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Hybrid copula mixed models for combining case-control
and cohort studies in meta-analysis of diagnostic tests

Aristidis K. Nikoloulopoulos∗

Abstract

Copula mixed models for trivariate (or bivariate) meta-analysis of diagnostic test accuracy stud-

ies accounting (or not) for disease prevalence have been proposed in the biostatistics literature to

synthesize information. However, many systematic reviewsoften include case-control and cohort

studies, so one can either focus on the bivariate meta-analysis of the case control studies or the

trivariate meta-analysis of the cohort studies, as only thelatter contains information on disease

prevalence. In order to remedy this situation of wasting data we propose a hybrid copula mixed

model via a combination of the bivariate and trivariate copula mixed model for the data from the

case-control studies and cohort studies, respectively. Hence, this hybrid model can account for

study design and also due its generality can deal with dependence in the joint tails. We apply the

proposed hybrid copula mixed model to a review of the performance of contemporary diagnostic

imaging modalities for detecting metastases in patients with melanoma.

Keywords: Generalized linear mixed model; composite likelihood, maximum likelihood, sen-

sitivity/specificity/prevalence.

1 Motivating study and background

Melanoma is the least common but most deadly type of skin cancer and occurs in melanocytes, which
are cells that produce the skin pigment melanin (Jerant et al., 2000). A systematic review of published
studies byXing et al.(2011) has examined the accuracy of contemporary diagnostic imaging modal-
ities for detecting metastases in patients with melanoma and identified 60 cohort and 43 case-control
studies.

Xing et al.(2011) applied the generalized linear mixed model (GLMM), proposed byChu and Cole
(2006), to account for the association between the sensitivity and specificity across studies. However,
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it is reported in the literature that the assumption of independence between the sensitivity/specificity
with disease prevalence in the bivariate GLMM is likely to beviolated (Brenner and Gefeller, 1997;
Leeflang et al., 2009, 2013). By fitting the bivariate GLMM the information on prevalence of melanoma,
which is available only in cohort studies, has been totally neglected, and, thus an important amount
of data has been wasted.

Chu et al.(2009) extended the bivariate GLMM to a trivariate GLMM by also accounting for dis-
ease prevalence. Nevertheless, this model can only meta-analyse data from the cohort studies, since
the disease prevalence is not available in case-control studies. Very recently,Chen et al.(2015) devel-
oped a hybrid model that exploits the use of both the bivariate and trivariate GLMM for combining
case-control and cohort studies (hereafter hybrid GLMM) and applied the model to fully analyse the
systematic review of published studies inXing et al.(2011) Due to the fact that they noticed compu-
tational problems such as non-convergence and singularities, they developed a composite likelihood
(CL) method to overcome the computational difficulties on the estimation of the hybrid GLMM. The
CL method is well established in the statistical literatureas a surrogate alternative of maximum likeli-
hood (ML) when the joint likelihood is too difficult to compute (Varin, 2008; Varin et al., 2011). The
advantage of the CL approach in this application domain is that the likelihood can be derived conve-
niently under the assumption of independence between the random effects, i.e., the latent vector of
transformed sensitivity, specificity, and disease prevalence.Chen et al.(2014) proposed a CL method
even for the estimation of the GLMM to overcome practical ‘issues’ in the joint likelihood inference
such as computational difficulty caused by a double integralin the joint likelihood function. Our view
is that GLMM can only be unstable if there are too many parameters in the covariance matrix of the
random effects or too many random effects for a small sample (Demidenko, 2004), which is not the
case in this application domain.

Nikoloulopoulos(2015a,b) proposed copula mixed models for bivariate and trivariatemeta-analysis
of diagnostic test accuracy studies and made the argument for moving to the general class of cop-
ula random effects models. The copula mixed models include the bivariate and trivariate GLMMs
(Chu and Cole, 2006; Chu et al., 2009) as special cases, can also operate on the original scale of sen-
sitivity, specificity, and disease prevalence, and their estimation can be successfully approached by
ML estimation.

In this paper building in the aforementioned papers, we propose a hybrid copula mixed model to
combine case-control and cohort studies. We combine the bivariate and trivariate copula mixed model
for the data from the case-control studies and cohort studies, respectively. The hybrid copula mixed
has as special case the hybrid GLMM and features several other advantages: (a) the random effects
distributions are expressed via copulas which allow for flexible dependence modelling, different from
assuming simple linear correlation structures, normalityand tail independence (b) can also operate on
the original scale of sensitivity, specificity, and prevalence, and (c) estimation can be approached by
the ‘gold standard’ ML method.

The remainder of the paper proceeds as follows. Section2 introduces the hybrid copula mixed
model for diagnostic test accuracy (case-control and cohort) studies. An ML estimation technique
and computational details are provided in Section3. Section4 contains small-sample efficiency cal-
culations to investigate the effect of misspecifying the random effects distributions and compare the
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proposed methodology to the CL approach proposed byChen et al.(2015). In Section5 we analyse
the systematic review of the accuracy of contemporary diagnostic imaging modalities for detecting
metastases in patients with melanoma and show efficiency gains with respect to the CL approach. We
conclude with some discussion in Section6.

2 The hybrid copula mixed model

In this section we introduce the hybrid copula mixed model. Before that we provide some background
about important tools to form the hybrid copula mixed model.These are a brief introduction to
copulas in Subsection2.1, the bivariate copula mixed model in Subsection2.2, and the vine copula
mixed model in Subsection2.3.

2.1 Overview and relevant background for copulas

A copula is a multivariate cdf with uniformU(0, 1) margins (Joe, 1997, 2014; Nelsen, 2006). If F is
ad-variate cdf with univariate marginsF1, . . . , Fd, then Sklar’s (1959) theorem implies that there is a
copulaC such that

F (x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
.

