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Hybrid copula mixed models for combining case-control
and cohort studies in meta-analysis of diagnostic tests
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Abstract

Copula mixed models for trivariate (or bivariate) metatgsia of diagnostic test accuracy stud-
ies accounting (or not) for disease prevalence have begroged in the biostatistics literature to
synthesize information. However, many systematic revieften include case-control and cohort
studies, so one can either focus on the bivariate meta-siaaly the case control studies or the
trivariate meta-analysis of the cohort studies, as onlyldkter contains information on disease
prevalence. In order to remedy this situation of wastin@de propose a hybrid copula mixed
model via a combination of the bivariate and trivariate dapuixed model for the data from the

case-control studies and cohort studies, respectivelyicélethis hybrid model can account for
study design and also due its generality can deal with degyeadin the joint tails. We apply the

proposed hybrid copula mixed model to a review of the peréoroe of contemporary diagnostic

imaging modalities for detecting metastases in patientis mielanoma.

Keywords: Generalized linear mixed model; composite likelihood, mmaxmn likelihood, sen-

sitivity/specificity/prevalence.

1 Motivating study and background

Melanoma is the least common but most deadly type of skinezaarad occurs in melanocytes, which
are cells that produce the skin pigment meladerént et a]2000. A systematic review of published
studies byXing et al.(2011) has examined the accuracy of contemporary diagnosticimgagodal-
ities for detecting metastases in patients with melanordddentified 60 cohort and 43 case-control
studies.

Xing et al.(2011) applied the generalized linear mixed model (GLMM), pragebbyChu and Cole
(2006, to account for the association between the sensitivitysgrecificity across studies. However,
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it is reported in the literature that the assumption of iretefence between the sensitivity/specificity
with disease prevalence in the bivariate GLMM is likely tovielated Brenner and Gefelled 997,
Leeflang et a].2009 2013. By fitting the bivariate GLMM the information on prevalenof melanoma,
which is available only in cohort studies, has been totaflglacted, and, thus an important amount
of data has been wasted.

Chu et al (2009 extended the bivariate GLMM to a trivariate GLMM by also aanting for dis-
ease prevalence. Nevertheless, this model can only matgsardata from the cohort studies, since
the disease prevalence is not available in case-contiestuVery recentlyChen et al(2015 devel-
oped a hybrid model that exploits the use of both the bivaraid trivariate GLMM for combining
case-control and cohort studies (hereafter hybrid GLMM) applied the model to fully analyse the
systematic review of published studies{ing et al.(2011) Due to the fact that they noticed compu-
tational problems such as non-convergence and singekrttiey developed a composite likelihood
(CL) method to overcome the computational difficulties om éistimation of the hybrid GLMM. The
CL method is well established in the statistical literatasea surrogate alternative of maximum likeli-
hood (ML) when the joint likelihood is too difficult to compaifvarin, 2008 Varin et al, 2011). The
advantage of the CL approach in this application domainasttie likelihood can be derived conve-
niently under the assumption of independence between titona effects, i.e., the latent vector of
transformed sensitivity, specificity, and disease prewvadeChen et al(2014 proposed a CL method
even for the estimation of the GLMM to overcome practicadtiss’ in the joint likelihood inference
such as computational difficulty caused by a double integdle joint likelihood function. Our view
is that GLMM can only be unstable if there are too many paranseh the covariance matrix of the
random effects or too many random effects for a small sanipgenfdenko 2004, which is not the
case in this application domain.

Nikoloulopoulog2015ab) proposed copula mixed models for bivariate and trivamnag¢a-analysis
of diagnostic test accuracy studies and made the argumenideing to the general class of cop-
ula random effects models. The copula mixed models inclbdébtvariate and trivariate GLMMs
(Chu and Cole2006 Chu et al, 2009 as special cases, can also operate on the original scad@-of s
sitivity, specificity, and disease prevalence, and thdinmegion can be successfully approached by
ML estimation.

In this paper building in the aforementioned papers, we @se hybrid copula mixed model to
combine case-control and cohort studies. We combine tlagiate and trivariate copula mixed model
for the data from the case-control studies and cohort ssudéspectively. The hybrid copula mixed
has as special case the hybrid GLMM and features several atlvantages: (a) the random effects
distributions are expressed via copulas which allow foilfliexdependence modelling, different from
assuming simple linear correlation structures, normalig tail independence (b) can also operate on
the original scale of sensitivity, specificity, and prevele, and (c) estimation can be approached by
the ‘gold standard’ ML method.

The remainder of the paper proceeds as follows. Seimtroduces the hybrid copula mixed
model for diagnostic test accuracy (case-control and ¢pltudies. An ML estimation technique
and computational details are provided in SecBorsectiond contains small-sample efficiency cal-
culations to investigate the effect of misspecifying thedam effects distributions and compare the



proposed methodology to the CL approach propose@lign et al(2015. In Section5 we analyse
the systematic review of the accuracy of contemporary diatioimaging modalities for detecting
metastases in patients with melanoma and show efficienag gath respect to the CL approach. We
conclude with some discussion in Sect@n

2 The hybrid copula mixed model

In this section we introduce the hybrid copula mixed modeifdse that we provide some background
about important tools to form the hybrid copula mixed mod&hese are a brief introduction to
copulas in Subsectio®.], the bivariate copula mixed model in Subsectib@ and the vine copula
mixed model in Subsectioa3.

2.1 Overview and relevant background for copulas

A copula is a multivariate cdf with uniforré (0, 1) margins Joe 1997 2014 Nelsen 2006. If F'is
ad-variate cdf with univariate margins,, . . . , F,;, then Sklar’s (1959) theorem implies that there is a
copulaC' such that

Flzy,... 20 = C(Fl(xl), . .,Fd(xd)>.

