875 

H 5 1 19 1.09 111.4 44.2 5.2994295 0.4949649 0.6992711 

H 21 19 1 1.10 112.5 55.6 6.2017005 -1.6675442 1.6363544 

H 21 19 1 1.09 107.2 175.4 6.6448883 -2.9146766 0.4449709 

H 21 19 1 1.10 111.8 -65.8 6.688653 -1.19623 -0.0007507 

H 16 4 3 1.09 113.8 -19.4 3.3420564 1.8361939 -1.4609176 

H 16 4 3 1.09 114.3 -148.9 4.7365157 2.3820706 -0.4547436 

H 10 8 7 1.01 119.7 -15.4 -2.0630186 -0.5236762 -1.0547625 

H 12 11 10 1.08 122.9 -172.0 -0.1034032 2.6299267 0.9465512 

H 22 13 11 1.02 114.4 -177.9 -4.8145968 1.6567338 0.5104659 

H 23 22 13 1.10 111.1 -54.9 -3.8129042 -0.4647775 -1.0276771 

H 25 24 23 0.99 109.7 5.2 -5.0355899 -2.3757776 -0.3334545 

H 26 23 22 1.09 110.6 -33.7 -2.4720851 -0.8805819 1.3022125 

H 26 23 22 1.10 109.3 84.6 -4.0519995 -1.4777387 1.8143543 

H 27 26 23 1.00 110.7 95.1 -2.3416763 -2.5531734 -0.1756929 

H 18 17 16 1.09 106.0 53.3 1.0978912 3.1969039 -0.8580287 

H 18 17 16 1.09 105.4 171.2 1.5325512 4.9286738 -0.629348 

H 18 17 16 1.09 108.7 -67.9 2.1042973 4.0469158 -2.107724 
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H 17 16 4 0.97 110.0 132.1 3.7524534 4.2537534 -0.3830247 

 

Optimised structure starting from the conformation at the final reaction coordinate (Figure 

3.19),  –1389.2708845 Ha. 

Atom NA NB NC Bond Angle Dihedral X Y Z 

N       3.9048052 -0.7898829 0.4219128 

C 1   1.44   2.5100217 -0.7399496 0.0724818 

C 2 1  1.41 107.9  2.0150332 0.525728 0.44823 

C 3 2 1 1.50 110.3 5.4 3.1322616 1.396349 0.9465071 

C 1 2 3 1.47 108.5 13.5 4.2022531 0.3420004 1.3149026 

C 2 1 5 1.40 126.8 -164.0 1.7475337 -1.7732423 -0.4880389 

C 6 2 1 1.43 119.2 177.0 0.3478735 -1.56553 -0.7131909 

C 7 6 2 1.44 113.2 5.1 -0.0797562 -0.2219391 -0.4208722 

C 8 7 6 1.41 128.3 -10.8 0.636402 0.7982614 0.231995 

N 8 7 6 1.36 122.3 -178.6 -1.3759687 0.1703272 -0.5424219 

C 10 8 7 1.37 110.3 166.9 -1.5645337 1.3885948 0.0645409 

C 11 10 8 1.39 107.6 3.4 -0.3230159 1.8252558 0.5266091 

C 11 10 8 1.48 124.4 -165.5 -2.8917833 1.9646161 0.3909511 

O 13 11 10 1.23 120.7 -166.6 -3.0032771 3.1476205 0.7056906 

O 7 6 2 1.27 127.6 -172.4 -0.5162259 -2.4259858 -1.0834975 

C 4 3 2 1.53 111.1 94.3 3.6889412 2.2728677 -0.1744374 

O 16 4 3 1.54 108.7 49.5 2.5120985 2.971577 -0.8857905 

C 17 16 4 1.49 118.6 -98.6 1.9992003 2.3889499 -2.1612404 

C 1 2 6 1.38 126.9 6.0 4.7870731 -1.8229881 0.1677052 
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O 19 1 2 1.22 122.9 9.0 4.5060349 -2.7772707 -0.5427474 