The copula is unique ifF1, . . . , Fd are continuous. IfF is continuous and(Y1, . . . , Yd) ∼ F , then the
unique copula is the distribution of(U1, . . . , Ud) = (F1(Y1), . . . , Fd(Yd)) leading to

C(u1, . . . , ud) = F
(
F−1
1 (u1), . . . , F

−1
d (ud)

)
, 0 ≤ uj ≤ 1, j = 1, . . . , d,

whereF−1
j are inverse cdfs (Nikoloulopoulos and Joe, 2015). For example, ifΦd(·;R) is the MVN

cdf with correlation matrix
R = (ρjk : 1 ≤ j < k ≤ d)

and N(0,1) margins, andΦ is the univariate standard normal cdf, then the MVN copula is

C(u1, . . . , ud) = Φd

(
Φ−1(u1), . . . ,Φ

−1(ud);R
)
. (1)

In the bivariate case there are many parametric families of copulas. However, their multivariate
extensions have limited dependence structures. An approach to successfully subside this restriction
is the vine pair-copula construction (Kurowicka and Joe, 2011; Joe, 2014) which is based ond(d −
1)/2 bivariate copulas, of which some are used to summarize conditional dependence. Vine copulas
include the MVN as special case, but can also cover reflectionasymmetry and have upper/lower tail
dependence parameters being different for each bivariate margin (Joe et al., 2010). Vines require
a decision on the indexing of variables. For example, for a 3-dimensional vine copula there are3
distinct permutations:

{12, 13, 23|1}, {12, 23, 13|2}, and {13, 23, 12|3}.

For each of them, the 3-dimensional vine is decomposed on3 bivariate copulas, of which the one is
used to summarize conditional dependence; seeNikoloulopoulos(2015b) for more details.
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Table 1 provides a sufficient list of bivariate copulas for meta-analysis of diagnostic test ac-
curacy studies (Nikoloulopoulos, 2015a,b). These copula families have different strengths of tail
behaviour and tail dependence is a property to consider whenchoosing amongst different fami-
lies of copulas and the concept of upper/lower tail dependence is one way to differentiate families.
Nikoloulopoulos and Karlis(2008) have shown that it is hard to choose a copula with similar proper-
ties from real data, since copulas with similar (tail) dependence properties provide similar fit.

Table 1: Parametric families of bivariate copulas and theirKendall’s τ as a strictly increasing function of the copula
parameterθ.

Copula C−1(v|u; θ) τ

BVN Φ
(√

1− θ2Φ−1(v) + θΦ−1(u)
)

2
π arcsin(θ) , −1 ≤ θ ≤ 1

Frank −1
θ log

[
1− 1−e−θ

(v−1−1)e−θu+1

] 1− 4θ−1 − 4θ−2
∫ 0
θ

t
et−1dt , θ < 0

1− 4θ−1 + 4θ−2
∫ θ
0

t
et−1dt , θ > 0

Clayton
{
(v−θ/(1+θ) − 1)u−θ + 1

}−1/θ
θ/(θ + 2) , θ > 0

Clayton by 90
{
(v−θ/(1+θ) − 1)(1 − u)−θ + 1

}−1/θ
−θ/(θ + 2) , θ > 0

Clayton by 1801−
[{

(1− v)−θ/(1+θ) − 1
}
(1− u)−θ + 1

]−1/θ
θ/(θ + 2) , θ > 0

Claytonby 270 1−
[{

(1− v)−θ/(1+θ) − 1
}
u−θ + 1

]−1/θ
−θ/(θ + 2) , θ > 0

2.2 Bivariate copula mixed model

For each studyi, the within-study model assumes that the number of true positives Yi1 and true
negativesYi2 are conditionally independent and binomially distributedgivenX = x, whereX =

(X1, X2) denotes the bivariate latent (random) pair of (transformed) sensitivity and specificity. That
is

Yi1|X1 = x1 ∼ Binomial
(
ni1, l

−1(x1)
)
;

Yi2|X2 = x2 ∼ Binomial
(
ni2, l

−1(x2)
)
, (2)

wherel(·) is a link function.
The stochastic representation of the between studies modeltakes the form

(
F
(
X1; l(π1), δ1

)
, F

(
X2; l(π2), δ2

))
∼ C(·; θ), (3)

whereC(·; θ) is a parametric family of copulas with dependence parameterθ andF (·; l(π), δ) is the
cdf of the univariate distribution of the random effect. Thecopula parameterθ is a parameter of the
random effects model and it is separated from the univariateparameters, the univariate parametersπ1

andπ2 are the meta-analytic parameters for the sensitivity and specificity, andδ1 andδ2 express the
variability between studies. ForN studies with data(yij, nij), i = 1, . . . , N, j = 1, 2, the models in
(2) and (3) together specify a copula mixed model with joint likelihood

L(π1, π2, δ1, δ2, θ) =

N∏

i=1

∫ 1

0

∫ 1

0

2∏

j=1

g
(
yij;nij, l

−1
(
F−1(uj; l(πj), δj)

))
c(u1, u2; θ)du1du2, (4)
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where c(u1, u2; θ) = ∂2C(u1, u2; θ)/∂u1∂u2 is the copula density andg
(
y;n, π

)
=

(
n
y

)
πy(1 −

π)n−y, y = 0, 1, . . . , n, 0 < π < 1, is the binomial probability mass function (pmf). The choices
of theF

(
·; l(π), δ

)
andl are given in Table2.

Table 2: The choices of theF
(
·; l(π), δ

)
andl in the copula mixed model.

F
(
·; l(π), δ

)
l π δ

N(µ, σ) logit, probit, cloglog l−1(µ) σ
Beta(π, γ) identity π γ

2.3 Trivariate copula mixed model

For each studyi, the within-study model assumes that the number of true positivesYi1, true negatives
Yi2, and diseased personsYi3 are conditionally independent and binomially distributedgivenX = x,
whereX = (X1, X2, X3) denotes the trivariate latent (random) vector of (transformed) sensitivity,
specificity, and disease prevalence. That is

Yi1|X1 = x1 ∼ Binomial
(
ni1, l

−1(x1)
)
;

Yi2|X2 = x2 ∼ Binomial
(
ni2, l

−1(x2)
)
; (5)

Yi3|X3 = x3 ∼ Binomial
(
ni3, l

−1(x3)
)
,

wherel(·) is a link function.
The stochastic representation of the between studies modeltakes the form