The copula is unique if, . . ., F; are continuous. If" is continuous andYy, ..., Y,) ~ F, then the
unique copula is the distribution ¢¥/1, ..., U,) = (F1 (Y1), ..., Fu(Yy)) leading to

Clu,. .. uq) = F(Ffl(ul), N .,Fd—l(ud)), 0<u;<1,j=1,....d,

whereFj‘1 are inverse cdfsNikoloulopoulos and Jo&015. For example, ifd,(-; R) is the MVN
cdf with correlation matrix

and N(0,1) margins, andl is the univariate standard normal cdf, then the MVN copula is

Clu,. .. uqg) = @d(@l(ul),...,@*1(%);1&). 1)

In the bivariate case there are many parametric familieoptilas. However, their multivariate
extensions have limited dependence structures. An apptoaguccessfully subside this restriction
is the vine pair-copula constructioKrowicka and Jog2011, Joe 2014 which is based ow(d —
1)/2 bivariate copulas, of which some are used to summarize tondi dependence. Vine copulas
include the MVN as special case, but can also cover refleetsymmetry and have upper/lower talil
dependence parameters being different for each bivariatgimJoe et al. 2010. Vines require
a decision on the indexing of variables. For example, fordinensional vine copula there ade
distinct permutations:

{12,13,23]1},  {12,23,13)2}, and {13,23,12|3}.

For each of them, the 3-dimensional vine is decomposetllmuariate copulas, of which the one is
used to summarize conditional dependenceNikeloulopoulos(2015h for more detalils.
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Table 1 provides a sufficient list of bivariate copulas for metafgsia of diagnostic test ac-
curacy studiesNikoloulopoulos 2015ab). These copula families have different strengths of tail
behaviour and tail dependence is a property to consider whensing amongst different fami-
lies of copulas and the concept of upper/lower tail depecelésm one way to differentiate families.
Nikoloulopoulos and Karlig2008 have shown that it is hard to choose a copula with similapgero
ties from real data, since copulas with similar (tail) degmce properties provide similar fit.

Table 1: Parametric families of bivariate copulas and thkgndall's m as a strictly increasing function of the copula
parameters.

Copula C(v|u; 0) T
BVN @(mfbfl(v) + Hq)*l(u)) 2 arcsin(6) ) -1<6<1
-1 —2 t
L = IRy /i
Clayton {(v*(’/(lw) —Du? + 1}_1/9 0/(0+2) , >0
Clayton by 90 {(v*(’/(”” 1)1 —u)?+ 1}71/0 —0/(6+2) , 6>0
Clayton by 1801 — [{(1 — )70+ (1 —w)7 + 1] - 0/(0+2) , 6>0
Claytonby 270 1 — [{(1 —0)70/+0) 110 4 1] e —0/(0+2) , 6>0

2.2 Bivariate copula mixed model

For each study, the within-study model assumes that the number of truetipesiY;; and true
negativesy;, are conditionally independent and binomially distribuggden X = x, whereX =
(X1, Xo) denotes the bivariate latent (random) pair of (transfolnsedsitivity and specificity. That
IS

)/;1|X1 =T Binomial<nz~1, l_l(ZL‘l));

)/;2|X2 =Ty Binomial<nz~2, l_l(ZL‘Q)), (2)

wherel(-) is a link function.
The stochastic representation of the between studies rnedded the form

<F(X1;l(ﬂ-l),él),F(XQ;l(ﬂ-z),éz)) ~ C’(,Q), (3)

whereC(-; 6) is a parametric family of copulas with dependence paranteded F'(-; [(7), 0) is the
cdf of the univariate distribution of the random effect. Tdupula parametet is a parameter of the
random effects model and it is separated from the univap@atameters, the univariate parameters
andr, are the meta-analytic parameters for the sensitivity aedipity, andd; andd, express the
variability between studies. FdY studies with datéy;;,n;;), i = 1,..., N, j = 1,2, the models in
(2) and @) together specify a copula mixed model with joint likeliltbo

L(m, 73,61, 53, 6) H / / Hg g, U (7 g (), 8,)) e, s B) s, (4)
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where c(uy, ug; ) = 9°C(uq, uz;0)/0uidus, is the copula density ang(y;n,m) = (Z)ﬂ'y(l -
)" Y, y=0,1,...,n, 0<m7 <1,isthe binomial probability mass function (pmf). The chaice
of the F'(+; I(r), §) and! are given in Tablé.

Table 2: The choices of th€(-; /(r), §) and! in the copula mixed model.

F(-1(m),0) l )
N(u,o) logit, probit, cloglog!= (i) o
Betar, ) identity Ty

2.3 Trivariate copula mixed model

For each study, the within-study model assumes that the number of trudipesti;;, true negatives
Y;2, and diseased persolig are conditionally independent and binomially distribuggeen X = x,
whereX = (X;, X, X3) denotes the trivariate latent (random) vector of (tramsfe) sensitivity,
specificity, and disease prevalence. That is

)/;1|X1 =T Binomial<ni1,l_1(x1)>;
Yio| Xo =29 ~ Binomial(niz, l‘l(:cz)); (5)
1/2‘3|X3 =x3 Binomial(nig, lil(ng)),

wherel(-) is a link function.
The stochastic representation of the between studies nedded the form

(F(X1§ Z(W1)751), F(X2§ 1(7@)752), F(X3§ l(7r3),53)> ~ C(+8), (6)

whereC'(-; 8) is a vine copula with dependence parameter vagter(:, 013, 23;1) andF (-; (), 9)

is the cdf of the univariate distribution of the random effe€o be concrete, we use the permuta-
tion {12,13,23|1}. The theory though also apply to the other two permutatidrtee joint density
f123(x1, x9, 23) Of the transformed latent proportions is:

f123(3717372,553;7T177T277T3,51,527537979127913) =

C12 <F(371; l(7T1)751)7F(372; l(7T2),52);912> X
3
C13 (F(xl; Z(Wl),ésl), F(xs; Z(Ws),53); 913) Hf(xj; Z(Wj)aisj), (7)
j=1
wheref(-; (), ) is the density ofF.
In (7) we assume conditional independence betw&erand X3 given X, i.e., the density of

the (independence) copula s, (u, v) = uv is ci32(u, v) = 1. Here we are making the simplifying
assumption that the conditional copula does not depentl;oVe use simplified vines to keep them
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tractable for inference and model selection. The simpidyassumption, that copulas of conditional
distributions do not depend on the values of the variablesiwtiney are conditioned on, is popular
(Aas et al, 2009 and not restrictive in practiceS{ober et al.2013. Joe et al(2010 show that in
order for a (simplified) vine copula to have (tail) dependefmr all bivariate margins, it is only
necessary the non-conditional bivariate copulas to hag (ependence and it is not necessary for
the conditional bivariate copulas to have tail dependeiitat provides the theoretical justification
for the idea of conditional independence. For more detaid\Nskoloulopoulos(2015h.