C 19 1 2 1.53 116.1 -171.9 6.1651581 -1.7035029 0.8136553 

N 13 11 10 1.38 118.4 17.6 -3.9873202 1.1200461 0.4192522 

C 22 13 11 1.45 130.6 -8.1 -4.1179332 -0.267661 0.0290312 

C 23 22 13 1.53 109.6 -168.0 -5.6024077 -0.649406 -0.0233345 

O 24 23 22 1.34 113.3 -178.6 -5.8088871 -1.9345903 -0.3512245 

C 23 22 13 1.57 116.5 68.6 -3.3683125 -1.3185729 0.9198817 

O 26 23 22 1.42 109.2 -157.5 -3.1498465 -2.5014426 0.1630513 

O 24 23 22 1.21 123.9 1.8 -6.5058718 0.1229969 0.1976993 

H 6 2 1 1.08 120.8 1.5 2.185404 -2.7410396 -0.6837645 

H 4 3 2 1.10 115.1 -141.0 2.8816579 2.0293766 1.8061724 

H 5 1 19 1.10 111.1 -79.7 4.0695295 0.0599587 2.3680452 

H 5 1 19 1.09 111.3 40.9 5.2307712 0.6936657 1.1834757 

H 21 19 1 1.10 112.3 54.7 6.1051242 -1.561905 1.8989626 

H 21 19 1 1.09 107.2 174.5 6.7021006 -2.6289752 0.6030409 

H 21 19 1 1.10 111.9 -66.6 6.7396335 -0.8656256 0.3992167 

H 16 4 3 1.09 112.5 -66.0 4.180237 1.6906536 -0.9557693 

H 16 4 3 1.10 116.0 164.4 4.3115599 3.1171095 0.1403216 

H 10 8 7 1.01 120.1 -13.8 -2.0334925 -0.408737 -1.0349874 

H 12 11 10 1.08 123.6 -176.9 -0.1803534 2.7377075 1.0899609 

H 22 13 11 1.02 114.2 -178.2 -4.8677704 1.5859038 0.6214236 

H 23 22 13 1.10 111.2 -54.7 -3.7847355 -0.4220974 -1.0087734 

H 25 24 23 0.99 109.8 5.2 -4.9420561 -2.4070295 -0.4146089 
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H 26 23 22 1.09 110.7 -33.6 -2.438853 -0.900824 1.3079058 

H 26 23 22 1.10 109.4 84.8 -3.9975676 -1.5826916 1.7772406 

H 27 26 23 1.00 110.8 94.3 -2.2475709 -2.4890271 -0.2610004 

H 18 17 16 1.09 105.2 52.1 1.8063861 1.3427692 -1.940107 

H 18 17 16 1.09 105.1 169.3 1.0713231 2.9211872 -2.3631919 

H 18 17 16 1.09 108.3 -69.5 2.7556009 2.5362927 -2.9342622 

H 17 16 4 0.98 110.8 131.7 2.6862042 3.927668 -0.988212 

Calculated conformation for the carboxylate (Figure 3.19), –1388.8679690 Ha. 

Atom NA NB NC Bond Angle Dihedral X Y Z 

N       -4.0754136 -0.8315955 -0.1594032 

C 1   1.43   -2.6517803 -0.9064552 -0.0645443 

C 2 1  1.39 109.8  -2.0957808 0.3415021 -0.3334885 

C 3 2 1 1.51 111.0 1.8 -3.1733736 1.3703561 -0.5922034 

C 1 2 3 1.48 109.3 5.9 -4.4613803 0.5066291 -0.6478951 

C 2 1 5 1.41 126.4 -172.5 -1.8901858 -2.0599678 0.2209308 

C 6 2 1 1.39 118.5 178.3 -0.5040102 -1.9514549 0.2382345 

C 7 6 2 1.41 118.3 1.0 0.0681742 -0.6911332 -0.0084931 

C 3 2 1 1.41 118.5 -178.9 -0.6918261 0.4714617 -0.3135223 

N 8 7 6 1.37 128.2 -179.7 1.3949313 -0.3564211 -0.0465002 

C 10 8 7 1.39 109.6 177.4 1.5273442 0.9856391 -0.3816801 

C 11 10 8 1.38 108.1 0.6 0.2592564 1.514491 -0.5461914 

C 11 10 8 1.50 127.4 -177.8 2.8027352 1.7549538 -0.5798642 

O 13 11 10 1.23 118.2 -178.7 2.7221208 2.956403 -0.8531282 
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O 7 6 2 1.37 119.2 -179.4 0.2505378 -3.0631202 0.5016624 