(
F
(
X1; l(π1), δ1

)
, F

(
X2; l(π2), δ2

)
, F

(
X3; l(π3), δ3

))
∼ C(·; θ), (6)

whereC(·; θ) is a vine copula with dependence parameter vectorθ = (θ12, θ13, θ23|1) andF (·; l(π), δ)
is the cdf of the univariate distribution of the random effect. To be concrete, we use the permuta-
tion {12, 13, 23|1}. The theory though also apply to the other two permutations.The joint density
f123(x1, x2, x3) of the transformed latent proportions is:

f123(x1, x2, x3; π1, π2, π3, δ1, δ2, δ3, θ, θ12, θ13) =

c12

(
F
(
x1; l(π1), δ1

)
, F

(
x2; l(π2), δ2

)
; θ12

)
×

c13

(
F
(
x1; l(π1), δ1

)
, F

(
x3; l(π3), δ3

)
; θ13

) 3∏

j=1

f
(
xj ; l(πj), δj

)
, (7)

wheref(·; l(π), δ) is the density ofF .
In (7) we assume conditional independence betweenX1 andX3 givenX2, i.e., the density of

the (independence) copulaC13|2(u, v) = uv is c13|2(u, v) = 1. Here we are making the simplifying
assumption that the conditional copula does not depend onX2. We use simplified vines to keep them
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tractable for inference and model selection. The simplifying assumption, that copulas of conditional
distributions do not depend on the values of the variables which they are conditioned on, is popular
(Aas et al., 2009) and not restrictive in practice (Stober et al., 2013). Joe et al.(2010) show that in
order for a (simplified) vine copula to have (tail) dependence for all bivariate margins, it is only
necessary the non-conditional bivariate copulas to have (tail) dependence and it is not necessary for
the conditional bivariate copulas to have tail dependence.That provides the theoretical justification
for the idea of conditional independence. For more details seeNikoloulopoulos(2015b).

For N studies with data(yij, nij), i = 1, . . . , N, j = 1, 2, 3, the models in (5) and (6) together
specify a vine copula mixed model with joint likelihood

L(π1, π2, π3, δ1, δ2, δ3, θ12, θ13) =

N∏

i=1

∫ 1

0

∫ 1

0

∫ 1

0

3∏

j=1

g
(
yij;nij , l

−1
(
F−1(uj; l(πj), δj)

))
c12(u1, u2; θ12)c13(u1, u3; θ13)duj. (8)

The choices of theF
(
·; l(π), δ

)
andl are the same as in the bivariate case; see Table2.

2.4 Hybrid copula mixed model

To form the hybrid copula mixed model we combine the aforementioned models. For ease of expo-
sition, let the firstN1 studies be the case-control studies and the remainingN2 studies be the cohort
studies. A combination of the bivariate likelihood for the data fromN1 case-control studies and the
trivariate likelihood for the data fromN2 cohort studies leads to

L(π1, π2, π3, δ1, δ2, δ3, θ, θ12, θ13) =

N1∏

i=1

∫ 1

0

∫ 1

0

2∏

j=1

g
(
yij;nij , F

−1
(
uj; l(πj), δj

))
c(u1, u2; θ)duj ×

N1+N2∏

i=N1+1

∫ 1

0

∫ 1

0

∫ 1

0

3∏

j=1

g
(
yij;nij, F

−1
(
uj; l(πj), δj

))
c12(u1, u2; θ12)c13(u1, u3; θ13)duj. (9)

Our general statistical model allows for selection ofc(·; θ), c12(·; θ12) and c13(·; θ13) indepen-
dently among a variety of parametric copula families, i.e.,there are no constraints in the choices of
parametric copulas.

3 Maximum likelihood estimation and computational details

Estimation of the model parameters(π1, π2, π3, δ1, δ2, δ3, θ, θ12, θ13) can be approached by the stan-
dard ML method, by maximizing the logarithm of the joint likelihood in (9). The estimated parameters
can be obtained by using a quasi-Newton (Nash, 1990) method applied to the logarithm of the joint
likelihood. This numerical method requires only the objective function, i.e., the logarithm of the joint
likelihood, while the gradients are computed numerically and the Hessian matrix of the second order
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derivatives is updated in each iteration. The standard errors (SE) of the ML estimates can be also
obtained via the gradients and the Hessian computed numerically during the maximization process.

Numerical evaluation of the mixed joint pmf is easily done with a combination of the algorithms
in Nikoloulopoulos(2015a,b):

1. Calculate Gauss-Legendre quadrature points{uq : q = 1, . . . , nq} and weights{wq : q =

1, . . . , nq} in terms of standard uniform; see e.g.,Stroud and Secrest(1966).

2. (a) Convert from independent uniform random variables{uq1 : q1 = 1, . . . , nq} and{uq2 :

q2 = 1, . . . , nq} to dependent uniform random variables{uq1 : q1 = 1, . . . , nq} and
{C−1(uq2|uq1; θ) : q1 = q2 = 1, . . . , nq} that have distributionC(·; θ). The inverse of the
conditional distributionC(v|u; θ) = ∂C(u, v; θ)/∂u corresponding to the copulaC(·; θ)
is used to achieve this.

(b) Convert from independent uniform random variables{uq1 : q1 = 1, . . . , nq}, {uq2 : q2 =

1, . . . , nq}, and{uq3 : q3 = 1, . . . , nq} to dependent uniform random variables{vq1 =

uq1 : q1 = 1, . . . , nq},
{
vq2|q1 = C−1

12 (uq2|uq1; θ12) : q1 = q2 = 1, . . . , nq

}
, and

{
vq2q3|q1 =

C−1
13

(
C−1

23|1(uq3|uq2; θ23|1 → 0)|uq1; θ13

)
: q1 = q2 = q3 = 1, . . . , nq

}
that have vine

distributionC(·; θ12, θ13). The simulation algorithm of a C-vine copula inJoe(2011) is
used to achieve this.

3. (a) Numerically evaluate the bivariate pmf

∫ 1

0

∫ 1

0

2∏

j=1

g
(
yj;nj, F

−1
(
uj; l(πj), δj

))
c(u1, u2; θ)du1du2

in a double sum:

nq∑

q1=1

nq∑

q2=1

wq1wq2g
(
y1;n1, F

−1
(
uq1; l(π1), δ1

))
g
(
y2;n2, F

−1
(
C−1(uq2|uq1; θ); l(π2), δ2

))
.

(b) Numerically evaluate the trivariate pmf

∫ 1

0

∫ 1

0

∫ 1

0

3∏

j=1

g
(
yij;nij , F

−1
(
uj; l(πj), δj

))
c12(u1, u2; θ12)c13(u1, u3; θ13)du1du2du3

in a triple sum

nq∑

q1=1

nq∑

q2=1

nq∑

q3=1

wq1wq2wq3 g
(
y1;n1, F

−1
(
vq1; l(π1), δ1

))
g
(
y2;n2, F

−1
(
vq2|q1; l(π2), δ2

))
×

g
(
y3;n3, F

−1
(
vq2q3|q1; l(π3), δ3

))

.
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The inverse conditional copula cdfsC−1(v|u; θ) are given in Table1.
With Gauss-Legendre quadrature, the same nodes and weightsare used for different functions;

this helps in yielding smooth numerical derivatives for numerical optimization via quasi-Newton.
Our extensive comparisons with more quadrature points, show thatnq = 21 is adequate with good
precision to at least at four decimal places. The developed algorithm for the calculation of a bivariate
or a trivariate integral overcomes the convergence problems that have been reported in the literature
(Chu et al., 2009; Chen et al., 2014, 2015). Our Gauss-Legendre quadrature algorithm for hybrid
copula mixed models (including the hybrid GLMM) is stable. The crucial step is to convert from
independent to dependent quadrature points.