For NV studies with datdy;;,n;;), ¢ = 1,..., N, 7 = 1,2,3, the models in§) and @) together
specify a vine copula mixed model with joint likelihood

L(ﬂ-la7T277T375175275370127013) -
H/ / / Hg ywnw, ! F 1(Uj;Z(Wj),5j))>012(ul,Uz;912)013(U1,U3;913)duj- (8)

The choices of thé’(-; I(r), §) and! are the same as in the bivariate case; see Table

2.4 Hybrid copula mixed model

To form the hybrid copula mixed model we combine the aforeimeed models. For ease of expo-
sition, let the first/V; studies be the case-control studies and the remaiNstudies be the cohort

studies. A combination of the bivariate likelihood for thata from/V; case-control studies and the
trivariate likelihood for the data fronV, cohort studies leads to

L(ﬂ'l, 9, T3, 51, 52, 53, 0 012, 013) =

H/ / Hg Yijs Nij, F 1(uj;l(ﬂj),éj)>c(u1,u2;8)duj X
N1+N2
H ///Hg ywnw, 1(Uj;Z(Wj),53‘))012@1,Uz;912)013(U1,U3;913)duj- 9)

i=N1+1

Our general statistical model allows for selectionc6f 6), cy»(-; 612) and ci3(+; 613) indepen-
dently among a variety of parametric copula families, tleere are no constraints in the choices of
parametric copulas.

3 Maximum likelihood estimation and computational details

Estimation of the model parametsts,, 7, 73, d1, 09, 03, 6, 012, 613) can be approached by the stan-
dard ML method, by maximizing the logarithm of the joint likeood in (9). The estimated parameters
can be obtained by using a quasi-Newtblagh 1990 method applied to the logarithm of the joint
likelihood. This numerical method requires only the oljjextunction, i.e., the logarithm of the joint
likelihood, while the gradients are computed numericatig ghe Hessian matrix of the second order



derivatives is updated in each iteration. The standard(®E) of the ML estimates can be also
obtained via the gradients and the Hessian computed nuetigriliring the maximization process.

Numerical evaluation of the mixed joint pmf is easily donéhna combination of the algorithms
in Nikoloulopoulos(2015aby):

1. Calculate Gauss-Legendre quadrature pofats: ¢ = 1,...,n,} and weights{w, : ¢ =

1,...,n,} interms of standard uniform; see e.§troud and Secre$1966.
2. (a) Convert from independent uniform random varialfles : ¢; = 1,...,n,} and{u,, :
¢ = 1,...,n,} to dependent uniform random variablés,, : ¢ = 1,...,n,} and

{C Hug|ug;0) - 1 = @2 = 1,...,n,} that have distributio(-; §). The inverse of the
conditional distributiorC'(v|u; 8) = 9C(u, v;0)/0u corresponding to the copuld(-; 0)
IS used to achieve this.

(b) Convert from independent uniform random varialleg : ¢; = 1,...,n,}, {ug : ¢2 =
L,...,ng}, and{uy, : g3 = 1,...,n,} to dependent uniform random variablgs,,

Ug qn =1,... anq}’ {qu\ql = szl(uq2|uq1§912) =g =1... 7nf1}’ and{quqs\ql =

Cfgl (Cﬁl(uqs\u@; 0923‘1 — O)\uql;ﬁlg) g1 = @2 = Q3 = 1, . ,nq} that have vine
distributionC'(+; 6,2, 613). The simulation algorithm of a C-vine copula Joe(201]) is
used to achieve this.

3. (a) Numerically evaluate the bivariate pmf

//Hg yjing, F uﬁl(wj),éj))c(ul,ug;G)duldug

in a double sum:

Ng MNgq

Z Z wmwthg(yl;nlvF_l(uq1;l(ﬂ-l)vcsl))g(y%n%F_l(c_l(UQ2|u¢h;0);Z(W2)752)>'

q1=1q2=1

(b) Numerically evaluate the trivariate pmf

///Hg Yiji ij, I (UJ‘%Z(Wj)a5j)>012(U17U2;912)013(U17U3;913)duldu2du3

in a triple sum

Z Z Z wﬁhw%w%g(yl;nlv F_l(véh; l(ﬂl>751))g(y2;n27F_1 (UQQ\Ql; Z(W2)752)> X

q1=1g2=1q3=1

9<y3; ns, Ft (quqs\q1§ l(7T3), 53))



The inverse conditional copula cdfs™! (v|u; §) are given in Tabld.

With Gauss-Legendre quadrature, the same nodes and waightsed for different functions;
this helps in yielding smooth numerical derivatives for rawiwal optimization via quasi-Newton.
Our extensive comparisons with more quadrature pointsyshatn, = 21 is adequate with good
precision to at least at four decimal places. The develojggdithm for the calculation of a bivariate
or a trivariate integral overcomes the convergence problirat have been reported in the literature
(Chu et al, 2009 Chen et al. 2014 2015. Our Gauss-Legendre quadrature algorithm for hybrid
copula mixed models (including the hybrid GLMM) is stablehelcrucial step is to convert from
independent to dependent quadrature points.

4 Small-sample efficiency—Misspecification

An extensive simulation study is conducted (a) to gauge thallssample efficiency of the ML
method, and (b) to investigate in detail the misspecificatbthe parametric margin or family of
copulas of the random effects distributions.

To generate the data we have combined the simulation aigasitnNikoloulopoulos(2015ab):

1. Fori=1,..., Ny:
(a) Simulate the study size from a shifted gamma distribution, i.e:, ~ sGamméa =
1.2, = 0.01,lag = 30) and round off to the nearest integer.
(b) Simulate(u;, uy) from a parametric family of copulas(; 7); 7 is converted to the copula
parametef via the relations in Tablé.