C 4 3 2 1.54 114.3 112.7 -3.2754005 2.4635441 0.482882 

O 16 4 3 1.41 108.7 75.1 -2.200452 3.3615073 0.3181787 

C 17 16 4 1.41 113.5 -170.3 -2.0691308 4.2804905 1.3792555 

C 1 2 3 1.37 126.9 -178.2 -4.9705116 -1.8441515 0.0697693 

O 19 1 2 1.23 123.7 2.4 -4.6463043 -2.9708016 0.4381304 

C 19 1 2 1.53 115.8 -178.0 -6.4406298 -1.4942942 -0.1525124 

N 13 11 10 1.37 119.7 2.9 4.0032616 1.1110037 -0.4876074 

C 22 13 11 1.45 128.0 -13.3 4.2673058 -0.2094993 0.0417057 

C 23 22 13 1.56 112.8 -155.3 5.7374333 -0.3765631 0.5485491 

O 24 23 22 1.27 111.2 -178.0 5.9465884 -1.5541314 0.9681888 

C 23 22 13 1.55 115.0 81.4 3.9874408 -1.3744794 -0.9388995 

O 26 23 22 1.43 107.7 -150.2 3.6073306 -2.51691 -0.1625909 

O 24 23 22 1.24 117.7 1.5 6.491267 0.6106783 0.4748883 

H 6 2 1 1.08 120.9 -0.6 -2.3692682 -3.0098852 0.4049964 

H 4 3 2 1.10 111.9 -126.2 -3.0235656 1.8884676 -1.5482537 

H 5 1 19 1.10 110.1 -66.8 -4.8434849 0.4379632 -1.6745095 

H 5 1 19 1.10 110.5 51.8 -5.2608383 0.9263892 -0.0270377 

H 21 19 1 1.10 112.3 55.9 -6.6283364 -1.1091155 -1.1617904 

H 21 19 1 1.09 107.3 176.0 -7.0182795 -2.40756 -0.0034948 

H 21 19 1 1.10 111.7 -64.8 -6.788561 -0.7349054 0.5586324 

H 16 4 3 1.10 109.8 -46.4 -3.2557567 2.0039812 1.4857373 

H 16 4 3 1.11 110.0 -164.6 -4.2365327 3.0040001 0.382686 



248 
 

H 10 8 7 1.01 123.4 -6.7 2.137441 -0.9943552 0.2032584 

H 12 11 10 1.08 124.4 179.5 0.0563265 2.5420051 -0.8016674 

H 22 13 11 1.02 116.4 -170.5 4.8354295 1.7014433 -0.4809166 

H 23 22 13 1.10 109.7 -40.5 3.6645907 -0.3742519 0.9443828 

H 26 23 22 1.09 112.6 -31.2 3.1721633 -1.1519631 -1.6332222 

H 26 23 22 1.10 110.1 89.2 4.8849042 -1.5934331 -1.5317297 

H 18 17 16 1.10 111.6 59.8 -1.9025307 3.7691224 2.3404288 

H 18 17 16 1.09 107.1 178.9 -1.2016976 4.9064094 1.1560918 

H 18 17 16 1.10 111.8 -61.7 -2.961605 4.9223089 1.4772848 

H 27 26 23 1.00 99.7 -52.3 4.3700494 -2.5471059 0.4772035 

H 15 7 6 0.98 111.2 166.0 1.1873106 -2.9158427 0.2716644 

Reaction pathway shown in Figure 3.19, obtained from IRC and reverse IRC calculations: 

FORWARD path complete. 

 

 Energies reported relative to the TS energy of       -1389.259194 

 -------------------------------------------------------------------------- 

    Summary of reaction path following 

 -------------------------------------------------------------------------- 

                        Energy    RxCoord 

   1                    0.00000   0.00000 

   2                   -0.00009   0.46471 

   3                   -0.00021   0.69872 

   4                   -0.00079   1.16341 



249 
 

   5                   -0.00218   1.64670 

   6                   -0.00451   2.13250 

   7                   -0.00768   2.61835 

   8                   -0.01155   3.10410 

   9                   -0.01608   3.58981 

  10                   -0.02128   4.07550 

  11                   -0.02720   4.56122 

  12                   -0.03384   5.04696 

  13                   -0.04114   5.53278 

  14                   -0.04399   5.71226 

  15                   -0.05194   6.19872 

  16                   -0.05994   6.68469 

  17                   -0.06725   7.16557 

  18                   -0.07308   7.64136 

  19                   -0.07602   7.98440 

  20                   -0.07833   8.39081 

  21                   -0.08017   8.85196 

  22                   -0.08166   9.32615 

  23                   -0.08290   9.80822 

  24                   -0.08393  10.28632 

  25                   -0.08481  10.76872 

  26                   -0.08557  11.25160 

  27                   -0.08624  11.73305 
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  28                   -0.08683  12.21675 

  29                   -0.08736  12.69747 

  30                   -0.08784  13.18210 

  31                   -0.08827  13.66464 

  32                   -0.08866  14.14933 

  33                   -0.08902  14.63139 

  34                   -0.08934  15.11521 

  35                   -0.08963  15.59317 

  36                   -0.08969  15.69849 

  37                   -0.08973  15.78218 

  38                   -0.08975  15.81361 

 -------------------------------------------------------------------------- 

  

 Total number of points:                   37 

 Total number of gradient calculations:  1221 

 Total number of Hessian calculations:      0 

 

 REVERSE path complete. 

  

 Energies reported relative to the TS energy of       -1389.259194 

 -------------------------------------------------------------------------- 

    Summary of reaction path following 

 -------------------------------------------------------------------------- 
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                        Energy    RxCoord 

   1                   -0.00220  -3.71856 

   2                   -0.00217  -3.68625 

   3                   -0.00211  -3.61646 

   4                   -0.00199  -3.48048 

   5                   -0.00158  -2.99724 

   6                   -0.00147  -2.87414 

   7                   -0.00109  -2.39425 

   8                   -0.00075  -1.92114 

   9                   -0.00046  -1.43652 

  10                   -0.00022  -0.95460 

  11                   -0.00006  -0.47125 

  12                    0.00000   0.00000 

 -------------------------------------------------------------------------- 

  

 Total number of points:                   11 

 Total number of gradient calculations:  1162 

 Total number of Hessian calculations:      0 
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