4 Small-sample efficiency–Misspecification

An extensive simulation study is conducted (a) to gauge the small-sample efficiency of the ML
method, and (b) to investigate in detail the misspecification of the parametric margin or family of
copulas of the random effects distributions.

To generate the data we have combined the simulation algorithms inNikoloulopoulos(2015a,b):

1. Fori = 1, . . . , N1:

(a) Simulate the study sizen from a shifted gamma distribution, i.e.,n ∼ sGamma(α =

1.2, β = 0.01, lag= 30) and round off to the nearest integer.

(b) Simulate(u1, u2) from a parametric family of copulasC(; τ); τ is converted to the copula
parameterθ via the relations in Table1.

(c) Convert to beta or normal realizations viaxj = l−1
(
F−1
j

(
uj, l(πj), δj

))
for j = 1, 2.

(d) Draw the number of diseasedn1 from aB(n, 0.43) distribution.

(e) Setn2 = n− n1, yj = njxj and then roundyj for j = 1, 2.

2. Fori = N1 + 1, . . . , N1 +N2

(a) Simulate the study sizen from a shifted gamma distribution, i.e.,n ∼ sGamma(α =

1.2, β = 0.01, lag= 30) and round off to the nearest integer.

(b) Simulate(u1, u2, u3) from a C-vineC(; τ12, τ13, τ23|1 = 0) via the algorithm in JoeJoe
(2011); τ ’s are converted toθ’s via the relations in Table1.

(c) Convert to beta or normal realizations viaxj = l−1
(
F−1
j

(
uj, l(πj), δj

))
for j = 1, 2.

(d) Set number of diseased and non-diseased asn1 = nx3 andn2 = n− n1, respectively.

(e) Setyj = njxj and then roundyj for j = 1, 2.

Tables3 and4 contain the resultant biases, root mean square errors (RMSE), and standard devia-
tions (SD) for the MLEs under different copula and marginal choices from1000 randomly generated
samples of sizeN1 = N2 = 25 from the hybrid copula mixed model with normal and beta margins,
respectively. The true (simulated) copula distributions are the Clayton and Clayton rotated by 90
degrees for theC12(; τ12) and{C(; τ), C13(; τ13)} copulas, respectively.
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Table 3: Biases, root mean square errors (RMSE) and standarddeviations (SD) for the ML estimates under different copulachoices and margins and CL estimates
under normal margins from small sample of sizesN1 = N2 = 25 simulations (103 replications) from the hybrid copula mixed model with normal margins. The true
(simulated) copula distributions are the Clayton and Clayton rotated by 90 degrees for theC12(; τ12) and{C(; τ), C13(; τ13)} copulas, respectively.

Biases scaled by 50 for the estimates under different copulaand margin choices
True model: Clayton forC12(; τ12) and Clayton rotated by 90 degrees for{C(; τ), C13(; τ13)} and normal margins
True model parameters: π1 = 0.7 π2 = 0.9 π3 = 0.7 σ1 = 1.5 σ2 = 1 σ3 = 1.5 τ12 = 0.5 τ13 = −0.5 τ = −0.5
Clayton by 0/90 Normal 0.04 -0.39 -0.29 -1.38 -4.12 0.01 0.83 0.92 -6.62

Beta -2.74 -1.96 -1.69 - - - 1.24 1.23 -5.74
BVN Normal -0.06 -0.39 -0.26 -2.72 -5.46 -3.19 4.38 -2.22 -6.47

Beta -2.74 -1.90 -1.63 - - - 4.76 -2.03 -5.04
Clayton by 180/270Normal -0.20 -0.32 -0.08 -2.20 -6.17 -3.13 7.06 -2.16 -4.97

Beta -2.96 -1.75 -1.22 - - - 7.38 -2.02 -2.84
Independence (CL)Normal -0.64 -0.15 -0.21 -6.08 -7.15 -5.01 - - -
SDs scaled by 50 for the estimates under different copula andmargin choices
True model: Clayton forC12(; τ12) and Clayton rotated by 90 degrees for{C(; τ), C13(; τ13)} and normal margins
True model parameters: π1 = 0.7 π2 = 0.9 π3 = 0.7 σ1 = 1.5 σ2 = 1 σ3 = 1.5 τ12 = 0.5 τ13 = −0.5 τ = −0.5
Clayton by 0/90 Normal 1.79 0.50 3.05 8.98 6.52 11.51 12.68 7.49 6.45

Beta 1.52 0.69 2.15 2.16 1.29 2.62 13.85 7.14 6.32
BVN Normal 1.72 0.50 2.83 8.39 6.07 9.83 8.70 6.01 7.02

Beta 1.44 0.69 2.06 2.09 1.15 2.21 9.16 5.92 6.46
Clayton by 180/270Normal 1.75 0.51 2.86 8.67 6.39 9.62 7.10 5.20 11.47

Beta 1.47 0.69 2.13 2.16 1.16 2.16 6.73 5.35 10.49
Independence (CL)Normal 2.22 0.63 3.41 7.77 5.96 9.67 - - -
RMSEs scaled by 50 for the estimates under different copula and margin choices
True model: Clayton forC12(; τ12) and Clayton rotated by 90 degrees for{C(; τ), C13(; τ13)} and normal margins
True model parameters: π1 = 0.7 π2 = 0.9 π3 = 0.7 σ1 = 1.5 σ2 = 1 σ3 = 1.5 τ12 = 0.5 τ13 = −0.5 τ = −0.5
Clayton by 0/90 Normal 1.79 0.64 3.07 9.08 7.71 11.51 12.71 7.55 9.24

Beta 3.13 2.08 2.74 - - - 13.90 7.25 8.54
BVN Normal 1.72 0.64 2.84 8.82 8.16 10.34 9.74 6.40 9.54

Beta 3.10 2.02 2.63 - - - 10.32 6.25 8.19
Clayton by 180/270Normal 1.76 0.60 2.86 8.95 8.88 10.12 10.02 5.63 12.50

Beta 3.31 1.88 2.45 - - - 9.99 5.72 10.87
Independence (CL)Normal 2.31 0.65 3.42 9.87 9.31 10.89 - - -

Clayton byα/β denotes a hybrid copula mixed with copula distributions theClayton rotated byα andβ degrees for theC12(; τ12) and{C(; τ), C13(; τ13)} copulas,

respectively.
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Table 4: Biases, root mean square errors (RMSE) and standarddeviations (SD) for the ML estimates under different copulachoices and margins and CL estimates
under beta margins from small sample of sizesN1 = N2 = 25 simulations (103 replications) from the hybrid copula mixed model with normal margins. The true
(simulated) copula distributions are the Clayton and Clayton rotated by 90 degrees for theC12(; τ12) and{C(; τ), C13(; τ13)} copulas, respectively.