J
(d) Draw the number of diseased from a B(n, 0.43) distribution.

(e) Setny =n —ny,y; = njz; and then round, for j =1, 2.

(c) Convert to beta or normal realizations via= l—1<Ff1(uj, U(m;), (5j)> forj =1,2.

2. Fori:N1+1,...,N1+N2

(a) Simulate the study size from a shifted gamma distribution, i.e:, ~ sGamméa =
1.2, = 0.01,lag = 30) and round off to the nearest integer.

(b) Simulate(u,, uy, u3) from a C-vineC'(; 712, 713, 7231 = 0) via the algorithm in Jodoe
(201D); 7’s are converted té's via the relations in Tablé.

(c) Convert to beta or normal realizations via= l—l(ijl(uj, I(m;), (5j)> forj =1,2.

(d) Set number of diseased and non-diseased asnx3 andn, = n — ny, respectively.
(e) Sety; = n;z; and then roung; for j = 1,2.

Tables3 and4 contain the resultant biases, root mean square errors (RN8#& standard devia-
tions (SD) for the MLEs under different copula and margirtadices from1000 randomly generated
samples of sizéV; = N, = 25 from the hybrid copula mixed model with normal and beta masgi
respectively. The true (simulated) copula distributiores the Clayton and Clayton rotated by 90
degrees for th€'},(; 712) and{C(; 7), C15(; T13) } copulas, respectively.
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Table 3: Biases, root mean square errors (RMSE) and standevihtions (SD) for the ML estimates under different cohieices and margins and CL estimates
under normal margins from small sample of sizZés= N, = 25 simulations {0? replications) from the hybrid copula mixed model with normargins. The true
(simulated) copula distributions are the Clayton and Ctaytotated by 90 degrees for tli& 5 (; 712) and{C(; 7), C15(; 713) } copulas, respectively.

Biases scaled by 50 for the estimates under different camdamargin choices
True model: Clayton fo€5(; 712) and Clayton rotated by 90 degrees {@r(; 7), C13(; 713) } and normal margins
True model parameters: 7w =0.7 13, =09 73 =07 0y =15 0o =1 03=1.5 75 =0.5 713 =—-05 7= —-0.5

Clayton by 0/90 Normal 0.04 -0.39 -0.29 -138 -4.12 0.01 0.83 0.92 -6.62
Beta -2.74 -1.96 -1.69 - - - 1.24 1.23 -5.74

BVN Normal -0.06 -0.39 -0.26 -2.72 -546 -3.19 4.38 -2.22 -6.47
Beta -2.74 -1.90 -1.63 - - - 4.76 -2.03 -5.04

Clayton by 180/27(Normal -0.20 -0.32 -0.08 -2.20 -6.17 -3.13 7.06 -2.16 -4.97
Beta -2.96 -1.75 -1.22 - - 7.38 -2.02 -2.84

Independence (CL Normal -0.64 -0.15 -0.21 -6.08 -7.15 -5.01 - - -
SDs scaled by 50 for the estimates under different copularaardin choices

True model: Clayton fo€”»(; 712) and Clayton rotated by 90 degrees {@r(; 7), C15(; 713) } and normal margins
True model parameters: 7w =0.7 13, =09 73 =07 0y =15 0o =1 03=1.5 75, =0.5 713 =—-05 7= —-0.5

Clayton by 0/90  Normal 1.79 0.50 3.05 898 652 1151 12.68 7.49 6.45
Beta 1.52 0.69 2.15 2.16 129 262 13.85 7.14 6.32

BVN Normal 1.72 0.50 2.83 839 6.07 9.83 8.70 6.01 7.02
Beta 1.44 0.69 2.06 2.09 1.15 2.21 9.16 5.92 6.46

Clayton by 180/27(Normal  1.75 0.51 2.86 8.67 6.39 9.62 7.10 5.20 11.47
Beta 1.47 0.69 2.13 2.16 1.16 2.16 6.73 5.35 10.49

Independence (CL Normal 2.22 0.63 3.41 777 596 9.67 - - -
RMSEs scaled by 50 for the estimates under different cojwdanzargin choices

True model: Clayton fo€”»(; 712) and Clayton rotated by 90 degrees {@r(; 7), C13(; 713) } and normal margins
True model parameters: 71 =07 15 =09 713 =07 01y =15 09 =1 03=15 75, =0.5 73 =—-0.5 7= -0.5

Clayton by 0/90  Normal 1.79 0.64 3.07 908 7.71 1151 1271 7.55 9.24
Beta 3.13 2.08 2.74 - - - 13.90 7.25 8.54

BVN Normal 1.72 0.64 2.84 8.82 8.16 10.34 9.74 6.40 9.54
Beta 3.10 2.02 2.63 - - - 10.32 6.25 8.19

Clayton by 180/27(Normal 1.76 0.60 2.86 8.95 8.88 10.12 10.02 5.63 12.50
Beta 3.31 1.88 2.45 - - 9.99 5.72 10.87

Independence (CL Normal 2.31 0.65 3.42 9.87 9.31 10.89 - - -
Clayton bya/ denotes a hybrid copula mixed with copula distributionsGleeyton rotated byv and5 degrees for th€',2(; 72) and{C(; 1), C13(; 713) } copulas,
respectively.
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Table 4: Biases, root mean square errors (RMSE) and standevihtions (SD) for the ML estimates under different cohieices and margins and CL estimates
under beta margins from small sample of si2és= N, = 25 simulations {0? replications) from the hybrid copula mixed model with normeargins. The true
(simulated) copula distributions are the Clayton and Ctaytotated by 90 degrees for tli& 5 (; 712) and{C(; 7), C15(; 713) } copulas, respectively.