Biases scaled by 50 for the estimates under different copulaand margin choices
True model: Clayton forC12(; τ12) and Clayton rotated by 90 degrees for{C(; τ), C13(; τ13)} and beta margins
True model parameters: π1 = 0.7 π2 = 0.9 π3 = 0.7 γ1 = 0.15 γ2 = 0.1 γ3 = 0.15 τ12 = 0.5 τ13 = −0.5 τ = −0.5
Clayton by 0/90 Normal 1.64 1.43 0.66 - - - 2.17 0.45 -7.40

Beta 0.00 -0.16 -0.19 -0.39 -0.58 -0.09 2.38 0.90 -7.43
BVN Normal 1.57 1.46 0.76 - - - 4.95 -2.49 -7.04

Beta 0.02 -0.09 -0.09 -0.75 -0.85 -0.72 4.98 -2.53 -6.49
Clayton by 180/270 Normal 1.45 1.47 0.82 - - - 7.12 -3.54 -6.36

Beta -0.08 -0.05 0.09 -0.62 -0.89 -0.69 7.36 -3.61 -4.93
Independence (CL) Normal 1.38 1.59 0.80 - - - - -
SDs scaled by 50 for the estimates under different copula andmargin choices
True model: Clayton forC12(; τ12) and Clayton rotated by 90 degrees for{C(; τ), C13(; τ13)} and beta margins
True model parameters: π1 = 0.7 π2 = 0.9 π3 = 0.7 γ1 = 0.15 γ2 = 0.1 γ3 = 0.15 τ12 = 0.5 τ13 = −0.5 τ = −0.5
Clayton by 0/90 Normal 1.08 0.46 1.90 7.05 8.17 8.23 11.66 9.29 6.71

Beta 1.04 0.57 1.64 1.56 1.19 2.01 12.89 9.21 6.62
BVN Normal 1.03 0.45 1.76 6.13 7.49 6.94 8.03 6.61 7.67

Beta 0.99 0.54 1.53 1.35 1.05 1.58 8.38 6.51 7.38
Clayton by 180/270 Normal 1.09 0.46 1.76 6.02 7.88 7.00 7.49 5.76 12.37

Beta 1.05 0.54 1.56 1.42 1.10 1.55 7.12 5.87 12.10
Independence (CL) Normal 1.41 0.57 2.13 5.64 7.33 6.70
RMSEs scaled by 50 for the estimates under different copula and margin choices
True model: Clayton forC12(; τ12) and Clayton rotated by 90 degrees for{C(; τ), C13(; τ13)} and beta margins
True model parameters: π1 = 0.7 π2 = 0.9 π3 = 0.7 γ1 = 0.15 γ2 = 0.1 γ3 = 0.15 τ12 = 0.5 τ13 = −0.5 τ = −0.5
Clayton by 0/90 Normal 1.96 1.50 2.01 - - - 11.86 9.30 9.99

Beta 1.04 0.59 1.65 1.61 1.33 2.01 13.11 9.26 9.95
BVN Normal 1.88 1.53 1.92 - - - 9.43 7.06 10.41

Beta 0.99 0.55 1.53 1.55 1.35 1.74 9.75 6.98 9.83
Clayton by 180/270 Normal 1.81 1.54 1.94 - - - 10.33 6.76 13.91

Beta 1.06 0.55 1.56 1.55 1.41 1.70 10.24 6.89 13.06
Independence (CL) Normal 1.97 1.69 2.28 - - - - - -

Clayton byα/β denotes a hybrid copula mixed with copula distributions theClayton rotated byα andβ degrees for theC12(; τ12) and{C(; τ), C13(; τ13)} copulas,

respectively.
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We also report these summaries for the CL estimates inChen et al.(2015) to allow for a com-
prehensive comparison. InChen et al.(2015) it has been assumed that the associationτ12 between
sensitivity and specificity for cohort studies is the same asthe associationτ between sensitivity and
specificity for case-control studies, i.e.,τ = τ12. This is a strong assumption given the fact that the
sensitivity/specificity depends on disease prevalence in cohort studies, thus the association between
sensitivity and specificity is likely to be affected. In our simulations we emphasize that by allowing
heterogeneity in association in cohort and case control studies. Any comparison of the likelihood
methods in terms of computing time is a digression and not included here. It is obvious that the CL
method is faster than the ML method and not in need of a comparison, since the idea is to replace a
numerically more difficult high-dimensional probability calculation with a much simpler probability
calculation assuming independence among random effects.

Conclusions from the values in the tables are the following:

• ML with the true hybrid copula mixed model is highly efficientaccording to the simulated
biases and standard deviations.

• The CL method yields estimates that are almost as good as the ML estimates for the meta-
analytic parameters under the assumption of normal margins.

• The CL method slightly underestimates the between-studiesvariability parameters.

• The ML estimates of the meta-analytic parameters are slightly underestimated under copula
misspecification.

• The SDs are rather robust to the copula misspecification.

• The meta-analytic ML and CL estimates are not robust to the margin misspecification, while
the ML estimate ofτ is.

The meta-analytic parameters are a univariate inference, and hence it is the univariate marginal
distribution that matters and not the type of the copula; seealsoNikoloulopoulos(2015a,b). Chen et al.
(2015) constraint themselves to normal margins; this it is too restrictive and as shown in Table4 leads
to overestimation of the meta-analytic parameters when thetrue univariate distribution of the latent
sensitivity, specificity, and disease prevalence is beta.

5 Systematic review of modern diagnostic imaging modalities for surveillance
of melanoma patients

To assess the diagnostic imaging modalities for the surveillance of melanoma patients we apply hybrid
copula mixed models. The diagnostic modalities under investigation are ultrasonography (US) for
regional lymph node metastasis (N1 = 6, N2 = 15) and positron emission tomography (PET) for
both regional (N1 = 5, N2 = 17) and distant (N1 = 15, N2 = 15) lymph node metastasis. We fit the
hybrid copula mixed model for all different permutations, choices of parametric families of copulas
and margins. To make it easier to compare strengths of dependence, we convert fromθ’s to τ ’s via
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the relations in Table1. Since the number of parameters is the same between the models, we use
the maximized log-likelihood that corresponds to the estimates as a rough diagnostic measure for
goodness of fit between the models. We also estimate the modelparameters with the CL method in
Chen et al.(2015). Finally, we demonstrate summary receiver operating characteristic (SROC) curves
and summary operating points (a pair of average sensitivityand specificity) with a confidence region
and a predictive region (Nikoloulopoulos, 2015a).

In Table5 we report the resulting maximized log-likelihoods, estimates, and standard errors of
the hybrid copula mixed models with different choices of parametric families of copulas and margins
for the US modality to diagnose regional lymph node metastasis. All models roughly agree on the
estimated sensitivitŷπ1 and specificityπ̂2, but the estimate of disease prevalence is higher when
beta margins are assumed. In fact, the log-likelihoods showthat a hybrid copula mixed with copula
distributions the Clayton rotated by 180 and 270 degrees fortheC13(; τ13) and{C(; τ), C12(; τ12)}
copulas, respectively, and beta margins provides the best fit. It is also provides better inferences
than a hybrid copula-based mixed model with independence among the random effects since the
likelihood has been improved by6.9 = −190.98 − (−197.88) units. This is also confirmed by a
likelihood ratio test (p-value≤ 0.001). Hence apparently, the CL method in Chen et al.Chen et al.
(2015) underestimates the disease prevalence of metastases. This has also to do with the incorrect
assumption of a normal margin in addition to the assumption of independence among random effects.
Figure1 shows the fitted SROC curves along with their confidence and prediction regions for the best
fitted hybrid copula mixed model with beta margins for both case-control and cohort studies.

Cohort studies Case-Control studies
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Figure 1: Contour plots (predictive region) and quantile regression curves from the hybrid copula mixed model with
copula distributions the Clayton rotated by 180 and 270 degrees for theC13(; τ13) and {C(; τ), C13(; τ13)} copulas,
respectively and beta margins for the US modality to diagnose regional lymph node metastasis. Red and green lines
represent the quantile regression curvesx1 := x̃1(x2, q) andx2 := x̃2(x1, q), respectively; forq = 0.5 solid lines and
for q ∈ {0.01, 0.99} dotted lines (confidence region).

In Table6 we report the resulting maximized log-likelihoods, estimates, and standard errors of
the hybrid copula mixed models with different choices of parametric families of copulas and margins
for the PET modality to diagnose regional lymph node metastasis. All models roughly agree on the
estimated sensitivitŷπ1, and disease prevalenceπ̂3, but the estimatêπ2 of specificity is smaller when
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Table 5: Maximised ML and CL log-likelihoods, estimates andstandard errors (SE) of the hybrid copula mixed models
with different choices of parametric families of copulas and margins for the US modality to diagnose regional lymph node
metastasis.

Normal margins
BVN Frank Cln 180/270 Cln 180/90 Cln 0/270 Cln 0/90 CL

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE
π1 0.68 0.11 0.69 0.10 0.71 0.10 0.68 0.11 0.74 0.09 0.64 0.13 0.68 0.11
π2 0.98 0.01 0.98 0.01 0.98 0.01 0.98 0.01 0.98 0.01 0.98 0.01 0.98 0.01
π3 0.19 0.06 0.15 0.06 0.15 0.05 0.15 0.05 0.13 0.05 0.18 0.09 0.15 0.08
σ1 1.94 0.37 1.91 0.37 1.97 0.42 2.01 0.43 1.92 0.41 2.03 0.43 1.97 0.14
σ2 1.54 0.37 1.54 0.36 1.53 0.35 1.56 0.41 1.53 0.35 1.53 0.38 1.42 0.06
σ3 2.53 0.57 2.59 0.57 2.56 0.55 2.56 0.55 2.57 0.56 2.54 0.57 2.58 0.15
τ12 -0.26 0.16 -0.31 0.17 -0.28 0.17 -0.21 0.19 -0.28 0.16 -0.21 0.16 0.00 -
τ13 0.01 0.16 -0.05 0.20 -0.15 0.17 -0.13 0.24 -0.25 0.11 0.09 0.16 0.00 -
τ -0.40 0.34 -0.37 0.35 -0.47 0.30 -0.22 0.46 -0.46 0.31 -0.23 0.43 0.00 -

logL -194.38 193.94 -193.59 -194.96 -193.05 -195.22 -197.88

Beta margins
BVN Frank Cln 180/270 Cln 180/90 Cln 0/270 Cln 0/90

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE
π1 0.61 0.07 0.61 0.07 0.63 0.07 0.61 0.07 0.63 0.07 0.60 0.08
π2 0.95 0.02 0.96 0.01 0.95 0.01 0.95 0.02 0.95 0.01 0.95 0.02
π3 0.28 0.05 0.27 0.06 0.26 0.07 0.26 0.05 0.29 0.06 0.27 0.06
γ1 0.36 0.07 0.36 0.07 0.38 0.08 0.38 0.08 0.36 0.07 0.37 0.08
γ2 0.10 0.04 0.09 0.04 0.09 0.04 0.10 0.05 0.09 0.04 0.10 0.05
γ3 0.35 0.09 0.36 0.08 0.35 0.08 0.35 0.08 0.35 0.08 0.36 0.09
τ12 -0.27 0.16 -0.32 0.16 -0.30 0.16 -0.19 0.16 -0.30 0.16 -0.19 0.17
τ13 -0.04 0.18 -0.01 0.14 -0.19 0.12 -0.16 0.14 -0.08 0.15 0.00 0.16
τ -0.42 0.33 -0.38 0.34 -0.49 0.29 -0.25 0.43 -0.48 0.29 -0.23 0.44

logL -191.98 -191.68 -190.98 -192.68 -191.24 -192.95

Cln α/β denotes a hybrid copula mixed with copula distributions theClayton rotated byα andβ degrees for the

C13(; τ13) and{C(; τ), C12(; τ12)} copulas, respectively.

beta margins are assumed. The log-likelihoods show that a hybrid copula mixed model with Frank
copulas and normal margins provides the best fit. It is also provides better inferences than a hybrid
copula-based mixed model with independence among the random effects since the likelihood has been
improved by3.86 = −154.12 − (−157.98) units. This is also confirmed by a likelihood ratio test
(p-value= 0.005). Figure2 shows the fitted SROC curves along with their confidence and prediction
regions for the best fitted hybrid copula mixed model with normal margins for both case-control and
cohort studies.