Biases scaled by 50 for the estimates under different cagndamargin choices
True model: Clayton fo€5(; 712) and Clayton rotated by 90 degrees {dr(; 7), C13(; 713) } and beta margins
True model parameters: m; =0.7 13 =09 73 =0.7 11 =0.15 7% =0.1 73 =0.15 75, =0.5 73 = —-0.5 7 =-0.5

Clayton by 0/90 Normal 1.64 1.43 0.66 - - - 2.17 0.45 -7.40
Beta 0.00 -0.16  -0.19 -0.39 -0.58 -0.09 2.38 0.90 -7.43

BVN Normal 1.57 1.46 0.76 - - - 4.95 -2.49 -7.04
Beta 0.02 -0.09 -0.09 -0.75 -0.85 -0.72 4.98 -2.53 -6.49

Clayton by 180/270 Normal 1.45 1.47 0.82 - - - 7.12 -3.54 -6.36
Beta -0.08 -0.05 0.09 -0.62 -0.89 -0.69 7.36 -3.61 -4.93

Independence (CL) Normal 1.38 1.59 0.80 - - - - -

SDs scaled by 50 for the estimates under different copularardin choices

True model: Clayton fo€»(; 712) and Clayton rotated by 90 degrees {ar(; 7), C13(; 713) } and beta margins

True model parameters: m; =0.7 13 =09 73 =0.7 11 =0.15 7% =0.1 73 =0.15 75, =0.5 73 = —-0.5 7 =-0.5

Clayton by 0/90 Normal 1.08 0.46 1.90 7.05 8.17 8.23 1166 99.2 6.71
Beta 1.04 0.57 1.64 1.56 1.19 2.01 12.89 9.21 6.62

BVN Normal 1.03 0.45 1.76 6.13 7.49 6.94 8.03 6.61 7.67
Beta 0.99 0.54 1.53 1.35 1.05 1.58 8.38 6.51 7.38

Clayton by 180/270 Normal 1.09 0.46 1.76 6.02 7.88 7.00 7.49 765 12.37
Beta 1.05 0.54 1.56 1.42 1.10 1.55 7.12 5.87 12.10

Independence (CL) Normal 1.41 0.57 2.13 5.64 7.33 6.70

RMSEs scaled by 50 for the estimates under different comdar@argin choices

True model: Clayton fo€»(; 712) and Clayton rotated by 90 degrees {ar(; 7), C13(; 713) } and beta margins

True model parameters: m; =0.7 13, =09 713 =0.7 1 =0.15 7% =0.1 73 =0.15 75, =0.5 73 = —-0.5 7=-0.5

Clayton by 0/90 Normal 1.96 1.50 2.01 - - - 11.86 9.30 9.99
Beta 1.04 0.59 1.65 1.61 1.33 2.01 13.11 9.26 9.95

BVN Normal 1.88 1.53 1.92 - - - 9.43 7.06 10.41
Beta 0.99 0.55 1.53 1.55 1.35 1.74 9.75 6.98 9.83

Clayton by 180/270 Normal 1.81 1.54 1.94 - - - 10.33 6.76 13.91

Beta 1.06 0.55 1.56 1.55 141 1.70 10.24 6.89 13.06

Independence (CL) Normal 1.97 1.69 2.28 - - - - - -
Clayton bya/ denotes a hybrid copula mixed with copula distributionsGleeyton rotated byv and5 degrees for th€',2(; 72) and{C(; 1), C13(; 713) } copulas,

respectively.




We also report these summaries for the CL estimatgShen et al (2015 to allow for a com-
prehensive comparison. [@hen et al(2015 it has been assumed that the associatigrbetween
sensitivity and specificity for cohort studies is the saméhasassociation between sensitivity and
specificity for case-control studies, i.e.= 715. This is a strong assumption given the fact that the
sensitivity/specificity depends on disease prevalencefoit studies, thus the association between
sensitivity and specificity is likely to be affected. In oumsilations we emphasize that by allowing
heterogeneity in association in cohort and case contrdliesu Any comparison of the likelihood
methods in terms of computing time is a digression and ndtdwsz here. It is obvious that the CL
method is faster than the ML method and not in need of a commarsince the idea is to replace a
numerically more difficult high-dimensional probabilitglculation with a much simpler probability
calculation assuming independence among random effects.

Conclusions from the values in the tables are the following:

e ML with the true hybrid copula mixed model is highly efficieatcording to the simulated
biases and standard deviations.

e The CL method yields estimates that are almost as good as thesWimates for the meta-
analytic parameters under the assumption of normal margins

e The CL method slightly underestimates the between-stwaigability parameters.

e The ML estimates of the meta-analytic parameters are §ligimderestimated under copula
misspecification.

e The SDs are rather robust to the copula misspecification.

e The meta-analytic ML and CL estimates are not robust to thegimanisspecification, while
the ML estimate of- is.

The meta-analytic parameters are a univariate inferemzkhance it is the univariate marginal
distribution that matters and not the type of the copulaptseNikoloulopoulog2015agb). Chen et al.
(2019 constraint themselves to normal margins; this it is totriets/e and as shown in Tabkeleads
to overestimation of the meta-analytic parameters whenrtleeunivariate distribution of the latent
sensitivity, specificity, and disease prevalence is beta.

5 Systematic review of modern diagnostic imaging modalitie for surveillance
of melanoma patients

To assess the diagnostic imaging modalities for the slawveié of melanoma patients we apply hybrid
copula mixed models. The diagnostic modalities under tnyaon are ultrasonography (US) for
regional lymph node metastasid( = 6, N, = 15) and positron emission tomography (PET) for
both regional {V; = 5, N, = 17) and distant{V; = 15, N, = 15) lymph node metastasis. We fit the
hybrid copula mixed model for all different permutationBpices of parametric families of copulas
and margins. To make it easier to compare strengths of depeadwe convert frorfi’s to 7’s via
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the relations in Tabld. Since the number of parameters is the same between the snadgeluse
the maximized log-likelihood that corresponds to the eatém as a rough diagnostic measure for
goodness of fit between the models. We also estimate the mad@heters with the CL method in
Chen et al(2015. Finally, we demonstrate summary receiver operatingastiaristic (SROC) curves
and summary operating points (a pair of average sensiwity/specificity) with a confidence region
and a predictive regior\jkoloulopoulos 20153.

In Table5 we report the resulting maximized log-likelihoods, estiesa and standard errors of
the hybrid copula mixed models with different choices ofgmaetric families of copulas and margins
for the US modality to diagnose regional lymph node metastasll models roughly agree on the
estimated sensitivityr; and specificityr,, but the estimate of disease prevalence is higher when
beta margins are assumed. In fact, the log-likelihoods ghatva hybrid copula mixed with copula
distributions the Clayton rotated by 180 and 270 degreeshid€'3(; 713) and{C(; 1), C12(; 112) }
copulas, respectively, and beta margins provides the Weslttfis also provides better inferences
than a hybrid copula-based mixed model with independenaengrnthe random effects since the
likelihood has been improved b9 = —190.98 — (—197.88) units. This is also confirmed by a
likelihood ratio test g-value < 0.001). Hence apparently, the CL method in Chen eChén et al.
(2015 underestimates the disease prevalence of metastaseshdhalso to do with the incorrect
assumption of a normal margin in addition to the assumptiama®pendence among random effects.
Figurel shows the fitted SROC curves along with their confidence aadigtion regions for the best
fitted hybrid copula mixed model with beta margins for boteesaontrol and cohort studies.

Cohort studies Case-Control studies

0.8
0.8

Specificity
0.4

Specificity
0.4

0.0
0.0

T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Sensitivity Sensitivity

Figure 1: Contour plots (predictive region) and quantilegression curves from the hybrid copula mixed model with
copula distributions the Clayton rotated by 180 and 270 degrfor theC3(; 13) and {C(; ), C13(; T13)} copulas,
respectively and beta margins for the US modality to diagnegiional lymph node metastasis. Red and green lines
represent the quantile regression curvgs:= 7 (z2, ¢) andzs := (21, q), respectively; forp = 0.5 solid lines and

for ¢ € {0.01,0.99} dotted lines (confidence region).

In Table6 we report the resulting maximized log-likelihoods, estiesa and standard errors of
the hybrid copula mixed models with different choices ofgmaetric families of copulas and margins
for the PET modality to diagnose regional lymph node mesastahll models roughly agree on the
estimated sensitivity;, and disease prevalengg but the estimate, of specificity is smaller when
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Table 5: Maximised ML and CL log-likelihoods, estimates atahdard errors (SE) of the hybrid copula mixed models
with different choices of parametric families of copulaglamargins for the US modality to diagnose regional lymph node
metastasis.

Normal margins
BVN Frank  CIn 180/270 CIn 180/90 Cin 0/270 Cin 0/90 CL
Est SE Estt. SE Estt SE Est. SE Estt SE Est. SE Est. SE
m 0.68 0.11 0.69 0.10 0.71 0.10 0.68 0.11 0.74 0.09 0.64 0.183 041
m 098 0.01 0.98 0.01 0.98 0.01 0.98 0.01 0.98 0.01 0.98 0.08 091
73 0.19 0.06 0.15 0.06 0.15 0.05 0.15 0.05 0.13 0.05 0.18 0.0% 0.08
or 194 037 191 037 197 042 201 043 192 041 2.03 0.43 094
oo 154 037 154 036 153 0.35 156 041 153 0.35 1.53 0.32 D.06
o3 253 0.57 259 057 256 055 256 055 257 0.56 2.54 0.58 DA5
112 -0.26 0.16 -0.31 0.17 -0.28 0.17 -0.21 0.19 -0.28 0.16 -0.216 .00 -
713 0.01 0.16 -0.05 0.20 -0.15 0.17 -0.13 0.24 -0.25 0.11 0.09 MO0 -
7 -0.40 0.34 -0.37 0.35 -0.47 0.30 -0.22 0.46 -0.46 0.31 -0.283(00.00 -
log L -194.38 193.94 -193.59 -194.96 -193.05 -195.22 -197.88

Beta margins
BVN Frank  CIn 180/270 CiIn 180/90 CIn0/270 CIn 0/90
Est SE Est. SE Est. SE Est. SE Est. SE Est. SE
m 0.61 0.07 0.61 0.07 0.63 0.07 0.61 0.07 0.63 0.07 0.60 0.08
m 095 0.02 0.96 0.01 095 0.01 0.95 0.02 0.95 0.01 0.95 0.02
w3 0.28 0.05 0.27 0.06 0.26 0.07 0.26 0.05 0.29 0.06 0.27 0.06
v 0.36 0.07 0.36 0.07 0.38 0.08 0.38 0.08 0.36 0.07 0.37 0.08
v 0.10 0.04 0.09 0.04 0.09 0.04 0.10 0.05 0.09 0.04 0.10 0.05
v 0.35 0.09 0.36 0.08 0.35 0.08 0.35 0.08 0.35 0.08 0.36 0.09
712 -0.27 0.16 -0.32 0.16 -0.30 0.16 -0.19 0.16 -0.30 0.16 -0.197 0
713 -0.04 0.18 -0.01 0.14 -0.19 0.12 -0.16 0.14 -0.08 0.15 0.006 O.
7 -0.42 0.33 -0.38 0.34 -0.49 0.29 -0.25 0.43 -0.48 0.29 -0.2840
log L -191.98 -191.68 -190.98 -192.68 -191.24 -192.95

CIn o/ denotes a hybrid copula mixed with copula distributionsGteeyton rotated by and3 degrees for the
Ci3(;m3) and{C(; 1), C12(; 712)} copulas, respectively.

beta margins are assumed. The log-likelihoods show thabacdgopula mixed model with Frank
copulas and normal margins provides the best fit. It is alsviges better inferences than a hybrid
copula-based mixed model with independence among the maatfects since the likelihood has been
improved by3.86 = —154.12 — (—157.98) units. This is also confirmed by a likelihood ratio test
(p-value= 0.005). Figure2 shows the fitted SROC curves along with their confidence aadigion
regions for the best fitted hybrid copula mixed model withmarmargins for both case-control and
cohort studies.