Comparing the results in Tables5 and6 for the surveillance of regional lymph node metastasis,
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Table 6: Maximised ML and CL log-likelihoods, estimates andstandard errors (SE) of the hybrid copula mixed models
with different choices of parametric families of copulas and margins for the PET modality to diagnose regional lymph
node metastasis.

Normal margins
BVN Frank Clayton Clayton 180 CL

Est. SE Est. SE Est. SE Est. SE Est. SE
π1 0.50 0.14 0.52 0.14 0.50 0.13 0.56 0.14 0.47 0.13
π2 0.96 0.02 0.96 0.02 0.96 0.02 0.95 0.02 0.97 0.02
π3 0.37 0.04 0.37 0.04 0.36 0.04 0.37 0.04 0.35 0.05
σ1 2.33 0.55 2.22 0.53 2.32 0.50 2.44 0.53 2.27 0.13
σ2 1.67 0.54 1.69 0.58 1.72 0.52 1.51 0.45 1.75 0.29
σ3 0.65 0.16 0.64 0.15 0.68 0.16 0.64 0.16 0.71 0.04
τ12 0.02 0.18 -0.01 0.20 0.00 0.12 -0.05 0.19 0.00 -
τ13 0.54 0.17 0.54 0.16 0.60 0.17 0.55 0.20 0.00 -
τ 0.50 0.45 0.35 0.79 0.38 0.43 0.63 0.36 0.00 -

logL -154.45 -154.12 -154.80 -154.33 -157.98
Beta margins

BVN Frank Clayton Clayton 180
Est. SE Est. SE Est. SE Est. SE

π1 0.50 0.07 0.51 0.07 0.49 0.07 0.49 0.07
π2 0.89 0.03 0.89 0.04 0.89 0.03 0.90 0.03
π3 0.38 0.04 0.38 0.04 0.38 0.04 0.37 0.04
γ1 0.44 0.09 0.42 0.08 0.44 0.08 0.43 0.07
γ2 0.22 0.07 0.22 0.07 0.22 0.07 0.24 0.08
γ3 0.08 0.04 0.08 0.03 0.09 0.04 0.07 0.03
τ12 0.02 0.18 -0.02 0.20 0.00 0.10 0.04 0.20
τ13 0.55 0.17 0.54 0.16 0.60 0.17 0.52 0.19
τ 0.44 0.44 0.26 0.77 0.36 0.39 -0.32 0.14

logL -157.36 -157.03 -157.69 -156.74

US has the highest sensitivity (63%; 95% confidence intervalCI = 50–77%) and specificity (95%;
95% CI = 93–97%). In contrast, patients diagnosed by PET havehigher estimated prevalences of
metastasis (37%; 95% confidence interval CI = 29–45%), compared with patients diagnosed by US
(26%; 95% confidence interval CI = 12–40%).

Finally, in Table7 we report the resulting maximized log-likelihoods, estimates, and standard
errors of the hybrid copula mixed models with different choices of parametric families of copulas and
margins for the for the PET modality to diagnose distant lymph node metastasis. All models roughly
agree on the estimated sensitivityπ̂1, specificityπ̂2 and disease prevalenceπ̂3 for the surveillance of
regional lymph node metastasis. The log-likelihoods show that a hybrid copula mixed model with
Frank copulas and normal margins provides the best fit. It is also provides better inferences than a
hybrid copula-based mixed model with independence among the random effects since the likelihood
has been improved by4.34 = −174.46 − (−178.8) units. This is also confirmed by a likelihood
ratio test (p-value= 0.003). Figure3 shows the fitted SROC curves along with their confidence and
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Figure 2: Contour plots (predictive region) and quantile regression curves from the hybrid copula mixed model with
Frank copulas and normal margins for the PET modality to diagnose regional lymph node metastasis. Red and green
lines represent the quantile regression curvesx1 := x̃1(x2, q) andx2 := x̃2(x1, q), respectively; forq = 0.5 solid lines
and forq ∈ {0.01, 0.99} dotted lines (confidence region).

prediction regions for the best fitted hybrid copula mixed model with normal margins for both case-
control and cohort studies. In this dataset it revealed thatthere is heterogeneity in association between
cohort and case control studies, i.e.τ̂ is positive, whileτ̂12 is negative.
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Figure 3: Contour plots (predictive region) and quantile regression curves from the hybrid copula mixed model with
Frank copulas and normal margins for the PET modality to diagnose distant lymph node metastasis. Red and green lines
represent the quantile regression curvesx1 := x̃1(x2, q) andx2 := x̃2(x1, q), respectively; forq = 0.5 solid lines and
for q ∈ {0.01, 0.99} dotted lines (confidence region).

In all the meta-analyses, improvement over the hybrid copula mixed model composed of BVN
copulas and normal margins, that is the same with the hybrid GLMM in Chen et al.(2015), has
been revealed in terms of the likelihood principle.Chen et al.(2015), instead of relying to separate
meta-analyses for each type of imaging modality and type of metastasis, analyzed all the data by
assuming normal margins for the random effects with equal between-studies variances in transformed
sensitivity, specificity, and disease prevalence for different imaging modalities or stages of metastasis.
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Table 7: Maximised ML and CL log-likelihoods, estimates andstandard errors (SE) of the hybrid copula mixed models
with different choices of parametric families of copulas and margins for the PET modality to diagnose distant lymph node
metastasis.