Comparing the results in Tabl&sand6 for the surveillance of regional lymph node metastasis,
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Table 6: Maximised ML and CL log-likelihoods, estimates atahdard errors (SE) of the hybrid copula mixed models
with different choices of parametric families of copulaglanargins for the PET modality to diagnose regional lymph
node metastasis.

Normal margins
BVN Frank Clayton Clayton 180 CL

Est. SE Est. SE Est. SE Est. SE Est. SE
1 050 014 052 014 050 0.13 056 014 0.47 0.13
o 096 0.02 096 0.02 096 0.02 095 0.02 0.97 0.02
3 0.37 0.04 037 004 036 004 037 004 035 0.05
o1 233 055 222 053 232 050 244 053 227 0.13
o 167 054 169 058 172 052 151 045 175 0.29
03 065 0.16 064 015 068 016 064 0.16 0.71 0.04
Ti2 0.02 0.18 -001 0.20 0.00 0.12 -0.05 0.19 o0.00 -
T13 054 0.17 054 0.16 060 0.17 055 0.20 0.00 -
T 050 045 035 0.79 038 043 063 0.36 0.00 -

log L -154.45 -154.12 -154.80 -154.33 -157.98
Beta margins
BVN Frank Clayton Clayton 180

Est. SE Est. SE Est. SE Est. SE
T 050 0.07 051 0.07 049 0.07 0.49 0.07
e 089 003 089 004 089 003 09 0.03
3 0.38 004 038 004 038 004 037 0.04
" 044 009 042 008 0.44 0.08 0.43 0.07
Yo 0.22 0.07 0.22 0.07 0.22 0.07 0.24 0.08
V3 0.08 004 008 0.03 0.09 0.04 0.07 0.03
T12 0.02 0.18 -0.02 0.20 0.00 0.10 0.04 0.20
T13 055 017 054 016 0.60 0.17 0.52 0.19
T 044 044 026 077 036 039 -032 0.14
log L -157.36 -157.03 -157.69 -156.74

US has the highest sensitivity (63%; 95% confidence inte@tat 50-77%) and specificity (95%;
95% CI = 93-97%). In contrast, patients diagnosed by PET hayeer estimated prevalences of
metastasis (37%; 95% confidence interval Cl = 29-45%), coedpaith patients diagnosed by US
(26%; 95% confidence interval Cl = 12—-40%).

Finally, in Table7 we report the resulting maximized log-likelihoods, estiesa and standard
errors of the hybrid copula mixed models with different a®s of parametric families of copulas and
margins for the for the PET modality to diagnose distant liimpde metastasis. All models roughly
agree on the estimated sensitivity, specificitym, and disease prevalenge for the surveillance of
regional lymph node metastasis. The log-likelihoods shuat & hybrid copula mixed model with
Frank copulas and normal margins provides the best fit. lisis provides better inferences than a
hybrid copula-based mixed model with independence amongaiidom effects since the likelihood
has been improved by.34 = —174.46 — (—178.8) units. This is also confirmed by a likelihood
ratio test p-value= 0.003). Figure3 shows the fitted SROC curves along with their confidence and
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logit(Specificity)
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logit(Specificity)
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logit(Sensitivity) logit(Sensitivity)

Figure 2: Contour plots (predictive region) and quantilegression curves from the hybrid copula mixed model with
Frank copulas and normal margins for the PET modality to diage regional lymph node metastasis. Red and green
lines represent the quantile regression curvgs= 7 (z2, q) andxs := Ta(x1, q), respectively; foiy = 0.5 solid lines

and forg € {0.01,0.99} dotted lines (confidence region).

prediction regions for the best fitted hybrid copula mixeddelavith normal margins for both case-
control and cohort studies. In this dataset it revealedttigak is heterogeneity in association between

cohort and case control studies, itas positive, whiler;, is negative.

Cohort studies Case-Control studies
= ¥ = ¥
S - S «-
'8 =
o © 8_ o
9 | 9 i
g g
T T T T T T T T T T
-4 -2 0 2 4 -4 -2 0 2 4
logit(Sensitivity) logit(Sensitivity)

Figure 3: Contour plots (predictive region) and quantilegression curves from the hybrid copula mixed model with
Frank copulas and normal margins for the PET modality to diage distant lymph node metastasis. Red and green lines
represent the quantile regression curvgs:= 7 (z2, ¢) andzs := Z»(x1, q), respectively; forgp = 0.5 solid lines and

for ¢ € {0.01,0.99} dotted lines (confidence region).

In all the meta-analyses, improvement over the hybrid cpuiked model composed of BVN
copulas and normal margins, that is the same with the hybtiMid in Chen et al.(2015, has
been revealed in terms of the likelihood principt@hen et al(2015, instead of relying to separate
meta-analyses for each type of imaging modality and type efastasis, analyzed all the data by
assuming normal margins for the random effects with equstdsen-studies variances in transformed
sensitivity, specificity, and disease prevalence for caffikimaging modalities or stages of metastasis.

15




Table 7: Maximised ML and CL log-likelihoods, estimates atahdard errors (SE) of the hybrid copula mixed models
with different choices of parametric families of copulaslamargins for the PET modality to diagnose distant lymph node
metastasis.

Normal margins

BVN

Est.

SE

Frank

Est.

SE

CIn180/270 Cin 180/90 CIn 0/270

Est.

SE

Est.

SE

Est. SE Est.

Cln 0/90 CL

SE Est. SE

T
T2
3
01
09
03
T12
T13

0.82
0.87
0.57
0.65
0.94
0.87
-0.31
0.52
0.60

0.02
0.02
0.06
0.16
0.21
0.20
0.25
0.20
0.41

0.82
0.87
0.56
0.65
0.91
0.93
-0.45
0.51
0.57

0.02
0.02
0.06
0.16
0.20
0.21
0.27
0.21
0.36

0.83
0.87
0.57
0.65
0.94
0.94
-0.19
0.51
0.63

0.03
0.03
0.06
0.17
0.23
0.21
0.40
0.21
0.61

0.82
0.87
0.55
0.64
1.01
0.92
-0.28
0.46
0.73

0.02
0.02
0.06
0.15
0.22
0.21
0.25
0.21
0.32

0.82 0.03 0.82
0.87 0.03 0.87
0.59 0.07 0.59
0.68 0.17 0.65
0.93 0.23 0.99
0.89 0.22 0.84

0.03 0.82
0.03 0.82
0.08 0.97
0.13 0.69
0.29 040
0.19 0.98

-0.27 0.38 -0.397 0.00 -

0.53 0.22 0.49
0.63 0.59 0.72

0.2D 0.0
0.3D 0.0

log L

-174.50

-174.46

-175.98

-175.03

-174.93 -173.93 -178.80

Beta margins

BVN

Est.