Normal margins
BVN Frank Cln180/270 Cln 180/90 Cln 0/270 Cln 0/90 CL

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE
π1 0.82 0.02 0.82 0.02 0.83 0.03 0.82 0.02 0.82 0.03 0.82 0.02 0.85 0.02
π2 0.87 0.02 0.87 0.02 0.87 0.03 0.87 0.02 0.87 0.03 0.87 0.02 0.88 0.02
π3 0.57 0.06 0.56 0.06 0.57 0.06 0.55 0.06 0.59 0.07 0.59 0.06 0.59 0.07
σ1 0.65 0.16 0.65 0.16 0.65 0.17 0.64 0.15 0.68 0.17 0.65 0.15 0.64 0.09
σ2 0.94 0.21 0.91 0.20 0.94 0.23 1.01 0.22 0.93 0.23 0.99 0.21 0.89 0.10
σ3 0.87 0.20 0.93 0.21 0.94 0.21 0.92 0.21 0.89 0.22 0.84 0.19 0.97 0.18
τ12 -0.31 0.25 -0.45 0.27 -0.19 0.40 -0.28 0.25 -0.27 0.38 -0.30 0.27 0.00 -
τ13 0.52 0.20 0.51 0.21 0.51 0.21 0.46 0.21 0.53 0.22 0.49 0.22 0.00 -
τ 0.60 0.41 0.57 0.36 0.63 0.61 0.73 0.32 0.63 0.59 0.72 0.32 0.00 -

logL -174.50 -174.46 -175.98 -175.03 -174.93 -173.93 -178.80

Beta margins
BVN Frank Cln 180/270 Cln 180/90 Cln 0/270 Cln 0/90

Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE
π1 0.80 0.03 0.80 0.03 0.81 0.03 0.80 0.02 0.80 0.03 0.80 0.02
π2 0.84 0.03 0.83 0.03 0.84 0.03 0.84 0.03 0.83 0.03 0.84 0.03
π3 0.56 0.05 0.55 0.05 0.55 0.05 0.54 0.05 0.57 0.06 0.58 0.05
γ1 0.06 0.03 0.06 0.03 0.06 0.03 0.05 0.02 0.06 0.03 0.06 0.03
γ2 0.10 0.04 0.09 0.04 0.10 0.04 0.11 0.04 0.10 0.04 0.10 0.04
γ3 0.14 0.05 0.15 0.05 0.16 0.05 0.15 0.05 0.15 0.06 0.13 0.05
τ12 -0.31 0.24 -0.46 0.27 -0.23 0.49 -0.26 0.25 -0.29 0.38 -0.27 0.25
τ13 0.53 0.20 0.53 0.21 0.51 0.21 0.47 0.21 0.55 0.22 0.50 0.22
τ 0.65 0.38 0.60 0.35 0.66 0.58 0.76 0.30 0.67 0.56 0.76 0.30

logL -175.76 -175.69 -177.17 -176.37 -176.14 -175.33

Cln α/β denotes a hybrid copula mixed with copula distributions theClayton rotated byα andβ degrees for the

{C(; τ), C13(; τ13)} andC12(; τ12) copulas, respectively.

These assumptions are quite strong and we have shown, with the subgroup analysis in Tables5-7,
that are substantially violated. In fact, between study variances are distinct in each type of imaging
modality or stage of metastasis and for the US imaging modality even the assumption of normal
margins is not valid.

6 Discussion

We have proposed a hybrid copula mixed model for meta-analysis of diagnostic test accuracy stud-
ies. It jointly models the disease prevalence along with diagnostic test sensitivity and specificity in
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cohort studies, and sensitivity and specificity in case-control studies. Our general model includes the
hybrid GLMM (Chen et al., 2015) as a special case and can provide an improvement over the latter
based on log-likelihood. Hence, a better statistical inference for the meta-analytic parameters and
their between-study variances is achieved. Nevertheless the meta-analytic parameters are a univariate
inference, and hence it is the univariate marginal distribution that matters the most and not the type of
the copula. The proposed hybrid copula mixed model calls on both normal and beta univariate mar-
gins and thus can operate on the transformed and original scale of sensitivity, specificity and disease
prevalence, respectively.

Though typically the focus of meta-analysis has been to derive the summary-effect estimates, there
is increasing interest in drawing predictive inference. Infact, if the interest is only to overall sensitiv-
ity, specificity and prevalence then the overall test accuracy across studies will not be clearly defined.
Different studies use different thresholds for a positive test result, thus the overall summary-effect
estimates do not make sense. Instead, some form of SROC curvemakes much more sense and will
help decision makers to assess the actual diagnostic accuracy of a diagnostic test (Nikoloulopoulos,
2016a). SROC curves are deduced for our model through the quantileregression techniques de-
veloped byNikoloulopoulos(2015a). For the hybrid copula mixed model, the model parameters
(including dependence parameters), the choice of the copula, and the choice of the margin affect the
shape of the SROC curve. Among the parametric families of copulas in Table1 the tail dependence
varies, and is a property to consider when choosing amongst different families of copulas, and, hence
affects the shape of SROC curves, i.e., prediction. SROC will essentially show the effect of different
model (random effect distribution) assumptions, since it is an inference that depends on the joint dis-
tribution (Nikoloulopoulos, 2015a). Given that the CL estimation assumes independence among the
random effects, it provides identical fit for any copula mixed model, since all the parametric families
of copulas in Table1 contain the independence copula as a special case. Hence, the big limitation of
the CL method is that it cannot be used to produce the SROC curves, since the dependence parameters
affect the shape of the SROC curve and these are set to independence by definition.

It has been reported in the literature that in the trivariateGLMM (Chu et al., 2009) and hybrid
GLMM (Chen et al., 2015) estimation problems relating to the correlation parameters exist, such as
non-convergence. Here instead of a trivariate normal distribution we use a vine copula distribution,
and in particular a truncated at level-1 vine copula (conditional independence), which allows both
parsimony and flexible (tail) dependence. In fact, we propose a numerically stable ML estimation
technique based on Gauss-Legendre quadrature; the crucialstep is to convert from independent to
dependent quadrature points. However, the additional feature of having to estimate the associations
among the random effects has been found to require larger sample sizes than in CL estimation where
these parameters are set to independence. The application example includes cases with an adequate
number of individual studies per study design. For meta-analyses with fewer (especially cohort) stud-
ies the bivariate copula mixed model to obtain estimates of diagnostic sensitivity and specificity but
not prevalence should be fitted instead. Future research will deal with the development of penalized
likelihood methods for optimising inference about the association parameters of the hybrid copula
mixed model when the number of available study summaries is small.

We also plan to provide extensions of the model to account forpartial verification bias. This is a
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feature that has been already developed for the hybrid GLMM (Ma et al., 2014).

Software

R functions to implement the hybrid vine copula mixed model for meta-analysis of diagnostic test ac-
curacy case-contol and cohort studies are part of theR packageCopulaREMADA (Nikoloulopoulos,
2016b).
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