SE

Frank

Est.

SE

Est.

SE

Est.

Cln 180/270 CIn 180/90 Cin 0/270

SE Est. SE

Cln 0/90

Est. SE

1
UP)
T3
M
Y2
3
T12
T13
.

0.80
0.84
0.56
0.06
0.10
0.14
-0.31
0.53
0.65

0.03
0.03
0.05
0.03
0.04
0.05
0.24
0.20
0.38

0.80
0.83
0.55
0.06
0.09
0.15
-0.46
0.53
0.60

0.03
0.03
0.05
0.03
0.04
0.05
0.27
0.21
0.35

0.81
0.84
0.55
0.06
0.10
0.16
-0.23
0.51
0.66

0.03
0.03
0.05
0.03
0.04
0.05
0.49
0.21
0.58

0.80
0.84
0.54
0.05
0.11
0.15
-0.26
0.47
0.76

0.02 0.80 0.03
0.03 0.83 0.03
0.05 0.57 0.06
0.02 0.06 0.03
0.04 0.10 0.04
0.05 0.15 0.06
0.25 -0.29 0.38
0.21 0.55 0.22
0.30 0.67 0.56

0.80 0.02
0.84 0.03
0.58 0.05
0.06 0.03
0.10 0.04
0.13 0.05
-0.225 0

0.50 0.22
0.76 0.30

log L

-175.76

-175.69

-177.17

-176.37 -176.14

-175.33

CIn o/ denotes a hybrid copula mixed with copula distributionsGteeyton rotated by and3 degrees for the
{C(;7),C13(;m13)} andC12(; T12) copulas, respectively.

These assumptions are quite strong and we have shown, witbutbgroup analysis in Tabl&s?,

that are substantially violated. In fact, between studyavenes are distinct in each type of imaging
modality or stage of metastasis and for the US imaging mtydalien the assumption of normal
margins is not valid.

6 Discussion

We have proposed a hybrid copula mixed model for meta-aisabjgliagnostic test accuracy stud-
ies. It jointly models the disease prevalence along witlyletic test sensitivity and specificity in

16



cohort studies, and sensitivity and specificity in casettobstudies. Our general model includes the
hybrid GLMM (Chen et al.2015 as a special case and can provide an improvement over the lat
based on log-likelihood. Hence, a better statistical eriee for the meta-analytic parameters and
their between-study variances is achieved. Neverthehesseta-analytic parameters are a univariate
inference, and hence it is the univariate marginal distidioLthat matters the most and not the type of
the copula. The proposed hybrid copula mixed model callsath bormal and beta univariate mar-
gins and thus can operate on the transformed and originia staensitivity, specificity and disease
prevalence, respectively.

Though typically the focus of meta-analysis has been twdéhie summary-effect estimates, there
is increasing interest in drawing predictive inferencefalet, if the interest is only to overall sensitiv-
ity, specificity and prevalence then the overall test aagueaross studies will not be clearly defined.
Different studies use different thresholds for a positiest result, thus the overall summary-effect
estimates do not make sense. Instead, some form of SROC makes much more sense and will
help decision makers to assess the actual diagnostic ayoofra diagnostic tesiNikoloulopoulos
20169. SROC curves are deduced for our model through the quamtijeession techniques de-
veloped byNikoloulopoulos(20153. For the hybrid copula mixed model, the model parameters
(including dependence parameters), the choice of the appatl the choice of the margin affect the
shape of the SROC curve. Among the parametric families ofilespin Tablel the tail dependence
varies, and is a property to consider when choosing amonféstssht families of copulas, and, hence
affects the shape of SROC curves, i.e., prediction. SROC=gslentially show the effect of different
model (random effect distribution) assumptions, sincs &n inference that depends on the joint dis-
tribution (Nikoloulopoulos 20153. Given that the CL estimation assumes independence arheng t
random effects, it provides identical fit for any copula naixeodel, since all the parametric families
of copulas in Tabld contain the independence copula as a special case. Headsgtlimitation of
the CL method is that it cannot be used to produce the SRO@ssince the dependence parameters
affect the shape of the SROC curve and these are set to indiepenby definition.

It has been reported in the literature that in the trivar@teMM (Chu et al, 2009 and hybrid
GLMM (Chen et al.2015 estimation problems relating to the correlation paramseg¢gist, such as
non-convergence. Here instead of a trivariate normalidigion we use a vine copula distribution,
and in particular a truncated at level-1 vine copula (coodél independence), which allows both
parsimony and flexible (tail) dependence. In fact, we preppsiumerically stable ML estimation
technique based on Gauss-Legendre quadrature; the cstefals to convert from independent to
dependent quadrature points. However, the additionalifeatf having to estimate the associations
among the random effects has been found to require largepleames than in CL estimation where
these parameters are set to independence. The applicaiopke includes cases with an adequate
number of individual studies per study design. For metdyaea with fewer (especially cohort) stud-
ies the bivariate copula mixed model to obtain estimatesagfristic sensitivity and specificity but
not prevalence should be fitted instead. Future researthl®al with the development of penalized
likelihood methods for optimising inference about the assoon parameters of the hybrid copula
mixed model when the number of available study summarienals

We also plan to provide extensions of the model to accourpdotial verification bias. This is a
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feature that has been already developed for the hybrid GLMist €t al, 2014).

Software

R functions to implement the hybrid vine copula mixed modelfeeta-analysis of diagnostic test ac-
curacy case-contol and cohort studies are part oRthackageCopul aREMADA (Nikoloulopoulos
20168.
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